1
|
Moralev A, Zenkova MA, Markov AV. Complex Inhibitory Activity of Pentacyclic Triterpenoids against Cutaneous Melanoma In Vitro and In Vivo: A Literature Review and Reconstruction of Their Melanoma-Related Protein Interactome. ACS Pharmacol Transl Sci 2024; 7:3358-3384. [PMID: 39539268 PMCID: PMC11555519 DOI: 10.1021/acsptsci.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Pentacyclic triterpenoids (PTs) are a class of plant metabolites with a wide range of pharmacological activities, including strong antitumor potential against skin malignancies. By acting on multiple signaling pathways that control key cellular processes, PTs are able to exert complex effects on melanoma progression in vitro and in vivo. In this review, we have analyzed the works published in the past decade and devoted to the effects of PTs, both natural and semisynthetic, on cutaneous melanoma pathogenesis, including not only their direct action on melanoma cells but also their influence on the tumor microenvironment and abberant melanogenesis, often associated with melanoma aggressiveness. Special attention will be paid to the molecular basis of the pronounced antimelanoma potency of PTs, including a detailed consideration of the pathways sensitive to PTs in melanoma cells, as well as the reconstruction of the melanoma-related protein interactome of PTs using a network pharmacology approach based on previously published experimentally verified protein targets of PTs. The information collected on the primary targets of PTs was compiled in the Protein Interactome of PTs (PIPTs) database, freely available at http://www.pipts-db.ru/, which can be used to further optimize the mechanistic studies of PTs in the context of melanoma and other malignancies. By summarizing recent research findings, this review provides valuable information to scientists working in the fields related to the evaluation of melanoma pathogenesis and development of PTs-based drug candidates.
Collapse
Affiliation(s)
- Arseny
D. Moralev
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| |
Collapse
|
2
|
Apaza Ticona L, Sánchez Sánchez-Corral J, Zou Shi Y, Montoto Lozano N, Slowing Barillas K. Pentacyclic triterpenes as bioactive compounds isolated from Mauritia flexuosa L. f. acting against the Alzheimer's disease. Nat Prod Res 2024:1-10. [PMID: 39377375 DOI: 10.1080/14786419.2024.2412839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 10/09/2024]
Abstract
Alzheimer's disease is a significant concern due to its high prevalence and the limitations of current treatments. In our research, we investigated Mauritia flexuosa, a medicinal plant traditionally used for headaches, to identify active compounds with potential anti-Alzheimer's effects. Three pentacyclic triterpenes were isolated through column chromatography and characterised from the dichloromethane/methanol extract from Mauritia flexuosa (DCMEMf), with (3β)-3-hydroxy-11-oxours-12-en-28-oic acid (3) showing the highest in vitro activity in the HMC3 and SVG p12 cell lines. Compound 3 inhibited the pharmacological targets NF-κB, PGE2, IDO1, and EGFR with IC50 values of 9.83, 3.86, 1.63 μM, and 49.57 nM, respectively, attributed to a hydroxyl group at the C-3 position of its structure. These findings suggest the potential of these compounds in treating neurological diseases, including headaches, and offer promising prospects for the development of new therapies against Alzheimer's.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, Madrid, Spain
| | | | - Yamin Zou Shi
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Natalia Montoto Lozano
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| | - Karla Slowing Barillas
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
3
|
Apaza Ticona L, Sánchez Sánchez-Corral J, Montoto Lozano N, Prieto Ramos P, Sánchez ÁR. Study of Pentacyclic Triterpenes from Lyophilised Aguaje: Anti-Inflammatory and Antioxidant Properties. Int J Mol Sci 2024; 25:9615. [PMID: 39273562 PMCID: PMC11395096 DOI: 10.3390/ijms25179615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/01/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Mauritia flexuosa (M. flexuosa), commonly known as Aguaje or Moriche palm, is traditionally recognised in South America for its medicinal properties, particularly for its anti-inflammatory and antioxidant effects. However, the bioactive compounds responsible for these effects have not been thoroughly investigated. This study aims to isolate and characterise pentacyclic triterpenoid compounds from M. flexuosa and to evaluate their therapeutic potential. Using various chromatographic and spectroscopic techniques including Nuclear Magnetic Resonance (NMR) and Mass Spectrometry (MS), three pentacyclic triterpenoid compounds were successfully isolated. Among them, compound 1 (3,11-dioxours-12-en-28-oic acid) exhibited notable bioactivity, significantly inhibiting the activation of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB) (IC50 = 7.39-8.11 μM) and of Nitric Oxide (NO) (IC50 = 4.75-6.59 μM), both of which are key processes in inflammation. Additionally, compound 1 demonstrated potent antioxidant properties by activating the antioxidant enzyme Superoxide Dismutase (SOD) (EC50 = 1.87 μM) and the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) (EC50 = 243-547.59 nM), thus showing its potential in combating oxidative stress. This study is the first to isolate and characterise the three compounds from M. flexuosa, suggesting that compound 1 could be a promising candidate for the development of safer and more effective therapies for inflammatory and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Javier Sánchez Sánchez-Corral
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Natalia Montoto Lozano
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Pablo Prieto Ramos
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Ángel Rumbero Sánchez
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
4
|
Lee HA, Lee JK, Han JS. Betulinic acid improves TNF- α-induced insulin resistance by inhibiting negative regulator of insulin signalling and inflammation-activated protein kinase in 3T3-L1 adipocytes. Arch Physiol Biochem 2024; 130:452-459. [PMID: 36070616 DOI: 10.1080/13813455.2022.2120503] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/17/2022] [Accepted: 08/29/2022] [Indexed: 11/02/2022]
Abstract
CONTEXT Obesity is related to insulin resistance, and adipose tissue-secreted TNF-α may play a role in inducing obesity. TNF-α activates inflammatory protein kinase and impairs insulin signalling. OBJECTIVES We investigated the effect of betulinic acid on insulin resistance caused by TNF-α treatment in 3T3-L1 adipocytes. MATERIAL AND METHODS 3T3-L1 was exposed to TNF-α in the presence and absence of betulinic acid. Various parameters such as glucose uptake assay, cell viability, expression of proteins involved in insulin resistance were studied. RESULTS Betulinic acid increased glucose uptake in TNF-α pre-treated cells and inhibited the activation of PTP1B and JNK and reduced IκBα degradation. Tyrosine phosphorylation was increased, and serine phosphorylation was decreased in IRS-1. DISCUSSION Betulinic acid restored TNF-α impaired insulin signalling and increased PI3K activation and phosphorylation of Akt and increased plasma membrane expression of GLUT 4, which stimulated glucose uptake concentration-dependently. CONCLUSION These results suggest that betulinic acid is effective at improving TNF-α-induced insulin resistance in adipocytes via inhibiting the activation of negative regulator of insulin signalling and inflammation-activated protein kinase and may potentially improve insulin resistance.
Collapse
Affiliation(s)
- Hyun-Ah Lee
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Jung-Kyung Lee
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| | - Ji-Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
5
|
Yamamura A, Fujiwara M, Kawade A, Amano T, Hossain A, Nayeem MJ, Kondo R, Suzuki Y, Inoue Y, Hayashi H, Suzuki S, Sato M, Yamamura H. Corosolic acid attenuates platelet-derived growth factor signaling in macrophages and smooth muscle cells of pulmonary arterial hypertension. Eur J Pharmacol 2024; 973:176564. [PMID: 38614383 DOI: 10.1016/j.ejphar.2024.176564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/15/2024]
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and life-threatening disease that is characterized by vascular remodeling of the pulmonary artery. Pulmonary vascular remodeling is primarily caused by the excessive proliferation and migration of pulmonary arterial smooth muscle cells (PASMCs), which are facilitated by perivascular inflammatory cells including macrophages. Corosolic acid (CRA) is a natural pentacyclic triterpenoid that exerts anti-inflammatory effects. In the present study, the effects of CRA on the viability of macrophages were examined using monocrotaline (MCT)-induced PAH rats and human monocyte-derived macrophages. Although we previously reported that CRA inhibited signal transducer and activator of transcription 3 (STAT3) signaling and ameliorated pulmonary vascular remodeling in PAH, the inhibitory mechanism remains unclear. Therefore, the underlying mechanisms were investigated using PASMCs from idiopathic PAH (IPAH) patients. In MCT-PAH rats, CRA inhibited the accumulation of macrophages around remodeled pulmonary arteries. CRA reduced the viability of human monocyte-derived macrophages. In IPAH-PASMCs, CRA attenuated cell proliferation and migration facilitated by platelet-derived growth factor (PDGF)-BB released from macrophages and PASMCs. CRA also downregulated the expression of PDGF receptor β and its signaling pathways, STAT3 and nuclear factor-κB (NF-κB). In addition, CRA attenuated the phosphorylation of PDGF receptor β and STAT3 following the PDGF-BB simulation. The expression and phosphorylation levels of PDGF receptor β after the PDGF-BB stimulation were reduced by the small interfering RNA knockdown of NF-κB, but not STAT3, in IPAH-PASMCs. In conclusion, CRA attenuated the PDGF-PDGF receptor β-STAT3 and PDGF-PDGF receptor β-NF-κB signaling axis in macrophages and PASMCs, and thus, ameliorated pulmonary vascular remodeling in PAH.
Collapse
Affiliation(s)
- Aya Yamamura
- Department of Physiology, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Moe Fujiwara
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Akiko Kawade
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Taiki Amano
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Alamgir Hossain
- Department of Physiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Md Junayed Nayeem
- Department of Physiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Rubii Kondo
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yoshiaki Suzuki
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Yasumichi Inoue
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Hidetoshi Hayashi
- Department of Cell Signaling, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan
| | - Susumu Suzuki
- Research Creation Support Center, Aichi Medical University, Nagakute, Aichi, Japan
| | - Motohiko Sato
- Department of Physiology, Aichi Medical University, Nagakute, Aichi, Japan
| | - Hisao Yamamura
- Department of Molecular and Cellular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Aichi, Japan.
| |
Collapse
|
6
|
Priyandoko D, Widowati W, Lenny L, Novianti S, Revika R, Kusuma HSW, Sholihah IA. Green Tea Extract Reduced Lipopolysaccharide-Induced Inflammation in L2 Cells as Acute Respiratory Distress Syndrome Model Through Genes and Cytokine Pro-Inflammatory. Avicenna J Med Biotechnol 2024; 16:57-65. [PMID: 38605739 PMCID: PMC11005400 DOI: 10.18502/ajmb.v16i1.14172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/23/2023] [Indexed: 04/13/2024] Open
Abstract
Background Acute Respiratory Distress Syndrome (ARDS) is a severe lung inflammatory condition that has the capacity to impair gas exchange and lead to hypoxemia. This condition is found to have been one of the most prevalent in patients of COVID-19 with a more serious condition. Green tea (Camellia sinensis L.) contains polyphenols that possess many health benefits. The purpose of this study was to assess the anti-inflammatory activities of green tea extract in Lipopolysaccharide (LPS)-induced lung cells as ARDS cells model. Methods In this study, rat lung cells (L2) were induced by LPS to mimic the inflammation observed in ARDS and later treated with green tea extract. Pro-inflammatory cytokines such as Interleukin (IL)-12, C-Reactive Protein (CRP) as well as Tumor Necrosis Factor-α (TNF-α) were investigated using the ELISA method. Gene expression of NOD-Like Receptor Protein 3 (NLRP-3), Receptor for Advanced Glycation End-product (RAGE), Toll-like Receptor-4 (TLR-4), and Nuclear Factor-kappa B (NF-κB) were evaluated by qRTPCR. Apoptotic cells were measured using flow cytometry. Results The results showed that green tea extract treatment can reduce inflammation by suppressing gene expressions of NF-κB, NLRP-3, TLR-4, and RAGE, as well as pro-inflammatory cytokines such as IL-12, TNF-α, and CRP, an acute phase protein. Apoptosis levels of inflamed cells also found to be lowered when green tea extract was administered; thus, also increasing live cells compared to non-treated cells. Conclusion These findings could lead to the future development of supplements from green tea to help alleviate ARDS symptoms, especially during critical moments such as the current pandemic.
Collapse
Affiliation(s)
- Didik Priyandoko
- Biology Study Program, Faculty of Mathematics and Natural Sciences, Indonesia University of Education, Bandung 40154, Indonesia
| | - Wahyu Widowati
- Faculty of Medicine, Maranatha Christian University, Bandung 40164, Indonesia
| | - Lenny Lenny
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Sintya Novianti
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | - Revika Revika
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, BSD Campus, Tangerang 15345, Indonesia
| | | | - Ika Adhani Sholihah
- Biomolecular and Biomedical Research Center, Aretha Medika Utama, Bandung 40163, Indonesia
- School of Life Sciences and Technology, Bandung Institute of Technology, Bandung 40132, Indonesia
| |
Collapse
|
7
|
Musfiroh I, Kartasasmita RE, Ibrahim S, Muchtaridi M, Hidayat S, Ikram NKK. Stability Analysis of the Asiatic Acid-COX-2 Complex Using 100 ns Molecular Dynamic Simulations and Its Selectivity against COX-2 as a Potential Anti-Inflammatory Candidate. Molecules 2023; 28:molecules28093762. [PMID: 37175172 PMCID: PMC10180211 DOI: 10.3390/molecules28093762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Asiatic acid, a triterpenoid compound, has been shown to have anti-inflammatory activity through the inhibition of the formation of cyclooxygenase-2 (COX-2) in vitro and in vivo. This study was conducted to determine the binding stability and the inhibitory potential of asiatic acid as an anti-inflammatory candidate. The study involved in vitro testing utilizing a colorimetric kit as well as in silico testing for the pharmacophore modeling and molecular dynamic (MD) simulation of asiatic acid against COX-2 (PDB ID: 3NT1). The MD simulations showed a stable binding of asiatic acid to COX-2 and an RMSD range of 1-1.5 Å with fluctuations at the residues of Phe41, Leu42, Ile45, Arg44, Asp367, Val550, Glu366, His246, and Gly227. The total binding energy of the asiatic acid-COX-2 complex is -7.371 kcal/mol. The anti-inflammatory activity of the asiatic acid inhibition of COX-2 was detected at IC50 values of 120.17 µM. Based on pharmacophore modeling, we discovered that carboxylate and hydroxyl are the two main functional groups that act as hydrogen bond donors and acceptors interacting with the COX-2 enzyme. From the results, it is evident that asiatic acid is a potential anti-inflammatory candidate with high inhibitory activity in relation to the COX-2 enzyme.
Collapse
Affiliation(s)
- Ida Musfiroh
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Rahmana E Kartasasmita
- Department of Pharmacochemistry, School of Pharmacy, Institute Technology Bandung, Bandung 40132, Indonesia
| | - Slamet Ibrahim
- Faculty of Pharmacy, Universitas Jenderal Ahmad Yani, Bandung 40285, Indonesia
| | - Muchtaridi Muchtaridi
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Syahrul Hidayat
- Department of Pharmaceutical Analysis and Medicinal Chemistry, Faculty of Pharmacy, Universitas Padjadjaran, Bandung 45363, Indonesia
| | - Nur Kusaira Khairul Ikram
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
8
|
Gan J, Guo L, Zhang X, Yu Q, Yang Q, Zhang Y, Zeng W, Jiang X, Guo M. Anti-inflammatory therapy of atherosclerosis: focusing on IKKβ. J Inflamm (Lond) 2023; 20:8. [PMID: 36823573 PMCID: PMC9951513 DOI: 10.1186/s12950-023-00330-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/24/2023] [Indexed: 02/25/2023] Open
Abstract
Chronic low-grade inflammation has been identified as a major contributor in the development of atherosclerosis. Nuclear Factor-κappa B (NF-κB) is a critical transcription factors family of the inflammatory pathway. As a major catalytic subunit of the IKK complex, IκB kinase β (IKKβ) drives canonical activation of NF-κB and is implicated in the link between inflammation and atherosclerosis, making it a promising therapeutic target. Various natural product derivatives, extracts, and synthetic, show anti-atherogenic potential by inhibiting IKKβ-mediated inflammation. This review focuses on the latest knowledge and current research landscape surrounding anti-atherosclerotic drugs that inhibit IKKβ. There will be more opportunities to fully understand the complex functions of IKKβ in atherogenesis and develop new effective therapies in the future.
Collapse
Affiliation(s)
- Jiali Gan
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lin Guo
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaolu Zhang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qun Yu
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiuyue Yang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- grid.410648.f0000 0001 1816 6218School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wenyun Zeng
- grid.459559.10000 0004 9344 2915Oncology department, Ganzhou People’s Hospital, Ganzhou, Jiangxi China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| |
Collapse
|
9
|
Kong XM, Song D, Li J, Jiang Y, Zhang XY, Wu XJ, Ge MJ, Xu JJ, Gao XM, Zhao Q. Preliminary verification of the anti-hypoxia mechanism of Gentiana straminea maxim based on UPLC-triple TOF MS/MS and network pharmacology. BMC Complement Med Ther 2022; 22:310. [PMID: 36434600 PMCID: PMC9700950 DOI: 10.1186/s12906-022-03773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/29/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Anoxia is characterized by changes in the morphology, metabolism, and function of tissues and organs due to insufficient oxygen supply or oxygen dysfunction. Gentiana straminea Maxim (G.s Maxim) is a traditional Tibetan medicine. Our previous work found that G.s Maxim mediates resistance to hypoxia, and we found that the ethyl acetate extract had the best effect. Nevertheless, the primary anti-hypoxia components and mechanisms of action remain unclear. METHODS Compounds from the ethyl acetate extraction of G.s Maxim were identified using UPLC-Triple TOF MS/MS. Then Traditional Chinese Medicine Systematic Pharmacology Database was used to filtrate them. Network pharmacology was used to forecast the mechanisms of these compounds. Male specific pathogen-free Sprague Dawley rats were randomly divided into six groups: (1) Control; (2) Model; (3) 228 mg/kg body weight Rhodiola capsules; (4) 6.66 g/kg body weight the G.s Maxim's ethyl acetate extraction; (5) 3.33 g/kg body weight the G.s Maxim's ethyl acetate extraction; (6) 1.67 g/kg body weight the G.s Maxim's ethyl acetate extraction. After administering intragastric ally for 15 consecutive days, an anoxia model was established using a hypobaric oxygen chamber (7000 m, 24 h). Then Histology, enzyme-linked immunosorbent assays, and western blots were performed to determine these compounds' anti-hypoxic effects and mechanisms. Finally, we performed a molecular docking test to test these compounds using Auto Dock. RESULTS Eight drug-like compounds in G.s Maxim were confirmed using UPLC-Triple TOF MS/MS and Lipinski's rule. The tumor necrosis factor (TNF) signaling pathway, the hypoxia-inducible factor 1 (HIF-1) signaling pathway, and the nuclear factor kappa-B (NF-κB) signaling pathway was signaling pathways that G.s Maxim mediated anti-anoxia effects. The critical targets were TNF, Jun proto-oncogene (JUN), tumor protein p53 (TP53), and threonine kinase 1 (AKT1). Animal experiments showed that the ethyl acetate extraction of G.s Maxim ameliorated the hypoxia-induced damage of hippocampal nerve cells in the CA1 region and reversed elevated serum expression of TNF-α, IL-6, and NF-κ B in hypoxic rats. The compound also reduced the expression of HIF-1α and p65 and increased the Bcl-2/Bax ratio in brain tissue. These findings suggest that G.s Maxim significantly protects against brain tissue damage in hypoxic rats by suppressing hypoxia-induced apoptosis and inflammation. Ccorosolic acid, oleanolic acid, and ursolic acid had a strong affinity with core targets. CONCLUSIONS The ethyl acetate extraction of G.s Maxim mediates anti-hypoxic effects, possibly related to inhibiting apoptosis and inflammatory responses through the HIF-1/NF-κB pathway. The primary active components might be corosolic, oleanolic, and ursolic acids.
Collapse
Affiliation(s)
- Xiu mei Kong
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Dan Song
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Jie Li
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Yi Jiang
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Xiao ying Zhang
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Xiao Jun Wu
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Ming juan Ge
- grid.440747.40000 0001 0473 0092Xianyang Hospital of Yan’an University, Xianyang, 712000 Shaanxi China
| | - Jiao jiao Xu
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Xiao min Gao
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| | - Qin Zhao
- grid.460748.90000 0004 5346 0588Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, 712082 Shaanxi China ,grid.460748.90000 0004 5346 0588Engineering Research Center of Tibetan Medicine Detection Technology, Ministry of Education, Xizang Minzu University, Xianyang, 712082 Shaanxi China
| |
Collapse
|
10
|
Recent trends in extraction, identification and quantification methods of Centella asiatica phytochemicals with potential applications in food industry and therapeutic relevance: A review. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Rahmatullah M, Jahan R, Nissapatorn V, Pereira MDL, Wiart C. Editorial: Emerging and old viral diseases: Antiviral drug discovery from medicinal plants. Front Pharmacol 2022; 13:976592. [PMID: 36059941 PMCID: PMC9437638 DOI: 10.3389/fphar.2022.976592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Mohammed Rahmatullah
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
- *Correspondence: Mohammed Rahmatullah,
| | - Rownak Jahan
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, University of Development Alternative, Dhaka, Bangladesh
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences and World Union for Herbal Drug Discovery (WUHeDD), Walailak University, Nakhon Si Thammarat, Thailand
| | - Maria De Lourdes Pereira
- CICECO-Aveiro Institute of Materials and Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Christophe Wiart
- School of Pharmacy, University of Nottingham Malaysia Campus, Selangor, Malaysia
| |
Collapse
|
12
|
Semenova MD, Popov SA, Sorokina IV, Meshkova YV, Baev DS, Tolstikova TG, Shults EE. Conjugates of Lupane Triterpenoids with Arylpyrimidines: Synthesis and Anti-inflammatory Activity. Steroids 2022; 184:109042. [PMID: 35580647 DOI: 10.1016/j.steroids.2022.109042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/24/2022] [Accepted: 05/08/2022] [Indexed: 10/18/2022]
Abstract
Semisynthetic triterpenoid betulonic acid is of significant interest due to its biological activity and synthetic application. In this study, we report the synthesis of hybrid compounds, containing betulonic acid carboxamide and arylpyrimidine fragments. A total of 15 conjugates were prepared using the cyclocondensation reaction of new terpenoid alkynyl ketones with amidinium salts. The main synthetic approach to betulonic acid amide-derived alkynylketones was based on the cross-coupling reaction of N-(4-ethynylphenyl)- or N-(2-(4-ethynylphenyl)-1-(methoxycarbonyl)ethyl)- substituted betulonic acid carboxamide with aroylchlorides. Cyclocondensation of alkynones with amidine or guanidine hydrochlorides by reflux in MeCN in the presence of K2CO3 led to the formation of terpenoid pyrimidine hybrids in 52-89% isolated yield. Anti-inflammatory properties of new type of triterpenoid-pyrimidine conjugates were studied using the histamine- and concanavalin A- induced mouse paw edema models. In a model of acute inflammation betulonic acid amide-arylpyrimidines containing a 4-fluorophenyl substituent at the C-6 position of pyrimidine ring exhibited significant and selective anti-inflammatory activity. Compounds containing the 4-bromophenyl- substituent in the pyrimidine ring revealed selective anti-inflammatory activity in the model of immunogenic inflammation (concanavalin-A model). It should be noted that the methoxycarbonyl substituted ethane link between pharmacophore ligands (betulonic acid carboxamide and arylpyrimidine) has a significant effect on anti-inflammatory activity in both in vivo models of inflammation. It was shown by molecular docking that the new derivatives are incorporated into the binding site of the protein Keap1 Kelch-domain by their pyrimidine substituent with the formation of more non-covalent bonds.
Collapse
Affiliation(s)
- Maria D Semenova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation
| | - Sergey A Popov
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation
| | - Irina V Sorokina
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation
| | - Yulia V Meshkova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation
| | - Dmitry S Baev
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation
| | - Tatyana G Tolstikova
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation
| | - Elvira E Shults
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Academician Lavrent'ev Ave. 9, 630090 Novosibirsk, Russian Federation.
| |
Collapse
|
13
|
Sandhu M, Irfan HM, Shah SA, Ahmed M, Naz I, Akram M, Fatima H, Farooq AS. Friedelin Attenuates Neuronal Dysfunction and Memory Impairment by Inhibition of the Activated JNK/NF-κB Signalling Pathway in Scopolamine-Induced Mice Model of Neurodegeneration. Molecules 2022; 27:molecules27144513. [PMID: 35889382 PMCID: PMC9324288 DOI: 10.3390/molecules27144513] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
Oxidative stress (OS) and c-Jun N-terminal kinase (JNK) are both key indicators implicated in neuro-inflammatory signalling pathways and their respective neurodegenerative diseases. Drugs targeting these factors can be considered as suitable candidates for treatment of neuronal dysfunction and memory impairment. The present study encompasses beneficial effects of a naturally occurring triterpenoid, friedelin, against scopolamine-induced oxidative stress and neurodegenerative pathologies in mice models. The treated animals were subjected to behavioural tests i.e., Y-maze and Morris water maze (MWM) for memory dysfunction. The underlying mechanism was determined via western blotting, antioxidant enzymes and lipid profile analyses. Molecular docking studies were carried out to predict the binding modes of friedelin in the binding pocket of p-JNK protein. The results reveal that scopolamine caused oxidative stress by (1) inhibiting catalase (CAT), peroxidase enzyme (POD), superoxide dismutase (SOD), and reduced glutathione enzyme (GSH); (2) the up-regulation of thiobarbituric acid reactive substances (TBARS) in mice brain; and (3) affecting the neuronal synapse (both pre- and post-synapse) followed by associated memory dysfunction. In contrast, friedelin administration not only abolished scopolamine-induced oxidative stress, glial cell activation, and neuro-inflammation but also inhibited p-JNK and NF-κB and their downstream signaling molecules. Moreover, friedelin administration improved neuronal synapse and reversed scopolamine-induced memory impairment accompanied by the inhibition of β-secretase enzyme (BACE-1) to halt amyloidogenic pathways of amyloid-β production. In summary, all of the results show that friedelin is a potent naturally isolated neuro-therapeutic agent to reverse scopolamine-induced neuropathology, which is characteristic of Alzheimer’s disease.
Collapse
Affiliation(s)
- Marva Sandhu
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan; (M.S.); (M.A.)
- Drugs Control and Traditional Medicines Division, NIH, Islamabad 45500, Pakistan
| | - Hafiz Muhammad Irfan
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan; (M.S.); (M.A.)
- Correspondence: (H.M.I.); (A.S.F.)
| | - Shahid Ali Shah
- Department of Biology, The University of Haripur, Haripur 22620, Pakistan;
- Neuro Molecular Medicines Research Center (NMMRC), Peshawar 25000, Pakistan
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Iffat Naz
- Department of Biology, Science Unit, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia;
| | - Muhammad Akram
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan; (M.S.); (M.A.)
| | - Humaira Fatima
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; or
| | - Ayesha Shuja Farooq
- Department of Biochemistry, Science Unit, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
- Correspondence: (H.M.I.); (A.S.F.)
| |
Collapse
|
14
|
López-Huerta FA, Teresa Ramírez-Apan M, Méndez-Cuesta CA, Nieto-Camacho A, Hernández-Ortega S, Almeida-Aguirre EK, Cerbón MA, Delgado G. Synthesis, Biological Evaluation, Molecular Docking Studies and In-silico ADMET Evaluation of Pyrazines of Pentacyclic Triterpenes. Bioorg Chem 2022; 125:105924. [DOI: 10.1016/j.bioorg.2022.105924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 11/02/2022]
|
15
|
Apaza Ticona L, Slowing K, Serban AM, Humanes Bastante M, Hernáiz MJ. Wound healing, anti-inflammatory and anti-melanogenic activities of ursane-type triterpenes from Semialarium mexicanum (Miers) Mennega. JOURNAL OF ETHNOPHARMACOLOGY 2022; 289:115009. [PMID: 35077827 DOI: 10.1016/j.jep.2022.115009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
ETHNO-PHARMACOLOGICAL RELEVANCE The bark of Semialarium mexicanum commonly known as 'Cancerina' is used as an infusion in Central America and Mexico to treat various wound infections, as well as skin and vaginal ulcers. AIM OF THE STUDY This study aimed to determine the wound healing, anti-inflammatory and anti-melanogenic activities of the aqueous extract of Semialarium mexicanum and to identify the compounds related to these activities. MATERIALS AND METHODS A bio-guided isolation of the active compounds of Semialarium mexicanum was carried out, selecting the sub-extracts and fractions depending on their wound healing, anti-inflammatory and anti-melanogenic activities in the RAW 264.7, NIH/3T3 and B16-F10 cells. RESULTS Three compounds were obtained and characterised by nuclear magnetic resonance and mass spectrometry. These compounds are (3β)-3-Hydroxy-urs-12-en-28-oic acid (1), (3β)-Urs-12-ene-3,28-diol (2) and (2α, 19α)-2,19-Dihydroxy-3-oxo-urs-12-en-28-oic acid (3). Regarding the anti-inflammatory activity, the three compounds inhibited the production of NF-κB and NO, however, compound 3 was the most active with IC50 values of 8.15-8.19 μM and 8.94-9.14 μM, respectively, in all cell lines. The anti-melanogenic activity of these compounds was evaluated by the inhibition of tyrosinase and melanin in the B16-F10 cell line. The three compounds showed anti-melanogenic activity, however, compound 3 was the most active with an IC50 of 8.03 μM for the inhibition of tyrosinase production, and an IC50 of 8.53 μM for the inhibition of melanin production. Finally, concerning the wound healing activity, the three compounds presented proliferative activity in all the tested cell lines, however, compound 3 showed higher cell proliferation percentages than compounds 1 and 2 (88.89-89.60% compared to 64.92-65.71% and 71.53-71.99%, respectively). CONCLUSION The wound healing, anti-inflammatory and anti-melanogenic activity of the aqueous extract of Semialarium mexicanum was tested and analysed in the present study, after having isolated three ursane-type triterpenes.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Karla Slowing
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain
| | - Andreea Madalina Serban
- Maria Sklodowska Curie University Hospital for Children. Constantin Brancoveanu Boulevard, 077120, Bucharest, Romania
| | - Marcos Humanes Bastante
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid. Cantoblanco, 28049, Madrid, Spain
| | - María J Hernáiz
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040, Madrid, Spain
| |
Collapse
|
16
|
Ghosh A, Panda CK. Role of Pentacyclic Triterpenoid Acids in the Treatment of Bladder Cancer. Mini Rev Med Chem 2021; 22:1331-1340. [PMID: 34719363 DOI: 10.2174/1389557521666211022145052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/27/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022]
Abstract
Bladder cancer carries a poor prognosis and has proven resistance to chemotherapy. Pentacyclic Triterpenoid Acids (PTAs) are natural bioactive compounds that have a well-known impact on cancer research because of their cytotoxic and chemopreventive activities. This review focuses on bladder cancer which can no longer be successfully treated by DNA damaging drugs. Unlike most of the existing drugs against bladder cancer, PTAs are non-toxic to normal cells. Collecting findings from both in vitro and in vivo studies, it has been concluded that PTAs may serve as promising agents in future bladder cancer therapy. In this review, the roles of various PTAs in bladder cancer have been explored, and their mechanisms of action in the treatment of bladder cancer have been described. Specific PTAs have been shortlisted from each of the chief skeletons of pentacyclic triterpenoids, which could be effective against bladder cancer because of their mode of action. This review thereby throws light on the multi targets and mechanisms of PTAs, which are responsible for their selective anticancer effects and provides guidelines for further research and development of new natural antitumor compounds.
Collapse
Affiliation(s)
- Anindita Ghosh
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata. India
| | - Chinmay Kumar Panda
- Department of Oncogene Regulation, Chittaranjan National Cancer Institute, Kolkata. India
| |
Collapse
|
17
|
Rybalkina EY, Moiseeva NI, Karamysheva AF, Eroshenko DV, Konysheva AV, Nazarov AV, Grishko VV. Triterpenoids with modified A-ring as modulators of P-gp-dependent drug-resistance in cancer cells. Chem Biol Interact 2021; 348:109645. [PMID: 34516973 DOI: 10.1016/j.cbi.2021.109645] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 12/29/2022]
Abstract
Semi-synthetic A-cycle modified triterpenic derivatives with A-cycle condensed with a heterocyclic fragment (compound 1) and fragmented A-ring (compound 2) were tested for cytotoxicity against several tumor cell cultures and doxorubicin (Dox)-resistant cell lines. The equal cytotoxicity of the tested compounds to the parental tumor cell lines (HBL-100, K562) and their resistant subclones (HBL-100/Dox, K562/i-S9) was revealed. The overexpression of ABCB1 (MDR1) gene and P-glycoprotein (P-gp) was confirmed for both resistant subclones of tumor cells. Compounds 1 and 2 were shown to inhibit the ABC-transporter gene expression (MDR1, MRP, MVP, and BCRP) and the transport of well-known P-gp substrate Rhodamine 123 from resistant cells. The docking of triterpenoids 1 and 2 into the drug binding site of P-gp revealed a similarity between the conformation of the tested triterpenoids and that of classical inhibitor verapamil, thus assuming these compounds to be more likely the inhibitors than the substrates of P-gp. Any tested triterpenic derivatives, when combined at non-toxic concentrations with doxorubicin, improved cytotoxic effect of the therapeutic drug against resistant subclones of tumor cells.
Collapse
Affiliation(s)
- Ekaterina Yu Rybalkina
- "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoye shosse 24, 115478, Moscow, Russia
| | - Natalia I Moiseeva
- "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoye shosse 24, 115478, Moscow, Russia
| | - Aida F Karamysheva
- "N.N. Blokhin National Medical Research Center of Oncology" of the Ministry of Health of the Russian Federation, Kashirskoye shosse 24, 115478, Moscow, Russia
| | - Daria V Eroshenko
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia
| | - Anastasia V Konysheva
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia
| | - Alexei V Nazarov
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia
| | - Victoria V Grishko
- Institute of Technical Chemistry of Ural Branch of the Russian Academy of Sciences, Acad. Korolev St. 3, 614013, Perm, Russia.
| |
Collapse
|
18
|
Tawinwung S, Junsaeng D, Utthiya S, Khemawoot P. Immunomodulatory effect of standardized C. asiatica extract on a promotion of regulatory T cells in rats. BMC Complement Med Ther 2021; 21:220. [PMID: 34479568 PMCID: PMC8418037 DOI: 10.1186/s12906-021-03394-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/17/2021] [Indexed: 11/19/2022] Open
Abstract
Background ECa 233 is a standardized extract of C. asiatica containing the triterpenoid glycosides, madecassoside to asiaticoside in the ratio of (1.5 ± 0.5):1. Anti-inflammatory activities of ECa 233 have been reported; however the immunomodulatory effects of ECa 233 on regulatory T cells, which have a pivotal role in immune regulation, has not been elucidated. Therefore, we investigated the effects of ECa 233 on regulatory T cells that may provide benefits in autoimmune and chronic inflammatory diseases. Methods ECa 233 was prepared as oral suspension in 0.5% carboxymethylcellulose and administered to male Wistar rats via oral gavage. The pharmacokinetics and toxicity of ECa 233 were evaluated. Splenic lymphocytes were isolated and analyzed by flow cytometry and qPCR to determine the immunomodulatory effects of ECa 233 on regulatory T cells. Results All rats had good tolerability to ECa 233 and other test preparations. The pharmacokinetic study showed low oral bioavailability for both triterpenoids, with the maximum plasma concentration reached at 4 h for asiaticoside and at 0.5 h for madecassoside. Multiple oral administration of ECa 233 reduced the frequency of T cells, particularly CD8 T cells in rats. ECa 233 enhanced the percentage of regulatory T cells, characterized by high expression of CD25+ and upregulation of FoxP3 gene. Conclusions The present study demonstrated that ECa 233 possesses immunosuppressive properties by enhancing regulatory T cells. These results provide in vivo evidence for the anti-inflammatory action of ECa 233, in line with previously reports, and the potential uses of ECa 233 in the treatment of chronic inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Dhirarin Junsaeng
- Department of Clinical Pharmacokinetics, Graduate School of Medical Sciences, Kanazawa University, Takara-machi, Kanazawa, Japan
| | - Supanut Utthiya
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Phisit Khemawoot
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bang Phli, Samut Prakarn, 10540, Thailand.
| |
Collapse
|
19
|
Hu LH, Liu JY, Yin JB. Eriodictyol attenuates TNBS-induced ulcerative colitis through repressing TLR4/NF-kB signaling pathway in rats. Kaohsiung J Med Sci 2021; 37:812-818. [PMID: 34042266 DOI: 10.1002/kjm2.12400] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/20/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic disease characterized by mucosal and submucosal inflammation, which has a low cure rate and is prone to relapse, due to the immune imbalance of the body. Inhibition of inflammation-related pathways can delay the progression of UC. Toll-like receptor 4 (TLR4) pathway is considered to be one of the important signaling pathways involved in colon inflammation. Eriodictyol (EDT) is a natural flavonoid widely distributed in foodborne plants. EDT plays an important role in the regulation of inflammation and related signaling pathways. However, whether EDT plays a role in UC remains unknown. Herein, we established a TNBS induced animal model of enteritis in Wistar rats. Our data confirmed the establishment of TNBS induced animal model of enteritis and the administration Eriodictyol in Wistar rats. EDT treatment alleviated TNBS-induced intestinal tissue injury in rats. We further found that EDT reduced MPO expression and regulated the cytokine parameters in TNBS-induced intestinal tissues of rats. The levels of TNF-α, IL-1β, IL-6, IL-10, IL-2, and IL-12 were also affected by the treatment of EDT. EDT also affected SOD, CAT, GSH-Px, and MDA level in rats with colitis. Moreover, EDT regulated TNBS-induced TLR4/NF-κB pathway activation, therefore inhibiting the progression of UC. Our results suggest that EDT could be a potential therapeutic agent for UC.
Collapse
Affiliation(s)
- Li-Hong Hu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jing-Yang Liu
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ji-Bin Yin
- Department of Gastroenterology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| |
Collapse
|
20
|
Baer-Dubowska W, Narożna M, Krajka-Kuźniak V. Anti-Cancer Potential of Synthetic Oleanolic Acid Derivatives and Their Conjugates with NSAIDs. Molecules 2021; 26:molecules26164957. [PMID: 34443544 PMCID: PMC8398353 DOI: 10.3390/molecules26164957] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Naturally occurring pentacyclic triterpenoid oleanolic acid (OA) serves as a good scaffold for additional modifications to achieve synthetic derivatives. Therefore, a large number of triterpenoids have been synthetically modified in order to increase their bioactivity and their protective or therapeutic effects. Moreover, attempts were performed to conjugate synthetic triterpenoids with non-steroidal anti-inflammatory drugs (NSAIDs) or other functional groups. Among hundreds of synthesized triterpenoids, still the most promising is 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid (CDDO), which reached clinical trials level of investigations. The new group of synthetic triterpenoids are OA oximes. The most active among them is 3-hydroxyiminoolean-12-en-28-oic acid morpholide, which additionally improves the anti-cancer activity of standard NSAIDs. While targeting the Nrf2 and NF-κB signaling pathways is the main mechanism of synthetic OA derivatives′ anti-inflammatory and anti-cancer activity, most of these compounds exhibit multifunctional activity, and affect cross-talk within the cellular signaling network. This short review updates the earlier data and describes the new OA derivatives and their conjugates in the context of modification of signaling pathways involved in inflammation and cell survival and subsequently in cancer development.
Collapse
|
21
|
Tumor-suppressing effect of bartogenic acid in ovarian (SKOV-3) xenograft mouse model. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1815-1826. [PMID: 34255109 DOI: 10.1007/s00210-021-02088-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/07/2021] [Indexed: 12/14/2022]
Abstract
Bartogenic acid (BA), a natural pentacyclic triterpenoid, proved to have chemomodulatory, anticancer, antidiabetic, anti-arthritic, and anti-inflammatory activity. Based on structure-activity relationship (SAR) approaches, BA has close structural resemblance to oleanolic acid and ursolic acid. These two pentacyclic triterpenoids are well accepted with respect to their therapeutic value in various ailments including anti-cancer activity. The aim of this study is to evaluate the efficacy of BA as a possible antitumor agent, along with its safety in SKOV-3 ovarian cancer. In vitro cytotoxicity of BA and paclitaxel on human ovarian cancer cells (SKOV-3) was assessed using MTT assay. Antitumor potential of BA alone, standard anticancer drug (paclitaxel) alone, and BA in combination with paclitaxel were evaluated in SKOV-3 xenografted SCID mice. Immunohistochemical analysis of NF-κB was performed and analyzed in SKOV-3 tumors. BA alone and BA in combination with paclitaxel significantly inhibited the tumor growth. IC50 of BA was found to be 15.72 μM. Similarly, paclitaxel showed significant antitumor effect with IC50 of 3.234 μM. Treatments of paclitaxel, BA, and combination of BA with paclitaxel were well tolerated during treatment period. Immunohistochemical analysis of NF-κB in SKOV-3 tumors treated with BA in combination with paclitaxel revealed antitumor effect in terms of inhibition of NF-κB. Our results suggested that BA exhibits promising antitumor effect in the restriction of SKOV-3 cells and tumors with considerable safety.
Collapse
|
22
|
Zhao X, Feng X, Ye N, Wei P, Zhang Z, Lu W. Protective effects and mechanism of coenzyme Q10 and vitamin C on doxorubicin-induced gastric mucosal injury and effects of intestinal flora. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2021; 25:261-272. [PMID: 34187945 PMCID: PMC8255120 DOI: 10.4196/kjpp.2021.25.4.261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 08/27/2020] [Accepted: 09/10/2020] [Indexed: 12/30/2022]
Abstract
Doxorubicin (Dox) is widely used to the treatment of cancer, however, it could cause damage to gastric mucosa. To investigate the protective effects and related mechanisms of coenzyme Q10 (CoQ10) and vitamin C (VC) on Dox-induced gastric mucosal injury, we presented the survey of the 4 groups of the rats with different conditions. The results showed Dox treatment significantly induced GES-1 apoptosis, but preconditioning in GES-1 cells with VC or CoQ10 significantly inhibited the Dox-induced decrease and other harm effects, including the expression and of IκKβ, IκBα, NF-κB/p65 and tumor necrosis factor (TNF-α) in GES-1 cells. Moreover, high-throughput sequencing results showed Dox treatment increased the number of harmful gut microbes, and CoQ10 and VC treatment inhibited this effect. CoQ10 and VC treatment inhibits Dox-induced gastric mucosal injury by inhibiting the activation of the IkKB/IκBα/NF-κB/p65/TNF-α pathway, promoting anti-inflammatory effects of gastric tissue and regulating the composition of the intestinal flora.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Xueke Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Nan Ye
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Panpan Wei
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Zhanwei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.,Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin 300072, PR China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), SynBio Res Platform, Tianjin 300072, PR China
| |
Collapse
|
23
|
Balakrishnan R, Azam S, Cho DY, Su-Kim I, Choi DK. Natural Phytochemicals as Novel Therapeutic Strategies to Prevent and Treat Parkinson's Disease: Current Knowledge and Future Perspectives. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6680935. [PMID: 34122727 PMCID: PMC8169248 DOI: 10.1155/2021/6680935] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative chronic disease affecting both cognitive performance and motor functions in aged people. Yet despite the prevalence of this disease, the current therapeutic options for the management of PD can only alleviate motor symptoms. Research has explored novel substances for naturally derived antioxidant phytochemicals with potential therapeutic benefits for PD patients through their neuroprotective mechanism, targeting oxidative stress, neuroinflammation, abnormal protein accumulation, mitochondrial dysfunction, endoplasmic reticulum stress, neurotrophic factor deficit, and apoptosis. The aim of the present study is to perform a comprehensive evaluation of naturally derived antioxidant phytochemicals with neuroprotective or therapeutic activities in PD, focusing on their neuropharmacological mechanisms, including modulation of antioxidant and anti-inflammatory activity, growth factor induction, neurotransmitter activity, direct regulation of mitochondrial apoptotic machinery, prevention of protein aggregation via modulation of protein folding, modification of cell signaling pathways, enhanced systemic immunity, autophagy, and proteasome activity. In addition, we provide data showing the relationship between nuclear factor E2-related factor 2 (Nrf2) and PD is supported by studies demonstrating that antiparkinsonian phytochemicals can activate the Nrf2/antioxidant response element (ARE) signaling pathway and Nrf2-dependent protein expression, preventing cellular oxidative damage and PD. Furthermore, we explore several experimental models that evaluated the potential neuroprotective efficacy of antioxidant phytochemical derivatives for their inhibitory effects on oxidative stress and neuroinflammation in the brain. Finally, we highlight recent developments in the nanodelivery of antioxidant phytochemicals and its neuroprotective application against pathological conditions associated with oxidative stress. In conclusion, naturally derived antioxidant phytochemicals can be considered as future pharmaceutical drug candidates to potentially alleviate symptoms or slow the progression of PD. However, further well-designed clinical studies are required to evaluate the protective and therapeutic benefits of phytochemicals as promising drugs in the management of PD.
Collapse
Affiliation(s)
- Rengasamy Balakrishnan
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - Duk-Yeon Cho
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
| | - In Su-Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju 27478, Republic of Korea
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju 27478, Republic of Korea
| |
Collapse
|
24
|
Asiedu SO, Kwofie SK, Broni E, Wilson MD. Computational Identification of Potential Anti-Inflammatory Natural Compounds Targeting the p38 Mitogen-Activated Protein Kinase (MAPK): Implications for COVID-19-Induced Cytokine Storm. Biomolecules 2021; 11:653. [PMID: 33946644 PMCID: PMC8146027 DOI: 10.3390/biom11050653] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Severely ill coronavirus disease 2019 (COVID-19) patients show elevated concentrations of pro-inflammatory cytokines, a situation commonly known as a cytokine storm. The p38 MAPK receptor is considered a plausible therapeutic target because of its involvement in the platelet activation processes leading to inflammation. This study aimed to identify potential natural product-derived inhibitory molecules against the p38α MAPK receptor to mitigate the eliciting of pro-inflammatory cytokines using computational techniques. The 3D X-ray structure of the receptor with PDB ID 3ZS5 was energy minimized using GROMACS and used for molecular docking via AutoDock Vina. The molecular docking was validated with an acceptable area under the curve (AUC) of 0.704, which was computed from the receiver operating characteristic (ROC) curve. A compendium of 38,271 natural products originating from Africa and China together with eleven known p38 MAPK inhibitors were screened against the receptor. Four potential lead compounds ZINC1691180, ZINC5519433, ZINC4520996 and ZINC5733756 were identified. The compounds formed strong intermolecular bonds with critical residues Val38, Ala51, Lys53, Thr106, Leu108, Met109 and Phe169. Additionally, they exhibited appreciably low binding energies which were corroborated via molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) calculations. The compounds were also predicted to have plausible pharmacological profiles with insignificant toxicity. The molecules were also predicted to be anti-inflammatory, kinase inhibitors, antiviral, platelet aggregation inhibitors, and immunosuppressive, with probable activity (Pa) greater than probable inactivity (Pi). ZINC5733756 is structurally similar to estradiol with a Tanimoto coefficient value of 0.73, which exhibits anti-inflammatory activity by targeting the activation of Nrf2. Similarly, ZINC1691180 has been reported to elicit anti-inflammatory activity in vitro. The compounds may serve as scaffolds for the design of potential biotherapeutic molecules against the cytokine storm associated with COVID-19.
Collapse
Affiliation(s)
- Seth O. Asiedu
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana; (S.O.A); (M.D.W)
| | - Samuel K. Kwofie
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana;
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, College of Basic and Applied Sciences, University of Ghana, Accra P.O. Box LG 54, Ghana
| | - Emmanuel Broni
- Department of Biomedical Engineering, School of Engineering Sciences, College of Basic and Applied Sciences, University of Ghana, Legon, Accra P.O. Box LG 77, Ghana;
| | - Michael D. Wilson
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG 581, Ghana; (S.O.A); (M.D.W)
- Department of Medicine, Loyola University Medical Center, Maywood, IL 60153, USA
| |
Collapse
|
25
|
Son J, Lee SY. Therapeutic Potential of Ursonic Acid: Comparison with Ursolic Acid. Biomolecules 2020; 10:E1505. [PMID: 33147723 PMCID: PMC7693102 DOI: 10.3390/biom10111505] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/12/2022] Open
Abstract
Plants have been used as drugs to treat human disease for centuries. Ursonic acid (UNA) is a naturally occurring pentacyclic triterpenoid extracted from certain medicinal herbs such as Ziziphus jujuba. Since the pharmacological effects and associated mechanisms of UNA are not well-known, in this work, we attempt to introduce the therapeutic potential of UNA with a comparison to ursolic acid (ULA), a well-known secondary metabolite, for beneficial effects. UNA has a keto group at the C-3 position, which may provide a critical difference for the varied biological activities between UNA and ULA. Several studies previously showed that UNA exerts pharmaceutical effects similar to, or stronger than, ULA, with UNA significantly decreasing the survival and proliferation of various types of cancer cells. UNA has potential to exert inhibitory effects in parasitic protozoa that cause several tropical diseases. UNA also exerts other potential effects, including antihyperglycemic, anti-inflammatory, antiviral, and antioxidant activities. Of note, a recent study highlighted the suppressive potential of UNA against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Molecular modifications of UNA may enhance bioavailability, which is crucial for in vivo and clinical studies. In conclusion, UNA has promising potential to be developed in anticancer and antiprotozoan pharmaceuticals. In-depth investigations may increase the possibility of UNA being developed as a novel reagent for chemotherapy.
Collapse
Affiliation(s)
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, Gyeonggi 13120, Korea;
| |
Collapse
|
26
|
Barboza JR, Pereira FAN, Fernandes RA, Vasconcelos CC, Cartágenes MDSDS, Oliveira Lopes AJ, de Melo AC, Guimarães IDS, da Rocha CQ, Ribeiro MNDS. Cytotoxicity and Pro-Apoptotic, Antioxidant and Anti-Inflammatory Activities of Geopropolis Produced by the Stingless Bee Melipona fasciculata Smith. BIOLOGY 2020; 9:biology9090292. [PMID: 32942772 PMCID: PMC7566010 DOI: 10.3390/biology9090292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
Geopropolis is produced by some stingless bee species, such as Melipona fasciculata Smith, a native species from Brazil. This study aims to investigate the antioxidant and anti-inflammatory activities and cytotoxicity effects of geopropolis hydroethanolic extracts against lung (H460 and A549) and ovarian (A2780 and ES2) cancer cell lines and non-tumor (HUVEC) cell lines using chemical identification by LC/MS/MS analysis and in silico assays to determine which compounds are associated with bioactivity. The antioxidant activity of extracts and inhibitory activity against COX enzymes were assessed by in vitro assays; cytotoxicity effect was evaluated by the MTT assay; cell cycle was assessed by flow cytometry and apoptosis by Western blotting. The geopropolis extracts showed great radical scavenging potential, preferential inhibition of COX-2, decreased cancer cell viability, non-cytotoxic effects against the non-tumoral cell line, besides modulating the cell cycle and inducing cancer cell apoptosis through the activation of caspase-3 and PARP protein cleavage. The in silico study suggests that corilagin, typhaneoside, taraxerone and marsformosanone, identified by LC/MS/MS, can be associated with anti-inflammatory activity and cytotoxic effects. Thus, the current study suggests the potential of geopropolis concerning the research field of new pharmacological alternatives regarding cancer therapy.
Collapse
Affiliation(s)
- Josianne Rocha Barboza
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (F.A.N.P.); (A.J.O.L.); (M.N.d.S.R.)
- Correspondence: (J.R.B.); (C.Q.d.R.); Tel.: +55-98-3272-9243 (C.Q.d.R.)
| | - Francisco Assis Nascimento Pereira
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (F.A.N.P.); (A.J.O.L.); (M.N.d.S.R.)
| | - Renan Amphilophio Fernandes
- Programa de Pós-Graduação em Farmacologia e Química Medicinal, Instituto de Ciências Biológicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21041-250, Rio de Janeiro, Brazil;
| | - Cleydlenne Costa Vasconcelos
- Laboratório de Estudo Experimental da Dor, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (C.C.V.); (M.d.S.d.S.C.)
| | - Maria do Socorro de Sousa Cartágenes
- Laboratório de Estudo Experimental da Dor, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (C.C.V.); (M.d.S.d.S.C.)
| | - Alberto Jorge Oliveira Lopes
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (F.A.N.P.); (A.J.O.L.); (M.N.d.S.R.)
- Laboratório de Estudo Experimental da Dor, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (C.C.V.); (M.d.S.d.S.C.)
| | - Andreia Cristina de Melo
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, Rio de Janeiro 20231-050, Rio de Janeiro, Brazil; (A.C.d.M.); (I.d.S.G.)
| | - Isabella dos Santos Guimarães
- Divisão de Pesquisa Clínica e Desenvolvimento Tecnológico, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, Rio de Janeiro 20231-050, Rio de Janeiro, Brazil; (A.C.d.M.); (I.d.S.G.)
| | - Cláudia Quintino da Rocha
- Laboratório de Química de Produtos Naturais, Departamento de Química, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil
- Correspondence: (J.R.B.); (C.Q.d.R.); Tel.: +55-98-3272-9243 (C.Q.d.R.)
| | - Maria Nilce de Sousa Ribeiro
- Laboratório de Farmacognosia, Departamento de Farmácia, Campus Bacanga, Universidade Federal do Maranhão, Av. dos Portugueses, 1966, São Luís 65080-805, Maranhão, Brazil; (F.A.N.P.); (A.J.O.L.); (M.N.d.S.R.)
| |
Collapse
|
27
|
Gutiérrez G, Giraldo-Dávila D, Combariza MY, Holzgrabe U, Tabares-Guevara JH, Ramírez-Pineda JR, Acín S, Muñoz DL, Montoya G, Balcazar N. Serjanic Acid Improves Immunometabolic Markers in a Diet-Induced Obesity Mouse Model. Molecules 2020; 25:E1486. [PMID: 32218297 PMCID: PMC7181135 DOI: 10.3390/molecules25071486] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 03/11/2020] [Accepted: 03/16/2020] [Indexed: 02/06/2023] Open
Abstract
Plant extracts from Cecropia genus have been used by Latin-American traditional medicine to treat metabolic disorders and diabetes. Previous reports have shown that roots of Cecropia telenitida that contains serjanic acid as one of the most prominent and representative pentacyclic triterpenes. The study aimed to isolate serjanic acid and evaluate its effect in a prediabetic murine model by oral administration. A semi-pilot scale extraction was established and serjanic acid purification was followed using direct MALDI-TOF analysis. A diet induced obesity mouse model was used to determine the impact of serjanic acid over selected immunometabolic markers. Mice treated with serjanic acid showed decreased levels of cholesterol and triacylglycerols, increased blood insulin levels, decreased fasting blood glucose and improved glucose tolerance, and insulin sensitivity. At transcriptional level, the reduction of inflammation markers related to adipocyte differentiation is reported.
Collapse
Affiliation(s)
- Gustavo Gutiérrez
- Natural Sciences School, Pharmaceutical Sciences Department, Universidad Icesi, 760031 Cali, Colombia;
| | - Deisy Giraldo-Dávila
- School of Chemistry, Industrial University of Santander, 680003 Bucaramanga, Santander, Colombia; (D.G.-D.); (M.Y.C.)
| | - Marianny Y. Combariza
- School of Chemistry, Industrial University of Santander, 680003 Bucaramanga, Santander, Colombia; (D.G.-D.); (M.Y.C.)
| | - Ulrike Holzgrabe
- University of Würzburg, Institute for Pharmacy and Food Chemistry, 97074 Würzburg, Germany;
| | - Jorge Humberto Tabares-Guevara
- Grupo Inmunomodulación, School of Medicine, Universidad de Antioquia, 050010 Medellín, Antioquia, Colombia; (J.H.T.-G.); (J.R.R.-P.)
| | - José Robinson Ramírez-Pineda
- Grupo Inmunomodulación, School of Medicine, Universidad de Antioquia, 050010 Medellín, Antioquia, Colombia; (J.H.T.-G.); (J.R.R.-P.)
- Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Carrera 51D Nº 62–29, 050010 Medellin, Colombia;
| | - Sergio Acín
- Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Carrera 51D Nº 62–29, 050010 Medellin, Colombia;
- GENMOL Group. Sede de Investigación Universitaria, Universidad de Antioquia, Calle 62 # 52–59, 050010 Medellín, Colombia;
| | - Diana Lorena Muñoz
- GENMOL Group. Sede de Investigación Universitaria, Universidad de Antioquia, Calle 62 # 52–59, 050010 Medellín, Colombia;
| | - Guillermo Montoya
- Natural Sciences School, Pharmaceutical Sciences Department, Universidad Icesi, 760031 Cali, Colombia;
| | - Norman Balcazar
- Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Carrera 51D Nº 62–29, 050010 Medellin, Colombia;
- GENMOL Group. Sede de Investigación Universitaria, Universidad de Antioquia, Calle 62 # 52–59, 050010 Medellín, Colombia;
| |
Collapse
|
28
|
Cerulli A, Napolitano A, Masullo M, Hošek J, Pizza C, Piacente S. Chestnut shells (Italian cultivar “Marrone di Roccadaspide” PGI): Antioxidant activity and chemical investigation with in depth LC-HRMS/MSn rationalization of tannins. Food Res Int 2020; 129:108787. [DOI: 10.1016/j.foodres.2019.108787] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
|
29
|
Kong KW, Mat Junit S, Aminudin N, Abdul Aziz A. Phytochemicals in Barringtonia species: Linking their traditional uses as food and medicine with current research. J Herb Med 2020. [DOI: 10.1016/j.hermed.2019.100299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Phytochemicals as potential IKK-β inhibitor for the treatment of cardiovascular diseases in plant preservation: terpenoids, alkaloids, and quinones. Inflammopharmacology 2019; 28:83-93. [DOI: 10.1007/s10787-019-00640-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/27/2019] [Indexed: 12/11/2022]
|
31
|
Stem Cell-Derived Exosomes Prevent Aging-Induced Cardiac Dysfunction through a Novel Exosome/lncRNA MALAT1/NF- κB/TNF- α Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9739258. [PMID: 31089420 PMCID: PMC6476062 DOI: 10.1155/2019/9739258] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022]
Abstract
Aging is a risk factor for cardiovascular disease, and there is no effective therapeutic approach to alleviate this condition. NF-κB and TNF-α have been implicated in the activation of the aging process, but the signaling molecules responsible for the inactivation of NF-κB and TNF-α remain unknown. Exosomes have been reported to improve heart functions by releasing miRNA. Recent studies suggest that lncRNAs are more tissue-specific and developmental stage-specific compared to miRNA. However, the role of lncRNA in exosome-mediated cardiac repair has not been explored. In the present study, we focused on metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), which is an lncRNA associated with cell senescence. We discovered that human umbilical cord mesenchymal stem cell- (UMSC-) derived exosomes prevent aging-induced cardiac dysfunction. Silencer RNA against lncRNA MALAT1 blocked the beneficial effects of exosomes. In summary, we discovered that UMSC-derived exosomes prevent aging-induced cardiac dysfunction by releasing novel lncRNA MALAT1, which in turn inhibits the NF-κB/TNF-α signaling pathway. These findings will lead to the development of therapies that delay aging and progression of age-related diseases.
Collapse
|
32
|
Baba K, Hiramatsu R, Suradej B, Tanigaki R, Koeda S, Waku T, Kataoka T. Asiatic Acid, Corosolic Acid, and Maslinic Acid Interfere with Intracellular Trafficking and N-Linked Glycosylation of Intercellular Adhesion Molecule-1. Biol Pharm Bull 2018; 41:1757-1768. [DOI: 10.1248/bpb.b18-00276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Kosuke Baba
- Department of Applied Biology, Kyoto Institute of Technology
| | - Reiko Hiramatsu
- Department of Applied Biology, Kyoto Institute of Technology
| | | | - Riho Tanigaki
- Department of Applied Biology, Kyoto Institute of Technology
| | - Sayaka Koeda
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Tomonori Waku
- Faculty of Molecular Chemistry and Engineering, Kyoto Institute of Technology
| | - Takao Kataoka
- Department of Applied Biology, Kyoto Institute of Technology
- Advanced Insect Research Promotion Center, Kyoto Institute of Technology
| |
Collapse
|
33
|
Tolmacheva IA, Nazarov AV, Eroshenko DV, Grishko VV. Synthesis, cytotoxic evaluation, and molecular docking studies of the semi-synthetic "triterpenoid-steroid" hybrids. Steroids 2018; 140:131-143. [PMID: 30315840 DOI: 10.1016/j.steroids.2018.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/01/2018] [Accepted: 10/07/2018] [Indexed: 10/28/2022]
Abstract
Synthetic transformations of steroids for drug discovery and improvement of drug effectiveness have been an important part of modern medicinal chemistry and pharmaceutical sciences. Pentacyclic triterpenoids, being represented in the nature by various structures and biogenetically related to steroids, can largely expand the spectrum of biologically active steroidal agents via synthesis of the so-called "triterpenoid-steroid" hybrids. In the presented work, the nitrile anion cyclizations of 3,4-secolupane and 3,4-seco-oleanane nitriles and follow-up synthetic transformations of the cyclized products with formation of the gemm-dimethyl-free A ring "triterpenoid-steroid" hybrids were studied. Furthermore, the resulting cyclic compounds were modified at C3, C4, and/or C5 positions of ring A, as well as at C20, C28, and C30 positions of the isopropylidene moiety in the case of lupane triterpenoids. The cytotoxic effect of the synthesized compounds against seven cancer cell lines HEp-2, HCT 116, MS, RD TE32, A549, MCF7, and PC3 was evaluated. The in silico identification of potential anticancer protein targets with regard to the compounds, which were active at micromolar concentrations against tested cell lines, was carried out. The molecular docking studies showed that compound 19, which demonstrated most pronounced cytotoxicity (IC50 0.64-3.17 μM) against all tested cell lines, fits well the active sites of CDK6 and HER2/neu.
Collapse
Affiliation(s)
- Irina A Tolmacheva
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Sciences, 3 Akad. Korolev str., 614013 Perm, Russia
| | - Alexey V Nazarov
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Sciences, 3 Akad. Korolev str., 614013 Perm, Russia
| | - Daria V Eroshenko
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Sciences, 3 Akad. Korolev str., 614013 Perm, Russia
| | - Victoria V Grishko
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Sciences, 3 Akad. Korolev str., 614013 Perm, Russia.
| |
Collapse
|
34
|
Ceballos S, Guillén A, Muñoz DL, Castaño A, Echeverri LF, Acín S, Balcázar N. Immunometabolic regulation by triterpenes of Eucalyptus tereticornis in adipose tissue cell line models. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2018; 50:109-117. [PMID: 30466969 DOI: 10.1016/j.phymed.2018.03.059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/19/2018] [Accepted: 03/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Eucalyptus tereticornis Sm (Myrtaceae) is a plant used in traditional medicine to control obesity, insulin resistance and diabetes. Chronic adipose tissue inflammation is involved in generating insulin resistance, the greatest risk factor in developing type 2 diabetes mellitus and cardiovascular disease. In the present study, a mixture of triterpenes, as obtained from the starting plant material, was evaluated in inflamed adipose tissue cells models. AIM Our goal is to advance into the understanding, at the cellular level, of the immunometabolic effects of the triterpene mixes from Eucalyptus tereticornis in in vitro models of mouse and human adipose tissues. METHODS Triterpene mixes were obtained from Eucalyptus tereticornis leaves by organic extraction. The major compounds of these mixes were identified by 1H NMR and 13C NMR in addition to HPLC using primary and secondary standards of ursolic acid, oleanolic acid and ursolic acid lactone. To provide an approach for evaluating the cellular and molecular mechanisms through which triterpene mixes act to modify the metabolic processes associated with obesity, mouse macrophage and adipocyte cell lines, human macrophage cell line and primary culture of human adipocytes were used as models. RESULTS Adipocytes treated with the two natural chemically characterized triterpene mixes partially reduce lipogenesis and leptin expression. Additionally, an increase in the transcriptional expression of PPARγ, and C/EBPα is observed. In macrophages, these triterpene mixes, decrease the transcriptional and translational expression of pro-inflammatory cytokines, such as interleukin-6 (IL-6), interleukin 1β (IL-1β) and tumoral necrosis factor α (TNFα). Conditioned medium of 3T3-L1 adipocytes treated with the triterpene mix shows a stronger anti-inflammatory response on activated J774A.1 macrophages. CONCLUSION The mixtures of the three triterpenes in the proportions obtained from the plant material may act on different components of the cell, generating a different response, which, in some cases, is more powerful than that seen when exposure to only two triterpenes. It makes this three triterpenes mix a good phytotherapeutic prototype for pathologies as complex as those associated with obesity.
Collapse
Affiliation(s)
- Susana Ceballos
- Molecular Genetics Group, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia
| | - Alis Guillén
- Molecular Genetics Group, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia
| | - Diana Lorena Muñoz
- Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia
| | - Adriana Castaño
- Group of Organic Natural Product Chemistry, Faculty of Natural and Exact Sciences, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia
| | - Luis Fernando Echeverri
- Group of Organic Natural Product Chemistry, Faculty of Natural and Exact Sciences, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia
| | - Sergio Acín
- Molecular Genetics Group, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia; Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia
| | - Norman Balcázar
- Molecular Genetics Group, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia; Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Calle 70, N° 52-21, A.A. 1226, Medellin, Colombia.
| |
Collapse
|
35
|
Stupina T, Balakina A, Kondrat'eva T, Kozub G, Sanina N, Terent'ev A. NO-Donor Nitrosyl Iron Complex with 2-Aminophenolyl Ligand Induces Apoptosis and Inhibits NF-κB Function in HeLa Cells. Sci Pharm 2018; 86:scipharm86040046. [PMID: 30314357 DOI: 10.3390/scipharm86040046] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/08/2018] [Accepted: 10/09/2018] [Indexed: 01/17/2023] Open
Abstract
NO donating iron nitrosyl complex with 2-aminothiophenyl ligand (2-AmPh complex) was studied for its ability to cause cell death and affect nuclear factor kappa B (NF-κB) signaling. The complex inhibited viability of HeLa cells and induced cell death that was accompanied by loss of mitochondrial membrane potential and characteristic for apoptosis phosphatidylserine externalization. At IC50, 2-AmPh caused decrease in nuclear content of NF-κB p65 polypeptide and mRNA expression of NF-κB target genes encoding interleukin-8 and anti-apoptotic protein BIRC3. mRNA levels of interleukin-6 and anti-apoptotic protein BIRC2 encoding genes were not affected. Our data demonstrate that NO donating iron nitrosyl complex 2-AmPh can inhibit tumor cell viability and induce apoptosis that is preceded by impairment of NF-κB function and suppression of a subset of NF-κB target genes.
Collapse
Affiliation(s)
- Tatiana Stupina
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
| | - Anastasia Balakina
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
| | - Tatiana Kondrat'eva
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
| | - Galina Kozub
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
| | - Natalia Sanina
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
- Faculty of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
- Medicinal Chemistry Research and Education Center, Moscow Region State University, 141014 Mytishchi, Russia.
| | - Alexei Terent'ev
- Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Russia.
- Faculty of Fundamental Physical and Chemical Engineering, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia.
- Medicinal Chemistry Research and Education Center, Moscow Region State University, 141014 Mytishchi, Russia.
| |
Collapse
|
36
|
Valdeira ASC, Ritt DA, Morrison DK, McMahon JB, Gustafson KR, Salvador JAR. Synthesis and Biological Evaluation of New Madecassic Acid Derivatives Targeting ERK Cascade Signaling. Front Chem 2018; 6:434. [PMID: 30324102 PMCID: PMC6172662 DOI: 10.3389/fchem.2018.00434] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/03/2018] [Indexed: 01/29/2023] Open
Abstract
In the present study, a series of novel madecassic acid derivatives was synthesized and screened against the National Cancer Institute's 60 human cancer cell line panel. Among them, compounds 5, 12, and 17 displayed potent and highly differential antiproliferative activity against 80% of the tumor cells harboring the B-RafV600E mutation within the nanomolar range. Structure-activity analysis revealed that a 5-membered A ring containing an α,β-unsaturated aldehyde substituted at C-23 with a 2-furoyl group seems to be crucial to produce this particular growth inhibition signature. In silico analysis of the cytotoxicity pattern of these compounds identified two highly correlated clinically approved drugs with known B-RafV600E inhibitory activity. Follow-up analysis revealed inhibition of the ERK signaling pathway through the reduction of cellular Raf protein levels is a key mechanism of action of these compounds. In particular, 17 was the most potent compound in suppressing tumor growth of B-RafV600E-mutant cell lines and displayed the highest reduction of Raf protein levels among the tested compounds. Taken together, this study revealed that modifications of madecassic acid structure can provide molecules with potent anticancer activity against cell lines harboring the clinically relevant B-RafV600E mutation, with compound 17 identified as a promising lead for the development of new anticancer drugs.
Collapse
Affiliation(s)
- Ana S C Valdeira
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Daniel A Ritt
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Deborah K Morrison
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - James B McMahon
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Kirk R Gustafson
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, United States
| | - Jorge A R Salvador
- Laboratory of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.,Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
37
|
Magar S, Nayak D, Mahajan UB, Patil KR, Shinde SD, Goyal SN, Swaminarayan S, Patil CR, Ojha S, Kundu CN. Ultra-diluted Toxicodendron pubescens attenuates pro-inflammatory cytokines and ROS- mediated neuropathic pain in rats. Sci Rep 2018; 8:13562. [PMID: 30202036 PMCID: PMC6131166 DOI: 10.1038/s41598-018-31971-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 08/28/2018] [Indexed: 12/20/2022] Open
Abstract
Despite the availability of multiple therapeutic agents, the search for novel pain management of neuropathic pain is still a challenge. Oxidative stress and inflammatory signaling are prominently involved in clinical manifestation of neuropathic pain. Toxicodendron pubescens, popularly known as Rhus Tox (RT) is recommended in alternative medicines as an anti-inflammatory and analgesic remedy. Earlier, we reported anti-inflammatory, anti-arthritic and immunomodulatory activities of Rhus Tox. In continuation, we evaluated antinociceptive efficacy of Rhus Tox in the neuropathic pain and delineated its underlying mechanism. Initially, in-vitro assay using LPS-mediated ROS-induced U-87 glioblastoma cells was performed to study the effect of Rhus Tox on reactive oxygen species (ROS), anti-oxidant status and cytokine profile. Rhus Tox decreased oxidative stress and cytokine release with restoration of anti-oxidant systems. Chronic treatment with Rhus Tox ultra dilutions for 14 days ameliorated neuropathic pain revealed as inhibition of cold, warm and mechanical allodynia along with improved motor nerve conduction velocity (MNCV) in constricted nerve. Rhus Tox decreased the oxidative and nitrosative stress by reducing malondialdehyde (MDA) and nitric oxide (NO) content, respectively along with up regulated glutathione (GSH), superoxide dismutase (SOD) and catalase activity in sciatic nerve of rats. Notably, Rhus Tox treatment caused significant reductions in the levels of tumor necrosis factor (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) as compared with CCI-control group. Protective effect of Rhus Tox against CCI-induced sciatic nerve injury in histopathology study was exhibited through maintenance of normal nerve architecture and inhibition of inflammatory changes. Overall, neuroprotective effect of Rhus Tox in CCI-induced neuropathic pain suggests the involvement of anti-oxidative and anti-inflammatory mechanisms.
Collapse
Affiliation(s)
- Shital Magar
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Dist. Dhule, Maharashtra, India
| | - Deepika Nayak
- School of Biotechnology, Kalinga Institute of Industrial technology (a deemed to be University), Campus-11, Patia, Bhubaneswar, Odisha, Pin-751024, India
| | - Umesh B Mahajan
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Dist. Dhule, Maharashtra, India
| | - Kalpesh R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Dist. Dhule, Maharashtra, India
| | - Sachin D Shinde
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Dist. Dhule, Maharashtra, India
| | - Sameer N Goyal
- SVKM's Institute of Pharmacy, Dhule-424001, Dist-Dhule, Maharashtra, India
| | - Shivang Swaminarayan
- Janmangal Homeopathy and Wellness Centre, Bopal, Ahmedabad, Gujarat, 380058, India
| | - Chandragouda R Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur- 425405, Dist. Dhule, Maharashtra, India.
| | - Shreesh Ojha
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, UAE University, Al Ain, UAE.
| | - Chanakya Nath Kundu
- School of Biotechnology, Kalinga Institute of Industrial technology (a deemed to be University), Campus-11, Patia, Bhubaneswar, Odisha, Pin-751024, India.
| |
Collapse
|
38
|
Nagoor Meeran MF, Goyal SN, Suchal K, Sharma C, Patil CR, Ojha SK. Pharmacological Properties, Molecular Mechanisms, and Pharmaceutical Development of Asiatic Acid: A Pentacyclic Triterpenoid of Therapeutic Promise. Front Pharmacol 2018; 9:892. [PMID: 30233358 PMCID: PMC6131672 DOI: 10.3389/fphar.2018.00892] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/23/2018] [Indexed: 12/16/2022] Open
Abstract
Asiatic acid (AA) is a naturally occurring aglycone of ursane type pentacyclic triterpenoids. It is abundantly present in many edible and medicinal plants including Centella asiatica that is a reputed herb in many traditional medicine formulations for wound healing and neuropsychiatric diseases. AA possesses numerous pharmacological activities such as antioxidant and anti-inflammatory and regulates apoptosis that attributes its therapeutic effects in numerous diseases. AA showed potent antihypertensive, nootropic, neuroprotective, cardioprotective, antimicrobial, and antitumor activities in preclinical studies. In various in vitro and in vivo studies, AA found to affect many enzymes, receptors, growth factors, transcription factors, apoptotic proteins, and cell signaling cascades. This review aims to represent the available reports on therapeutic potential and the underlying pharmacological and molecular mechanisms of AA. The review also also discusses the challenges and prospects on the pharmaceutical development of AA such as pharmacokinetics, physicochemical properties, analysis and structural modifications, and drug delivery. AA showed favorable pharmacokinetics and found bioavailable following oral or interaperitoneal administration. The studies demonstrate the polypharmacological properties, therapeutic potential and molecular mechanisms of AA in numerous diseases. Taken together the evidences from available studies, AA appears one of the important multitargeted polypharmacological agents of natural origin for further pharmaceutical development and clinical application. Provided the favorable pharmacokinetics, safety, and efficacy, AA can be a promising agent or adjuvant along with currently used modern medicines with a pharmacological basis of its use in therapeutics.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Kapil Suchal
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Charu Sharma
- Department of Internal Meicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Chandragouda R. Patil
- Department of Pharmacology, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur, India
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
39
|
Sasmita AO, Ling APK, Voon KGL, Koh RY, Wong YP. Madecassoside activates anti‑neuroinflammatory mechanisms by inhibiting lipopolysaccharide‑induced microglial inflammation. Int J Mol Med 2018; 41:3033-3040. [PMID: 29436598 DOI: 10.3892/ijmm.2018.3479] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 01/08/2018] [Indexed: 11/06/2022] Open
Abstract
Neurodegeneration is typically preceded by neuroinflammation generated by the nervous system to protect itself from tissue damage, however, excess neuroinflammation may inadvertently cause more harm to the surrounding tissues. Attenuating neuroinflammation with non‑steroidal anti‑inflammatory drugs can inhibit neurodegeneration. However, such treatments induce chronic side effects, including stomach ulcers. Madecassoside, a triterpene derived from Centella asiatica, is considered to be an alternative treatment of inflammation. In the present study, the anti‑neuroinflammatory properties of madecassoside were assessed in BV2 microglia cells, which were pre‑treated with madecassoside at a maximum non‑toxic dose (MNTD) of 9.50 µg/ml and a ½ MNTD of 4.75 µg/ml for 3 h and stimulated with 0.1 µg/ml lipopolysaccharide (LPS). The effect of madecassoside was assessed by determining reactive oxygen species (ROS) levels in all groups. Furthermore, the expression of pro‑ and anti‑neuroinflammatory genes and proteins were analyzed using reverse transcription‑quantitative polymerase chain reaction and western blotting, respectively. The results demonstrated that ROS levels in cells treated with the MNTD of madecassoside were significantly reduced compared with cells treated with LPS alone (P<0.05). The expression of pro‑neuroinflammatory genes, including inducible nitric oxide synthase, cyclooxygenase‑2, signal transducer and activator of transcription 1 and nuclear factor‑κB, were significantly downregulated in a dose‑independent manner following treatment with madecassoside. Conversely, the anti‑neuroinflammatory component heme oxygenase 1 was significantly upregulated by 175.22% in the MNTD‑treated group, compared with cells treated with LPS alone (P<0.05). The gene expression profiles of pro‑ and anti‑inflammatory genes were also consistent with the results of western blotting. The results of the present study suggest that madecassoside may be a potent anti‑neuroinflammatory agent. The antioxidative properties of madecassoside, which serve a major role in anti‑neuroinflammation, indicate that this compound may be a functional natural anti‑neuroinflammatory agent, therefore, further in vivo or molecular studies are required.
Collapse
Affiliation(s)
- Andrew Octavian Sasmita
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Anna Pick Kiong Ling
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Kenny Gah Leong Voon
- Division of Pathology, School of Medicine, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Rhun Yian Koh
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| | - Ying Pei Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
40
|
Ontology-based systematic representation and analysis of traditional Chinese drugs against rheumatism. BMC SYSTEMS BIOLOGY 2017; 11:130. [PMID: 29322929 PMCID: PMC5763303 DOI: 10.1186/s12918-017-0510-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Background Rheumatism represents any disease condition marked with inflammation and pain in the joints, muscles, or connective tissues. Many traditional Chinese drugs have been used for a long time to treat rheumatism. However, a comprehensive information source for these drugs is still missing, and their anti-rheumatism mechanisms remain unclear. An ontology for anti-rheumatism traditional Chinese drugs would strongly support the representation, analysis, and understanding of these drugs. Results In this study, we first systematically collected reported information about 26 traditional Chinese decoction pieces drugs, including their chemical ingredients and adverse events (AEs). By mostly reusing terms from existing ontologies (e.g., TCMDPO for traditional Chinese medicines, NCBITaxon for taxonomy, ChEBI for chemical elements, and OAE for adverse events) and making semantic axioms linking different entities, we developed the Ontology of Chinese Medicine for Rheumatism (OCMR) that includes over 3000 class terms. Our OCMR analysis found that these 26 traditional Chinese decoction pieces are made from anatomic entities (e.g., root and stem) from 3 Bilateria animals and 23 Mesangiospermae plants. Anti-inflammatory and antineoplastic roles are important for anti-rheumatism drugs. Using the total of 555 unique ChEBI chemical entities identified from these drugs, our ChEBI-based classification analysis identified 18 anti-inflammatory, 33 antineoplastic chemicals, and 9 chemicals (including 3 diterpenoids and 3 triterpenoids) having both anti-inflammatory and antineoplastic roles. Furthermore, our study detected 22 diterpenoids and 23 triterpenoids, including 16 pentacyclic triterpenoids that are likely bioactive against rheumatism. Six drugs were found to be associated with 184 unique AEs, including three AEs (i.e., dizziness, nausea and vomiting, and anorexia) each associated with 5 drugs. Several chemical entities are classified as neurotoxins (e.g., diethyl phthalate) and allergens (e.g., eugenol), which may explain the formation of some TCD AEs. The OCMR could be efficiently queried for useful information using SPARQL scripts. Conclusions The OCMR ontology was developed to systematically represent 26 traditional anti-rheumatism Chinese drugs and their related information. The OCMR analysis identified possible anti-rheumatism and AE mechanisms of these drugs. Our novel ontology-based approach can also be applied to systematic representation and analysis of other traditional Chinese drugs. Electronic supplementary material The online version of this article (10.1186/s12918-017-0510-5) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Salvador JA, Leal AS, Valdeira AS, Gonçalves BM, Alho DP, Figueiredo SA, Silvestre SM, Mendes VI. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur J Med Chem 2017; 142:95-130. [DOI: 10.1016/j.ejmech.2017.07.013] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 07/06/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022]
|
42
|
Design, synthesis and biological evaluation of novel benzimidazole amidines as potent multi-target inhibitors for the treatment of non-small cell lung cancer. Eur J Med Chem 2017; 143:1616-1634. [PMID: 29133046 DOI: 10.1016/j.ejmech.2017.10.061] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/05/2023]
Abstract
A series of novel amidino 2-substituted benzimidazoles linked to 1,4-disubstituted 1,2,3-triazoles were synthesized by implementation of microwave and ultrasound irradiation in click reaction and subsequent condensation of thus obtained 4-(1,2,3-triazol-1-yl)benzaldehyde with o-phenylenediamines. In vitro antiproliferative screening of compounds performed on human cancer cell lines revealed that p-chlorophenyl-substituted 1,2,3-triazolyl N-isopropylamidine 10c and benzyl-substituted 1,2,3-triazolyl imidazoline 11f benzimidazoles had selective and potent cytostatic activities in the low nM range against non-small cell lung cancer cell line A549, which could be attributed to induction of apoptosis and primary necrosis. Additional Western blot analyses showed different mechanisms of cytostatic activity between compounds 10c and 11f that could be associated with the nature of aromatic substituent at 1-(1,2,3-triazolyl) and amidino moiety at C-5 position of benzimidazole ring. Specifically, compound 11f abrogated the activity of several protein kinases including TGM2, CDK9, SK1 and p38 MAPK, whereas compound 10c did not have profound effect on the activities of CDK9 and TGM2, but instead showed moderate downregulation of SK1 activity concomitant with a significant reduction in p38 MAPK. Further in silico structural analysis demonstrated that compound 11f bound slightly better to the ATP binding site of p38 MAPK compared to 10c, which correlated well with observed stronger decrement in the expression level of phospho-p38 MAPK elicited by 11f in comparison with 10c.
Collapse
|
43
|
TLR4 Signaling Pathway Modulators as Potential Therapeutics in Inflammation and Sepsis. Vaccines (Basel) 2017; 5:vaccines5040034. [PMID: 28976923 PMCID: PMC5748601 DOI: 10.3390/vaccines5040034] [Citation(s) in RCA: 381] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 09/29/2017] [Accepted: 10/01/2017] [Indexed: 02/06/2023] Open
Abstract
Toll-Like Receptor 4 (TLR4) signal pathway plays an important role in initiating the innate immune response and its activation by bacterial endotoxin is responsible for chronic and acute inflammatory disorders that are becoming more and more frequent in developed countries. Modulation of the TLR4 pathway is a potential strategy to specifically target these pathologies. Among the diseases caused by TLR4 abnormal activation by bacterial endotoxin, sepsis is the most dangerous one because it is a life-threatening acute system inflammatory condition that still lacks specific pharmacological treatment. Here, we review molecules at a preclinical or clinical phase of development, that are active in inhibiting the TLR4-MyD88 and TLR4-TRIF pathways in animal models. These are low-molecular weight compounds of natural and synthetic origin that can be considered leads for drug development. The results of in vivo studies in the sepsis model and the mechanisms of action of drug leads are presented and critically discussed, evidencing the differences in treatment results from rodents to humans.
Collapse
|
44
|
Afifi TH, Okasha RM, Ahmed HEA, Ilaš J, Saleh T, Abd-El-Aziz AS. Structure-activity relationships and molecular docking studies of chromene and chromene based azo chromophores: A novel series of potent antimicrobial and anticancer agents. EXCLI JOURNAL 2017; 16:868-902. [PMID: 28828001 PMCID: PMC5547389 DOI: 10.17179/excli2017-356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/09/2017] [Indexed: 01/31/2023]
Abstract
The design of novel materials with significant biological properties is a main target in drug design research. Chromene compounds represent an interesting medicinal scaffold in drug replacement systems. This report illustrates a successful synthesis and characterization of two novel series of chromene compounds using multi-component reactions. The synthesis of the first example of azo chromophores containing chromene moieties has also been established using the same methodology. The antimicrobial activity of the new molecules has been tested against seven human pathogens including two Gm+ve, two Gm-ve bacteria, and four fungi, and the results of the inhibition zones with minimum inhibitory concentrations were reported as compared to reference drugs. All the designed compounds showed significant potent antimicrobial activities, among of them, four potent compounds 4b, 4c, 13e, and 13i showed promising MIC from 0.007 to 3.9 µg/mL. In addition, antiproliferative analysis against three target cell lines was examined for the novel compounds. Compounds 4a, 4b, 4c, and 7c possessed significant antiproliferative activity against three cell lines with an IC50 of 0.3 to 2 µg/mL. Apoptotic analysis was performed for the most potent compounds via caspase enzyme activity assays as a potential mechanism for their antiproliferative effects. Finally, the computational 2D QSAR and docking simulations were accomplished for structure-activity relationship analyses.
Collapse
Affiliation(s)
- Tarek H Afifi
- Chemistry Department, Faculty of Science, Taibah University, 30002, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Rawda M Okasha
- Chemistry Department, Faculty of Science, Taibah University, 30002, Al-Madinah Al-Munawarah, Saudi Arabia
| | - Hany E A Ahmed
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University, Al-Madinah Al-Munawarah, Saudi Arabia.,Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Aškerceva 7, 1000 Ljubljana, Slovenia
| | - Tarek Saleh
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Alaa S Abd-El-Aziz
- Chemistry Department, Faculty of Science, University of Prince Edward Island, Charlottetown, Prince Edward Island C1A 4P3, Canada
| |
Collapse
|
45
|
Huang RZ, Hua SX, Liao ZX, Huang XC, Wang HS. Side chain-functionalized aniline-derived ursolic acid derivatives as multidrug resistance reversers that block the nuclear factor-kappa B (NF-κB) pathway and cell proliferation. MEDCHEMCOMM 2017; 8:1421-1434. [PMID: 30108853 DOI: 10.1039/c7md00105c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/09/2017] [Indexed: 12/14/2022]
Abstract
A series of inhibitors of NF-κB based on ursolic acid (UA) derivatives containing functionalized aniline or amide side chains were synthesized and evaluated for inhibition of NF-κB as well as their antitumor effects. These compounds exhibited significant inhibition activity toward NF-κB with IC50 values at micromolar concentrations in the NCI-H460 lung adenocarcinoma cell line. A docking study of the most active compound 5Y8 revealed key interactions between 5Y8 and the active site of NF-κB in which the functionalized amide moiety at the C-28 position and an ester group at the C-3 position were important for improving the activity. In particular, compound 5Y8 appeared to be the most potent compound against the NCI-H460 cell line, and displayed similar efficiency in drug-sensitive versus drug-resistant cancer cell lines, at least partly, by blocking the NF-κB signaling pathway and inducing apoptosis. Mechanistically, compound 5Y8 might trigger the apoptotic signaling pathway. Thus, the rational design of UA derivatives with functionalized aniline or amide side chains offers significant potential for the discovery of a new class of NF-κB inhibitors with the ability to induce apoptosis and reverse multidrug resistance in the NCI-H460 lung adenocarcinoma cell line.
Collapse
Affiliation(s)
- Ri-Zhen Huang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China .
| | - Shi-Xian Hua
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China .
| | - Zhi-Xin Liao
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China .
| | - Xiao-Chao Huang
- Pharmaceutical Research Center and School of Chemistry and Chemical Engineering , Southeast University , Nanjing 211189 , China .
| | - Heng-Shan Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources , School of Chemistry and Pharmaceutical Sciences , Guangxi Normal University , No. 15 Yucai Road , Guilin 541004 , P. R. China .
| |
Collapse
|
46
|
Khatri CK, Indalkar KS, Patil CR, Goyal SN, Chaturbhuj GU. Novel 2-phenyl-4,5,6,7-tetrahydro[ b ]benzothiophene analogues as selective COX-2 inhibitors: Design, synthesis, anti-inflammatory evaluation, and molecular docking studies. Bioorg Med Chem Lett 2017; 27:1721-1726. [DOI: 10.1016/j.bmcl.2017.02.076] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/15/2017] [Accepted: 02/28/2017] [Indexed: 10/20/2022]
|
47
|
Khanra R, Dewanjee S, Dua TK, Bhattacharjee N. Taraxerol, a pentacyclic triterpene from Abroma augusta leaf, attenuates acute inflammation via inhibition of NF-κB signaling. Biomed Pharmacother 2017; 88:918-923. [PMID: 28178622 DOI: 10.1016/j.biopha.2017.01.132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/27/2022] Open
Abstract
Abroma augusta L. (Malvaceae) leaf is traditionally used to treat inflammatory disorders. In our laboratory, we have scientifically validated the anti-inflammatory effect of A. augusta leaf extract. In this study, it has been aimed to evaluate in vivo anti-inflammatory effect of taraxerol isolated from the methanol extract of A. augusta leaf. It was further intended to find out the probable mechanism of anti-inflammatory effect of taraxerol. The anti-inflammatory effect of taraxerol (5 and 10mg/kg, i.p.) was measured employing carrageenan-induced paw edema model of acute inflammation. The carrageenan injection resulted significant edema formation in the right paw when compared with un-injected left paw. However, taraxerol (10mg/kg) treatment could significantly (p<0.05-0.01) attenuate carrageenan induced paw edema 2h onward. The effect of taraxerol at the dose of 5mg/kg was found to be significant (p<0.05) only after 4h of carrageenan treatment. Taraxerol (10mg/kg) treatment could significantly (p<0.01) attenuate carrageenan mediated up-regulation in the levels of IL 1β, IL 6, IL 12 and TNF α in the right paw tissues. In search of molecular mechanism, taraxerol (10mg/kg) could significantly (p<0.05-0.01) reinstate carrageenan provoked NF-κB signaling and thereby caused significant down-regulation in the expressions of COX-2 (p<0.01) and iNOS (p<0.05). In conclusion, taraxerol would attenuate acute inflammation via inhibition of NF-κB signaling.
Collapse
Affiliation(s)
- Ritu Khanra
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Tarun K Dua
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Niloy Bhattacharjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
48
|
Gregorić T, Sedić M, Grbčić P, Tomljenović Paravić A, Kraljević Pavelić S, Cetina M, Vianello R, Raić-Malić S. Novel pyrimidine-2,4-dione-1,2,3-triazole and furo[2,3-d]pyrimidine-2-one-1,2,3-triazole hybrids as potential anti-cancer agents: Synthesis, computational and X-ray analysis and biological evaluation. Eur J Med Chem 2016; 125:1247-1267. [PMID: 27875779 DOI: 10.1016/j.ejmech.2016.11.028] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 11/10/2016] [Accepted: 11/12/2016] [Indexed: 12/22/2022]
Abstract
Regioselective 1,4-disubstituted 1,2,3-triazole tethered pyrimidine-2,4-dione derivatives (5-23) were successfully prepared by the copper(I)-catalyzed click chemistry. While known palladium/copper-cocatalyzed method based on Sonogashira cross-coupling followed by the intramolecular 5-endo-dig ring closure generated novel 6-alkylfuro[2,3-d]pyrimidine-2-one-1,2,3-triazole hybrids (24b-37b), a small library of their 5-alkylethynyl analogs (24a-37a) was synthesized and described for the first time by tandem terminal alkyne dimerization and subsequent 5-endo-trig cyclization, which was additionally corroborated with computational and X-ray crystal structure analyses. The nature of substituents on alkynes and thereof homocoupled 1,3-diynes predominantly influenced the ratio of the formed products in both pathways. In vitro antiproliferative activity of prepared compounds evaluated on five human cancer cell lines revealed that N,N-1,3-bis-(1,2,3-triazole)-5-bromouracil (5-7) and 5,6-disubstituted furo[2,3-d]pyrimidine-2-one-1,2,3-triazole 34a hybrids exhibited the most pronounced cytostatic acitivities against hepatocellular carcinoma (HepG2) and cervical carcinoma (HeLa) cells with higher potencies than the reference drug 5-fluorouracil. Cytostatic effect of pyrimidine-2,4-dione-1,2,3-triazole hybrid 7 in HepG2 cells could be attributed to the Wee-1 kinase inhibition and abolishment of sphingolipid signaling mediated by acid ceramidase and sphingosine kinase 1. Importantly, this compound proved to be a non-mitochondrial toxicant, which makes it a promising candidate for further lead optimization and development of a new and more efficient agent for the treatment of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Tomislav Gregorić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, Marulićev Trg 20, HR-10000 Zagreb, Croatia
| | - Mirela Sedić
- University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, HR-51000 Rijeka, Croatia; University of Rijeka, Centre for High-throughput Technologies, Radmile Matejčić 2, HR-51000 Rijeka, Croatia.
| | - Petra Grbčić
- University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | | | - Sandra Kraljević Pavelić
- University of Rijeka, Department of Biotechnology, Radmile Matejčić 2, HR-51000 Rijeka, Croatia; University of Rijeka, Centre for High-throughput Technologies, Radmile Matejčić 2, HR-51000 Rijeka, Croatia
| | - Mario Cetina
- University of Zagreb, Faculty of Textile Technology, Department of Applied Chemistry, Prilaz Baruna Filipovića 28a, HR-10000 Zagreb, Croatia
| | - Robert Vianello
- Computational Organic Chemistry and Biochemistry Group, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, Croatia.
| | - Silvana Raić-Malić
- University of Zagreb, Faculty of Chemical Engineering and Technology, Department of Organic Chemistry, Marulićev Trg 20, HR-10000 Zagreb, Croatia.
| |
Collapse
|
49
|
Synthesis, in vitro anticancer and antibacterial activities and in silico studies of new 4-substituted 1,2,3-triazole-coumarin hybrids. Eur J Med Chem 2016; 124:794-808. [PMID: 27639370 DOI: 10.1016/j.ejmech.2016.08.062] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/19/2023]
Abstract
The 4-substituted 1,2,3-triazole core in designed coumarin hybrids (4-35) with diverse physicochemical properties was introduced by eco-friendly copper(I)-catalyzed Huisgen 1,3-dipolar cycloaddition under microwave irradiation. Coumarin-1,2,3-triazole-benzofused heterocycle hybrids emerged as the class of compounds exhibiting the highest antiproliferative activity. The strong relationship between lipophilicity and antiproliferative activities was observed indicating that lipophilic 1,2,3-triazole-coumarin hybrids containing phenylethyl (13), 3,5-difluorophenyl (14), 5-iodoindole (30) and benzimidazole (33 and 35) subunits showed the most potent cytostatic effects. The 7-methylcoumarin-1,2,3-triazole-2-methylbenzimidazole hybrid 33 can be highlighted as a lead that exerted the highest cytotoxicity against hepatocellular carcinoma HepG2 cells with IC50 value of 0.9 μM and high selectivity (SI = 50). This compound induced cell death, mainly due to early apoptosis. Strong antiproliferative effect of 33 could be associated with its inhibition of 5-lipoxygenase (5-LO) activity and perturbation of sphingolipid signaling by interfering with intracellular acid ceramidase (ASAH) activity. Outlined considerable effect of lipophilicity on antiproliferative activity was not observed for antibacterial activity. The compounds with p-pentylphenyl (17), 2-chloro-4-fluorobenzenesulfonamide (23) and dithiocarbamate (27) moiety were endowed with high selectivity against Enterococcus species. Moreover, these compounds were found to be superior in inhibiting the growth of clinically isolated vancomycin-resistant Enterococcus faecium, while the reference antibiotics exhibited the lack of activity. Our findings indicate that coumarin-1,2,3-triazole could be used as the scaffold for structural optimization to develop more potent and selective anticancer agents and encourage further development of novel structurally related analogs of 33 as more effective 5-LO inhibitors.
Collapse
|
50
|
Chemomics-Integrated Proteomics Analysis of Jie-Geng-Tang to Ameliorate Lipopolysaccharide-Induced Acute Lung Injury in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7379146. [PMID: 27579049 PMCID: PMC4992511 DOI: 10.1155/2016/7379146] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 05/29/2016] [Indexed: 12/12/2022]
Abstract
Jie-Geng-Tang (JGT), a classic and famous traditional Chinese medicine (TCM) prescription composed of Platycodon grandiflorum (Jacq.) A. DC. (PG) and Glycyrrhiza uralensis Fisch. (GU), is well known for "clearing heat and relieving toxicity" and its ability to "diffuse the lung and relieve sore throat." However, the mechanism underlying its action remains unclear. In this study, potential anti-inflammatory ingredients were screened and submitted to PharmMapper and the KEGG bioinformatics website to predict the target proteins and related pathways, respectively. Differentially expressed candidate proteins from acute lung injury (ALI) mice treated with JGT were identified by isobaric tags for relative and absolute quantitation (iTRAQ) and LC Triple-TOF. Eleven potential anti-inflammatory ingredients were found, including the derivatives of glycyrrhizic acid, licorice-saponin, liquiritin, and platycodigenin. A total of sixty-seven differentially expressed proteins were confirmed after JGT treatment with four therapeutic functions, including immunoregulation, anti-inflammation, ribosome, and muscle contraction. PG and GU comediate PI3K/Akt signal pathway inhibition of NF-κB, VCAM1, and ICAM1 release which primarily act on PI3K, PDK1, AKT, and GSK3β. GU markedly inhibits the ERK/MAPK signaling pathways and primarily acts on LCK, RAS, and MEK. A network was constructed using bioactive ingredients, targets, and pathways to determine the mechanism underlying JGT treatment of ALI.
Collapse
|