1
|
Wu B, Zhou D, Mei Z. Targeting the neurovascular unit: Therapeutic potential of traditional Chinese medicine for the treatment of stroke. Heliyon 2024; 10:e38200. [PMID: 39386825 PMCID: PMC11462356 DOI: 10.1016/j.heliyon.2024.e38200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Stroke poses a significant global health challenge due to its elevated disability and mortality rates, particularly affecting developing nations like China. The neurovascular unit (NVU), a new concept encompassing neurons, brain microvascular endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix, has gained prominence in recent years. Traditional Chinese medicine (TCM), deeply rooted in Chinese history, employs a combination of acupuncture and herbal treatments, demonstrating significant efficacy across all stages of stroke, notably during recovery. The holistic approach of TCM aligns with the NVU's comprehensive view of treating stroke by addressing neurons, surrounding cells, and blood vessels collectively. This review examines the role of NVU in stroke and endeavors to elucidate the mechanisms through which traditional Chinese medicine exerts its anti-stroke effects within the NVU framework. The NVU contributes to neuroinflammation, immune infiltration, blood-brain barrier permeability, oxidative stress, and Ca2+ overload during stroke occurs. Additionally, TCM targeting the NVU facilitates nerve repair post-stroke through various pathways and approaches. Specific herbs, including panax notoginseng, ginseng, and borneol, alleviate brain injury by enhancing brain-derived neurotrophic factor expression and targeting astrocytes and microglia to yield anti-inflammatory and antioxidant effects. Acupuncture, another facet of TCM, promotes brain injury repair by augmenting cerebral blood flow and improving circulation. This exploration aims to assess the viability of stroke treatment by directing TCM interventions toward the NVU, thus paving the way for its broader clinical application.
Collapse
Affiliation(s)
- Bingxin Wu
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Dabiao Zhou
- Hubei Provincial Hospital of Integrated Traditional Chinese and Western Medicine, Wuhan, Hubei, 430000, China
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese Medicine and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| |
Collapse
|
2
|
Wang J, Xiong T, Wu Q, Qin X. Integrated Strategies for Targeting Arteriogenesis and Angiogenesis After Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01291-4. [PMID: 39225878 DOI: 10.1007/s12975-024-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The interdependence between arteriogenesis and angiogenesis is crucial for enhancing perfusion by synchronously improving leptomeningeal collaterals (LMCs) and microvascular networks after stroke. However, current approaches often focus on promoting arteriogenesis and angiogenesis separately, neglecting the potential synergistic benefits of targeting both processes simultaneously. Therefore, it is imperative to consider both arteriogenesis and angiogenesis as integral and complementary strategies for post-stroke revascularization. To gain a deeper understanding of their relationships after stroke and to facilitate the development of targeted revascularization strategies, we compared them based on their timescale, space, and pathophysiology. The temporal differences in the occurrence of arteriogenesis and angiogenesis allow them to restore blood flow at different stages after stroke. The spatial differences in the effects of arteriogenesis and angiogenesis enable them to specifically target the ischemic penumbra and core infarct region. Additionally, the endothelial cell, as the primary effector cell in their pathophysiological processes, is promising target for enhancing both. Therefore, we provide an overview of key signals that regulate endothelium-mediated arteriogenesis and angiogenesis. Finally, we summarize current therapeutic strategies that involve these signals to promote both processes after stroke, with the aim of inspiring future therapeutic advances in revascularization.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Taoying Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
Cen K, Huang Y, Xie Y, Liu Y. The guardian of intracranial vessels: Why the pericyte? Biomed Pharmacother 2024; 176:116870. [PMID: 38850658 DOI: 10.1016/j.biopha.2024.116870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
Intracranial atherosclerotic stenosis (ICAS) is a pathological condition characterized by progressive narrowing or complete blockage of intracranial blood vessels caused by plaque formation. This condition leads to reduced blood flow to the brain, resulting in cerebral ischemia and hypoxia. Ischemic stroke (IS) resulting from ICAS poses a significant global public health challenge, especially among East Asian populations. However, the underlying causes of the notable variations in prevalence among diverse populations, as well as the most effective strategies for preventing and treating the rupture and blockage of intracranial plaques, remain incompletely comprehended. Rupture of plaques, bleeding, and thrombosis serve as precipitating factors in the pathogenesis of luminal obstruction in intracranial arteries. Pericytes play a crucial role in the structure and function of blood vessels and face significant challenges in regulating the Vasa Vasorum (VV)and preventing intraplaque hemorrhage (IPH). This review aims to explore innovative therapeutic strategies that target the pathophysiological mechanisms of vulnerable plaques by modulating pericyte biological function. It also discusses the potential applications of pericytes in central nervous system (CNS) diseases and their prospects as a therapeutic intervention in the field of biological tissue engineering regeneration.
Collapse
Affiliation(s)
- Kuan Cen
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - YinFei Huang
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - Yu Xie
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China
| | - YuMin Liu
- Department of Neurology, Zhongnan Hospital Affiliated to Wuhan University, Wuhan 430000, China.
| |
Collapse
|
4
|
Wang H, Zhang Z, Hongpaisan J. PKCε activator protects hippocampal microvascular disruption and memory defect in 3×Tg-Alzheimer's disease mice with cerebral microinfarcts. Front Aging Neurosci 2023; 15:1272361. [PMID: 38187357 PMCID: PMC10768563 DOI: 10.3389/fnagi.2023.1272361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/23/2023] [Indexed: 01/09/2024] Open
Abstract
Background Current evidence suggests that microvessel disease is involved in Alzheimer's disease (AD). Cerebrovascular disease correlates with cardiovascular disease and is complicated in ≈40% of AD patients. The protein kinase C (PKC) ε activator DCPLA can stimulate human antigen (Hu) R that prevents degradation and promotes the translation of mitochondrial Mn-superoxide dismutase (MnSOD) and vascular endothelial growth factor-A (VEGF) mRNAs. Methods To induce brain microinfarcts, we injected triple transgenic (3×Tg) and wild-type (WT) control mice with microbeads (20 μm caliber) into common carotid arteries, with or without the DCPLA-ME (methyl-ester) for 2 weeks. After water maze training, mice at 16 months old were examined for confocal immunohistochemistry at a single cell or microvessel level in the hippocampal CA1 area, important for spatial memory storage, and in the dorsal hippocampus by western blots. Results In 3×Tg mice without cerebral microinfarcts, an accelerating age-related increase in (mild) oxidative stress and hypoxia inducible factor (HIF)-1α, but a reduction in VEGF, mitochondrial transcription factor A (TFAM), and MnSOD were associated with capillary loss. The change was less pronounced in arterioles. However, in 3×Tg mice with cerebral microinfarcts, increasing arteriolar diameter and their wall cells were related with the strong oxidative DNA damage 8-hydroxy-2'-deoxyguanosine (8-OHdG), apoptosis (cleaved caspase 3), and sustained hypoxia (increased HIF-1α and VEGF/PKCε/extracellular signal regulated kinase or ERK pathway). Microocclusion enhanced the loss of the synaptic marker spinophilin, astrocytic number, and astrocyte-vascular coupling areas and demyelination of axons. DCPLA-ME prevented spatial memory defect; strong oxidative stress-related apoptosis; sustained hypoxia (by reducing HIF-1α and VEGF); and exaggerated cell repair in arteriolar walls, pericapillary space dilation, neuro-glial-vascular disruption, and demyelination. Conclusion In conclusion, in 3×Tg mice with cerebral microinfarcts, sustained hypoxia (increased HIF-1α and VEGF signals) is dominant with arteriolar wall thickening, and DCPLA has a protective effect on sustained hypoxia.
Collapse
Affiliation(s)
| | | | - Jarin Hongpaisan
- Department of Medicine, Center for Translational Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, United States
| |
Collapse
|
5
|
Zeng M, Peng M, Liang J, Sun H. The Role of Gut Microbiota in Blood-Brain Barrier Disruption after Stroke. Mol Neurobiol 2023:10.1007/s12035-023-03512-7. [PMID: 37498481 DOI: 10.1007/s12035-023-03512-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Growing evidence has proved that alterations in the gut microbiota have been linked to neurological disorders including stroke. Structural and functional disruption of the blood-brain barrier (BBB) is observed after stroke. In this context, there is pioneering evidence supporting that gut microbiota may be involved in the pathogenesis of stroke by regulating the BBB function. However, only a few experimental studies have been performed on stroke models to observe the BBB by altering the structure of gut microbiota, which warrant further exploration. Therefore, in order to provide a novel mechanism for stroke and highlight new insights into BBB modification as a stroke intervention, this review summarizes existing evidence of the relationship between gut microbiota and BBB integrity and discusses the mechanisms of gut microbiota on BBB dysfunction and its role in stroke.
Collapse
Affiliation(s)
- Meiqin Zeng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Meichang Peng
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jianhao Liang
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Haitao Sun
- Clinical Biobank Center, Microbiome Medicine Center, Department of Laboratory Medicine, Guangdong Provincial Clinical Research Center for Laboratory Medicine, Zhujiang Hospital, Southern Medical University, 510280, Guangzhou, China.
- Neurosurgery Center, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China On Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory On Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China.
| |
Collapse
|
6
|
Inoue Y, Shue F, Bu G, Kanekiyo T. Pathophysiology and probable etiology of cerebral small vessel disease in vascular dementia and Alzheimer's disease. Mol Neurodegener 2023; 18:46. [PMID: 37434208 PMCID: PMC10334598 DOI: 10.1186/s13024-023-00640-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 06/28/2023] [Indexed: 07/13/2023] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is commonly caused by vascular injuries in cerebral large and small vessels and is a key driver of age-related cognitive decline. Severe VCID includes post-stroke dementia, subcortical ischemic vascular dementia, multi-infarct dementia, and mixed dementia. While VCID is acknowledged as the second most common form of dementia after Alzheimer's disease (AD) accounting for 20% of dementia cases, VCID and AD frequently coexist. In VCID, cerebral small vessel disease (cSVD) often affects arterioles, capillaries, and venules, where arteriolosclerosis and cerebral amyloid angiopathy (CAA) are major pathologies. White matter hyperintensities, recent small subcortical infarcts, lacunes of presumed vascular origin, enlarged perivascular space, microbleeds, and brain atrophy are neuroimaging hallmarks of cSVD. The current primary approach to cSVD treatment is to control vascular risk factors such as hypertension, dyslipidemia, diabetes, and smoking. However, causal therapeutic strategies have not been established partly due to the heterogeneous pathogenesis of cSVD. In this review, we summarize the pathophysiology of cSVD and discuss the probable etiological pathways by focusing on hypoperfusion/hypoxia, blood-brain barriers (BBB) dysregulation, brain fluid drainage disturbances, and vascular inflammation to define potential diagnostic and therapeutic targets for cSVD.
Collapse
Affiliation(s)
- Yasuteru Inoue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- SciNeuro Pharmaceuticals, Rockville, MD 20850 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| |
Collapse
|
7
|
Rada CC, Yuki K, Ding J, Kuo CJ. Regulation of the Blood-Brain Barrier in Health and Disease. Cold Spring Harb Perspect Med 2023; 13:a041191. [PMID: 36987582 PMCID: PMC10691497 DOI: 10.1101/cshperspect.a041191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The neurovascular unit is a dynamic microenvironment with tightly controlled signaling and transport coordinated by the blood-brain barrier (BBB). A properly functioning BBB allows sufficient movement of ions and macromolecules to meet the high metabolic demand of the central nervous system (CNS), while protecting the brain from pathogenic and noxious insults. This review describes the main cell types comprising the BBB and unique molecular signatures of these cells. Additionally, major signaling pathways for BBB development and maintenance are highlighted. Finally, we describe the pathophysiology of BBB diseases, their relationship to barrier dysfunction, and identify avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Cara C Rada
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Kanako Yuki
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Jie Ding
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Calvin J Kuo
- Department of Medicine, Division of Hematology, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
8
|
Harding IC, O'Hare NR, Vigliotti M, Caraballo A, Lee CI, Millican K, Herman IM, Ebong EE. Developing a transwell millifluidic device for studying blood-brain barrier endothelium. LAB ON A CHIP 2022; 22:4603-4620. [PMID: 36326069 PMCID: PMC11416711 DOI: 10.1039/d2lc00657j] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Blood-brain barrier (BBB) endothelial cell (EC) function depends on flow conditions and on supportive cells, like pericytes and astrocytes, which have been shown to be both beneficial and detrimental for brain EC function. Most studies investigating BBB EC function lack physiological relevance, using sub-physiological shear stress magnitudes and/or omitting pericytes and astrocytes. In this study, we developed a millifluidic device compatible with standard transwell inserts to investigate BBB function. In contrast to standard polydimethylsiloxane (PDMS) microfluidic devices, this model allows for easy, reproducible shear stress exposure without common limitations of PDMS devices such as inadequate nutrient diffusion and air bubble formation. In no-flow conditions, we first used the device to examine the impact of primary human pericytes and astrocytes on human brain microvascular EC (HBMEC) barrier integrity. Astrocytes, pericytes, and a 1-to-1 ratio of both cell types increased HBMEC barrier integrity via reduced 3 and 40 kDa fluorescent dextran permeability and increased claudin-5 expression. There were differing levels of low 3 kDa permeability in HBMEC-pericyte, HBMEC-astrocyte, and HBMEC-astrocyte-pericyte co-cultures, while levels of low 40 kDa permeability were consistent across co-cultures. The 3 kDa findings suggest that pericytes provide more barrier support to the BBB model compared to astrocytes, although both supportive cell types are permeability reducers. Incorporation of 24-hour 12 dynes per cm2 flow significantly reduced dextran permeability in HBMEC monolayers, but not in the tri-culture model. These results indicate that tri-culture may exert more pronounced impact on overall BBB permeability than flow exposure. In both cases, monolayer and tri-culture, flow exposure interestingly reduced HBMEC expression of both claudin-5 and occludin. ZO-1 expression, and localization at cell-cell junctions increased in the tri-culture but exhibited no apparent change in the HBMEC monolayer. Under flow conditions, we also observed HBMEC alignment in the tri-culture but not in HBMEC monolayers, indicating supportive cells and flow are both essential to observe brain EC alignment in vitro. Collectively, these results support the necessity of physiologically relevant, multicellular BBB models when investigating BBB EC function. Consideration of the roles of shear stress and supportive cells within the BBB is critical for elucidating the physiology of the neurovascular unit.
Collapse
Affiliation(s)
- Ian C Harding
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Nicholas R O'Hare
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 129 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA.
| | - Mark Vigliotti
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 129 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA.
| | - Alex Caraballo
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 129 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA.
| | - Claire I Lee
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Karina Millican
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Ira M Herman
- Department of Developmental, Molecular, and Chemical Biology, Tufts School of Graduate Biomedical Sciences, Boston, MA, USA
- Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, MA, USA
| | - Eno E Ebong
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, 129 Interdisciplinary Science and Engineering Complex, Boston, MA, 02115, USA.
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
9
|
Stafford P, Mitra S, Debot M, Lutz P, Stem A, Hadley J, Hom P, Schaid TR, Cohen MJ. Astrocytes and pericytes attenuate severely injured patient plasma mediated expression of tight junction proteins in endothelial cells. PLoS One 2022; 17:e0270817. [PMID: 35789221 PMCID: PMC9255734 DOI: 10.1371/journal.pone.0270817] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/20/2022] [Indexed: 11/18/2022] Open
Abstract
Blood Brain Barrier (BBB) breakdown is a secondary form of brain injury which has yet to be fully elucidated mechanistically. Existing research suggests that breakdown of tight junction proteins between endothelial cells is a primary driver of increased BBB permeability following injury, and intercellular signaling between primary cells of the neurovascular unit: endothelial cells, astrocytes, and pericytes; contribute to tight junction restoration. To expound upon this body of research, we analyzed the effects of severely injured patient plasma on each of the cell types in monoculture and together in a triculture model for the transcriptional and translational expression of the tight junction proteins Claudins 3 and 5, (CLDN3, CLDN5) and Zona Occludens 1 (ZO-1). Conditioned media transfer studies were performed to illuminate the cell type responsible for differential tight junction expression. Our data show that incubation with 5% human ex vivo severely injured patient plasma is sufficient to produce a differential response in endothelial cell tight junction mRNA and protein expression. Endothelial cells in monoculture produced a significant increase of CLDN3 and CLDN5 mRNA expression, (3.98 and 3.51 fold increase vs. control respectively, p<0.01) and CLDN5 protein expression, (2.58 fold change vs. control, p<0.01), whereas in triculture, this increase was attenuated. Our triculture model and conditioned media experiments suggest that conditioned media from astrocytes and pericytes and a triculture of astrocytes, pericytes and endothelial cells are sufficient in attenuating the transcriptional increases of tight junction proteins CLDN3 and CLDN5 observed in endothelial monocultures following incubation with severely injured trauma plasma. This data suggests that inhibitory molecular signals from astrocytes and pericytes contributes to prolonged BBB breakdown following injury via tight junction transcriptional and translational downregulation of CLDN5.
Collapse
Affiliation(s)
- Preston Stafford
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Sanchayita Mitra
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Margot Debot
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Patrick Lutz
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Arthur Stem
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jamie Hadley
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Patrick Hom
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Terry R. Schaid
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Mitchell J. Cohen
- Division of GITES, Department of Surgery, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
10
|
Chen YP, Wang KX, Cai JQ, Li Y, Yu HL, Wu Q, Meng W, Wang H, Yin CH, Wu J, Huang MB, Li R, Guan DG. Detecting Key Functional Components Group and Speculating the Potential Mechanism of Xiao-Xu-Ming Decoction in Treating Stroke. Front Cell Dev Biol 2022; 10:753425. [PMID: 35646921 PMCID: PMC9136080 DOI: 10.3389/fcell.2022.753425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 02/25/2022] [Indexed: 02/05/2023] Open
Abstract
Stroke is a cerebrovascular event with cerebral blood flow interruption which is caused by occlusion or bursting of cerebral vessels. At present, the main methods in treating stroke are surgical treatment, statins, and recombinant tissue-type plasminogen activator (rt-PA). Relatively, traditional Chinese medicine (TCM) has widely been used at clinical level in China and some countries in Asia. Xiao-Xu-Ming decoction (XXMD) is a classical and widely used prescription in treating stroke in China. However, the material basis of effect and the action principle of XXMD are still not clear. To solve this issue, we designed a new system pharmacology strategy that combined targets of XXMD and the pathogenetic genes of stroke to construct a functional response space (FRS). The effective proteins from this space were determined by using a novel node importance calculation method, and then the key functional components group (KFCG) that could mediate the effective proteins was selected based on the dynamic programming strategy. The results showed that enriched pathways of effective proteins selected from FRS could cover 99.10% of enriched pathways of reference targets, which were defined by overlapping of component targets and pathogenetic genes. Targets of optimized KFCG with 56 components can be enriched into 166 pathways that covered 80.43% of 138 pathways of 1,012 pathogenetic genes. A component potential effect score (PES) calculation model was constructed to calculate the comprehensive effective score of components in the components-targets-pathways (C-T-P) network of KFCGs, and showed that ferulic acid, zingerone, and vanillic acid had the highest PESs. Prediction and docking simulations show that these components can affect stroke synergistically through genes such as MEK, NFκB, and PI3K in PI3K-Akt, cAMP, and MAPK cascade signals. Finally, ferulic acid, zingerone, and vanillic acid were tested to be protective for PC12 cells and HT22 cells in increasing cell viabilities after oxygen and glucose deprivation (OGD). Our proposed strategy could improve the accuracy on decoding KFCGs of XXMD and provide a methodologic reference for the optimization, mechanism analysis, and secondary development of the formula in TCM.
Collapse
Affiliation(s)
- Yu-peng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Ke-xin Wang
- Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Neurosurgery, National Key Clinical Specialty/Engineering Technology Research Center of Education Ministry of China, Neurosurgery Institute, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jie-qi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hai-lang Yu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Qi Wu
- Department of Burns, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Meng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Handuo Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Chuan-hui Yin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Jie Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China
| | - Mian-bo Huang
- Department of Histology and Embryology, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Rong Li
- Department of Cardiovascular Disease, First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| | - Dao-gang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China,Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Southern Medical University, Guangzhou, China,*Correspondence: Mian-bo Huang, ; Rong Li, ; Dao-gang Guan,
| |
Collapse
|
11
|
Vore AS, Barney TM, Deak MM, Varlinskaya EI, Deak T. Adolescent intermittent ethanol exposure produces Sex-Specific changes in BBB Permeability: A potential role for VEGFA. Brain Behav Immun 2022; 102:209-223. [PMID: 35245677 PMCID: PMC9277567 DOI: 10.1016/j.bbi.2022.02.030] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/31/2022] [Accepted: 02/27/2022] [Indexed: 12/20/2022] Open
Abstract
Binge drinking that typically begins during adolescence can have long-lasting neurobehavioral consequences, including alterations in the central and peripheral immune systems. Central and peripheral inflammation disrupts blood-brain barrier (BBB) integrity and exacerbates pathology in diseases commonly associated with disturbed BBB function. Thus, the goal of the present studies was to determine long-lasting effects of adolescent intermittent ethanol (AIE) on BBB integrity. For AIE, male and female Sprague Dawley rats were repeatedly exposed to ethanol (4 g/kg, intragastrically) or water during adolescence between postnatal day (P) 30 and P50. In adulthood (∼P75), rats were challenged with fluorescein isothiocyanate (FITC)-tagged Dextran of varying molecular weights (4, 20, & 70 kDa) for assessment of BBB permeability using gross tissue fluorometry (Experiment 1). Experiment 2 extended these effects using immunofluorescence, adding an adult ethanol-exposed group to test for a specific developmental vulnerability. Finally, as a first test of hypothesized mechanism, Experiment 3 examined the effect of AIE on Vascular Endothelial Growth Factor A (VEGFA) and its co-localization with pericytes (identified through expression of platelet derived growth factor receptor beta (PDGFRβ), a key regulatory cell embedded within the BBB. Male, but not female, rats with a history of AIE showed significantly increased dextran permeability in the nucleus accumbens (NAc), cingulate prefrontal cortex (cPFC), and amygdala (AMG). Similar increases in dextran were observed in the hippocampus (HPC) and ventral tegmental area (VTA) of male rats with a history of AIE or equivalent ethanol exposure during adulthood. No changes in BBB permeability were evident in females. When VEGFa expression was examined, male rats exposed to AIE were challenged with 3.5 g/kg ethanol (i.p.) or vehicle acutely in adulthood to assess long-lasting versus acute actions of ethanol. Adult rats with a history of AIE showed significantly fewer total cells expressing VEGFa in the AMG and dHPC following the acute ethanol challenge in adulthood. They also showed a significant reduction in the number of PDGFRβ positive cells that also expressed VEGFa signal. The anatomical distribution of these effects corresponded with increased BBB permeability after AIE (i.e., differential effects in the PVN, AMG, and dHPC). These studies demonstrated sex-specific effects of AIE, with males, but not females, demonstrating long-term increases in BBB permeability that correlated with changes in VEGFa and PDGFRβ protein, two factors known to influence BBB permeability.
Collapse
Affiliation(s)
| | | | | | | | - Terrence Deak
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton, NY 13902-6000.
| |
Collapse
|
12
|
Mathew S, Sivasubbu S. Long Non Coding RNA Based Regulation of Cerebrovascular Endothelium. Front Genet 2022; 13:834367. [PMID: 35495157 PMCID: PMC9043600 DOI: 10.3389/fgene.2022.834367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
The rapid and high throughput discovery of long non coding RNAs (lncRNAs) has far outstripped the functional annotation of these novel transcripts in their respective cellular contexts. The cells of the blood brain barrier (BBB), especially the cerebrovascular endothelial cells (CVECs), are strictly regulated to maintain a controlled state of homeostasis for undisrupted brain function. Several key pathways are understood in CVEC function that lead to the development and maintenance of their barrier properties, the dysregulation of which leads to BBB breakdown and neuronal injury. Endothelial lncRNAs have been discovered and functionally validated in the past decade, spanning a wide variety of regulatory mechanisms in health and disease. We summarize here the lncRNA-mediated regulation of established pathways that maintain or disrupt the barrier property of CVECs, including in conditions such as ischemic stroke and glioma. These lncRNAs namely regulate the tight junction assembly/disassembly, angiogenesis, autophagy, apoptosis, and so on. The identification of these lncRNAs suggests a less understood mechanistic layer, calling for further studies in appropriate models of the blood brain barrier to shed light on the lncRNA-mediated regulation of CVEC function. Finally, we gather various approaches for validating lncRNAs in BBB function in human organoids and animal models and discuss the therapeutic potential of CVEC lncRNAs along with the current limitations.
Collapse
Affiliation(s)
- Samatha Mathew
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sridhar Sivasubbu
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), New Delhi, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India,*Correspondence: Sridhar Sivasubbu,
| |
Collapse
|
13
|
Zhou SY, Guo ZN, Zhang DH, Qu Y, Jin H. The Role of Pericytes in Ischemic Stroke: Fom Cellular Functions to Therapeutic Targets. Front Mol Neurosci 2022; 15:866700. [PMID: 35493333 PMCID: PMC9043812 DOI: 10.3389/fnmol.2022.866700] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/18/2022] [Indexed: 12/25/2022] Open
Abstract
Ischemic stroke (IS) is a cerebrovascular disease causing high rates of disability and fatality. In recent years, the concept of the neurovascular unit (NVU) has been accepted by an increasing number of researchers and is expected to become a new paradigm for exploring the pathogenesis and treatment of IS. NVUs are composed of neurons, endothelial cells, pericytes, astrocytes, microglia, and the extracellular matrix. As an important part of the NVU, pericytes provide support for other cellular components and perform a variety of functions, including participating in the maintenance of the normal physiological function of the blood–brain barrier, regulating blood flow, and playing a role in inflammation, angiogenesis, and neurogenesis. Therefore, treatment strategies targeting pericyte functions, regulating pericyte epigenetics, and transplanting pericytes warrant exploration. In this review, we describe the reactions of pericytes after IS, summarize the potential therapeutic targets and strategies targeting pericytes for IS, and provide new treatment ideas for ischemic stroke.
Collapse
Affiliation(s)
- Sheng-Yu Zhou
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Zhen-Ni Guo
- Clinical Trial and Research Center for Stroke, Department of Neurology, The First Hospital of Jilin University, Changchun, China
| | - Dian-Hui Zhang
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Yang Qu
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
| | - Hang Jin
- Department of Neurology, Stroke Center, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Hang Jin,
| |
Collapse
|
14
|
Li W, Cao F, Takase H, Arai K, Lo EH, Lok J. Blood-Brain Barrier Mechanisms in Stroke and Trauma. Handb Exp Pharmacol 2022; 273:267-293. [PMID: 33580391 DOI: 10.1007/164_2020_426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The brain microenvironment is tightly regulated. The blood-brain barrier (BBB), which is composed of cerebral endothelial cells, astrocytes, and pericytes, plays an important role in maintaining the brain homeostasis by regulating the transport of both beneficial and detrimental substances between circulating blood and brain parenchyma. After brain injury and disease, BBB tightness becomes dysregulated, thus leading to inflammation and secondary brain damage. In this chapter, we overview the fundamental mechanisms of BBB damage and repair after stroke and traumatic brain injury (TBI). Understanding these mechanisms may lead to therapeutic opportunities for brain injury.
Collapse
Affiliation(s)
- Wenlu Li
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Fang Cao
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hajime Takase
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ken Arai
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Eng H Lo
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Josephine Lok
- Neuroprotection Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Miranda-Azpiazu P, Saha S. A Novel Dynamic Human In Vitro Model for Studying the Blood-Brain Barrier. Methods Mol Biol 2022; 2492:157-173. [PMID: 35733044 DOI: 10.1007/978-1-0716-2289-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Constructing a reliable in vitro blood-brain barrier (BBB) model using human primary cells has been considered a major challenge during the past decades. These systems could provide valuable information regarding the effect of therapeutic compounds on different BBB cell types (endothelial cells, astrocytes, pericytes) and their ability to cross the barrier in order to reach the brain. Several attempts have been made to develop in vitro BBB models, but these studies mainly used rat, bovine, and porcine cells rather than human primary cells. Genetically modified cell lines have also been used, but they do not appear to maintain physiological properties of the BBB. Here, we describe a detailed protocol for co-culturing and maintaining human brain primary endothelial cells, pericytes, and astrocytes under flow to create an in vitro human BBB model, which can be used for toxicity testing and for studying cross-interaction among different cell types involved in the BBB formation.
Collapse
Affiliation(s)
- Patricia Miranda-Azpiazu
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Sikha Saha
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.
| |
Collapse
|
16
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
17
|
Linton AE, Weekman EM, Wilcock DM. Pathologic sequelae of vascular cognitive impairment and dementia sheds light on potential targets for intervention. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100030. [PMID: 36324710 PMCID: PMC9616287 DOI: 10.1016/j.cccb.2021.100030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 09/11/2021] [Accepted: 10/08/2021] [Indexed: 11/30/2022]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) is one of the leading causes of dementia along with Alzheimer's disease (AD) and, importantly, VCID often manifests as a comorbidity of AD(Vemuri and Knopman 2016; Schneider and Bennett 2010)(Vemuri and Knopman 2016; Schneider and Bennett 2010). Despite its common clinical manifestation, the mechanisms underlying VCID disease progression remains elusive. In this review, existing knowledge is used to propose a novel hypothesis linking well-established risk factors of VCID with the distinct neurodegenerative cascades of neuroinflammation and chronic hypoperfusion. It is hypothesized that these two synergistic signaling cascades coalesce to initiate aberrant angiogenesis and induce blood brain barrier breakdown trough a mechanism mediated by vascular growth factors and matrix metalloproteinases respectively. Finally, this review concludes by highlighting several potential therapeutic interventions along this neurodegenerative sequalae providing diverse opportunities for future translational study.
Collapse
Affiliation(s)
- Alexandria E. Linton
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| | - Erica M. Weekman
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| | - Donna M. Wilcock
- University of Kentucky, College of Medicine, Sanders-Brown Center on Aging, Department of Physiology, Lexington KY 40536, USA
| |
Collapse
|
18
|
Cao L, Zhou Y, Chen M, Li L, Zhang W. Pericytes for Therapeutic Approaches to Ischemic Stroke. Front Neurosci 2021; 15:629297. [PMID: 34239409 PMCID: PMC8259582 DOI: 10.3389/fnins.2021.629297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 05/11/2021] [Indexed: 12/18/2022] Open
Abstract
Pericytes are perivascular multipotent cells located on capillaries. Although pericytes are discovered in the nineteenth century, recent studies have found that pericytes play an important role in maintaining the blood—brain barrier (BBB) and regulating the neurovascular system. In the neurovascular unit, pericytes perform their functions by coordinating the crosstalk between endothelial, glial, and neuronal cells. Dysfunction of pericytes can lead to a variety of diseases, including stroke and other neurological disorders. Recent studies have suggested that pericytes can serve as a therapeutic target in ischemic stroke. In this review, we first summarize the biology and functions of pericytes in the central nervous system. Then, we focus on the role of dysfunctional pericytes in the pathogenesis of ischemic stroke. Finally, we discuss new therapies for ischemic stroke based on targeting pericytes.
Collapse
Affiliation(s)
- Lu Cao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yanbo Zhou
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengguang Chen
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li Li
- Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Zhang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Pericyte hypoxia-inducible factor-1 (HIF-1) drives blood-brain barrier disruption and impacts acute ischemic stroke outcome. Angiogenesis 2021; 24:823-842. [PMID: 34046769 PMCID: PMC8487886 DOI: 10.1007/s10456-021-09796-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
Pericytes play essential roles in blood-brain barrier integrity and their dysfunction is implicated in neurological disorders such as stroke although the underlying mechanisms remain unknown. Hypoxia-inducible factor-1 (HIF-1), a master regulator of injury responses, has divergent roles in different cells especially during stress scenarios. On one hand HIF-1 is neuroprotective but on the other it induces vascular permeability. Since pericytes are critical for barrier stability, we asked if pericyte HIF-1 signaling impacts barrier integrity and injury severity in a mouse model of ischemic stroke. We show that pericyte HIF-1 loss of function (LoF) diminishes ischemic damage and barrier permeability at 3 days reperfusion. HIF-1 deficiency preserved barrier integrity by reducing pericyte death thereby maintaining vessel coverage and junctional protein organization, and suppressing vascular remodeling. Importantly, considerable improvements in sensorimotor function were observed in HIF-1 LoF mice indicating that better vascular functionality post stroke improves outcome. Thus, boosting vascular integrity by inhibiting pericytic HIF-1 activation and/or increasing pericyte survival may be a lucrative option to accelerate recovery after severe brain injury.
Collapse
|
20
|
Oliveira-Giacomelli Á, Petiz LL, Andrejew R, Turrini N, Silva JB, Sack U, Ulrich H. Role of P2X7 Receptors in Immune Responses During Neurodegeneration. Front Cell Neurosci 2021; 15:662935. [PMID: 34122013 PMCID: PMC8187565 DOI: 10.3389/fncel.2021.662935] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/26/2021] [Indexed: 01/16/2023] Open
Abstract
P2X7 receptors are ion-gated channels activated by ATP. Under pathological conditions, the extensive release of ATP induces sustained P2X7 receptor activation, culminating in induction of proinflammatory pathways with inflammasome assembly and cytokine release. These inflammatory conditions, whether occurring peripherally or in the central nervous system (CNS), increase blood-brain-barrier (BBB) permeability. Besides its well-known involvement in neurodegeneration and neuroinflammation, the P2X7 receptor may induce BBB disruption and chemotaxis of peripheral immune cells to the CNS, resulting in brain parenchyma infiltration. For instance, despite common effects on cytokine release, P2X7 receptor signaling is also associated with metalloproteinase secretion and activation, as well as migration and differentiation of T lymphocytes, monocytes and dendritic cells. Here we highlight that peripheral immune cells mediate the pathogenesis of Multiple Sclerosis and Parkinson's and Alzheimer's disease, mainly through T lymphocyte, neutrophil and monocyte infiltration. We propose that P2X7 receptor activation contributes to neurodegenerative disease progression beyond its known effects on the CNS. This review discusses how P2X7 receptor activation mediates responses of peripheral immune cells within the inflamed CNS, as occurring in the aforementioned diseases.
Collapse
Affiliation(s)
| | - Lyvia Lintzmaier Petiz
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Roberta Andrejew
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Natalia Turrini
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Jean Bezerra Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany
| |
Collapse
|
21
|
Involvement of HECTD1 in LPS-induced astrocyte activation via σ-1R-JNK/p38-FOXJ2 axis. Cell Biosci 2021; 11:62. [PMID: 33781347 PMCID: PMC8008527 DOI: 10.1186/s13578-021-00572-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 03/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Astrocytes participate in innate inflammatory responses within the mammalian central nervous system (CNS). HECT domain E3 ubiquitin protein ligase 1 (HECTD1) functions during microglial activation, suggesting a connection with neuroinflammation. However, the potential role of HECTD1 in astrocytes remains largely unknown. RESULTS Here, we demonstrated that HECTD1 was upregulated in primary mouse astrocytes after 100 ng/ml lipopolysaccharide (LPS) treatment. Genetic knockdown of HECTD1 in vitro or astrocyte-specific knockdown of HECTD1 in vivo suppressed LPS-induced astrocyte activation, whereas overexpression of HECTD1 in vitro facilitated LPS-induced astrocyte activation. Mechanistically, we established that LPS activated σ-1R-JNK/p38 pathway, and σ-1R antagonist BD1047, JNK inhibitor SP600125, or p38 inhibitor SB203580 reversed LPS-induced expression of HECTD1, thus restored LPS-induced astrocyte activation. In addition, FOXJ2 functioned as a transcription factor of HECTD1, and pretreatment of primary mouse astrocytes with BD1047, SB203580, and SP600125 significantly inhibited LPS-mediated translocation of FOXJ2 into the nucleus. CONCLUSIONS Overall, our present findings suggest that HECTD1 participates in LPS-induced astrocyte activation by activation of σ-1R-JNK/p38-FOXJ2 pathway and provide a potential therapeutic strategy for neuroinflammation induced by LPS or any other neuroinflammatory disorders.
Collapse
|
22
|
Traditional Chinese Medicine Shenmayizhi Decoction Ameliorates Memory and Cognitive Impairment Induced by Multiple Cerebral Infarctions. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6648455. [PMID: 33859709 PMCID: PMC8026291 DOI: 10.1155/2021/6648455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/17/2021] [Accepted: 03/21/2021] [Indexed: 11/25/2022]
Abstract
This study aimed to illustrate the mechanism by which Shenmayizhi decoction (SMYZD) improves the learning memory of rats with vascular cognitive impairment (VCI). Fifty male and female Wistar rats of specific pathogen-free grade (SPF grade) were used to establish the model by the administration of a microsphere embolization. This was accomplished by injecting sterile, standardized, mass-produced microspheres of uniform particle size (100–200 µm in diameter) in a sodium alginate microsphere vascular embolic agent suspension to induce VCI. The VCI model was successfully established in 40 rats, including both male and female rats, and the rats were randomly divided into 4 groups of 10 rats each. The model group was administered an equal volume of distilled water. The donepezil group was administered 0.45 mg/kg/d donepezil, which is equivalent to the clinical dosage. The SMYZ-H group was administered 11.88 g/kg/d SMYZ, which is 4 times higher than the clinically equivalent dosage. The SMYZ-L group was administered 2.97 g/kg/d SMYZ, which is the clinically equivalent dosage. A sham-operated group was used as the control group and administered an equal volume of distilled water. The rats in the 4 groups were treated by gavage with equal volumes of liquid and the indicated concentration of drug diluted in distilled water for 8 consecutive weeks. Two months later, the Morris water maze (MWM) was used to evaluate the spatial memory of all the rats. Ultrastructural and ultrapathological changes in the capillaries of the cerebral cortex were observed by transmission electron microscopy. Furthermore, Western blot and RT-PCR analyses were used to assess the levels of platelet-derived growth factor receptor-β (PDGFR-β), neuron-glial antigen 2 (NG2), vascular endothelial growth factor A (VEGF-A), and angiopoietin 1 (Ang1) in the cerebral cortex of the rats. The results showed that SMYZD at concentrations of 11.88 g/kg/d and 2.97 g/kg/d (SMYZ-H and SMYZ-L) significantly shortened the escape latency (EL). In addition, SMYZ-H significantly prolonged the distance traveled and the time spent in the original platform quadrant by the rats with VCI. SMYZ-H significantly increased the NG2 and Ang1 protein expression levels and increased the PDGFR-β and Ang1 mRNA levels. These results demonstrated that Shenmayizhi decoction can improve the memory abilities of rats with VCI induced by multiple cerebral infarctions by preventing pericyte degeneration.
Collapse
|
23
|
Stone NL, England TJ, O'Sullivan SE. Protective Effects of Cannabidivarin and Cannabigerol on Cells of the Blood-Brain Barrier Under Ischemic Conditions. Cannabis Cannabinoid Res 2021; 6:315-326. [PMID: 33998890 PMCID: PMC8380798 DOI: 10.1089/can.2020.0159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background and Objectives: Preclinical studies have shown cannabidiol is protective in models of ischemic stroke. Based on results from our recent systematic review, we investigated the effects of two promising neuroprotective phytocannabinoids, cannabigerol (CBG) and cannabidivarin (CBDV), on cells of the blood-brain barrier (BBB), namely human brain microvascular endothelial cells (HBMECs), pericytes, and astrocytes. Experimental Approach: Cultures were subjected to oxygen-glucose deprivation (OGD) protocol to model ischemic stroke and cell culture medium was assessed for cytokines and adhesion molecules post-OGD. Astrocyte cell lysates were also analyzed for DNA damage markers. Antagonist studies were conducted where appropriate to study receptor mechanisms. Results: In astrocytes CBG and CBDV attenuated levels of interleukin-6 (IL-6) and lactate dehydrogenase (LDH), whereas CBDV (10 nM-10 μM) also decreased vascular endothelial growth factor (VEGF) secretion. CBDV (300 nM-10 μM) attenuated levels of monocyte chemoattractant protein (MCP)-1 in HBMECs. In astrocytes, CBG decreased levels of DNA damage proteins, including p53, whereas CBDV increased levels of DNA damage markers. Antagonists for CB1, CB2, PPAR-γ, PPAR-α, 5-HT1A, and TRPV1 had no effect on CBG (3 μM) or CBDV (1 μM)-mediated decreases in LDH in astrocytes. GPR55 and GPR18 were partially implicated in the effects of CBDV, but no molecular target was identified for CBG. Conclusions: We show that CBG and CBDV were protective against OG mediated injury in three different cells that constitute the BBB, modulating different hallmarks of ischemic stroke pathophysiology. These data enhance our understanding of the protective effects of CBG and CBDV and warrant further investigation into these compounds in ischemic stroke. Future studies should identify other possible neuroprotective effects of CBG and CBDV and their corresponding mechanisms of action.
Collapse
Affiliation(s)
- Nicole L Stone
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Timothy J England
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom.,University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, United Kingdom
| | - Saoirse E O'Sullivan
- University Hospitals of Derby and Burton NHS Foundation Trust, Royal Derby Hospital, Derby, United Kingdom.,CanPharmaConsulting, Nottingham, United Kingdom
| |
Collapse
|
24
|
Okada T, Suzuki H, Travis ZD, Zhang JH. The Stroke-Induced Blood-Brain Barrier Disruption: Current Progress of Inspection Technique, Mechanism, and Therapeutic Target. Curr Neuropharmacol 2020; 18:1187-1212. [PMID: 32484111 PMCID: PMC7770643 DOI: 10.2174/1570159x18666200528143301] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023] Open
Abstract
Stroke is one of the leading causes of mortality and morbidity worldwide. The blood-brain barrier (BBB) is a characteristic structure of microvessel within the brain. Under normal physiological conditions, the BBB plays a role in the prevention of harmful substances entering into the brain parenchyma within the central nervous system. However, stroke stimuli induce the breakdown of BBB leading to the influx of cytotoxic substances, vasogenic brain edema, and hemorrhagic transformation. Therefore, BBB disruption is a major complication, which needs to be addressed in order to improve clinical outcomes in stroke. In this review, we first discuss the structure and function of the BBB. Next, we discuss the progress of the techniques utilized to study BBB breakdown in in-vitro and in-vivo studies, along with biomarkers and imaging techniques in clinical settings. Lastly, we highlight the mechanisms of stroke-induced neuroinflammation and apoptotic process of endothelial cells causing BBB breakdown, and the potential therapeutic targets to protect BBB integrity after stroke. Secondary products arising from stroke-induced tissue damage provide transformation of myeloid cells such as microglia and macrophages to pro-inflammatory phenotype followed by further BBB disruption via neuroinflammation and apoptosis of endothelial cells. In contrast, these myeloid cells are also polarized to anti-inflammatory phenotype, repairing compromised BBB. Therefore, therapeutic strategies to induce anti-inflammatory phenotypes of the myeloid cells may protect BBB in order to improve clinical outcomes of stroke patients.
Collapse
Affiliation(s)
- Takeshi Okada
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Mie, Japan, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Zachary D Travis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA, USA , Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219,
11041 Campus St, Loma Linda, CA 92354, USA,Department of Anesthesiology, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA,Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA, Risley Hall, Room 219, 11041 Campus St, Loma Linda, CA 92354, USA
| |
Collapse
|
25
|
Yin Q, Ma J, Han X, Zhang H, Wang F, Zhuang P, Zhang Y. Spatiotemporal variations of vascular endothelial growth factor in the brain of diabetic cognitive impairment. Pharmacol Res 2020; 163:105234. [PMID: 33053446 DOI: 10.1016/j.phrs.2020.105234] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/25/2020] [Accepted: 10/04/2020] [Indexed: 12/14/2022]
Abstract
Although it is feared that diabetes-induced cognitive impairment (DCI) will become a major clinical problem worldwide in the future, its detailed pathological mechanism is not well known. Because patients with diabetes have various complications of vascular disease, vascular disorders in the brain are considered to be one of the main mechanisms of DCI. Mounting evidence suggests that the vascular endothelial growth factor (VEGF) family plays a crucial role in the development of DCI. In this review, we summarized the changes and functions of VEGF during the development of DCI, and speculated that it was characterized by spatiotemporal variations in DCI progression. Considering the complexity of DCI pathogenesis and the diversity of VEGF function, we focused on the interrelationship of DCI and VEGF spatiotemporal variations during DCI development. During the progression of DCI, hyperglycemia, abnormal brain insulin signals, advanced glycation end products (AGEs) and consequently hypoxia, oxidative stress, and inflammation are the main pathophysiological changes; hypoxia-inducible factor (HIF), reactive oxygen species (ROS), and nuclear factor kappa beta (NF-κB) play major roles in DCI-related VEGF spatiotemporal regulation. Furthermore, spatiotemporal variations in VEGF-mediated pathological cerebral neovascularization, repair and regeneration of dural lymphatic vessels, increased blood-brain barrier (BBB) permeability and slight neuroprotection are increasing emphasized as potential targets in the treatment of DCI.
Collapse
Affiliation(s)
- Qingsheng Yin
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jing Ma
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Xu Han
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Hanyu Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Fang Wang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| |
Collapse
|
26
|
Abstract
Stroke remains a major cause of serious disability due to the brain's limited capacity to regenerate. Current treatments focus on acute recanalization of the occluded blood vessels; however, currently there are no approved therapy options to regenerate neural circuits and reduce stroke-related disability. To promote recovery, therapeutic angiogenesis has been proposed as a promising target. Although restoration of blood vessels providing oxygen and nutrients to the peri-infarct regions may be beneficial, newly generated capillaries may also carry pathophysiological risk factors that need to be considered. One major concern are adverse effects including edema formation and haemorrhagic transformation due to the comprised endothelial barrier function during vascular remodelling. This brief opinion article will discuss the challenges and the newest advancements of angiogenesis as a therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.,Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Oxidative Phosphorylation Dysfunction Modifies the Cell Secretome. Int J Mol Sci 2020; 21:ijms21093374. [PMID: 32397676 PMCID: PMC7246988 DOI: 10.3390/ijms21093374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/29/2020] [Accepted: 05/09/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial oxidative phosphorylation disorders are extremely heterogeneous conditions. Their clinical and genetic variability makes the identification of reliable and specific biomarkers very challenging. Until now, only a few studies have focused on the effect of a defective oxidative phosphorylation functioning on the cell’s secretome, although it could be a promising approach for the identification and pre-selection of potential circulating biomarkers for mitochondrial diseases. Here, we review the insights obtained from secretome studies with regard to oxidative phosphorylation dysfunction, and the biomarkers that appear, so far, to be promising to identify mitochondrial diseases. We propose two new biomarkers to be taken into account in future diagnostic trials.
Collapse
|
28
|
Uemura MT, Maki T, Ihara M, Lee VMY, Trojanowski JQ. Brain Microvascular Pericytes in Vascular Cognitive Impairment and Dementia. Front Aging Neurosci 2020; 12:80. [PMID: 32317958 PMCID: PMC7171590 DOI: 10.3389/fnagi.2020.00080] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/04/2020] [Indexed: 12/19/2022] Open
Abstract
Pericytes are unique, multi-functional mural cells localized at the abluminal side of the perivascular space in microvessels. Originally discovered in 19th century, pericytes had drawn less attention until decades ago mainly due to lack of specific markers. Recently, however, a growing body of evidence has revealed that pericytes play various important roles: development and maintenance of blood–brain barrier (BBB), regulation of the neurovascular system (e.g., vascular stability, vessel formation, cerebral blood flow, etc.), trafficking of inflammatory cells, clearance of toxic waste products from the brain, and acquisition of stem cell-like properties. In the neurovascular unit, pericytes perform these functions through coordinated crosstalk with neighboring cells including endothelial, glial, and neuronal cells. Dysfunction of pericytes contribute to a wide variety of diseases that lead to cognitive impairments such as cerebral small vessel disease (SVD), acute stroke, Alzheimer’s disease (AD), and other neurological disorders. For instance, in SVDs, pericyte degeneration leads to microvessel instability and demyelination while in stroke, pericyte constriction after ischemia causes a no-reflow phenomenon in brain capillaries. In AD, which shares some common risk factors with vascular dementia, reduction in pericyte coverage and subsequent microvascular impairments are observed in association with white matter attenuation and contribute to impaired cognition. Pericyte loss causes BBB-breakdown, which stagnates amyloid β clearance and the leakage of neurotoxic molecules into the brain parenchyma. In this review, we first summarize the characteristics of brain microvessel pericytes, and their roles in the central nervous system. Then, we focus on how dysfunctional pericytes contribute to the pathogenesis of vascular cognitive impairment including cerebral ‘small vessel’ and ‘large vessel’ diseases, as well as AD. Finally, we discuss therapeutic implications for these disorders by targeting pericytes.
Collapse
Affiliation(s)
- Maiko T Uemura
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.,JSPS Overseas Research Fellowship Program, Japan Society for the Promotion of Science, Tokyo, Japan
| | - Takakuni Maki
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Virginia M Y Lee
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - John Q Trojanowski
- Institute on Aging and Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
29
|
Zhang Y, Zhang X, Wei Q, Leng S, Li C, Han B, Bai Y, Zhang H, Yao H. Activation of Sigma-1 Receptor Enhanced Pericyte Survival via the Interplay Between Apoptosis and Autophagy: Implications for Blood-Brain Barrier Integrity in Stroke. Transl Stroke Res 2020; 11:267-287. [PMID: 31290080 DOI: 10.1007/s12975-019-00711-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/21/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
Stroke is a cerebrovascular disorder that affects many people worldwide. Pericytes play an important role in stroke progression and recovery. The sigma-1 receptor (σ-1R) signaling pathway has been suggested as having promising neuroprotective potential in treating stroke; however, whether σ-1R activation regulates pericyte function remains unknown. The aim of this study was to elucidate the role of σ-1R and a novel σ-1R agonist in pericytes following ischemic stroke. An ischemic stroke animal model was induced by photothrombotic middle cerebral artery occlusion (pMCAO) in σ-1R knockout (KO) and wild-type (WT) mice. After pMCAO, there was significant pericyte loss and coverage in σ-1R KO mice compared with WT mice as determined using transmission electron microscopy, immunofluorescence staining, and western blot. Interestingly, a novel σ-1R agonist decreased infarct volume and blood-brain barrier damage with a concomitant amelioration of pericyte loss, as determined by western blot. Further studies indicated that cell apoptosis and autophagy were induced in an in vivo pMCAO ischemic stroke animal model and an in vitro oxygen glucose deprivation-treatment group. Inhibition of autophagy using a pharmacological approach significantly mitigated pericyte apoptosis, suggesting that autophagy was upstream of apoptosis in pericytes. Both in vivo and in vitro studies indicated that the σ-1R agonist significantly decreased cell apoptosis via inhibition of autophagy with a subsequent enhancement of pericyte survival. This study identified the unique roles for σ-1R in mediating pericyte survival via the regulation of the interplay between apoptosis and autophagy, suggesting that a novel σ-1R agonist may be a promising therapeutic agent for the treatment of stroke patients.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
| | | | - Qiangqiang Wei
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Cai Li
- Department of Neurology, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, 276800, Shandong, China
| | - Bing Han
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Huibin Zhang
- Center of Drug Discovery, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, Jiangsu, China.
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, China.
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, 210096, Jiangsu, China.
| |
Collapse
|
30
|
Tjakra M, Wang Y, Vania V, Hou Z, Durkan C, Wang N, Wang G. Overview of Crosstalk Between Multiple Factor of Transcytosis in Blood Brain Barrier. Front Neurosci 2020; 13:1436. [PMID: 32038141 PMCID: PMC6990130 DOI: 10.3389/fnins.2019.01436] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 12/19/2019] [Indexed: 12/16/2022] Open
Abstract
Blood brain barrier (BBB) conserves unique regulatory system to maintain barrier tightness while allowing adequate transport between neurovascular units. This mechanism possess a challenge for drug delivery, while abnormality may result in pathogenesis. Communication between vascular and neural system is mediated through paracellular and transcellular (transcytosis) pathway. Transcytosis itself showed dependency with various components, focusing on caveolae-mediated. Among several factors, intense communication between endothelial cells, pericytes, and astrocytes is the key for a normal development. Regulatory signaling pathway such as VEGF, Notch, S1P, PDGFβ, Ang/Tie, and TGF-β showed interaction with the transcytosis steps. Recent discoveries showed exploration of various factors which has been proven to interact with one of the process of transcytosis, either endocytosis, endosomal rearrangement, or exocytosis. As well as providing a hypothetical regulatory pathway between each factors, specifically miRNA, mechanical stress, various cytokines, physicochemical, basement membrane and junctions remodeling, and crosstalk between developmental regulatory pathways. Finally, various hypotheses and probable crosstalk between each factors will be expressed, to point out relevant research application (Drug therapy design and BBB-on-a-chip) and unexplored terrain.
Collapse
Affiliation(s)
- Marco Tjakra
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Yeqi Wang
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Vicki Vania
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Zhengjun Hou
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| | - Colm Durkan
- The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom
| | - Nan Wang
- The Nanoscience Centre, University of Cambridge, Cambridge, United Kingdom
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology, Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, China
| |
Collapse
|
31
|
Fujimoto T, Nakagawa S, Morofuji Y, Watanabe D, Ujifuku K, Horie N, Izumo T, Niwa M, Banks WA, Deli MA, Matsuo T. Pericytes Suppress Brain Metastasis from Lung Cancer In Vitro. Cell Mol Neurobiol 2020; 40:113-121. [PMID: 31414300 DOI: 10.1007/s10571-019-00725-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/07/2019] [Indexed: 12/24/2022]
Abstract
Metastasis of lung cancer to the brain is associated with poor outcomes and limited therapeutic options. The blood-brain barrier (BBB) plays a major role in brain metastasis. However, little is known about the role of pericytes in brain metastasis formation. This study aimed to reveal the interaction between pericytes and cancer cells. We established in vitro BBB models with rat primary cultured BBB-related cells (endothelial cells, astrocytes, and pericytes) and investigated the relationship between BBB-related cells and metastatic cancer cell lines. We observed a significant decrease in transendothelial electrical resistance with metastatic cancer cells in monolayer and coculture models with astrocytes. In contrast, the coculture model with pericytes showed inhibition of the decrease in transendothelial electrical resistance with metastatic cancer cells. In addition, the expression of tight junction protein was preserved only in the coculture model with pericytes. The conditioned medium of pericytes with metastatic cancer cells suppressed the proliferation of the cancer cells significantly. This study revealed that brain pericytes are the major regulators of the resistance of the BBB to lung cancer metastasis to the brain. Pericytes exert an anti-metastatic effect and thus have potential for the preventive treatment of brain metastasis.
Collapse
Affiliation(s)
- Takashi Fujimoto
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Shinsuke Nakagawa
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan.
| | - Daisuke Watanabe
- Department of Medical Pharmacology, Nagasaki University Graduate School of Biomedical Sciences, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
- BBB Laboratory, PharmaCo-Cell Company Ltd., Dai-ichi-senshu bldg. 2nd floor, 6-19 Chitose-machi, Nagasaki, 852-8135, Japan
| | - Kenta Ujifuku
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Nobutaka Horie
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| | - Masami Niwa
- BBB Laboratory, PharmaCo-Cell Company Ltd., Dai-ichi-senshu bldg. 2nd floor, 6-19 Chitose-machi, Nagasaki, 852-8135, Japan
| | - William A Banks
- VA Puget Sound Health Care System, Geriatric Research Education and Clinical Center, Seattle, WA, USA
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Maria A Deli
- Biological Barriers Research Group, Institute of Biophysics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8501, Japan
| |
Collapse
|
32
|
Liu Q, Yang Y, Fan X. Microvascular pericytes in brain-associated vascular disease. Biomed Pharmacother 2020; 121:109633. [DOI: 10.1016/j.biopha.2019.109633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 01/01/2023] Open
|
33
|
Zhao Y, Wei ZZ, Lee JH, Gu X, Sun J, Dix TA, Wei L, Yu SP. Pharmacological hypothermia induced neurovascular protection after severe stroke of transient middle cerebral artery occlusion in mice. Exp Neurol 2019; 325:113133. [PMID: 31770520 DOI: 10.1016/j.expneurol.2019.113133] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 09/25/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022]
Abstract
Therapeutic hypothermia is a potential protective strategy after stroke. The present study evaluated the neurovascular protective potential of pharmacological hypothermia induced by the neurotensin receptor 1 agonist HPI-201 after severe ischemic stroke. Adult C57BL/6 mice were subjected to filament insertion-induced occlusion of the middle cerebral artery (60 min MCAO). HPI-201 was i.p. injected 120 min after the onset of MCAO to initiate and maintain the body temperature at 32-33°C for 6 hrs. The infarct volume, cell death, integrity of the blood brain barrier (BBB) and neurovascular unit (NVU), inflammation, and functional outcomes were evaluated. The hypothermic treatment significantly suppressed the infarct volume and neuronal cell death, accompanied with reduced caspase-3 activation and BAX expression while Bcl-2 increased in the peri-infarct region. The cellular integrity of the BBB and NVU was significantly improved and brain edema was attenuated in HPI-201-treated mice compared to stroke controls. The hypothermic treatment decreased the expression of inflammatory factors including tumor necrosis factor-α (TNF-α), MMP-9, interleukin-1β (IL-1β), the M1 microglia markers IL-12 and inducible nitric oxide synthase (iNOS), while increased the M2 marker arginase-1 (Arg-1). Stroke mice received the hypothermic treatment showed lower neurological severity score (NSS), performed significantly better in functional tests, the mortality rate in the hypothermic group was noticeably lower compared with stroke controls. Taken together, HPI-201 induced pharmacological hypothermia is protective for different neurovascular cells after a severely injured brain, mediated by multiple mechanisms.
Collapse
Affiliation(s)
- Yingying Zhao
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Zheng Zachory Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA
| | - Jin Hwan Lee
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Xiaohuan Gu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jinmei Sun
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Thomas A Dix
- Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston, SC 29401, USA
| | - Ling Wei
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Shan P Yu
- Department of Anesthesiology, Emory University School of Medicine, Atlanta, GA 30322, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Medical Center, Decatur, GA 30033, USA.
| |
Collapse
|
34
|
Su X, Huang L, Qu Y, Xiao D, Mu D. Pericytes in Cerebrovascular Diseases: An Emerging Therapeutic Target. Front Cell Neurosci 2019; 13:519. [PMID: 31824267 PMCID: PMC6882740 DOI: 10.3389/fncel.2019.00519] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Pericytes are functional components of the neurovascular unit (NVU) that are located around the blood vessels, and their roles in the regulation of cerebral health and diseases has been reported. Currently, the potential properties of pericytes as emerging therapeutic targets for cerebrovascular diseases have attracted considerable attention. Nonetheless, few reviews have comprehensively discussed pericytes and their roles in cerebrovascular diseases. Therefore, in this review, we not only summarized and described the basic characteristics of pericytes but also focused on clarifying the new understanding about the roles of pericytes in the pathogenesis of cerebrovascular diseases, including white matter injury (WMI), hypoxic-ischemic brain damage, depression, neovascular insufficiency disease, and Alzheimer's disease (AD). Furthermore, we summarized the current therapeutic strategies targeting pericytes for cerebrovascular diseases. Collectively, this review is aimed at providing a comprehensive understanding of pericytes and new insights about the use of pericytes as novel therapeutic targets for cerebrovascular diseases.
Collapse
Affiliation(s)
- Xiaojuan Su
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Lingyi Huang
- West China College of Stomatology, Sichuan University, Chengdu, China
| | - Yi Qu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| | - Dezhi Mu
- Department of Paediatrics, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, Chengdu, China
| |
Collapse
|
35
|
Wang X, Xu B, Xiang M, Yang X, Liu Y, Liu X, Shen Y. Advances on fluid shear stress regulating blood-brain barrier. Microvasc Res 2019; 128:103930. [PMID: 31639383 DOI: 10.1016/j.mvr.2019.103930] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/18/2019] [Accepted: 09/18/2019] [Indexed: 02/05/2023]
Abstract
The integrity of structure and function of blood-brain barrier (BBB) plays a central role in maintaining the homeostasis of the central nervous system. Patients with severe cerebrovascular stenosis often undergo cerebrovascular bypass surgery. However, the sharply increased fluid shear stress (FSS) after cerebrovascular bypass disrupts the physiological function of brain microvascular endothelial cells (BMECs) at the lesion site, damaging BBB and inducing intracerebral hemorrhage eventually. At present, there are great interests in cerebral vascular flow regulating the structure and function of BBB under physiological and pathological conditions, and most of studies have highlighted the importance of BMECs in BBB. Understanding of how FSS regulating BBB can promote the development of new protective and restorative cerebral vascular interventional therapy.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Bowen Xu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Mengya Xiang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Xinyue Yang
- West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Yi Liu
- Department of Neurosurgery, West China Hospital, Chengdu 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
36
|
Salvianolate lyophilized injection (SLI) strengthens blood-brain barrier function related to ERK1/2 and Akt signaling pathways. Brain Res 2019; 1720:146295. [DOI: 10.1016/j.brainres.2019.06.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/05/2019] [Accepted: 06/14/2019] [Indexed: 02/06/2023]
|
37
|
Wang L, Zhou Y, Yin J, Gan Y, Wang X, Wen D, Thomson AW, Hu X, Yang L, Stetler RA, Li P, Yu W. Cancer Exacerbates Ischemic Brain Injury Via Nrp1 (Neuropilin 1)-Mediated Accumulation of Regulatory T Cells Within the Tumor. Stroke 2019; 49:2733-2742. [PMID: 30355201 DOI: 10.1161/strokeaha.118.021948] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Background and Purpose- Adoptive transfer of regulatory T cells (Tregs) protect against stroke; however, Treg-based therapy raises concerns in stroke patients with cancer because of the immunosuppressive function of Tregs. The purpose of this study was to investigate the role of Tregs in cerebral ischemic brain injury with concomitant cancer. Methods- To establish a cancer phenotype, MC38 colon cancer or B16 melanoma cells (5×105/mice) were injected subcutaneously into C57BL/6J mice 2 to 3 weeks before distal middle cerebral artery occlusion surgery. Infarct volume, neuroinflammation, and Tregs infiltration were measured by 2,3,5-triphenyltetrazolium chloride staining, immunofluorescence staining, real-time polymerase chain reaction, and flow cytometry. Mechanistically, Nrp1 (neuropilin-1) monoclonal antibody was used to block the Nrp1 effect on Tregs ex vivo before being transferred into recombination activating gene 1 (Rag1-/-) stroke mice, which are devoid of T and B cells, or a Nrp1 neutralization antibody was injected systemically into cancer-bearing wild-type mice after stroke. Results- Cancer-bearing mice with stroke exhibited augmented neuroinflammation and fewer Tregs in the brain, but more infiltration of Tregs to the tumor was apparent after distal middle cerebral artery occlusion. Depletion of Tregs increased infarct volume in stroke mice but did not further exacerbate brain injury in cancer-bearing stroke mice. Nrp1 blocking ex vivo or Nrp1 systemic neutralization attenuated ischemic brain injury and reversed accumulation of Tregs within tumor after stroke in cancer-bearing mice. Conclusions- Nrp1 signaling mediated accumulation of Tregs within tumor might play a critical role in exacerbating ischemic brain injury in cancer-bearing mice and may represent a promising immune modulatory target for the combined condition of cancer and stroke.
Collapse
Affiliation(s)
- Long Wang
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China.,Department of Anesthesia and Intensive Care, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China (L.W.)
| | - Yuxi Zhou
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Jiemin Yin
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Yu Gan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute (Y.G.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Xin Wang
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Daxiang Wen
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Angus W Thomson
- Department of Surgery and Department of Immunology, Starzl Transplantation Institute (A.W.T.), University of Pittsburgh School of Medicine, PA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery (X.H., R.A.S.), University of Pittsburgh School of Medicine, PA
| | - Liqun Yang
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - R Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery (X.H., R.A.S.), University of Pittsburgh School of Medicine, PA
| | - Peiying Li
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Weifeng Yu
- From the Department of Anesthesiology (L.W., Y.Z., J.Y., X.W., D.W., L.Y., P.L., W.Y.), Renji Hospital, School of Medicine, Shanghai Jiaotong University, China
| |
Collapse
|
38
|
Bayona-Bafaluy M, Esteban O, Ascaso J, Montoya J, Ruiz-Pesini E. Oxidative phosphorylation inducers fight pathological angiogenesis. Drug Discov Today 2019; 24:1731-1734. [DOI: 10.1016/j.drudis.2019.03.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/22/2022]
|
39
|
Extracorporal Shock Wave Therapy Enhances Receptor for Advanced Glycated End-Product-Dependent Flap Survival and Angiogenesis. Ann Plast Surg 2019; 80:424-431. [PMID: 29309329 DOI: 10.1097/sap.0000000000001279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND/OBJECTIVES Loss of skin flaps due to deteriorated wound healing is a crucial clinical issue. Extracorporal shock wave therapy (ESWT) promotes flap healing by inducing angiogenesis and suppressing inflammation. The receptor for advanced glycation end-products (RAGEs) was identified to play a pivotal role in wound healing. However, to date, the role of RAGE in skin flaps and its interference with ESWT are unknown. METHODS Caudally pedicled musculocutanous skin flaps in RAGE and wt mice were treated with low-dose extracorporal shock waves (s-RAGE, s-wt) and analyzed for flap survival, histomorphologic studies, and immunohistochemistry during a 10-day period. Animals without ESWT served in each genotype as a control group (c-RAGE, c-wt). Statistical analysis was carried out by repeated-measures analysis of variance. RESULTS Flap necrosis was significantly reduced after ESWT in wt animals but increased in RAGE-deficient animals. Morphometric differences between the 4 groups were identified and showed a delayed wound healing with dysregulated inflammatory cells and deteriorated angiogenesis in RAGE animals. Furthermore, spatial and temporal differences were observed. CONCLUSIONS The RAGE controls inflammation and angiogenesis in flap healing. The protective effects of ESWT are dependent on intact RAGE signaling, which enables temporary targeted infiltration of immune cells and neoangiogenesis.
Collapse
|
40
|
Jamali N, Song YS, Sorenson CM, Sheibani N. 1,25(OH) 2D 3 regulates the proangiogenic activity of pericyte through VDR-mediated modulation of VEGF production and signaling of VEGF and PDGF receptors. FASEB Bioadv 2019; 1:415-434. [PMID: 31396585 PMCID: PMC6687334 DOI: 10.1096/fba.2018-00067] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We have previously demonstrated that the active form of vitamin D (calcitriol; 1,25(OH)2D3) is a potent inhibitor of retinal neovascularization. However, the underlying molecular and cellular mechanisms involved remained poorly understood. Perivascular supporting cells including pericytes (PC) play important roles during angiogenesis, vascular maturation, and stabilization of blood vessels. How 1,25(OH)2D3 affects retinal PC proliferation and migration, and whether these effects are mediated through vitamin D receptor (VDR), are unknown. Here, we determined the impact of 1,25(OH)2D3 on retinal PC prepared from wild‐type (Vdr+/+) and VDR‐deficient (Vdr−/−) mice. Retinal PC expressed significantly higher VDR levels compared to retinal endothelial cells (EC). Unlike retinal EC, 1,25(OH)2D3 significantly decreased PC proliferation and migration and resulted in a G0/G1 cell cycle arrest. Although 1,25(OH)2D3 did not inhibit the proliferation of Vdr−/− PC, it did inhibit their migration. PC adhesion to various extracellular matrix (ECM) proteins and ECM production were also affected by incubation of PC with 1,25(OH)2D3. Vdr−/− PC were more adherent compared with Vdr+/+ cells. Mechanistically, incubation of Vdr+/+ PC with 1,25(OH)2D3 resulted in an increased expression of vascular endothelial growth factor (VEGF) and attenuation of signaling through VEGF‐R2 and platelet‐derived growth factor receptor‐beta. Incubation with soluble VEGF‐R1 (sFlt‐1) partially reversed the effect of VEGF on Vdr+/+ PC. In addition, incubation of Vdr+/+ PC with VEGF or inhibition of VEGF‐R2 increased VDR expression. Together, these results suggest an important role for retinal PC as a target for vitamin D and VDR action for attenuation of angiogenesis.
Collapse
Affiliation(s)
- Nasim Jamali
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Christine M Sorenson
- McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,McPherson Eye Research Institute, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin.,Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
41
|
Roth M, Gaceb A, Enström A, Padel T, Genové G, Özen I, Paul G. Regulator of G-protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke. FASEB J 2019; 33:8990-8998. [PMID: 31039042 PMCID: PMC6662981 DOI: 10.1096/fj.201900153r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Poststroke recovery requires multiple repair mechanisms, including vascular remodeling and blood-brain barrier (BBB) restoration. Brain pericytes are essential for BBB repair and angiogenesis after stroke, but they also give rise to scar-forming platelet-derived growth factor receptor β (PDGFR-β)–expressing cells. However, many of the molecular mechanisms underlying this pericyte response after stroke still remain unknown. Regulator of G-protein signaling 5 (RGS5) has been associated with pericyte detachment from the vascular wall, but whether it regulates pericyte function and vascular stabilization in the chronic phase of stroke is not known. Using RGS5–knockout (KO) mice, we study how loss of RGS5 affects the pericyte response and vascular remodeling in a stroke model at 7 d after ischemia. Loss of RGS5 leads to a shift toward an increase in the number of perivascular pericytes and reduction in the density of parenchymal PDGFR-β–expressing cells associated with normalized PDGFR-β activation after stroke. The redistribution of pericytes resulted in higher pericyte coverage, increased vascular density, preservation of vessel lengths, and a significant reduction in vascular leakage in RGS5-KO mice compared with controls. Our study demonstrates RGS5 in pericytes as an important target to enhance vascular remodeling.—Roth, M., Gaceb, A., Enström, A., Padel, T., Genové, G., Özen, I., Paul, G. Regulator of G-protein signaling 5 regulates the shift from perivascular to parenchymal pericytes in the chronic phase after stroke.
Collapse
Affiliation(s)
- Michaela Roth
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Abderahim Gaceb
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Andreas Enström
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Thomas Padel
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Guillem Genové
- Department of Medicine, Integrated Cardio Metabolic Centre, Karolinska Institute, Huddinge, Sweden
| | - Ilknur Özen
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden
| | - Gesine Paul
- Translational Neurology Group, Department of Clinical Science, Lund University, Lund, Sweden.,Department of Neurology, Scania University Hospital, Lund, Sweden.,Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| |
Collapse
|
42
|
Geranmayeh MH, Rahbarghazi R, Farhoudi M. Targeting pericytes for neurovascular regeneration. Cell Commun Signal 2019; 17:26. [PMID: 30894190 PMCID: PMC6425710 DOI: 10.1186/s12964-019-0340-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Pericytes, as a key cellular part of the blood-brain barrier, play an important role in the maintenance of brain neurovascular unit. These cells participate in brain homeostasis by regulating vascular development and integrity mainly through secreting various factors. Pericytes per se show different restorative properties after blood-brain barrier injury. Upon the occurrence of brain acute and chronic diseases, pericytes provoke immune cells to regulate neuro-inflammatory conditions. Loss of pericytes in distinct neurologic disorders intensifies blood-brain barrier permeability and leads to vascular dementia. The therapeutic potential of pericytes is originated from the unique morphological shape, location, and their ability in providing vast paracrine and juxtacrine interactions. A subset of pericytes possesses multipotentiality and exhibit trans-differentiation capacity in the context of damaged tissue. This review article aimed to highlight the critical role of pericytes in restoration of the blood-brain barrier after injury by focusing on the dynamics of pericytes and cross-talk with other cell types.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Golgasht St., Azadi Ave, Tabriz, 5166614756, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Golgasht St., Azadi Ave, Tabriz, 5166614756, Iran.
| |
Collapse
|
43
|
Prager O, Kamintsky L, Hasam‐Henderson LA, Schoknecht K, Wuntke V, Papageorgiou I, Swolinsky J, Muoio V, Bar‐Klein G, Vazana U, Heinemann U, Friedman A, Kovács R. Seizure‐induced microvascular injury is associated with impaired neurovascular coupling and blood–brain barrier dysfunction. Epilepsia 2019; 60:322-336. [DOI: 10.1111/epi.14631] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Ofer Prager
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | - Lyna Kamintsky
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
- Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| | - Luisa A. Hasam‐Henderson
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Karl Schoknecht
- Neuroscience Research Center Charité—Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Vera Wuntke
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Ismini Papageorgiou
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Jutta Swolinsky
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Valeria Muoio
- Institute for Neurophysiology Charité– Medical University Berlin, corporate member of Free University of Berlin, Humboldt University of Berlin, and Berlin Institute of Health Berlin Germany
| | - Guy Bar‐Klein
- McKusick‐Nathans Institute of Genetic Medicine Johns Hopkins University School of Medicine Baltimore Maryland
- Howard Hughes Medical Institute Chevy Chase Maryland
| | - Udi Vazana
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
| | | | - Alon Friedman
- Departments of Physiology and Cell Biology Cognitive and Brain Sciences, Biomedical Engineering, Zlotowski Center for Neuroscience, Ben‐Gurion University of the Negev Beer‐Sheva Israel
- Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| | - Richard Kovács
- Department of Medical Neuroscience Faculty of Medicine Dalhousie University Halifax Nova Scotia Canada
| |
Collapse
|
44
|
Edwards DN, Bix GJ. Roles of blood-brain barrier integrins and extracellular matrix in stroke. Am J Physiol Cell Physiol 2018; 316:C252-C263. [PMID: 30462535 DOI: 10.1152/ajpcell.00151.2018] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ischemicstroke is a leading cause of death and disability in the United States, but recent advances in treatments [i.e., endovascular thrombectomy and tissue plasminogen activator (t-PA)] that target the stroke-causing blood clot, while improving overall stroke mortality rates, have had much less of an impact on overall stroke morbidity. This may in part be attributed to the lack of therapeutics targeting reperfusion-induced injury after the blood clot has been removed, which, if left unchecked, can expand injury from its core into the surrounding at risk tissue (penumbra). This occurs in two phases of increased permeability of the blood-brain barrier, a physical barrier that under physiologic conditions regulates brain influx and efflux of substances and consists of tight junction forming endothelial cells (and transporter proteins), astrocytes, pericytes, extracellular matrix, and their integrin cellular receptors. During, embryonic development, maturity, and following stroke reperfusion, cerebral vasculature undergoes significant changes including changes in expression of integrins and degradation of surrounding extracellular matrix. Integrins, heterodimers with α and β subunits, and their extracellular matrix ligands, a collection of proteoglycans, glycoproteins, and collagens, have been modestly studied in the context of stroke compared with other diseases (e.g., cancer). In this review, we describe the effect that various integrins and extracellular matrix components have in embryonic brain development, and how this changes in both maturity and in the poststroke environment. Particular focus will be on how these changes in integrins and the extracellular matrix affect blood-brain barrier components and their potential as diagnostic and therapeutic targets for ischemic stroke.
Collapse
Affiliation(s)
- Danielle N Edwards
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky.,Department of Neuroscience, University of Kentucky , Lexington, Kentucky
| | - Gregory J Bix
- Sanders-Brown Center on Aging, University of Kentucky , Lexington, Kentucky.,Department of Neuroscience, University of Kentucky , Lexington, Kentucky.,Department of Neurology, University of Kentucky , Lexington, Kentucky.,Department of Neurosurgery, University of Kentucky , Lexington, Kentucky
| |
Collapse
|
45
|
Li Y, Zhu ZY, Huang TT, Zhou YX, Wang X, Yang LQ, Chen ZA, Yu WF, Li PY. The peripheral immune response after stroke-A double edge sword for blood-brain barrier integrity. CNS Neurosci Ther 2018; 24:1115-1128. [PMID: 30387323 PMCID: PMC6490160 DOI: 10.1111/cns.13081] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 02/07/2023] Open
Abstract
The blood‐brain barrier (BBB) is a highly regulated interface that separates the peripheral circulation and the brain. It plays a vital role in regulating the trafficking of solutes, fluid, and cells at the blood‐brain interface and maintaining the homeostasis of brain microenvironment for normal neuronal activity. Growing evidence has led to the realization that ischemic stroke elicits profound immune responses in the circulation and the activation of multiple subsets of immune cells, which in turn affect both the early disruption and the later repair of the BBB after stroke. Distinct phenotypes or subsets of peripheral immune cells along with diverse intracellular mechanisms contribute to the dynamic changes of BBB integrity after stroke. This review focuses on the interaction between the peripheral immune cells and the BBB after ischemic stroke. Understanding their reciprocal interaction may generate new directions for stroke research and may also drive the innovation of easy accessible immune modulatory treatment strategies targeting BBB in the pursuit of better stroke recovery.
Collapse
Affiliation(s)
- Yan Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zi-Yu Zhu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ting-Ting Huang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yu-Xi Zhou
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Xin Wang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Li-Qun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zeng-Ai Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wei-Feng Yu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Pei-Ying Li
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
46
|
Dátilo MN, Sant'Ana MR, Formigari GP, Rodrigues PB, de Moura LP, da Silva ASR, Ropelle ER, Pauli JR, Cintra DE. Omega-3 from Flaxseed Oil Protects Obese Mice Against Diabetic Retinopathy Through GPR120 Receptor. Sci Rep 2018; 8:14318. [PMID: 30254287 PMCID: PMC6156233 DOI: 10.1038/s41598-018-32553-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/10/2018] [Indexed: 12/17/2022] Open
Abstract
The chronic and low-grade inflammation induced by obesity seem to be the “first hit” to retinopathy associated to diabetes type 2. Herein, we hypothesized that omega-3 fatty acids from flaxseed oil enriched diet disrupt the pro-inflammatory status in the retina, protecting against retinopathy development. For eight weeks under a high-fat diet (HF), several physiological parameters were monitored to follow the metabolic homeostasis disruption. After this period, mice were treated with a HF substituted in part of lard by flaxseed oil (FS) for another eight weeks. Food behavior, weight gain, glucose and insulin sensitivity, electroretinography, RT-qPCR and western blots were carried out. The HF was able to induce a pro-inflammatory background in the retina, changing IL1β and TNFα. VEGF, a master piece of retinopathy, had early onset increased also induced by HF. The FS-diet was able to decrease inflammation and retinopathy and improved retinal electro stimuli compared to HF group. GPR120 and GPR40 (G Protein-Coupled Receptors 120 and 40), an omega-3 fatty acid receptors, were detected in the retina for the first time. FS-diet modulated the gene expression and protein content of these receptors. Thus, unsaturated fatty acids protect the retina from diabetes type 2 mice model from disease progression.
Collapse
Affiliation(s)
- Marcella Neves Dátilo
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil.,Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Marcella Ramos Sant'Ana
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil.,Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | | | - Patrícia Brito Rodrigues
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil.,Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Leandro Pereira de Moura
- Laboratory of Molecular Biology of Exercise, LabMEx, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | | | - Eduardo Rochete Ropelle
- Laboratory of Molecular Biology of Exercise, LabMEx, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - José Rodrigo Pauli
- Laboratory of Molecular Biology of Exercise, LabMEx, School of Applied Sciences, UNICAMP, São Paulo, Brazil
| | - Dennys Esper Cintra
- Nutritional Genomics Laboratory, LabGeN, School of Applied Sciences, UNICAMP, São Paulo, Brazil. .,Nutrigenomics and Lipids Research Center, CELN, School of Applied Sciences, UNICAMP, São Paulo, Brazil.
| |
Collapse
|
47
|
A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing. Sci Rep 2018; 8:8784. [PMID: 29884831 PMCID: PMC5993789 DOI: 10.1038/s41598-018-26480-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 05/08/2018] [Indexed: 01/10/2023] Open
Abstract
Blood brain barrier (BBB) cells play key roles in the physiology and pathology of the central nervous system (CNS). BBB dysfunction is implicated in many neurodegenerative diseases, including Alzheimer’s disease (AD). The BBB consists of capillary endothelial cells, pericytes encircling the endothelium and surrounding astrocytes extending their processes towards it. Although there have been many attempts to develop in vitro BBB models, the complex interaction between these cell types makes it extremely difficult to determine their individual contribution to neurotoxicity in vivo. Thus, we developed and optimised an in vitro multicellular co-culture model within the Kirkstall Quasi Vivo System. The main aim was to determine the optimal environment to culture human brain primary endothelial cells, pericytes and astrocytes whilst maintaining cellular communication without formation of a barrier in order to assess the contribution of each cell type to the overall response. As a proof of concept for the present system, the effects of amyloid-beta 25-35 peptide (Aβ25-35), a hallmark of AD, were explored. This multicellular system will be a valuable tool for future studies on the specific roles of individual BBB cell type (while making connection with each other through medium) in CNS disorders as well as in cytotoxicity tests.
Collapse
|
48
|
Durrant A, Swift M, Beazley-Long N. A role for pericytes in chronic pain? Curr Opin Support Palliat Care 2018; 12:154-161. [PMID: 29553988 PMCID: PMC6027993 DOI: 10.1097/spc.0000000000000342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
PURPOSE OF REVIEW The importance of the blood-brain barrier (BBB) and neuroinflammation in neurodegenerative conditions is becoming increasingly apparent, yet very little is known about these neurovascular functions in nonmalignant disease chronic pain. Neural tissue pericytes play critical roles in the formation and maintenance of the BBB. Herein, we review the important roles of neural pericytes and address their potential role in chronic pain. RECENT FINDINGS Pericytes are implicated in the function of neural microvasculature, including BBB permeability, neuroimmune factor secretion and leukocyte transmigration. In addition, the multipotent stem cell nature of pericytes affords pericytes the ability to migrate into neural parenchyma and differentiate into pain-associated cell types. These recent findings indicate that pericytes are key players in pathological BBB disruption and neuroinflammation, and as such pericytes may be key players in chronic pain states. SUMMARY Pericytes play key roles in pathological processes associated with chronic pain. We propose that pericytes may be a therapeutic target for painful diseases that have associated neural vascular dysfunction. Given the paucity of new pharmacotherapies for chronic pain conditions, we hope that this review inspires researchers to unearth the potential role(s) of pericytes in chronic pain sowing the seeds for future new chronic pain therapies.
Collapse
Affiliation(s)
- A.M. Durrant
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| | - M.N Swift
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| | - N. Beazley-Long
- Arthritis Research UK Pain Centre & School of Life Sciences, Medical School, University of Nottingham, Nottingham NG7 2UH
| |
Collapse
|
49
|
Abstract
Stroke is a cerebrovascular disorder that affects many people worldwide. In addition to the well-established functions of astrocytes and microglia in stroke pathogenesis, pericytes also play an important role in stroke progression and recovery. As perivascular multi-potent cells and an important component of the blood–brain barrier (BBB), pericytes have been shown to exert a large variety of functions, including serving as stem/progenitor cells and maintaining BBB integrity. Here in this review, we summarize the roles of pericytes in stroke pathogenesis, with a focus on their effects in cerebral blood flow, BBB integrity, angiogenesis, immune responses, scar formation and fibrosis.
Collapse
Affiliation(s)
- Jyoti Gautam
- 1 Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| | - Yao Yao
- 1 Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, Athens, GA, USA
| |
Collapse
|
50
|
Liu X, Kiss GK, Mellender SJ, Weiss HR, Chi OZ. Activation of Akt by SC79 decreased cerebral infarct in early cerebral ischemia-reperfusion despite increased BBB disruption. Neurosci Lett 2018; 681:78-82. [PMID: 29859325 DOI: 10.1016/j.neulet.2018.05.046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/28/2018] [Accepted: 05/29/2018] [Indexed: 02/02/2023]
Abstract
Activation of Akt has been suggested to produce neuronal protection in cerebral ischemia. Decreasing blood-brain barrier (BBB) disruption has been associated with a better neuronal outcome in cerebral ischemia. We hypothesized that activation of Akt would decrease BBB disruption and contribute to decreasing the size of infarct in the early stage of cerebral ischemia-reperfusion within the therapeutic window. Transient middle cerebral artery occlusion (MCAO) was performed in rats under isoflurane anesthesia with controlled ventilation. Rats were treated with SC79 (a selective Akt activator which is cell and BBB permeable) 0.05 mg/kg × 3 i.p. or vehicle i.p. perioperatively. After one hour of MCAO and two hours of reperfusion, the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid (14C-AIB, molecular weight 104 Da) and the volume of 3H-dextran (molecular weight 70,000 Da) distribution were determined to measure the degree of BBB disruption. At the same time point, the size of infarction was determined using tetrazolium staining. In an additional group of rats, a higher dose of SC79 (0.5 mg/kg × 3) was administered to determine the size of infarct. Administration of SC79 increased the Ki in the ischemic-reperfused cortex (IR-C, +32%, p < 0.05) as well as in the contralateral cortex (CC, +35%, p < 0.05) when compared with the untreated animals with MCAO/reperfusion. The volume of dextran distribution was not significantly changed by SC79. SC79 treatment significantly produced a decrease in the percentage of cortical infarct out of total cortical area (12.7 ± 1.7% vs 6.9 ± 0.9%, p < 0.001). Increasing the dose of SC79 by ten times did not significantly affect the size of cortical infarct. Contrary to our hypothesis, our data demonstrated that SC79 decreased the size of the infarct in the ischemic-reperfused cortex despite an increase in BBB disruption. Our data suggest the importance of activation of Akt for neuronal survival in the early stage of cerebral ischemia-reperfusion within the therapeutic window and that the mechanism of neuroprotection may not be related to the BBB effects of SC79.
Collapse
Affiliation(s)
- Xia Liu
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Geza K Kiss
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Scott J Mellender
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA
| | - Harvey R Weiss
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, 675 Hoes Lane West, Piscataway, NJ, 08854, USA
| | - Oak Z Chi
- Department of Anesthesiology, Rutgers Robert Wood Johnson Medical School, 125 Paterson Street, Suite 3100, New Brunswick, NJ, 08901-1977, USA.
| |
Collapse
|