1
|
Colachis M, Lilly JL, Trigg E, Kucharzyk KH. Analytical tools to assess polymer biodegradation: A critical review and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176920. [PMID: 39461538 DOI: 10.1016/j.scitotenv.2024.176920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Many petroleum-derived plastic materials are highly recalcitrant and persistent in the environment, posing significant threats to human and ecological receptors due to their accumulation in ecosystems. In recent years, research efforts have focused on advancing biological methods for polymer degradation. Enzymatic depolymerization has emerged as particularly relevant for biobased plastic recycling, potentially scalable for industrial use. Biodegradation involves adsorption to the plastic solid surface, followed by an interfacial reaction, resulting in cleavage of bonds of polymer chains exposed on the surface. Here, widely varying substrate-specific kinetics are observed, with the polymer's properties possessing a significant impact on the rate of this interfacial catalysis. Thus, there is a critical need for sensitive and accurate characterization of the material surface during and after interfacial depolymerization to fully understand the reaction mechanisms. Here, we provide a critical review of a range of techniques used in the analysis of material surfaces to characterize the chemical, topological, and morphological features relevant to the study of enzymatic biocatalysis, including microscopy techniques, spectroscopic techniques (e.g., X-ray diffraction analysis, Fourier transform infrared attenuated total reflectance spectroscopy, and mass spectrometry detection of analytes associated with degradation). Techniques for evaluation of surface energy and topology in their relevancy for sensitive detection of biological surface modifications are also discussed. In addition, this paper provides an overview of the strengths of these techniques and compares their performance in both sensitivity and throughput, including emerging techniques, which can be useful, particularly for the rapid analysis of the surface properties of polymeric materials in high-throughput screening of candidate biocatalysts. This research serves as a starting point in selecting and applying appropriate methodologies that provide direct evidence to the ongoing biotic degradation of polymeric materials.
Collapse
Affiliation(s)
- Matthew Colachis
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Jacob L Lilly
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Edward Trigg
- Cambium Biomaterials, 626 Bancroft Way, Suite A, Berkeley, California 94710, United States
| | | |
Collapse
|
2
|
Donnarumma V, Trano AC, D'Agostino F, Piredda R, Casotti R. Comparative analysis of the microbial plastisphere at three sites along the Sarno river (Italy). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:125226. [PMID: 39486678 DOI: 10.1016/j.envpol.2024.125226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
This study investigated microplastics (MP) and their associated microbial plastisphere in the Sarno river (Italy), its estuary and in the nearby coastal area in January 2020. Scanning Electron Microscopy (SEM), High Throughput Sequencing (HTS) and Fourier-Transformed Infrared Spectroscopy (FTIR) were used to characterize the collected MPs and their associated microbes. The three stations sampled differed substantially for MP concentrations and microbial communities, with the estuarine station showing very high MP concentrations (2048.6 MP m-3), highlighting the threat represented by the river for the coastal marine area and its ecosystem. The prokaryotic plastisphere showed differences between the three stations sampled, in terms of community composition, with only 75 Amplicon Sequence Variants (ASV) in common. The Comamonadaceae was the most abundant family in MP-attached and freshwater communities, and this lifestyle seems to be pivotal in the colonization of new habitats while flowing towards the sea. The results highlight the importance of the plastisphere in colonization of new habitats and support the need of correct management and risk mitigation efforts.
Collapse
Affiliation(s)
| | | | - Fabio D'Agostino
- Istituto per lo Studio Degli Impatti Antropici e Sostenibilità in Ambiente Marino (IAS-CNR), Via del Mare 3, Torretta Granitola, TP, 91021, Italy.
| | - Roberta Piredda
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari (Italy).
| | | |
Collapse
|
3
|
Unnikrishnan V, Anusree S, Shaikh I, D'Costa PM, Chandran T, Valsan G, Vandana TU, Tamrakar A, Paul MM, Rangel-Buitrago N, Warrier AK. Insights into the seasonal distribution of microplastics and their associated biofilms in the water column of two tropical estuaries. MARINE POLLUTION BULLETIN 2024; 206:116750. [PMID: 39083907 DOI: 10.1016/j.marpolbul.2024.116750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/02/2024]
Abstract
The present study describes the seasonal distribution of microplastics (MPs) and their associated biofilms in the water column of the Netravathi-Gurupura estuary, southwest India. An average abundance of 8.15 (±3.81) particles/l and 1.14 (±0.78) particles/l was observed during the wet and dry seasons, respectively. Fibres, films, and fragments accounted for majority of the microplastics. Polyethylene terephthalate, polyethylene, polyurethane, polyester, polystyrene, and high-density polyethylene were the major polymers. The risk assessment revealed a low Pollution Load Index, but the Polymer Hazard Index showed higher toxicity. Diatoms from nine genera were observed attached to the microplastic samples with Amphora and Navicula spp. reported in both estuaries during both seasons. The considerable diversity of diatoms, along with other microbial groups, in microplastic-associated biofilms in this study, highlights the urgent need to understand the structure and development of microplastic-associated biofilms and their role in the vertical and horizontal transport of microplastics in tropical estuaries.
Collapse
Affiliation(s)
- Vishnu Unnikrishnan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Anusree
- Department of Sciences, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Imrana Shaikh
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Priya M D'Costa
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Thara Chandran
- Nitte (Deemed to be University), AB Shetty Memorial Institute of Dental Sciences (ABSMIDS), Department of Public Health Dentistry, Mangalore 574199, Karnataka, India
| | - Gokul Valsan
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - T U Vandana
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Anjali Tamrakar
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Manu Martin Paul
- Department of Sciences, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Básicas, Universidad del Atlántico, Puerto Colombia, Atlántico, Colombia
| | - Anish Kumar Warrier
- Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre for Climate Studies, Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
4
|
Valentine K, Hughes C, Boxall A. Plastic Litter Emits the Foraging Infochemical Dimethyl Sulfide after Submersion in Freshwater Rivers. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1485-1496. [PMID: 38661488 DOI: 10.1002/etc.5880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/11/2024] [Accepted: 04/01/2024] [Indexed: 04/26/2024]
Abstract
Plastic pollution is widespread throughout aquatic environments globally, with many organisms known to interact with and ingest plastic. In marine environments, microbial biofilms that form on plastic surfaces can produce the odorous compound dimethyl sulfide (DMS), which is a known foraging cue. This has been shown to increase the ingestion of plastic by some invertebrates and therefore act as a biological factor which influences the risks of plastic to marine ecosystems. In freshwater however, the production of DMS has been largely overlooked, despite the known sensitivity of some freshwater species to this compound. To address this gap, the present study analyzed the production of DMS by biofilms which formed on low-density polyethylene and polylactic acid films after 3 and 6 weeks of submersion in either a rural or an urban United Kingdom river. Using gas chromatography-mass spectrometry, the production of DMS by these biofilms was consistently identified. The amount of DMS produced varied significantly across river locations and materials, with surfaces in the urban river generally producing a stronger signal and plastics producing up to seven times more DMS than glass control surfaces. Analysis of biofilm weight and photosynthetic pigment content indicated differences in biofilm composition across conditions and suggested that DMS production was largely driven by nonphotosynthetic taxa. For the first time this work has documented the production of DMS by plastic litter after submersion in freshwater rivers. Further work is now needed to determine if, as seen in marine systems, this production of DMS can encourage the interaction of freshwater organisms with plastic litter and therefore operate as a biological risk factor in the impacts of plastic on freshwater environments. Environ Toxicol Chem 2024;43:1485-1496. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Katey Valentine
- Department of Environment and Geography, University of York, York, United Kingdom
- BeZero Carbon, London, United Kingdom
| | - Claire Hughes
- Department of Environment and Geography, University of York, York, United Kingdom
| | - Alistair Boxall
- Department of Environment and Geography, University of York, York, United Kingdom
| |
Collapse
|
5
|
de Vogel FA, Goudriaan M, Zettler ER, Niemann H, Eich A, Weber M, Lott C, Amaral-Zettler LA. Biodegradable plastics in Mediterranean coastal environments feature contrasting microbial succession. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172288. [PMID: 38599394 DOI: 10.1016/j.scitotenv.2024.172288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/09/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
Plastic pollution of the ocean is a top environmental concern. Biodegradable plastics present a potential "solution" in combating the accumulation of plastic pollution, and their production is currently increasing. While these polymers will contribute to the future plastic marine debris budget, very little is known still about the behavior of biodegradable plastics in different natural environments. In this study, we molecularly profiled entire microbial communities on laboratory confirmed biodegradable polybutylene sebacate-co-terephthalate (PBSeT) and polyhydroxybutyrate (PHB) films, and non-biodegradable conventional low-density polyethylene (LDPE) films that were incubated in situ in three different coastal environments in the Mediterranean Sea. Samples from a pelagic, benthic, and eulittoral habitat were taken at five timepoints during an incubation period of 22 months. We assessed the presence of potential biodegrading bacterial and fungal taxa and contrasted them against previously published in situ disintegration data of these polymers. Scanning electron microscopy imaging complemented our molecular data. Putative plastic degraders occurred in all environments, but there was no obvious "core" of shared plastic-specific microbes. While communities varied between polymers, the habitat predominantly selected for the underlying communities. Observed disintegration patterns did not necessarily match community patterns of putative plastic degraders.
Collapse
Affiliation(s)
- Fons A de Vogel
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Maaike Goudriaan
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Erik R Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Faculty of Geosciences, Department of Earth Sciences, Utrecht University, P.O. Box 80.115, 3508 TC Utrecht, the Netherlands; CAGE-Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, 9037 Tromsø, Norway
| | - Andreas Eich
- HYDRA Marine Sciences GmbH, D-77815 Bühl, Germany
| | - Miriam Weber
- HYDRA Marine Sciences GmbH, D-77815 Bühl, Germany
| | | | - Linda A Amaral-Zettler
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, the Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94240, 1090 GE Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Wang T, Lu F, Yang C, Wang C, Liao Y, Mkuye R, Deng Y. Exploring changes in microplastic-associated bacterial communities with time, location, and polymer type in Liusha Bay, China. MARINE ENVIRONMENTAL RESEARCH 2024; 198:106525. [PMID: 38657370 DOI: 10.1016/j.marenvres.2024.106525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Microplastics have become a widespread concern within marine environments and are particularly evident in aquaculture regions that are characterized by plastic accumulation. This study employed 16 S rDNA sequencing to investigate the dynamic succession of microbial communities colonizing polyvinyl chloride (PVC), polystyrene (PS), and polyamide (PA) microplastics in seawater, when subjected to varying exposure durations in the Liusha Bay aquaculture region. Results revealed that the composition of microplastics microbial communities varied remarkably across geographical locations and exposure times. With an increase in exposure duration, both the diversity and richness of bacterial communities colonizing microplastics significantly increased, microbial communities show adaptations to the plastisphere. The type of microplastics had a significant effect on the community structure characteristicsof bacteria attached to their surfaces, with inconsistent trends in the relative abundance of different genera on different substrates. Notably, microplastic surfaces harbored a significant abundance of hydrocarbon-degrading bacteria, exemplified by Erythrobacter. These findings underscore the potential of microplastics as unique microbial niches. Meanwhile, long-term exposure experiments also offer the possibility of screening for plastic-degrading bacteria. In addition, the presence of the pathogenic bacterium Vibrio was detected in all microplastic samples, implying that microplastics could serve as carriers for pathogenic dissemination. This underscores the urgency of addressing the risk posed by the proliferation of harmful bacteria on microplastic surfaces. Overall, this study enhances our understanding of microbial community dynamics on microplastics under diverse conditions. It contributes to the broader comprehension of plastisphere microbial ecosystems in the marine environment, thereby addressing critical environmental implications.
Collapse
Affiliation(s)
- Ting Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Fenglan Lu
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China.
| | - Cheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yongshan Liao
- Pearl Research Institute, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Robert Mkuye
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China; Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy Culture, Zhanjiang, 524088, China; Guangdong Marine Ecology Early Warning and Monitoring Laboratory, Zhanjiang, 524088, China
| |
Collapse
|
7
|
Kelly ERM, Trujillo JE, Setiawan A, Pether S, Burritt D, Allan BJM. Investigating the metabolic and oxidative stress induced by biofouled microplastics exposure in Seriola lalandi (yellowtail kingfish). MARINE POLLUTION BULLETIN 2024; 203:116438. [PMID: 38749154 DOI: 10.1016/j.marpolbul.2024.116438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/14/2024] [Accepted: 04/28/2024] [Indexed: 06/06/2024]
Abstract
Microorganisms quickly colonise microplastics entering the ocean, forming a biofilm that, if ingested, is consumed with the microplastics. Past research often neglects to expose fish to biofouled microplastics, opting only for clean microplastics despite the low likelihood that fish will encounter clean microplastics. Here, we investigate the physiological impacts of biofouled polyethylene microplastic (300-335 μm) exposure in juvenile fish. Intermittent flow respirometry, antioxidant enzyme activity, and lipid peroxidation were investigated after fish were exposed to clean, biofouled, or no microplastic beads. Fish exposed to biofouled microplastics had a wider aerobic scope than those exposed to clean microplastics while antioxidant enzyme and lipid peroxidation levels were higher in clean microplastics. Clean microplastic exposure indicated higher fitness costs, potentially due to a nutritional advantage of the biofilm or varying bioavailability. These findings highlight the importance of replicating natural factors in exposure experiments when predicting the impacts of increasing pollutants in marine systems.
Collapse
Affiliation(s)
| | - José E Trujillo
- Department of Marine Science, University of Otago, New Zealand
| | | | | | - David Burritt
- Department of Botany, University of Otago, New Zealand
| | | |
Collapse
|
8
|
Jitrapat H, Sivaipram I, Piumsomboon A, Suttiruengwong S, Xu J, Vo TLT, Li D. Ingestion and adherence of microplastics by estuarine mysid shrimp. MARINE ENVIRONMENTAL RESEARCH 2024; 197:106455. [PMID: 38507983 DOI: 10.1016/j.marenvres.2024.106455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
Microplastics have been reported to be present in zooplankton, yet questions persist regarding their fate and dynamics within biota. We selected the commercial mysid shrimp, Mesopodopsis orientalis, as the focal zooplankton for this study due to their crucial role in our study area, the Inner Gulf of Thailand in January 2022. We investigated the presence of microplastics in mysid bodies and fecal pellets, examining both attached microplastics on external body parts and those ingested. In addition, we conducted microplastic feeding experiments, exposing mysids to various treatments of microplastics. The results of the field investigation indicate that mysids exhibited an average of 0.12 ± 0.03 microplastic items/mysid from whole-body samples. The shape, type, and color of microplastics found in mysids were similar to those present in seawater, with blue PET microfibers being the most prevalent. Our observations on live mysids revealed that microplastics were acquired through ingestion and adherence to appendages and exoskeletons. Microplastics were observed in mysid's fecal pellets at 0.09 ± 0.03 items/mysid, while microplastics adhering to the mysid's body and appendages were observed at 0.10 ± 0.04 items/mysid. The sizes of microplastics extracted from preserved mysids ranged from 58 μm to 4669 μm, with median of 507 μm. The laboratory experiments revealed that the presence of microalgae enhanced microplastic ingestion in mysids; microplastics incubated with a cyanobacterium, Oscillatoria sp., and diatom Navicula sp. significantly increased the number of microplastic particles ingested by mysids. This study showed that microplastics can be more ingested in mysids, especially when food items are present. Microplastic fate in these animals may involve expulsion into the environment or adherence, potentially facilitating their transfer up the marine food web.
Collapse
Affiliation(s)
- Hattaya Jitrapat
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China; Hainan Institute, East China Normal University, Sanya, 572025, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai, 200241, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai, 200241, China
| | - Itchika Sivaipram
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Ajcharaporn Piumsomboon
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supakij Suttiruengwong
- Department of Materials Science and Engineering, Faculty of Engineering and Industrial Technology, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Jiayi Xu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China; Hainan Institute, East China Normal University, Sanya, 572025, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai, 200241, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai, 200241, China.
| | - Tuan Linh Tran Vo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China; Hainan Institute, East China Normal University, Sanya, 572025, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai, 200241, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai, 200241, China; Institute of Oceanography, Viet Nam Academy of Science and Technology (VAST), 1 Cau Da Street, Nha Trang, Khanh Hoa, 650000, Viet Nam
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200062, China; Hainan Institute, East China Normal University, Sanya, 572025, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai, 200241, China; Regional Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, Shanghai, 200241, China.
| |
Collapse
|
9
|
Nik Mut NN, Na J, Jung J. A review on fate and ecotoxicity of biodegradable microplastics in aquatic system: Are biodegradable plastics truly safe for the environment? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123399. [PMID: 38242301 DOI: 10.1016/j.envpol.2024.123399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
Plastic products are extensively used worldwide, but inadequate management of plastic waste results in significant plastic pollution. Biodegradable plastic (BPs) offers an alternative to traditional plastics, however, not all BPs can fully degrade under natural conditions. Instead, they may deteriorate into biodegradable microplastic (BMPs) at a faster rate than conventional plastic, thereby posing an additional hazard to aquatic environments. This study provides a comprehensive overview of the fate of BPs in aquatic systems and their eco-toxicological effects on aquatic organisms such as algae, invertebrates, and fish. The findings highlight that BMPs have comparable or heightened effects compared to conventional microplastics (MPs) which physiochemical characteristic of the polymer itself or by the chemical leached from the polymeric matrix can affect aquatic organisms. While BPs is not a flawless solution to address plastic pollution, future research should prioritize investigating their production, environmental behavior, ecological impact, and whether BMPs inflict greater harm than conventional MPs.
Collapse
Affiliation(s)
- Nik Nurhidayu Nik Mut
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Joorim Na
- OJEong Resilience Institute, Korea University, Seoul, 02841, Republic of Korea.
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
10
|
Mishra R, Chavda P, Kumar R, Pandit R, Joshi M, Kumar M, Joshi C. Exploring genetic landscape of low-density polyethylene degradation for sustainable troubleshooting of plastic pollution at landfills. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168882. [PMID: 38040372 DOI: 10.1016/j.scitotenv.2023.168882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/04/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
Plastic pollution increases globally due to the high volume of its production and inadequate mismanagement, leading to dumps in landfills affecting terrestrial and aquatic ecosystems. Landfills, as sink for plastics, leach various toxic chemicals and microplastics into the environment. We scrutinized the genetic expression for low-density polyethylene (LDPE) degradation via microorganisms to investigate cell viability and metabolic activities for biodegradation and genetic profiling. Samples were collected from the Pirana waste landfill at Ahmedabad, Gujarat, which is one of the largest and oldest municipal solid waste (MSW) dump sites in Asia. Results analyzed that isolated bacterial culture PN(A)1 (Bacillus cereus) is metabolically active on LDPE as carbon source during starvation conditions when incubated for up to 60 days, which was confirmed via 2,3,5-triphenyl-tetrazolium chloride (TTC) reduction test, reported cell viability and LDPE degradation. Abrasions, surface erosions, and cavity formations were analyzed via scanning electron microscopy (SEM), whereas the breakdown of high molecular polymers converted to low molecules, i.e., depolymerization, was also observed via Fourier-transform infrared (FTIR) spectroscopy over 90 days, along with changes in functional groups of carboxylic acids and aldehyde as well as the formation of polysulfide, aliphatic compounds, aromatic ethers, alcohols, and ether linkages. Further, transcriptomic analysis was performed via DESeq2 analysis to understand key gene expression patterns and pathways involved in LDPE degradation. During the initial phase of LDPE degradation, genes related to biological processes, like membrane transportation, ABC transporters, carbon and lipid metabolism, fatty acid degradation/oxidation, and TCA cycle, are likely to indicate pathways for stress response and molecular functions, like oxidoreductase, catalytic, lyase, transferase, and hydrolase activities were expressed. Interlinking between metabolic pathways indicates biodegradation process that mineralizes LDPE during subsequent incubation days. These pathways can be targeted for increasing the efficiency of LDPE degradation using microbes in future studies. Thus, considering microbial-mediated biodegradation as practical, eco-friendly, and low-cost alternatives, healthy biomes can degrade polymers in natural environments explored by understanding the genetic and enzymatic expression, connecting their role in the process to the likely metabolic pathways involved, thereby increasing the rate of their biodegradation.
Collapse
Affiliation(s)
- Roshani Mishra
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat 382011, India
| | - Priyank Chavda
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat 382011, India
| | - Rakesh Kumar
- Department of Biosystems Engineering, Auburn University, Auburn, AL 36849, USA
| | - Ramesh Pandit
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat 382011, India
| | - Madhvi Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat 382011, India
| | - Manish Kumar
- Sustainability Cluster, School of Advanced Engineering, UPES, Dehradun, Uttarakhand 248007, India; Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Campus Monterrey, Eugenio Garza Sada 2501 Sur, Monterrey 64849, Mexico.
| | - Chaitanya Joshi
- Gujarat Biotechnology Research Centre (GBRC), Gandhinagar, Gujarat 382011, India.
| |
Collapse
|
11
|
Chen Y, Yan Z, Zhou Y, Zhang Y, Jiang R, Wang M, Yuan S, Lu G. Dynamic evolution of antibiotic resistance genes in plastisphere in the vertical profile of urban rivers. WATER RESEARCH 2024; 249:120946. [PMID: 38043355 DOI: 10.1016/j.watres.2023.120946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MPs) can vertically transport in the aquatic environment due to their aging and biofouling, forming distinct plastisphere in different water layers. However, even though MPs have been regarded as hotspots for antibiotic resistance genes (ARGs), little is known about the propagation and transfer of ARGs in plastisphere in waters, especially in the vertical profile. Therefore, this study investigated the dynamic responses and evolution of ARGs in different plastisphere distributed vertically in an urbanized river. The biofilm biomass in the polylactic acid (PLA) plastisphere was relatively higher than that in the polyethylene terephthalate (PET), showing depth-decay variations. The ARGs abundance in plastisphere were much higher than that in the surrounding waters, especially for the PLA. In the vertical profiles, the ARGs abundance in the PET plastisphere increased with water depths, while the highest abundance of ARGs in the PLA mostly appeared at intermediate waters. In the temporal dynamic, the ARGs abundance in plastisphere increased and then decreased, which may be dominated by the MP types at the initial periods. After long-term exposure, the influences of water depths seemed to be strengthened, especially in the PET plastisphere. Compared with surface waters, the microbiota attached in plastisphere in deep waters showed high species richness, strong diversity, and complex interactions, which was basically consistent with the changes of nutrient contents in different water layers. These vertical variations in microbiota and nutrients (e.g., nitrogen) may be responsible for the propagation of ARGs in plastisphere in deep waters. The host bacteria for ARGs in plastisphere was also developed as water depth increased, leading to an enrichment of ARGs in deep waters. In addition, the abundance of ARGs in plastisphere in bottom waters was positively correlated with the mobile genetic elements (MGEs) of intI1 and tnpA05, indicative of a frequent horizontal gene transfer of ARGs. Overall, water depth played a critical role in the propagation of ARGs in plastisphere, which should not be ignored in a long time series. This study provides new insights into the dynamic evolution of ARGs propagation in plastisphere under increasing global MPs pollution, especially in the vertical profile.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yixin Zhou
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
12
|
Su X, Liu M, Dai H, Dou J, Lu Z, Xu J, He Y. Novel insight into the aging process of microplastics: An in-situ study in coastal wetlands. WATER RESEARCH 2024; 248:120871. [PMID: 37979566 DOI: 10.1016/j.watres.2023.120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 11/20/2023]
Abstract
Coastal wetlands, the critical interface between the terrestrial and marine environments, provide a dynamic and unique environment for the aging of microplastics (MPs). Nevertheless, both abiotic and biotic processes that contribute to the aging of MPs in coastal wetlands have been largely neglected. In this study, the aging of MPs was continuously characterized in Hangzhou Bay, a representative coastal wetland in Zhejiang, China. Three-month exposure of polymers in sediment-water interface induced the aging phenomenon with embrittlement and exfoliation, as evidenced by simultaneous observed alternations in crystallinity and functional groups. A first-order kinetic model was fitted to describe the rate and degree of aging quantitatively. As evidenced by the carbonyl index, the residence time of all the examined MPs exhibited significant variance, ranging from 335 to 661 days. These variations might be caused by the selective attachment of plastic-degrading microorganisms (such as Moraxella sp. and Rhodococcus sp.). A positive correlation between the carbonyl index, the number of OTUs in the MP-associated biofilm, and irradiation was observed (p < 0.001), suggesting that the aging process may be co-regulated by natural sunlight and wetland microbial colonization. This study sheds new light on the long-term environmental fate of MPs and their associated ecological risks.
Collapse
Affiliation(s)
- Xin Su
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Meng Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hengyi Dai
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jibo Dou
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhijiang Lu
- Department of Environmental Science and Geology, Wayne State University, Detroit, MI 48201, United States
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan He
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Hangzhou 310058, China.
| |
Collapse
|
13
|
Di Pippo F, Bocci V, Amalfitano S, Crognale S, Levantesi C, Pietrelli L, Di Lisio V, Martinelli A, Rossetti S. Microbial colonization patterns and biodegradation of petrochemical and biodegradable plastics in lake waters: insights from a field experiment. Front Microbiol 2023; 14:1290441. [PMID: 38125574 PMCID: PMC10731271 DOI: 10.3389/fmicb.2023.1290441] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Introduction Once dispersed in water, plastic materials become promptly colonized by biofilm-forming microorganisms, commonly known as plastisphere. Methods By combining DNA sequencing and Confocal Laser Scanning Microscopy (CLSM), we investigated the plastisphere colonization patterns following exposure to natural lake waters (up to 77 days) of either petrochemical or biodegradable plastic materials (low density polyethylene - LDPE, polyethylene terephthalate - PET, polylactic acid - PLA, and the starch-based MaterBi® - Mb) in comparison to planktonic community composition. Chemical composition, water wettability, and morphology of plastic surfaces were evaluated, through Transform Infrared Spectroscopy (ATR-FTIR), Scanning Electron Microscopy (SEM), and static contact angle analysis, to assess the possible effects of microbial colonization and biodegradation activity. Results and Discussion The phylogenetic composition of plastisphere and planktonic communities was notably different. Pioneering microbial colonisers, likely selected from lake waters, were found associated with all plastic materials, along with a core of more than 30 abundant bacterial families associated with all polymers. The different plastic materials, either derived from petrochemical hydrocarbons (i.e., LDPE and PET) or biodegradable (PLA and Mb), were used by opportunistic aquatic microorganisms as adhesion surfaces rather than carbon sources. The Mb-associated microorganisms (i.e. mostly members of the family Burkholderiaceae) were likely able to degrade the starch residues on the polymer surfaces, although the Mb matrix maintained its original chemical structure and morphology. Overall, our findings provide insights into the complex interactions between aquatic microorganisms and plastic materials found in lake waters, highlighting the importance of understanding the plastisphere dynamics to better manage the fate of plastic debris in the environment.
Collapse
Affiliation(s)
- Francesca Di Pippo
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | - Valerio Bocci
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- PhD Program in Evolutionary Biology and Ecology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - Stefano Amalfitano
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Simona Crognale
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Caterina Levantesi
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| | | | - Valerio Di Lisio
- Donostia International Physics Center, Paseo Manuel de Lardizabal, San Sebastián, Spain
| | | | - Simona Rossetti
- Water Research Institute, CNR-IRSA, National Research Council, Rome, Italy
| |
Collapse
|
14
|
Karkanorachaki K, Syranidou E, Kalogerakis N. Extreme weather events as an important factor for the evolution of plastisphere but not for the degradation process. WATER RESEARCH 2023; 246:120687. [PMID: 37801984 DOI: 10.1016/j.watres.2023.120687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
Marine plastics, with their negative effects on marine life and the human health, have been recently recognized as a new niche for the colonization and development of marine biofilms. Members of the colonizing communities could possess the potential for plastic biodegradation. Thus, there is an urgent need to characterize these complex and geographically variable communities and elucidate the functionalities. In this work, we characterize the fungal and bacterial colonizers of 5 types of plastic films (High Density Polyethylene, Low Density Polyethylene, Polypropylene, Polystyrene and Polyethylene Terepthalate) over the course of a 242-day incubation in the south-eastern Mediterranean and relate them to the chemical changes observed on the surface of the samples via ATR-FTIR. The 16s rRNA and ITS2 ribosomal regions of the plastisphere communities were sequenced on four time points (35, 152, 202 and 242 days). The selection of the time points was dictated by the occurrence of a severe storm which removed biological fouling from the surface of the samples and initiated a second colonization period. The bacterial communities, dominated by Proteobacteria and Bacteroidetes, were the most variable and diverse. Fungal communities, characterized mainly by the presence of Ascomycota, were not significantly affected by the storm. Neither bacterial nor fungal community structure were related to the polymer type acting as substrate, while the surface of the plastic samples underwent weathering of oscillating degrees with time. This work examines the long-term development of Mediterranean epiplastic biofilms and is the first to examine how primary colonization influences the microbial community re-attachment and succession as a response to extreme weather events. Finally, it is one of the few studies to examine fungal communities, despite them containing putative plastic degraders.
Collapse
Affiliation(s)
- Katerina Karkanorachaki
- School of Chemical and Environmental Engineering, Technical University of Crete, GR-73100, Chania, Greece
| | - Evdokia Syranidou
- School of Chemical and Environmental Engineering, Technical University of Crete, GR-73100, Chania, Greece
| | - Nicolas Kalogerakis
- School of Chemical and Environmental Engineering, Technical University of Crete, GR-73100, Chania, Greece; Institute of GeoEnergy, Foundation for Research and Technology - Hellas, GR-73100, Chania, Greece.
| |
Collapse
|
15
|
Abed RMM, Al-Hinai M, Al-Balushi Y, Haider L, Muthukrishnan T, Rinner U. Degradation of starch-based bioplastic bags in the pelagic and benthic zones of the Gulf of Oman. MARINE POLLUTION BULLETIN 2023; 195:115496. [PMID: 37703633 DOI: 10.1016/j.marpolbul.2023.115496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/21/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
The Gulf of Oman is becoming increasingly polluted with plastics, hence bioplastics have been considered 'a substitute', although their biodegradability in marine environments has not been well investigated. Most research has been performed on cellulose-based bioplastics, whereas starch-based bioplastics have proven to be a suitable, but less researched, alternative. This study is the first of its kind designed to investigate the degradability of two different types of starch-based bioplastic bags, available in the market and labeled as "biodegradable", in the pelagic and benthic zones of one of the warmest marine environment in the world. Fourier-Transform Infrared Spectroscopy (FTIR) showed a clear reduction in the presence of OH, CH, and CO in the bioplastic bags after 5 weeks of immersion. Thermo-Gravimetric Analysis (TGA) indicated degradation of glycerol, starch, and polyethylene. The biofouling bacterial communities on bioplastic surfaces showed distinct grouping based on the immersion zone. Candidaatus saccharibacteria, Verrucomicrobiae, Acidimicrobiia and Planctomycetia sequences were only detectable on bioplastics in the pelagic zone, whereas Actinomyces, Pseudomonas, Sphingobium and Acinetobacter related sequences were only found on bioplastics in the benthic layer. We conclude that starch-based bioplastics are more readily degradable in the Gulf of Oman than conventional plastics, hence could serve as a better environmentally friendly alternative.
Collapse
Affiliation(s)
- Raeid M M Abed
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123 Al Khoud, Sultanate of Oman.
| | - Mahmood Al-Hinai
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123 Al Khoud, Sultanate of Oman
| | - Yasmin Al-Balushi
- Biology Department, College of Science, Sultan Qaboos University, P. O. Box: 36, PC 123 Al Khoud, Sultanate of Oman
| | - Lorenz Haider
- Institute of Applied Chemistry, IMC University of Applied Sciences Krems, Piaristengasse 1, 3500 Krems, Austria
| | - Thirumahal Muthukrishnan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario M5S 3E5, Canada
| | - Uwe Rinner
- Institute of Applied Chemistry, IMC University of Applied Sciences Krems, Piaristengasse 1, 3500 Krems, Austria
| |
Collapse
|
16
|
Salgado CA, Silva JG, Almeida FAD, Vanetti MCD. Biodegradation of polyurethanes by Serratia liquefaciens L135 and its polyurethanase: In silico and in vitro analyses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122016. [PMID: 37339733 DOI: 10.1016/j.envpol.2023.122016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/22/2023] [Accepted: 06/09/2023] [Indexed: 06/22/2023]
Abstract
Polyurethanes (PUs) are found in many everyday products and their disposal leads to environmental accumulation. Therefore, there is an urgent need to develop ecologically sustainable techniques to biodegrade and recycle this recalcitrant polymer and replace traditional methods that form harmful by-products. Serratia liquefaciens L135 secretes a polyurethanase with lipase activity, and this study explores the biodegradation of PUs by this bacterium and its enzyme through in silico and in vitro analyses. PUs monomers and tetramers were constructed in silico and tested with modeled and validated structure of the polyurethanase from S. liquefaciens. The molecular docking showed that all PUs monomers presented favorable interactions with polyurethanase (values of binding energy between -84.75 and -121.71 kcal mol-1), including PU poly[4,4'-methylenebis (phenyl isocyanate)-alt-1,4-butanediol/di (propylene glycol)/polycaprolactone] (PCLMDI). Due to repulsive steric interactions, tetramers showed less favorable interactions (values between 24.26 and -45.50 kcal mol-1). In vitro analyses evaluated the biodegradation of PUs: Impranil® and PCLMDI; this latter showed high binding energy with this polyurethanase in silico. The biodegradation of Impranil® by S. liquefaciens and its partially purified polyurethanase was confirmed in agar by forming a transparent halo. Impranil® disks inoculated with S. liquefaciens and incubated at 30 °C for six days showed rupture of the PU structure, possibly due to the formation of cracks visualized by scanning electron microscopy (SEM). PCLMDI films were also biodegraded by S. liquefaciens after 60 days of incubation, with the formation of pores and cracks visualized by SEM. The biodegradation may have occurred due to the action of polyurethanase produced by this bacterium. This work provides essential information on the potential of S. liquefaciens to biodegrade PUs through in silico analyses combined with in vitro analyses.
Collapse
Affiliation(s)
| | - Júnio Gonçalves Silva
- Department of Chemistry, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Felipe Alves de Almeida
- Instituto de Laticínios Cândido Tostes (ILCT), Empresa de Pesquisa Agropecuária de Minas Gerais (EPAMIG), Juiz de Fora, MG, Brazil.
| | | |
Collapse
|
17
|
Matluba M, Ahmed MK, Chowdhury KMA, Khan N, Ashiq MAR, Islam MS. The pervasiveness of microplastic contamination in the gastrointestinal tract of fish from the western coast of Bangladesh. MARINE POLLUTION BULLETIN 2023; 193:115145. [PMID: 37331273 DOI: 10.1016/j.marpolbul.2023.115145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/20/2023]
Abstract
This study investigated the prevalence of microplastics (MPs) in the gastrointestinal tract (GIT) of fish from the western coast of Bangladesh, the world's largest mangrove ecosystem. Altogether, 8 different species of fish (5 demersal and 3 pelagic) were examined. Microplastics were detected in every individual fish with an average abundance of 7.1 ± 3.14 particles per specimen. The demersal species were observed to consume more microplastics (7.78 ± 3.51) than the pelagic species (5.92 ± 2.06). Moreover, small-sized fish was found to accumulate higher MPs/body weight than large-sized fish. Polypropylene was the most abundant polymer type (45 %) and fiber was the most prevalent shape (71 %). SEM analysis revealed cracks, pits, and foreign particles on the microplastics' surface, representing their ability to bear organic pollutants and heavy metals. This study will be a source of information for future research and a guide for policy-makers to take better actions to protect and restore marine resources.
Collapse
Affiliation(s)
- Marhaba Matluba
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md Kawser Ahmed
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Nasim Khan
- Department of Oceanography, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research, Dhaka 1205, Bangladesh.
| |
Collapse
|
18
|
Catarci Carteny C, Amato ED, Pfeiffer F, Christia C, Estoppey N, Poma G, Covaci A, Blust R. Accumulation and release of organic pollutants by conventional and biodegradable microplastics in the marine environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27887-1. [PMID: 37266788 DOI: 10.1007/s11356-023-27887-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
The issue of microplastic (MP) litter in the aquatic environment and its capability of accumulating and/or releasing pollutants has been brought to light in recent years. Biodegradable plastics have been proposed as one of the different solutions to decrease environmental input of discarded plastics; however, their ability to accumulate and release pollutants once in the marine environment has not been assessed yet. In this study, we compare the accumulation and the release of a wide range of compounds by biodegradable (polyhydroxyalkanoates (PHA) and polybutylene succinate (PBS)) and conventional (polyethylene (PE)) MPs following exposure to natural seawater for 64 days. We quantified polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), organophosphorus flame retardants (PFRs), phthalates, and alternative plasticizers in MPs, before and after exposure. Results indicated that PBS- and PHA-MPs accumulated the largest amount of PAHs and PFRs, respectively. Leaching of PFRs and plasticizers was observed for all polymers and was approximately twofold greater for PE- when compared to PBS- and PHA-MPs. Overall, our study suggests that biodegradable MPs may release less additives and accumulate a larger amount of contaminants from seawater compared to conventional ones: these findings may have implications on the risk assessment of biodegradable polymers for marine biota; and on potential widespread adoption of these types of plastics.
Collapse
Affiliation(s)
- Camilla Catarci Carteny
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium.
| | - Elvio Diego Amato
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | - Fabienne Pfeiffer
- School of Criminal Justice, University of Lausanne, Batochime, Lausanne, Switzerland
| | - Christina Christia
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Nicolas Estoppey
- School of Criminal Justice, University of Lausanne, Batochime, Lausanne, Switzerland
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Ronny Blust
- Systemic, Physiological and Ecotoxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| |
Collapse
|
19
|
Royer SJ, Greco F, Kogler M, Deheyn DD. Not so biodegradable: Polylactic acid and cellulose/plastic blend textiles lack fast biodegradation in marine waters. PLoS One 2023; 18:e0284681. [PMID: 37224114 DOI: 10.1371/journal.pone.0284681] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/05/2023] [Indexed: 05/26/2023] Open
Abstract
The resistance of plastic textiles to environmental degradation is of major concern as large portions of these materials reach the ocean. There, they persist for undefined amounts of time, possibly causing harm and toxicity to marine ecosystems. As a solution to this problem, many compostable and so-called biodegradable materials have been developed. However, to undergo rapid biodegradation, most compostable plastics require specific conditions that are achieved only in industrial settings. Thus, industrially compostable plastics might persist as pollutants under natural conditions. In this work, we tested the biodegradability in marine waters of textiles made of polylactic acid, a diffused industrially compostable plastic. The test was extended also to cellulose-based and conventional non-biodegradable oil-based plastic textiles. The analyses were complemented by bio-reactor tests for an innovative combined approach. Results show that polylactic acid, a so-called biodegradable plastic, does not degrade in the marine environment for over 428 days. This was also observed for the oil-based polypropylene and polyethylene terephthalate, including their portions in cellulose/oil-based plastic blend textiles. In contrast, natural and regenerated cellulose fibers undergo complete biodegradation within approximately 35 days. Our results indicate that polylactic acid resists marine degradation for at least a year, and suggest that oil-based plastic/cellulose blends are a poor solution to mitigate plastic pollution. The results on polylactic acid further stress that compostability does not imply environmental degradation and that appropriate disposal management is crucial also for compostable plastics. Referring to compostable plastics as biodegradable plastics is misleading as it may convey the perception of a material that degrades in the environment. Conclusively, advances in disposable textiles should consider the environmental impact during their full life cycle, and the existence of environmentally degradable disposal should not represent an alibi for perpetuating destructive throw-away behaviors.
Collapse
Affiliation(s)
- Sarah-Jeanne Royer
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, United States of America
- Center for Marine Debris Research, Hawaii Pacific University, Waimanalo, HI, United States of America
| | - Francesco Greco
- Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, State Key Laboratory of Continental Dynamics, Northwest University, 710069, Xi'an, China
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Dimitri D Deheyn
- Marine Biology Research Division, Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, United States of America
| |
Collapse
|
20
|
Behera S, Das S. Environmental impacts of microplastic and role of plastisphere microbes in the biodegradation and upcycling of microplastic. CHEMOSPHERE 2023; 334:138928. [PMID: 37211165 DOI: 10.1016/j.chemosphere.2023.138928] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 04/12/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Increasing usage of plastic has led to the deposition of plastic in the environment which later become microplastic, a pollutant of global concern. These polymeric particles affect the ecosystem bestowing toxicity and impede the biogeochemical cycles. Besides, microplastic particles have been known for their role in aggravating the effect of various other environmental pollutants including organic pollutants and heavy metals. These microplastic surfaces are often colonized by the microbial communities also known as "plastisphere microbes" forming biofilms. These microbes include cyanobacteria like Nostoc, Scytonema, etc., and diatoms like Navicula, Cyclotella, etc. Which become the primary colonizer. In addition to the autotrophic microbes, Gammaproteobacteria and Alphaproteobacteria dominate the plastisphere microbial community. These biofilm-forming microbes can efficiently degrade the microplastic in the environment by secreting various catabolic enzymes such as lipase, esterase, hydroxylase, etc. Besides, these microbes have shown great potential for the bioconversion of microplastic to polyhydroxyalkanoates (PHA), an energy efficient and sustainable alternative to the petroleum based plastics. Thus, these microbes can be used for the creation of a circular economy using waste to wealth strategy. This review provides a deeper insight into the distribution, transportation, transformation, and biodegradation of microplastic in the ecosystem. The formation of plastisphere by the biofilm-forming microbes has been described in the article. In addition, the microbial metabolic pathways and genetic regulations involved in the biodegradation have been discussed in detail. The article suggests the microbial bioremediation and upcycling of microplastic along with various other strategies for effectively mitigate the microplastic pollution.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
21
|
Kerfahi D, Harvey BP, Kim H, Yang Y, Adams JM, Hall-Spencer JM. Whole community and functional gene changes of biofilms on marine plastic debris in response to ocean acidification. MICROBIAL ECOLOGY 2023; 85:1202-1214. [PMID: 35378620 DOI: 10.1007/s00248-022-01987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/28/2022] [Indexed: 05/10/2023]
Abstract
Plastics are accumulating in the world's oceans, while ocean waters are becoming acidified by increased CO2. We compared metagenome of biofilms on tethered plastic bottles in subtidal waters off Japan naturally enriched in CO2, compared to normal ambient CO2 levels. Extending from an earlier amplicon study of bacteria, we used metagenomics to provide direct insights into changes in the full range of functional genes and the entire taxonomic tree of life in the context of the changing plastisphere. We found changes in the taxonomic community composition of all branches of life. This included a large increase in diatom relative abundance across the treatments but a decrease in diatom diversity. Network complexity among families decreased with acidification, showing overall simplification of biofilm integration. With acidification, there was decreased prevalence of genes associated with cell-cell interactions and antibiotic resistance, decreased detoxification genes, and increased stress tolerance genes. There were few nutrient cycling gene changes, suggesting that the role of plastisphere biofilms in nutrient processes within an acidified ocean may not change greatly. Our results suggest that as ocean CO2 increases, the plastisphere will undergo broad-ranging changes in both functional and taxonomic composition, especially the ecologically important diatom group, with possible wider implications for ocean ecology.
Collapse
Affiliation(s)
- Dorsaf Kerfahi
- School of Natural Sciences, Department of Biological Sciences, Keimyung University, Daegu, 42601, Republic of Korea
| | - Ben P Harvey
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan
| | - Hyoki Kim
- Yonsei Medical Center, Celemics Inc. 612 Avison Biomedical Research Center, Seoul, 120-752, Republic of Korea
| | - Ying Yang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210008, China
| | - Jonathan M Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, 210008, China.
| | - Jason M Hall-Spencer
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| |
Collapse
|
22
|
Li XY, Lin JY, Zhang J, Liu HT. Response of occurrence in microplastics and its adsorped cadmium capacity to simulated agricultural environmental scenarios in sludge-amended soil. ENVIRONMENTAL RESEARCH 2023; 222:115346. [PMID: 36702189 DOI: 10.1016/j.envres.2023.115346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Large amounts of microplastics (MPs) enter the soil along with the amendment of sludge to soil. However, it is still unclear about the response of MPs occurrence and the adsorption behaviors of cadmium (Cd)on MPs to typical agricultural environmental scenarios. In present work, three kinds of MPs (polyethylene, polypropylene, and polystyrene) were chosen to investigate that response in three agricultural environmental scenarios with sludge-amended soil, including dry-wet alteration (7 d, five cycles), microbial addition (Bacillus subtilis, 0.05 g/g soil), and Ultraviolet (UV) irradiation (340 nm, 4 × 15 W, 4 d). The results showed that there was the highest adsorption capacity of Cd on MPs (36.21, 45.15, 12.43 μg/g for PE, PP, PS, respectively) after UV irradiation exceeding those from MPs triggered by other two scenarios). UV irradiation caused an increase in the abundance of Streptomyces, an expansion in specific surface area, a significant change in surface morphologies, an improvement in crystallinity or the formation of new crystals, and an enhancement in C-O and CO content, and then resulted in the incremental adsorption capacity of Cd on MPs. The findings are important of significance for controlling the environmental risks from sludge MPs via carrying heavy metals in the soil-plant systems.
Collapse
Affiliation(s)
- Xin-Yu Li
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Yu Lin
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Zhang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, 541004, China.
| | - Hong-Tao Liu
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Tarchi M, Zaaboub N, Alsubih M, Brik B, Martins MVA, Aleya L, Trabelsi L. Microalgae colonization and trace element accumulation on the plastisphere of marine plastic debris in Monastir Bay (Eastern Tunisia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:32427-32451. [PMID: 36460886 DOI: 10.1007/s11356-022-23930-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/27/2022] [Indexed: 06/17/2023]
Abstract
In this study, we examined the toxicity potential of the epiplastic microalgal community that developed on low-density polyethylene (LD-PE) plastic debris found in two distinct regions of the Monastir Bay (Tunisia): the coast exposed to anthropogenic discharges and the open sea in front of the Kuriat Islands. Concentrations of potentially toxic elements (PTEs) accumulated in sediments and plastisphere were compared in order to determine their toxicity potential to biological life. The collected plastispheres were predominantly composed of cyanobacteria, chlorophytes, and diatoms. Diatoms display a relatively high diversity (25 species). At all stations, potentially harmful microalgae (PHM) were more abundant in the plastisphere than in seawater and the coastal zone seems to harbour increased number of potentially harmful cyanobacteria within the plastisphere. At the offshore station S1, the PHM community was dominated by the potentially harmful diatoms belonging to the genus Pseudo-nitzschia. Phormidium sp. was the main potentially harmful cyanobacterium identified in the plastisphere of S1. PTEs concentration in the plastisphere was higher than in sediment and ranking with very high contamination factors at all sites according to the sequence Pb > Cu > Cd > Ni > Zn. The highest accumulation of PTEs in the plastisphere was recorded near harbors and industrial zones with important human interference. This work shows that plastisphere can be a threat to vulnerable species not only because it can contain PHM but also because it can accumulate PTEs.
Collapse
Affiliation(s)
- Mondher Tarchi
- Marine Biodiversity Laboratory, National Institute of Marine Sciences and Technology (INSTM), 2025 Salammbo, University of Carthage, Tunis, Tunisia
| | - Noureddine Zaaboub
- Marine Environment Laboratory, National Institute of Marine Sciences and Technology (INSTM), University of Carthage, 2025 Salammbo, Tunis, Tunisia
| | - Majed Alsubih
- Department of Civil Engineering, King Khalid University, Guraiger, Abha, 62529, Kingdom of Saudi Arabia
| | - Bochra Brik
- Marine Biodiversity Laboratory, National Institute of Marine Sciences and Technology (INSTM), 2025 Salammbo, University of Carthage, Tunis, Tunisia
| | - Maria Virgínia Alves Martins
- Faculdade de Geologia, Universidade Do Estado Do Rio de Janeiro, UERJ, Av. Sao Francisco Xavier, 24, Sala 2020A, Maracana, Rio de Janeiro, RJ 20550‑013, Brazil
- GeoBioTec, Departamento de Geociencias, Campus de Santiago, Universidade de Aveiro, 3810‑193, Aveiro, Portugal
| | - Lotfi Aleya
- Laboratoire de Chrono-Environnement, UMR CNRS 6249, Université de Bourgogne Franche-Comté, La Bouloie, 25030, Besançon Cedex, France
| | - Lamia Trabelsi
- Marine Biodiversity Laboratory, National Institute of Marine Sciences and Technology (INSTM), 2025 Salammbo, University of Carthage, Tunis, Tunisia.
| |
Collapse
|
24
|
Pasqualini V, Garrido M, Cecchi P, Connès C, Couté A, El Rakwe M, Henry M, Hervio-Heath D, Quilichini Y, Simonnet J, Rinnert E, Vitré T, Galgani F. Harmful algae and pathogens on plastics in three mediterranean coastal lagoons. Heliyon 2023; 9:e13654. [PMID: 36895393 PMCID: PMC9988496 DOI: 10.1016/j.heliyon.2023.e13654] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/27/2023] Open
Abstract
Plastic is now a pervasive pollutant in all marine ecosystems. The microplastics and macroplastic debris were studied in three French Mediterranean coastal lagoons (Prevost, Biguglia and Diana lagoons), displaying different environmental characteristics. In addition, biofilm samples were analyzed over the seasons to quantify and identify microalgae communities colonizing macroplastics, and determine potentially harmful microorganisms. Results indicate low but highly variable concentrations of microplastics, in relation to the period and location of sampling. Micro-Raman spectroscopy analyses revealed that the majority of macroplastic debris corresponded to polyethylene (PE) and low-density polyethylene (LDPE), and to a far lesser extent to polypropylene (PP). The observations by Scanning Electron Microscopy of microalgae communities colonizing macroplastic debris demonstrated differences depending on the seasons, with higher amounts in spring and summer, but without any variation between lagoons and polymers. Among the Diatomophyceae, the most dominant genera were Amphora spp., Cocconeis spp., and Navicula spp.. Cyanobacteria and Dinophyceae such as Prorocentrum cordatum, a potentially toxic species, were also found sporadically. The use of Primer specific DNA amplification tools enabled us to detect potentially harmful microorganisms colonizing plastics, such as Alexandrium minutum or Vibrio spp. An additional in situ experiment performed over one year revealed an increase in the diversity of colonizing microalgae in relation to the duration of immersion for the three tested polymers PE, LDPE and polyethylene terephthalates (PET). Vibrio settled durably after two weeks of immersion, whatever the polymer. This study confirms that Mediterranean coastal lagoons are vulnerable to the presence of macroplastic debris that may passively host and transport various species, including some potentially harmful algal and bacterial microorganisms.
Collapse
Affiliation(s)
- Vanina Pasqualini
- UMR SPE CNRS - UMS Stella Mare CNRS, University of Corsica, BP 52, 20250, Corte, France
| | - Marie Garrido
- Environmental Agency of Corsica, 7 Avenue Jean Nicoli, 20250, Corte, France
| | - Philippe Cecchi
- UMR MARBEC, IRD CNRS IFREMER, University of Montpellier, CC093, 34095, Montpellier Cedex 5, France
| | - Coralie Connès
- IFREMER, Laboratoire Environnement Ressources Provence-Azur-Corse (LER/PAC), Station de Bastia, Zone Industrielle de Furiani, 20600, Bastia, France
| | - Alain Couté
- Muséum National d'Histoire Naturelle, Département RDDM, FRE 3206, USM 505, 57 rue Cuvier, 75005, Paris, France
| | - Maria El Rakwe
- IFREMER, Laboratoire Détection, Capteurs et Mesures (LDCM), Centre Bretagne, ZI de la Pointe du Diable, CS 10070, 29280, Plouzané, France
| | - Maryvonne Henry
- IFREMER, Laboratoire Environnement Ressources Provence-Azur-Corse (LER/PAC), Station de Toulon, Zone Portuaire de Brégaillon, CS 20330, 83507, La Seyne sur Mer, France
| | - Dominique Hervio-Heath
- IFREMER, Laboratoire Adaptation, Reproduction et Nutrition des Poissons (LARN), Centre Bretagne, ZI de la Pointe du Diable, CS 10070, 29280, Plouzané, France
| | - Yann Quilichini
- UMR SPE CNRS - UMS Stella Mare CNRS, University of Corsica, BP 52, 20250, Corte, France
| | - Jérémy Simonnet
- IFREMER, Laboratoire Santé, Environnement et Microbiologie (LSEM), Centre Bretagne, ZI de la Pointe du Diable, CS 10070, 29280, Plouzané, France
| | - Emmanuel Rinnert
- IFREMER, Laboratoire Cycle Géochimique et Ressources (LCG), Centre Bretagne, ZI de la Pointe du Diable, CS 10070, 29280, Plouzané, France
| | - Thomas Vitré
- IFREMER, Laboratoire Adaptation, Reproduction et Nutrition des Poissons (LARN), Centre Bretagne, ZI de la Pointe du Diable, CS 10070, 29280, Plouzané, France
| | - François Galgani
- IFREMER, Laboratoire Environnement Ressources Provence-Azur-Corse (LER/PAC), Station de Bastia, Zone Industrielle de Furiani, 20600, Bastia, France
| |
Collapse
|
25
|
Xianbiao J, Baohong C, Kang W, Conghui P, Yahui G, Hui L. A new microalgae community — Epimicroplastic microalgae (EMP-MA). ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.103059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
26
|
Ziani K, Ioniță-Mîndrican CB, Mititelu M, Neacșu SM, Negrei C, Moroșan E, Drăgănescu D, Preda OT. Microplastics: A Real Global Threat for Environment and Food Safety: A State of the Art Review. Nutrients 2023; 15:617. [PMID: 36771324 PMCID: PMC9920460 DOI: 10.3390/nu15030617] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Microplastics are small plastic particles that come from the degradation of plastics, ubiquitous in nature and therefore affect both wildlife and humans. They have been detected in many marine species, but also in drinking water and in numerous foods, such as salt, honey and marine organisms. Exposure to microplastics can also occur through inhaled air. Data from animal studies have shown that once absorbed, plastic micro- and nanoparticles can distribute to the liver, spleen, heart, lungs, thymus, reproductive organs, kidneys and even the brain (crosses the blood-brain barrier). In addition, microplastics are transport operators of persistent organic pollutants or heavy metals from invertebrate organisms to other higher trophic levels. After ingestion, the additives and monomers in their composition can interfere with important biological processes in the human body and can cause disruption of the endocrine, immune system; can have a negative impact on mobility, reproduction and development; and can cause carcinogenesis. The pandemic caused by COVID-19 has affected not only human health and national economies but also the environment, due to the large volume of waste in the form of discarded personal protective equipment. The remarkable increase in global use of face masks, which mainly contain polypropylene, and poor waste management have led to worsening microplastic pollution, and the long-term consequences can be extremely devastating if urgent action is not taken.
Collapse
Affiliation(s)
- Khaled Ziani
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Corina-Bianca Ioniță-Mîndrican
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Magdalena Mititelu
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | | | - Carolina Negrei
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| | - Elena Moroșan
- Department of Clinical Laboratory and Food Safety, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Doina Drăgănescu
- Department of Pharmaceutical Physics and Informatics, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020956 Bucharest, Romania
| | - Olivia-Teodora Preda
- Department of Toxicology, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020945 Bucharest, Romania
| |
Collapse
|
27
|
Ma J, Chen F, Zhang Z, Li Y, Liu J, Chen CC, Pan K. Eukaryotic community succession on discarded face masks in the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158552. [PMID: 36087664 PMCID: PMC9448716 DOI: 10.1016/j.scitotenv.2022.158552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 05/29/2023]
Abstract
Wearing facemasks remains an essential strategy for combating the COVID-19 pandemic. However, used masks are becoming plastic wastes that are widespread in the oceans, which is raising concerns about the potential impacts of these novel plastic niches on marine organisms. To delve into this issue, we exposed surgical masks to coastal waters for 30 days. Valuable information was recorded weekly in regard to the succession of the eukaryotic community inhabiting the masks via high-throughput 18S rRNA gene sequencing. Generally, the community on masks was significantly distinct from that in the surrounding seawater. With 1150 different eukaryotic taxa identified, the diversity of the vigorous colonizers of masks peaked at the beginning and decreased over time. A hallmark of initial colonization was the aggregation of diatoms, which formed biofilms on masks, followed by dinoflagellates that acted as a turning point for subsequent development of calcified species and other predators. This study provides insight into the eukaryotic community dynamics on discarded masks in the marine environment and highlights that the potential mask-mediated harmful species clustering may threaten the marine ecosystem.
Collapse
Affiliation(s)
- Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yanping Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Jingli Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Ciara Chun Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, Guangdong Province, China.
| |
Collapse
|
28
|
Zhi Xiang JK, Bairoliya S, Cho ZT, Cao B. Plastic-microbe interaction in the marine environment: Research methods and opportunities. ENVIRONMENT INTERNATIONAL 2023; 171:107716. [PMID: 36587499 DOI: 10.1016/j.envint.2022.107716] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Approximately 9 million metric tons of plastics enters the ocean annually, and once in the marine environment, plastic surfaces can be quickly colonised by marine microorganisms, forming a biofilm. Studies on plastic debris-biofilm associations, known as plastisphere, have increased exponentially within the last few years. In this review, we first briefly summarise methods and techniques used in exploring plastic-microbe interactions. Then we highlight research gaps and provide future research opportunities for marine plastisphere studies, especially, on plastic characterisation and standardised biodegradation tests, the fate of "environmentally friendly" plastics, and plastisphere of coastal habitats. Located in the tropics, Southeast Asian (SEA) countries are significant contributors to marine plastic debris. However, plastisphere studies in this region are lacking and therefore, we discuss how the unique environmental conditions in the SEA seas may affect plastic-microbe interaction and why there is an imperative need to conduct plastisphere studies in SEA marine environments. Finally, we also highlight the lack of understanding of the pathogenicity and ecotoxicological effects of plastisphere on marine ecosystems.
Collapse
Affiliation(s)
- Jonas Koh Zhi Xiang
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore
| | - Sakcham Bairoliya
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Zin Thida Cho
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
29
|
Goudriaan M, Morales VH, van der Meer MTJ, Mets A, Ndhlovu RT, van Heerwaarden J, Simon S, Heuer VB, Hinrichs KU, Niemann H. A stable isotope assay with 13C-labeled polyethylene to investigate plastic mineralization mediated by Rhodococcus ruber. MARINE POLLUTION BULLETIN 2023; 186:114369. [PMID: 36462423 DOI: 10.1016/j.marpolbul.2022.114369] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 06/17/2023]
Abstract
Methods that unambiguously prove microbial plastic degradation and allow for quantification of degradation rates are necessary to constrain the influence of microbial degradation on the marine plastic budget. We developed an assay based on stable isotope tracer techniques to determine microbial plastic mineralization rates in liquid medium on a lab scale. For the experiments, 13C-labeled polyethylene (13C-PE) particles (irradiated with UV-light to mimic exposure of floating plastic to sunlight) were incubated in liquid medium with Rhodococcus ruber as a model organism for proof of principle. The transfer of 13C from 13C-PE into the gaseous and dissolved CO2 pools translated to microbially mediated mineralization rates of up to 1.2 % yr-1 of the added PE. After incubation, we also found highly 13C-enriched membrane fatty acids of R. ruber including compounds involved in cellular stress responses. We demonstrated that isotope tracer techniques are a valuable tool to detect and quantify microbial plastic degradation.
Collapse
Affiliation(s)
- Maaike Goudriaan
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands.
| | - Victor Hernando Morales
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands; Centro de Investigación Mariña, University of Vigo, Department of Ecology and Animal Biology, Biological Oceanography Group, 36319 Vigo, Spain
| | - Marcel T J van der Meer
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands
| | - Anchelique Mets
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands
| | - Rachel T Ndhlovu
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands
| | - Johan van Heerwaarden
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands
| | - Sina Simon
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - Verena B Heuer
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - Kai-Uwe Hinrichs
- MARUM-Center for Marine Environmental Sciences, University of Bremen, 28334 Bremen, Germany
| | - Helge Niemann
- Department of Marine Microbiology and Biogeochemistry (MMB), Royal Netherlands Institute of Sea Research (NIOZ), 1797 SZ 't Horntje, the Netherlands; Department of Earth Sciences, Faculty of Geosciences, Utrecht University, 3584 CB Utrecht, the Netherlands; CAGE-Centre for Arctic Gas Hydrate, Environment and Climate, Department of Geosciences, UiT the Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
30
|
Zhou Q, Tu C, Liu Y, Li Y, Zhang H, Vogts A, Plewe S, Pan X, Luo Y, Waniek JJ. Biofilm enhances the copper (II) adsorption on microplastic surfaces in coastal seawater: Simultaneous evidence from visualization and quantification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158217. [PMID: 36028022 DOI: 10.1016/j.scitotenv.2022.158217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) exposed to the urban coastal seawater could form biofilms, which facilitate the adsorption and transportation of hazardous contaminants. However, influence of biofilms on the metal adsorption of MPs, especially the co-existence of biofilm and metals on MPs, is still less known. In this study, the adsorption of copper (Cu) on biofilm-coated MPs (BMPs) was visually analyzed and quantified. The results of scanning electron microscopy in combination with energy dispersive X-ray showed that biofilm and metals co-occurred on MPs in seawater. The nanoscale secondary ion mass spectrometry images further exhibited that the distribution of Cu, chlorine (Cl) and biofilm on MP surfaces was highly consistent. Moreover, the adsorption of Cu(II) on BMPs was enhanced as quantified by inductively coupled plasma-mass spectrometer. Furthermore, different species on BMPs with and without Cu were identified, and their potential functions of metal or Cl metabolism were predicted based on KEGG pathway database. Overall, for the first time, this study provides visual and quantified evidences for the enhancement of Cu(II) adsorption on BMPs based on co-localization, and it may shed a light on the development of methodologies for investigating the interaction among MPs, biofilms and pollutants in marine environment.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Leibniz Institute for Baltic Sea Research, Rostock 18119, Germany; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Leibniz Institute for Baltic Sea Research, Rostock 18119, Germany; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Ying Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yuan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Haibo Zhang
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Angela Vogts
- Leibniz Institute for Baltic Sea Research, Rostock 18119, Germany
| | - Sascha Plewe
- Leibniz Institute for Baltic Sea Research, Rostock 18119, Germany
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Joanna J Waniek
- Leibniz Institute for Baltic Sea Research, Rostock 18119, Germany
| |
Collapse
|
31
|
Gong YZ, Niu QY, Liu YG, Dong J, Xia MM. Development of multifarious carrier materials and impact conditions of immobilised microbial technology for environmental remediation: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120232. [PMID: 36155222 DOI: 10.1016/j.envpol.2022.120232] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Microbial technology is the most sustainable and eco-friendly method of environmental remediation. Immobilised microorganisms were introduced to further advance microbial technology. In immobilisation technology, carrier materials distribute a large number of microorganisms evenly on their surface or inside and protect them from external interference to better treat the targets, thus effectively improving their bioavailability. Although many carrier materials have been developed, there have been relatively few comprehensive reviews. Therefore, this paper summarises the types of carrier materials explored in the last ten years from the perspective of structure, microbial activity, and cost. Among these, carbon materials and biofilms, as environmentally friendly functional materials, have been widely applied for immobilisation because of their abundant sources and favorable growth conditions for microorganisms. The novel covalent organic framework (COF) could also be a new immobilisation material, due to its easy preparation and high performance. Different immobilisation methods were used to determine the relationship between carriers and microorganisms. Co-immobilisation is particularly important because it can compensate for the deficiencies of a single immobilisation method. This paper emphasises that impact conditions also affect the immobilisation effect and function. In addition to temperature and pH, the media conditions during the preparation and reaction of materials also play a role. Additionally, this study mainly reviews the applications and mechanisms of immobilised microorganisms in environmental remediation. Future development of immobilisation technology should focus on the discovery of novel and environmentally friendly carrier materials, as well as the establishment of optimal immobilisation conditions for microorganisms. This review intends to provide references for the development of immobilisation technology in environmental applications and to further the improve understanding of immobilisation technology.
Collapse
Affiliation(s)
- You-Zi Gong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Qiu-Ya Niu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Yun-Guo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Meng-Meng Xia
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, PR China
| |
Collapse
|
32
|
Kokilathasan N, Dittrich M. Nanoplastics: Detection and impacts in aquatic environments - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157852. [PMID: 35944628 DOI: 10.1016/j.scitotenv.2022.157852] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
The rise in the global production of plastics has led to severe concerns about the impacts of plastics in aquatic environments. Although plastic materials degrade over extreme long periods, they can be broken down through physical, chemical, and/or biological processes to form microplastics (MPs), defined here as particles between 1 μm and 5 mm in size, and later to form nanoplastics (NPls), defined as particles <1 μm in size. We know little about the abundance and effects of NPls, even though a lot of research has been conducted on the ecotoxicological impacts of MPs on both aquatic biota. Nevertheless, there is evidence that NPls can both bypass the cell membranes of microorganisms and bioaccumulate in the tissues and organs of higher organisms. This review analyzes 150 publications collected by searching through the databases Web of Science, SCOPUS, and Google Scholar using keywords such as nanoplastics*, aquatic*, detection*, toxic*, biofilm*, formation*, and extracellular polymeric substance* as singular or plural combinations. We highlight and critically synthesize current studies on the formation and degradation of NPls, NPls' interactions with aquatic biota and biofilm communities, and methods of detection. One reason for the missing data and studies in this area of research is the lack of a protocol for the detection of, and suitable methods for the characterization of, NPls in the field. Our primary aim is to identify gaps in knowledge throughout the review and define future directions of research to address the impacts of NPls in aquatic environments. The development of consistent and standardized sets of procedures would address the gaps in knowledge regarding the formation and degradation of NPls as well as sampling and characterizing natural NPls needed to observe the full extent of NPls on aquatic biota and biofilm communities.
Collapse
Affiliation(s)
- Nigarsan Kokilathasan
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada
| | - Maria Dittrich
- Biogeochemistry Group, Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1065 Military Trail, Toronto, ON M1C1A4, Canada.
| |
Collapse
|
33
|
Degradation-fragmentation of marine plastic waste and their environmental implications: A critical review. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Grzegorczyk M, Pogorzelski S, Janowicz P, Boniewicz-Szmyt K, Rochowski P. Micron-Scale Biogeography of Seawater Biofilm Colonies at Submersed Solid Substrata Affected by Organic Matter and Microbiome Transformation in the Baltic Sea. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6351. [PMID: 36143678 PMCID: PMC9501339 DOI: 10.3390/ma15186351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The aim of this research was to determine temporal and spatial evolution of biofilm architecture formed at model solid substrata submersed in Baltic sea coastal waters in relation to organic matter transformation along a one-year period. Several materials (metals, glass, plastics) were deployed for a certain time, and the collected biofilm-covered samples were studied with a confocal microscopy technique using the advanced programs of image analysis. The geometric and structural biofilm characteristics: biovolume, coverage fraction, mean thickness, spatial heterogeneity, roughness, aggregation coefficient, etc., turned out to evolve in relation to organic matter transformation trends, trophic water status, microbiome evolution, and biofilm micro-colony transition from the heterotrophic community (mostly bacteria) to autotrophic (diatom-dominated) systems. The biofilm morphology parameters allowed the substratum roughness, surface wettability, chromatic organisms colony adaptation to substrata, and quorum sensing or cell to cell signaling effects to be quantitatively evaluated. In addition to the previous work, the structural biofilm parameters could become further novel trophic state indicators.
Collapse
Affiliation(s)
- Maciej Grzegorczyk
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
- MGE, Lipowa 7, 82-103 Stegna, Poland
| | - Stanislaw Pogorzelski
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | - Paulina Janowicz
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| | | | - Pawel Rochowski
- Institute of Experimental Physics, Faculty of Mathematics, Physics and Informatics, University of Gdańsk, Wita Stwosza 57, 80-308 Gdańsk, Poland
| |
Collapse
|
35
|
do Prado Leite I, Menegotto A, da Cunha Lana P, Júnior LLM. A new look at the potential role of marine plastic debris as a global vector of toxic benthic algae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156262. [PMID: 35643140 DOI: 10.1016/j.scitotenv.2022.156262] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Marine plastic debris provides a significant surface area for potential colonization by planktonic and benthic harmful microalgae and for the adsorption of their toxins. Furthermore, floating plastics may substantially expand the substrate area available for benthic algae in the ocean, intensifying the transfer of potent toxins through pelagic food webs. In this study, we quantify the available surface area of micro- and macroplastics in different oceanic regions and assess the potential role of floating plastics as vectors for the transfer of toxins from three widespread benthic dinoflagellates, Gambierdiscus spp., Ostreopsis cf. ovata and Prorocentrum lima. To avoid bias associated to the occurrence of benthic algae in deep waters, we selected only records from 0 to 100 m depths. We estimate that 26.8 × 1010 cm2 of plastic surface area is potentially available in surface waters of the global ocean, mostly in the size range of large microplastics (1.01-4.75 mm). Based on the distribution of floating plastics and the habitat suitability of the selected microalgal species, the plastic relative colonization risks will be greater in the Mediterranean Sea and in the subtropical and temperate western margins of the oceans, such as the North American and Asian eastern coasts and, to a lesser extent, southern Brazil and Australia. In places where the colonization of O. cf. ovata cells on floating plastic debris has been properly quantified, such as the Mediterranean and southern Brazil, we estimate a colonization potential of up to 2 × 106 cells km-2 of ocean surface during the regular occurrence period and up to 1.7 × 108 cells km-2 during massive blooms of this species. As plastic pollution and harmful benthic algal blooms have both increased substantially over the past decades, we suggest that their interactive effects can become a major and novel threat to marine ecosystems and human health.
Collapse
Affiliation(s)
- Isabel do Prado Leite
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, 61, Pontal do Paraná, PR 83255-976, Brazil.
| | - André Menegotto
- Department of Ecology, Federal University of Goiás, Av. Esperança, s/n, Campus Samambaia, Goiânia, GO 74690-900, Brazil
| | - Paulo da Cunha Lana
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, 61, Pontal do Paraná, PR 83255-976, Brazil
| | - Luiz Laureno Mafra Júnior
- Center for Marine Studies, Federal University of Paraná, Av. Beira-mar, s/n, 61, Pontal do Paraná, PR 83255-976, Brazil
| |
Collapse
|
36
|
Pfohl P, Wagner M, Meyer L, Domercq P, Praetorius A, Hüffer T, Hofmann T, Wohlleben W. Environmental Degradation of Microplastics: How to Measure Fragmentation Rates to Secondary Micro- and Nanoplastic Fragments and Dissociation into Dissolved Organics. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:11323-11334. [PMID: 35902073 PMCID: PMC9387529 DOI: 10.1021/acs.est.2c01228] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Understanding the environmental fate of microplastics is essential for their risk assessment. It is essential to differentiate size classes and degradation states. Still, insights into fragmentation and degradation mechanisms of primary and secondary microplastics into micro- and nanoplastic fragments and other degradation products are limited. Here, we present an adapted NanoRelease protocol for a UV-dose-dependent assessment and size-selective quantification of the release of micro- and nanoplastic fragments down to 10 nm and demonstrate its applicability for polyamide and thermoplastic polyurethanes. The tested cryo-milled polymers do not originate from actual consumer products but are handled in industry and are therefore representative of polydisperse microplastics occurring in the environment. The protocol is suitable for various types of microplastic polymers, and the measured rates can serve to parameterize mechanistic fragmentation models. We also found that primary microplastics matched the same ranking of weathering stability as their corresponding macroplastics and that dissolved organics constitute a major rate of microplastic mass loss. The results imply that previously formed micro- and nanoplastic fragments can further degrade into water-soluble organics with measurable rates that enable modeling approaches for all environmental compartments accessible to UV light.
Collapse
Affiliation(s)
- Patrizia Pfohl
- BASF
SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Doctoral
School in Microbiology and Environmental Science, University of Vienna, Vienna 1030, Austria
| | - Marion Wagner
- BASF
SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
| | - Lars Meyer
- BASF
SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
| | - Prado Domercq
- Department
of Environmental Science, Stockholm University, Stockholm 10691, Sweden
| | - Antonia Praetorius
- Institute
for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam 1090 GE, Netherlands
| | - Thorsten Hüffer
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Research
Platform Plastics in the Environment and Society (PLENTY), University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Thilo Hofmann
- Department
of Environmental Geosciences, Centre for Microbiology and Environmental
Systems Science, University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
- Research
Platform Plastics in the Environment and Society (PLENTY), University of Vienna, Josef-Holaubek-Platz 2, Vienna 1090, Austria
| | - Wendel Wohlleben
- BASF
SE, Carl-Bosch-Str. 38, Ludwigshafen 67056, Germany
- . Tel.: +49 621 6095339
| |
Collapse
|
37
|
Rabari V, Patel K, Patel H, Trivedi J. Quantitative assessment of microplastic in sandy beaches of Gujarat state, India. MARINE POLLUTION BULLETIN 2022; 181:113925. [PMID: 35841675 DOI: 10.1016/j.marpolbul.2022.113925] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/30/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
The present study was carried out to quantify microplastic prevalence among 20 sandy beaches on the Gujarat coast. Beaches were categorised into three different classes, viz. low-impacted sites, moderately impacted sites, and highly impacted sites based on anthropogenic pressure. Microplastic (MP) (≤ 5 mm) contamination on the beaches varied with an average of 1.4 MPs/kg to 26 MPs/kg sediment. Sutrapada site-1 and Porbandar showed the highest and lowest mean abundance of microplastics, respectively, among 20 selected beaches. Out of the total assessed microplastics, threads were the maximum (89.98%), followed by the films (4.75%), fragments (3.36%) and foam (1.89%). In terms of colour and size, different microplastics were recorded in this study. The chemical composition of microplastics was identified by ATR-FTIR as polypropylene (47.5%), polyethylene (26%), and polystyrene (25%). Tourism and fishing activities are the possible sources of higher microplastic contamination at highly impacted sites.
Collapse
Affiliation(s)
- Vasantkumar Rabari
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India
| | - Krupal Patel
- Marine Biodiversity and Ecology Laboratory, Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Heris Patel
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India
| | - Jigneshkumar Trivedi
- Animal Taxonomy and Ecology Laboratory, Department of Life Sciences, Hemchandracharya North Gujarat University, Patan 384265, Gujarat, India.
| |
Collapse
|
38
|
Wang K, Lin H, Wang S, Dong X, Sun L, Zhou Q, Chen Y, Su B, Pan Z, Chen B, Gao Y. Species diversity and community structure of microalgae living on microplastics in Luoyuan Bay, China. MARINE POLLUTION BULLETIN 2022; 180:113809. [PMID: 35688065 DOI: 10.1016/j.marpolbul.2022.113809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
This study was carried out in Luoyuan Bay in March 2021. The species composition of microalgae community colonizing on microplastics called epimicroplastic microalgae (EMP-MA) was analyzed and compared with planktonic microalgae (PM) community. The species number of EMP-MA community (73) was higher than that of PM community (56). However Simpson Index and Pielou Evenness Index of EMP-MA community were significantly lower than that of PM community (P < 0.05). Although diatom was the most diverse and abundant taxa in both EMP-MA and PM community, their species compositions were significantly different (P < 0.05). Dominant species were also different between the two communities. Moreover, 12 harmful algal species were found in EMP-MA community, which may drift with microplastics and increase the risks of harmful algal blooms (HABs). This study is helpful to reveal the dispersal mechanism of HABs and potential impacts of EMP-MA on marine ecosystem.
Collapse
Affiliation(s)
- Kang Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Sumin Wang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Xu Dong
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Lin Sun
- School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qianqian Zhou
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yanghang Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Baosi Su
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Zhong Pan
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Baohong Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Yahui Gao
- School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
39
|
Dey S, Rout AK, Behera BK, Ghosh K. Plastisphere community assemblage of aquatic environment: plastic-microbe interaction, role in degradation and characterization technologies. ENVIRONMENTAL MICROBIOME 2022; 17:32. [PMID: 35739580 PMCID: PMC9230103 DOI: 10.1186/s40793-022-00430-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/14/2022] [Indexed: 05/03/2023]
Abstract
It is undeniable that plastics are ubiquitous and a threat to global ecosystems. Plastic waste is transformed into microplastics (MPs) through physical and chemical disruption processes within the aquatic environment. MPs are detected in almost every environment due to their worldwide transportability through ocean currents or wind, which allows them to reach even the most remote regions of our planet. MPs colonized by biofilm-forming microbial communities are known as the ''plastisphere". The revelation that this unique substrate can aid microbial dispersal has piqued interest in the ground of microbial ecology. MPs have synergetic effects on the development, transportation, persistence, and ecology of microorganisms. This review summarizes the studies of plastisphere in recent years and the microbial community assemblage (viz. autotrophs, heterotrophs, predators, and pathogens). We also discussed plastic-microbe interactions and the potential sources of plastic degrading microorganisms. Finally, it also focuses on current technologies used to characterize those microbial inhabitants and recommendations for further research.
Collapse
Affiliation(s)
- Sujata Dey
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Ajaya Kumar Rout
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, Kolkata, West Bengal, 700120, India.
| | - Koushik Ghosh
- Aquaculture Laboratory, Department of Zoology, The University of Burdwan, Golapbag, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
40
|
Peng C, Wang J, Liu X, Wang L. Differences in the Plastispheres of Biodegradable and Non-biodegradable Plastics: A Mini Review. Front Microbiol 2022; 13:849147. [PMID: 35547108 PMCID: PMC9082994 DOI: 10.3389/fmicb.2022.849147] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/07/2022] [Indexed: 12/03/2022] Open
Abstract
There has been a steady rise in the production and disposal of biodegradable plastics. Unlike the microorganisms present in the biofilms on non-biodegradable plastic surfaces (the “plastisphere”), the plastisphere of biodegradable plastic has not been well-characterized. As the polymer structure of biodegradable plastic has a higher microbial affinity than that of non-biodegradable plastic, their plastispheres are assumed to be different. This review summarizes the reported differences in microbial communities on the surface of biodegradable and non-biodegradable plastics, discusses the driving forces behind these differences, and discusses the potential environmental risks. Overall, the plastisphere biomass on the surface of non-biodegradable plastic was observed to be lower than that of biodegradable plastic. The community structure of microbes in both plastispheres was diverse, mainly due to the properties of the plastic surface, such as surface charge, hydrophilicity/hydrophobicity, roughness, and bioavailability of polymer components for microbes. Further research should focus on developing biodegradable plastic that degrade faster in the environment, revealing the mechanism of enrichment of ARGs and potential pathogens on plastics, and understanding the potential influence of plastispheres on the evolution and selection of plastic-degrading microbial potential.
Collapse
Affiliation(s)
- Chu Peng
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Jiao Wang
- College of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Xianhua Liu
- College of Environmental Science and Engineering, Tianjin University, Tianjin, China
| | - Lei Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
41
|
Laju RL, Jayanthi M, Jeyasanta KI, Patterson J, Asir NGG, Sathish MN, Edward JKP. Spatial and vertical distribution of microplastics and their ecological risk in an Indian freshwater lake ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153337. [PMID: 35077792 DOI: 10.1016/j.scitotenv.2022.153337] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/18/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
This study investigated the spatial and vertical distribution of microplastics (MPs) in the water and sediment samples collected from different locations in Kodaikanal Lake, a very popular tourist location. The lake provides water to placesdownstream. MPs are found in the surface water, surface sediment and core sediment, with their respective values of abundance being 24.42 ± 3.22 items/ l, 28.31 ± 5.29 items/ kg, and 25.91 ± 7.11 items/ kg. Spatially, abundance, colour, type and size of MPs vary in the samples of surface water and sediment. The highest levels of MPs are found in the lakes' outlet region. MPs detected are primarily fibres and fragments 3-5 mm in size with PE and PP being the predominant polymers. Seven sampling points were selected to investigate the vertical distribution of MPs. In the core sediment, the abundance and size of MPs decrease with depth. This probably indicates the presence of more MPs in the recent sediment. The core sediment is dominated by sand silt clay fractions, which facilitates potential downward infiltration of fine MPs. SEM images of MPs reveal that the degree of weathering increases with depth, and EDAX shows that smooth MP surface displays a lesser adhesion ability than the rough surface. Plastic wastes generated by tourism are the important source of MPs in the lake. The lake has high PHI values (>1000) due to MPs with high hazard score polymers (PS and PEU), whereas the PLI values (1.33) indicate low level of MP pollution representing a minor ecological risk. The MP level in Kodaikanal Lake is influenced by the lake's hydrology and the sources of pollution. Although the impacts of MP pollution on the health and functioning of the environment is uncertain, observing, understanding and halting of further MP contamination in the Kodaikanal Lakes is important.
Collapse
Affiliation(s)
- R L Laju
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India
| | - M Jayanthi
- Environment, Climate Change & Forests Department, Government of Tamil Nadu, Chennai, India
| | | | - Jamila Patterson
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India
| | | | - M Narmatha Sathish
- Suganthi Devadason Marine Research Institute, Tuticorin, Tamil Nadu, India
| | | |
Collapse
|
42
|
Delangiz N, Aliyar S, Pashapoor N, Nobaharan K, Asgari Lajayer B, Rodríguez-Couto S. Can polymer-degrading microorganisms solve the bottleneck of plastics' environmental challenges? CHEMOSPHERE 2022; 294:133709. [PMID: 35074325 DOI: 10.1016/j.chemosphere.2022.133709] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/27/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Increasing world population and industrial activities have enhanced anthropogenic pollution, plastic pollution being especially alarming. So, plastics should be recycled and/or make them biodegradable. Chemical and physical remediating methods are usually energy consuming and costly. In addition, they are not ecofriendly and usually produce toxic byproducts. Bioremediation is a proper option as it is cost-efficient and environmentally friendly. Plastic production and consumption are increasing daily, and, as a consequence, more microorganisms are exposed to these nonbiodegradable polymers. Therefore, investigating new efficient microorganisms and increasing the knowledge about their biology can pave the way for efficient and feasible plastic bioremediation processes. In this sense, omics, systems biology and bioinformatics are three important fields to analyze the biodegradation pathways in microorganisms. Based on the above-mentioned technologies, researchers can engineer microorganisms with specific desired properties to make bioremediation more efficient.
Collapse
Affiliation(s)
- Nasser Delangiz
- Department of Plant Biotechnology and Breeding, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Sajad Aliyar
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Neda Pashapoor
- Department of Soil Science, Faculty of Agriculture, Urmia University, Urmia, Iran
| | | | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Susana Rodríguez-Couto
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland
| |
Collapse
|
43
|
Ganesan S, Ruendee T, Kimura SY, Chawengkijwanich C, Janjaroen D. Effect of biofilm formation on different types of plastic shopping bags: Structural and physicochemical properties. ENVIRONMENTAL RESEARCH 2022; 206:112542. [PMID: 34929185 DOI: 10.1016/j.envres.2021.112542] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Plastics and biofilms have a complicated relationship that has great interest. Bacterial cell attachment and biofilm formation is considered to cause health and environmental risks from plastic waste accumulation. In water, plastic waste could serve as a new substrate for bacteria. In our study, the attachment of Escherichia coli K12, to four types of plastic shopping bags (biodegradable polylactic acid and the non-biodegradable polypropylene, polyethylene and polyvinyl chloride) was investigated. The change in physicochemical phenomena of each plastic, such as reduced hydrophobicity and higher exopolysaccharide concentrations (total extractable protein and carbohydrate) resulted in increased biofilm content on the plastic surfaces. The bacterial colonization of different plastic surfaces controls the ionic strength of the nutrition sources. The adhesion of Escherichia coli K12 cells on the surfaces were revealed by SEM images. The finding shows that increases surface roughness, besides favor for adhesion of bacterial cells due to hydrophobicity leading to a rapid attachment of Escherichia coli K12 on the surfaces. In addition, we used Derjaguin-Landau-Verwey-Overbeek theory to predict the attachment of Escherichia coli K12, which gave result of adhesion due to the high energy barrier. This present study added to our knowledge of the possible consequences of plastics acting as a new habitat for microbes in different aquatic condition.
Collapse
Affiliation(s)
- Sunantha Ganesan
- Department of Environmental Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Thanaporn Ruendee
- International Program in Hazardous Substance and Environmental Management, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Susana Y Kimura
- Department of Chemistry, University of Calgary, Calgary, Canada.
| | - Chamorn Chawengkijwanich
- National Nanotechnology Center, National Science and Technology Development Agency (NSTDA), 12120, Pathumthani, Thailand; Research Network of NANOTEC - CU on Environment, Bangkok, 10330, Thailand.
| | - Dao Janjaroen
- Department of Environmental Engineering, Chulalongkorn University, Bangkok, 10330, Thailand; International Program in Hazardous Substance and Environmental Management, Chulalongkorn University, Bangkok, 10330, Thailand; Research Network of NANOTEC - CU on Environment, Bangkok, 10330, Thailand; Research Program of Industrial Waste Management - Policies and Practices, Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand.
| |
Collapse
|
44
|
Ho QN, Fettweis M, Spencer KL, Lee BJ. Flocculation with heterogeneous composition in water environments: A review. WATER RESEARCH 2022; 213:118147. [PMID: 35149367 DOI: 10.1016/j.watres.2022.118147] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Flocculation is a key process for controlling the fate and transport of suspended particulate matter (SPM) in water environments and has received considerable attention in the field of water science (e.g., oceanography, limnology, and hydrology), remaining an active area of research. The research on flocculation has been conducted to elucidate the SPM dynamics and to diagnose various environmental issues. The flocculation, sedimentation, and transportation of SPM are closely linked to the compositional and structural properties of flocs. In fact, flocs are highly heterogeneous in terms of composition. However, the lack of comprehensive research on floc composition and structure has led to misconceptions regarding the temporal and spatial dynamics of SPM. This review summarizes the current understanding of the heterogeneous composition of flocs (e.g., minerals, organic matter, metals, microplastic, engineered nanoparticles) and its effect on their structure and on their fate and transport within aquatic environments. Furthermore, the effects of human activities (e.g., pollutant discharge, construction) on floc composition are discussed.
Collapse
Key Words
- AB, Alcian Blue
- CBB, Coomassie Brilliant Blue
- CSPs, Coomassie stainable particles
- DOM, Dissolved organic matter
- ENPs, Engineered nanoparticles
- EPS, Extracellular polymeric substances
- FA, Fulvic acids
- Flocculation
- HA, Humic acids
- HS, Humic substances
- Heterogeneous composition
- Hm, Humin
- LB-EPS, Loosely bound EPS
- MPs, Microplastics
- Microplastics
- OM, Organic matter
- OWFs, Offshore wind farms
- Organic matter
- POM, Particulate organic matter
- SPM, Suspended particulate matter
- Suspended particle matter
- TB-EPS, Tightly bound EPS
- TEP, Transparent exopolymer particles
- TOC, Total organic carbon
Collapse
Affiliation(s)
- Que Nguyen Ho
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, Korea
| | - Michael Fettweis
- Operational Directorate Natural Environment, Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Bruxelles, Belgium
| | - Kate L Spencer
- School of Geography, Queen Mary University of London, London E1 4NS, UK
| | - Byung Joon Lee
- Energy Environment Institute, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, Korea; Department of Advanced Science and Technology Convergence, Kyungpook National University, 2559 Gyeongsang-daero, Sangju, Gyeongbuk 37224, Korea.
| |
Collapse
|
45
|
Marsay KS, Koucherov Y, Davidov K, Iankelevich-Kounio E, Itzahri S, Salmon-Divon M, Oren M. High-Resolution Screening for Marine Prokaryotes and Eukaryotes With Selective Preference for Polyethylene and Polyethylene Terephthalate Surfaces. Front Microbiol 2022; 13:845144. [PMID: 35495680 PMCID: PMC9042255 DOI: 10.3389/fmicb.2022.845144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Marine plastic debris serve as substrates for the colonization of a variety of prokaryote and eukaryote organisms. Of particular interest are the microorganisms that have adapted to thrive on plastic as they may contain genes, enzymes or pathways involved in the adhesion or metabolism of plastics. We implemented DNA metabarcoding with nanopore MinION sequencing to compare the 1-month-old biomes of hydrolyzable (polyethylene terephthalate) and non-hydrolyzable (polyethylene) plastics surfaces vs. those of glass and the surrounding water in a Mediterranean Sea marina. We sequenced longer 16S rRNA, 18S rRNA, and ITS barcode loci for a more comprehensive taxonomic profiling of the bacterial, protist, and fungal communities, respectively. Long read sequencing enabled high-resolution mapping to genera and species. Using previously established methods we performed differential abundance screening and identified 30 bacteria and five eukaryotic species, that were differentially abundant on plastic compared to glass. This approach will allow future studies to characterize the plastisphere communities and to screen for microorganisms with a plastic-metabolism potential.
Collapse
Affiliation(s)
| | - Yuri Koucherov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Keren Davidov
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | | | - Sheli Itzahri
- Department of Molecular Biology, Ariel University, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Ariel University, Ariel, Israel
- The Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Matan Oren
- Department of Molecular Biology, Ariel University, Ariel, Israel
| |
Collapse
|
46
|
Pierrat J, Bédier A, Eeckhaut I, Magalon H, Frouin P. Sophistication in a seemingly simple creature: a review of wild holothurian nutrition in marine ecosystems. Biol Rev Camb Philos Soc 2022; 97:273-298. [PMID: 34647401 PMCID: PMC9293300 DOI: 10.1111/brv.12799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 09/15/2021] [Accepted: 09/20/2021] [Indexed: 11/29/2022]
Abstract
Holothurians are marine invertebrates that are among the most widespread benthic megafauna communities by both biomass and abundance in shallow-water and deep-sea ecosystems, their functions supporting important ecological services worldwide. Despite their simple appearance as sea cucumbers, holothurians show a wide range of feeding practices. However, information on what and how these animals eat is scattered and potentially confusing. We provide a comprehensive review of holothurian nutrition in coastal and deep-sea ecosystems. First, we describe morphological aspects of holothurian feeding and the ultrastructure of tentacles. We discuss the two processes for food capture, concluding that mucus adhesion is likely the main method; two mucous cells, type-1 and type-2, possibly allow the adhesion and de-adhesion, respectively, of food particles. Secondly, this review aims to clarify behavioural aspects of holothurian suspension- and deposit-feeding. We discuss the daily feeding cycle, and selective feeding strategies. We conclude that there is selectivity for fine and organically rich particles, and that feeding through the cloaca is also a route for nutrient absorption. Third, we provide a wide description of the diet of holothurians, which can be split into two categories: living and non-living material. We suggest that Synallactida, Molpadida, Persiculida, Holothuriida and Elasipodida, ingest the same fractions, and emphasise the importance of bacteria in the diet of holothurians.
Collapse
Affiliation(s)
- Joséphine Pierrat
- UMR ENTROPIE (IRD, CNRS, Univ. Reunion, Ifremer, Univ. New Caledonia)University of La RéunionSt‐Denis97 400France
| | | | - Igor Eeckhaut
- Biology of Marine Organisms and Biomimetism LabUniversity of MonsMons7000Belgium
| | - Hélène Magalon
- UMR ENTROPIE (IRD, CNRS, Univ. Reunion, Ifremer, Univ. New Caledonia)University of La RéunionSt‐Denis97 400France
- Labex CorailPerpignan66 000France
| | - Patrick Frouin
- UMR ENTROPIE (IRD, CNRS, Univ. Reunion, Ifremer, Univ. New Caledonia)University of La RéunionSt‐Denis97 400France
- Labex CorailPerpignan66 000France
| |
Collapse
|
47
|
Du Y, Liu X, Dong X, Yin Z. A review on marine plastisphere: biodiversity, formation, and role in degradation. Comput Struct Biotechnol J 2022; 20:975-988. [PMID: 35242288 PMCID: PMC8861569 DOI: 10.1016/j.csbj.2022.02.008] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022] Open
Abstract
The pollution of plastic waste has become an increasingly serious environmental crisis. Recently, plastic has been detected in various kinds of environments, even in human tissues, which is an increasing threat to the ecosystems and humans. In the ocean, the plastic waste is eventually fragmentized into microplastics (MPs) under the disruption of physical and chemical processes. MPs are colonized by microbial communities such as fungi, diatoms, and bacteria, which form biofilms on the surface of the plastic called “plastisphere”. In this review, we summarize the studies related to microorganisms in the plastisphere in recent years and describe the microbial species in the plastisphere, mainly including bacteria, fungi, and autotrophs. Secondly, we explore the interactions between MPs and the plastisphere. The depth of MPs in the ocean and the nutrients in the surrounding seawater can have a great impact on the community structure of microorganisms in the plastisphere. Finally, we discuss the types of MP-degrading bacteria in the ocean, and use the “seed bank” theory to speculate on the potential sources of MP-degrading microorganisms. Challenges and future research prospects are also discussed.
Collapse
Affiliation(s)
- Yuhui Du
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, PR China
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, PR China
| | - Xinbei Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, PR China
| | - Xusheng Dong
- Ruminant Nutrition and Physiology Laboratory, College of Animal Science and Technology, Shandong Agricultural University, Tai’an, PR China
| | - Zhiqiu Yin
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment, Shandong Agricultural University, Tai’an, PR China
- Corresponding author.
| |
Collapse
|
48
|
Odobel C, Dussud C, Philip L, Derippe G, Lauters M, Eyheraguibel B, Burgaud G, Ter Halle A, Meistertzheim AL, Bruzaud S, Barbe V, Ghiglione JF. Bacterial Abundance, Diversity and Activity During Long-Term Colonization of Non-biodegradable and Biodegradable Plastics in Seawater. Front Microbiol 2021; 12:734782. [PMID: 34867851 PMCID: PMC8637277 DOI: 10.3389/fmicb.2021.734782] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
The microorganisms living on plastics called "plastisphere" have been classically described as very abundant, highly diverse, and very specific when compared to the surrounding environments, but their potential ability to biodegrade various plastic types in natural conditions have been poorly investigated. Here, we follow the successive phases of biofilm development and maturation after long-term immersion in seawater (7 months) on conventional [fossil-based polyethylene (PE) and polystyrene (PS)] and biodegradable plastics [biobased polylactic acid (PLA) and polyhydroxybutyrate-co-hydroxyvalerate (PHBV), or fossil-based polycaprolactone (PCL)], as well as on artificially aged or non-aged PE without or with prooxidant additives [oxobiodegradable (OXO)]. First, we confirmed that the classical primo-colonization and growth phases of the biofilms that occurred during the first 10 days of immersion in seawater were more or less independent of the plastic type. After only 1 month, we found congruent signs of biodegradation for some bio-based and also fossil-based materials. A continuous growth of the biofilm during the 7 months of observation (measured by epifluorescence microscopy and flow cytometry) was found on PHBV, PCL, and artificially aged OXO, together with a continuous increase in intracellular (3H-leucine incorporation) and extracellular activities (lipase, aminopeptidase, and β-glucosidase) as well as subsequent changes in biofilm diversity that became specific to each polymer type (16S rRNA metabarcoding). No sign of biodegradation was visible for PE, PS, and PLA under our experimental conditions. We also provide a list of operational taxonomic units (OTUs) potentially involved in the biodegradation of these polymers under natural seawater conditions, such as Pseudohongiella sp. and Marinobacter sp. on PCL, Marinicella litoralis and Celeribacter sp. on PHBV, or Myxococcales on artificially aged OXO. This study opens new routes for a deeper understanding of the polymers' biodegradability in seawaters, especially when considering an alternative to conventional fossil-based plastics.
Collapse
Affiliation(s)
- Charlene Odobel
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Claire Dussud
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Lena Philip
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France.,SAS Plastic@Sea, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Gabrielle Derippe
- CNRS, UMR 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Marion Lauters
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| | - Boris Eyheraguibel
- CNRS, UMR 6296, Institut de Chimie de Clermont-Ferrand (ICCF), Université Clermont Auvergne, Clermont-Ferrand, France
| | - Gaëtan Burgaud
- CNRS, EA 3882, Université de Brest, Laboratoire Universitaire de Biodiversité et d'Ecologie Microbionne (LUBEM), Plouzané, France
| | - Alexandra Ter Halle
- CNRS, UMR 5623, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP), Université de Toulouse, Toulouse, France
| | | | - Stephane Bruzaud
- CNRS, UMR 6027, Institut de Recherche Dupuy de Lôme (IRDL), Université de Bretagne-Sud, Lorient, France
| | - Valerie Barbe
- CEA, CNRS, Génomique Métabolique, Genoscope, Institut François Jacob, Univ Evry, Université Paris-Saclay, Evry, France
| | - Jean-Francois Ghiglione
- CNRS, UMR 7621, Laboratoire d'Océanographie Microbienne (LOMIC), Sorbonne Université, Observatoire Océanologique de Banyuls, Banyuls-sur-Mer, France
| |
Collapse
|
49
|
González-Pleiter M, Velázquez D, Casero MC, Tytgat B, Verleyen E, Leganés F, Rosal R, Quesada A, Fernández-Piñas F. Microbial colonizers of microplastics in an Arctic freshwater lake. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148640. [PMID: 34246139 DOI: 10.1016/j.scitotenv.2021.148640] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/03/2021] [Accepted: 06/20/2021] [Indexed: 05/12/2023]
Abstract
Microplastics (MPs) have been found everywhere as they are easily transported between environmental compartments. Through their transport, MPs are quickly colonized by microorganisms; this microbial community is known as the plastisphere. Here, we characterized the plastisphere of three MPs, one biodegradable (PHB) and two non-biodegradables (HDPE and LDPE), deployed in an Arctic freshwater lake for eleven days. The plastisphere was found to be complex, confirming that about a third of microbial colonizers were viable. Plastisphere was compared to microbial communities on the surrounding water and microbial mats on rocks at the bottom of the lake. Microbial mats followed by MPs showed the highest diversity regarding both prokaryotes and eukaryotes as compared to water samples; however, for fungi, MPs showed the highest diversity of the tested substrates. Significant differences on microbial assemblages on the three tested substrates were found; regarding microbial assemblages on MPs, bacterial genera found in polar environments such as Mycoplana, Erythromicrobium and Rhodoferax with species able to metabolize recalcitrant chemicals were abundant. Eukaryotic communities on MPs were characterized by the presence of ciliates of the genera Stentor, Vorticella and Uroleptus and the algae Cryptomonas, Chlamydomonas, Tetraselmis and Epipyxis. These ciliates normally feed on algae so that the complexity of these assemblages may serve to unravel trophic relationships between co-existing taxa. Regarding fungal communities on MPs, the most abundant genera were Betamyces, Cryptococcus, Arrhenia and Paranamyces. MPs, particularly HDPE, were enriched in the sulI and ermB antibiotic resistance genes (ARGs) which may raise concerns about human health-related issues as ARGs may be transferred horizontally between bacteria. This study highlights the importance of proper waste management and clean-up protocols to protect the environmental health of pristine environments such as polar regions in a context of global dissemination of MPs which may co-transport microorganisms, some of them including ARGs.
Collapse
Affiliation(s)
- Miguel González-Pleiter
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - David Velázquez
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - María Cristina Casero
- Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, E-28006 Madrid, Spain
| | - Bjorn Tytgat
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Elie Verleyen
- Laboratory of Protistology & Aquatic Ecology, Ghent University, Krijgslaan 281-S8, 9000 Gent, Belgium
| | - Francisco Leganés
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Roberto Rosal
- Department of Chemical Engineering, University of Alcalá, E-28871 Alcalá de Henares, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | | |
Collapse
|
50
|
Amaral-Zettler LA, Zettler ER, Mincer TJ, Klaassen MA, Gallager SM. Biofouling impacts on polyethylene density and sinking in coastal waters: A macro/micro tipping point? WATER RESEARCH 2021; 201:117289. [PMID: 34102596 DOI: 10.1016/j.watres.2021.117289] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/06/2021] [Accepted: 05/22/2021] [Indexed: 05/21/2023]
Abstract
Biofouling causing an increase in plastic density and sinking is one of the hypotheses to account for the unexpectedly low amount of buoyant plastic debris encountered at the ocean surface. Field surveys show that polyethylene and polypropylene, the two most abundant buoyant plastics, both occur below the surface and in sediments, and experimental studies confirm that biofouling can cause both of these plastics to sink. However, studies quantifying the actual density of fouled plastics are rare, despite the fact that density will determine the transport and eventual fate of plastic in the ocean. Here we investigated the role of microbial biofilms in sinking of polyethylene microplastic and quantified the density changes natural biofouling communities cause in the coastal waters of the North Sea. Molecular data confirmed the variety of bacteria and eukaryotes (including animals and other multicellular organisms) colonizing the plastic over time. Fouling communities increased the density of plastic and caused sinking, and the plastic remained negatively buoyant even during the winter with lower growth rates. Relative surface area alone, however, did not predict whether a plastic piece sank. Due to patchy colonization, fragmentation of sinking pieces may result in smaller pieces regaining buoyancy and returning to the surface. Our results suggest that primarily multicellular organisms cause sinking of plastic pieces with surface area to volume ratios (SA:V) below 100 (generally pieces above a couple hundred micrometers in size), and that this is a "tipping point" at which microbial biofilms become the key players causing sinking of smaller pieces with higher SA:V ratios, including most fibers that are too small for larger (multicellular) organisms to colonize.
Collapse
Affiliation(s)
- Linda A Amaral-Zettler
- NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, The Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, The University of Amsterdam, 1090 GE Amsterdam, The Netherlands; The Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA 02543, USA.
| | - Erik R Zettler
- NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, The Netherlands
| | - Tracy J Mincer
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA
| | - Michiel A Klaassen
- NIOZ Royal Netherlands Institute for Sea Research, P.O. Box 59, 1790 AB Den Burg, The Netherlands; Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, The University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| | | |
Collapse
|