1
|
Dragoni S, Moccia F, Bootman MD. The Roles of Transient Receptor Potential (TRP) Channels Underlying Aberrant Calcium Signaling in Blood-Retinal Barrier Dysfunction. Cold Spring Harb Perspect Biol 2025; 17:a041763. [PMID: 39586624 DOI: 10.1101/cshperspect.a041763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The inner blood-retinal barrier (iBRB) protects the retinal vasculature from the peripheral circulation. Endothelial cells (ECs) are the core component of the iBRB; their close apposition and linkage via tight junctions limit the passage of fluids, proteins, and cells from the bloodstream to the parenchyma. Dysfunction of the iBRB is a hallmark of many retinal disorders. Vascular endothelial growth factor (VEGF) has been identified as the primary driver leading to a dysfunctional iBRB, thereby becoming the main target for therapy. However, a complete understanding of the molecular mechanisms underlying iBRB dysfunction is elusive and alternative therapeutic targets remain unexplored. Calcium (Ca2+) is a universal intracellular messenger whose homeostasis and dynamics are dysregulated in many pathological disorders. Among the extensive components of the cellular Ca2+-signaling toolkit, cation-selective transient receptor potential (TRP) channels are broadly involved in cell physiology and disease and, therefore, are widely studied as possible targets for therapy. Albeit that TRP channels have been discovered in the photoreceptors of Drosophila and have been studied in the neuroretina, their presence and function in the iBRB have only recently emerged. Within this article, we discuss the structure and functions of the iBRB with a particular focus on Ca2+ signaling in retinal ECs and highlight the potential of TRP channels as new targets for retinal diseases.
Collapse
Affiliation(s)
- Silvia Dragoni
- Institute of Ophthalmology, University College London, London EC1V 9EL, United Kingdom
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani," University of Pavia, Pavia 27100, Italy
| | - Martin D Bootman
- School of Life, Health and Chemical Sciences, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes MK7 6AA, United Kingdom
| |
Collapse
|
2
|
Querio G, Geddo F, Antoniotti S, Femminò S, Gallo MP, Penna C, Pagliaro P. Stay connected: The myoendothelial junction proteins in vascular function and dysfunction. Vascul Pharmacol 2025; 158:107463. [PMID: 39814089 DOI: 10.1016/j.vph.2025.107463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
The appropriate regulation of peripheral vascular tone is crucial for maintaining tissue perfusion. Myoendothelial junctions (MEJs), specialized connections between endothelial cells and vascular smooth muscle cells, are primarily located in peripheral resistance vessels. Therefore, these junctions, with their key membrane proteins, play a pivotal role in the physiological control of relaxation-contraction coupling in resistance arterioles, mainly mediated through endothelium-derived hyperpolarization (EDH). This review aims to illustrate the mechanisms involved in the initiation and propagation of EDH, emphasizing the role of membrane proteins involved in its generation (TRPV4, Piezo1, ASIC1a) and propagation (connexins, Notch). Finally, we discuss relevant studies on pathological events linked to EDH dysfunction and discuss novel approaches, including the effects of natural and dietary bioactive molecules, in modulating EDH-mediated vascular tone.
Collapse
Affiliation(s)
- Giulia Querio
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Federica Geddo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Saveria Femminò
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy.
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Claudia Penna
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy; National Institute for Cardiovascular Research (INRC), 40126 Bologna, Italy.
| | - Pasquale Pagliaro
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, 10043 Orbassano, Italy.
| |
Collapse
|
3
|
Zhang X, Buckley C, Lee MD, Salaun C, MacDonald M, Wilson C, McCarron JG. Increased TRPV4 Channel Expression Enhances and Impairs Blood Vessel Function in Hypertension. Hypertension 2025; 82:57-68. [PMID: 39440451 DOI: 10.1161/hypertensionaha.124.23092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND Endothelial cell TRPV4 (transient receptor potential vanilloid 4) channels provide a control point that is pivotal in regulating blood vessel diameter by mediating the Ca2+-dependent release of endothelial-derived vasoactive factors. In hypertension, TRPV4-mediated control of vascular function is disrupted, but the underlying mechanisms and precise physiological consequences remain controversial. METHODS Here, using a comprehensive array of methodologies, endothelial TRPV4 channel function was examined in intact mesenteric resistance arteries from normotensive Wistar-Kyoto and spontaneously hypertensive rats. RESULTS Our results show there is a notable shift in vascular reactivity in hypertension characterized by enhanced endothelium-dependent vasodilation at low levels of TRPV4 channel activation. However, at higher levels of TRPV4 activity, this vasodilatory response is reversed, contributing to the aberrant vascular tone observed in hypertension. The change in response, from dilation to constriction, was accompanied by a shift in intracellular Ca2+ signaling modalities arising from TRPV4 activity. Oscillatory TRPV4-evoked IP3 (inositol triphosphate)-mediated Ca2+ release, which underlies dilation, decreased, while the contraction inducing sustained Ca2+ rise, arising from TRPV4-mediated Ca2+ influx, increased. Our findings also reveal that while the sensitivity of endothelial cell TRPV4 to activation was unchanged, expression of the channel is upregulated and IP3 receptors are downregulated in hypertension. CONCLUSIONS These data highlight the intricate interplay between endothelial TRPV4 channel expression, intracellular Ca2+ signaling dynamics, and vascular reactivity. Moreover, the data support a new unifying hypothesis for the vascular impairment that accompanies hypertension. Specifically, endothelial cell TRPV4 channels play a dual role in modulating blood vessel function in hypertension.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Christine Salaun
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Margaret MacDonald
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
4
|
Mata-Daboin A, Jaggar JH. Endothelial Cell TRPV4 Channels Turn to the Dark Side During Hypertension. Hypertension 2025; 82:69-71. [PMID: 39693416 DOI: 10.1161/hypertensionaha.124.24124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Affiliation(s)
| | - Jonathan H Jaggar
- Department of Physiology, University of Tennessee Health Science Center, Memphis
| |
Collapse
|
5
|
do Nascimento THO, Pereira-Figueiredo D, Veroneze L, Nascimento AA, De Logu F, Nassini R, Campello-Costa P, Faria-Melibeu ADC, Souza Monteiro de Araújo D, Calaza KC. Functions of TRPs in retinal tissue in physiological and pathological conditions. Front Mol Neurosci 2024; 17:1459083. [PMID: 39386050 PMCID: PMC11461470 DOI: 10.3389/fnmol.2024.1459083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/27/2024] [Indexed: 10/12/2024] Open
Abstract
The Transient Receptor Potential (TRP) constitutes a family of channels subdivided into seven subfamilies: Ankyrin (TRPA), Canonical (TRPC), Melastatin (TRPM), Mucolipin (TRPML), no-mechano-potential C (TRPN), Polycystic (TRPP), and Vanilloid (TRPV). Although they are structurally similar to one another, the peculiarities of each subfamily are key to the response to stimuli and the signaling pathway that each one triggers. TRPs are non-selective cation channels, most of which are permeable to Ca2+, which is a well-established second messenger that modulates several intracellular signaling pathways and is involved in physiological and pathological conditions in various cell types. TRPs depolarize excitable cells by increasing the influx of Ca2+, Na+, and other cations. Most TRP families are activated by temperature variations, membrane stretching, or chemical agents and, therefore, are defined as polymodal channels. All TPRs are expressed, at some level, in the central nervous system (CNS) and ocular-related structures, such as the retina and optic nerve (ON), except the TRPP in the ON. TRPC, TRPM, TRPV, and TRPML are found in the retinal pigmented cells, whereas only TRPA1 and TRPM are detected in the uvea. Accordingly, several studies have focused on the search to unravel the role of TRPs in physiological and pathological conditions related to the eyes. Thus, this review aims to shed light on endogenous and exogenous modulators, triggered cell signaling pathways, and localization and roles of each subfamily of TRP channels in physiological and pathological conditions in the retina, optic nerve, and retinal pigmented epithelium of vertebrates.
Collapse
Affiliation(s)
- Thaianne Hanah Oliveira do Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
| | - Danniel Pereira-Figueiredo
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Louise Veroneze
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Amanda Alves Nascimento
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| | - Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, Florence, Italy
| | - Paula Campello-Costa
- Laboratory of Neuroplasticity, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | - Adriana da Cunha Faria-Melibeu
- Laboratory of Neurobiology of Development, Program of Neurosciences, Department of Neurobiology, Biology Institute, Niteroi, Brazil
| | | | - Karin Costa Calaza
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Biomedical Sciences, Biology Institute, Fluminense Federal University Niterói, Rio de Janeiro, Brazil
- Laboratory Neurobiology of the Retina, Department of Neurobiology and Program of Neurosciences, Biology Institute, Fluminense Federal University, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Li X. lncRNA MALAT1 promotes diabetic retinopathy by upregulating PDE6G via miR-378a-3p. Arch Physiol Biochem 2024; 130:119-127. [PMID: 34674599 DOI: 10.1080/13813455.2021.1985144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/06/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
Diabetic retinopathy (DR) is the main cause of adult insomnia, which causes certain social and economic pressure. This research was to investigate the role and regulatory mechanisms of MALAT1, miR-378a-3p and PDE6g in retinal microvascular endothelial cells (RMECs) under high glucose (HG). MALAT1, Mir-378a-3p and PDE6G expressions level were detected by qRT-PCR and Western blot. The proliferation, Bax and Bcl-2 protein expression of RMECs were detected by CCK-8 and western blot. The target relationships of MALAT1, miR-378a-3p and PDE6G were determined by bioinformatics analysis, dual-luciferase reporter gene, RIP and RNA pull-down assay. HG enhanced the expression of MALAT1 and PDE6G, and inhibited the expression of miR-378a-3p. Overexpression of MALAT1 promotes the proliferation of RMECs and inhibits apoptosis under HG condition. MALAT1 competitively adsorbed miR-378a-3p, which targeted PDE6G. Data reveal that MALAT1/miR-378a-3p/PDE6G signal axis restrain the apoptosis of RMECs under HG. This finding may help to delay the development of DR.
Collapse
Affiliation(s)
- Xiaoxia Li
- Department of Ophthalmology, Wuhan Third Hospital, Wuhan, Hubei, China
| |
Collapse
|
7
|
Katari V, Dalal K, Adapala RK, Guarino BD, Kondapalli N, Paruchuri S, Thodeti CK. A TRP to Pathological Angiogenesis and Vascular Normalization. Compr Physiol 2024; 14:5389-5406. [PMID: 39109978 DOI: 10.1002/cphy.c230014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Uncontrolled angiogenesis underlies various pathological conditions such as cancer, age-related macular degeneration (AMD), and proliferative diabetic retinopathy (PDR). Hence, targeting pathological angiogenesis has become a promising strategy for the treatment of cancer and neovascular ocular diseases. However, current pharmacological treatments that target VEGF signaling have met with limited success either due to acquiring resistance against anti-VEGF therapies with serious side effects including nephrotoxicity and cardiovascular-related adverse effects in cancer patients or retinal vasculitis and intraocular inflammation after intravitreal injection in patients with AMD or PDR. Therefore, there is an urgent need to develop novel strategies which can control multiple aspects of the pathological microenvironment and regulate the process of abnormal angiogenesis. To this end, vascular normalization has been proposed as an alternative for antiangiogenesis approach; however, these strategies still focus on targeting VEGF or FGF or PDGF which has shown adverse effects. In addition to these growth factors, calcium has been recently implicated as an important modulator of tumor angiogenesis. This article provides an overview on the role of major calcium channels in endothelium, TRP channels, with a special focus on TRPV4 and its downstream signaling pathways in the regulation of pathological angiogenesis and vascular normalization. We also highlight recent findings on the modulation of TRPV4 activity and endothelial phenotypic transformation by tumor microenvironment through Rho/YAP/VEGFR2 mechanotranscriptional pathways. Finally, we provide perspective on endothelial TRPV4 as a novel VEGF alternative therapeutic target for vascular normalization and improved therapy. © 2024 American Physiological Society. Compr Physiol 14:5389-5406, 2024.
Collapse
Affiliation(s)
- Venkatesh Katari
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Kesha Dalal
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Ravi K Adapala
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Brianna D Guarino
- Vascular Research Lab, Providence Veterans Affairs Medical Center, Providence, Rhode Island, USA
- Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Narendrababu Kondapalli
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Sailaja Paruchuri
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| | - Charles K Thodeti
- Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Toledo, Ohio, USA
| |
Collapse
|
8
|
Zhang X, Wang F, Su Y. TRPV: An emerging target in glaucoma and optic nerve damage. Exp Eye Res 2024; 239:109784. [PMID: 38199261 DOI: 10.1016/j.exer.2024.109784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/30/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Transient receptor potential vanilloid (TRPV) channels are members of the TRP channel superfamily, which are ion channels that sense mechanical and osmotic stimuli and participate in Ca2+ signalling across the cell membrane. TRPV channels play important roles in maintaining the normal functions of an organism, and defects or abnormalities in TRPV channel function cause a range of diseases, including cardiovascular, neurological and urological disorders. Glaucoma is a group of chronic progressive optic nerve diseases with pathological changes that can occur in the tissues of the anterior and posterior segments of the eye, including the ciliary body, trabecular meshwork, Schlemm's canal, and retina. TRPV channels are expressed in these tissues and play various roles in glaucoma. In this article, we review various aspects of the pathogenesis of glaucoma, the structure and function of TRPV channels, the relationship between TRPV channels and systemic diseases, and the relationship between TRPV channels and ocular diseases, especially glaucoma, and we suggest future research directions. This information will help to further our understanding of TRPV channels and provide new ideas and targets for the treatment of glaucoma and optic nerve damage.
Collapse
Affiliation(s)
- Xiaotong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Feng Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Ying Su
- Eye Hospital, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
9
|
Matsumoto T, Taguchi K, Kobayashi T. Role of TRPV4 on vascular tone regulation in pathophysiological states. Eur J Pharmacol 2023; 959:176104. [PMID: 37802278 DOI: 10.1016/j.ejphar.2023.176104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/20/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
Vascular tone regulation is a key event in controlling blood flow in the body. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) help regulate the vascular tone. Abnormal vascular responsiveness to various stimuli, including constrictors and dilators, has been observed in pathophysiological states although EC and VSMC coordinate to maintain the exquisite balance between contraction and relaxation in vasculatures. Thus, investigating the mechanisms underlying vascular tone abnormality is very important in maintaining vascular health and treating vasculopathy. Increased intracellular free Ca2+ concentration ([Ca2+]i) is one of the major triggers initiating each EC and VSMC response. Transient receptor potential vanilloid family member 4 (TRPV4) is a Ca2+-permeable non-selective ion channel, which is activated by several stimuli, and is presented in both ECs and VSMCs. Therefore, TRPV4 plays an important role in vascular responses. Emerging evidence indicates the role of TRPV4 on the functions of ECs and VSMCs in various pathophysiological states, including hypertension, diabetes, and obesity. This review focused on the link between TRPV4 and the functions of ECs/VSMCs, particularly its role in vascular tone and responsiveness to vasoactive substances.
Collapse
Affiliation(s)
- Takayuki Matsumoto
- Department of Pharmaceutical Education and Research, Pharmaceutical Education and Research Center, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Kumiko Taguchi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| | - Tsuneo Kobayashi
- Department of Physiology and Morphology, Institute of Medicinal Chemistry, Hoshi University, Shinagawa-ku, Tokyo, 142-8501, Japan
| |
Collapse
|
10
|
Crincoli E, Colantuono D, Miere A, Zhao Z, Ferrara S, Souied EH. Perivenular Capillary Rarefaction in Diabetic Retinopathy: Interdevice Characterization and Association to Clinical Staging. OPHTHALMOLOGY SCIENCE 2023; 3:100269. [PMID: 36875334 PMCID: PMC9978849 DOI: 10.1016/j.xops.2023.100269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/29/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Purpose Geometric perfusion deficit (GPD) is a newly described OCT angiography (OCTA) parameter identifying the total area of presumed retinal ischemia. The aim of our study is to characterize differences in GPD and other common quantitative OCTA parameters between macular full field, perivenular zones, and periarteriolar zones for each clinical stage of nonproliferative diabetic retinopathy (DR) and to assess the influence of ultrahigh-speed acquisition and averaging on the described differences. Design Prospective observational study. Participants Forty-nine patients, including 11 (22.4%) with no sign of DR, 12 (24.5%) with mild DR, 13 (26.5%) with moderate DR, and 13 (26.5%) with severe DR. Patients with diabetic macular edema, proliferative DR, media opacity, head tremor, and overlapping retinal diseases or systemic diseases influencing OCTA were excluded. Methods OCT angiography was performed 3 times for each patient: 1 using Solix Fullrange single volume (V1) mode, 1 using Solix Fullrange 4 volumes mode with automatically averaged scan (V4), and 1 using AngioVue. Main Outcome Measures Full macular, periarteriolar, and perivenular perfusion density (PD), vessel length density (VLD), vessel density index, and GPD for both the superficial capillary plexus (SCP) and deep capillary plexus (DCP). Results In patients showing no sign of DR, PD and VLD were significantly lower in the perivenular area in both the DCP and SCP using V1 and V4, whereas GPD was significantly higher in the perivenular zone in the DCP and SCP with all 3 devices. In patients with mild DR, all 3 measurements (PD, VLD, and GPD) were significantly different in the perivenular zone with all 3 devices. In patients with moderate DR, PD and VLD were lower in the DCP and SCP when measured with V1 and V4. Moreover, GPD was higher in the perivenular zone in the DCP with all 3 devices, whereas only V4 detected a difference in the SCP. In severe DR, only V4 detected a lower PD and VLD and a higher GPD in the DCP of the perivenular zone. V4 also detected a higher GPD in the SCP. Conclusions Geometric perfusion deficit highlights prevalent perivenular location of macular capillary ischemia in all stages of DR. In severe DR patients, only averaging technology allows detection of the same finding. Financial Disclosures The author(s) have no proprietary or commercial interest in any materials discussed in this article.
Collapse
Key Words
- Capillary ischemia
- DCP, deep capillary plexus
- DR, diabetic retinopathy
- Diabetic retinopathy
- GPD, geometric perfusion deficit
- Geometric perfusion density
- OCT angiography
- OCTA, OCT angiography
- PD, perfusion density
- ROIs, regions of interest
- SCP, superficial capillary plexus
- V1, single volume
- V4, 4 volumes mode with automatically averaged scan
- VDI, vessel density index
- VLD, vessel length density
Collapse
Affiliation(s)
- Emanuele Crincoli
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, Créteil, France
- Catholic University of “Sacro Cuore”, Rome, Italy
| | - Donato Colantuono
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, Créteil, France
| | - Alexandra Miere
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, Créteil, France
| | - Zhanlin Zhao
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, Créteil, France
| | | | - Eric H. Souied
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil 40, Créteil, France
| |
Collapse
|
11
|
Križaj D, Cordeiro S, Strauß O. Retinal TRP channels: Cell-type-specific regulators of retinal homeostasis and multimodal integration. Prog Retin Eye Res 2023; 92:101114. [PMID: 36163161 PMCID: PMC9897210 DOI: 10.1016/j.preteyeres.2022.101114] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 02/05/2023]
Abstract
Transient receptor potential (TRP) channels are a widely expressed family of 28 evolutionarily conserved cationic ion channels that operate as primary detectors of chemical and physical stimuli and secondary effectors of metabotropic and ionotropic receptors. In vertebrates, the channels are grouped into six related families: TRPC, TRPV, TRPM, TRPA, TRPML, and TRPP. As sensory transducers, TRP channels are ubiquitously expressed across the body and the CNS, mediating critical functions in mechanosensation, nociception, chemosensing, thermosensing, and phototransduction. This article surveys current knowledge about the expression and function of the TRP family in vertebrate retinas, which, while dedicated to transduction and transmission of visual information, are highly susceptible to non-visual stimuli. Every retinal cell expresses multiple TRP subunits, with recent evidence establishing their critical roles in paradigmatic aspects of vertebrate vision that include TRPM1-dependent transduction of ON bipolar signaling, TRPC6/7-mediated ganglion cell phototransduction, TRP/TRPL phototransduction in Drosophila and TRPV4-dependent osmoregulation, mechanotransduction, and regulation of inner and outer blood-retina barriers. TRP channels tune light-dependent and independent functions of retinal circuits by modulating the intracellular concentration of the 2nd messenger calcium, with emerging evidence implicating specific subunits in the pathogenesis of debilitating diseases such as glaucoma, ocular trauma, diabetic retinopathy, and ischemia. Elucidation of TRP channel involvement in retinal biology will yield rewards in terms of fundamental understanding of vertebrate vision and therapeutic targeting to treat diseases caused by channel dysfunction or over-activation.
Collapse
Affiliation(s)
- David Križaj
- Departments of Ophthalmology, Neurobiology, and Bioengineering, University of Utah, Salt Lake City, USA
| | - Soenke Cordeiro
- Institute of Physiology, Faculty of Medicine, Christian-Albrechts-University Kiel, Germany
| | - Olaf Strauß
- Experimental Ophthalmology, Department of Ophthalmology, Charité - Universitätsmedizin Berlin, a Corporate Member of Freie Universität, Humboldt-University, The Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
12
|
Tikhonova IV, Grinevich AA, Tankanag AV, Safronova VG. Skin Microhemodynamics and Mechanisms of Its Regulation in Type 2 Diabetes Mellitus. Biophysics (Nagoya-shi) 2022; 67:647-659. [PMID: 36281313 PMCID: PMC9581453 DOI: 10.1134/s0006350922040200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/07/2022] Open
Abstract
The review presents modern ideas about peripheral microhemodynamics, approaches to the ana-lysis of skin blood flow oscillations and their diagnostic significance. Disorders of skin microhemodynamics in type 2 diabetes mellitus (DM) and the possibility of their interpretation from the standpoint of external and internal interactions between systems of skin blood flow regulation, based on a comparison of couplings in normal and pathological conditions, including models of pathologies on animals, are considered. The factors and mechanisms of vasomotor regulation, among them receptors and signaling events in endothelial and smooth muscle cells considered as models of microvessels are discussed. Attention was drawn to the disturbance of Ca2+-dependent regulation of coupling between vascular cells and NO-dependent regulation of vasodilation in diabetes mellitus. The main mechanisms of insulin resistance in type 2 DM are considered to be a defect in the number of insulin receptors and impaired signal transduction from the receptor to phosphatidylinositol-3-kinase and downstream targets. Reactive oxygen species plays an important role in vascular dysfunction in hyperglycemia. It is assumed that the considered molecular and cellular mechanisms of microhemodynamics regulation are involved in the formation of skin blood flow oscillations. Parameters of skin blood microcirculation can be used as diagnostic and prognostic markers for assessing the state of the body.
Collapse
Affiliation(s)
- I. V. Tikhonova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - A. A. Grinevich
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - A. V. Tankanag
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| | - V. G. Safronova
- Institute of Cell Biophysics, Russian Academy of Sciences, 142290 Pushchino, Moscow oblast Russia
| |
Collapse
|
13
|
linc00174 deteriorates the pathogenesis of diabetic retinopathy via miR-26a-5p/PTEN/Akt signalling cascade-mediated pyroptosis. Biochem Biophys Res Commun 2022; 630:92-100. [PMID: 36152350 DOI: 10.1016/j.bbrc.2022.09.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 08/23/2022] [Accepted: 09/03/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE We aim to investigate the potential role and underlying mechanisms of linc00174 on pyroptosis in the pathogenesis of DR. METHODS Expression patterns of linc00174, miR-26a-5p and PTEN in human retinal microvascular endothelial cells (hRMECs) were detected by quantitative real-time PCR (qRT-PCR) and Western blot, respectively. Biological functions of linc00174 on cell proliferation and pyroptosis were evaluated by CCK-8, flow cytometry, caspase-1 activity assays, respectively. Luciferase reporter assay was employed to verify the interaction between miR-26a-5p and linc00174/PTEN. Streptozotocin (STZ)-induced DR in mice was further constructed to verify the potential role of linc00174 in vivo. Hematoxylin and eosin (H&E) and immunohistochemical staining were performed to assess the pathological changes and caspase-1 expression in retinal tissues. RESULTS Up-regulated linc00174 and PTEN and down-regulated miR-26a-5p were uncovered in hRMECs treated with high glucose (HG). Mechanistically, linc00174 served as a sponge of miR-26a-5p to facilitate PTEN expression. Functionally, knockdown of linc00174 inhibited HG-induced pyroptosis of hRMECs via targeting miR-26a-5p. Moreover, linc00174/miR-26a-5p axis participated in HG-induced pyroptosis via PTEN/Akt signaling cascade. Further, silencing of linc00174 attenuated pyroptosis via regulating miR-26a-5p/PETN axis in DR mice. CONCLUSIONS Collectively, our study reveals that linc10074 deteriorates the pathogenesis of DR via miR-26a-5p/PTEN/Akt signalling cascade, which may shed light on the discovery of potential therapeutic agents for DR treatment.
Collapse
|
14
|
Caires R, Garrud TAC, Romero LO, Fernández-Peña C, Vásquez V, Jaggar JH, Cordero-Morales JF. Genetic- and diet-induced ω-3 fatty acid enrichment enhances TRPV4-mediated vasodilation in mice. Cell Rep 2022; 40:111306. [PMID: 36070688 PMCID: PMC9498980 DOI: 10.1016/j.celrep.2022.111306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/19/2022] Open
Abstract
TRPV4 channel activation in endothelial cells leads to vasodilation, while impairment of TRPV4 activity is implicated in vascular dysfunction. Strategies that increase TRPV4 activity could enhance vasodilation and ameliorate vascular disorders. Here, we show that supplementation with eicosapentaenoic acid (EPA), an ω-3 polyunsaturated fatty acid known to have beneficial cardiovascular effects, increases TRPV4 activity in human endothelial cells of various vascular beds. Mice carrying the C. elegans FAT-1 enzyme, which converts ω-6 to ω-3 polyunsaturated fatty acids, display higher EPA content and increased TRPV4-mediated vasodilation in mesenteric arteries. Likewise, mice fed an EPA-enriched diet exhibit enhanced and prolonged TRPV4-dependent vasodilation in an endothelial cell-specific manner. We also show that EPA supplementation reduces TRPV4 desensitization, which contributes to the prolonged vasodilation. Neutralization of positive charges in the TRPV4 N terminus impairs the effect of EPA on channel desensitization. These findings highlight the beneficial effects of manipulating fatty acid content to enhance TRPV4-mediated vasodilation.
Collapse
Affiliation(s)
- Rebeca Caires
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Tessa A C Garrud
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Luis O Romero
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Integrated Biomedical Sciences Graduate Program, College of Graduate Health Sciences, Memphis, TN 38163, USA
| | - Carlos Fernández-Peña
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Valeria Vásquez
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jonathan H Jaggar
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Julio F Cordero-Morales
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
15
|
Lapajne L, Rudzitis CN, Cullimore B, Ryskamp D, Lakk M, Redmon SN, Yarishkin O, Krizaj D. TRPV4: Cell type-specific activation, regulation and function in the vertebrate eye. CURRENT TOPICS IN MEMBRANES 2022; 89:189-219. [PMID: 36210149 PMCID: PMC9879314 DOI: 10.1016/bs.ctm.2022.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The architecture of the vertebrate eye is optimized for efficient delivery and transduction of photons and processing of signaling cascades downstream from phototransduction. The cornea, lens, retina, vasculature, ciliary body, ciliary muscle, iris and sclera have specialized functions in ocular protection, transparency, accommodation, fluid regulation, metabolism and inflammatory signaling, which are required to enable function of the retina-light sensitive tissue in the posterior eye that transmits visual signals to relay centers in the midbrain. This process can be profoundly impacted by non-visual stimuli such as mechanical (tension, compression, shear), thermal, nociceptive, immune and chemical stimuli, which target these eye regions to induce pain and precipitate vision loss in glaucoma, diabetic retinopathy, retinal dystrophies, retinal detachment, cataract, corneal dysfunction, ocular trauma and dry eye disease. TRPV4, a polymodal nonselective cation channel, integrate non-visual inputs with homeostatic and signaling functions of the eye. The TRPV4 gene is expressed in most if not all ocular tissues, which vary widely with respect to the mechanisms of TRPV4 channel activation, modulation, oligomerization, and participation in protein- and lipid interactions. Under- and overactivation of TRPV4 may affect intraocular pressure, maintenance of blood-retina barriers, lens accommodation, neuronal function and neuroinflammation. Because TRPV4 dysregulation precipitates many pathologies across the anterior and posterior eye, the channel could be targeted to mitigate vision loss.
Collapse
Affiliation(s)
- Luka Lapajne
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States; Department of Ophthalmology, University Medical Centre, University of Ljubljana, Ljubljana, Slovenia
| | - Christopher N Rudzitis
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Brenan Cullimore
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Daniel Ryskamp
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Sarah N Redmon
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - David Krizaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, United States; Department of Neurobiology, University of Utah, Salt Lake City, UT, United States; Department of Bioengineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
16
|
Wang C, Wang K, Li P. Blueberry anthocyanins extract attenuated diabetic retinopathy by inhibiting endoplasmic reticulum stress via the miR-182/OGG1 axis. J Pharmacol Sci 2022; 150:31-40. [DOI: 10.1016/j.jphs.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 10/18/2022] Open
|
17
|
[Wogonoside alleviates high glucose-induced dysfunction of retinal microvascular endothelial cells and diabetic retinopathy in rats by up-regulating SIRT1]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2022; 42:463-472. [PMID: 35527482 PMCID: PMC9085582 DOI: 10.12122/j.issn.1673-4254.2022.04.02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the effects of wogonoside on high glucose-induced dysfunction of human retinal microvascular endothelial cells (hRMECs) and streptozotocin (STZ)-induced diabetic retinopathy in rats and explore the underlying molecular mechanism. METHODS HRMECs in routine culture were treated with 25 mmol/L mannitol or exposed to high glucose (30 mmol/L glucose) and treatment with 10, 20, 30, 40 μmol/L wogonoside. CCK-8 assay and Transwell assay were used to examine cell proliferation and migration, and the changes in tube formation and monolayer cell membrane permeability were tested. ROS, NO and GSH-ST kits were used to evaluate oxidative stress levels in the cells. The expressions of IL-1β and IL-6 in the cells were examined with qRT-PCR and ELISA, and the protein expressions of VEGF, HIF-1α and SIRT1 were detected using Western blotting. We also tested the effect of wogonoside on retinal injury and expressions of HIF-1α, ROS, VEGF, TNF-α, IL-1β, IL-6 and SIRT1 proteins in rat models of STZ-induced diabetic retinopathy. RESULTS High glucose exposure caused abnormal proliferation and migration, promoted angiogenesis, increased membrane permeability (P < 0.05), and induced inflammation and oxidative stress in hRMECs (P < 0.05). Wogonoside treatment concentration-dependently inhibited high glucose-induced changes in hRMECs. High glucose exposure significantly lowered the expression of SIRT1 in hRMECs, which was partially reversed by wogonoside (30 μmol/L) treatment; interference of SIRT1 obviously attenuated the inhibitory effects of wogonoside against high glucose-induced changes in proliferation, migration, angiogenesis, membrane permeability, inflammation and oxidative stress in hRMECs. In rat models of STZ-induced diabetic retinopathy, wogonoside effectively suppressed retinal thickening (P < 0.05), alleviated STZ-induced retinal injury, and increased the expression of SIRT1 in the retinal tissues (P < 0.001). CONCLUSION Wogonoside alleviates retinal damage caused by diabetic retinopathy by up-regulating SIRT1 expression.
Collapse
|
18
|
Taylor MS, Lowery J, Choi CS, Francis M. Restricted Intimal Ca 2+ Signaling Associated With Cardiovascular Disease. Front Physiol 2022; 13:848681. [PMID: 35492608 PMCID: PMC9040708 DOI: 10.3389/fphys.2022.848681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Endothelial dysfunction is a key feature of cardiovascular disease (CVD) including atherosclerosis. Impaired endothelial signaling leads to plaque formation, vascular wall remodeling and widespread cardiovascular dysregulation. The specific changes along the vascular intima associated with atherosclerosis, including the vulnerable circulation downstream of the flow obstruction, remain poorly understood. Previous findings from animal models suggest that preservation of a distinct Ca2+ signaling profile along the arterial endothelial network is crucial for maintaining vasculature homeostasis and preventing arterial disease. Ca2+ signaling in the intact human artery intima has not been well characterized. Here, we employed confocal imaging and a custom analysis algorithm to assess the spatially and temporally dynamic Ca2+ signaling profiles of human peripheral arteries isolated from the amputated legs of patients with advanced CVD (peripheral artery disease and/or diabetes) or patients who had lost limbs due to non-cardiovascular trauma. In all tibial artery branches (0.5-5 mm diameter) assessed, the intima consistently elicited a broad range of basal Ca2+ signals ranging from isolated focal transients to broad waves. Arteries from patients with existing CVD displayed a restricted intimal Ca2+ signaling pattern characterized by diminished event amplitude and area. Stimulation of type-4 vanilloid transient receptor potential channels (TRPV4) amplified endothelial Ca2+ signals; however, these signals remained smaller and spatially confined in arteries from patients with CVD verses those without CVD. Our findings reveal a characteristic underlying basal Ca2+ signaling pattern within the intima of human peripheral arteries and suggest a distinct truncation of the inherent Ca2+ profile with CVD.
Collapse
Affiliation(s)
- Mark S. Taylor
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Jordan Lowery
- Department of Pathology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Chung-Sik Choi
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| | - Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, AL, United States
| |
Collapse
|
19
|
Zhang X, Lee MD, Buckley C, Wilson C, McCarron JG. Mitochondria regulate TRPV4-mediated release of ATP. Br J Pharmacol 2022; 179:1017-1032. [PMID: 34605007 DOI: 10.1111/bph.15687] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Ca2+ influx via TRPV4 channels triggers Ca2+ release from the IP3 -sensitive internal store to generate repetitive oscillations. Although mitochondria are acknowledged regulators of IP3 -mediated Ca2+ release, how TRPV4-mediated Ca2+ signals are regulated by mitochondria is unknown. We show that depolarised mitochondria switch TRPV4 signalling from relying on Ca2+ -induced Ca2+ release at IP3 receptors to being independent of Ca2+ influx and instead mediated by ATP release via pannexins. EXPERIMENTAL APPROACH TRPV4-evoked Ca2+ signals were individually examined in hundreds of cells in the endothelium of rat mesenteric resistance arteries using the indicator Cal520. KEY RESULTS TRPV4 activation with GSK1016790A (GSK) generated repetitive Ca2+ oscillations that required Ca2+ influx. However, when the mitochondrial membrane potential was depolarised, by the uncoupler CCCP or complex I inhibitor rotenone, TRPV4 activation generated large propagating, multicellular, Ca2+ waves in the absence of external Ca2+ . The ATP synthase inhibitor oligomycin did not potentiate TRPV4-mediated Ca2+ signals. GSK-evoked Ca2+ waves, when mitochondria were depolarised, were blocked by the TRPV4 channel blocker HC067047, the SERCA inhibitor cyclopiazonic acid, the PLC blocker U73122 and the inositol trisphosphate receptor blocker caffeine. The Ca2+ waves were also inhibited by the extracellular ATP blockers suramin and apyrase and the pannexin blocker probenecid. CONCLUSION AND IMPLICATIONS These results highlight a previously unknown role of mitochondria in shaping TRPV4-mediated Ca2+ signalling by facilitating ATP release. When mitochondria are depolarised, TRPV4-mediated release of ATP via pannexin channels activates plasma membrane purinergic receptors to trigger IP3 -evoked Ca2+ release.
Collapse
Affiliation(s)
- Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
20
|
Thébault S. Minireview: Insights into the role of TRP channels in the retinal circulation and function. Neurosci Lett 2021; 765:136285. [PMID: 34634394 DOI: 10.1016/j.neulet.2021.136285] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/17/2022]
Abstract
Consistent with their wide distribution throughout the CNS, transcripts of all transient receptor potential (TRP) cation channel superfamily members have been detected in both neuronal and non-neuronal cells of the mammalian retina. Evidence shows that members of the TRPC (canonical, TRPC1/4/5/6), TRPV (vanilloid, TRPV1/2/4), TRPM (melastatin, TRPM1/2/3/5), TRPA (ankyrin, TRPA1), and TRPP (polycystin, TRPP2) subfamilies contribute to retinal function and circulation in health and disease, but the relevance of most TRPs has yet to be determined. Their principal role in light detection is far better understood than their participation in the control of intraocular pressure, retinal blood flow, oxidative stress, ion homeostasis, and transmitter signaling for retinal information processing. Moreover, if the therapeutic potential of targeting some TRPs to treat various retinal diseases remains speculative, recent studies highlight that vision restoration strategies are very likely to benefit from the thermo- and mechanosensitive properties of TRPs. This minireview focuses on the evidence of the past 5 years about the role of TRPs in the retina and retinal circulation, raises some possibilities about the function of TRPs in the retina, and discusses the potential sources of endogenous stimuli for TRPs in this tissue, as a reflection for future studies.
Collapse
Affiliation(s)
- Stéphanie Thébault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, 76230 Querétaro, Mexico.
| |
Collapse
|
21
|
Goto K, Kitazono T. The Transient Receptor Potential Vanilloid 4 Channel and Cardiovascular Disease Risk Factors. Front Physiol 2021; 12:728979. [PMID: 34616307 PMCID: PMC8488390 DOI: 10.3389/fphys.2021.728979] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Vascular endothelial cells regulate arterial tone through the release of nitric oxide and other diffusible factors such as prostacyclin and endothelium derived hyperpolarizing factors. Alongside these diffusible factors, contact-mediated electrical propagation from endothelial cells to smooth muscle cells via myoendothelial gap junctions, termed endothelium-dependent hyperpolarization (EDH), plays a critical role in endothelium-dependent vasodilation in certain vascular beds. A rise in intracellular Ca2+ concentration in endothelial cells is a prerequisite for both the production of diffusible factors and the generation of EDH, and Ca2+ influx through the endothelial transient receptor potential vanilloid 4 (TRPV4) ion channel, a nonselective cation channel of the TRP family, plays a critical role in this process in various vascular beds. Emerging evidence suggests that the dysregulation of endothelial TRPV4 channels underpins endothelial dysfunction associated with cardiovascular disease (CVD) risk factors, including hypertension, obesity, diabetes, and aging. Because endothelial dysfunction is a precursor to CVD, a better understanding of the mechanisms underlying impaired TRPV4 channels could lead to novel therapeutic strategies for CVD prevention. In this mini review, we present the current knowledge of the pathophysiological changes in endothelial TRPV4 channels associated with CVD risk factors, and then explore the underlying mechanisms involved.
Collapse
Affiliation(s)
- Kenichi Goto
- Department of Health Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
22
|
Cappelli HC, Guarino BD, Kanugula AK, Adapala RK, Perera V, Smith MA, Paruchuri S, Thodeti CK. Transient receptor potential vanilloid 4 channel deletion regulates pathological but not developmental retinal angiogenesis. J Cell Physiol 2021; 236:3770-3779. [PMID: 33078410 PMCID: PMC7920906 DOI: 10.1002/jcp.30116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 01/08/2023]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channels are mechanosensitive ion channels that regulate systemic endothelial cell (EC) functions such as vasodilation, permeability, and angiogenesis. TRPV4 is expressed in retinal ganglion cells, Müller glia, pigment epithelium, microvascular ECs, and modulates cell volume regulation, calcium homeostasis, and survival. TRPV4-mediated physiological or pathological retinal angiogenesis remains poorly understood. Here, we demonstrate that TRPV4 is expressed, functional, and mechanosensitive in retinal ECs. The genetic deletion of TRPV4 did not affect postnatal developmental angiogenesis but increased pathological neovascularization in response to oxygen-induced retinopathy (OIR). Retinal vessels from TRPV4 knockout mice subjected to OIR exhibited neovascular tufts that projected into the vitreous humor and displayed reduced pericyte coverage compared with wild-type mice. These results suggest that TRPV4 is a regulator of retinal angiogenesis, its deletion augments pathological retinal angiogenesis, and that TRPV4 could be a novel target for the development of therapies against neovascular ocular diseases.
Collapse
Affiliation(s)
- Holly C. Cappelli
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
- School of Biomedical Sciences, Kent State University, Kent, OH 44240
| | - Brianna D. Guarino
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Anantha K. Kanugula
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Ravi K. Adapala
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
- School of Biomedical Sciences, Kent State University, Kent, OH 44240
| | - Vidushani Perera
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
| | - Matthew A. Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
- Rebbeca D. Considine Research Institute, Akron Children’s Hospital, Akron, OH 44302
| | | | - Charles K. Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272
- School of Biomedical Sciences, Kent State University, Kent, OH 44240
| |
Collapse
|
23
|
Tanokashira D, Wang W, Maruyama M, Kuroiwa C, White MF, Taguchi A. Irs2 deficiency alters hippocampus-associated behaviors during young adulthood. Biochem Biophys Res Commun 2021; 559:148-154. [PMID: 33940386 DOI: 10.1016/j.bbrc.2021.04.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 04/24/2021] [Indexed: 10/21/2022]
Abstract
Type 2 diabetes mellitus (T2DM), characterized by hyperglycemia and insulin resistance, has been recognized as a risk factor for cognitive impairment and dementia, including Alzheimer's disease (AD). Insulin receptor substrate2 (IRS2) is a major component of the insulin/insulin-like growth factor-1 signaling pathway. Irs2 deletion leads to life-threatening T2DM, promoting premature death in male mice regardless of their genetic background. Here, we showed for the first time that young adult male mice lacking Irs2 on a C57BL/6J genetic background (Irs2-/-/6J) survived in different experimental environments and displayed hippocampus-associated behavioral alterations. Young adult male Irs2-/-/6J mice also exhibit aberrant alterations in energy and nutrient sensors, such as AMP-activated protein kinase (AMPK) and glucose transporter3 (GLUT3), and reduced core body temperature accompanied by abnormal change in the temperature sensor in the brain. These results suggest that Irs2 deficiency-induced impairments of brain energy metabolism and thermoregulation contribute to hippocampus-associated behavioral changes in young adult male mice.
Collapse
Affiliation(s)
- Daisuke Tanokashira
- Department of Integrative Neuroscience, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Wei Wang
- Department of Integrative Neuroscience, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Megumi Maruyama
- Department of Integrative Neuroscience, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Chiemi Kuroiwa
- Department of Integrative Neuroscience, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan
| | - Morris F White
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Akiko Taguchi
- Department of Integrative Neuroscience, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8511, Japan.
| |
Collapse
|
24
|
Moraes RDA, Webb RC, Silva DF. Vascular Dysfunction in Diabetes and Obesity: Focus on TRP Channels. Front Physiol 2021; 12:645109. [PMID: 33716794 PMCID: PMC7952965 DOI: 10.3389/fphys.2021.645109] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential (TRP) superfamily consists of a diverse group of non-selective cation channels that has a wide tissue distribution and is involved in many physiological processes including sensory perception, secretion of hormones, vasoconstriction/vasorelaxation, and cell cycle modulation. In the blood vessels, TRP channels are present in endothelial cells, vascular smooth muscle cells, perivascular adipose tissue (PVAT) and perivascular sensory nerves, and these channels have been implicated in the regulation of vascular tone, vascular cell proliferation, vascular wall permeability and angiogenesis. Additionally, dysfunction of TRP channels is associated with cardiometabolic diseases, such as diabetes and obesity. Unfortunately, the prevalence of diabetes and obesity is rising worldwide, becoming an important public health problems. These conditions have been associated, highlighting that obesity is a risk factor for type 2 diabetes. As well, both cardiometabolic diseases have been linked to a common disorder, vascular dysfunction. In this review, we briefly consider general aspects of TRP channels, and we focus the attention on TRPC (canonical or classical), TRPV (vanilloid), TRPM (melastatin), and TRPML (mucolipin), which were shown to be involved in vascular alterations of diabetes and obesity or are potentially linked to vascular dysfunction. Therefore, elucidation of the functional and molecular mechanisms underlying the role of TRP channels in vascular dysfunction in diabetes and obesity is important for the prevention of vascular complications and end-organ damage, providing a further therapeutic target in the treatment of these metabolic diseases.
Collapse
Affiliation(s)
- Raiana Dos Anjos Moraes
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| | - R Clinton Webb
- Department of Cell Biology and Anatomy and Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Darízy Flávia Silva
- Laboratory of Cardiovascular Physiology and Pharmacology, Institute of Health Sciences, Federal University of Bahia, Salvador, Brazil.,Postgraduate Course in Biotechnology in Health and Investigative Medicine, Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Brazil
| |
Collapse
|
25
|
TRPing to the Point of Clarity: Understanding the Function of the Complex TRPV4 Ion Channel. Cells 2021; 10:cells10010165. [PMID: 33467654 PMCID: PMC7830798 DOI: 10.3390/cells10010165] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
The transient receptor potential vanilloid 4 channel (TRPV4) belongs to the mammalian TRP superfamily of cation channels. TRPV4 is ubiquitously expressed, activated by a disparate array of stimuli, interacts with a multitude of proteins, and is modulated by a range of post-translational modifications, the majority of which we are only just beginning to understand. Not surprisingly, a great number of physiological roles have emerged for TRPV4, as have various disease states that are attributable to the absence, or abnormal functioning, of this ion channel. This review will highlight structural features of TRPV4, endogenous and exogenous activators of the channel, and discuss the reported roles of TRPV4 in health and disease.
Collapse
|
26
|
Nieves-Cintrón M, Flores-Tamez VA, Le T, Baudel MMA, Navedo MF. Cellular and molecular effects of hyperglycemia on ion channels in vascular smooth muscle. Cell Mol Life Sci 2021; 78:31-61. [PMID: 32594191 PMCID: PMC7765743 DOI: 10.1007/s00018-020-03582-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 06/10/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Diabetes affects millions of people worldwide. This devastating disease dramatically increases the risk of developing cardiovascular disorders. A hallmark metabolic abnormality in diabetes is hyperglycemia, which contributes to the pathogenesis of cardiovascular complications. These cardiovascular complications are, at least in part, related to hyperglycemia-induced molecular and cellular changes in the cells making up blood vessels. Whereas the mechanisms mediating endothelial dysfunction during hyperglycemia have been extensively examined, much less is known about how hyperglycemia impacts vascular smooth muscle function. Vascular smooth muscle function is exquisitely regulated by many ion channels, including several members of the potassium (K+) channel superfamily and voltage-gated L-type Ca2+ channels. Modulation of vascular smooth muscle ion channels function by hyperglycemia is emerging as a key contributor to vascular dysfunction in diabetes. In this review, we summarize the current understanding of how diabetic hyperglycemia modulates the activity of these ion channels in vascular smooth muscle. We examine underlying mechanisms, general properties, and physiological relevance in the context of myogenic tone and vascular reactivity.
Collapse
Affiliation(s)
- Madeline Nieves-Cintrón
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Víctor A Flores-Tamez
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Thanhmai Le
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | | | - Manuel F Navedo
- Department of Pharmacology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
27
|
Espadas-Álvarez H, Martínez-Rendón J, Larre I, Matamoros-Volante A, Romero-García T, Rosenbaum T, Rueda A, García-Villegas R. TRPV4 activity regulates nuclear Ca 2+ and transcriptional functions of β-catenin in a renal epithelial cell model. J Cell Physiol 2020; 236:3599-3614. [PMID: 33044004 DOI: 10.1002/jcp.30096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/11/2022]
Abstract
TRPV4 is a nonselective cationic channel responsive to several physical and chemical stimuli. Defects in TRPV4 channel function result in human diseases, such as skeletal dysplasias, arthropathies, and peripheral neuropathies. Nonetheless, little is known about the role of TRPV4 in other cellular functions, such as nuclear Ca2+ homeostasis or Ca2+ -regulated transcription. Here, we confirmed the presence of the full-length TRPV4 channel in the nuclei of nonpolarized Madin-Darby canine kidney cells. Confocal Ca2+ imaging showed that activation of the channel increases cytoplasmic and nuclear Ca2+ leading to translocation of TRPV4 out of the nucleus together with β-catenin, a transcriptional regulator in the Wnt signaling pathway fundamental in embryogenesis, organogenesis, and cellular homeostasis. TRPV4 inhibits β-catenin transcriptional activity through a direct interaction dependent upon channel activity. This interaction also occurs in undifferentiated osteoblastoma and neuroblastoma cell models. Our results suggest a mechanism in which TRPV4 may regulate differentiation in several cellular contexts.
Collapse
Affiliation(s)
- Heidi Espadas-Álvarez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Jacqueline Martínez-Rendón
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Isabel Larre
- Marshall Institute for Interdisciplinary Research and Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | | | - Tatiana Romero-García
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
28
|
Guarino BD, Paruchuri S, Thodeti CK. The role of TRPV4 channels in ocular function and pathologies. Exp Eye Res 2020; 201:108257. [PMID: 32979394 DOI: 10.1016/j.exer.2020.108257] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022]
Abstract
Transient potential receptor vanilloid 4 (TRPV4) is an ion channel responsible for sensing osmotic and mechanical signals, which in turn regulates calcium signaling across cell membranes. TRPV4 is widely expressed throughout the body, and plays an important role in normal physiological function, as well as different pathologies, however, its role in the eye is not well known. In the eye, TRPV4 is expressed in various tissues, such as the retina, corneal epithelium, ciliary body, and the lens. In this review, we provide an overview on TRPV4 structure, activation, mutations, and summarize the current knowledge of TRPV4 function and signaling mechanisms in various locations throughout the eye, as well as its role in ocular diseases, such as glaucoma and diabetic retinopathy. Based on the available data, we highlight the therapeutic potential of TRPV4 as well as the shortcomings of current research. Finally, we provide future perspectives on the implications of targeting TRPV4 to treat various ocular pathologies.
Collapse
Affiliation(s)
- Brianna D Guarino
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA
| | | | - Charles K Thodeti
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH, 44272, USA.
| |
Collapse
|
29
|
Shamsaldeen YA, Lione LA, Benham CD. Dysregulation of TRPV4, eNOS and caveolin-1 contribute to endothelial dysfunction in the streptozotocin rat model of diabetes. Eur J Pharmacol 2020; 888:173441. [PMID: 32810492 DOI: 10.1016/j.ejphar.2020.173441] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 12/30/2022]
Abstract
Endothelial dysfunction is a common complication in diabetes in which endothelium-dependent vasorelaxation is impaired. The aim of this study was to examine the involvement of the TRPV4 ion channel in type 1 diabetic endothelial dysfunction and the possible association of endothelial dysfunction with reduced expression of TRPV4, endothelial nitric oxide synthase (eNOS) and caveolin-1. Male Wistar rats (350-450 g) were injected with 65 mg/kg i.p. streptozotocin (STZ) or vehicle. Endothelial function was investigated in aortic rings and mesenteric arteries using organ bath and myograph, respectively. TRPV4 function was studied with fura-2 calcium imaging in endothelial cells cultured from aortas from control and STZ treated rats. TRPV4, caveolin-1 and eNOS expression was investigated in these cells using immunohistochemistry. STZ-treated diabetic rats showed significant endothelial dysfunction characterised by impaired muscarinic-induced vasorelaxation (aortic rings: STZ-diabetics: Emax = 29.6 ± 9.3%; control: Emax = 77.2 ± 2.5% P˂0.001), as well as significant impairment in TRPV4-induced vasorelaxation (aortic rings, 4αPDD STZ-diabetics: Emax = 56.0 ± 5.5%; control: Emax = 81.1 ± 2.1% P˂0.001). Furthermore, STZ-diabetic primary aortic endothelial cells showed a significant reduction in TRPV4-induced intracellular calcium elevation (P˂0.05) compared with the control group. This was associated with significantly lower expression of TRPV4, caveolin-1 and eNOS and this was reversed by insulin treatment of the endothelial cultures from STZ -diabetic rats. Taken together, these data are consistent with the hypothesis that signalling through TRPV4, caveolin-1, and eNOS is downregulated in STZ-diabetic aortic endothelial cells and restored by insulin treatment.
Collapse
Affiliation(s)
- Yousif A Shamsaldeen
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, AL10 9AB, UK; Department of Pharmacy, Kuwait Hospital, Sabah Alsalem, 44001, Kuwait.
| | - Lisa A Lione
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Christopher D Benham
- School of Life and Medical Sciences, University of Hertfordshire, College Lane, Hatfield, Hertfordshire, AL10 9AB, UK
| |
Collapse
|
30
|
Chen B, Wu L, Cao T, Zheng HM, He T. MiR-221/SIRT1/Nrf2 signal axis regulates high glucose induced apoptosis in human retinal microvascular endothelial cells. BMC Ophthalmol 2020; 20:300. [PMID: 32698791 PMCID: PMC7374880 DOI: 10.1186/s12886-020-01559-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a serious symptom associated with diabetes and could cause much suffer to patients. MiR-221, SIRT1 and Nrf2 were associated with apoptosis and proliferation and their expression were altered in DR patients. However, their roles and regulatory mechanisms in human retinal microvascular endothelial cells (hRMEC) were not clear. Methods Expression of mRNA was detected by qRT-PCR. Protein expression was detected by Western blot. Interaction between miR-221 and SIRT1 was predicted by bioinformatics analysis and validated by dual-luciferase reporter assay. We analyzed the viability and apoptosis of hRMEC by MTT assay and FACS assay, respectively. Results High glucose (HG) treatment enhanced expression of miR-221 and inhibited expression of SIRT1 and Nrf2. MiR-221 overexpression promoted apoptosis under HG condition. Moreover, miR-221 directly interacted with mRNA of SIRT1 and inhibited SIRT1 expression in hRMEC, through which miR-221 inhibited Nrf2 pathway and induced apoptosis of hRMEC. Conclusion Our data demonstrated that miR-221/SIRT1/Nrf2 signal axis could promote apoptosis in hRMEC under HG conditions. This finding could provide theoretical support for future studies and may contribute to development of new treatment options to retard the process of DR development.
Collapse
Affiliation(s)
- Bin Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, 430060, Hubei Province, P. R. China
| | - Li Wu
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, 430060, Hubei Province, P. R. China
| | - Ting Cao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, 430060, Hubei Province, P. R. China
| | - Hong-Mei Zheng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, 430060, Hubei Province, P. R. China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238, Jiefang Road, Wuhan, 430060, Hubei Province, P. R. China.
| |
Collapse
|
31
|
Hu W, Ding Y, Li Q, shi R, He Y. Transient receptor potential vanilloid 4 channels as therapeutic targets in diabetes and diabetes-related complications. J Diabetes Investig 2020; 11:757-769. [PMID: 32129549 PMCID: PMC7378409 DOI: 10.1111/jdi.13244] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/21/2020] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
With an estimated 425 million diabetes patients worldwide in 2019, type 2 diabetes has reached a pandemic proportion and represents a major unmet medical need. A key determinant of the development and progression of type 2 diabetes is pancreatic -cell dysfunction, including the loss of cell mass, the impairment of insulin biosynthesis and inadequate exocytosis. Recent studies have shown that transient receptor potential vanilloid 4 (TRPV4), a Ca2+ -permeable non-selective cation channel, is involved in -cell replication, insulin production and secretion. TRPV4 agonists have insulinotropic activity in pancreatic -cell lines, but the prolonged activation of TRPV4 leads to -cell dysfunction and death. In addition, TRPV4 is involved in a wide variety of pathophysiological activities, and has been reported to play an important role in diabetes-related complications, such as obesity, cardiovascular diseases, diabetic retinopathy, nephropathy and neuropathy. In a rodent type 2 diabetes model, Trpv4 agonists promote vasodilation and improve cardiovascular function, whereas Trpv4 antagonists reduce high-fat diet-induced obesity, insulin resistance, diabetic nephropathy, retinopathy and neuropathy. These findings raise interest in using TRPV4 as a therapeutic target for type 2 diabetes. In this review, we intend to summarize the latest findings regarding the role of TRPV4 in diabetes as well as diabetes-related conditions, and to evaluate its potential as a therapeutic target for diabetes and diabetes-related diseases.
Collapse
Affiliation(s)
- Wei Hu
- Department of Epidemiology and Medical StatisticsInstitute of Medical Systems BiologyGuangdong Medical UniversityDongguanChina
| | - Yuanlin Ding
- Department of Epidemiology and Medical StatisticsInstitute of Medical Systems BiologyGuangdong Medical UniversityDongguanChina
| | - Qingqing Li
- Department of Epidemiology and Medical StatisticsInstitute of Medical Systems BiologyGuangdong Medical UniversityDongguanChina
| | - Rou shi
- Department of Epidemiology and Medical StatisticsInstitute of Medical Systems BiologyGuangdong Medical UniversityDongguanChina
| | - Yuqing He
- Department of Epidemiology and Medical StatisticsInstitute of Medical Systems BiologyGuangdong Medical UniversityDongguanChina
- Liaobu HospitalGuangdong Medical UniversityDongguanChina
| |
Collapse
|
32
|
Rosenbaum T, Benítez-Angeles M, Sánchez-Hernández R, Morales-Lázaro SL, Hiriart M, Morales-Buenrostro LE, Torres-Quiroz F. TRPV4: A Physio and Pathophysiologically Significant Ion Channel. Int J Mol Sci 2020; 21:ijms21113837. [PMID: 32481620 PMCID: PMC7312103 DOI: 10.3390/ijms21113837] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 02/07/2023] Open
Abstract
Transient Receptor Potential (TRP) channels are a family of ion channels whose members are distributed among all kinds of animals, from invertebrates to vertebrates. The importance of these molecules is exemplified by the variety of physiological roles they play. Perhaps, the most extensively studied member of this family is the TRPV1 ion channel; nonetheless, the activity of TRPV4 has been associated to several physio and pathophysiological processes, and its dysfunction can lead to severe consequences. Several lines of evidence derived from animal models and even clinical trials in humans highlight TRPV4 as a therapeutic target and as a protein that will receive even more attention in the near future, as will be reviewed here.
Collapse
Affiliation(s)
- Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
- Correspondence: ; Tel.: +52-555-622-56-24; Fax: +52-555-622-56-07
| | - Miguel Benítez-Angeles
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Sara Luz Morales-Lázaro
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Marcia Hiriart
- Departamento de Neurociencia Cognitiva, División Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; (M.B.-A.); (R.S.-H.); (S.L.M.-L.); (M.H.)
| | - Luis Eduardo Morales-Buenrostro
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico;
| | - Francisco Torres-Quiroz
- Departamento de Bioquímica y Biología Estructural, División Investigación Básica, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
33
|
McFarland SJ, Weber DS, Choi CS, Lin MT, Taylor MS. Ablation of Endothelial TRPV4 Channels Alters the Dynamic Ca 2+ Signaling Profile in Mouse Carotid Arteries. Int J Mol Sci 2020; 21:ijms21062179. [PMID: 32235694 PMCID: PMC7139994 DOI: 10.3390/ijms21062179] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 01/22/2023] Open
Abstract
Transient receptor potential vanilloid 4 channels (TRPV4) are pivotal regulators of vascular homeostasis. Altered TRPV4 signaling has recently been implicated in various cardiovascular diseases, including hypertension and atherosclerosis. These versatile nonselective cation channels increase endothelial Ca2+ influx in response to various stimuli including shear stress and G protein-coupled receptor (GPCR) activation. Recent findings suggest TRPV4 channels produce localized Ca2+ transients at the endothelial cell plasma membrane that may allow targeted effector recruitment and promote large-scale Ca2+ events via release from internal stores (endoplasmic reticulum). However, the specific impact of TRPV4 channels on Ca2+ signaling in the intact arterial intima remains unknown. In the current study, we employ an endothelium-specific TRPV4 knockout mouse model (ecTRPV4-/-) to identify and characterize TRPV4-dependent endothelial Ca2+ dynamics. We find that carotid arteries from both ecTRPV4-/- and WT mice exhibit a range of basal and acetylcholine (ACh)-induced Ca2+ dynamics, similar in net frequency. Analysis of discrete Ca2+ event parameters (amplitude, duration, and spread) and event composite values reveals that while ecTRPV4-/- artery endothelium predominantly produces large Ca2+ events comparable to and in excess of those produced by WT endothelium, they are deficient in a particular population of small events, under both basal and ACh-stimulated conditions. These findings support the concept that TRPV4 channels are responsible for generating a distinct population of focal Ca2+ transients in the intact arterial endothelium, likely underlying their essential role in vascular homeostasis.
Collapse
|
34
|
Moccia F, Negri S, Faris P, Berra-Romani R. Targeting the Endothelial Ca2+ Toolkit to Rescue Endothelial Dysfunction in Obesity Associated-Hypertension. Curr Med Chem 2020; 27:240-257. [PMID: 31486745 DOI: 10.2174/0929867326666190905142135] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 06/03/2019] [Accepted: 07/16/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Obesity is a major cardiovascular risk factor which dramatically impairs endothelium- dependent vasodilation and leads to hypertension and vascular damage. The impairment of the vasomotor response to extracellular autacoids, e.g., acetylcholine, mainly depends on the reduced Nitric Oxide (NO) bioavailability, which hampers vasorelaxation in large conduit arteries. In addition, obesity may affect Endothelium-Dependent Hyperpolarization (EDH), which drives vasorelaxation in small resistance arteries and arterioles. Of note, endothelial Ca2+ signals drive NO release and trigger EDH. METHODS A structured search of bibliographic databases was carried out to retrieve the most influential, recent articles on the impairment of vasorelaxation in animal models of obesity, including obese Zucker rats, and on the remodeling of the endothelial Ca2+ toolkit under conditions that mimic obesity. Furthermore, we searched for articles discussing how dietary manipulation could be exploited to rescue Ca2+-dependent vasodilation. RESULTS We found evidence that the endothelial Ca2+ could be severely affected by obese vessels. This rearrangement could contribute to endothelial damage and is likely to be involved in the disruption of vasorelaxant mechanisms. However, several Ca2+-permeable channels, including Vanilloid Transient Receptor Potential (TRPV) 1, 3 and 4 could be stimulated by several food components to stimulate vasorelaxation in obese individuals. CONCLUSION The endothelial Ca2+ toolkit could be targeted to reduce vascular damage and rescue endothelium- dependent vasodilation in obese vessels. This hypothesis remains, however, to be probed on truly obese endothelial cells.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Roberto Berra-Romani
- Department of Biomedicine, School of Medicine, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| |
Collapse
|
35
|
Lu JM, Zhang ZZ, Ma X, Fang SF, Qin XH. Repression of microRNA-21 inhibits retinal vascular endothelial cell growth and angiogenesis via PTEN dependent-PI3K/Akt/VEGF signaling pathway in diabetic retinopathy. Exp Eye Res 2020; 190:107886. [DOI: 10.1016/j.exer.2019.107886] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 11/30/2022]
|
36
|
Chen YL, Sonkusare SK. Endothelial TRPV4 channels and vasodilator reactivity. CURRENT TOPICS IN MEMBRANES 2020; 85:89-117. [PMID: 32402646 PMCID: PMC9748413 DOI: 10.1016/bs.ctm.2020.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) ion channels on the endothelial cell membrane are widely regarded as a crucial Ca2+ influx pathway that promotes endothelium-dependent vasodilation. The downstream vasodilatory targets of endothelial TRPV4 channels vary among different vascular beds, potentially contributing to endothelial cell heterogeneity. Although numerous studies have examined the role of endothelial TRPV4 channels using specific pharmacological tools over the past decade, their physiological significance remains unclear, mainly due to a lack of endothelium-specific knockouts. Moreover, the loss of endothelium-dependent vasodilation is a significant contributor to vascular dysfunction in cardiovascular disease. The activity of endothelial TRPV4 channels is impaired in cardiovascular disease; therefore, strategies targeting the mechanisms that reduce endothelial TRPV4 channel activity may restore vascular function and provide therapeutic benefit. In this chapter, we discuss endothelial TRPV4 channel-dependent signaling mechanisms, the heterogeneity in endogenous activators and targets of endothelial TRPV4 channels, and the role of endothelial TRPV4 channels in the pathogenesis of cardiovascular diseases. We also discuss potentially interesting future research directions that may provide novel insights into the physiological and pathological roles of endothelial TRPV4 channels.
Collapse
Affiliation(s)
- Yen-Lin Chen
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, United States
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, United States,Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, United States,Corresponding author:
| |
Collapse
|
37
|
O'Leary C, McGahon MK, Ashraf S, McNaughten J, Friedel T, Cincolà P, Barabas P, Fernandez JA, Stitt AW, McGeown JG, Curtis TM. Involvement of TRPV1 and TRPV4 Channels in Retinal Angiogenesis. Invest Ophthalmol Vis Sci 2019; 60:3297-3309. [PMID: 31369032 DOI: 10.1167/iovs.18-26344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose We investigate the contribution of TRPV1 and TRPV4 channels to retinal angiogenesis. Methods Primary retinal microvascular endothelial cells (RMECs) were used for RT-PCR, Western blotting, immunolabeling, Ca2+ signaling, and whole-cell patch-clamp studies while localization of TRPV1 also was assessed in retinal endothelial cells using whole mount preparations. The effects of pharmacologic blockers of TRPV1 and TRPV4 on retinal angiogenic activity was evaluated in vitro using sprout formation, cell migration, proliferation, and tubulogenesis assays, and in vivo using the mouse model of oxygen-induced retinopathy (OIR). Heteromultimerization of TRPV1 and TRPV4 channels in RMECs was assessed using proximity ligation assays (PLA) and electrophysiologic recording. Results TRPV1 mRNA and protein expression were identified in RMECs. TRPV1 labelling was found to be mainly localized to the cytoplasm with some areas of staining colocalizing with the plasma membrane. Staining patterns for TRPV1 were broadly similar in endothelial cells of intact vessels within retinal flat mounts. Functional expression of TRPV1 and TRPV4 in RMECs was confirmed by patch-clamp recording. Pharmacologic inhibition of TRPV1 or TRPV4 channels suppressed in vitro retinal angiogenesis through a mechanism involving the modulation of tubulogenesis. Blockade of these channels had no effect on VEGF-stimulated angiogenesis or Ca2+ signals in vitro. PLA and patch-clamp studies revealed that TRPV1 and TRPV4 form functional heteromeric channel complexes in RMECs. Inhibition of either channel reduced retinal neovascularization and promoted physiologic revascularization of the ischemic retina in the OIR mouse model. Conclusions TRPV1 and TRPV4 channels represent promising targets for therapeutic intervention in vasoproliferative diseases of the retina.
Collapse
Affiliation(s)
- Caitriona O'Leary
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Mary K McGahon
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Sadaf Ashraf
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Jennifer McNaughten
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Thomas Friedel
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Patrizia Cincolà
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Peter Barabas
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Jose A Fernandez
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Belfast, United Kingdom
| |
Collapse
|
38
|
Gao P, Li L, Wei X, Wang M, Hong Y, Wu H, Shen Y, Ma T, Wei X, Zhang Q, Fang X, Wang L, Yan Z, Du GH, Zheng H, Yang G, Liu D, Zhu Z. Activation of Transient Receptor Potential Channel Vanilloid 4 by DPP-4 (Dipeptidyl Peptidase-4) Inhibitor Vildagliptin Protects Against Diabetic Endothelial Dysfunction. Hypertension 2019; 75:150-162. [PMID: 31735085 DOI: 10.1161/hypertensionaha.119.13778] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Endothelial dysfunction is an early step to the progression of cardiovascular diseases in diabetes. Apart from their anti-diabetic action, DPP-4 (dipeptidyl peptidase-4) inhibitors also reduce cardiovascular events in diabetic patients. However, the underlying mechanism of the beneficial effect of DPP-4 inhibitor on endothelial function is still obscure. In this study, we intervened type 1 or 2 diabetic model mice with vildagliptin for 4 weeks and measured the vascular reactivity. We found that vildagliptin improved endothelium-dependent vasodilation in diabetic mice independent of GLP-1 (glucagonlike peptide-1), but this effect was blocked by a SIRT1 (Sirtuin 1) inhibitor, Ex527. Mechanistically, vildagliptin-activated Transient Receptor Potential Channel Vanilloid 4 (TRPV4) to promote extracellular calcium uptake in endothelial cells, which activated AMPK (AMP-activated protein kinase)/SIRT1 pathway to counteract hyperglycemia-induced endothelial reactive oxygen species generation and senescence. Vildagliptin directly binds to TRPV4 by forming a hydrogen bond, which is critical to vildagliptin-evoked endothelial calcium intake. Knockout or inhibition of TRPV4 erased the beneficial role of vildagliptin. In addition, activation of SIRT1 by SRT1720 improved endothelial function independent of TRPV4 and reduced TRPV4 transcription to maintain an appropriate calcium level. In summary, our findings prove that vildagliptin protects against hyperglycemia-induced endothelial dysfunction by activating TRPV4-meditaed Ca2+ uptake, which helps to re-understand the mechanism of DPP-4 inhibitors and expand the therapeutic scope.
Collapse
Affiliation(s)
- Peng Gao
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Li Li
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China (L.L., Y.S., G.-H.D.)
| | - Xiao Wei
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Miao Wang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, China (M.W., Q.Z., X.F., G.Y.)
| | - Yangning Hong
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Hao Wu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Yanjia Shen
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China (L.L., Y.S., G.-H.D.)
| | - Tianyi Ma
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Xing Wei
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Qin Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, China (M.W., Q.Z., X.F., G.Y.)
| | - Xia Fang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, China (M.W., Q.Z., X.F., G.Y.)
| | - Lijuan Wang
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Zhencheng Yan
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Guan-Hua Du
- Beijing Key Laboratory of Drug Targets Identification and Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, China (L.L., Y.S., G.-H.D.)
| | - Hongting Zheng
- Department of Endocrinology, Translational Research Key Laboratory for Diabetes, Xinqiao Hospital, Third Military Medical University, Chongqing, China (H.Z.)
| | - Gangyi Yang
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University and Chongqing Clinical Research Center for Geriatrics, China (M.W., Q.Z., X.F., G.Y.)
| | - Daoyan Liu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| | - Zhiming Zhu
- From the Department of Hypertension and Endocrinology, Center for Hypertension and Metabolic Diseases, Daping Hospital, Third Military Medical University, Chongqing Institute of Hypertension, China (P.G., Xiao Wei, Y.H., H.W., T.M., Xing Wei, L.W., Z.Y., D.L., Z.Z.)
| |
Collapse
|
39
|
Chhabria K, Vouros A, Gray C, MacDonald RB, Jiang Z, Wilkinson RN, Plant K, Vasilaki E, Howarth C, Chico TJA. Sodium nitroprusside prevents the detrimental effects of glucose on the neurovascular unit and behaviour in zebrafish. Dis Model Mech 2019; 12:dmm.039867. [PMID: 31481433 PMCID: PMC6765192 DOI: 10.1242/dmm.039867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 08/08/2019] [Indexed: 12/15/2022] Open
Abstract
Diabetes is associated with dysfunction of the neurovascular unit, although the mechanisms of this are incompletely understood and currently no treatment exists to prevent these negative effects. We previously found that the nitric oxide (NO) donor sodium nitroprusside (SNP) prevents the detrimental effect of glucose on neurovascular coupling in zebrafish. We therefore sought to establish the wider effects of glucose exposure on both the neurovascular unit and on behaviour in zebrafish, and the ability of SNP to prevent these. We incubated 4-days post-fertilisation (dpf) zebrafish embryos in 20 mM glucose or mannitol for 5 days until 9 dpf, with or without 0.1 mM SNP co-treatment for 24 h (8-9 dpf), and quantified vascular NO reactivity, vascular mural cell number, expression of a klf2a reporter, glial fibrillary acidic protein (GFAP) and transient receptor potential cation channel subfamily V member 4 (TRPV4), as well as spontaneous neuronal activation at 9 dpf, all in the optic tectum. We also assessed the effect on light/dark preference and locomotory characteristics during free-swimming studies. We find that glucose exposure significantly reduced NO reactivity, klf2a reporter expression, vascular mural cell number and TRPV4 expression, while significantly increasing spontaneous neuronal activation and GFAP expression (all in the optic tectum). Furthermore, when we examined larval behaviour, we found that glucose exposure significantly altered light/dark preference and high and low speed locomotion while in light. Co-treatment with SNP reversed all these molecular and behavioural effects of glucose exposure. Our findings comprehensively describe the negative effects of glucose exposure on the vascular anatomy, molecular phenotype and function of the optic tectum, and on whole-organism behaviour. We also show that SNP or other NO donors may represent a therapeutic strategy to ameliorate the complications of diabetes on the neurovascular unit.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Karishma Chhabria
- Neuroimaging in Cardiovascular Disease (NICAD) Network, University of Sheffield, Sheffield, S10 2TN, UK.,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Avgoustinos Vouros
- Department of Computer Science, University of Sheffield, Portobello, Sheffield, S1 4DP, UK
| | - Caroline Gray
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Ryan B MacDonald
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Zhen Jiang
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Robert Neil Wilkinson
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Karen Plant
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Eleni Vasilaki
- Department of Computer Science, University of Sheffield, Portobello, Sheffield, S1 4DP, UK
| | - Clare Howarth
- Neuroimaging in Cardiovascular Disease (NICAD) Network, University of Sheffield, Sheffield, S10 2TN, UK .,Department of Psychology, University of Sheffield, Cathedral Court, 1 Vicar Lane, Sheffield, S1 2LT, UK
| | - Timothy J A Chico
- Neuroimaging in Cardiovascular Disease (NICAD) Network, University of Sheffield, Sheffield, S10 2TN, UK .,Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield Medical School, Beech Hill Road, Sheffield, S10 2RX, UK.,The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
40
|
Mori A, Takeda K, Sakamoto K, Nakahara T. Activation of transient receptor potential vanilloid 4 channels dilates rat retinal arterioles through nitric oxide- and BK Ca channel-dependent mechanisms in vivo. Naunyn Schmiedebergs Arch Pharmacol 2019; 393:35-41. [PMID: 31392384 DOI: 10.1007/s00210-019-01707-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/26/2019] [Indexed: 01/19/2023]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) channel, a cation channel expressed in nearly all cell types, plays an important role in the regulation of vascular tone. In the present study, we examined the effect of GSK1016790A, an activator of TRPV4 channels, on the diameter of retinal blood vessels in rats and the underlying mechanisms. Ocular fundus images were captured with an original high-resolution digital fundus camera in vivo and diameters of retinal blood vessels were measured. Intravenous infusion of GSK1016790A (0.2-2 μg kg-1 min-1) increased retinal arteriolar diameter in a dose-dependent manner. The higher dose of GSK1016790A (2 μg kg-1 min-1) slightly decreased blood pressure. These responses to GSK1016790A were significantly attenuated by intravenous injection of GSK2193874 (0.3 mg/kg), an antagonist of TRPV4 channels. Intravitreal injection of Nω-nitro-L-arginine methyl ester, an inhibitor of nitric oxide (NO) synthase or iberiotoxin, an inhibitor of large-conductance Ca2+-activated K+ (BKCa) channel, significantly attenuated the GSK1016790A-induced increases in retinal arteriolar diameter. These results suggest that activation of TRPV4 channels dilates rat retinal arterioles through NO- and BKCa channel-dependent mechanisms in vivo.
Collapse
Affiliation(s)
- Asami Mori
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kazuki Takeda
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Kenji Sakamoto
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| | - Tsutomu Nakahara
- Department of Molecular Pharmacology, Kitasato University School of Pharmaceutical Sciences, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| |
Collapse
|
41
|
Endothelium-Dependent Hyperpolarization (EDH) in Diabetes: Mechanistic Insights and Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20153737. [PMID: 31370156 PMCID: PMC6695796 DOI: 10.3390/ijms20153737] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/25/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023] Open
Abstract
Diabetes mellitus is one of the major risk factors for cardiovascular disease and is an important health issue worldwide. Long-term diabetes causes endothelial dysfunction, which in turn leads to diabetic vascular complications. Endothelium-derived nitric oxide is a major vasodilator in large-size vessels, and the hyperpolarization of vascular smooth muscle cells mediated by the endothelium plays a central role in agonist-mediated and flow-mediated vasodilation in resistance-size vessels. Although the mechanisms underlying diabetic vascular complications are multifactorial and complex, impairment of endothelium-dependent hyperpolarization (EDH) of vascular smooth muscle cells would contribute at least partly to the initiation and progression of microvascular complications of diabetes. In this review, we present the current knowledge about the pathophysiology and underlying mechanisms of impaired EDH in diabetes in animals and humans. We also discuss potential therapeutic approaches aimed at the prevention and restoration of EDH in diabetes.
Collapse
|
42
|
Orduña Ríos M, Noguez Imm R, Hernández Godínez NM, Bautista Cortes AM, López Escalante DD, Liedtke W, Martínez Torres A, Concha L, Thébault S. TRPV4 inhibition prevents increased water diffusion and blood-retina barrier breakdown in the retina of streptozotocin-induced diabetic mice. PLoS One 2019; 14:e0212158. [PMID: 31048895 PMCID: PMC6497373 DOI: 10.1371/journal.pone.0212158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/09/2019] [Indexed: 01/02/2023] Open
Abstract
A better understanding of the molecular and cellular mechanisms involved in retinal hydro-mineral homeostasis imbalance during diabetic macular edema (DME) is needed to gain insights into retinal (patho-)physiology that will help elaborate innovative therapies with lower health care costs. Transient receptor potential cation channel subfamily vanilloid member 4 (TRPV4) plays an intricate role in homeostatic processes that needs to be deciphered in normal and diabetic retina. Based on previous findings showing that TRPV4 antagonists resolve blood-retina barrier (BRB) breakdown in diabetic rats, we evaluated whether TRPV4 channel inhibition prevents and reverts retinal edema in streptozotocin(STZ)-induced diabetic mice. We assessed retinal edema using common metrics, including retinal morphology/thickness (histology) and BRB integrity (albumin-associated tracer), and also by quantifying water mobility through apparent diffusion coefficient (ADC) measures. ADC was measured by diffusion-weighted magnetic resonance imaging (DW-MRI), acquired ex vivo at 4 weeks after STZ injection in diabetes and control groups. DWI images were also used to assess retinal thickness. TRPV4 was genetically ablated or pharmacologically inhibited as follows: left eyes were used as vehicle control and right eyes were intravitreally injected with TRPV4-selective antagonist GSK2193874, 24 h before the end of the 4 weeks of diabetes. Histological data show that retinal thickness was similar in nondiabetic and diabetic wt groups but increased in diabetic Trpv4-/- mice. In contrast, DWI shows retinal thinning in diabetic wt mice that was absent in diabetic Trpv4-/- mice. Disorganized outer nuclear layer was observed in diabetic wt but not in diabetic Trpv4-/- retinas. We further demonstrate increased water diffusion, increased distances between photoreceptor nuclei, reduced nuclear area in all nuclear layers, and BRB hyperpermeability, in diabetic wt mice, effects that were absent in diabetic Trpv4-/- mice. Retinas of diabetic mice treated with PBS showed increased water diffusion that was not normalized by GSK2193874. ADC maps in nondiabetic Trpv4-/- mouse retinas showed restricted diffusion. Our data provide evidence that water diffusion is increased in diabetic mouse retinas and that TRPV4 function contributes to retinal hydro-mineral homeostasis and structure under control conditions, and to the development of BRB breakdown and increased water diffusion in the retina under diabetes conditions. A single intravitreous injection of TRPV4 antagonist is however not sufficient to revert these alterations in diabetic mouse retinas.
Collapse
Affiliation(s)
- Maricruz Orduña Ríos
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Ramsés Noguez Imm
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Ana María Bautista Cortes
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | - Wolfgang Liedtke
- Department of Medicine and Neurobiology, Center for Translational Neuroscience, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Atáulfo Martínez Torres
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Luis Concha
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | - Stéphanie Thébault
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
- * E-mail:
| |
Collapse
|
43
|
Ashraf S, Bell S, O'Leary C, Canning P, Micu I, Fernandez JA, O'Hare M, Barabas P, McCauley H, Brazil DP, Stitt AW, McGeown JG, Curtis TM. CAMKII as a therapeutic target for growth factor-induced retinal and choroidal neovascularization. JCI Insight 2019; 4:122442. [PMID: 30721154 PMCID: PMC6482993 DOI: 10.1172/jci.insight.122442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/31/2019] [Indexed: 12/14/2022] Open
Abstract
While anti-VEGF drugs are commonly used to inhibit pathological retinal and choroidal neovascularization, not all patients respond in an optimal manner. Mechanisms underpinning resistance to anti‑VEGF therapy include the upregulation of other proangiogenic factors. Therefore, therapeutic strategies that simultaneously target multiple growth factor signaling pathways would have significant value. Here, we show that Ca2+/calmodulin-dependent kinase II (CAMKII) mediates the angiogenic actions of a range of growth factors in human retinal endothelial cells and that this kinase acts as a key nodal point for the activation of several signal transduction cascades that are known to play a critical role in growth factor-induced angiogenesis. We also demonstrate that endothelial CAMKIIγ and -δ isoforms differentially regulate the angiogenic effects of different growth factors and that genetic deletion of these isoforms suppresses pathological retinal and choroidal neovascularization in vivo. Our studies suggest that CAMKII could provide a novel and efficacious target to inhibit multiple angiogenic signaling pathways for the treatment of vasoproliferative diseases of the eye. CAMKIIγ represents a particularly promising target, as deletion of this isoform inhibited pathological neovascularization, while enhancing reparative angiogenesis in the ischemic retina.
Collapse
Affiliation(s)
- Sadaf Ashraf
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Samuel Bell
- Wellcome-Wolfson Institute for Experimental Medicine and
| | | | - Paul Canning
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Ileana Micu
- Advanced Imaging Core Technology Unit, Faculty of Medicine, Health and Life Sciences, Queen's University of Belfast, Belfast, United Kingdom
| | | | - Michael O'Hare
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Peter Barabas
- Wellcome-Wolfson Institute for Experimental Medicine and
| | | | - Derek P Brazil
- Wellcome-Wolfson Institute for Experimental Medicine and
| | - Alan W Stitt
- Wellcome-Wolfson Institute for Experimental Medicine and
| | | | - Tim M Curtis
- Wellcome-Wolfson Institute for Experimental Medicine and
| |
Collapse
|
44
|
Wang M, Wang Y, Xie T, Zhan P, Zou J, Nie X, Shao J, Zhuang M, Tan C, Tan J, Dai Y, Sun J, Li J, Li Y, Shi Q, Leng J, Wang X, Yao Y. Prostaglandin E 2/EP 2 receptor signalling pathway promotes diabetic retinopathy in a rat model of diabetes. Diabetologia 2019; 62:335-348. [PMID: 30411254 DOI: 10.1007/s00125-018-4755-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/20/2018] [Indexed: 12/14/2022]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is a common microvascular complication of diabetes mellitus and is initiated by inflammation and apoptosis-associated retinal endothelial cell damage. Prostaglandin E2 (PGE2) has emerged as a critical regulator of these biological processes. We hypothesised that modulating PGE2 and its E-prostanoid receptor (EP2R) would prevent diabetes mellitus-induced inflammation and microvascular dysfunction. METHODS In a streptozotocin (STZ)-induced rat model of diabetes, rats received intravitreal injection of PGE2, butaprost (a PGE2/EP2R agonist) or AH6809 (an EP2R antagonist). Retinal histology, optical coherence tomography, ultrastructure of the retinal vascular and biochemical markers were assessed. RESULTS Intravitreal injection of PGE2 and butaprost significantly accelerated retinal vascular leakage, leucostasis and endothelial cell apoptosis in STZ-induced diabetic rats. This response was ameliorated in diabetic rats pre-treated with AH6809. In addition, pre-treatment of human retinal microvascular endothelial cells with AH6809 attenuated PGE2- and butaprost-induced activation of caspase 1, activation of the complex containing nucleotide-binding domain and leucine rich repeat containing family, pyrin domain containing 3 (NLRP3) and apoptosis-associated speck-like protein containing a C-terminal caspase-activation and recruitment domain (ASC), and activation of the EP2R-coupled cAMP/protein kinase A/cAMP response element-binding protein signalling pathway. CONCLUSIONS/INTERPRETATION The PGE2/EP2R signalling pathway is involved in STZ-induced diabetic retinopathy and could be considered as a potential target for diabetic retinopathy prevention and treatment.
Collapse
Affiliation(s)
- Man Wang
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Yangningzhi Wang
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Pengfei Zhan
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Jian Zou
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Xiaowei Nie
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
- Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, People's Republic of China
| | - Jun Shao
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Miao Zhuang
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Chengye Tan
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Jianxin Tan
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Youai Dai
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Jie Sun
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China
| | - Jiantao Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yuehua Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Qian Shi
- Yixing Eye Hospital, Wuxi, Jiangsu, People's Republic of China
| | - Jing Leng
- Cancer Center, Department of Pathology, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaolu Wang
- Center of Clinical Research, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China.
- Wuxi Institute of Translational Medicine, Wuxi, Jiangsu, People's Republic of China.
| | - Yong Yao
- Department of Ophthalmology, Wuxi People's Hospital Affiliated to Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
45
|
Tong P, Peng QH, Gu LM, Xie WW, Li WJ. LncRNA-MEG3 alleviates high glucose induced inflammation and apoptosis of retina epithelial cells via regulating miR-34a/SIRT1 axis. Exp Mol Pathol 2018; 107:102-109. [PMID: 30529346 DOI: 10.1016/j.yexmp.2018.12.003] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/22/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diabetic retinopathy (DR) is the serious complication of diabetes, which could lead to blindness. Inflammation and apoptosis are hallmark of DR, but mechanism of their regulation is little known. LncRNA-MEG3 is associated with multiple biological processes including proliferation, apoptosis and inflammation response, and is dramatically decreased in DR. However, the role and underlying mechanism of MEG3 in DR is unclear. This study is aimed to reveal the signaling mechanisms of MEG3 in inflammation and apoptosis of DR. METHODS ARPE-19 cells were applied for this research. MEG3 was cloned into pcDNA3.1. miR-34a was overexpressed and inhibited by transfecting with mimics and inhibitor, respectively. The expression level was detected by qRT-PCR and western blotting. The targeted regulatory relationship was analyzed by dual luciferase assay. Cytokine secretion, cell viability and apoptosis were detected by ELISA assay, MTT assay and flow cytometry analysis, respectively. RESULTS High glucose (HG) inhibited MEG3 and SIRT1 expression and enhanced miR-34a expression. MEG3 could promote SIRT1 expression by targeting miR-34a. MEG3 overexpression and miR-34a knockdown could inhibit HG-induced apoptosis and secretion of inflammation cytokines including IL-1β, IL-6 and TNF-α, but miR-34a overexpression alleviated such effects of MEG3. Furthermore, MEG3 overexpression also inhibited NF-κB signaling pathway and increased Bcl-2/Bax ratio via down-regulating miR-34a. CONCLUSION MEG3 could alleviate HG-inducing apoptosis and inflammation via inhibiting NF-κB signaling pathway by targeting miR-34a/SIRT1 axis. This finding illustrated the function and mechanism of MEG3 in DR, and MEG3 might serve as potential therapeutic target for DR.
Collapse
Affiliation(s)
- Ping Tong
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Qing-Hua Peng
- Hunan Provincial Key Laboratory of Ophthalmology and Otorhinolaryngology in Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Li-Min Gu
- Department of Ophthalmology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 200438, PR China
| | - Wei-Wei Xie
- Ningbo Eye Hospital, Ningbo 315040, PR China
| | - Wen-Jie Li
- Department of Ophthalmology, The Third Xiangya Hospital of Central South University, Changsha 410013, PR China.
| |
Collapse
|
46
|
Xing Y, Ming J, Liu T, Zhang N, Zha D, Lin Y. Decreased Expression of TRPV4 Channels in HEI-OC1 Cells Induced by High Glucose Is Associated with Hearing Impairment. Yonsei Med J 2018; 59:1131-1137. [PMID: 30328329 PMCID: PMC6192885 DOI: 10.3349/ymj.2018.59.9.1131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/21/2018] [Accepted: 08/10/2018] [Indexed: 01/21/2023] Open
Abstract
PURPOSE Previous reports have shown that hyperglycemia-induced inhibition of transient receptor potential vanilloid sub type 4 (TRPV4), a transient receptor potential ion channel, affects the severity of hearing impairment (HI). In this study, we explored the role of TRPV4 in HI using HEI-OC1 cells exposed to high glucose (HG). MATERIALS AND METHODS HEI-OC1 cells were cultured in a HG environment (25 mM D-glucose) for 48 hours, and qRT-PCR and Western blotting were used to analyze the expression of TRPV4 at the mRNA and protein level. TRPV4 agonist (GSK1016790A) or antagonist (HC-067047) in cultured HEI-OC1 cells was used to obtain abnormal TRPV4 expression. Functional TRPV4 activity was assessed in cultured HEI-OC1 cells using the MTT assay and a cell death detection ELISA. RESULTS TRPV4 agonists exerted protective effects against HG-induced HI, as evidenced by increased MTT levels and inhibition of apoptosis in HEI-OC1 cells. TRPV4 overexpression significantly increased protein levels of phosphorylated p38 mitogen-activated protein kinase (p-p38 MAPK), while TRPV4 antagonists had the opposite effect. Our results indicated that TRPV4 is a hyperglycemia-related factor that can inhibit cell proliferation and promote cell apoptosis by activating the MAPK signaling pathway in HEI-OC1 cells. CONCLUSION Our results show that the overexpression of TRPV4 can attenuate cell death in HEI-OC1 cells exposed to HG.
Collapse
Affiliation(s)
- Ying Xing
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Jie Ming
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Tao Liu
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Nana Zhang
- Department of Endocrinology and Metabolism Disease, Xijing Hospital, Forth Military Medical University, Xi'an, China
| | - Dingjun Zha
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, Forth Military Medical University, Xi'an, China.
| | - Ying Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Xijing Hospital, Forth Military Medical University, Xi'an, China.
| |
Collapse
|
47
|
Biswas R, Ahn JC, Moon JH, Kim J, Choi YH, Park SY, Chung PS. Low-level laser therapy with 850 nm recovers salivary function via membrane redistribution of aquaporin 5 by reducing intracellular Ca 2+ overload and ER stress during hyperglycemia. Biochim Biophys Acta Gen Subj 2018; 1862:1770-1780. [PMID: 29751100 DOI: 10.1016/j.bbagen.2018.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/28/2022]
Abstract
The overall goal is to study the effect of low-level laser therapy (LLLT) on membrane distribution of major water channel protein aquaporin 5 (AQP5) in salivary gland during hyperglycemia. Par C10 cells treated with high glucose (50 mM) showed a reduced membrane distribution of AQP5. The functional expression of AQP5 was downregulated due to intracellular Ca2+ overload and ER stress. This reduction in AQP5 expression impairs water permeability and therefore results in hypo-salivation. A reduced salivary flow was also observed in streptozotocin (STZ)-induced diabetic mice model and the expression of AQP5 and phospho-AQP5 was downregulated. Low-level laser treatment with 850 nm (30 mW, 10 min = 18 J/cm2) reduced ER stress and recovered AQP5 membrane distribution via serine phosphorylation in the cells. In the STZ-induced diabetic mouse, LLLT with 850 nm (60 J/cm2) increased salivary flow and upregulated of AQP5 and p-AQP5. ER stress was also reduced via downregulation of caspase 12 and CHOP. In silico analysis confirmed that the serine 156 is one of the most favorable phosphorylation sites of AQP5 and may contribute to the stability of the protein. Therefore, this study suggests high glucose inhibits phosphorylation-dependent AQP5 membrane distribution. High glucose induces intracellular Ca2+ overload and ER stress that disrupt AQP5 functional expression. Low-level laser therapy with 850 nm improves salivary function by increasing AQP5 membrane distribution in hyperglycemia-induced hyposalivation.
Collapse
Affiliation(s)
- Raktim Biswas
- Laser Translational Clinical Trial Centre, Dankook University Hospital, Cheonan, Republic of Korea
| | - Jin Chul Ahn
- Department of Biomedical Science, College of Medicine, Dankook University, Cheonan, Republic of Korea
| | - Jeong Hwan Moon
- Laser Translational Clinical Trial Centre, Dankook University Hospital, Cheonan, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea
| | - Jungbin Kim
- Laser Translational Clinical Trial Centre, Dankook University Hospital, Cheonan, Republic of Korea
| | - Young-Hoon Choi
- Laser Translational Clinical Trial Centre, Dankook University Hospital, Cheonan, Republic of Korea
| | - So Young Park
- Laser Translational Clinical Trial Centre, Dankook University Hospital, Cheonan, Republic of Korea
| | - Phil-Sang Chung
- Laser Translational Clinical Trial Centre, Dankook University Hospital, Cheonan, Republic of Korea; Department of Otolaryngology-Head and Neck Surgery, Dankook University College of Medicine, Cheonan, Republic of Korea.
| |
Collapse
|
48
|
Wen L, Wen YC, Ke GJ, Sun SQ, Dong K, Wang L, Liao RF. TRPV4 regulates migration and tube formation of human retinal capillary endothelial cells. BMC Ophthalmol 2018; 18:38. [PMID: 29433476 PMCID: PMC5809855 DOI: 10.1186/s12886-018-0697-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 01/29/2018] [Indexed: 02/03/2023] Open
Abstract
Background Ca2+ entry plays an important role in modulating endothelial cell migration and tube formation. Transient receptor potential cation channel subfamily V member 4 (TRPV4) is a Ca2+-permeable channel that is widely expressed in endothelial cells. It has been reported that TRPV4 is expressed in HRCECs and regulates Ca2+ entry. However, the function of TRPV4 in human retinal capillary endothelial cells (HRCECs) remains unknown. Methods In this study we used western blot and immunostaining assay to verify TRPV4 expression in HRCECs. And then we pretreated HRCECs with HC067047 and transfected with specific shRNA of TRPV4. The functional presence of TrpV4 was determined by using fluorescence, migration and tube formation assay in TrpV4 knockdown cells or control cells. Results Using western blot and immunostaining, we confirmed TRPV4 expression in HRCECs. Moreover, inhibition of TRPV4 using the specific inhibitor HC067047 and the knockdown of TRPV4 with shRNA significantly suppressed tube formation and migration by HRCECs. Conclusions TRPV4 is essential for HRCEC migration and tube formation, and maybe a potential therapeutic target for retinal vascular diseases. Electronic supplementary material The online version of this article (10.1186/s12886-018-0697-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Wen
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China.,Department of Ophthalmology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Yue-Chun Wen
- Department of Ophthalmology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Gen-Jie Ke
- Department of Ophthalmology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Si-Qin Sun
- Department of Ophthalmology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Kai Dong
- Department of Ophthalmology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Lin Wang
- Department of Ophthalmology, Anhui Provincial Hospital, Hefei, Anhui, China
| | - Rong-Feng Liao
- Department of Ophthalmology, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui, 230022, China.
| |
Collapse
|
49
|
Polyphenols and Oxidative Stress in Atherosclerosis-Related Ischemic Heart Disease and Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8526438. [PMID: 29317985 PMCID: PMC5727797 DOI: 10.1155/2017/8526438] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/16/2017] [Accepted: 10/18/2017] [Indexed: 12/15/2022]
Abstract
Good nutrition could maintain health and life. Polyphenols are common nutrient mainly derived from fruits, vegetables, tea, coffee, cocoa, mushrooms, beverages, and traditional medicinal herbs. They are potential substances against oxidative-related diseases, for example, cardiovascular disease, specifically, atherosclerosis-related ischemic heart disease and stroke, which are health and economic problems recognized worldwide. In this study, we reviewed the risk factors for atherosclerosis, including hypertension, diabetes mellitus, hyperlipidemia, obesity, and cigarette smoking as well as the antioxidative activity of polyphenols, which could prevent the pathology of atherosclerosis, including endothelial dysfunction, low-density lipoprotein oxidation, vascular smooth muscle cell proliferation, inflammatory process by monocytes, macrophages or T lymphocytes, and platelet aggregation. The strong radical-scavenging properties of polyphenols would exhibit antioxidative and anti-inflammation effects. Polyphenols reduce ROS production by inhibiting oxidases, reducing the production of superoxide, inhibiting OxLDL formation, suppressing VSMC proliferation and migration, reducing platelet aggregation, and improving mitochondrial oxidative stress. Polyphenol consumption also inhibits the development of hypertension, diabetes mellitus, hyperlipidemia, and obesity. Despite the numerous in vivo and in vitro studies, more advanced clinical trials are necessary to confirm the efficacy of polyphenols in the treatment of atherosclerosis-related vascular diseases.
Collapse
|
50
|
Phuong TTT, Redmon SN, Yarishkin O, Winter JM, Li DY, Križaj D. Calcium influx through TRPV4 channels modulates the adherens contacts between retinal microvascular endothelial cells. J Physiol 2017; 595:6869-6885. [PMID: 28949006 DOI: 10.1113/jp275052] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Endothelial cells employ transient receptor potential isoform 4 (TRPV4) channels to sense ambient mechanical and chemical stimuli. In retinal microvascular endothelial cells, TRPV4 channels regulate calcium homeostasis, cytoskeletal signalling and the organization of adherens junctional contacts. Intracellular calcium increases induced by TRPV4 agonists include a significant contribution from calcium release from internal stores. Activation of TRPV4 channels regulates retinal endothelial barriers in vitro and in vivo. TRPV4 sensing may provide a feedback mechanism between sensing shear flow and eicosanoid modulators, vascular permeability and contractility at the inner retinal endothelial barrier. ABSTRACT The identity of microvascular endothelial (MVE) mechanosensors that sense blood flow in response to mechanical and chemical stimuli and regulate vascular permeability in the retina is unknown. Using immunohistochemistry, calcium imaging, electrophysiology, impedance measurements and vascular permeability assays, we show that the transient receptor potential isoform 4 (TRPV4) plays a major role in Ca2+ /cation signalling, cytoskeletal remodelling and barrier function in retinal microvasculature in vitro and in vivo. Human retinal MVE cells (HrMVECs) predominantly expressed Trpv1 and Trpv4 transcripts, and TRPV4 was broadly localized to the plasma membrane of cultured cells and intact blood vessels in the inner retina. Treatment with the selective TRPV4 agonist GSK1016790A (GSK101) activated a nonselective cation current, robustly elevated [Ca2+ ]i and reversibly increased the permeability of MVEC monolayers. This was associated with disrupted organization of endothelial F-actin, downregulated expression of occludin and remodelling of adherens contacts consisting of vascular endothelial cadherin (VE-cadherin) and β-catenin. In vivo, GSK101 increased the permeability of retinal blood vessels in wild type but not in TRPV4 knockout mice. Agonist-evoked effects on barrier permeability and cytoskeletal reorganization were antagonized by the selective TRPV4 blocker HC 067047. Human choroidal endothelial cells expressed lower TRPV4 mRNA/protein levels and showed less pronounced agonist-evoked calcium signals compared to MVECs. These findings indicate a major role for TRPV4 in Ca2+ homeostasis and barrier function in human retinal capillaries and suggest that TRPV4 may differentially contribute to the inner vs. outer blood-retinal barrier function.
Collapse
Affiliation(s)
- Tam T T Phuong
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Sarah N Redmon
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jacob M Winter
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Dean Y Li
- Department of Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Neurobiology & Anatomy, University of Utah School of Medicine, Salt Lake City, UT, USA.,Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|