1
|
Noble AJ, Adams AT, Satsangi J, Boden JM, Osborne AJ. Prenatal cannabis exposure is associated with alterations in offspring DNA methylation at genes involved in neurodevelopment, across the life course. Mol Psychiatry 2024:10.1038/s41380-024-02752-w. [PMID: 39277688 DOI: 10.1038/s41380-024-02752-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Prenatal cannabis exposure (PCE) is of increasing concern globally, due to the potential impact on offspring neurodevelopment, and its association with childhood and adolescent brain development and cognitive function. However, there is currently a lack of research addressing the molecular impact of PCE, that may help to clarify the association between PCE and neurodevelopment. To address this knowledge gap, here we present epigenome-wide association study data across multiple time points, examining the effect of PCE and co-exposure with tobacco using two longitudinal studies, the Avon Longitudinal Study of Parents and Children (ALSPAC) and the Christchurch Health and Development Study (CHDS) at birth (0 y), 7 y and 15-17 y (ALSPAC), and ~27 y (CHDS). Our findings reveal genome-wide significant DNA methylation differences in offspring at 0 y, 7 y, 15-17 y, and 27 y associated with PCE alone, and co-exposure with tobacco. Importantly, we identified significantly differentially methylated CpG sites within the genes LZTS2, NPSR1, NT5E, CRIP2, DOCK8, COQ5, and LRP5 that are shared between different time points throughout development in offspring. Notably, functional pathway analysis showed enrichment for differential DNA methylation in neurodevelopment, neurotransmission, and neuronal structure pathways, and this was consistent across all timepoints in both cohorts. Given the increasing volume of epidemiological evidence that suggests a link between PCE and adverse neurodevelopmental outcomes in exposed offspring, this work highlights the need for further investigation into PCE, particularly in larger cohorts.
Collapse
Affiliation(s)
- Alexandra J Noble
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK.
| | - Alex T Adams
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
- Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Joseph M Boden
- Christchurch Health and Development Study, Department of Psychological Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Amy J Osborne
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
2
|
Nohesara S, Mostafavi Abdolmaleky H, Thiagalingam S. Substance-Induced Psychiatric Disorders, Epigenetic and Microbiome Alterations, and Potential for Therapeutic Interventions. Brain Sci 2024; 14:769. [PMID: 39199463 PMCID: PMC11352452 DOI: 10.3390/brainsci14080769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Substance use disorders (SUDs) are complex biopsychosocial diseases that cause neurocognitive deficits and neurological impairments by altering the gene expression in reward-related brain areas. Repeated drug use gives rise to alterations in DNA methylation, histone modifications, and the expression of microRNAs in several brain areas that may be associated with the development of psychotic symptoms. The first section of this review discusses how substance use contributes to the development of psychotic symptoms via epigenetic alterations. Then, we present more evidence about the link between SUDs and brain epigenetic alterations. The next section presents associations between paternal and maternal exposure to substances and epigenetic alterations in the brains of offspring and the role of maternal diet in preventing substance-induced neurological impairments. Then, we introduce potential therapeutic agents/approaches such as methyl-rich diets to modify epigenetic alterations for alleviating psychotic symptoms or depression in SUDs. Next, we discuss how substance use-gut microbiome interactions contribute to the development of neurological impairments through epigenetic alterations and how gut microbiome-derived metabolites may become new therapeutics for normalizing epigenetic aberrations. Finally, we address possible challenges and future perspectives for alleviating psychotic symptoms and depression in patients with SUDs by modulating diets, the epigenome, and gut microbiome.
Collapse
Affiliation(s)
- Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Mental Health Research Center, Psychosocial Health Research Institute, Department of Psychiatry, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Nutrition/Metabolism Laboratory, Department of Surgery, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
3
|
Kok DE, Saunders R, Nelson A, Smith D, Ford D, Mathers JC, McKay JA. Influence of maternal folate depletion on Art3 DNA methylation in the murine adult brain; potential consequences for brain and neurocognitive health. Mutagenesis 2024; 39:196-204. [PMID: 38417824 PMCID: PMC11040152 DOI: 10.1093/mutage/geae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/27/2024] [Indexed: 03/01/2024] Open
Abstract
The developmental origins of health and disease hypothesis suggest early-life environment impacts health outcomes throughout the life course. In particular, epigenetic marks, including DNA methylation, are thought to be key mechanisms through which environmental exposures programme later-life health. Adequate maternal folate status before and during pregnancy is essential in the protection against neural tube defects, but data are emerging that suggest early-life folate exposures may also influence neurocognitive outcomes in childhood and, potentially, thereafter. Since folate is key to the supply of methyl donors for DNA methylation, we hypothesize that DNA methylation may be a mediating mechanism through which maternal folate influences neurocognitive outcomes. Using bisulphite sequencing, we measured DNA methylation of five genes (Art3, Rsp16, Tspo, Wnt16, and Pcdhb6) in the brain tissue of adult offspring of dams who were depleted of folate (n = 5, 0.4 mg folic acid/kg diet) during pregnancy (~19-21 days) and lactation (mean 22 days) compared with controls (n = 6, 2 mg folic acid/kg diet). Genes were selected as methylation of their promoters had previously been found to be altered by maternal folate intake in mice and humans across the life course, and because they have potential associations with neurocognitive outcomes. Maternal folate depletion was significantly associated with Art3 gene hypomethylation in subcortical brain tissue of adult mice at 28 weeks of age (mean decrease 6.2%, P = .03). For the other genes, no statistically significant differences were found between folate depleted and control groups. Given its association with neurocognitive outcomes, we suggest Art3 warrants further study in the context of lifecourse brain health. We have uncovered a potential biomarker that, once validated in accessible biospecimens and human context, may be useful to track the impact of early-life folate exposure on later-life neurocognitive health, and potentially be used to develop and monitor the effects of interventions.
Collapse
Affiliation(s)
- Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen Stippeneng 4, 6708 WE Wageningen Wageningen Campus l Building 124 (Helix), Wageningen, The Netherlands
| | - Rachael Saunders
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Andrew Nelson
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Darren Smith
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - Dianne Ford
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| | - John C Mathers
- Human Nutrition & Exercise Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Room M2.060, 2nd floor William Leech Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Jill A McKay
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Northumberland Building, Newcastle Upon Tyne, NE1 8ST, United Kingdom
| |
Collapse
|
4
|
Abdolmaleky HM, Nohesara S, Thiagalingam S. Epigenome Defines Aberrant Brain Laterality in Major Mental Illnesses. Brain Sci 2024; 14:261. [PMID: 38539649 PMCID: PMC10968810 DOI: 10.3390/brainsci14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 11/03/2024] Open
Abstract
Brain-hemisphere asymmetry/laterality is a well-conserved biological feature of normal brain development. Several lines of evidence, confirmed by the meta-analysis of different studies, support the disruption of brain laterality in mental illnesses such as schizophrenia (SCZ), bipolar disorder (BD), attention-deficit/hyperactivity disorder (ADHD), obsessive compulsive disorder (OCD), and autism. Furthermore, as abnormal brain lateralization in the planum temporale (a critical structure in auditory language processing) has been reported in patients with SCZ, it has been considered a major cause for the onset of auditory verbal hallucinations. Interestingly, the peripheral counterparts of abnormal brain laterality in mental illness, particularly in SCZ, have also been shown in several structures of the human body. For instance, the fingerprints of patients with SCZ exhibit aberrant asymmetry, and while their hair whorl rotation is random, 95% of the general population exhibit a clockwise rotation. In this work, we present a comprehensive literature review of brain laterality disturbances in mental illnesses such as SCZ, BD, ADHD, and OCD, followed by a systematic review of the epigenetic factors that may be involved in the disruption of brain lateralization in mental health disorders. We will conclude with a discussion on whether existing non-pharmacological therapies such as rTMS and ECT may be used to influence the altered functional asymmetry of the right and left hemispheres of the brain, along with their epigenetic and corresponding gene-expression patterns.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Surgery, Nutrition/Metabolism Laboratory, BIDMC, Harvard Medical School, Boston, MA 02215, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA;
- Department of Pathology & Laboratory Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
5
|
Khalifa A, Palu R, Perkins AE, Volz A. Prenatal alcohol exposure alters expression of genes involved in cell adhesion, immune response, and toxin metabolism in adolescent rat hippocampus. PLoS One 2024; 19:e0293425. [PMID: 38271377 PMCID: PMC10810486 DOI: 10.1371/journal.pone.0293425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/11/2023] [Indexed: 01/27/2024] Open
Abstract
Prenatal alcohol exposure (PAE) can result in mild to severe consequences for children throughout their lives, with this range of symptoms referred to as Fetal Alcohol Spectrum Disorders (FASD). These consequences are thought to be linked to changes in gene expression and transcriptional programming in the brain, but the identity of those changes, and how they persist into adolescence are unclear. In this study, we isolated RNA from the hippocampus of adolescent rats exposed to ethanol during prenatal development and compared gene expression to controls. Briefly, dams were either given free access to standard chow ad libitum (AD), pair-fed a liquid diet (PF) or were given a liquid diet with ethanol (6.7% ethanol, ET) throughout gestation (gestational day (GD) 0-20). All dams were given control diet ad libitum beginning on GD 20 and throughout parturition and lactation. Hippocampal tissue was collected from adolescent male and female offspring (postnatal day (PD) 35-36). Exposure to ethanol caused widespread downregulation of many genes as compared to control rats. Gene ontology analysis demonstrated that affected pathways included cell adhesion, toxin metabolism, and immune responses. Interestingly, these differences were not strongly affected by sex. Furthermore, these changes were consistent when comparing ethanol-exposed rats to pair-fed controls provided with a liquid diet and those fed ad libitum on a standard chow diet. We conclude from this study that changes in genetic architecture and the resulting neuronal connectivity after prenatal exposure to alcohol continue through adolescent development. Further research into the consequences of specific gene expression changes on neural and behavioral changes will be vital to our understanding of the FASD spectrum of diseases.
Collapse
Affiliation(s)
- Amal Khalifa
- Department of Computer Science, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Rebecca Palu
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Amy E. Perkins
- Department of Psychology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| | - Avery Volz
- Department of Biological Sciences, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
- Department of Psychology, Purdue University Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
6
|
Collier AD, Abdulai AR, Leibowitz SF. Utility of the Zebrafish Model for Studying Neuronal and Behavioral Disturbances Induced by Embryonic Exposure to Alcohol, Nicotine, and Cannabis. Cells 2023; 12:2505. [PMID: 37887349 PMCID: PMC10605371 DOI: 10.3390/cells12202505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
It is estimated that 5% of pregnant women consume drugs of abuse during pregnancy. Clinical research suggests that intake of drugs during pregnancy, such as alcohol, nicotine and cannabis, disturbs the development of neuronal systems in the offspring, in association with behavioral disturbances early in life and an increased risk of developing drug use disorders. After briefly summarizing evidence in rodents, this review focuses on the zebrafish model and its inherent advantages for studying the effects of embryonic exposure to drugs of abuse on behavioral and neuronal development, with an emphasis on neuropeptides known to promote drug-related behaviors. In addition to stimulating the expression and density of peptide neurons, as in rodents, zebrafish studies demonstrate that embryonic drug exposure has marked effects on the migration, morphology, projections, anatomical location, and peptide co-expression of these neurons. We also describe studies using advanced methodologies that can be applied in vivo in zebrafish: first, to demonstrate a causal relationship between the drug-induced neuronal and behavioral disturbances and second, to discover underlying molecular mechanisms that mediate these effects. The zebrafish model has great potential for providing important information regarding the development of novel and efficacious therapies for ameliorating the effects of early drug exposure.
Collapse
Affiliation(s)
| | | | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
7
|
Gillis RF, Palmour RM. miRNA Expression Analysis of the Hippocampus in a Vervet Monkey Model of Fetal Alcohol Spectrum Disorder Reveals a Potential Role in Global mRNA Downregulation. Brain Sci 2023; 13:934. [PMID: 37371413 DOI: 10.3390/brainsci13060934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
MicroRNAs (miRNAs) are short-length non-protein-coding RNA sequences that post-transcriptionally regulate gene expression in a broad range of cellular processes including neuro- development and have previously been implicated in fetal alcohol spectrum disorders (FASD). In this study, we use our vervet monkey model of FASD to follow up on a prior multivariate (developmental age × ethanol exposure) mRNA analysis (GSE173516) to explore the possibility that the global mRNA downregulation we observed in that study could be related to miRNA expression and function. We report here a predominance of upregulated and differentially expressed miRNAs. Further, the 24 most upregulated miRNAs were significantly correlated with their predicted targets (Target Scan 7.2). We then explored the relationship between these 24 miRNAs and the fold changes observed in their paired mRNA targets using two prediction platforms (Target Scan 7.2 and miRwalk 3.0). Compared to a list of non-differentially expressed miRNAs from our dataset, the 24 upregulated and differentially expressed miRNAs had a greater impact on the fold changes of their corresponding mRNA targets across both platforms. Taken together, this evidence raises the possibility that ethanol-induced upregulation of specific miRNAs might contribute functionally to the general downregulation of mRNAs observed by multiple investigators in response to prenatal alcohol exposure.
Collapse
Affiliation(s)
- Rob F Gillis
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
| | - Roberta M Palmour
- Department of Human Genetics, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0C7, Canada
- Department of Psychiatry, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 0G4, Canada
- Behavioural Science Foundation, Mansion KN 0101, Saint Kitts and Nevis
| |
Collapse
|
8
|
Lo JO, D’Mello RJ, Watch L, Schust DJ, Murphy SK. An epigenetic synopsis of parental substance use. Epigenomics 2023; 15:453-473. [PMID: 37282544 PMCID: PMC10308258 DOI: 10.2217/epi-2023-0064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
The rate of substance use is rising, especially among reproductive-age individuals. Emerging evidence suggests that paternal pre-conception and maternal prenatal substance use may alter offspring epigenetic regulation (changes to gene expression without modifying DNA) and outcomes later in life, including neurodevelopment and mental health. However, relatively little is known due to the complexities and limitations of existing studies, making causal interpretations challenging. This review examines the contributions and influence of parental substance use on the gametes and potential transmissibility to the offspring's epigenome as possible areas to target public health warnings and healthcare provider counseling of individuals or couples in the pre-conception and prenatal periods to ultimately mitigate short- and long-term offspring morbidity and mortality.
Collapse
Affiliation(s)
- Jamie O Lo
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rahul J D’Mello
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lester Watch
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Danny J Schust
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan K Murphy
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27701, USA; Division of Environmental Sciences & Policy, Duke Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
9
|
Breton-Larrivée M, Elder E, Legault LM, Langford-Avelar A, MacFarlane AJ, McGraw S. Mitigating the detrimental developmental impact of early fetal alcohol exposure using a maternal methyl donor-enriched diet. FASEB J 2023; 37:e22829. [PMID: 36856720 DOI: 10.1096/fj.202201564r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 03/02/2023]
Abstract
Fetal alcohol exposure at any stage of pregnancy can lead to fetal alcohol spectrum disorder (FASD), a group of life-long conditions characterized by congenital malformations, as well as cognitive, behavioral, and emotional impairments. The teratogenic effects of alcohol have long been publicized; yet fetal alcohol exposure is one of the most common preventable causes of birth defects. Currently, alcohol abstinence during pregnancy is the best and only way to prevent FASD. However, alcohol consumption remains astoundingly prevalent among pregnant women; therefore, additional measures need to be made available to help protect the developing embryo before irreparable damage is done. Maternal nutritional interventions using methyl donors have been investigated as potential preventative measures to mitigate the adverse effects of fetal alcohol exposure. Here, we show that a single acute preimplantation (E2.5; 8-cell stage) fetal alcohol exposure (2 × 2.5 g/kg ethanol with a 2h interval) in mice leads to long-term FASD-like morphological phenotypes (e.g. growth restriction, brain malformations, skeletal delays) in late-gestation embryos (E18.5) and demonstrate that supplementing the maternal diet with a combination of four methyl donor nutrients, folic acid, choline, betaine, and vitamin B12, prior to conception and throughout gestation effectively reduces the incidence and severity of alcohol-induced morphological defects without altering DNA methylation status of imprinting control regions and regulation of associated imprinted genes. This study clearly supports that preimplantation embryos are vulnerable to the teratogenic effects of alcohol, emphasizes the dangers of maternal alcohol consumption during early gestation, and provides a potential proactive maternal nutritional intervention to minimize FASD progression, reinforcing the importance of adequate preconception and prenatal nutrition.
Collapse
Affiliation(s)
- Mélanie Breton-Larrivée
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Canada
| | - Elizabeth Elder
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Canada
| | - Lisa-Marie Legault
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Canada
| | - Alexandra Langford-Avelar
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Canada
| | - Amanda J MacFarlane
- Agriculture, Food, and Nutrition Evidence Center, Texas A&M University, Texas, Fort Worth, USA.,Department of Nutrition, Texas A&M University, College Station, Texas, USA
| | - Serge McGraw
- Centre Hospitalier Universitaire Sainte-Justine Research Center, Montreal, Canada.,Department of Biochemistry and Molecular Medicine, Université de Montréal, Montreal, Canada.,Department of Obstetrics and Gynecology, Université de Montréal, Montreal, Canada
| |
Collapse
|
10
|
Epigenetics in fetal alcohol spectrum disorder. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 197:211-239. [PMID: 37019593 DOI: 10.1016/bs.pmbts.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
During pregnancy, alcohol abuse and its detrimental effects on developing offspring are major public health, economic and social challenges. The prominent characteristic attributes of alcohol (ethanol) abuse during pregnancy in humans are neurobehavioral impairments in offspring due to damage to the central nervous system (CNS), causing structural and behavioral impairments that are together named fetal alcohol spectrum disorder (FASD). Development-specific alcohol exposure paradigms were established to recapitulate the human FASD phenotypes and establish the underlying mechanisms. These animal studies have offered some critical molecular and cellular underpinnings likely to account for the neurobehavioral impairments associated with prenatal ethanol exposure. Although the pathogenesis of FASD remains unclear, emerging literature proposes that the various genomic and epigenetic components that cause the imbalance in gene expression can significantly contribute to the development of this disease. These studies acknowledged numerous immediate and enduring epigenetic modifications, such as methylation of DNA, post-translational modifications (PTMs) of histone proteins, and regulatory networks related to RNA, using many molecular approaches. Methylated DNA profiles, PTMs of histone proteins, and RNA-regulated expression of genes are essential for synaptic and cognitive behavior. Thus, offering a solution to many neuronal and behavioral impairments reported in FASD. In the current chapter, we review the recent advances in different epigenetic modifications that cause the pathogenesis of FASD. The information discussed can help better explain the pathogenesis of FASD and thereby might provide a basis for finding novel therapeutic targets and innovative treatment strategies.
Collapse
|
11
|
Alhowail A. Mechanisms Underlying Cognitive Impairment Induced by Prenatal Alcohol Exposure. Brain Sci 2022; 12:brainsci12121667. [PMID: 36552126 PMCID: PMC9775935 DOI: 10.3390/brainsci12121667] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022] Open
Abstract
Alcohol is one of the most commonly used illicit substances among pregnant women. Clinical and experimental studies have revealed that prenatal alcohol exposure affects fetal brain development and ultimately results in the persistent impairment of the offspring's cognitive functions. Despite this, the rate of alcohol use among pregnant women has been progressively increasing. Various aspects of human and animal behavior, including learning and memory, are dependent on complex interactions between multiple mechanisms, such as receptor function, mitochondrial function, and protein kinase activation, which are especially vulnerable to alterations during the developmental period. Thus, the exploration of the mechanisms that are altered in response to prenatal alcohol exposure is necessary to develop an understanding of how homeostatic imbalance and various long-term neurobehavioral impairments manifest following alcohol abuse during pregnancy. There is evidence that prenatal alcohol exposure results in vast alterations in mechanisms such as long-term potentiation, mitochondrial function, and protein kinase activation in the brain of offspring. However, to the best of our knowledge, there are very few recent reviews that focus on the cognitive effects of prenatal alcohol exposure and the associated mechanisms. Therefore, in this review, we aim to provide a comprehensive summary of the recently reported alterations to various mechanisms following alcohol exposure during pregnancy, and to draw potential associations with behavioral changes in affected offspring.
Collapse
Affiliation(s)
- Ahmad Alhowail
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Al Qassim 51452, Saudi Arabia
| |
Collapse
|
12
|
Baker JA, Brettin JT, Mulligan MK, Hamre KM. Effects of Genetics and Sex on Acute Gene Expression Changes in the Hippocampus Following Neonatal Ethanol Exposure in BXD Recombinant Inbred Mouse Strains. Brain Sci 2022; 12:1634. [PMID: 36552094 PMCID: PMC9776411 DOI: 10.3390/brainsci12121634] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022] Open
Abstract
Fetal alcohol spectrum disorders (FASD) are prevalent neurodevelopmental disorders. Genetics have been shown to have a role in the severity of alcohol's teratogenic effects on the developing brain. We previously identified recombinant inbred BXD mouse strains that show high (HCD) or low cell death (LCD) in the hippocampus following ethanol exposure. The present study aimed to identify gene networks that influence this susceptibility. On postnatal day 7 (3rd-trimester-equivalent), male and female neonates were treated with ethanol (5.0 g/kg) or saline, and hippocampi were collected 7hrs later. Using the Affymetrix microarray platform, ethanol-induced gene expression changes were identified in all strains with divergent expression sets found between sexes. Genes, such as Bcl2l11, Jun, and Tgfb3, showed significant strain-by-treatment interactions and were involved in many apoptosis pathways. Comparison of HCD versus LCD showed twice as many ethanol-induced genes changes in the HCD. Interestingly, these changes were regulated in the same direction suggesting (1) more perturbed effects in HCD compared to LCD and (2) limited gene expression changes that confer resistance to ethanol-induced cell death in LCD. These results demonstrate that genetic background and sex are important factors that affect differential cell death pathways after alcohol exposure during development that could have long-term consequences.
Collapse
Affiliation(s)
- Jessica A. Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Center for Behavioral Teratology, San Diego State University, San Diego, CA 92120, USA
| | - Jacob T. Brettin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kristin M. Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
13
|
Vázquez-Ágredos A, Gámiz F, Gallo M. MicroRNA Regulation of the Environmental Impact on Adolescent Neurobehavioral Development: A Systematic Review. Front Cell Neurosci 2022; 16:956609. [PMID: 35936504 PMCID: PMC9352948 DOI: 10.3389/fncel.2022.956609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Adolescence is a late developmental period marked by pronounced reorganization of brain networks in which epigenetic mechanisms play a fundamental role. This brain remodeling is associated with a peculiar behavior characterized by novelty seeking and risky activities such as alcohol and drug abuse, which is associated with increased susceptibility to stress. Hence, adolescence is a vulnerable postnatal period since short- and long-term deleterious effects of alcohol drinking and drug abuse are a serious worldwide public health concern. Among several other consequences, it has been proposed that exposure to stress, alcohol, or other drugs disrupts epigenetic mechanisms mediated by small non-coding microRNAs (miRNAs). During adolescence, this modifies the expression of a variety of genes involved in neurodevelopmental processes such as proliferation, differentiation, synaptogenesis, neural plasticity, and apoptosis. Hence, the effect of miRNAs dysregulation during adolescence might contribute to a long-term impact on brain function. This systematic review focuses on the miRNA expression patterns in the adolescent rodent brain with special interest in the impact of stress and drugs such as amphetamine, cocaine, nicotine, cannabis, and ketamine. The results point to a relevant and complex role of miRNAs in the regulation of the molecular processes involved in adolescent brain development as part of a dynamic epigenetic network sensitive to environmental events with distinctive changes across adolescence. Several miRNAs have been assessed evidencing changing expression profiles during the adolescent transition which are altered by exposure to stress and drug abuse. Since this is an emerging rapidly growing field, updating the present knowledge will contribute to improving our understanding of the epigenetic regulation mechanisms involved in the neurodevelopmental changes responsible for adolescent behavior. It can be expected that increased knowledge of the molecular mechanisms mediating the effect of environmental threats during the adolescent critical developmental period will improve understanding of psychiatric and addictive disorders emerging at this stage.
Collapse
Affiliation(s)
- Ana Vázquez-Ágredos
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| | - Fernando Gámiz
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| | - Milagros Gallo
- Department of Psychobiology, Institute of Neurosciences (CIBM), University of Granada, Granada, Spain
| |
Collapse
|
14
|
Solar KG, Treit S, Beaulieu C. High-resolution diffusion tensor imaging identifies hippocampal volume loss without diffusion changes in individuals with prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:1204-1219. [PMID: 35567310 DOI: 10.1111/acer.14857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/27/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Magnetic resonance imaging (MRI) studies of prenatal alcohol exposure (PAE) commonly report reduced hippocampal volumes, which animal models suggest may result from microstructural changes that include cell loss and altered myelination. Diffusion tensor imaging (DTI) is sensitive to microstructural changes but has not yet been used to study the hippocampus in PAE. METHODS Thirty-six healthy controls (19 females; 8 to 24 years) and 19 participants with PAE (8 females; 8 to 23 years) underwent high-resolution (1 mm isotropic) DTI, anatomical T1-weighted imaging, and cognitive testing. Whole-hippocampus, head, body, and tail subregions were manually segmented to yield DTI metrics (mean, axial, and radial diffusivities-MD, AD, and RD; fractional anisotropy-FA), volumes, and qualitative assessments of hippocampal morphology and digitations. Automated segmentation of T1-weighted images was used to corroborate manual whole-hippocampus volumes. RESULTS Gross morphology and digitation counts were similar in both groups. Whole-hippocampus volumes were 18% smaller in the PAE than the control group on manually traced diffusion images, but automated T1-weighted image segmentations were not significantly different. Subregion segmentation on DTI revealed reduced volumes of the body and tail, but not the head. There were no significant differences in diffusion metrics between groups for any hippocampal region. Correlations between age and volume were not significant in either group, whereas negative correlations between age and whole-hippocampus MD/AD/RD, and head/body (but not tail) MD/AD/RD were significant in both groups. There were no significant effects of sex, group by age, or group by sex for any hippocampal metric. In controls, seven positive linear correlations were found between hippocampal volume and cognition; five of these were left lateralized and included episodic and working memory, and two were right lateralized and included working memory and processing speed. In PAE, left tail MD positively correlated with executive functioning, and right head MD negatively correlated with episodic memory. CONCLUSIONS Reductions of hippocampal volumes and altered relationships with memory suggest disrupted hippocampal development in PAE.
Collapse
Affiliation(s)
- Kevin Grant Solar
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah Treit
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
15
|
Association of prenatal alcohol exposure with offspring DNA methylation in mammals: a systematic review of the evidence. Clin Epigenetics 2022; 14:12. [PMID: 35073992 PMCID: PMC8785586 DOI: 10.1186/s13148-022-01231-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/06/2022] [Indexed: 12/18/2022] Open
Abstract
Abstract
Background
Prenatal alcohol exposure (PAE) is associated with a range of adverse offspring neurodevelopmental outcomes. Several studies suggest that PAE modifies DNA methylation in offspring cells and tissues, providing evidence for a potential mechanistic link to Fetal Alcohol Spectrum Disorder (FASD). We systematically reviewed existing evidence on the extent to which maternal alcohol use during pregnancy is associated with offspring DNA methylation.
Methods
A systematic literature search was conducted across five online databases according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, Web of Science, EMBASE, Google Scholar and CINAHL Databases were searched for articles relating to PAE in placental mammals. Data were extracted from each study and the Risk of Bias in Non-Randomized Studies of Interventions (ROBINS-I) was used to assess the potential for bias in human studies.
Results
Forty-three articles were identified for inclusion. Twenty-six animal studies and 16 human studies measured offspring DNA methylation in various tissues using candidate gene analysis, methylome-wide association studies (MWAS), or total nuclear DNA methylation content. PAE dose and timing varied between studies. Risk of bias was deemed high in nearly all human studies. There was insufficient evidence in human and animal studies to support global disruption of DNA methylation from PAE. Inconclusive evidence was found for hypomethylation at IGF2/H19 regions within somatic tissues. MWAS assessing PAE effects on offspring DNA methylation showed inconsistent evidence. There was some consistency in the relatively small number of MWAS conducted in populations with FASD. Meta-analyses could not be conducted due to significant heterogeneity between studies.
Conclusion
Considering heterogeneity in study design and potential for bias, evidence for an association between PAE and offspring DNA methylation was inconclusive. Some reproducible associations were observed in populations with FASD although the limited number of these studies warrants further research.
Trail Registration: This review is registered with PROSPERO (registration number: CRD42020167686).
Collapse
|
16
|
Lussier AA, Bodnar TS, Weinberg J. Intersection of Epigenetic and Immune Alterations: Implications for Fetal Alcohol Spectrum Disorder and Mental Health. Front Neurosci 2021; 15:788630. [PMID: 34924946 PMCID: PMC8680672 DOI: 10.3389/fnins.2021.788630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/02/2021] [Indexed: 01/15/2023] Open
Abstract
Prenatal alcohol exposure can impact virtually all body systems, resulting in a host of structural, neurocognitive, and behavioral abnormalities. Among the adverse impacts associated with prenatal alcohol exposure are alterations in immune function, including an increased incidence of infections and alterations in immune/neuroimmune parameters that last throughout the life-course. Epigenetic patterns are also highly sensitive to prenatal alcohol exposure, with widespread alcohol-related alterations to epigenetic profiles, including changes in DNA methylation, histone modifications, and miRNA expression. Importantly, epigenetic programs are crucial for immune system development, impacting key processes such as immune cell fate, differentiation, and activation. In addition to their role in development, epigenetic mechanisms are emerging as attractive candidates for the biological embedding of environmental factors on immune function and as mediators between early-life exposures and long-term health. Here, following an overview of the impact of prenatal alcohol exposure on immune function and epigenetic patterns, we discuss the potential role for epigenetic mechanisms in reprogramming of immune function and the consequences for health and development. We highlight a range of both clinical and animal studies to provide insights into the array of immune genes impacted by alcohol-related epigenetic reprogramming. Finally, we discuss potential consequences of alcohol-related reprogramming of immune/neuroimmune functions and their effects on the increased susceptibility to mental health disorders. Overall, the collective findings from animal models and clinical studies highlight a compelling relationship between the immune system and epigenetic pathways. These findings have important implications for our understanding of the biological mechanisms underlying the long-term and multisystem effects of prenatal alcohol exposure, laying the groundwork for possible novel interventions and therapeutic strategies to treat individuals prenatally exposed to alcohol.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Tamara S Bodnar
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Joanne Weinberg
- Department of Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
17
|
Wallén E, Auvinen P, Kaminen-Ahola N. The Effects of Early Prenatal Alcohol Exposure on Epigenome and Embryonic Development. Genes (Basel) 2021; 12:genes12071095. [PMID: 34356111 PMCID: PMC8303887 DOI: 10.3390/genes12071095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022] Open
Abstract
Prenatal alcohol exposure is one of the most significant causes of developmental disability in the Western world. Maternal alcohol consumption during pregnancy leads to an increased risk of neurological deficits and developmental abnormalities in the fetus. Over the past decade, several human and animal studies have demonstrated that alcohol causes alterations in epigenetic marks, including DNA methylation, histone modifications, and non-coding RNAs. There is an increasing amount of evidence that early pregnancy is a sensitive period for environmental-induced epigenetic changes. It is a dynamic period of epigenetic reprogramming, cell divisions, and DNA replication and, therefore, a particularly interesting period to study the molecular changes caused by alcohol exposure as well as the etiology of alcohol-induced developmental disorders. This article will review the current knowledge about the in vivo and in vitro effects of alcohol exposure on the epigenome, gene regulation, and the phenotype during the first weeks of pregnancy.
Collapse
|
18
|
Alberry B, Laufer BI, Chater-Diehl E, Singh SM. Epigenetic Impacts of Early Life Stress in Fetal Alcohol Spectrum Disorders Shape the Neurodevelopmental Continuum. Front Mol Neurosci 2021; 14:671891. [PMID: 34149355 PMCID: PMC8209299 DOI: 10.3389/fnmol.2021.671891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/30/2021] [Indexed: 12/24/2022] Open
Abstract
Neurodevelopment in humans is a long, elaborate, and highly coordinated process involving three trimesters of prenatal development followed by decades of postnatal development and maturation. Throughout this period, the brain is highly sensitive and responsive to the external environment, which may provide a range of inputs leading to positive or negative outcomes. Fetal alcohol spectrum disorders (FASD) result from prenatal alcohol exposure (PAE). Although the molecular mechanisms of FASD are not fully characterized, they involve alterations to the regulation of gene expression via epigenetic marks. As in the prenatal stages, the postnatal period of neurodevelopment is also sensitive to environmental inputs. Often this sensitivity is reflected in children facing adverse conditions, such as maternal separation. This exposure to early life stress (ELS) is implicated in the manifestation of various behavioral abnormalities. Most FASD research has focused exclusively on the effect of prenatal ethanol exposure in isolation. Here, we review the research into the effect of prenatal ethanol exposure and ELS, with a focus on the continuum of epigenomic and transcriptomic alterations. Interestingly, a select few experiments have assessed the cumulative effect of prenatal alcohol and postnatal maternal separation stress. Regulatory regions of different sets of genes are affected by both treatments independently, and a unique set of genes are affected by the combination of treatments. Notably, epigenetic and gene expression changes converge at the clustered protocadherin locus and oxidative stress pathway. Functional studies using epigenetic editing may elucidate individual contributions of regulatory regions for hub genes and further profiling efforts may lead to the development of non-invasive methods to identify children at risk. Taken together, the results favor the potential to improve neurodevelopmental outcomes by epigenetic management of children born with FASD using favorable postnatal conditions with or without therapeutic interventions.
Collapse
Affiliation(s)
- Bonnie Alberry
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, United States.,Genome Center, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Davis, CA, United States
| | - Eric Chater-Diehl
- Genetics and Genome Biology, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Shiva M Singh
- Department of Biology, Faculty of Science, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
19
|
Aglawe MM, Kale MB, Rahangdale SR, Kotagale NR, Umekar MJ, Taksande BG. Agmatine improves the behavioral and cognitive impairments associated with chronic gestational ethanol exposure in rats. Brain Res Bull 2020; 167:37-47. [PMID: 33242522 DOI: 10.1016/j.brainresbull.2020.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/28/2020] [Accepted: 11/19/2020] [Indexed: 12/30/2022]
Abstract
Chronic maternal ethanol exposure leads to poor intelligence, impaired cognition and array of neurological symptoms in offsprings and commonly referred as fetal alcohol spectrum disorder (FASD). Despite high prevalence and severity, the neurochemical basis of FASD remains largely unexplored. The present study evaluated the pharmacological effects of agmatine in cognitive deficits associated with FAS in rat's offsprings prenatally exposed to alcohol. Pregnant rats received ethanol in liquid modified diet during the entire gestational period of 21 days. Offsprings were treated with agmatine (20-80 mg/Kg, i.p.) during early postnatal days (PND: 21-35) and subsequently evaluated for anxiety in elevated plus maze (EPM), depression in forced swim test (FST) and learning and memory in Morris's water maze (MWM) during post adolescent phase. Hippocampal agmatine, BDNF, TNF-α and IL-6 levels were also analyzed in prenatally ethanol exposed pups. Offsprings prenatally exposed to ethanol demonstrated delayed righting reflex, reduced exploratory behavior along with anxiety, depression-like behavior and impaired memory. These behavioral abnormalities were correlated with a significant reduction in hippocampal agmatine and BDNF levels and elevation in TNF-α and IL-6 immunocontent. Chronic agmatine (40 and 80 mg/Kg, i.p.) administration for 15 days (PND: 21-35), improved entries and time spent in open arm of EPM, decreased immobility time in FST. It also reduced latency to reach the platform location; increased the number of entries, time spent in platform quadrant and also number of crossing over platform quadrant when subjected to MWM test in prenatally ethanol exposed offsprings. This study provides functional evidences for the therapeutic potential of agmatine in cognitive impairment and other neurological complications associated with FASD.
Collapse
Affiliation(s)
- Manish M Aglawe
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | - Mayur B Kale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | - Sandip R Rahangdale
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | | | - Milind J Umekar
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India
| | - Brijesh G Taksande
- Division of Neuroscience, Department of Pharmacology, Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra, 441 002, India.
| |
Collapse
|
20
|
Kaminen-Ahola N. Fetal alcohol spectrum disorders: Genetic and epigenetic mechanisms. Prenat Diagn 2020; 40:1185-1192. [PMID: 32386259 DOI: 10.1002/pd.5731] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 03/26/2020] [Accepted: 05/03/2020] [Indexed: 12/11/2022]
Abstract
Fetal alcohol spectrum disorders (FASD) are a consequence of prenatal alcohol exposure (PAE). The etiology of the complex FASD phenotype with growth deficit, birth defects, and neurodevelopmental impairments is under extensive research. Both genetic and environmental factors contribute to the wide phenotype: chromosomal rearrangements, risk and protective alleles, environmental-induced epigenetic alterations as well as gene-environment interactions are all involved. Understanding the molecular mechanisms of PAE can provide tools for prevention or intervention of the alcohol-induced developmental disorders in the future. By revealing the alcohol-induced genetic and epigenetic alterations which associate with the variable FASD phenotypes, it is possible to identify biomarkers for the disorder. This would enable early diagnoses and personalized support for development of the affected child.
Collapse
Affiliation(s)
- Nina Kaminen-Ahola
- Environmental Epigenetics Laboratory, Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
21
|
Alberry BLJ, Castellani CA, Singh SM. Hippocampal transcriptome analysis following maternal separation implicates altered RNA processing in a mouse model of fetal alcohol spectrum disorder. J Neurodev Disord 2020; 12:15. [PMID: 32416732 PMCID: PMC7231420 DOI: 10.1186/s11689-020-09316-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 04/16/2020] [Indexed: 01/05/2023] Open
Abstract
Background Fetal alcohol spectrum disorders (FASD) are common, seen in 1–5% of the population in the USA and Canada. Children diagnosed with FASD are not likely to remain with their biological parents, facing early maternal separation and foster placements throughout childhood. Methods We model FASD in mice via prenatal alcohol exposure and further induce early life stress through maternal separation. We use RNA-seq followed by clustering of expression profiles through weighted gene co-expression network analysis (WGCNA) to analyze transcriptomic changes that result from the treatments. We use reverse transcription qPCR to validate these changes in the mouse hippocampus. Results We report an association between adult hippocampal gene expression and prenatal ethanol exposure followed by postnatal separation stress that is related to behavioral changes. Expression profile clustering using WGCNA identifies a set of transcripts, module 19, associated with anxiety-like behavior (r = 0.79, p = 0.002) as well as treatment group (r = 0.68, p = 0.015). Genes in this module are overrepresented by genes involved in transcriptional regulation and other pathways related to neurodevelopment. Interestingly, one member of this module, Polr2a, polymerase (RNA) II (DNA directed) polypeptide A, is downregulated by the combination of prenatal ethanol and postnatal stress in an RNA-Seq experiment and qPCR validation (q = 2e−12, p = 0.004, respectively). Conclusions Together, transcriptional control in the hippocampus is implicated as a potential underlying mechanism leading to anxiety-like behavior via environmental insults. Further research is required to elucidate the mechanism involved and use this insight towards early diagnosis and amelioration strategies involving children born with FASD.
Collapse
Affiliation(s)
- Bonnie L J Alberry
- Department of Biology, Western University, 1151 Richmond St, London, Ontario, N6A 5B7, Canada
| | - Christina A Castellani
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, 733 North Broadway, Baltimore, MD, 21205, USA
| | - Shiva M Singh
- Department of Biology, Western University, 1151 Richmond St, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
22
|
Alberry BL, Singh SM. Hippocampal DNA Methylation in a Mouse Model of Fetal Alcohol Spectrum Disorder That Includes Maternal Separation Stress Only Partially Explains Changes in Gene Expression. Front Genet 2020; 11:70. [PMID: 32174962 PMCID: PMC7056727 DOI: 10.3389/fgene.2020.00070] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/22/2020] [Indexed: 12/15/2022] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is characterized by developmental and behavioral deficits caused by maternal drinking during pregnancy. Children born with FASD often face additional stresses, including maternal separation, that add yet additional deficits. The mechanism associated with this interaction is not known. We have used a mouse model for prenatal ethanol exposure and maternal separation to demonstrate that the combination of the two treatments results in more than additive deficits. Furthermore, the behavioral deficits are associated with changes in hippocampal gene expression that persist into adulthood. What initiates and maintains these changes remains to be established and forms the focus of this report. Specifically, MeDIP-Seq was used to assess if changes in promoter DNA methylation are affected by exposure to prenatal ethanol and maternal separation including its relationship to gene expression. The novel results show that different sets of genes implicated by promoter DNA methylation are affected by both treatments independently, and a relatively unique set of genes are affected by the combination of the two treatments. Prenatal ethanol exposure leads to altered promoter DNA methylation at genes important for transcriptional regulation. Maternal separation leads to changes at genes important for histone methylation and immune response, and the combination of two treatments results in DNA methylation changes at genes important for neuronal migration and immune response. Our dual results from the same hippocampal samples suggest there is minimal complementarity between changes in promoter DNA methylation and gene expression, although genes involved tend to be critical for brain development and function. While remaining to be validated, such results argue that mechanisms beyond promoter DNA methylation must be involved in lasting gene expression alterations leading to behavioral deficits implicated in FASD. They may facilitate early and reliable diagnosis, as well as novel strategies for the amelioration of FASD-related deficits.
Collapse
Affiliation(s)
| | - Shiva M. Singh
- Department of Biology, Western University, London, ON, Canada
| |
Collapse
|
23
|
Lee N, Jae Y, Kim M, Cho T, Lee C, Hong YR, Hyeon DY, Ahn S, Kwon H, Kim K, Jung JH, Chae S, Shin JO, Bok J, Byun Y, Hwang D, Koo J. A pathogen-derived metabolite induces microglial activation via odorant receptors. FEBS J 2020; 287:3841-3870. [PMID: 32003140 DOI: 10.1111/febs.15234] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/10/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022]
Abstract
Microglia (MG), the principal neuroimmune sentinels in the brain, continuously sense changes in their environment and respond to invading pathogens, toxins, and cellular debris, thereby affecting neuroinflammation. Microbial pathogens produce small metabolites that influence neuroinflammation, but the molecular mechanisms that determine whether pathogen-derived small metabolites affect microglial activation of neuroinflammation remain to be elucidated. We hypothesized that odorant receptors (ORs), the largest subfamily of G protein-coupled receptors, are involved in microglial activation by pathogen-derived small metabolites. We found that MG express high levels of two mouse ORs, Olfr110 and Olfr111, which recognize a pathogenic metabolite, 2-pentylfuran, secreted by Streptococcus pneumoniae. These interactions activate MG to engage in chemotaxis, cytokine production, phagocytosis, and reactive oxygen species generation. These effects were mediated through the Gαs -cyclic adenosine monophosphate-protein kinase A-extracellular signal-regulated kinase and Gβγ -phospholipase C-Ca2+ pathways. Taken together, our results reveal a novel interplay between the pathogen-derived metabolite and ORs, which has major implications for our understanding of microglial activation by pathogen recognition. DATABASE: Model data are available in the PMDB database under the accession number PM0082389.
Collapse
Affiliation(s)
- NaHye Lee
- Department of New Biology, DGIST, Daegu, Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - YoonGyu Jae
- Department of New Biology, DGIST, Daegu, Korea.,Department of Brain and Cognitive Sciences, DGIST, Daegu, Korea
| | - Minhyung Kim
- Center for Plant Aging Research, DGIST, Daegu, Korea
| | - TaeHo Cho
- Department of New Biology, DGIST, Daegu, Korea
| | - ChaeEun Lee
- Department of New Biology, DGIST, Daegu, Korea
| | - Yu Ri Hong
- Department of New Biology, DGIST, Daegu, Korea
| | | | - Sanghyun Ahn
- Center for Plant Aging Research, DGIST, Daegu, Korea
| | - Hongmok Kwon
- College of Pharmacy, Korea University, Sejong, Korea
| | - Kyul Kim
- College of Pharmacy, Korea University, Sejong, Korea
| | - Jae Hoon Jung
- Center for Plant Aging Research, DGIST, Daegu, Korea
| | - Sehyun Chae
- Center for Plant Aging Research, DGIST, Daegu, Korea
| | - Jeong-Oh Shin
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Jinwoong Bok
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Korea
| | - Youngjoo Byun
- College of Pharmacy, Korea University, Sejong, Korea
| | - Daehee Hwang
- Center for Plant Aging Research, DGIST, Daegu, Korea.,Department of Biological Sciences, Seoul National University, Korea
| | | |
Collapse
|
24
|
Collier AD, Min SS, Campbell SD, Roberts MY, Camidge K, Leibowitz SF. Maternal ethanol consumption before paternal fertilization: Stimulation of hypocretin neurogenesis and ethanol intake in zebrafish offspring. Prog Neuropsychopharmacol Biol Psychiatry 2020; 96:109728. [PMID: 31394141 PMCID: PMC6815720 DOI: 10.1016/j.pnpbp.2019.109728] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 12/27/2022]
Abstract
There are numerous clinical and pre-clinical studies showing that exposure of the embryo to ethanol markedly affects neuronal development and stimulates alcohol drinking and related behaviors. In rodents and zebrafish, our studies show that embryonic exposure to low-dose ethanol, in addition to increasing voluntary ethanol intake during adolescence, increases the density of hypothalamic hypocretin (hcrt) neurons, a neuropeptide known to regulate reward-related behaviors. The question addressed here in zebrafish is whether maternal ethanol intake before conception also affects neuronal and behavioral development, phenomena suggested by clinical reports but seldom investigated. To determine if preconception maternal ethanol consumption also affects these hcrt neurons and behavior in the offspring, we first standardized a method of measuring voluntary ethanol consumption in AB strain adult and larval zebrafish given gelatin meals containing 10% or 0.1% ethanol, respectively. We found the number of bites of gelatin to be an accurate measure of intake in adults and a strong predictor of blood ethanol levels, and also to be a reliable indicator of intake in larval zebrafish. We then used this feeding paradigm and live imaging to examine the effects of preconception maternal intake of 10% ethanol-gelatin compared to plain-gelatin for 14 days on neuronal development in the offspring. Whereas ethanol consumption by adult female HuC:GFP transgenic zebrafish had no impact on the number of differentiated HuC+ neurons at 28 h post-fertilization (hpf), preconception ethanol consumption by adult female hcrt:EGFP zebrafish significantly increased the number of hcrt neurons in the offspring, an effect observed at 28 hpf and confirmed at 6 and 12 days post-fertilization (dpf). This increase in hcrt neurons was primarily present on the left side of the brain, indicating asymmetry in ethanol's actions, and it was accompanied by behavioral changes in the offspring, including a significant increase in novelty-induced locomotor activity but not thigmotaxis measured at 6 dpf and also in voluntary consumption of 0.1% ethanol-gelatin at 12 dpf. Notably, these measures of ethanol intake and locomotor activity stimulated by preconception ethanol were strongly, positively correlated with the number of hcrt neurons. These findings demonstrate that preconception maternal ethanol consumption affects the brain and behavior of the offspring, producing effects similar to those caused by embryonic ethanol exposure, and they provide further evidence that the ethanol-induced increase in hcrt neurogenesis contributes to the behavioral disturbances caused by ethanol.
Collapse
Affiliation(s)
- Adam D Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Soe S Min
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Samantha D Campbell
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Mia Y Roberts
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Kaylin Camidge
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA
| | - Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
25
|
Nguyen VT, Tieng QM, Mardon K, Zhang C, Chong S, Galloway GJ, Kurniawan ND. Magnetic Resonance Imaging and Micro-Computed Tomography reveal brain morphological abnormalities in a mouse model of early moderate prenatal ethanol exposure. Neurotoxicol Teratol 2019; 77:106849. [PMID: 31838218 DOI: 10.1016/j.ntt.2019.106849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/01/2019] [Accepted: 12/04/2019] [Indexed: 01/05/2023]
Abstract
BACKGROUND This study investigated the effects of early moderate prenatal ethanol exposure (PEE) on the brain in a mouse model that mimics a scenario in humans, whereby moderate daily drinking ceases after a woman becomes aware of her pregnancy. METHODS C57BL/6J pregnant mice were given 10% v/v ethanol from gestational day 0-8 in the drinking water. The male offspring were used for imaging. Anatomical and diffusion Magnetic Resonance Imaging were performed in vivo at postnatal day 28 (P28, adolescence) and P80 (adulthood). Micro-Computed Tomography was performed on fixed whole heads at P80. Tensor-based morphometry (TBM) was applied to detect alterations in brain structure and voxel-based morphometry (VBM) for skull morphology. Diffusion tensor and neurite orientation dispersion and density imaging models were used to detect microstructural changes. Neurofilament (NF) immunohistochemistry was used to validate findings by in vivo diffusion MRI. RESULTS TBM showed that PEE mice exhibited a significantly smaller third ventricle at P28 (family-wise error rate (FWE), p < 0.05). All other macro-structural alterations did not survive FWE corrections but when displayed with an uncorrected p < 0.005 showed multiple regional volume reductions and expansions, more prominently in the right hemisphere. PEE-induced gross volume changes included a bigger thalamus, hypothalamus and ventricles at P28, and bigger total brain volumes at both P28 and P80 (2-sample t-tests). Disproportionately smaller olfactory bulbs following PEE were revealed at both time-points. No alterations in diffusion parameters were detected, but PEE animals exhibited reduced NF positive staining in the thalamus and striatum and greater bone density in various skull regions. CONCLUSION Our results show that early moderate PEE can cause alterations in the brain that are detectable during development and adulthood.
Collapse
Affiliation(s)
- Van T Nguyen
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; Hanoi University of Science and Technology, Hanoi, Viet Nam
| | - Quang M Tieng
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Karine Mardon
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; National Imaging Facility, Brisbane, Queensland, Australia
| | - Christine Zhang
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Suyinn Chong
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - Graham J Galloway
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia; National Imaging Facility, Brisbane, Queensland, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
26
|
Cantacorps L, Alfonso-Loeches S, Guerri C, Valverde O. Long-term epigenetic changes in offspring mice exposed to alcohol during gestation and lactation. J Psychopharmacol 2019; 33:1562-1572. [PMID: 31210079 DOI: 10.1177/0269881119856001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Alcohol exposure impairs brain development and leads to a range of behavioural and cognitive dysfunctions, termed as foetal alcohol spectrum disorders. Although different mechanisms have been proposed to participate in foetal alcohol spectrum disorders, the molecular insights of such effects are still uncertain. Using a mouse model of foetal alcohol spectrum disorder, we have previously shown that maternal binge-like alcohol drinking causes persistent effects on motor, cognitive and emotional-related behaviours associated with neuroimmune dysfunctions. AIMS In this study, we sought to evaluate whether the long-term behavioural alterations found in offspring with early exposure to alcohol are associated with epigenetic changes in the hippocampus and prefrontal cortex. METHODS Pregnant C57BL/6 female mice underwent a model procedure for binge alcohol drinking throughout both the gestation and lactation periods. Subsequently, adult offspring were assessed for their cognitive function in a reversal learning task and brain areas were extracted for epigenetic analyses. RESULTS The results demonstrated that early binge alcohol exposure induces long-term behavioural effects along with alterations in histone acetylation (histone H4 lysine 5 and histone H4 lysine 12) in the hippocampus and prefrontal cortex. The epigenetic effects were linked with an imbalance in histone acetyltransferase activity that was found to be increased in the prefrontal cortex of mice exposed to alcohol. CONCLUSIONS In conclusion, our results reveal that maternal binge-like alcohol consumption induces persistent epigenetic modifications, effects that might be associated with the long-term cognitive and behavioural impairments observed in foetal alcohol spectrum disorder models.
Collapse
Affiliation(s)
- Lídia Cantacorps
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Silvia Alfonso-Loeches
- Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Centre, Valencia, Spain
| | - Consuelo Guerri
- Molecular and Cellular Pathology of Alcohol, Prince Felipe Research Centre, Valencia, Spain
| | - Olga Valverde
- Neurobiology of Behaviour Research Group (GReNeC-NeuroBio), Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Neuroscience Research Programme, IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
27
|
Collier AD, Halkina V, Min SS, Roberts MY, Campbell SD, Camidge K, Leibowitz SF. Embryonic Ethanol Exposure Affects the Early Development, Migration, and Location of Hypocretin/Orexin Neurons in Zebrafish. Alcohol Clin Exp Res 2019; 43:1702-1713. [PMID: 31206717 PMCID: PMC6677602 DOI: 10.1111/acer.14126] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 06/03/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Embryonic ethanol (EtOH) exposure is known to increase alcohol drinking later in life and have long-term effects on neurochemical systems in the brain. With zebrafish having marked advantages for elucidating neural mechanisms underlying brain disorders, we recently tested and showed in these fish, similar to rodents, that low-dose embryonic EtOH stimulates voluntary consumption of EtOH while increasing expression of hypocretin/orexin (hcrt) neurons, a neuropeptide that promotes consummatory and reward-related behaviors. The goal of the present study was to characterize how embryonic EtOH affects early development of the hcrt system and produces persistent changes at older ages that may contribute to this increase in EtOH consumption. METHODS We utilized live imaging and Imaris software to investigate how low-dose embryonic EtOH (0.5%), administered from 22 to 24 hours postfertilization, affects specific properties of hcrt neurons in hcrt:EGFP transgenic zebrafish at different ages. RESULTS Time-lapse imaging from 24 to 28 hpf showed that embryonic EtOH increased the number of hcrt neurons, reduced the speed, straightness, and displacement of their migratory paths, and altered their direction early in development. At older ages up to 6 dpf, the embryonic EtOH-induced increase in hcrt neurons was persistent, and the neurons became more widely dispersed. These effects of embryonic EtOH were found to be asymmetric, occurring predominantly on the left side of the brain, and at 6 dpf, they resulted in marked changes in the anatomical location of the hcrt neurons, with some detected outside their normal position in the anterior hypothalamus again primarily on the left side. CONCLUSIONS Our findings demonstrate that low-dose embryonic EtOH has diverse, persistent, and asymmetric effects on the early development of hypothalamic hcrt neurons, which lead to abnormalities in their ultimate location that may contribute to behavioral disturbances, including an increase in EtOH consumption.
Collapse
Affiliation(s)
- Adam D. Collier
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Viktoriya Halkina
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Soe S. Min
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Mia Y. Roberts
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | | | - Kaylin Camidge
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| | - Sarah F. Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY
| |
Collapse
|
28
|
Lunde‐Young R, Ramirez J, Naik V, Orzabal M, Lee J, Konganti K, Hillhouse A, Threadgill D, Ramadoss J. Hippocampal transcriptome reveals novel targets of FASD pathogenesis. Brain Behav 2019; 9:e01334. [PMID: 31140755 PMCID: PMC6625466 DOI: 10.1002/brb3.1334] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/01/2019] [Accepted: 05/06/2019] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Prenatal alcohol exposure can contribute to fetal alcohol spectrum disorders (FASD), characterized by a myriad of developmental impairments affecting behavior and cognition. Studies show that many of these functional impairments are associated with the hippocampus, a structure exhibiting exquisite vulnerability to developmental alcohol exposure and critically implicated in learning and memory; however, mechanisms underlying alcohol-induced hippocampal deficits remain poorly understood. By utilizing a high-throughput RNA-sequencing (RNA-seq) approach to address the neurobiological and molecular basis of prenatal alcohol-induced hippocampal functional deficits, we hypothesized that chronic binge prenatal alcohol exposure alters gene expression and global molecular pathways in the fetal hippocampus. METHODS Timed-pregnant Sprague-Dawley rats were randomly assigned to a pair-fed control (PF) or binge alcohol (ALC) treatment group on gestational day (GD) 4. ALC dams acclimatized from GDs 5-10 with a daily treatment of 4.5 g/kg alcohol and subsequently received 6 g/kg on GDs 11-20. PF dams received a once daily maltose dextrin gavage on GDs 5-20, isocalorically matching ALC counterparts. On GD 21, bilateral hippocampi were dissected, flash frozen, and stored at -80° C. Total RNA was then isolated from homogenized tissues. Samples were normalized to ~4nM and pooled equally. Sequencing was performed by Illumina NextSeq 500 on a 75 cycle, single-end sequencing run. RESULTS RNA-seq identified 13,388 genes, of these, 76 genes showed a significant difference (p < 0.05, log2 fold change ≥2) in expression between the PF and ALC groups. Forty-nine genes showed sex-dependent dysregulation; IPA analysis showed among female offspring, dysregulated pathways included proline and citrulline biosynthesis, whereas in males, xenobiotic metabolism signaling and alaninine biosynthesis etc. were altered. CONCLUSION We conclude that chronic binge alcohol exposure during pregnancy dysregulates fetal hippocampal gene expression in a sex-specific manner. Identification of subtle, transcriptome-level dysregulation in hippocampal molecular pathways offers potential mechanistic insights underlying FASD pathogenesis.
Collapse
Affiliation(s)
- Raine Lunde‐Young
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Josue Ramirez
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Vishal Naik
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Marcus Orzabal
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Jehoon Lee
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Kranti Konganti
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Andrew Hillhouse
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - David Threadgill
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| | - Jayanth Ramadoss
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTexas
| |
Collapse
|
29
|
Gartstein MA, Skinner MK. Prenatal influences on temperament development: The role of environmental epigenetics. Dev Psychopathol 2018; 30:1269-1303. [PMID: 29229018 PMCID: PMC5997513 DOI: 10.1017/s0954579417001730] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This review summarizes current knowledge and outlines future directions relevant to questions concerning environmental epigenetics and the processes that contribute to temperament development. Links between prenatal adversity, epigenetic programming, and early manifestations of temperament are important in their own right, also informing our understanding of biological foundations for social-emotional development. In addition, infant temperament attributes represent key etiological factors in the onset of developmental psychopathology, and studies elucidating their prenatal foundations expand our understanding of developmental origins of health and disease. Prenatal adversity can take many forms, and this overview is focused on the environmental effects of stress, toxicants, substance use/psychotropic medication, and nutrition. Dysregulation associated with attention-deficit/hyperactivity-disruptive disorders was noted in the context of maternal substance use and toxicant exposures during gestation, as well as stress. Although these links can be made based on the existing literature, currently few studies directly connect environmental influences, epigenetic programming, and changes in brain development/behavior. The chain of events starting with environmental inputs and resulting in alterations to gene expression, physiology, and behavior of the organism is driven by epigenetics. Epigenetics provides the molecular mechanism of how environmental factors impact development and subsequent health and disease, including early brain and temperament development.
Collapse
Affiliation(s)
- Maria A. Gartstein
- Department of Psychology, Washington State University, Pullman, WA-99164-4820, USA
| | - Michael K. Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA-99164-4236, USA
| |
Collapse
|
30
|
De Sa Nogueira D, Merienne K, Befort K. Neuroepigenetics and addictive behaviors: Where do we stand? Neurosci Biobehav Rev 2018; 106:58-72. [PMID: 30205119 DOI: 10.1016/j.neubiorev.2018.08.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/28/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
Substance use disorders involve long-term changes in the brain that lead to compulsive drug seeking, craving, and a high probability of relapse. Recent findings have highlighted the role of epigenetic regulations in controlling chromatin access and regulation of gene expression following exposure to drugs of abuse. In the present review, we focus on data investigating genome-wide epigenetic modifications in the brain of addicted patients or in rodent models exposed to drugs of abuse, with a particular focus on DNA methylation and histone modifications associated with transcriptional studies. We highlight critical factors for epigenomic studies in addiction. We discuss new findings related to psychostimulants, alcohol, opiate, nicotine and cannabinoids. We examine the possible transmission of these changes across generations. We highlight developing tools, specifically those that allow investigation of structural reorganization of the chromatin. These have the potential to increase our understanding of alteration of chromatin architecture at gene regulatory regions. Neuroepigenetic mechanisms involved in addictive behaviors could explain persistent phenotypic effects of drugs and, in particular, vulnerability to relapse.
Collapse
Affiliation(s)
- David De Sa Nogueira
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 3 « Abuse of Drugs and Neuroadaptations », Faculté de Psychologie, 12 rue Goethe, F-67000, France
| | - Karine Merienne
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 1 « Dynamics of Memory and Epigenetics », Faculté de Psychologie, 12 rue Goethe, F-67000, France
| | - Katia Befort
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364, CNRS, Université de Strasbourg, Team 3 « Abuse of Drugs and Neuroadaptations », Faculté de Psychologie, 12 rue Goethe, F-67000, France.
| |
Collapse
|
31
|
Abbott CW, Rohac DJ, Bottom RT, Patadia S, Huffman KJ. Prenatal Ethanol Exposure and Neocortical Development: A Transgenerational Model of FASD. Cereb Cortex 2018; 28:2908-2921. [PMID: 29106518 PMCID: PMC6041800 DOI: 10.1093/cercor/bhx168] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 06/11/2017] [Indexed: 12/18/2022] Open
Abstract
Fetal Alcohol Spectrum Disorders, or FASD, represent a range of adverse developmental conditions caused by prenatal ethanol exposure (PrEE) from maternal consumption of alcohol. PrEE induces neurobiological damage in the developing brain leading to cognitive-perceptual and behavioral deficits in the offspring. Alcohol-mediated alterations to epigenetic function may underlie PrEE-related brain dysfunction, with these changes potentially carried across generations to unexposed offspring. To determine the transgenerational impact of PrEE on neocortical development, we generated a mouse model of FASD and identified numerous stable phenotypes transmitted via the male germline to the unexposed third generation. These include alterations in ectopic intraneocortical connectivity, upregulation of neocortical Rzrβ and Id2 expression accompanied by both promoter hypomethylation of these genes and decreased global DNA methylation levels. DNMT expression was also suppressed in newborn PrEE cortex, providing further insight into how ethanol perturbs DNA methylation leading to altered regulation of gene transcription. These PrEE-induced, transgenerational phenotypes may be responsible for cognitive, sensorimotor, and behavioral deficits seen in humans with FASD. Thus, understanding the possible epigenetic mechanisms by which these phenotypes are generated may reveal novel targets for therapeutic intervention of FASD and lead to advances in human health.
Collapse
Affiliation(s)
- Charles W Abbott
- Department of Psychology and Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave. Riverside, CA, USA
| | - David J Rohac
- Department of Psychology and Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave. Riverside, CA, USA
| | - Riley T Bottom
- Department of Psychology and Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave. Riverside, CA, USA
| | - Sahil Patadia
- Department of Psychology and Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave. Riverside, CA, USA
| | - Kelly J Huffman
- Department of Psychology and Interdepartmental Neuroscience Program, University of California, Riverside, 900 University Ave. Riverside, CA, USA
| |
Collapse
|
32
|
Sarman I. Review shows that early foetal alcohol exposure may cause adverse effects even when the mother consumes low levels. Acta Paediatr 2018; 107:938-941. [PMID: 29341271 DOI: 10.1111/apa.14221] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/17/2017] [Accepted: 01/11/2018] [Indexed: 12/21/2022]
Abstract
AIM Studies are increasingly focusing on the effects of prenatal alcohol exposure (PAE) on child health. The aim of this review was to provide paediatricians with new insights to help them communicate key messages about avoiding alcohol during pregnancy. METHODS Inspired by the 7th International Conference on Fetal Alcohol Spectrum Disorder, which focused on integrating research, policy and practice, we studied English language papers published since 2010 on how early PAE triggered epigenetic mechanisms that had an impact on the development of some chronic diseases. We also report the findings of a human study using three-dimensional photography of the face to explore associations between PAE and craniofacial phenotyping. RESULTS Animal models with different alcohol exposure patterns show that early PAE may lead to long-term chronic effects, due to developmental programming for some adult diseases in cardiovascular, metabolic and renal systems. The study with three-dimensional photographing is very promising in helping paediatricians to understand how even small amounts of PAE can affect craniofacial phenotyping. CONCLUSION Even low levels of PAE can cause adverse foetal effects and not just in the brain. It is not currently possible to determine a safe period and level when alcohol consumption would not affect the foetus.
Collapse
Affiliation(s)
- Ihsan Sarman
- Department of Clinical Science and Education; Karolinska Institutet; Sachs’ Children's Hospital; Stockholm Sweden
| |
Collapse
|
33
|
Marjonen H, Toivonen M, Lahti L, Kaminen-Ahola N. Early prenatal alcohol exposure alters imprinted gene expression in placenta and embryo in a mouse model. PLoS One 2018; 13:e0197461. [PMID: 29763474 PMCID: PMC5953443 DOI: 10.1371/journal.pone.0197461] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/02/2018] [Indexed: 12/22/2022] Open
Abstract
Prenatal alcohol exposure (PAE) can harm the embryonic development and cause life-long consequences in offspring’s health. To clarify the molecular mechanisms of PAE we have used a mouse model of early alcohol exposure, which is based on maternal ad libitum ingestion of 10% (v/v) ethanol for the first eight days of gestation (GD 0.5–8.5). Owing to the detected postnatal growth-restricted phenotype in the offspring of this mouse model and both prenatal and postnatal growth restriction in alcohol-exposed humans, we focused on imprinted genes Insulin-like growth factor 2 (Igf2), H19, Small Nuclear Ribonucleoprotein Polypeptide N (Snrpn) and Paternally expressed gene 3 (Peg3), which all are known to be involved in embryonic and placental growth and development. We studied the effects of alcohol on DNA methylation level at the Igf2/H19 imprinting control region (ICR), Igf2 differentially methylated region 1, Snrpn ICR and Peg3 ICR in 9.5 embryonic days old (E9.5) embryos and placentas by using MassARRAY EpiTYPER. To determine alcohol-induced alterations globally, we also examined methylation in long interspersed nuclear elements (Line-1) in E9.5 placentas. We did not observe any significant alcohol-induced changes in DNA methylation levels. We explored effects of PAE on gene expression of E9.5 embryos as well as E9.5 and E16.5 placentas by using quantitative PCR. The expression of growth promoter gene Igf2 was decreased in the alcohol-exposed E9.5 and E16.5 placentas. The expression of negative growth controller H19 was significantly increased in the alcohol-exposed E9.5 embryos compared to controls, and conversely, a trend of decreased expression in alcohol-exposed E9.5 and E16.5 placentas were observed. Furthermore, increased Snrpn expression in alcohol-exposed E9.5 embryos was also detected. Our study indicates that albeit no alterations in the DNA methylation levels of studied sequences were detected by EpiTYPER, early PAE can affect the expression of imprinted genes in both developing embryo and placenta.
Collapse
Affiliation(s)
- Heidi Marjonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Mia Toivonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Laura Lahti
- Department of Biological and Environmental Sciences, Division of Genetics, University of Helsinki, Helsinki, Finland
| | - Nina Kaminen-Ahola
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
34
|
Early first trimester maternal 'high fish and olive oil and low meat' dietary pattern is associated with accelerated human embryonic development. Eur J Clin Nutr 2018; 72:1655-1662. [PMID: 29674630 DOI: 10.1038/s41430-018-0161-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/23/2018] [Accepted: 03/04/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND/OBJECTIVES Maternal dietary patterns were associated with embryonic growth and congenital anomalies. We aim to evaluate associations between early first trimester maternal dietary patterns and embryonic morphological development among pregnancies with non-malformed outcome. SUBJECTS/METHODS A total of 228 strictly dated, singleton pregnancies without congenital malformations were enrolled in a periconceptional hospital-based cohort. Principal component analysis was performed to extract early first trimester maternal dietary patterns from food frequency questionnaires. Serial transvaginal three-dimensional ultrasound (3D US) scans were performed between 6+0 and 10+2 gestational weeks and internal and external morphological criteria were used to define Carnegie stages in a virtual reality system. Associations between dietary patterns and Carnegie stages were investigated using linear mixed models. RESULTS A total of 726 3D US scans were included (median: three scans per pregnancy). The 'high fish and olive oil and low meat' dietary pattern was associated with accelerated embryonic development in the study population (β = 0.12 (95%CI: 0.00; 0.24), p < 0.05). Weak adherence to this dietary pattern delayed embryonic development by 2.1 days (95%CI: 1.6; 2.6) compared to strong adherence. The 'high vegetables, fruit and grain' dietary pattern accelerated embryonic development in the strictly dated spontaneous pregnancy subgroup without adjustment for energy intake. CONCLUSIONS Early first trimester maternal dietary patterns impacts human embryonic morphological development among pregnancies without congenital malformations. The clinical meaning of delayed embryonic development needs further investigation.
Collapse
|
35
|
Legault LM, Bertrand-Lehouillier V, McGraw S. Pre-implantation alcohol exposure and developmental programming of FASD: an epigenetic perspective. Biochem Cell Biol 2018; 96:117-130. [DOI: 10.1139/bcb-2017-0141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure to alcohol during in-utero development can permanently change the developmental programming of physiological responses, thereby increasing the risk of neurological illnesses during childhood and later adverse health outcomes associated with fetal alcohol spectrum disorder (FASD). There is an increasing body of evidence indicating that exposure to alcohol during gestation triggers lasting epigenetic alterations in offspring, long after the initial insult; together, these studies support the role of epigenetics in FASD etiology. However, we still have little information about how ethanol interferes with the fundamental epigenetic reprogramming wave (e.g., erasure and re-establishment of DNA methylation marks) that characterizes pre-implantation embryo development. This review examines key epigenetic processes that occur during pre-implantation development and especially focus on the current knowledge regarding how prenatal exposure to alcohol during this period could affect the developmental programming of the early stage pre-implantation embryo. We will also outline the current limitations of studies examining the in-vivo and in-vitro effects of alcohol exposure on embryos and underline the next critical steps to be taken if we want to better understand the implicated mechanisms to strengthen the translational potential for epigenetic markers for non-invasive early detection, and the treatment of newborns that have higher risk of developing FASD.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Virginie Bertrand-Lehouillier
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
| | - Serge McGraw
- Department of Biochemistry and Molecular Medicine, Université de Montreal, Research Center of the CHU Sainte-Justine, 3175 Côte Sainte-Catherine, Montreal, QC H3T 1C5, Canada
- Obstetrics and Gynecology, Université de Montreal, Research Center of the CHU Sainte-Justine, Montreal, Canada
| |
Collapse
|
36
|
Li J, Wang Z, Qiu W, Yang JJ, Wang Q, Chen S, Pan H. The effect of interaction between EtOH dosage and exposure time on gene expression in DPSC. Genomics 2018; 111:500-507. [PMID: 29596963 DOI: 10.1016/j.ygeno.2018.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/11/2018] [Accepted: 03/07/2018] [Indexed: 12/17/2022]
Abstract
Alcohol (EtOH) dosage and exposure time can affect gene expression. However, whether there exists synergistic effect is unknown. Here, we analyzed the hDPSC gene microarray dataset GSE57255 downloaded from Gene Expression Omnibus and found that the interaction between EtOH dosage and exposure time on gene expression are statistically significant for two probes: 201917_s_at near gene SLC25A36 and 217649_at near gene ZFAND5. GeneMania showed that SLC25A36 and ZFAND5 were related to 20 genes, three of which had alcohol-related functions. WebGestalt revealed that the 22 genes were enriched in 10 KEGG pathways, four of which are related to alcoholic diseases. We explored the possible nonlinear interaction effect and got 172 gene probes with significant p-values. However, no significantly enriched pathways based on the 172 probes were detected. Our analyses indicated a possible molecular mechanism that could help explain why alcohol consumption has both deleterious and beneficial effects on human health.
Collapse
Affiliation(s)
- Jianqiang Li
- School of Software Engineering, Beijing University of Technology, Beijing, China
| | - Zhirui Wang
- School of Software Engineering, Beijing University of Technology, Beijing, China
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Ji-Jiang Yang
- Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China.
| | - Qing Wang
- Tsinghua National Laboratory for Information Science and Technology, Tsinghua University, Beijing, China
| | - Shi Chen
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| | - Hui Pan
- Department of Endocrinology, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
37
|
Knopik VS, Marceau K, Bidwell LC, Rolan E. Prenatal substance exposure and offspring development: Does DNA methylation play a role? Neurotoxicol Teratol 2018; 71:50-63. [PMID: 29408446 DOI: 10.1016/j.ntt.2018.01.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 01/12/2018] [Accepted: 01/24/2018] [Indexed: 12/17/2022]
Abstract
The period of in utero development is one of the most critical windows during which adverse conditions and exposures may influence the growth and development of the fetus as well as its future postnatal health and behavior. Maternal substance use during pregnancy remains a relatively common but nonetheless hazardous in utero exposure. For example, previous epidemiological studies have associated prenatal substance exposure with reduced birth weight, poor developmental and psychological outcomes, and increased risk for diseases and behavioral disorders (e.g., externalizing behaviors like ADHD, conduct disorder, and substance use) later in life. Researchers are now learning that many of the mechanisms whereby adverse in utero exposures may affect key pathways crucial for proper fetal growth and development are epigenetic in nature, with the majority of work in humans considering DNA methylation specifically. This review will explore the research to date on epigenetic alterations tied to maternal substance use during pregnancy and will also discuss the possible role of DNA methylation in the robust relationship between maternal substance use and later behavioral and developmental sequelae in offspring.
Collapse
Affiliation(s)
- Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA.
| | - Kristine Marceau
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - L Cinnamon Bidwell
- Institute of Cognitive Science, University of Colorado, Boulder, CO, USA
| | - Emily Rolan
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
38
|
Crime investigation through DNA methylation analysis: methods and applications in forensics. EGYPTIAN JOURNAL OF FORENSIC SCIENCES 2018. [DOI: 10.1186/s41935-018-0042-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
39
|
Règue-Guyon M, Lanfumey L, Mongeau R. Neuroepigenetics of Neurotrophin Signaling: Neurobiology of Anxiety and Affective Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:159-193. [DOI: 10.1016/bs.pmbts.2018.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
40
|
Marjonen H, Kahila H, Kaminen-Ahola N. rs10732516 polymorphism at the IGF2/H19 locus associates with a genotype-specific trend in placental DNA methylation and head circumference of prenatally alcohol-exposed newborns. Hum Reprod Open 2017; 2017:hox014. [PMID: 30895230 PMCID: PMC6276671 DOI: 10.1093/hropen/hox014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 08/31/2017] [Accepted: 09/11/2017] [Indexed: 12/20/2022] Open
Abstract
STUDY QUESTION Does prenatal alcohol exposure (PAE) affect regulation of the insulin-like growth factor 2 (IGF2)/H19 locus in placenta and the growth-restricted phenotype of newborns? SUMMARY ANSWER PAE results in genotype-specific trends in both placental DNA methylation at the IGF2/H19 locus and head circumference (HC) of newborns. WHAT IS KNOWN ALREADY PAE can disturb development of the nervous system and lead to restricted growth of the head, even microcephaly. To clarify the etiology of alcohol-induced growth restriction, we focused on the imprinted IGF2/H19 locus known to be important for normal placental and embryonic growth. The expression of IGF2 and a negative growth controller H19 are regulated by the H19 imprinting control region (H19 ICR) with seven-binding sites for the methylation-sensitive zinc-finger regulatory protein CTCF. A single nucleotide polymorphism rs10732516 G/A in the sixth-binding site has shown to associate with genotype-specific DNA methylation profiles at the H19 ICR. STUDY DESIGN SIZE DURATION By grouping 39 alcohol-exposed and 100 control samples according to rs10732516 polymorphism we explored alcohol-induced, genotype-specific changes in DNA methylation at the H19 ICR and the promoter region of H19 (H19 differentially methylated region). Also, IGF2 and H19 mRNA expression level in placenta as well as the phenotypes of newborns were examined. PARTICIPANTS/MATERIALS SETTING METHODS We explored alcohol-induced, genotype-specific changes in placental DNA methylation by MassARRAY EpiTYPER and allele-specific changes by bisulphite sequencing. IGF2 and H19 expression in placenta were analyzed by quantitative PCR and the HC, birthweight and birth length of newborns were examined using national growth charts. MAIN RESULTS AND THE ROLE OF CHANCE We observed a consistent trend in genotype-specific changes in DNA methylation at H19 ICR in alcohol-exposed placentas. DNA methylation level in the normally highly methylated paternal allele of rs10732516 paternal A/maternal G genotype was decreased in alcohol-exposed placentas. In addition to decreased IGF2 mRNA expression in alcohol-exposed placentas of this specific genotype (P = 0.03), we observed significantly increased expression of H19 in relation to IGF2 when comparing all alcohol-exposed placentas to unexposed controls (P = 0.006). Furthermore, phenotypic examination showed a significant genotype-specific association between the alcohol exposure and HC of newborns (P = 0.001). LIMITATIONS REASONS FOR CAUTION Owing to the exceptional character of the alcohol-exposed human samples collected in this study, the sample size is restricted. An increased sample size and functional studies are needed to confirm these data and clarify the biological significance or causality of the observed associations. WIDER IMPLICATIONS OF THE FINDINGS Our results suggest that the rs10732516 polymorphism associates with the alcohol-induced alterations in DNA methylation profiles and head growth in a parent-of-origin manner. We also introduce a novel genotype-specific approach for exploring environmental effects on the IGF2/H19 locus and ultimately on embryonic growth. STUDY FUNDING/COMPETING INTERESTS This work was supported by the Academy of Finland (258304), The Finnish Foundation for Alcohol Studies, Finnish Cultural Foundation, Juho Vainio Foundation, Yrjö Jahnsson Foundation and Arvo and Lea Ylppö Foundation. No competing interests are declared.
Collapse
Affiliation(s)
- Heidi Marjonen
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Hanna Kahila
- Department of Obstetrics and Gynecology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nina Kaminen-Ahola
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
41
|
Joanna L, Sylwia T, Magdalena G, Piotr L, Ewa K, Jolanta OG, Malgorzata D, Malgorzata L, Kotlinska JH. Mephedrone exposure in adolescent rats alters the rewarding effect of morphine in adults. Eur J Pharmacol 2017; 810:63-69. [DOI: 10.1016/j.ejphar.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/25/2017] [Accepted: 06/07/2017] [Indexed: 12/22/2022]
|
42
|
Rajput P, Jangra A, Kwatra M, Mishra A, Lahkar M. Alcohol aggravates stress-induced cognitive deficits and hippocampal neurotoxicity: Protective effect of melatonin. Biomed Pharmacother 2017; 91:457-466. [DOI: 10.1016/j.biopha.2017.04.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/16/2017] [Accepted: 04/17/2017] [Indexed: 12/16/2022] Open
|
43
|
Mandal C, Halder D, Jung KH, Chai YG. Gestational Alcohol Exposure Altered DNA Methylation Status in the Developing Fetus. Int J Mol Sci 2017; 18:ijms18071386. [PMID: 28657590 PMCID: PMC5535879 DOI: 10.3390/ijms18071386] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/27/2022] Open
Abstract
Ethanol is well known as a teratogenic factor that is capable of inducing a wide range of developmental abnormalities if the developing fetus is exposed to it. Duration and dose are the critical parameters of exposure that affect teratogenic variation to the developing fetus. It is suggested that ethanol interferes with epigenetic processes especially DNA methylation. We aimed to organize all of the available information on the alteration of DNA methylation by ethanol in utero. Thus, we have summarized all published information regarding alcohol-mediated alterations in DNA methylation during gestation. We tried to arrange information in a way that anyone can easily find the alcohol exposure time, doses, sampling time, and major changes in genomic level. Manuscript texts will also represent the correlation between ethanol metabolites and subsequent changes in methylome patterns. We hope that this review will help future researchers to further examine the issues associated with ethanol exposure.
Collapse
Affiliation(s)
- Chanchal Mandal
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
| | - Debasish Halder
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
| | - Kyoung Hwa Jung
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
- Institute of Natural Science and Technology, Hanyang University, 15588 Ansan, Korea.
| | - Young Gyu Chai
- Department of Molecular and Life Science, Hanyang University, 15588 Ansan, Korea.
- Department of Bionanotechnology, Hanyang University, 04763 Seoul, Korea.
| |
Collapse
|
44
|
Nguyen VT, Chong S, Tieng QM, Mardon K, Galloway GJ, Kurniawan ND. Radiological studies of fetal alcohol spectrum disorders in humans and animal models: An updated comprehensive review. Magn Reson Imaging 2017. [PMID: 28645698 DOI: 10.1016/j.mri.2017.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fetal Alcohol Spectrum Disorders encompass a wide range of birth defects in children born to mothers who consumed alcohol during pregnancy. Typical mental impairments in FASD include difficulties in life adaptation and learning and memory, deficits in attention, visuospatial skills, language and speech disabilities, mood disorders and motor disabilities. Multimodal imaging methods have enabled in vivo studies of the teratogenic effects of alcohol on the central nervous system, giving more insight into the FASD phenotype. This paper offers an up-to-date comprehensive review of radiological findings in the central nervous system in studies of prenatal alcohol exposure in both humans and translational animal models, including Magnetic Resonance Imaging, Computed Tomography, Positron Emission Tomography, Single Photon Emission Tomography and Ultrasonography.
Collapse
Affiliation(s)
- Van T Nguyen
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; Hanoi University of Science and Technology, Hanoi, Vietnam.
| | - Suyinn Chong
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - Quang M Tieng
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Karine Mardon
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Graham J Galloway
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia; Translational Research Institute, Brisbane, Queensland, Australia
| | - Nyoman D Kurniawan
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.
| |
Collapse
|
45
|
Gavin DP, Grayson DR, Varghese SP, Guizzetti M. Chromatin Switches during Neural Cell Differentiation and Their Dysregulation by Prenatal Alcohol Exposure. Genes (Basel) 2017; 8:E137. [PMID: 28492482 PMCID: PMC5448011 DOI: 10.3390/genes8050137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/01/2017] [Accepted: 05/06/2017] [Indexed: 02/07/2023] Open
Abstract
Prenatal alcohol exposure causes persistent neuropsychiatric deficits included under the term fetal alcohol spectrum disorders (FASD). Cellular identity emerges from a cascade of intrinsic and extrinsic (involving cell-cell interactions and signaling) processes that are partially initiated and maintained through changes in chromatin structure. Prenatal alcohol exposure influences neuronal and astrocyte development, permanently altering brain connectivity. Prenatal alcohol exposure also alters chromatin structure through histone and DNA modifications. However, the data linking alcohol-induced differentiation changes with developmental alterations in chromatin structure remain to be elucidated. In the first part of this review, we discuss the sequence of chromatin structural changes involved in neural cell differentiation during normal development. We then discuss the effects of prenatal alcohol on developmental histone modifications and DNA methylation in the context of neurogenesis and astrogliogenesis. We attempt to synthesize the developmental literature with the FASD literature, proposing that alcohol-induced changes to chromatin structure account for altered neurogenesis and astrogliogenesis as well as altered neuron and astrocyte differentiation. Together these changes may contribute to the cognitive and behavioral abnormalities in FASD. Future studies using standardized alcohol exposure paradigms at specific developmental stages will advance the understanding of how chromatin structural changes impact neural cell fate and maturation in FASD.
Collapse
Affiliation(s)
- David P Gavin
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Dennis R Grayson
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL 60612, USA.
| | - Sajoy P Varghese
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL 60612, USA.
| | - Marina Guizzetti
- Department of Behavioral Neuroscience, Oregon Health & Science University, 3181 SW Sam Jackson Park Road L470, Portland, OR 97239, USA.
- Veterans Affairs Portland Health Care System, 3710 Southwest US Veterans Hospital Road, Portland, OR 97239, USA.
| |
Collapse
|
46
|
Chastain LG, Sarkar DK. Alcohol effects on the epigenome in the germline: Role in the inheritance of alcohol-related pathology. Alcohol 2017; 60:53-66. [PMID: 28431793 DOI: 10.1016/j.alcohol.2016.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2016] [Revised: 12/04/2016] [Accepted: 12/30/2016] [Indexed: 12/18/2022]
Abstract
Excessive alcohol exposure has severe health consequences, and clinical and animal studies have demonstrated that disruptions in the epigenome of somatic cells, such as those in brain, are an important factor in the development of alcohol-related pathologies, such as alcohol-use disorders (AUDs) and fetal alcohol spectrum disorders (FASDs). It is also well known that alcohol-related health problems are passed down across generations in human populations, but the complete mechanisms for this phenomenon are currently unknown. Recent studies in animal models have suggested that epigenetic factors are also responsible for the transmission of alcohol-related pathologies across generations. Alcohol exposure has been shown to induce changes in the epigenome of sperm of exposed male animals, and these epimutations are inherited in the offspring. This paper reviews evidence for multigenerational and transgenerational epigenetic inheritance of alcohol-related pathology through the germline. We also review the literature on the epigenetic effects of alcohol exposure on somatic cells in brain, and its contribution to AUDs and FASDs. We note gaps in knowledge in this field, such as the lack of clinical studies in human populations and the lack of data on epigenetic inheritance via the female germline, and we suggest future research directions.
Collapse
Affiliation(s)
- Lucy G Chastain
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Lane, New Brunswick, NJ 08901, USA
| | - Dipak K Sarkar
- The Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, 67 Poultry Lane, New Brunswick, NJ 08901, USA.
| |
Collapse
|
47
|
Laufer BI, Chater-Diehl EJ, Kapalanga J, Singh SM. Long-term alterations to DNA methylation as a biomarker of prenatal alcohol exposure: From mouse models to human children with fetal alcohol spectrum disorders. Alcohol 2017; 60:67-75. [PMID: 28187949 DOI: 10.1016/j.alcohol.2016.11.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 11/19/2016] [Accepted: 11/22/2016] [Indexed: 12/19/2022]
Abstract
Rodent models of Fetal Alcohol Spectrum Disorders (FASD) have revealed that prenatal alcohol exposure (PAE) results in differential DNA cytosine methylation in the developing brain. The resulting genome-wide methylation changes are enriched in genes with neurodevelopmental functions. The profile of differential methylation is dynamic and present in some form for life. The methylation changes are transmitted across subsequent mitotic divisions, where they are maintained and further modified over time. More recent follow up has identified a profile of the differential methylation in the buccal swabs of young children born with FASD. While distinct from the profile observed in brain tissue from rodent models, there are similarities. These include changes in genes belonging to a number of neurodevelopmental and behavioral pathways. Specifically, there is increased methylation at the clustered protocadherin genes and deregulation of genomically imprinted genes, even though no single gene is affected in all patients studied to date. These novel results suggest further development of a methylation based strategy could enable early and accurate diagnostics and therapeutics, which have remained a challenge in FASD research. There are two aspects of this challenge that must be addressed in the immediate future: First, the long-term differential methylomics observed in rodent models must be functionally confirmed. Second, the similarities in differential methylation must be further established in humans at a methylomic level and overcome a number of technical limitations. While a cure for FASD is challenging, there is an opportunity for the development of early diagnostics and attenuations towards a higher quality of life.
Collapse
|
48
|
Kochmanski J, Montrose L, Goodrich JM, Dolinoy DC. Environmental Deflection: The Impact of Toxicant Exposures on the Aging Epigenome. Toxicol Sci 2017; 156:325-335. [PMID: 28087834 PMCID: PMC6256948 DOI: 10.1093/toxsci/kfx005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Epigenetic drift and age-related methylation have both been used in the literature to describe changes in DNA methylation that occurs with aging. However, ambiguity remains regarding the exact definition of both of these terms, and neither of these fields of study explicitly considers the impact of environmental factors on the aging epigenome. Recent twin studies have demonstrated longitudinal, pair-specific discordance in DNA methylation patterns, suggesting an effect of the environment on age-related methylation and/or epigenetic drift. Supporting this idea, other new reports have shown clear environment- and toxicant-mediated shifts away from the baseline rates of age-related methylation and epigenetic drift within an organism, a process we now term "environmental deflection." By defining and delineating environmental deflection, this contemporary review aims to highlight the effects of specific toxicological factors on the rate of DNA methylation changes that occur over the life course. In an effort to inform future epigenetics-based toxicology studies, a field of research now classified as toxicoepigenetics, we provide clear definitions and examples of "epigenetic drift" and "age-related methylation," summarize the recent evidence for environmental deflection of the aging epigenome, and discuss the potential functional effects of environmental deflection.
Collapse
Affiliation(s)
| | | | | | - Dana C. Dolinoy
- Environmental Health Sciences
- Nutritional Sciences, School of Public Health, University of Michigan, Washington Heights, Ann Arbor, Michigan 48109
| |
Collapse
|
49
|
Lussier AA, Weinberg J, Kobor MS. Epigenetics studies of fetal alcohol spectrum disorder: where are we now? Epigenomics 2017; 9:291-311. [PMID: 28234026 PMCID: PMC5549650 DOI: 10.2217/epi-2016-0163] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Adverse in utero events can alter the development and function of numerous physiological systems, giving rise to lasting neurodevelopmental deficits. In particular, data have shown that prenatal alcohol exposure can reprogram neurobiological systems, altering developmental trajectories and resulting in increased vulnerability to adverse neurobiological, behavioral and health outcomes. Increasing evidence suggests that epigenetic mechanisms are potential mediators for the reprogramming of neurobiological systems, as they may provide a link between the genome, environmental conditions and neurodevelopmental outcomes. This review outlines the current state of epigenetic research in fetal alcohol spectrum disorder, highlighting the role of epigenetic mechanisms in the reprogramming of neurobiological systems by alcohol and as potential diagnostic tools for fetal alcohol spectrum disorder. We also present an assessment of the current limitations in studies of prenatal alcohol exposure, and highlight the future steps needed in the field.
Collapse
Affiliation(s)
- Alexandre A Lussier
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joanne Weinberg
- Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael S Kobor
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, British Columbia Children's Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada.,Human Early Learning Partnership, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
Li ZL, Li MQ, Li SY, Fu YS, Yang ZM. Alcohol Dehydrogenases and Acetaldehyde Dehydrogenases are Beneficial for Decidual Stromal Cells to Resist the Damage from Alcohol. Alcohol Alcohol 2017; 52:180-189. [PMID: 28182209 DOI: 10.1093/alcalc/agw073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/06/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022] Open
Abstract
Aims The aim of this study was to examine the effect of alcohol on the decidualization of human endometrial stromal cells during early pregnancy. Methods During in vitro decidualization, human endometrial stromal cells were treated with alcohol, 4-methylpyrazole hydrochloride (FPZ), the inhibitor of alcohol dehydrogenases (ADHs), and tetraethylthiuram disulfide (DSF), the inhibitor of acetaldehyde dehydrogenases (ALDHs), respectively. Cell viability and decidualization were examined. Apoptosis and proliferation were also evaluated. Results The findings showed that ADHs and ALDHs were up-regulated during decidualization. After alcohol treatment, the cell viability of decidual stromal cells was significantly higher than control, which was abrogated by FPZ or DSF. When cells were treated with alcohol, proliferation-related signal pathways were up-regulated in decidualized cells. Additionally, FOXO1 transcriptionally up-regulates ADH1B. Conclusion Our study provided an evidence that highly expressed ADHs and ALDHs endow decidual stromal cells an ability to alleviate the harm from alcohol.
Collapse
Affiliation(s)
- Zi-Long Li
- Department of Biology, Shantou University, 243 Daxue Rd., Shantou 515063, China.,College of Veterinary Medicine, South China Agricultural University, 483 Wushan Rd., Guangzhou 510642, China
| | - Meng-Qi Li
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Rd., Guangzhou 510642, China
| | - Shu-Yun Li
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Rd., Guangzhou 510642, China
| | - Yong-Sheng Fu
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Rd., Guangzhou 510642, China
| | - Zeng-Ming Yang
- College of Veterinary Medicine, South China Agricultural University, 483 Wushan Rd., Guangzhou 510642, China
| |
Collapse
|