1
|
Hu J, Li G, He X, Gao X, Pan D, Dong X, Huang W, Qiu F, Chen LF, Hu X. Brd4 modulates metabolic endotoxemia-induced inflammation by regulating colonic macrophage infiltration in high-fat diet-fed mice. Commun Biol 2024; 7:1708. [PMID: 39733044 DOI: 10.1038/s42003-024-07437-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024] Open
Abstract
High-fat diet (HFD) induces low-grade chronic inflammation, contributing to obesity and insulin resistance. However, the precise mechanisms triggering obesity-associated metabolic inflammation remain elusive. In this study, we identified epigenetic factor Brd4 as a key player in this process by regulating the expression of Ccr2/Ccr5 in colonic macrophage. Upon 4-week HFD, myeloid-lineage-specific Brd4 deletion (Brd4-CKO) mice showed reduced colonic inflammation and macrophage infiltration with decreased expression of Ccr2 and Ccr5. Mechanistically, Brd4 was recruited by NF-κB to the enhancer regions of Ccr2 and Ccr5, promoting enhancer RNA expression, which facilitated Ccr2/Ccr5 expression and macrophage migration. Furthermore, decreased infiltration of Ccr2/Ccr5-positive colonic macrophages in Brd4-CKO mice altered gut microbiota composition and reduced intestinal permeability, thereby lowering metabolic endotoxemia. Finally, Brd4-CKO mice subjected to a 4-week LPS infusion exhibited restored susceptibility to HFD-induced obesity and insulin resistance. This study identifies Brd4 as a critical initiator of colonic macrophage-mediated inflammation and metabolic endotoxemia upon HFD, suggesting Brd4 as a potential target for mitigating HFD-induced inflammation, obesity, and its metabolic complications.
Collapse
Affiliation(s)
- Jinfeng Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Guo Li
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xiaoxin He
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Xuming Gao
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Dun Pan
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Xingchen Dong
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Wentao Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University; Department of Hepato-Pancreato-Biliary Surgery, Fujian Provincial Hospital, Fuzhou, China
| | - Funan Qiu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University; Department of Hepato-Pancreato-Biliary Surgery, Fujian Provincial Hospital, Fuzhou, China.
| | - Lin-Feng Chen
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Xiangming Hu
- Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Institute for Basic Medical Sciences, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
2
|
Hurwitz SN, Kobulsky DR, Jung SK, Chia JJ, Butler JM, Kurre P. CCR2 cooperativity promotes hematopoietic stem cell homing to the bone marrow. SCIENCE ADVANCES 2024; 10:eadq1476. [PMID: 39292787 PMCID: PMC11409967 DOI: 10.1126/sciadv.adq1476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Cross-talk between hematopoietic stem and progenitor cells (HSPCs) and bone marrow (BM) cells is critical for homing and sustained engraftment after transplantation. In particular, molecular and physical adaptation of sinusoidal endothelial cells (ECs) promote HSPC BM occupancy; however, signals that govern these events are not well understood. Extracellular vesicles (EVs) are mediators of cell-cell communication crucial in shaping tissue microenvironments. Here, we demonstrate that integrin α4β7 on murine HSPC EVs targets uptake into ECs. In BM ECs, HSPC EVs induce up-regulation of C-C motif chemokine receptor 2 (CCR2) ligands that synergize with CXCL12-CXCR4 signaling to promote BM homing. In nonirradiated murine models, marrow preconditioning with HSPC EVs or recombinant CCR2 ligands improves homing and early graft occupancy after transplantation. These findings identify a role for HSPC EVs in remodeling ECs, newly define CCR2-dependent graft homing, and inform novel translational conditioning strategies to improve HSPC transplantation.
Collapse
Affiliation(s)
- Stephanie N. Hurwitz
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Danielle R. Kobulsky
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Seul K. Jung
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer J. Chia
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, CA, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Jason M. Butler
- Division of Hematology/Oncology, University of Florida, Gainesville, FL, USA
| | - Peter Kurre
- Comprehensive Bone Marrow Failure Center, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
3
|
Mildner A, Kim KW, Yona S. Unravelling monocyte functions: from the guardians of health to the regulators of disease. DISCOVERY IMMUNOLOGY 2024; 3:kyae014. [PMID: 39430099 PMCID: PMC11486918 DOI: 10.1093/discim/kyae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 10/22/2024]
Abstract
Monocytes are a key component of the innate immune system. They undergo intricate developmental processes within the bone marrow, leading to diverse monocyte subsets in the circulation. In a state of healthy homeostasis, monocytes are continuously released into the bloodstream, destined to repopulate specific tissue-resident macrophage pools where they fulfil tissue-specific functions. However, under pathological conditions monocytes adopt various phenotypes to resolve inflammation and return to a healthy physiological state. This review explores the nuanced developmental pathways and functional roles that monocytes perform, shedding light on their significance in both physiological and pathological contexts.
Collapse
Affiliation(s)
- Alexander Mildner
- MediCity Research Laboratory, University of Turku, Turku, Finland
- InFLAMES Research Flagship, University of Turku, 20014 Turku, Finland
| | - Ki-Wook Kim
- Department of Pharmacology and Regenerative Medicine, University of Illinois College of Medicine, Chicago, Illinois, USA
| | - Simon Yona
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
4
|
Winkler CW, Evans AB, Carmody AB, Lack JB, Woods TA, Peterson KE. C-C motif chemokine receptor 2 and 7 synergistically control inflammatory monocyte recruitment but the infecting virus dictates monocyte function in the brain. Commun Biol 2024; 7:494. [PMID: 38658802 PMCID: PMC11043336 DOI: 10.1038/s42003-024-06178-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 04/10/2024] [Indexed: 04/26/2024] Open
Abstract
Inflammatory monocytes (iMO) are recruited from the bone marrow to the brain during viral encephalitis. C-C motif chemokine receptor (CCR) 2 deficiency substantially reduces iMO recruitment for most, but not all encephalitic viruses. Here we show CCR7 acts synergistically with CCR2 to control this process. Following Herpes simplex virus type-1 (HSV-1), or La Crosse virus (LACV) infection, we find iMO proportions are reduced by approximately half in either Ccr2 or Ccr7 knockout mice compared to control mice. However, Ccr2/Ccr7 double knockouts eliminate iMO recruitment following infection with either virus, indicating these receptors together control iMO recruitment. We also find that LACV induces a more robust iMO recruitment than HSV-1. However, unlike iMOs in HSV-1 infection, LACV-recruited iMOs do not influence neurological disease development. LACV-induced iMOs have higher expression of proinflammatory and proapoptotic but reduced mitotic, phagocytic and phagolysosomal transcripts compared to HSV-1-induced iMOs. Thus, virus-specific activation of iMOs affects their recruitment, activation, and function.
Collapse
MESH Headings
- Animals
- Receptors, CCR2/metabolism
- Receptors, CCR2/genetics
- Mice
- Monocytes/immunology
- Monocytes/metabolism
- Monocytes/virology
- Mice, Knockout
- Brain/virology
- Brain/metabolism
- Brain/immunology
- Herpesvirus 1, Human/physiology
- La Crosse virus/genetics
- La Crosse virus/physiology
- Receptors, CCR7/metabolism
- Receptors, CCR7/genetics
- Encephalitis, California/virology
- Encephalitis, California/genetics
- Encephalitis, California/metabolism
- Encephalitis, California/immunology
- Mice, Inbred C57BL
- Inflammation/metabolism
- Inflammation/virology
- Female
- Male
Collapse
Affiliation(s)
- Clayton W Winkler
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA.
| | - Alyssa B Evans
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Justin B Lack
- NIAID Collaborative Bioinformatics Resource, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyson A Woods
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| | - Karin E Peterson
- Neuroimmunology Section, Laboratory of Neurological Infections and Immunity, Rocky Mountain Laboratories, Department of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, 59840, USA
| |
Collapse
|
5
|
Holloman BL, Wilson K, Cannon A, Nagarkatti M, Nagarkatti PS. Indole-3-carbinol attenuates lipopolysaccharide-induced acute respiratory distress syndrome through activation of AhR: role of CCR2+ monocyte activation and recruitment in the regulation of CXCR2+ neutrophils in the lungs. Front Immunol 2024; 15:1330373. [PMID: 38596679 PMCID: PMC11002125 DOI: 10.3389/fimmu.2024.1330373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/27/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction Indole-3-carbinol (I3C) is found in cruciferous vegetables and used as a dietary supplement. It is known to act as a ligand for aryl hydrocarbon receptor (AhR). In the current study, we investigated the role of AhR and the ability of I3C to attenuate LPS-induced Acute Respiratory Distress Syndrome (ARDS). Methods To that end, we induced ARDS in wild-type C57BL/6 mice, Ccr2gfp/gfp KI/KO mice (mice deficient in the CCR2 receptor), and LyZcreAhRfl/fl mice (mice deficient in the AhR on myeloid linage cells). Additionally, mice were treated with I3C (65 mg/kg) or vehicle to investigate its efficacy to treat ARDS. Results I3C decreased the neutrophils expressing CXCR2, a receptor associated with neutrophil recruitment in the lungs. In addition, LPS-exposed mice treated with I3C revealed downregulation of CCR2+ monocytes in the lungs and lowered CCL2 (MCP-1) protein levels in serum and bronchoalveolar lavage fluid. Loss of CCR2 on monocytes blocked the recruitment of CXCR2+ neutrophils and decreased the total number of immune cells in the lungs during ARDS. In addition, loss of the AhR on myeloid linage cells ablated I3C-mediated attenuation of CXCR2+ neutrophils and CCR2+ monocytes in the lungs from ARDS animals. Interestingly, scRNASeq showed that in macrophage/monocyte cell clusters of LPS-exposed mice, I3C reduced the expression of CXCL2 and CXCL3, which bind to CXCR2 and are involved in neutrophil recruitment to the disease site. Discussion These findings suggest that CCR2+ monocytes are involved in the migration and recruitment of CXCR2+ neutrophils during ARDS, and the AhR ligand, I3C, can suppress ARDS through the regulation of immune cell trafficking.
Collapse
Affiliation(s)
| | | | | | | | - Prakash S. Nagarkatti
- Nagarkatti Laboratory, University of South Carolina School of Medicine, Department of Pathology, Microbiology, and Immunology, Columbia, SC, United States
| |
Collapse
|
6
|
Gianopoulos I, Daskalopoulou SS. Macrophage profiling in atherosclerosis: understanding the unstable plaque. Basic Res Cardiol 2024; 119:35-56. [PMID: 38244055 DOI: 10.1007/s00395-023-01023-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/01/2023] [Indexed: 01/22/2024]
Abstract
The development and rupture of atherosclerotic plaques is a major contributor to myocardial infarctions and ischemic strokes. The dynamic evolution of the plaque is largely attributed to monocyte/macrophage functions, which respond to various stimuli in the plaque microenvironment. To this end, macrophages play a central role in atherosclerotic lesions through the uptake of oxidized low-density lipoprotein that gets trapped in the artery wall, and the induction of an inflammatory response that can differentially affect the stability of the plaque in men and women. In this environment, macrophages can polarize towards pro-inflammatory M1 or anti-inflammatory M2 phenotypes, which represent the extremes of the polarization spectrum that include Mhem, M(Hb), Mox, and M4 populations. However, this traditional macrophage model paradigm has been redefined to include numerous immune and nonimmune cell clusters based on in-depth unbiased single-cell approaches. The goal of this review is to highlight (1) the phenotypic and functional properties of monocyte subsets in the circulation, and macrophage populations in atherosclerotic plaques, as well as their contribution towards stable or unstable phenotypes in men and women, and (2) single-cell RNA sequencing studies that have advanced our knowledge of immune, particularly macrophage signatures present in the atherosclerotic niche. We discuss the importance of performing high-dimensional approaches to facilitate the development of novel sex-specific immunotherapies that aim to reduce the risk of cardiovascular events.
Collapse
Affiliation(s)
- Ioanna Gianopoulos
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada
| | - Stella S Daskalopoulou
- Division of Experimental Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada.
- Division of Internal Medicine, Department of Medicine, Faculty of Medicine and Health Sciences, McGill University Health Centre, McGill University, Montreal, Canada.
- Department of Medicine, Research Institute of the McGill University Health Centre, Glen Site, 1001 Decarie Boulevard, EM1.2210, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
7
|
Hernández-Barrientos D, Pelayo R, Mayani H. The hematopoietic microenvironment: a network of niches for the development of all blood cell lineages. J Leukoc Biol 2023; 114:404-420. [PMID: 37386890 DOI: 10.1093/jleuko/qiad075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 06/15/2023] [Indexed: 07/01/2023] Open
Abstract
Blood cell formation (hematopoiesis) takes place mainly in the bone marrow, within the hematopoietic microenvironment, composed of a number of different cell types and their molecular products that together shape spatially organized and highly specialized microstructures called hematopoietic niches. From the earliest developmental stages and throughout the myeloid and lymphoid lineage differentiation pathways, hematopoietic niches play a crucial role in the preservation of cellular integrity and the regulation of proliferation and differentiation rates. Current evidence suggests that each blood cell lineage develops under specific, discrete niches that support committed progenitor and precursor cells and potentially cooperate with transcriptional programs determining the gradual lineage commitment and specification. This review aims to discuss recent advances on the cellular identity and structural organization of lymphoid, granulocytic, monocytic, megakaryocytic, and erythroid niches throughout the hematopoietic microenvironment and the mechanisms by which they interconnect and regulate viability, maintenance, maturation, and function of the developing blood cells.
Collapse
Affiliation(s)
- Daniel Hernández-Barrientos
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Av. Cuauhtemoc 330. Mexico City, 06720, Mexico
| | - Rosana Pelayo
- Onco-Immunology Laboratory, Eastern Biomedical Research Center, IMSS, Km 4.5 Atlixco-Metepec, 74360, Puebla, Mexico
| | - Hector Mayani
- Hematopoietic Stem Cells Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center, IMSS, Av. Cuauhtemoc 330. Mexico City, 06720, Mexico
| |
Collapse
|
8
|
Chan KL, Poller WC, Swirski FK, Russo SJ. Central regulation of stress-evoked peripheral immune responses. Nat Rev Neurosci 2023; 24:591-604. [PMID: 37626176 PMCID: PMC10848316 DOI: 10.1038/s41583-023-00729-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/27/2023]
Abstract
Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.
Collapse
Affiliation(s)
- Kenny L Chan
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Wolfram C Poller
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Filip K Swirski
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Scott J Russo
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Brain and Body Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
9
|
Liesveld J, Galipeau J. In Vitro Insights Into the Influence of Marrow Mesodermal/Mesenchymal Progenitor Cells on Acute Myelogenous Leukemia and Myelodysplastic Syndromes. Stem Cells 2023; 41:823-836. [PMID: 37348128 DOI: 10.1093/stmcls/sxad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
The study of marrow-resident mesodermal progenitors can provide important insight into their role in influencing normal and aberrant hematopoiesis as occurs in acute myelogenous leukemia (AML) and myelodysplastic syndromes (MDS). In addition, the chemokine competency of these cells provides links to the inflammatory milieu of the marrow microenvironment with additional implications for normal and malignant hematopoiesis. While in vivo studies have elucidated the structure and function of the marrow niche in murine genetic models, corollary human studies have not been feasible, and thus the use of culture-adapted mesodermal cells has provided insights into the role these rare endogenous niche cells play in physiologic, malignant, and inflammatory states. This review focuses on culture-adapted human mesenchymal stem/stromal cells (MSCs) as they have been utilized in understanding their influence in AML and MDS as well as on their chemokine-mediated responses to myeloid malignancies, injury, and inflammation. Such studies have intrinsic limitations but have provided mechanistic insights and clues regarding novel druggable targets.
Collapse
Affiliation(s)
- Jane Liesveld
- Department of Medicine, James P. Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
| | - Jaques Galipeau
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin in Madison, Madison, WI, USA
| |
Collapse
|
10
|
Jackson WD, Giacomassi C, Ward S, Owen A, Luis TC, Spear S, Woollard KJ, Johansson C, Strid J, Botto M. TLR7 activation at epithelial barriers promotes emergency myelopoiesis and lung antiviral immunity. eLife 2023; 12:e85647. [PMID: 37566453 PMCID: PMC10465127 DOI: 10.7554/elife.85647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 08/10/2023] [Indexed: 08/12/2023] Open
Abstract
Monocytes are heterogeneous innate effector leukocytes generated in the bone marrow and released into circulation in a CCR2-dependent manner. During infection or inflammation, myelopoiesis is modulated to rapidly meet the demand for more effector cells. Danger signals from peripheral tissues can influence this process. Herein we demonstrate that repetitive TLR7 stimulation via the epithelial barriers drove a potent emergency bone marrow monocyte response in mice. This process was unique to TLR7 activation and occurred independently of the canonical CCR2 and CX3CR1 axes or prototypical cytokines. The monocytes egressing the bone marrow had an immature Ly6C-high profile and differentiated into vascular Ly6C-low monocytes and tissue macrophages in multiple organs. They displayed a blunted cytokine response to further TLR7 stimulation and reduced lung viral load after RSV and influenza virus infection. These data provide insights into the emergency myelopoiesis likely to occur in response to the encounter of single-stranded RNA viruses at barrier sites.
Collapse
Affiliation(s)
- William D Jackson
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Chiara Giacomassi
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Sophie Ward
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Amber Owen
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Tiago C Luis
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Sarah Spear
- Division of Cancer, Department of Surgery and Cancer, Imperial College LondonLondonUnited Kingdom
| | - Kevin J Woollard
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Cecilia Johansson
- National Heart and Lung Institute, Imperial College LondonLondonUnited Kingdom
| | - Jessica Strid
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| | - Marina Botto
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Imperial College LondonLondonUnited Kingdom
| |
Collapse
|
11
|
Lim VY, Feng X, Miao R, Zehentmeier S, Ewing-Crystal N, Lee M, Tumanov AV, Oh JE, Iwasaki A, Wang A, Choi J, Pereira JP. Mature B cells and mesenchymal stem cells control emergency myelopoiesis. Life Sci Alliance 2023; 6:e202301924. [PMID: 36717247 PMCID: PMC9889502 DOI: 10.26508/lsa.202301924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Systemic inflammation halts lymphopoiesis and prioritizes myeloid cell production. How blood cell production switches from homeostasis to emergency myelopoiesis is incompletely understood. Here, we show that lymphotoxin-β receptor (LTβR) signaling in combination with TNF and IL-1 receptor signaling in bone marrow mesenchymal stem cells (MSCs) down-regulates Il7 expression to shut down lymphopoiesis during systemic inflammation. LTβR signaling in MSCs also promoted CCL2 production during systemic inflammation. Pharmacological or genetic blocking of LTβR signaling in MSCs partially enabled lymphopoiesis and reduced monocyte numbers in the spleen during systemic inflammation, which correlated with reduced survival during systemic bacterial and viral infections. Interestingly, lymphotoxin-α1β2 delivered by B-lineage cells, and specifically by mature B cells, contributed to promote Il7 down-regulation and reduce MSC lymphopoietic activity. Our studies revealed an unexpected role of LTβR signaling in MSCs and identified recirculating mature B cells as an important regulator of emergency myelopoiesis.
Collapse
Affiliation(s)
- Vivian Y Lim
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Xing Feng
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Runfeng Miao
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Sandra Zehentmeier
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Nathan Ewing-Crystal
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Moonyoung Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Alexei V Tumanov
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ji Eun Oh
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Andrew Wang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
- Department of Medicine (Rheumatology), School of Medicine, Yale University, New Haven, CT, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
- Department of Genetics, School of Medicine, Yale University, New Haven, CT, USA
| | - João P Pereira
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
12
|
Guglietta S, Krieg C. Phenotypic and functional heterogeneity of monocytes in health and cancer in the era of high dimensional technologies. Blood Rev 2023; 58:101012. [PMID: 36114066 DOI: 10.1016/j.blre.2022.101012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/23/2022]
Abstract
Monocytes have been traditionally classified in three discrete subsets, which can participate in the immune responses as effector cells or as precursors of myeloid-derived cells in circulation and tissues. However, recent advances in single-cell omics have revealed unprecedented phenotypic and functional heterogeneity that goes well beyond the three conventional monocytic subsets and propose a more fluid differentiation model. This novel concept does not only apply to the monocytes in circulation but also at the tissue site. Consequently, the binary model proposed for differentiating monocyte into M1 and M2 macrophages has been recently challenged by a spectrum model that more realistically mirrors the heterogeneous cues in inflammatory conditions. This review describes the latest results on the high dimensional characterization of monocytes and monocyte-derived myeloid cells in steady state and cancer. We discuss how environmental cues and monocyte-intrinsic properties may affect their differentiation toward specific functional and phenotypic subsets, the causes of monocyte expansion and reduction in cancer, their metabolic requirements, and the potential effect on tumor immunity.
Collapse
Affiliation(s)
- Silvia Guglietta
- Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA; Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina (MUSC), 173 Ashley Avenue, CRI609, Charleston, SC 29425, USA.
| | - Carsten Krieg
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina (MUSC), 68 President Street, BE415, Charleston, SC 29425, USA; Hollings Cancer Center, 86 Jonathan Lucas Street, Charleston, SC 29425, USA.
| |
Collapse
|
13
|
Klusa D, Lohaus F, Franken A, Baumbach M, Cojoc M, Dowling P, Linge A, Offermann A, Löck S, Hušman D, Rivandi M, Polzer B, Freytag V, Lange T, Neubauer H, Kücken M, Perner S, Hölscher T, Dubrovska A, Krause M, Kurth I, Baumann M, Peitzsch C. Dynamics of CXCR4 positive circulating tumor cells in prostate cancer patients during radiotherapy. Int J Cancer 2023; 152:2639-2654. [PMID: 36733230 DOI: 10.1002/ijc.34457] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023]
Abstract
Ablative radiotherapy is a highly efficient treatment modality for patients with metastatic prostate cancer (PCa). However, a subset of patients does not respond. Currently, this subgroup with bad prognosis cannot be identified before disease progression. We hypothesize that markers indicative of radioresistance, stemness and/or bone tropism may have a prognostic potential to identify patients profiting from metastases-directed radiotherapy. Therefore, circulating tumor cells (CTCs) were analyzed in patients with metastatic PCa (n = 24) during radiotherapy with CellSearch, multicolor flow cytometry and imaging cytometry. Analysis of copy-number alteration indicates a polyclonal CTC population that changes after radiotherapy. CTCs were found in 8 out of 24 patients (33.3%) and were associated with a shorter time to biochemical progression after radiotherapy. Whereas the total CTC count dropped after radiotherapy, a chemokine receptor CXCR4-expressing subpopulation representing 28.6% of the total CTC population remained stable up to 3 months. At once, we observed higher chemokine CCL2 plasma concentrations and proinflammatory monocytes. Additional functional analyses demonstrated key roles of CXCR4 and CCL2 for cellular radiosensitivity, tumorigenicity and stem-like potential in vitro and in vivo. Moreover, a high CXCR4 and CCL2 expression was found in bone metastasis biopsies of PCa patients. In summary, panCK+ CXCR4+ CTCs may have a prognostic potential in patients with metastatic PCa treated with metastasis-directed radiotherapy.
Collapse
Affiliation(s)
- Daria Klusa
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Fabian Lohaus
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Andre Franken
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University, Düsseldorf, Germany
| | - Marian Baumbach
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Monica Cojoc
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Paul Dowling
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Annett Linge
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Steffen Löck
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Department of Radiation Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University, Düsseldorf, Germany
| | - Bernhard Polzer
- Division of Personalized Tumor Therapy, Fraunhofer-Institute for Toxicology and Experimental Medicine, Regensburg, Germany
| | - Vera Freytag
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Lange
- Institute of Anatomy and Experimental Morphology, University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, Medical Faculty and University Hospital of the Heinrich-Heine University, Düsseldorf, Germany
| | - Michael Kücken
- Department for Innovative Methods of Computing, Center for Principal component Information Services and High-Performance Computing (ZIH), Technische Universität, Dresden, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig Holstein, Lübeck, Germany
| | - Tobias Hölscher
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Anna Dubrovska
- OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Mechthild Krause
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Radiation Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Institute of Radiooncology - OncoRay, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Ina Kurth
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Baumann
- Department of Radiation Oncology, University Hospital and Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Claudia Peitzsch
- National Center for Tumor Diseases (NCT), Partner Site Dresden, German Cancer Research Center (DKFZ), Heidelberg, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, and Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.,OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden and Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Dresden, Germany
| |
Collapse
|
14
|
Bissa M, Kim S, Galli V, Fourati S, Sarkis S, Arakelyan A, de Castro IS, Rahman MA, Fujiwara S, Vaccari M, Tomalka JA, Stamos JD, Schifanella L, Gorini G, Moles R, Gutowska A, Ferrari G, Lobanov A, Montefiori DC, Nelson GW, Cam MC, Chakhtoura M, Haddad EK, Doster MN, McKinnon K, Brown S, Venzon DJ, Choo-Wosoba H, Breed MW, Killoran KE, Kramer J, Margolis L, Sekaly RP, Hager GL, Franchini G. HIV vaccine candidate efficacy in female macaques mediated by cAMP-dependent efferocytosis and V2-specific ADCC. Nat Commun 2023; 14:575. [PMID: 36732510 PMCID: PMC9894672 DOI: 10.1038/s41467-023-36109-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/15/2023] [Indexed: 02/04/2023] Open
Abstract
The development of an effective vaccine to protect against HIV acquisition will be greatly bolstered by in-depth understanding of the innate and adaptive responses to vaccination. We report here that the efficacy of DNA/ALVAC/gp120/alum vaccines, based on V2-specific antibodies mediating apoptosis of infected cells (V2-ADCC), is complemented by efferocytosis, a cyclic AMP (cAMP)-dependent antiphlogistic engulfment of apoptotic cells by CD14+ monocytes. Central to vaccine efficacy is the engagement of the CCL2/CCR2 axis and tolerogenic dendritic cells producing IL-10 (DC-10). Epigenetic reprogramming in CD14+ cells of the cyclic AMP/CREB pathway and increased systemic levels of miRNA-139-5p, a negative regulator of expression of the cAMP-specific phosphodiesterase PDE4D, correlated with vaccine efficacy. These data posit that efferocytosis, through the prompt and effective removal of apoptotic infected cells, contributes to vaccine efficacy by decreasing inflammation and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA.
| | - Sohyoung Kim
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Sarkis Sarkis
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Anush Arakelyan
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | | | - Mohammad Arif Rahman
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Saori Fujiwara
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
- Tulane National Primate Research Center, Tulane University, Covington, LA, USA
| | - Jeffrey A Tomalka
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - James D Stamos
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Ramona Moles
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Anna Gutowska
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Guido Ferrari
- Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Alexei Lobanov
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - David C Montefiori
- Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - George W Nelson
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Margaret C Cam
- Collaborative Bioinformatics Resource, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Marita Chakhtoura
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Elias K Haddad
- Department of Medicine, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
| | - Katherine McKinnon
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - Sophia Brown
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA
- Vaccine Branch Flow Cytometry Core, National Cancer Institute, Bethesda, MD, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hyoyoung Choo-Wosoba
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Matthew W Breed
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Kristin E Killoran
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Joshua Kramer
- Laboratory Animal Sciences Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Leonid Margolis
- Section on Intercellular Interactions, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Rafick P Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
- Department of Pathology, Emory University, Atlanta, GA, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
15
|
Evolution and Targeting of Myeloid Suppressor Cells in Cancer: A Translational Perspective. Cancers (Basel) 2022; 14:cancers14030510. [PMID: 35158779 PMCID: PMC8833347 DOI: 10.3390/cancers14030510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Immunotherapy is achieving impressive results in the treatment of several cancers. While the main strategies aim to re-invigorate the specific lymphocyte anti-tumor response, many studies underline that altered myeloid cell frequency and functions can dramatically interfere with the responsiveness to cancer therapies. Therefore, many novel strategies targeting TAMs and MDSCs in combination with classical treatments are under continuous evolution at both pre-clinical and clinical levels, showing encouraging results. Herein, we depict a comprehensive overview of myeloid cell generation and function in a cancer setting, and the most relevant strategies for their targeting that are currently in clinical use or under pre-clinical development. Abstract In recent years, the immune system has emerged as a critical regulator of tumor development, progression and dissemination. Advanced therapeutic approaches targeting immune cells are currently under clinical use and improvement for the treatment of patients affected by advanced malignancies. Among these, anti-PD1/PD-L1 and anti-CTLA4 immune checkpoint inhibitors (ICIs) are the most effective immunotherapeutic drugs at present. In spite of these advances, great variability in responses to therapy exists among patients, probably due to the heterogeneity of both cancer cells and immune responses, which manifest in diverse forms in the tumor microenvironment (TME). The variability of the immune profile within TME and its prognostic significance largely depend on the frequency of the infiltrating myeloid cells, which often represent the predominant population, characterized by high phenotypic heterogeneity. The generation of heterogeneous myeloid populations endowed with tumor-promoting activities is typically promoted by growing tumors, indicating the sequential levels of myeloid reprogramming as possible antitumor targets. This work reviews the current knowledge on the events governing protumoral myelopoiesis, analyzing the mechanisms that drive the expansion of major myeloid subsets, as well as their functional properties, and highlighting recent translational strategies for clinical developments.
Collapse
|
16
|
El Sayed S, Patik I, Redhu NS, Glickman JN, Karagiannis K, El Naenaeey ESY, Elmowalid GA, Abd El Wahab AM, Snapper SB, Horwitz BH. CCR2 promotes monocyte recruitment and intestinal inflammation in mice lacking the interleukin-10 receptor. Sci Rep 2022; 12:452. [PMID: 35013585 PMCID: PMC8748948 DOI: 10.1038/s41598-021-04098-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are a heterogeneous population of mononuclear phagocytes abundantly distributed throughout the intestinal compartments that adapt to microenvironmental specific cues. In adult mice, the majority of intestinal macrophages exhibit a mature phenotype and are derived from blood monocytes. In the steady-state, replenishment of these cells is reduced in the absence of the chemokine receptor CCR2. Within the intestine of mice with colitis, there is a marked increase in the accumulation of immature macrophages that demonstrate an inflammatory phenotype. Here, we asked whether CCR2 is necessary for the development of colitis in mice lacking the receptor for IL10. We compared the development of intestinal inflammation in mice lacking IL10RA or both IL10RA and CCR2. The absence of CCR2 interfered with the accumulation of immature macrophages in IL10R-deficient mice, including a novel population of rounded submucosal Iba1+ cells, and reduced the severity of colitis in these mice. In contrast, the absence of CCR2 did not reduce the augmented inflammatory gene expression observed in mature intestinal macrophages isolated from mice lacking IL10RA. These data suggest that both newly recruited CCR2-dependent immature macrophages and CCR2-independent residual mature macrophages contribute to the development of intestinal inflammation observed in IL10R-deficient mice.
Collapse
Affiliation(s)
- Shorouk El Sayed
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02420, USA
- Faculty of Veterinary Medicine, Department of Microbiology, Zagazig University, Zagazig, Ash Sharkia, Egypt
| | - Izabel Patik
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02420, USA
| | - Naresh S Redhu
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02420, USA
- Morphic Therapeutic, Waltham, MA, USA
| | - Jonathan N Glickman
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Konstantinos Karagiannis
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, USA
| | - El Sayed Y El Naenaeey
- Faculty of Veterinary Medicine, Department of Microbiology, Zagazig University, Zagazig, Ash Sharkia, Egypt
| | - Gamal A Elmowalid
- Faculty of Veterinary Medicine, Department of Microbiology, Zagazig University, Zagazig, Ash Sharkia, Egypt
| | - Ashraf M Abd El Wahab
- Faculty of Veterinary Medicine, Department of Microbiology, Zagazig University, Zagazig, Ash Sharkia, Egypt
| | - Scott B Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02420, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bruce H Horwitz
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, 02420, USA.
- Division of Emergency Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
17
|
Alwani A, Andreasik A, Szatanek R, Siedlar M, Baj-Krzyworzeka M. The Role of miRNA in Regulating the Fate of Monocytes in Health and Cancer. Biomolecules 2022; 12:100. [PMID: 35053248 PMCID: PMC8773712 DOI: 10.3390/biom12010100] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 01/01/2022] [Indexed: 12/23/2022] Open
Abstract
Monocytes represent a heterogeneous population of blood cells that provide a link between innate and adaptive immunity. The unique potential of monocytes as both precursors (e.g., of macrophages) and effector cells (as phagocytes or cytotoxic cells) makes them an interesting research and therapeutic target. At the site of a tumor, monocytes/macrophages constitute a major population of infiltrating leukocytes and, depending on the type of tumor, may play a dual role as either a bad or good indicator for cancer recovery. The functional activity of monocytes and macrophages derived from them is tightly regulated at the transcriptional and post-transcriptional level. This review summarizes the current understanding of the role of small regulatory miRNA in monocyte formation, maturation and function in health and cancer development. Additionally, signatures of miRNA-based monocyte subsets and the influence of exogenous miRNA generated in the tumor environment on the function of monocytes are discussed.
Collapse
Affiliation(s)
| | | | | | | | - Monika Baj-Krzyworzeka
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, 30-663 Kraków, Poland; (A.A.); (A.A.); (R.S.); (M.S.)
| |
Collapse
|
18
|
Kim AR, Bak EJ, Yoo YJ. Distribution of neutrophil and monocyte/macrophage populations induced by the CXCR4 inhibitor AMD3100 in blood and periodontal tissue early after periodontitis induction. J Periodontal Res 2021; 57:332-340. [PMID: 34927238 DOI: 10.1111/jre.12963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
CXCR4, a CXCL12 receptor, is expressed on epithelial cells, fibroblasts, and inflammatory cells. The CXCR4-CXCL12 interaction is related to the migration of neutrophils and monocytes/macrophages. Periodontitis, an inflammatory disease mainly caused by gram-negative bacteria, is characterized by infiltration of circulating inflammatory cells and alveolar bone (AB) loss. To investigate whether CXCR4 is involved in the distribution of neutrophils and monocytes/macrophages early after periodontitis induction, we examined the effects of AMD3100 (AMD), a CXCR4 antagonist, in ligature-induced periodontitis mice and LPS-injected air pouch mice. The periodontitis study was accomplished in control (C), periodontitis (P), and P + AMD groups. Periodontitis was induced by ligation of the mandibular first molar. AMD was intraperitoneally administered daily beginning the day before ligation until sacrifice on the third day after ligation. The air pouch study was accomplished in C, lipopolysaccharide (LPS), and LPS + AMD groups. Air pouches on mice backs were formed by subcutaneous injection of sterilized air. AMD was administered and then LPS was injected into the air pouch. For the detection of neutrophils and monocytes/macrophages in blood and air pouch exudates, flow cytometry was performed with anti-Ly6G/anti-CD11b antibodies (Abs) and anti-CD115 Ab, respectively. In periodontal tissue, Ly6G+ cells and CD115+ cells were counted by immunohistological analysis. AB loss was estimated by the periodontal ligament area in the furcation. In the periodontitis study, the P group showed higher numbers of Ly6G+ cells and CD115+ cells in blood and periodontal tissue than the C group. The P + AMD group showed a greater number of Ly6G+ cells and CD115+ cells in blood, but not in periodontal tissue compared to the P group. There was no difference in AB loss between the P and P + AMD groups. In the air pouch study, the LPS group had higher levels of Ly6G+ CD11b+ cells and CD115+ cells in both blood and exudates than the C group. The number of these cells in the LPS + AMD group was higher in blood than in the LPS group, but not in the exudates. The CXCR4 antagonist further increased neutrophil and monocyte/macrophage populations in the blood, but did not alter the levels in the periodontal tissue and exudates in mice with periodontitis and LPS-injected air pouches. These results suggest that during inflammatory conditions such as periodontitis, CXCR4 is involved in the distribution of neutrophils and monocytes/macrophages in the blood, but not in inflamed peripheral tissues.
Collapse
Affiliation(s)
- Ae Ri Kim
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea.,Department of Applied Life Science, The Graduate School, Yonsei University, Seoul, South Korea.,BK21 PLUS Project, Yonsei University College of Dentistry, Seoul, South Korea
| | - Eun-Jung Bak
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| | - Yun-Jung Yoo
- Department of Oral Biology, Yonsei University College of Dentistry, Seoul, South Korea
| |
Collapse
|
19
|
Haubruck P, Pinto MM, Moradi B, Little CB, Gentek R. Monocytes, Macrophages, and Their Potential Niches in Synovial Joints - Therapeutic Targets in Post-Traumatic Osteoarthritis? Front Immunol 2021; 12:763702. [PMID: 34804052 PMCID: PMC8600114 DOI: 10.3389/fimmu.2021.763702] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Synovial joints are complex structures that enable normal locomotion. Following injury, they undergo a series of changes, including a prevalent inflammatory response. This increases the risk for development of osteoarthritis (OA), the most common joint disorder. In healthy joints, macrophages are the predominant immune cells. They regulate bone turnover, constantly scavenge debris from the joint cavity and, together with synovial fibroblasts, form a protective barrier. Macrophages thus work in concert with the non-hematopoietic stroma. In turn, the stroma provides a scaffold as well as molecular signals for macrophage survival and functional imprinting: “a macrophage niche”. These intricate cellular interactions are susceptible to perturbations like those induced by joint injury. With this review, we explore how the concepts of local tissue niches apply to synovial joints. We introduce the joint micro-anatomy and cellular players, and discuss their potential interactions in healthy joints, with an emphasis on molecular cues underlying their crosstalk and relevance to joint functionality. We then consider how these interactions are perturbed by joint injury and how they may contribute to OA pathogenesis. We conclude by discussing how understanding these changes might help identify novel therapeutic avenues with the potential of restoring joint function and reducing post-traumatic OA risk.
Collapse
Affiliation(s)
- Patrick Haubruck
- Centre for Orthopaedics, Trauma Surgery and Spinal Cord Injury, Trauma and Reconstructive Surgery, Heidelberg University Hospital, Heidelberg, Germany.,Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Marlene Magalhaes Pinto
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| | - Babak Moradi
- Clinic of Orthopaedics and Trauma Surgery, University Clinic of Schleswig-Holstein, Kiel, Germany
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratory, Kolling Institute, Institute of Bone and Joint Research, Faculty of Medicine and Health University of Sydney, Royal North Shore Hospital, St. Leonards, NSW, Australia
| | - Rebecca Gentek
- Centre for Inflammation Research & Centre for Reproductive Health, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Galipeau J. Macrophages at the nexus of mesenchymal stromal cell potency: The emerging role of chemokine cooperativity. Stem Cells 2021; 39:1145-1154. [PMID: 33786935 PMCID: PMC8453730 DOI: 10.1002/stem.3380] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/12/2021] [Indexed: 05/10/2023]
Abstract
Pharmacological depletion of macrophages in vivo with liposomal clodronate renders mice unresponsive to adoptive transfer of mesenchymal stromal cells (MSCs) for affecting outcomes of acute inflammatory pathology. This experimental observation identifies host macrophages as necessary in mediating the salutary anti-inflammatory properties of MSCs as a cellular pharmaceutical. This theory is supported by the observation that transfusion of MSCs leads to the prompt phagocytosis of nearly half of lung entrapped MSCs by lung resident macrophages, triggering an interleukin (IL)-10 suppressive efferocytotic response. In addition, non-phagocytosed MSCs with COX2 competency shape the immune milieu by inducing tissue macrophages to express IL-10. Additional experimental evidence identifies MSC-borne IL-6, IDO and TSG-6 as directly involved in macrophage polarization. Along similar lines of functional convergence, implantation of CCL2+ MSCs in the extravascular space where interaction with lung resident perivascular macrophages is not operative, also leads to IL-10 polarization of CCR2+ macrophages within acute injured tissue far removed from MSC depot. Intriguingly, MSC-derived CCL2 on its own is not sufficient to polarize macrophages and requires heterodimerization with MSC-borne CXCL12 to trigger macrophage IL-10 polarization via CCR2, but not CXCR4. Such chemokine cooperativity opens a new venue for analysis of MSC potency especially considering the rich chemokine secretome of MSC exposed to inflammatory stimulus. As an aggregate, these data highlight a necessary MSC and host macrophage functional dyad that may inform potency attribute analysis of MSCs-including the chemokine interactome-that may be directly linked to in vivo clinical anti-inflammatory and regenerative response.
Collapse
Affiliation(s)
- Jacques Galipeau
- Department of Medicine, School of Medicine and Public HealthUniversity of Wisconsin in MadisonMadisonWisconsinUSA
- University of Wisconsin Carbone Comprehensive CancerMadisonWisconsinUSA
- University of Wisconsin Program for Advanced Cell TherapyMadisonWisconsinUSA
| |
Collapse
|
21
|
Márquez AB, van der Vorst EPC, Maas SL. Key Chemokine Pathways in Atherosclerosis and Their Therapeutic Potential. J Clin Med 2021; 10:3825. [PMID: 34501271 PMCID: PMC8432216 DOI: 10.3390/jcm10173825] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 12/24/2022] Open
Abstract
The search to improve therapies to prevent or treat cardiovascular diseases (CVDs) rages on, as CVDs remain a leading cause of death worldwide. Here, the main cause of CVDs, atherosclerosis, and its prevention, take center stage. Chemokines and their receptors have long been known to play an important role in the pathophysiological development of atherosclerosis. Their role extends from the initiation to the progression, and even the potential regression of atherosclerotic lesions. These important regulators in atherosclerosis are therefore an obvious target in the development of therapeutic strategies. A plethora of preclinical studies have assessed various possibilities for targeting chemokine signaling via various approaches, including competitive ligands and microRNAs, which have shown promising results in ameliorating atherosclerosis. Developments in the field also include detailed imaging with tracers that target specific chemokine receptors. Lastly, clinical trials revealed the potential of various therapies but still require further investigation before commencing clinical use. Although there is still a lot to be learned and investigated, it is clear that chemokines and their receptors present attractive yet extremely complex therapeutic targets. Therefore, this review will serve to provide a general overview of the connection between various chemokines and their receptors with atherosclerosis. The different developments, including mouse models and clinical trials that tackle this complex interplay will also be explored.
Collapse
Affiliation(s)
- Andrea Bonnin Márquez
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
| | - Emiel P. C. van der Vorst
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, 6229 ER Maastricht, The Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig-Maximilians-University Munich, 80336 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Sanne L. Maas
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, 52074 Aachen, Germany;
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, 52074 Aachen, Germany
| |
Collapse
|
22
|
Takacs GP, Flores-Toro JA, Harrison JK. Modulation of the chemokine/chemokine receptor axis as a novel approach for glioma therapy. Pharmacol Ther 2021; 222:107790. [PMID: 33316289 PMCID: PMC8122077 DOI: 10.1016/j.pharmthera.2020.107790] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Chemokines are a large subfamily of cytokines known for their ability to facilitate cell migration, most notably leukocytes, throughout the body. Chemokines are necessary for a functioning immune system in both health and disease and have received considerable attention for their roles in orchestrating temporal-spatial regulation of immune cell populations in cancer. Gliomas comprise a group of common central nervous system (CNS) primary tumors that are extremely challenging to treat. Immunotherapy approaches for highly malignant brain tumors offer an exciting new avenue for therapeutic intervention but so far, have seen limited successful clinical outcomes. Herein we focus on important chemokine/chemokine receptor systems in the regulation of pro- and anti-tumor mechanisms, highlighting potential therapeutic advantages of modulating these systems in malignant gliomas and other cancers.
Collapse
Affiliation(s)
- Gregory P Takacs
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Joseph A Flores-Toro
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jeffrey K Harrison
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
23
|
Patel AA, Ginhoux F, Yona S. Monocytes, macrophages, dendritic cells and neutrophils: an update on lifespan kinetics in health and disease. Immunology 2021; 163:250-261. [PMID: 33555612 DOI: 10.1111/imm.13320] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/13/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Phagocytes form a family of immune cells that play a crucial role in tissue maintenance and help orchestrate the immune response. This family of cells can be separated by their nuclear morphology into mononuclear and polymorphonuclear phagocytes. The generation of these cells in the bone marrow, to the blood and finally into tissues is a tightly regulated process. Ensuring the adequate production of these cells and their timely removal is key for both the initiation and resolution of inflammation. Insight into the kinetic profiles of innate myeloid cells during steady state and pathology will permit the rational development of therapies to boost the production of these cells in times of need or reduce them when detrimental.
Collapse
Affiliation(s)
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore.,Shanghai Institute of Immunology, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Simon Yona
- Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| |
Collapse
|
24
|
Okawa T, Nagai M, Hase K. Dietary Intervention Impacts Immune Cell Functions and Dynamics by Inducing Metabolic Rewiring. Front Immunol 2021; 11:623989. [PMID: 33613560 PMCID: PMC7890027 DOI: 10.3389/fimmu.2020.623989] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/18/2020] [Indexed: 12/13/2022] Open
Abstract
Accumulating evidence has shown that nutrient metabolism is closely associated with the differentiation and functions of various immune cells. Cellular metabolism, including aerobic glycolysis, fatty acid oxidation, and oxidative phosphorylation, plays a key role in germinal center (GC) reaction, B-cell trafficking, and T-cell-fate decision. Furthermore, a quiescent metabolic status consolidates T-cell-dependent immunological memory. Therefore, dietary interventions such as calorie restriction, time-restricted feeding, and fasting potentially manipulate immune cell functions. For instance, intermittent fasting prevents the development of experimental autoimmune encephalomyelitis. Meanwhile, the fasting response diminishes the lymphocyte pool in gut-associated lymphoid tissue to minimize energy expenditure, leading to the attenuation of Immunoglobulin A (IgA) response. The nutritional status also influences the dynamics of several immune cell subsets. Here, we describe the current understanding of the significance of immunometabolism in the differentiation and functionality of lymphocytes and macrophages. The underlying molecular mechanisms also are discussed. These experimental observations could offer new therapeutic strategies for immunological disorders like autoimmunity.
Collapse
Affiliation(s)
- Takuma Okawa
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Motoyoshi Nagai
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
- Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and Medicine, Chiba, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy and Graduate School of Pharmaceutical Science, Keio University, Tokyo, Japan
- International Research and Developmental Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
25
|
Sreejit G, Fleetwood AJ, Murphy AJ, Nagareddy PR. Origins and diversity of macrophages in health and disease. Clin Transl Immunology 2020; 9:e1222. [PMID: 33363732 PMCID: PMC7750014 DOI: 10.1002/cti2.1222] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the first immune cells in the developing embryo and have a central role in organ development, homeostasis, immunity and repair. Over the last century, our understanding of these cells has evolved from being thought of as simple phagocytic cells to master regulators involved in governing a myriad of cellular processes. A better appreciation of macrophage biology has been matched with a clearer understanding of their diverse origins and the flexibility of their metabolic and transcriptional machinery. The understanding of the classical mononuclear phagocyte system in its original form has now been expanded to include the embryonic origin of tissue-resident macrophages. A better knowledge of the intrinsic similarities and differences between macrophages of embryonic or monocyte origin has highlighted the importance of ontogeny in macrophage dysfunction in disease. In this review, we provide an update on origin and classification of tissue macrophages, the mechanisms of macrophage specialisation and their role in health and disease. The importance of the macrophage niche in providing trophic factors and a specialised environment for macrophage differentiation and specialisation is also discussed.
Collapse
Affiliation(s)
- Gopalkrishna Sreejit
- Division of Cardiac SurgeryDepartment of SurgeryThe Ohio State University Wexner Medical CenterColumbusOHUSA
| | - Andrew J Fleetwood
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Andrew J Murphy
- Division of ImmunometabolismBaker Heart and Diabetes InstituteMelbourneVICAustralia
| | - Prabhakara R Nagareddy
- Division of Cardiac SurgeryDepartment of SurgeryThe Ohio State University Wexner Medical CenterColumbusOHUSA
| |
Collapse
|
26
|
Mittal P, Wang L, Akimova T, Leach CA, Clemente JC, Sender MR, Chen Y, Turunen BJ, Hancock WW. The CCR2/MCP-1 Chemokine Pathway and Lung Adenocarcinoma. Cancers (Basel) 2020; 12:E3723. [PMID: 33322474 PMCID: PMC7763565 DOI: 10.3390/cancers12123723] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 12/21/2022] Open
Abstract
Host anti-tumor immunity can be hindered by various mechanisms present within the tumor microenvironment, including the actions of myeloid-derived suppressor cells (MDSCs). We investigated the role of the CCR2/MCP-1 pathway in MDSC-associated tumor progression in murine lung cancer models. Phenotypic profiling revealed maximal expression of CCR2 by tumor-resident MDSCs, and MCP-1 by transplanted TC1 tumor cells, respectively. Use of CCR2-knockout (CCR2-KO) mice showed dependence of tumor growth on CCR2 signaling. Tumors in CCR2-KO mice had fewer CCR2low MDSCs, CD4 T cells and Tregs than WT mice, and increased infiltration by CD8 T cells producing IFN-γ and granzyme-B. Effects were MDSC specific, since WT and CCR2-KO conventional T (Tcon) cells had comparable proliferation and production of inflammatory cytokines, and suppressive functions of WT and CCR2-KO Foxp3+ Treg cells were also similar. We used a thioglycolate-induced peritonitis model to demonstrate a role for CCR2/MCP-1 in trafficking of CCR2+ cells to an inflammatory site, and showed the ability of a CCR2 antagonist to inhibit such trafficking. Use of this CCR2 antagonist promoted anti-tumor immunity and limited tumor growth. In summary, tumor cells are the prime source of MCP-1 that promotes MDSC recruitment, and our genetic and pharmacologic data demonstrate that CCR2 targeting may be an important component of cancer immunotherapy.
Collapse
Affiliation(s)
- Payal Mittal
- Chemical Biology, Medicinal Science Technology, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.M.); (C.A.L.); (J.C.C.); (M.R.S.); (Y.C.); (B.J.T.)
- Division of Transplantation Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.W.); (T.A.)
| | - Liqing Wang
- Division of Transplantation Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.W.); (T.A.)
| | - Tatiana Akimova
- Division of Transplantation Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.W.); (T.A.)
| | - Craig A. Leach
- Chemical Biology, Medicinal Science Technology, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.M.); (C.A.L.); (J.C.C.); (M.R.S.); (Y.C.); (B.J.T.)
| | - Jose C. Clemente
- Chemical Biology, Medicinal Science Technology, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.M.); (C.A.L.); (J.C.C.); (M.R.S.); (Y.C.); (B.J.T.)
| | - Matthew R. Sender
- Chemical Biology, Medicinal Science Technology, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.M.); (C.A.L.); (J.C.C.); (M.R.S.); (Y.C.); (B.J.T.)
| | - Yao Chen
- Chemical Biology, Medicinal Science Technology, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.M.); (C.A.L.); (J.C.C.); (M.R.S.); (Y.C.); (B.J.T.)
| | - Brandon J. Turunen
- Chemical Biology, Medicinal Science Technology, GlaxoSmithKline, Collegeville, PA 19426, USA; (P.M.); (C.A.L.); (J.C.C.); (M.R.S.); (Y.C.); (B.J.T.)
| | - Wayne W. Hancock
- Division of Transplantation Immunology, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (L.W.); (T.A.)
| |
Collapse
|
27
|
Zehentmeier S, Pereira JP. Cell circuits and niches controlling B cell development. Immunol Rev 2020; 289:142-157. [PMID: 30977190 DOI: 10.1111/imr.12749] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/23/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
Abstract
Studies over the last decade uncovered overlapping niches for hematopoietic stem cells (HSCs), multipotent progenitor cells, common lymphoid progenitors, and early B cell progenitors. HSC and lymphoid niches are predominantly composed by mesenchymal progenitor cells (MPCs) and by a small subset of endothelial cells. Niche cells create specialized microenvironments through the concomitant production of short-range acting cell-fate determining cytokines such as interleukin (IL)-7 and stem cell factor and the potent chemoattractant C-X-C motif chemokine ligand 12. This type of cellular organization allows for the cross-talk between hematopoietic stem and progenitor cells with niche cells, such that niche cell activity can be regulated by the quality and quantity of hematopoietic progenitors being produced. For example, preleukemic B cell progenitors and preB acute lymphoblastic leukemias interact directly with MPCs, and downregulate IL-7 expression and the production of non-leukemic lymphoid cells. In this review, we discuss a novel model of B cell development that is centered on cellular circuits formed between B cell progenitors and lymphopoietic niches.
Collapse
Affiliation(s)
- Sandra Zehentmeier
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - João P Pereira
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
28
|
CCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomas. Proc Natl Acad Sci U S A 2019; 117:1129-1138. [PMID: 31879345 DOI: 10.1073/pnas.1910856117] [Citation(s) in RCA: 227] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy directed at the PD-L1/PD-1 axis has produced treatment advances in various human cancers. Unfortunately, progress has not extended to glioblastoma (GBM), with phase III clinical trials assessing anti-PD-1 monotherapy failing to show efficacy in newly diagnosed and recurrent tumors. Myeloid-derived suppressor cells (MDSCs), a subset of immunosuppressive myeloid derived cells, are known to infiltrate the tumor microenvironment of GBM. Growing evidence suggests the CCL2-CCR2 axis is important for this process. This study evaluated the combination of PD-1 blockade and CCR2 inhibition in anti-PD-1-resistant gliomas. CCR2 deficiency unmasked an anti-PD-1 survival benefit in KR158 glioma-bearing mice. CD11b+/Ly6Chi/PD-L1+ MDSCs within established gliomas decreased with a concomitant increase in overall CCR2+ cells and MDSCs within bone marrow of CCR2-deficient mice. The CCR2 antagonist CCX872 increased median survival as a monotherapy in KR158 glioma-bearing animals and further increased median and overall survival when combined with anti-PD-1. Additionally, combination of CCX872 and anti-PD-1 prolonged median survival time in 005 GSC GBM-bearing mice. In both models, CCX872 decreased tumor associated MDSCs and increased these cells within the bone marrow. Examination of tumor-infiltrating lymphocytes revealed an elevated population, increased IFNγ expression, indicating enhanced cytolytic activity, as well as decreased expression of exhaustion markers in CD4+ and CD8+ T cells following combination treatment. These data establish that combining CCR2 and PD-1 blockade extends survival in clinically relevant murine glioma models and provides the basis on which to advance this combinatorial treatment toward early-phase human trials.
Collapse
|
29
|
Bone marrow sinusoidal endothelium as a facilitator/regulator of cell egress from the bone marrow. Crit Rev Oncol Hematol 2019; 137:43-56. [DOI: 10.1016/j.critrevonc.2019.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/12/2019] [Accepted: 01/29/2019] [Indexed: 02/06/2023] Open
|
30
|
Teh YC, Ding JL, Ng LG, Chong SZ. Capturing the Fantastic Voyage of Monocytes Through Time and Space. Front Immunol 2019; 10:834. [PMID: 31040854 PMCID: PMC6476989 DOI: 10.3389/fimmu.2019.00834] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 03/29/2019] [Indexed: 02/02/2023] Open
Abstract
Monocytes are a subset of cells that are categorized together with dendritic cells (DCs) and macrophages in the mononuclear phagocyte system (MPS). Despite sharing several phenotypic and functional characteristics with MPS cells, monocytes are unique cells with the ability to function as both precursor and effector cells in their own right. Before the development of hematopoietic stem cells (HSCs) in utero, monocytes are derived from erythro-myeloid precursors (EMPs) in the fetal liver that are important for populating the majority of tissue resident macrophages. After birth, monocytes arise from bone marrow (BM)-derived HSCs and are released into the circulation upon their maturation, where they survey peripheral tissues and maintain endothelial integrity. Upon sensing of microbial breaches or inflammatory stimuli, monocytes migrate into tissues where their plasticity allows them to differentiate into cells that resemble macrophages or DCs according to the environmental niche. Alternatively, they may also migrate into tissues in the absence of inflammation and remain in an undifferentiated state where they perform homeostatic roles. As monocytes are typically on the move, the availability of intravital imaging approaches has provided further insights into their trafficking patterns in distinct tissue compartments. In this review, we outline the importance of understanding their functional behavior in the context of tissue compartments, and how these studies may contribute towards improved vaccine and future therapeutic strategies.
Collapse
Affiliation(s)
- Ye Chean Teh
- Functional Immune Imaging, Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore.,Department of Biological Sciences, National University of Singapore (NUS), Singapore, Singapore
| | - Jeak Ling Ding
- Department of Biological Sciences, National University of Singapore (NUS), Singapore, Singapore
| | - Lai Guan Ng
- Functional Immune Imaging, Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore.,Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Shu Zhen Chong
- Functional Immune Imaging, Singapore Immunology Network (SIgN), ASTAR (Agency for Science, Technology and Research), Biopolis, Singapore
| |
Collapse
|
31
|
McCoy KD, Thomson CA. The Impact of Maternal Microbes and Microbial Colonization in Early Life on Hematopoiesis. THE JOURNAL OF IMMUNOLOGY 2019; 200:2519-2526. [PMID: 29632252 DOI: 10.4049/jimmunol.1701776] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/12/2018] [Indexed: 12/24/2022]
Abstract
All body surfaces are colonized by microbes, which occurs through a dynamic process over the first few years of life. Initial colonizing microbes are transferred from the maternal microbiota to the newborn through vertical transmission. Postnatal maturation of the immune system is heavily influenced by these microbes, particularly during early life. Although microbial-mediated education of the immune system is better understood at mucosal sites, recent data indicate that the systemic immune system is also shaped by the microbiota. Bacterial products and metabolites produced through microbial metabolism can reach distal sites, and metabolites derived from the maternal microbiota can cross the placenta and are present in milk. Recent studies show that the microbiota can even influence immune development in primary lymphoid organs like the bone marrow. This review outlines our current knowledge of how the microbiota can impact hematopoiesis, with a focus on the effects of maternal and early-life microbiota.
Collapse
Affiliation(s)
- Kathy D McCoy
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Carolyn A Thomson
- Department of Physiology and Pharmacology, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| |
Collapse
|
32
|
Stegelmeier AA, van Vloten JP, Mould RC, Klafuric EM, Minott JA, Wootton SK, Bridle BW, Karimi K. Myeloid Cells during Viral Infections and Inflammation. Viruses 2019; 11:E168. [PMID: 30791481 PMCID: PMC6410039 DOI: 10.3390/v11020168] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 12/11/2022] Open
Abstract
Myeloid cells represent a diverse range of innate leukocytes that are crucial for mounting successful immune responses against viruses. These cells are responsible for detecting pathogen-associated molecular patterns, thereby initiating a signaling cascade that results in the production of cytokines such as interferons to mitigate infections. The aim of this review is to outline recent advances in our knowledge of the roles that neutrophils and inflammatory monocytes play in initiating and coordinating host responses against viral infections. A focus is placed on myeloid cell development, trafficking and antiviral mechanisms. Although known for promoting inflammation, there is a growing body of literature which demonstrates that myeloid cells can also play critical regulatory or immunosuppressive roles, especially following the elimination of viruses. Additionally, the ability of myeloid cells to control other innate and adaptive leukocytes during viral infections situates these cells as key, yet under-appreciated mediators of pathogenic inflammation that can sometimes trigger cytokine storms. The information presented here should assist researchers in integrating myeloid cell biology into the design of novel and more effective virus-targeted therapies.
Collapse
Affiliation(s)
- Ashley A Stegelmeier
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jacob P van Vloten
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Robert C Mould
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Elaine M Klafuric
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Jessica A Minott
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sarah K Wootton
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
33
|
Bassler K, Schulte-Schrepping J, Warnat-Herresthal S, Aschenbrenner AC, Schultze JL. The Myeloid Cell Compartment-Cell by Cell. Annu Rev Immunol 2019; 37:269-293. [PMID: 30649988 DOI: 10.1146/annurev-immunol-042718-041728] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Myeloid cells are a major cellular compartment of the immune system comprising monocytes, dendritic cells, tissue macrophages, and granulocytes. Models of cellular ontogeny, activation, differentiation, and tissue-specific functions of myeloid cells have been revisited during the last years with surprising results; for example, most tissue macrophages are yolk sac derived, monocytes and macrophages follow a multidimensional model of activation, and tissue signals have a significant impact on the functionality of all these cells. While these exciting results have brought these cells back to center stage, their enormous plasticity and heterogeneity, during both homeostasis and disease, are far from understood. At the same time, the ongoing revolution in single-cell genomics, with single-cell RNA sequencing (scRNA-seq) leading the way, promises to change this. Prevailing models of hematopoiesis with distinct intermediates are challenged by scRNA-seq data suggesting more continuous developmental trajectories in the myeloid cell compartment. Cell subset structures previously defined by protein marker expression need to be revised based on unbiased analyses of scRNA-seq data. Particularly in inflammatory conditions, myeloid cells exhibit substantially vaster heterogeneity than previously anticipated, and work performed within large international projects, such as the Human Cell Atlas, has already revealed novel tissue macrophage subsets. Based on these exciting developments, we propose the next steps to a full understanding of the myeloid cell compartment in health and diseases.
Collapse
Affiliation(s)
- Kevin Bassler
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , ,
| | - Jonas Schulte-Schrepping
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , ,
| | - Stefanie Warnat-Herresthal
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , ,
| | - Anna C Aschenbrenner
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , , .,Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525, The Netherlands
| | - Joachim L Schultze
- Department for Genomics and Immunoregulation, Life and Medical Sciences (LIMES) Institute, University of Bonn, 53115 Bonn, Germany; , , , , .,PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases and the University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
34
|
Liao CY, Song MJ, Gao Y, Mauer AS, Revzin A, Malhi H. Hepatocyte-Derived Lipotoxic Extracellular Vesicle Sphingosine 1-Phosphate Induces Macrophage Chemotaxis. Front Immunol 2018; 9:2980. [PMID: 30619336 PMCID: PMC6305739 DOI: 10.3389/fimmu.2018.02980] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Background: The pathophysiology of non-alcoholic steatohepatitis involves hepatocyte lipotoxicity due to excess saturated free fatty acids and concomitant proinflammatory macrophage effector responses. These include the infiltration of macrophages into hepatic cords in response to incompletely understood stimuli. Stressed hepatocytes release an increased number of extracellular vesicles (EVs), which are known to participate in intercellular signaling and coordination of the behavior of immune cell populations via their cargo. We hypothesized that hepatocyte-derived lipotoxic EVs that are enriched in sphingosine 1-phosphate (S1P) are effectors of macrophage infiltration in the hepatic microenvironment. Methods: Lipotoxic EVs were isolated from palmitate treated immortalized mouse hepatocytes and characterized by nanoparticle tracking analysis. Lipotoxic EV sphingolipids were quantified using tandem mass spectrometry. Wildtype and S1P1 receptor knockout bone marrow-derived macrophages were exposed to lipotoxic EV gradients in a microfluidic gradient generator. Macrophage migration toward EV gradients was captured by time-lapse microscopy and analyzed to determine directional migration. Fluorescence-activated cell sorting along with quantitative PCR and immunohistochemistry were utilized to characterize the cell surface expression of S1P1 receptor on intrahepatic leukocytes and hepatic expression of S1P1 receptor, respectively. Results: Palmitate treatment induced the release of EVs. These EVs were enriched in S1P. Palmitate-induced S1P enriched EVs were chemoattractive to macrophages. EV S1P enrichment depended on the activity of sphingosine kinases 1 and 2, such that, pharmacological inhibition of sphingosine kinases 1 and 2 resulted in a significant reduction in EV S1P cargo without affecting the number of EVs released. When exposed to EVs derived from cells treated with palmitate in the presence of a pharmacologic inhibitor of sphingosine kinases 1 and 2, macrophages displayed diminished chemotactic behavior. To determine receptor-ligand specificity, we tested the migration responses of macrophages genetically deleted in the S1P1 receptor toward lipotoxic EVs. S1P1 receptor knockout macrophages displayed a marked reduction in their chemotactic responses toward lipotoxic palmitate-induced EVs. Conclusions:Palmitate-induced lipotoxic EVs are enriched in S1P through sphingosine kinases 1 and 2. S1P-enriched EVs activate persistent and directional macrophage chemotaxis mediated by the S1P1 receptor, a potential signaling axis for macrophage infiltration during hepatic lipotoxicity, and a potential therapeutic target for non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Chieh-Yu Liao
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Myeong Jun Song
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Yandong Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Amy S. Mauer
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Harmeet Malhi
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
35
|
Arkestål K, Mints M, Enocson A, Linton L, Marits P, Glise H, Andersson J, Winqvist O. CCR2 upregulated on peripheral T cells in osteoarthritis but not in bone marrow. Scand J Immunol 2018; 88:e12722. [PMID: 30403025 DOI: 10.1111/sji.12722] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/11/2018] [Accepted: 09/30/2018] [Indexed: 12/24/2022]
Abstract
Osteoarthritis (OA) is a condition affecting millions of patients around the world, causing pain and disability and often resulting in joint replacement surgery. The aetiology of OA has long been attributed to mechanical wear mainly due to the increased prevalence of OA in load bearing joints among older patients. However, recent studies reveal a complex molecular disease causality in which inflammation, nutritional deficit and angiogenesis lead to the destruction of the joint structure. The aim of this study was to examine chemokine receptor expression in peripheral blood and bone marrow in OA patients. We devised a protocol for extracting healthy bone marrow from patients undergoing hip arthroplasty due to coxarthrosis. Flow cytometry was used to determine the expression of 18 chemokine receptors on CD4 and CD8 T cells from bone marrow and blood from 7 osteoarthritis patients and peripheral blood from 9 healthy controls. We found a significantly increased fraction of CCR2 expressing CD4 and CD8 T cell in peripheral blood compared to healthy controls. Also, there was a significant decrease in CXCR3 (Th1) (P < 0.01) expressing T cells in peripheral blood from OA patients. Finally, multivariate analysis was used to separate T cell profiles from healthy controls and OA patients and demonstrate that the divergence of chemokine receptor expression occurs in the mature T cell subsets. In conclusion, we find increased CCR2 expression in peripheral blood from OA patients that possibly may be targeted in future clinical studies.
Collapse
Affiliation(s)
- Kurt Arkestål
- Department of Medicine, Immunology and Allergy Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Michael Mints
- Department of Surgery and Perioperative Science, Urology and Andrology Unit, Umeå University, Umeå, Sweden
| | - Anders Enocson
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ludvig Linton
- Department of Medicine, Immunology and Allergy Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Per Marits
- Department of Medicine, Immunology and Allergy Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans Glise
- Department of Medicine, Immunology and Allergy Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - John Andersson
- Department of Medicine, Immunology and Allergy Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ola Winqvist
- Department of Medicine, Immunology and Allergy Unit, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Yu B, Chen Q, Le Bras A, Zhang L, Xu Q. Vascular Stem/Progenitor Cell Migration and Differentiation in Atherosclerosis. Antioxid Redox Signal 2018; 29:219-235. [PMID: 28537424 DOI: 10.1089/ars.2017.7171] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Atherosclerosis is a major cause for the death of human beings, and it takes place in large- and middle-sized arteries. The pathogenesis of the disease has been widely investigated, and new findings on vascular stem/progenitor cells could have an impact on vascular regeneration. Recent Advances: Recent studies have shown that abundant stem/progenitor cells present in the vessel wall are mainly responsible for cell accumulation in the intima during vascular remodeling. It has been demonstrated that the mobilization and recruitment of tissue-resident stem/progenitor cells give rise to endothelial and smooth muscle cells (SMCs) that participate in vascular repair and remodeling such as neointimal hyperplasia and arteriosclerosis. Interestingly, cell lineage tracing studies indicate that a large proportion of SMCs in neointimal lesions is derived from adventitial stem/progenitor cells. CRITICAL ISSUES The influence of stem/progenitor cell behavior on the development of atherosclerosis is crucial. An understanding of the regulatory mechanisms that control stem/progenitor cell migration and differentiation is essential for stem/progenitor cell therapy for vascular diseases and regenerative medicine. FUTURE DIRECTIONS Identification of the detailed process driving the migration and differentiation of vascular stem/progenitor cells during the development of atherosclerosis, discovery of the environmental cues, and signaling pathways that control cell fate within the vasculature will facilitate the development of new preventive and therapeutic strategies to combat atherosclerosis. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Baoqi Yu
- 1 Department of Emergency, Guangdong General Hospital , Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Qishan Chen
- 2 Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Alexandra Le Bras
- 3 Cardiovascular Division, King's College London BHF Centre , London, United Kingdom
| | - Li Zhang
- 2 Department of Cardiology, The First Affiliated Hospital, School of Medicine, Zhejiang University , Hangzhou, China
| | - Qingbo Xu
- 3 Cardiovascular Division, King's College London BHF Centre , London, United Kingdom
| |
Collapse
|
37
|
Serrano I, Luque A, Aran JM. Exploring the Immunomodulatory Moonlighting Activities of Acute Phase Proteins for Tolerogenic Dendritic Cell Generation. Front Immunol 2018; 9:892. [PMID: 29760704 PMCID: PMC5936965 DOI: 10.3389/fimmu.2018.00892] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/10/2018] [Indexed: 12/20/2022] Open
Abstract
The acute phase response is generated by an overwhelming immune-inflammatory process against infection or tissue damage, and represents the initial response of the organism in an attempt to return to homeostasis. It is mediated by acute phase proteins (APPs), an assortment of highly conserved plasma reactants of seemingly different functions that, however, share a common protective role from injury. Recent studies have suggested a crosstalk between several APPs and the mononuclear phagocyte system (MPS) in the resolution of inflammation, to restore tissue integrity and function. In fact, monocyte-derived dendritic cells (Mo-DCs), an integral component of the MPS, play a fundamental role both in the regulation of antigen-specific adaptive responses and in the development of immunologic memory and tolerance, particularly in inflammatory settings. Due to their high plasticity, Mo-DCs can be modeled in vitro toward a tolerogenic phenotype for the treatment of aberrant immune-inflammatory conditions such as autoimmune diseases and allotransplantation, with the phenotypic outcome of these cells depending on the immunomodulatory agent employed. Yet, recent immunotherapy trials have emphasized the drawbacks and challenges facing tolerogenic Mo-DC generation for clinical use, such as reduced therapeutic efficacy and limited in vivo stability of the tolerogenic activity. In this review, we will underline the potential relevance and advantages of APPs for tolerogenic DC production with respect to currently employed immunomodulatory/immunosuppressant compounds. A further understanding of the mechanisms of action underlying the moonlighting immunomodulatory activities exhibited by several APPs over DCs could lead to more efficacious, safe, and stable protocols for precision tolerogenic immunotherapy.
Collapse
Affiliation(s)
- Inmaculada Serrano
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ana Luque
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Josep M Aran
- Immune-Inflammatory Processes and Gene Therapeutics Group, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
38
|
Kruger AJ, Fuchs BC, Masia R, Holmes JA, Salloum S, Sojoodi M, Ferreira DS, Rutledge SM, Caravan P, Alatrakchi N, Vig P, Lefebvre E, Chung RT. Prolonged cenicriviroc therapy reduces hepatic fibrosis despite steatohepatitis in a diet-induced mouse model of nonalcoholic steatohepatitis. Hepatol Commun 2018; 2:529-545. [PMID: 29761169 PMCID: PMC5944590 DOI: 10.1002/hep4.1160] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/22/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a progressive liver disease projected to become the leading cause of cirrhosis and liver transplantation in the next decade. Cenicriviroc (CVC), a dual chemokine receptor 2 and 5 antagonist, prevents macrophage trafficking and is under clinical investigation for the treatment of human NASH fibrosis. We assessed the efficacy and durability of short and prolonged CVC therapy in a diet‐induced mouse model of NASH, the choline deficient, L‐amino acid‐defined, high‐fat diet (CDAHFD) model. C57BL/6 mice received 4 or 14 weeks of standard chow or the CDAHFD. CVC (10 mg/kg/day and 30 mg/kg/day for 4 weeks and 20 mg/kg/day and 30 mg/kg/day for 14 weeks) was initiated simultaneously with the CDAHFD. At 4 and 14 weeks, livers were harvested for histology and flow cytometric analyses of intrahepatic immune cells. High‐dose CVC (30 mg/kg/day) therapy in CDAHFD mice for 4 or 14 weeks inhibited intrahepatic accumulation of Ly6Chigh bone marrow‐derived macrophages. Prolonged CVC therapy (14 weeks) yielded no significant differences in the total intrahepatic macrophage populations among treatment groups but increased the frequency of intrahepatic anti‐inflammatory macrophages in the high‐dose CVC group. Despite ongoing steatohepatitis, there was significantly less fibrosis in CDAHFD mice receiving high‐dose CVC for 14 weeks based on histologic and molecular markers, mirroring observations in human NASH CVC trials. CVC also directly inhibited the profibrotic gene signature of transforming growth factor‐β‐stimulated primary mouse hepatic stellate cells in vitro. Conclusion: CVC is a novel therapeutic agent that is associated with reduced fibrosis despite ongoing steatohepatitis. Its ability to alter intrahepatic macrophage populations and inhibit profibrogenic genes in hepatic stellate cells in NASH livers may contribute to its observed antifibrotic effect. (Hepatology Communications 2018;2:529‐545)
Collapse
Affiliation(s)
- Annie J Kruger
- Gastrointestinal Unit Massachusetts General Hospital and Harvard Medical School Boston MA
| | - Bryan C Fuchs
- Department of Surgery Massachusetts General Hospital and Harvard Medical School Boston MA
| | - Ricard Masia
- Department of Pathology Massachusetts General Hospital and Harvard Medical School Boston MA
| | - Jacinta A Holmes
- Gastrointestinal Unit Massachusetts General Hospital and Harvard Medical School Boston MA.,Department of Gastroenterology St. Vincent's Hospital Fitzroy VIC Australia
| | - Shadi Salloum
- Gastrointestinal Unit Massachusetts General Hospital and Harvard Medical School Boston MA
| | - Mozhdeh Sojoodi
- Department of Surgery Massachusetts General Hospital and Harvard Medical School Boston MA
| | - Diego S Ferreira
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School Boston MA
| | - Stephanie M Rutledge
- Department of Medicine, Massachusetts General Hospital Harvard Medical School Boston MA
| | - Peter Caravan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital Harvard Medical School Boston MA
| | - Nadia Alatrakchi
- Gastrointestinal Unit Massachusetts General Hospital and Harvard Medical School Boston MA
| | - Pam Vig
- Allergan Plc. South San Francisco CA
| | | | - Raymond T Chung
- Gastrointestinal Unit Massachusetts General Hospital and Harvard Medical School Boston MA
| |
Collapse
|
39
|
Winkler CW, Woods TA, Robertson SJ, McNally KL, Carmody AB, Best SM, Peterson KE. Cutting Edge: CCR2 Is Not Required for Ly6C hi Monocyte Egress from the Bone Marrow but Is Necessary for Migration within the Brain in La Crosse Virus Encephalitis. THE JOURNAL OF IMMUNOLOGY 2017; 200:471-476. [PMID: 29246952 DOI: 10.4049/jimmunol.1701230] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 11/17/2017] [Indexed: 12/24/2022]
Abstract
Inflammatory monocyte (iMO) recruitment to the brain is a hallmark of many neurologic diseases. Prior to entering the brain, iMOs must egress into the blood from the bone marrow through a mechanism, which for known encephalitic viruses, is CCR2 dependent. In this article, we show that during La Crosse Virus-induced encephalitis, egress of iMOs was surprisingly independent of CCR2, with similar percentages of iMOs in the blood and brain of heterozygous and CCR2-/- mice following infection. Interestingly, CCR2 was required for iMO trafficking from perivascular areas to sites of virus infection within the brain. Thus, CCR2 was not essential for iMO trafficking to the blood or the brain but was essential for trafficking within the brain parenchyma. Analysis of other orthobunyaviruses showed that Jamestown Canyon virus also induced CCR2-independent iMO egress to the blood. These studies demonstrate that the CCR2 requirement for iMO egress to the blood is not universal for all viruses.
Collapse
Affiliation(s)
- Clayton W Winkler
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Tyson A Woods
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Shelly J Robertson
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Kristin L McNally
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Aaron B Carmody
- Research Technologies Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | - Sonja M Best
- Laboratory of Virology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840; and
| | - Karin E Peterson
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840;
| |
Collapse
|
40
|
Smiljanovic B, Radzikowska A, Kuca-Warnawin E, Kurowska W, Grün JR, Stuhlmüller B, Bonin M, Schulte-Wrede U, Sörensen T, Kyogoku C, Bruns A, Hermann S, Ohrndorf S, Aupperle K, Backhaus M, Burmester GR, Radbruch A, Grützkau A, Maslinski W, Häupl T. Monocyte alterations in rheumatoid arthritis are dominated by preterm release from bone marrow and prominent triggering in the joint. Ann Rheum Dis 2017; 77:300-308. [PMID: 29191820 PMCID: PMC5867420 DOI: 10.1136/annrheumdis-2017-211649] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 10/12/2017] [Accepted: 11/10/2017] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) accompanies infiltration and activation of monocytes in inflamed joints. We investigated dominant alterations of RA monocytes in bone marrow (BM), blood and inflamed joints. METHODS CD14+ cells from BM and peripheral blood (PB) of patients with RA and osteoarthritis (OA) were profiled with GeneChip microarrays. Detailed functional analysis was performed with reference transcriptomes of BM precursors, monocyte blood subsets, monocyte activation and mobilisation. Cytometric profiling determined monocyte subsets of CD14++CD16-, CD14++CD16+ and CD14+CD16+ cells in BM, PB and synovial fluid (SF) and ELISAs quantified the release of activation markers into SF and serum. RESULTS Investigation of genes differentially expressed between RA and OA monocytes with reference transcriptomes revealed gene patterns of early myeloid precursors in RA-BM and late myeloid precursors along with reduced terminal differentiation to CD14+CD16+monocytes in RA-PB. Patterns associated with tumor necrosis factor/lipopolysaccharide (TNF/LPS) stimulation were weak and more pronounced in RA-PB than RA-BM. Cytometric phenotyping of cells in BM, blood and SF disclosed differences related to monocyte subsets and confirmed the reduced frequency of terminally differentiated CD14+CD16+monocytes in RA-PB. Monocyte activation in SF was characterised by the predominance of CD14++CD16++CD163+HLA-DR+ cells and elevated concentrations of sCD14, sCD163 and S100P. CONCLUSION Patterns of less mature and less differentiated RA-BM and RA-PB monocytes suggest increased turnover with accelerated monocytopoiesis, BM egress and migration into inflamed joints. Predominant activation in the joint indicates the action of local and primary stimuli, which may also promote adaptive immune triggering through monocytes, potentially leading to new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Biljana Smiljanovic
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Anna Radzikowska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Ewa Kuca-Warnawin
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Weronika Kurowska
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Joachim R Grün
- Deutsches Rheuma Forschungszentrum Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Bruno Stuhlmüller
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Marc Bonin
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Ursula Schulte-Wrede
- Deutsches Rheuma Forschungszentrum Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Till Sörensen
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Chieko Kyogoku
- Deutsches Rheuma Forschungszentrum Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Anne Bruns
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Sandra Hermann
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Sarah Ohrndorf
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Karlfried Aupperle
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Marina Backhaus
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma Forschungszentrum Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Andreas Grützkau
- Deutsches Rheuma Forschungszentrum Berlin (DRFZ), A Leibniz Institute, Berlin, Germany
| | - Wlodzimierz Maslinski
- Department of Pathophysiology and Immunology, National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin, Berlin, Germany
| |
Collapse
|
41
|
Smirnov A, Pohlmann S, Nehring M, Ali S, Mann-Nüttel R, Scheu S, Antoni AC, Hansen W, Büettner M, Gardiasch MJ, Westendorf AM, Wirsdörfer F, Pastille E, Dudda M, Flohé SB. Sphingosine 1-Phosphate- and C-C Chemokine Receptor 2-Dependent Activation of CD4 + Plasmacytoid Dendritic Cells in the Bone Marrow Contributes to Signs of Sepsis-Induced Immunosuppression. Front Immunol 2017; 8:1622. [PMID: 29218051 PMCID: PMC5703700 DOI: 10.3389/fimmu.2017.01622] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/08/2017] [Indexed: 12/24/2022] Open
Abstract
Sepsis is the dysregulated response of the host to systemic, mostly bacterial infection, and is associated with an enhanced susceptibility to life-threatening opportunistic infections. During polymicrobial sepsis, dendritic cells (DCs) secrete enhanced levels of interleukin (IL) 10 due to an altered differentiation in the bone marrow and contribute to the development of immunosuppression. We investigated the origin of the altered DC differentiation using murine cecal ligation and puncture (CLP), a model for human polymicrobial sepsis. Bone marrow cells (BMC) were isolated after sham or CLP operation, the cellular composition was analyzed, and bone marrow-derived DCs (BMDCs) were generated in vitro. From 24 h on after CLP, BMC gave rise to BMDC that released enhanced levels of IL-10. In parallel, a population of CD11chiMHCII+CD4+ DCs expanded in the bone marrow in a MyD88-dependent manner. Prior depletion of the CD11chiMHCII+CD4+ DCs from BMC in vitro reversed the increased IL-10 secretion of subsequently differentiating BMDC. The expansion of the CD11chiMHCII+CD4+ DC population in the bone marrow after CLP required the function of sphingosine 1-phosphate receptors and C-C chemokine receptor (CCR) 2, the receptor for C-C chemokine ligand (CCL) 2, but was not associated with monocyte mobilization. CD11chiMHCII+CD4+ DCs were identified as plasmacytoid DCs (pDCs) that had acquired an activated phenotype according to their increased expression of MHC class II and CD86. A redistribution of CD4+ pDCs from MHC class II− to MHC class II+ cells concomitant with enhanced expression of CD11c finally led to the rise in the number of CD11chiMHCII+CD4+ DCs. Enhanced levels of CCL2 were found in the bone marrow of septic mice and the inhibition of CCR2 dampened the expression of CD86 on CD4+ pDCs after CLP in vitro. Depletion of pDCs reversed the bias of splenic DCs toward increased IL-10 synthesis after CLP in vivo. Thus, during polymicrobial sepsis, CD4+ pDCs are activated in the bone marrow and induce functional reprogramming of differentiating BMDC toward an immunosuppressive phenotype.
Collapse
Affiliation(s)
- Anna Smirnov
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stephanie Pohlmann
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Melanie Nehring
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany.,Cells in Motion, Cluster of Excellence, University of Münster, Münster, Germany
| | - Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Anne-Charlotte Antoni
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Wiebke Hansen
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manuela Büettner
- Institute of Functional and Applied Anatomy, Hannover Medical School, Hannover, Germany
| | - Miriam J Gardiasch
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Medical Faculty, Institute of Cell Biology (Cancer Research), University of Duisburg-Essen, Essen, Germany
| | - Eva Pastille
- Institute of Medical Microbiology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Marcel Dudda
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Stefanie B Flohé
- Department of Orthopedics and Trauma Surgery, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
42
|
Cremers NAJ, van den Bosch MHJ, van Dalen S, Di Ceglie I, Ascone G, van de Loo F, Koenders M, van der Kraan P, Sloetjes A, Vogl T, Roth J, Geven EJW, Blom AB, van Lent PLEM. S100A8/A9 increases the mobilization of pro-inflammatory Ly6C high monocytes to the synovium during experimental osteoarthritis. Arthritis Res Ther 2017; 19:217. [PMID: 28969686 PMCID: PMC5623958 DOI: 10.1186/s13075-017-1426-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/11/2017] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Monocytes are dominant cells present within the inflamed synovium during osteoarthritis (OA). In mice, two functionally distinct monocyte subsets are described: pro-inflammatory Ly6Chigh and patrolling Ly6Clow monocytes. Alarmins S100A8/A9 locally released by the synovium during inflammatory OA for prolonged periods may be dominant proteins involved in stimulating recruitment of Ly6Chigh monocytes from the circulation to the joint. Our objective was to investigate the role of S100A8/A9 in the mobilization of Ly6Chigh and Ly6Clow monocytic populations to the inflamed joint in collagenase-induced OA (CiOA). METHOD S100A8 was injected intra-articularly to investigate monocyte influx. CiOA was induced by injection of collagenase into knee joints of wild-type C57BL/6 (WT), and S100a9-/- mice. Mice were sacrificed together with age-matched saline-injected control mice (n = 6/group), and expression of monocyte markers, pro-inflammatory cytokines, and chemokines was determined in the synovium using ELISA and RT-qPCR. Cells were isolated from the bone marrow (BM), spleen, blood, and synovium and monocytes were identified using FACS. RESULTS S100A8/A9 was highly expressed during CiOA. Intra-articular injection of S100A8 leads to elevated expression of monocyte markers and the monocyte-attracting chemokines CCL2 and CX3CL1 in the synovium. At day 7 (d7) after CiOA induction in WT mice, numbers of Ly6Chigh, but not Ly6Clow monocytes, were strongly increased (7.6-fold) in the synovium compared to saline-injected controls. This coincided with strong upregulation of CCL2, which preferentially attracts Ly6Chigh monocytes. In contrast, S100a9-/- mice showed a significant increase in Ly6Clow monocytes (twofold) within the synovium at CiOA d7, whereas the number of Ly6Chigh monocytes remained unaffected. In agreement with this finding, the Ly6Clow mobilization marker CX3CL1 was significantly higher within the synovium of S100a9-/- mice. Next, we studied the effect of S100A8/A9 on release of Ly6Chigh monocytes from the BM into the circulation. A 14% decrease in myeloid cells was found in WT BM at CiOA d7. No decrease in myeloid cells in S100a9-/- BM was found, suggesting that S100A8/A9 promotes the release of myeloid populations from the BM. CONCLUSION Induction of OA locally leads to strongly elevated S100A8/A9 expression and an elevated influx of Ly6Chigh monocytes from the BM to the synovium.
Collapse
Affiliation(s)
- Niels A J Cremers
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Martijn H J van den Bosch
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Stephanie van Dalen
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Irene Di Ceglie
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Giuliana Ascone
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Fons van de Loo
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Marije Koenders
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Peter van der Kraan
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Annet Sloetjes
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Thomas Vogl
- Institute of Immunology, University of Munster, Munster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Munster, Munster, Germany
| | - Edwin J W Geven
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Arjen B Blom
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands
| | - Peter L E M van Lent
- Experimental Rheumatology, Department of Rheumatology, Radboud University Medical Center, PO Box 9101, Nijmegen, 6500 HB, The Netherlands.
| |
Collapse
|
43
|
Gasco S, Zaragoza P, García-Redondo A, Calvo AC, Osta R. Inflammatory and non-inflammatory monocytes as novel prognostic biomarkers of survival in SOD1G93A mouse model of Amyotrophic Lateral Sclerosis. PLoS One 2017; 12:e0184626. [PMID: 28886177 PMCID: PMC5591000 DOI: 10.1371/journal.pone.0184626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 08/28/2017] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) has lately become a suitable scenario to study the interplay between the hematopoietic system and disease progression. Recent studies in C9orf72 null mice have demonstrated that C9orf72 is necessary for the normal function of myeloid cells. In this study, we aimed to analyze in depth the connection between the hematopoietic system and secondary lymphoid (spleen) and non-lymphoid (liver and skeletal muscle) organs and tissues along the disease progression in the transgenic SOD1G93A mice. Our findings suggested that the inflammatory response due to the neurodegeneration in this animal model affected all three organs and tissues, especially the liver and the skeletal muscle. However, the liver was able to compensate this inflammatory response by means of the action of non-inflammatory monocytes, while in the skeletal muscle inflammatory monocytes prompted a further inflammation process until the terminal state of the animals. Interestingly, in blood, a positive correlation was found between non-inflammatory monocytes and survival of the transgenic SOD1G93A mice, while the contrary (a negative correlation) was found in the case of inflammatory monocytes, supporting their potential role as biomarkers of disease progression and survival in this animal model. These findings could prompt future translational studies in ALS patients, promoting the identification of new reliable biomarkers of disease progression.
Collapse
Affiliation(s)
- Samanta Gasco
- LAGENBIO, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón (I2A), CITA, Health Research Institute of Aragon (IIS). University of Zaragoza, Zaragoza, Spain
- * E-mail:
| | - Pilar Zaragoza
- LAGENBIO, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón (I2A), CITA, Health Research Institute of Aragon (IIS). University of Zaragoza, Zaragoza, Spain
| | - Alberto García-Redondo
- Biochemistry Department, CIBERER U-723. Health Research Institute, October 12th Hospital, Madrid, Spain
| | - Ana C. Calvo
- LAGENBIO, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón (I2A), CITA, Health Research Institute of Aragon (IIS). University of Zaragoza, Zaragoza, Spain
| | - Rosario Osta
- LAGENBIO, Veterinary Faculty of Zaragoza, Instituto Agroalimentario de Aragón (I2A), CITA, Health Research Institute of Aragon (IIS). University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
44
|
Johnson V, Webb T, Norman A, Coy J, Kurihara J, Regan D, Dow S. Activated Mesenchymal Stem Cells Interact with Antibiotics and Host Innate Immune Responses to Control Chronic Bacterial Infections. Sci Rep 2017; 7:9575. [PMID: 28851894 PMCID: PMC5575141 DOI: 10.1038/s41598-017-08311-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/19/2017] [Indexed: 12/26/2022] Open
Abstract
Chronic bacterial infections associated with biofilm formation are often difficult to resolve without extended courses of antibiotic therapy. Mesenchymal stem cells (MSC) exert antibacterial activity in vitro and in acute bacterial infection models, but their activity in chronic infection with biofilm models has not been previously investigated. Therefore, we studied the effects of MSC administration in mouse and dog models of chronic infections associated with biofilms. Mice with chronic Staphylococcus aureus implant infections were treated by i.v. administration of activated or non-activated MSC, with or without antibiotic therapy. The most effective treatment protocol was identified as activated MSC co-administered with antibiotic therapy. Activated MSC were found to accumulate in the wound margins several days after i.v. administration. Macrophages in infected tissues assumed an M2 phenotype, compared to untreated infections which contained predominately M1 macrophages. Bacterial killing by MSC was found to be mediated in part by secretion of cathelicidin and was significantly increased by antibiotics. Studies in pet dogs with spontaneous chronic multi drug-resistant wound infections demonstrated clearance of bacteria and wound healing following repeated i.v. administration of activated allogeneic canine MSC. Thus, systemic therapy with activated MSC may be an effective new, non-antimicrobial approach to treatment of chronic, drug-resistant infections.
Collapse
Affiliation(s)
- Valerie Johnson
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Tracy Webb
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Annalis Norman
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Jonathan Coy
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Jade Kurihara
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Daniel Regan
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA
| | - Steven Dow
- Center for Immune and Regenerative Medicine, Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Ft. Collins, CO, USA.
| |
Collapse
|
45
|
Francis M, Groves AM, Sun R, Cervelli JA, Choi H, Laskin JD, Laskin DL. Editor's Highlight: CCR2 Regulates Inflammatory Cell Accumulation in the Lung and Tissue Injury following Ozone Exposure. Toxicol Sci 2016; 155:474-484. [PMID: 27837169 DOI: 10.1093/toxsci/kfw226] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ozone-induced lung injury is associated with an accumulation of activated macrophages in the lung. Chemokine receptor CCR2 mediates the migration of inflammatory monocytes/macrophages to sites of tissue injury. It is also required for monocyte egress from the bone marrow. In the present studies, we analyzed the role of CCR2 in inflammatory cell trafficking to the lung in response to ozone. Treatment of mice with ozone (0.8 ppm, 3 h) resulted in increases in proinflammatory CCR2+ macrophages in the lung at 24 h, as well as proinflammatory CD11b + Ly6CHi and iNOS+ macrophages at 24 and 48 h. Mannose receptor+ anti-inflammatory macrophages were also observed in the lung 24 and 48 h post-ozone. Loss of CCR2 was associated with reduced numbers of proinflammatory macrophages in the lung and decreased expression of the proinflammatory cytokines, IL-1β and TNFα. Decreases in anti-inflammatory CD11b + Ly6CLo macrophages were also observed in lungs of CCR2-/- mice treated with ozone, whereas mannose receptor+ macrophage accumulation was delayed; conversely, CX3CL1 and CX3CR1 were upregulated. Changes in lung macrophage subpopulations and inflammatory gene expression in CCR2-/- mice were correlated with reduced ozone toxicity and oxidative stress, as measured by decreases in bronchoalveolar lavage protein content and reduced lung expression of heme-oxygenase-1, 4-hydroxynonenal and cytochrome b5. These data demonstrate that CCR2 plays a role in both pro- and anti-inflammatory macrophage accumulation in the lung following ozone exposure. The fact that ozone-induced lung injury and oxidative stress are reduced in CCR2-/- mice suggests more prominent effects on proinflammatory macrophages.
Collapse
Affiliation(s)
- Mary Francis
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Angela M Groves
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Richard Sun
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Jessica A Cervelli
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Hyejeong Choi
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854
| | - Jeffrey D Laskin
- Department of Environmental and Occupational Health, Rutgers University School of Public Health, Piscataway, New Jersey 08854
| | - Debra L Laskin
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey 08854;
| |
Collapse
|
46
|
Chong SZ, Evrard M, Devi S, Chen J, Lim JY, See P, Zhang Y, Adrover JM, Lee B, Tan L, Li JLY, Liong KH, Phua C, Balachander A, Boey A, Liebl D, Tan SM, Chan JKY, Balabanian K, Harris JE, Bianchini M, Weber C, Duchene J, Lum J, Poidinger M, Chen Q, Rénia L, Wang CI, Larbi A, Randolph GJ, Weninger W, Looney MR, Krummel MF, Biswas SK, Ginhoux F, Hidalgo A, Bachelerie F, Ng LG. CXCR4 identifies transitional bone marrow premonocytes that replenish the mature monocyte pool for peripheral responses. J Exp Med 2016; 213:2293-2314. [PMID: 27811056 PMCID: PMC5068243 DOI: 10.1084/jem.20160800] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/01/2016] [Indexed: 11/04/2022] Open
Abstract
It is well established that Ly6Chi monocytes develop from common monocyte progenitors (cMoPs) and reside in the bone marrow (BM) until they are mobilized into the circulation. In our study, we found that BM Ly6Chi monocytes are not a homogenous population, as current data would suggest. Using computational analysis approaches to interpret multidimensional datasets, we demonstrate that BM Ly6Chi monocytes consist of two distinct subpopulations (CXCR4hi and CXCR4lo subpopulations) in both mice and humans. Transcriptome studies and in vivo assays revealed functional differences between the two subpopulations. Notably, the CXCR4hi subset proliferates and is immobilized in the BM for the replenishment of functionally mature CXCR4lo monocytes. We propose that the CXCR4hi subset represents a transitional premonocyte population, and that this sequential step of maturation from cMoPs serves to maintain a stable pool of BM monocytes. Additionally, reduced CXCR4 expression on monocytes, upon their exit into the circulation, does not reflect its diminished role in monocyte biology. Specifically, CXCR4 regulates monocyte peripheral cellular activities by governing their circadian oscillations and pulmonary margination, which contributes toward lung injury and sepsis mortality. Together, our study demonstrates the multifaceted role of CXCR4 in defining BM monocyte heterogeneity and in regulating their function in peripheral tissues.
Collapse
Affiliation(s)
- Shu Zhen Chong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore.,School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Sapna Devi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Jinmiao Chen
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Jyue Yuan Lim
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Peter See
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Yiru Zhang
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Biopolis, 138673 Singapore
| | - José M Adrover
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain
| | - Bernett Lee
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Jackson L Y Li
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Ka Hang Liong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Cindy Phua
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Akhila Balachander
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Adrian Boey
- Institute of Medical Biology (IMB)-Institute of Molecular and Cell Biology (IMCB) Electron Microscopy Suite, A*STAR (Agency for Science, Technology and Research), Biopolis, 138671 Singapore
| | - David Liebl
- Institute of Medical Biology (IMB)-Institute of Molecular and Cell Biology (IMCB) Electron Microscopy Suite, A*STAR (Agency for Science, Technology and Research), Biopolis, 138671 Singapore
| | - Suet Mien Tan
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Jerry K Y Chan
- Experimental Fetal Medicine Group, Yong Loo Lin School of Medicine, National University of Singapore, 119228 Singapore.,Department of Reproductive Medicine, KK Women's and Children's Hospital, 229899 Singapore.,Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, 169857 Singapore
| | - Karl Balabanian
- INSERM UMR-S996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, 92140 Clamart, France
| | - John E Harris
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Mariaelvy Bianchini
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Johan Duchene
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Josephine Lum
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Michael Poidinger
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Biopolis, 138673 Singapore
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Cheng-I Wang
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | | | - Wolfgang Weninger
- Centenary Institute for Cancer Medicine and Cell Biology, Newton, New South Wales 2042, Australia
| | - Mark R Looney
- Department of Medicine and Pathology, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Matthew F Krummel
- Department of Medicine and Pathology, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Subhra K Biswas
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore
| | - Andrés Hidalgo
- Area of Cell and Developmental Biology, Fundación Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid 28029, Spain.,Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich 80336, Germany
| | - Françoise Bachelerie
- INSERM UMR-S996, Laboratory of Excellence in Research on Medication and Innovative Therapeutics, Université Paris-Sud, 92140 Clamart, France
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, 138648 Singapore .,School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| |
Collapse
|
47
|
Monocyte Heterogeneity: Consequences for Monocyte-Derived Immune Cells. J Immunol Res 2016; 2016:1475435. [PMID: 27478854 PMCID: PMC4958468 DOI: 10.1155/2016/1475435] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/12/2016] [Indexed: 01/18/2023] Open
Abstract
Blood monocytes are precursors of dendritic cells, macrophages, and osteoclasts. They are a heterogeneous cell population with differences in size, phenotype, and function. Although monocytes maintain several tissue-specific populations of immune cells in homeostasis, their contribution to populations of dendritic cells, macrophages, and osteoclasts is significantly increased in inflammation. Identification of a growing number of functionally different subsets of cells within populations of monocyte-derived immune cells has recently put monocyte heterogeneity into sharp focus. Here, we summarize recent findings in monocyte heterogeneity and their differentiation into dendritic cells, macrophages, and osteoclasts. We also discuss these advances in the context of the formation of functionally different monocyte-derived subsets of dendritic cells, macrophages, and osteoclasts.
Collapse
|
48
|
Gschwandtner M, Piccinini AM, Gerlza T, Adage T, Kungl AJ. Interfering with the CCL2–glycosaminoglycan axis as a potential approach to modulate neuroinflammation. Neurosci Lett 2016; 626:164-73. [DOI: 10.1016/j.neulet.2016.05.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/03/2016] [Accepted: 05/18/2016] [Indexed: 01/16/2023]
|
49
|
Lacey CA, Keleher LL, Mitchell WJ, Brown CR, Skyberg JA. CXCR2 Mediates Brucella-Induced Arthritis in Interferon γ-Deficient Mice. J Infect Dis 2016; 214:151-60. [PMID: 26951819 DOI: 10.1093/infdis/jiw087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/29/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Brucella species are facultative intracellular gram-negative bacteria that cause brucellosis, a common global zoonosis. Infection of the joints is the most common focal complication of brucellosis in humans. The purpose of this study was to identify mediators of focal inflammation during brucellosis. METHODS Wild-type (WT) mice are naturally resistant to Brucella infection; therefore, we infected anti-interferon γ (IFN-γ)-treated, or IFN-γ(-/-) mice with Brucella to induce osteoarticular and musculoskeletal inflammation, as we previously described. Mice were infected intraperitoneally with Brucella melitensis, and the clinical course of disease, histopathologic changes, and cytokine levels were compared among groups. RESULTS Rag1(-/-) mice (B- and T-cell deficient) and µMT(-/-) mice (B-cell deficient) developed paw inflammation at a similar rate and severity as WT mice following infection with B. melitensis and treatment with anti-IFN-γ. Joints from B. melitensis-infected IFN-γ(-/-) mice had markedly increased levels of CCR2 and CXCR2 ligands. While anti-IFN-γ-treated CCR2(-/-) and WT mice behaved similarly, anti-IFN-γ-treated CXCR2(-/-) or IFN-γ(-/-)/CXCR2(-/-) mice had strikingly reduced focal swelling relative to anti-IFN-γ-treated WT or IFN-γ(-/-) mice, respectively. Additionally, neutrophil recruitment was dependent on CXCR2. CONCLUSIONS Adaptive immune cells and CCR2 are dispensable, while CXCR2 is necessary for Brucella-induced focal neutrophil recruitment and inflammation.
Collapse
Affiliation(s)
- Carolyn A Lacey
- Department of Veterinary Pathobiology, College of Veterinary Medicine Laboratory for Infectious Disease Research, University of Missouri, Columbia
| | - Lauren L Keleher
- Department of Veterinary Pathobiology, College of Veterinary Medicine Laboratory for Infectious Disease Research, University of Missouri, Columbia
| | | | - Charles R Brown
- Department of Veterinary Pathobiology, College of Veterinary Medicine
| | - Jerod A Skyberg
- Department of Veterinary Pathobiology, College of Veterinary Medicine Laboratory for Infectious Disease Research, University of Missouri, Columbia
| |
Collapse
|