1
|
Donneschi A, Recchia M, Romeo C, Pozzi P, Salogni C, Maisano AM, Santucci G, Scali F, Faccini S, Boniotti MB, D’Incau M, Maes D, Alborali GL. Infectious Agents Associated with Abortion Outbreaks in Italian Pig Farms from 2011 to 2021. Vet Sci 2024; 11:496. [PMID: 39453088 PMCID: PMC11512215 DOI: 10.3390/vetsci11100496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/05/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
The present study retrospectively analyzed the infectious agents associated with 829 abortion outbreaks occurring from 2011 to 2021 in northern Italy. Foetuses were subjected to necropsies, and organ samples were analyzed by direct PCR to screen for six swine pathogens. In 42.0% of the examined outbreaks, at least one infectious agent was found. Porcine reproductive and respiratory syndrome virus (PRRSV) (24.9%) and porcine circovirus-2 (PCV2) (11.5%) were the most frequently detected among the known abortion-inducing pathogens. Chlamydia spp. (5.6%), porcine parvovirus (PPV) (4.0%), and Leptospira spp. (2.6%) were less common. Although its role in swine reproductive disorders is still unclear, PCV3 was detected in 19.6% of the cases. Coinfections were detected in 25.0% of positive outbreaks, and the most frequent coinfection was represented by PRRSV and PCV2 (32.2%), followed by PRRSV and PCV3 (23%). PCV2 prevalence showed a slight but consistent reduction during the study period, while PCV3 increased in frequency. Our data suggest an overall reduction in abortion outbreaks during the study period. PRRSV was confirmed as the main abortion agent detected in the examined area, while PCV2 prevalence showed a decline. Conversely, PCV3 detection has been increasing, supporting its potential role as an abortion agent. Our results highlight the importance of implementing a consistent and standardized sampling procedure, as well as a thorough diagnostic protocol, to reduce the incidence of inconclusive diagnoses.
Collapse
Affiliation(s)
- Anna Donneschi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, 25124 Brescia, Italy (M.R.); (C.S.); (A.M.M.); (G.S.); (F.S.); (S.F.); (M.B.B.); (M.D.); (G.L.A.)
| | - Matteo Recchia
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, 25124 Brescia, Italy (M.R.); (C.S.); (A.M.M.); (G.S.); (F.S.); (S.F.); (M.B.B.); (M.D.); (G.L.A.)
| | - Claudia Romeo
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, 25124 Brescia, Italy (M.R.); (C.S.); (A.M.M.); (G.S.); (F.S.); (S.F.); (M.B.B.); (M.D.); (G.L.A.)
- Center for Evolutionary Hologenomics—Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - Paolo Pozzi
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, 10095 Grugliasco, Italy;
| | - Cristian Salogni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, 25124 Brescia, Italy (M.R.); (C.S.); (A.M.M.); (G.S.); (F.S.); (S.F.); (M.B.B.); (M.D.); (G.L.A.)
| | - Antonio Marco Maisano
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, 25124 Brescia, Italy (M.R.); (C.S.); (A.M.M.); (G.S.); (F.S.); (S.F.); (M.B.B.); (M.D.); (G.L.A.)
| | - Giovanni Santucci
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, 25124 Brescia, Italy (M.R.); (C.S.); (A.M.M.); (G.S.); (F.S.); (S.F.); (M.B.B.); (M.D.); (G.L.A.)
| | - Federico Scali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, 25124 Brescia, Italy (M.R.); (C.S.); (A.M.M.); (G.S.); (F.S.); (S.F.); (M.B.B.); (M.D.); (G.L.A.)
| | - Silvia Faccini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, 25124 Brescia, Italy (M.R.); (C.S.); (A.M.M.); (G.S.); (F.S.); (S.F.); (M.B.B.); (M.D.); (G.L.A.)
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, 25124 Brescia, Italy (M.R.); (C.S.); (A.M.M.); (G.S.); (F.S.); (S.F.); (M.B.B.); (M.D.); (G.L.A.)
| | - Mario D’Incau
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, 25124 Brescia, Italy (M.R.); (C.S.); (A.M.M.); (G.S.); (F.S.); (S.F.); (M.B.B.); (M.D.); (G.L.A.)
| | - Dominiek Maes
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | - Giovanni Loris Alborali
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna—IZSLER, 25124 Brescia, Italy (M.R.); (C.S.); (A.M.M.); (G.S.); (F.S.); (S.F.); (M.B.B.); (M.D.); (G.L.A.)
| |
Collapse
|
2
|
Häcker G. Chlamydia in pigs: intriguing bacteria associated with sub-clinical carriage and clinical disease, and with zoonotic potential. Front Cell Dev Biol 2024; 12:1301892. [PMID: 39206090 PMCID: PMC11349706 DOI: 10.3389/fcell.2024.1301892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Chlamydiae are bacteria that are intriguing and important at the same time. The genus Chlamydia encompasses many species of obligate intracellular organisms: they can multiply only inside the cells of their host organism. Many, perhaps most animals have their own specifically adapted chlamydial species. In humans, the clinically most relevant species is Chlamydia trachomatis, which has particular importance as an agent of sexually transmitted disease. Pigs are the natural host of Chlamydia suis but may also carry Chlamydia abortus and Chlamydia pecorum. C. abortus and possibly C. suis have anthropozoonotic potential, which makes them interesting to human medicine, but all three species bring a substantial burden of disease to pigs. The recent availability of genomic sequence comparisons suggests adaptation of chlamydial species to their respective hosts. In cell biological terms, many aspects of all the species seem similar but non-identical: the bacteria mostly replicate within epithelial cells; they are taken up by the host cell in an endosome that they customize to generate a cytosolic vacuole; they have to evade cellular defences and have to organize nutrient transport to the vacuole; finally, they have to organize their release to be able to infect the next cell or the next host. What appears to be very difficult and challenging to achieve, is in fact a greatly successful style of parasitism. I will here attempt to cover some of the aspects of the infection biology of Chlamydia, from cell biology to immune defence, epidemiology and possibilities of prevention. I will discuss the pig as a host species and the species known to infect pigs but will in particular draw on the more detailed knowledge that we have on species that infect especially humans.
Collapse
Affiliation(s)
- Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
3
|
Šťastná E, Erbs G, Skovgaard K, Jakobsen JT, Bailey M, Pedersen GK, Jungersen G. Effects of different immunomodulating liposome-based adjuvants and injection sites on immunogenicity in pigs. Microbes Infect 2024; 26:105346. [PMID: 38670217 DOI: 10.1016/j.micinf.2024.105346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Vaccine adjuvants, such as liposome-based cationic adjuvant formulations (CAFs), are able to boost immune responses and, by incorporation of distinct immunomodulators, steer immunity towards a desired direction in mice, non-human primates and humans, while less studied in pigs. Here we used commercial pigs to investigate polarizing adjuvant effects of CAFs with immunomodulators: C-type lectin receptor ligands trehalose-6,6'-dibehenate and monomycolyl glycerol, toll-like receptor 3 ligand Poly(I:C) or retinoic acid. Vaccines were formulated with a recombinant Chlamydia model protein antigen and administered via three injection routes. All adjuvants significantly increased antigen-specific IgG in serum, compared to non-adjuvanted antigen. Administering the vaccines through intramuscular and intraperitoneal routes induced significantly higher antigen-specific IgG and IgA serum antibodies, than the perirectal route. Although immunizations triggered cell-mediated immunity, no significant differences between adjuvants or injection sites were detected. Genes depicting T cell subtypes revealed only minor differences. Our findings suggest that specific signatures of the tested adjuvant immunomodulation do not translate well from mice to pigs in standard two-dose immunizations. This study provides new insights into immune responses to CAFs in pigs, and highlights that adjuvant development should ideally be carried out in the intended species of interest or in models with high predictive validity/translational value.
Collapse
Affiliation(s)
- Evelína Šťastná
- Infectious Disease Immunology, Centre for Vaccine Research, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Gitte Erbs
- Infectious Disease Immunology, Centre for Vaccine Research, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Kerstin Skovgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - Jeanne Toft Jakobsen
- Infectious Disease Immunology, Centre for Vaccine Research, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Mick Bailey
- Bristol Veterinary School, Langford House, University of Bristol, United Kingdom
| | - Gabriel Kristian Pedersen
- Infectious Disease Immunology, Centre for Vaccine Research, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark
| | - Gregers Jungersen
- Infectious Disease Immunology, Centre for Vaccine Research, Statens Serum Institut, Artillerivej 5, 2300 Copenhagen S, Denmark.
| |
Collapse
|
4
|
Hagenbuch F, Loehrer S, Marti H, Kasimov V, Jelocnik M, Borel N. Investigation of Chlamydia pecorum in livestock from Switzerland reveals a high degree of diversity in bovine strains. Vet Microbiol 2024; 292:110057. [PMID: 38502978 DOI: 10.1016/j.vetmic.2024.110057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Chlamydia pecorum is a widespread veterinary chlamydial species causing endemic infections in livestock, such as ruminants and pigs, globally. However, there is limited contemporary knowledge on infecting strain diversity in various hosts. This study aimed to evaluate the genetic diversity of C. pecorum strains infecting Swiss livestock through C. pecorum genotyping and phylogenetic analyses in comparison to the global population, while also assessing chlamydial strains for plasmid carriage. A total of 263 C. pecorum positive samples from clinically healthy ruminant and pig herds (Bovines = 216, sheep = 25, pigs = 14) as well as placentae from eight C. pecorum positive ruminant abortion cases from other Swiss herds were investigated. The ompA and Multi-Locus sequence typing revealed novel C. pecorum genotypes, and bovine strains exhibited considerable genetic diversity, contrasting with lower diversity in sheep and pig strains. C. pecorum plasmid was detected in 100.0% of sheep (41/41) and pig (255/255) samples, and in 69.4% of bovine samples (150/216). In contrast, no plasmid was detected in the eight C. pecorum-positive ruminant abortion cases either representing plasmid-less strains or possibly escaping PCR detection due to autolysis of the placenta. This study supports the genetic diversity of C. pecorum strains, particularly in bovines, and identifies novel sequence types in Swiss livestock.
Collapse
Affiliation(s)
- Fabian Hagenbuch
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Samuel Loehrer
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Zurich 8057, Switzerland
| | - Vasilli Kasimov
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, 4556, Australia
| | - Martina Jelocnik
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia; Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, 4556, Australia
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse-Faculty, University of Zurich, Zurich 8057, Switzerland.
| |
Collapse
|
5
|
Marti H, Shima K, Boutin S, Rupp J, Clarke IN, Laroucau K, Borel N. Zoonotic and other veterinary chlamydiae - an update, the role of the plasmid and plasmid-mediated transformation. Pathog Dis 2024; 82:ftae030. [PMID: 39567859 PMCID: PMC11645104 DOI: 10.1093/femspd/ftae030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024] Open
Abstract
The obligate intracellular bacterial genus Chlamydia harbours species with zoonotic potential, particularly C. psittaci, causative agent of psittacosis, and C. abortus, which may lead to miscarriage in pregnant women. The impact of other bird chlamydiae such as C. avium, C. gallinaceae, and C. buteonis, or reptilian species such as C. crocodili, amongst others, on human health is unclear. The chlamydial native plasmid, a suspected virulence factor, is present in all currently described 14 Chlamydia species except for some plasmid-free strains. The plasmid is also the primary tool to study chlamydial genetics, a still developing field that has mostly focused on C. trachomatis. Only recently, genetic transformation of C. felis, C. pecorum, C. pneumoniae, C. psittaci, and C. suis has succeeded, but existing methods have yet to be refined. In this review article, we will provide an update on the recent developments concerning the zoonotic potential of chlamydiae. Furthermore, we present an overview about the current state of knowledge regarding the chlamydial plasmid in terms of prevalence and significance as a virulence factor. Finally, we give insights into the progress of developing genetic tools for chlamydial species other than C. trachomatis with a special focus on zoonotic and veterinary chlamydiae.
Collapse
Affiliation(s)
- Hanna Marti
- Institute of Veterinary Pathology, University of Zurich, 8057 Zurich, Switzerland
| | - Kensuke Shima
- Institute of Medical Microbiology, University of Lübeck, 23538 Lübeck, Germany
| | - Sebastien Boutin
- Institute of Medical Microbiology, University of Lübeck, 23538 Lübeck, Germany
- Airway Research Center North (ARCN), German Center for Lung Research (DZL), Lübeck, Germany
| | - Jan Rupp
- Institute of Medical Microbiology, University of Lübeck, 23538 Lübeck, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borestel-Riems, Lübeck, Germany
- Clinic for Infectious Diseases, University of Lübeck, 23538, Germany
| | - Ian N Clarke
- Molecular Microbiology, School of Clinical and Experimental Sciences, School of Medicine, University of Southampton, SO17 1BJ Southampton, United Kingdom
| | - Karine Laroucau
- University Paris-Est, ANSES, Animal Health Laboratory, Bacterial Zoonoses Unit, 94700 Maisons-Alfort, France
| | - Nicole Borel
- Institute of Veterinary Pathology, University of Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
6
|
Unterweger C, Koch M, Winkler S, Hammer S, Oppeneder A, Ladinig A. Chlamydia suis survival in dust: First insights. Res Vet Sci 2024; 166:105109. [PMID: 38103533 DOI: 10.1016/j.rvsc.2023.105109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Chlamydia (C.) suis, a zoonotic intracellular bacterium, is described as a causative agent for conjunctivitis, particularly in nursery and fattening pigs. Chlamydiaceae are claimed to survive drying and to persist in dust. The objective of this study was to evaluate the viability of Chlamydia in dust sampled in a fattening pig farm with a high appearance of chlamydial-induced conjunctivitis. Dust was collected and stored at room temperature. To evaluate bacterial load and survival over time, quantitative PCR (Chlamydiaceae, C. suis) and isolation in cell culture were performed every week for up to 16 weeks. While qPCR results remained highly positive with consistent bacterial loads between 103 and 104 copy numbers/100 μL eluate over a period of 16 weeks and even after 40 weeks, it was not possible to isolate Chlamydia except for the initial sample. These results show only short-term viability of C. suis in dust. This is an important information regarding reduction of chlamydial loads in pig farms and risk for pigs and people to get infected via dust.
Collapse
Affiliation(s)
- Christine Unterweger
- University Clinic for Swine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Michaela Koch
- University Clinic for Swine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Simona Winkler
- University Clinic for Swine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Sabine Hammer
- Institute of Immunology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| | - Alexander Oppeneder
- Traunkreis Vet Clinic GmbH, Grossendorf 3, 4551 Ried im Traunkreis, Austria.
| | - Andrea Ladinig
- University Clinic for Swine, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210 Vienna, Austria.
| |
Collapse
|
7
|
Loehrer S, Hagenbuch F, Marti H, Pesch T, Hässig M, Borel N. Longitudinal study of Chlamydia pecorum in a healthy Swiss cattle population. PLoS One 2023; 18:e0292509. [PMID: 38079424 PMCID: PMC10712897 DOI: 10.1371/journal.pone.0292509] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Chlamydia pecorum is a globally endemic livestock pathogen but prevalence data from Switzerland has so far been limited. The present longitudinal study aimed to get an insight into the C. pecorum prevalence in Swiss cattle and investigated infection dynamics. The study population consisted of a bovine herd (n = 308) located on a farm in the north-eastern part of Switzerland. The herd comprised dairy cows, beef cattle and calves all sampled up to five times over a one-year period. At each sampling timepoint, rectal and conjunctival swabs were collected resulting in 782 samples per sampled area (total n = 1564). Chlamydiaceae screening was performed initially, followed by C. pecorum-specific real-time qPCR on all samples. For C. pecorum-positive samples, bacterial loads were determined. In this study, C. pecorum was the only chlamydial species found. Animal prevalences were determined to be 5.2-11.4%, 38.1-61.5% and 55-100% in dairy cows, beef cattle and calves, respectively. In all categories, the number of C. pecorum-positive samples was higher in conjunctival (n = 151) compared to rectal samples (n = 65), however, the average rectal load was higher. At a younger age, the chlamydial prevalence and the mean bacterial loads were significantly higher. Of all sampled bovines, only 9.4% (29/308) were high shedders (number of copies per μl >1,000). Calves, which tested positive multiple times, either failed to eliminate the pathogen between sampling timepoints or were reinfected, whereas dairy cows were mostly only positive at one timepoint. In conclusion, C. pecorum was found in healthy Swiss cattle. Our observations suggested that infection takes place at an early age and immunity might develop over time. Although the gastrointestinal tract is supposed to be the main infection site, C. pecorum was not present in rectal samples from dairy cows.
Collapse
Affiliation(s)
- Samuel Loehrer
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Fabian Hagenbuch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Theresa Pesch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Michael Hässig
- Department for Farm Animals, Section for Herd Health, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Onorini D, Leonard CA, Phillips Campbell R, Prähauser B, Pesch T, Schoborg RV, Jerse AE, Tarigan B, Borel N. Neisseria gonorrhoeae Coinfection during Chlamydia muridarum Genital Latency Does Not Modulate Murine Vaginal Bacterial Shedding. Microbiol Spectr 2023; 11:e0450022. [PMID: 37039695 PMCID: PMC10269798 DOI: 10.1128/spectrum.04500-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/17/2023] [Indexed: 04/12/2023] Open
Abstract
Chlamydia trachomatis and Neisseria gonorrhoeae are the most frequently reported agents of bacterial sexually transmitted disease worldwide. Nonetheless, C. trachomatis/N. gonorrhoeae coinfection remains understudied. C. trachomatis/N. gonorrhoeae coinfections are more common than expected by chance, suggesting C. trachomatis/N. gonorrhoeae interaction, and N. gonorrhoeae infection may reactivate genital chlamydial shedding in women with latent (quiescent) chlamydial infection. We hypothesized that N. gonorrhoeae would reactivate latent genital Chlamydia muridarum infection in mice. Two groups of C. muridarum-infected mice were allowed to transition into genital latency. One group was then vaginally inoculated with N. gonorrhoeae; a third group received N. gonorrhoeae alone. C. muridarum and N. gonorrhoeae vaginal shedding was measured over time in the coinfected and singly infected groups. Viable C. muridarum was absent from vaginal swabs but detected in rectal swabs, confirming C. muridarum genital latency and consistent with the intestinal tract as a C. muridarum reservoir. C. muridarum inclusions were observed in large intestinal, but not genital, tissues during latency. Oviduct dilation was associated with C. muridarum infection, as expected. Contradicting our hypothesis, N. gonorrhoeae coinfection did not reactivate latent C. muridarum vaginal shedding. In addition, latent C. muridarum infection did not modulate recovery of vaginal viable N. gonorrhoeae. Evidence for N. gonorrhoeae-dependent increased C. muridarum infectivity has thus not been demonstrated in murine coinfection, and the ability of C. muridarum coinfection to potentiate N. gonorrhoeae infectivity may depend on actively replicating vaginal C. muridarum. The proportion of mice with increased vaginal neutrophils (PMNs) was higher in N. gonorrhoeae-infected than in C. muridarum-infected mice, as expected, while that of C. muridarum/N. gonorrhoeae-coinfected mice was intermediate to the singly infected groups, suggesting latent C. muridarum murine infection may limit PMN response to subsequent N. gonorrhoeae infection. IMPORTANCE Our work builds upon the limited understanding of C. muridarum/N. gonorrhoeae coinfection. Previously, N. gonorrhoeae infection of mice with acute (actively replicating) vaginal C. muridarum infection was shown to increase recovery of viable vaginal N. gonorrhoeae and vaginal PMNs, with no effect on C. muridarum vaginal shedding (R. A. Vonck et al., Infect Immun 79:1566-1577, 2011). It has also been shown that chlamydial infection of human and murine PMNs prevents normal PMN responses, including the response to N. gonorrhoeae (K. Rajeeve et al., Nat Microbiol 3:824-835, 2018). Our findings show no effect of latent genital C. muridarum infection on the recovery of viable N. gonorrhoeae, in contrast to the previously reported effect of acute C. muridarum infection, and suggesting that acute versus latent C. muridarum infection may have distinct effects on PMN function in mice. Together, these studies to date provide evidence that Chlamydia/N. gonorrhoeae synergistic interactions may depend on the presence of replicating Chlamydia in the genital tract, while chlamydial effects on vaginal PMNs may extend beyond acute infection.
Collapse
Affiliation(s)
- Delia Onorini
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Cory Ann Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Regenia Phillips Campbell
- Department of Medical Education, Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Barbara Prähauser
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Theresa Pesch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Robert V. Schoborg
- Department of Medical Education, Center for Infectious Disease, Inflammation and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee, USA
| | - Ann E. Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Bernadetta Tarigan
- Department of Mathematics, Faculty of Science, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
García-Díez J, Saraiva S, Moura D, Grispoldi L, Cenci-Goga BT, Saraiva C. The Importance of the Slaughterhouse in Surveilling Animal and Public Health: A Systematic Review. Vet Sci 2023; 10:167. [PMID: 36851472 PMCID: PMC9959654 DOI: 10.3390/vetsci10020167] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
From the point of public health, the objective of the slaughterhouse is to guarantee the safety of meat in which meat inspection represent an essential tool to control animal diseases and guarantee the public health. The slaughterhouse can be used as surveillance center for livestock diseases. However, other aspects related with animal and human health, such as epidemiology and disease control in primary production, control of animal welfare on the farm, surveillance of zoonotic agents responsible for food poisoning, as well as surveillance and control of antimicrobial resistance, can be monitored. These controls should not be seen as a last defensive barrier but rather as a complement to the controls carried out on the farm. Regarding the control of diseases in livestock, scientific research is scarce and outdated, not taking advantage of the potential for disease control. Animal welfare in primary production and during transport can be monitored throughout ante-mortem and post-mortem inspection at the slaughterhouse, providing valuable individual data on animal welfare. Surveillance and research regarding antimicrobial resistance (AMR) at slaughterhouses is scarce, mainly in cattle, sheep, and goats. However, most of the zoonotic pathogens are sensitive to the antibiotics studied. Moreover, the prevalence at the slaughterhouse of zoonotic and foodborne agents seems to be low, but a lack of harmonization in terms of control and communication may lead to underestimate its real prevalence.
Collapse
Affiliation(s)
- Juan García-Díez
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Sónia Saraiva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
| | - Dina Moura
- Divisão de Intervenção de Alimentação e Veterinária de Vila Real e Douro Sul, Direção de Serviços de Alimentação e Veterinária da Região Norte, Direção Geral de Alimentação e Veterinária, Lugar de Codessais, 5000-567 Vila Real, Portugal
| | - Luca Grispoldi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy
| | - Beniamino Terzo Cenci-Goga
- Dipartimento di Medicina Veterinaria, Università degli Studi di Perugia, 06126 Perugia, Italy
- Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort 0110, South Africa
| | - Cristina Saraiva
- Veterinary and Animal Research Centre (CECAV), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Portugal
- Faculty of Veterinary Science, Department of Paraclinical Sciences, University of Pretoria, Onderstepoort 0110, South Africa
| |
Collapse
|
10
|
Turin L, Surini S, Wheelhouse N, Rocchi MS. Recent advances and public health implications for environmental exposure to Chlamydia abortus: from enzootic to zoonotic disease. Vet Res 2022; 53:37. [PMID: 35642008 PMCID: PMC9152823 DOI: 10.1186/s13567-022-01052-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/29/2022] [Indexed: 11/24/2022] Open
Abstract
Environmental transmission of Chlamydia abortus as a result of enzootic disease or disease outbreaks and the threats posed by this pathogen has been previously reported, however a state-of-the-science review of these reports and the identification of future research priorities in this area is still lacking. This study provides an overview of the current knowledge of host–pathogen–environment interactions, addressing public health risks and identifying critical questions and research gaps. We performed a systematic PubMed and Web of Science search for publications related to Chlamydia abortus in the past four decades, and we reviewed and combined the evidence critically discussing and commenting the results. A total of 182 studies, 5 chapters of specific books and the “OIE terrestrial manual” were included in this review. There were substantial variations between the studies in topic addressed and experimental design. Overall, the literature largely supports the crucial role played by environmental exposure on the acquisition of zoonotic disease caused by Chlamydia abortus. We also identify the paucity of information related to interspecies transmission and pathogen adaptation in relation to environmental dissemination and zoonotic risk. This analysis further highlights the need for additional research given that environmental transmission represents a serious risk not only to susceptible patients (pregnant women and immunocompromised individuals), but also for other species including wildlife.
Collapse
Affiliation(s)
- Lauretta Turin
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy.
| | - Sara Surini
- Department of Veterinary Medicine (DIMEVET), University of Milan, Milan, Italy
| | - Nick Wheelhouse
- School of Applied Sciences, Edinburgh Napier University, Sighthill Court, Edinburgh, EH11 4BN, UK
| | - Mara Silvia Rocchi
- Moredun Research Institute, Bush Loan, Pentlands Science Park, Penicuik, EH26 0PZ, Scotland, UK
| |
Collapse
|
11
|
Characteristics of Chlamydia suis Ocular Infection in Pigs. Pathogens 2021; 10:pathogens10091103. [PMID: 34578134 PMCID: PMC8470092 DOI: 10.3390/pathogens10091103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022] Open
Abstract
Chlamydia (C.) suis can often be isolated from conjunctival swab specimens from pigs with conjunctivitis or keratoconjunctivitis. In the field, it is assumed to be a multifactorial disease triggered by immunosuppressing factors. This is the first experimental study to provoke clinical signs of conjunctivitis in pigs after C. suis primary mono-infection. Five six-week-old male piglets, free of ocular chlamydia shedding and seronegative for Chlamydia, were conjunctivally infected with the C. suis-type strain S45 (1 × 109 inclusion forming units), while four piglets served as negative controls. The infection group developed clinical signs of conjunctivitis with a peak in the first week post-infection. Immunohistochemical evaluation revealed the presence of Chlamydia not only in the conjunctival epithelium, but also in the enlarged lacrimal glands, lungs, and intestine. No circulating antibodies could be detected during the whole study period of three weeks, although three different test systems were applied as follows: the complement fixation test, MOMP-based Chlamydiaceae ELISA, and PmpC-based C. suis ELISA. Meanwhile, high numbers of IFN-γ-producing lymphocytes within PBMC were seen after C. suis re-stimulation 14 days post-infection. Hence, these data suggest that entry via the eye may not elicit immunological responses comparable to other routes of chlamydial infections.
Collapse
|
12
|
Occurrence of Chlamydiaceae and Chlamydia felis pmp9 Typing in Conjunctival and Rectal Samples of Swiss Stray and Pet Cats. Pathogens 2021; 10:pathogens10080951. [PMID: 34451415 PMCID: PMC8400119 DOI: 10.3390/pathogens10080951] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022] Open
Abstract
Chlamydia (C.) felis primarily replicates in feline conjunctival epithelial cells and is an important cause of conjunctivitis in cats. Data on C. felis infection rates in stray cats in Switzerland has been missing so far. We performed a qPCR-based Chlamydiaceae-screening on 565 conjunctival and 387 rectal samples from 309 stray and 86 pet cats followed by Chlamydia species identification and C. felis typing using the gene pmp9, which encodes a polymorphic membrane protein. Overall, 19.1% of the stray and 11.6% of the pet cats were Chlamydiaceae-positive with significantly higher rates in cats displaying signs of conjunctivitis (37.1%) compared to healthy animals (6.9%). Rectal shedding of Chlamydiaceae occurred in 25.0% of infected cats and was mostly associated with concurrent ocular positivity (87.5%). In 92.2% of positive conjunctival and rectal samples, the Chlamydia species was identified as C. felis and in 2.6% as C. abortus. The C. felis pmp9 gene was very conserved in the sampled population with only one single-nucleotide polymorphism (SNP) in one conjunctival sample. In conclusion, C. felis strains are circulating in Swiss cats, are associated with conjunctivitis, have a low pmp9 genetic variability, and are rectally shed in about 16% of positive cases.
Collapse
|
13
|
Aumayer H, Leonard CA, Pesch T, Prähauser B, Wunderlin S, Guscetti F, Borel N. Chlamydia suis is associated with intestinal NF-κB activation in experimentally infected gnotobiotic piglets. Pathog Dis 2021; 78:5893292. [PMID: 32804203 PMCID: PMC8140907 DOI: 10.1093/femspd/ftaa040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chlamydia suis intestinal infection of single-animal experimental groups of gnotobiotic newborn piglets was previously reported to cause severe, temporary small intestinal epithelium damage. We investigated archived intestinal samples for pro-inflammatory nuclear factor kappa B (NF-κB) activation, Interleukin (IL)-6 and IL-8 production and immune cell influx. Samples were collected 2, 4 and 7 days post-inoculation with C. suis strain S45/6 or mock inoculum (control). Increased nuclear localization of epithelial NF-κB, representative of activation, in the jejunum and ileum of C. suis-infected animals, compared to uninfected controls, began by 2 days post-infection (dpi) and persisted through 7 dpi. Infected animals showed increased production of IL-8, peaking at 2 dpi, compared to controls. Infection-mediated CD45-positive immune cell influx into the jejunal lamina propria peaked at 7 dpi, when epithelial damage was largely resolved. Activation of NF-κB appears to be a key early event in the innate response of the unprimed porcine immune system challenged with C. suis. This results in an acute phase, coinciding with the most severe clinical symptoms, diarrhea and weight loss. Immune cells recruited shortly after infection remain present in the lamina propria during the recovery phase, which is characterized by reduced chlamydial shedding and restored intestinal epithelium integrity.
Collapse
Affiliation(s)
- Helen Aumayer
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Cory Ann Leonard
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Theresa Pesch
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Barbara Prähauser
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Sabina Wunderlin
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Franco Guscetti
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Nicole Borel
- Department of Pathobiology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| |
Collapse
|
14
|
Marti H, Bommana S, Read TD, Pesch T, Prähauser B, Dean D, Borel N. Generation of Tetracycline and Rifamycin Resistant Chlamydia Suis Recombinants. Front Microbiol 2021; 12:630293. [PMID: 34276577 PMCID: PMC8278220 DOI: 10.3389/fmicb.2021.630293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 06/03/2021] [Indexed: 01/01/2023] Open
Abstract
The Chlamydiaceae are a family of obligate intracellular, gram-negative bacteria known to readily exchange DNA by homologous recombination upon co-culture in vitro, allowing the transfer of antibiotic resistance residing on the chlamydial chromosome. Among all the obligate intracellular bacteria, only Chlamydia (C.) suis naturally integrated a tetracycline resistance gene into its chromosome. Therefore, in order to further investigate the readiness of Chlamydia to exchange DNA and especially antibiotic resistance, C. suis is an excellent model to advance existing co-culture protocols allowing the identification of factors crucial to promote homologous recombination in vitro. With this strategy, we co-cultured tetracycline-resistant with rifamycin group-resistant C. suis, which resulted in an allover recombination efficiency of 28%. We found that simultaneous selection is crucial to increase the number of recombinants, that sub-inhibitory concentrations of tetracycline inhibit rather than promote the selection of double-resistant recombinants, and identified a recombination-deficient C. suis field isolate, strain SWA-110 (1-28b). While tetracycline resistance was detected in field isolates, rifampicin/rifamycin resistance (RifR) had to be induced in vitro. Here, we describe the protocol with which RifR C. suis strains were generated and confirmed. Subsequent whole-genome sequencing then revealed that G530E and D461A mutations in rpoB, a gene encoding for the β-subunit of the bacterial RNA polymerase (RNAP), was likely responsible for rifampicin and rifamycin resistance, respectively. Finally, whole-genome sequencing of recombinants obtained by co-culture revealed that recombinants picked from the same plate may be sibling clones and confirmed C. suis genome plasticity by revealing variable, apparently non-specific areas of recombination.
Collapse
Affiliation(s)
- Hanna Marti
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Sankhya Bommana
- Division of Infectious Diseases, Departments of Medicine and Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States.,Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| | - Theresa Pesch
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Barbara Prähauser
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Deborah Dean
- Division of Infectious Diseases, Departments of Medicine and Pediatrics, University of California San Francisco School of Medicine, San Francisco, CA, United States.,Joint Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, United States.,Joint Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Nicole Borel
- Vetsuisse Faculty, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Rohner L, Marti H, Torgerson P, Hoffmann K, Jelocnik M, Borel N. Prevalence and molecular characterization of C. pecorum detected in Swiss fattening pigs. Vet Microbiol 2021; 256:109062. [PMID: 33848714 DOI: 10.1016/j.vetmic.2021.109062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/24/2021] [Indexed: 11/25/2022]
Abstract
Chlamydia (C.) pecorum, an obligate intracellular bacterial species commonly found in ruminants, can also occur in pigs. However, its significance as a potential porcine pathogen, or commensal, is still unclear. In a previous study (Hoffmann et al. 2015), mixed infections of C. suis and C. pecorum were detected in 14 Swiss fattening pig farms. Using these samples, we aimed to investigate the infection dynamics of C. suis and C. pecorum mixed infections in these farms. In addition, we analyzed the genetic diversity of Swiss porcine C. pecorum strains in relation to globally circulating strains. In total, 1284 conjunctival and rectal swabs from 391 pigs, collected at the beginning and end of the fattening period, were tested during the course of this study. We determined the bacterial loads of C. suis and C. pecorum using species-specific real-time PCR (qPCR) and compared these results to already existing DNA-microarray and Chlamydiaceae qPCR data. Overall, C. suis and Chlamydiaceae copy numbers decreased in the course of the fattening period, whereas C. pecorum copy numbers increased. No association was found between clinical signs (conjunctivitis, lameness and diarrhea) and the bacterial loads. Preventive antibiotic treatment at the beginning of the fattening period significantly lowered the chlamydial load and outdoor access was associated with higher loads. Proximity to the nearest ruminants correlated with increased C. pecorum loads, indicating that C. pecorum could be transmitted from ruminants to pigs. Multi-locus sequence typing (MLST) and major outer membrane protein (ompA) genotyping revealed two novel sequence types (STs) (301, 302) and seven unique ompA genotypes (1-7) that appear to form a specific clade separate from other European C. pecorum strains.
Collapse
Affiliation(s)
- Lea Rohner
- Institute of Veterinary Pathology, Vetsuisse-Faculty University Zurich, Zurich, 8057, Switzerland; Center for Clinical Studies, Vetsuisse-Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse-Faculty University Zurich, Zurich, 8057, Switzerland; Center for Clinical Studies, Vetsuisse-Faculty, University of Zurich, Zurich, 8057, Switzerland.
| | - Paul Torgerson
- Section of Veterinary Epidemiology, Vetsuisse-Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Karolin Hoffmann
- Institute of Veterinary Pathology, Vetsuisse-Faculty University Zurich, Zurich, 8057, Switzerland; Center for Clinical Studies, Vetsuisse-Faculty, University of Zurich, Zurich, 8057, Switzerland
| | - Martina Jelocnik
- Genecology Research Centre, University of the Sunshine Coast, Sippy Downs, 4556, Queensland, Australia
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse-Faculty University Zurich, Zurich, 8057, Switzerland; Center for Clinical Studies, Vetsuisse-Faculty, University of Zurich, Zurich, 8057, Switzerland
| |
Collapse
|
16
|
Hoque MM, Adekanmbi F, Barua S, Rahman KS, Aida V, Anderson B, Poudel A, Kalalah A, Bolds S, Madere S, Kitchens S, Price S, Brown V, Lockaby BG, Kyriakis CS, Kaltenboeck B, Wang C. Peptide ELISA and FRET-qPCR Identified a Significantly Higher Prevalence of Chlamydia suis in Domestic Pigs Than in Feral Swine from the State of Alabama, USA. Pathogens 2020; 10:pathogens10010011. [PMID: 33375583 PMCID: PMC7823902 DOI: 10.3390/pathogens10010011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 12/25/2022] Open
Abstract
Chlamydia suis is an important, highly prevalent, and diverse obligate intracellular pathogen infecting pigs. In order to investigate the prevalence and diversity of C. suis in the U.S., 276 whole blood samples from feral swine were collected as well as 109 fecal swabs and 60 whole blood samples from domestic pigs. C. suis-specific peptide ELISA identified anti-C. suis antibodies in 13.0% of the blood of feral swine (26/276) and 80.0% of the domestic pigs (48/60). FRET-qPCR and DNA sequencing found C. suis DNA in 99.1% of the fecal swabs (108/109) and 21.7% of the whole blood (13/60) of the domestic pigs, but not in any of the assayed blood samples (0/267) in feral swine. Phylogenetic comparison of partial C. suis ompA gene sequences and C. suis-specific multilocus sequencing typing (MLST) revealed significant genetic diversity of the C. suis identified in this study. Highly genetically diverse C. suis strains are prevalent in domestic pigs in the USA. As crowding strongly enhances the frequency and intensity of highly prevalent Chlamydia infections in animals, less population density in feral swine than in domestic pigs may explain the significantly lower C. suis prevalence in feral swine. A future study is warranted to obtain C. suis DNA from feral swine to perform genetic diversity of C. suis between commercial and feral pigs.
Collapse
Affiliation(s)
- Md Monirul Hoque
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Folasade Adekanmbi
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Subarna Barua
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Kh. Shamsur Rahman
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Virginia Aida
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Brian Anderson
- Swine Research and Education Center, Auburn University, Auburn, AL 36830, USA;
| | - Anil Poudel
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Anwar Kalalah
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Sara Bolds
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA; (S.B.); (S.M.); (B.G.L.)
| | - Steven Madere
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA; (S.B.); (S.M.); (B.G.L.)
| | - Steven Kitchens
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Stuart Price
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Vienna Brown
- National Feral Swine Damage Management Program, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, CO 80521, USA;
| | - B. Graeme Lockaby
- School of Forestry and Wildlife Sciences, Auburn University, Auburn, AL 36849, USA; (S.B.); (S.M.); (B.G.L.)
| | - Constantinos S. Kyriakis
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Bernhard Kaltenboeck
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
| | - Chengming Wang
- College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA; (M.M.H.); (F.A.); (S.B.); (K.S.R.); (V.A.); (A.P.); (A.K.); (S.K.); (S.P.); (C.S.K.); (B.K.)
- Correspondence:
| |
Collapse
|
17
|
Baumann S, Gurtner C, Marti H, Borel N. Detection of Chlamydia species in 2 cases of equine abortion in Switzerland: a retrospective study from 2000 to 2018. J Vet Diagn Invest 2020; 32:542-548. [PMID: 32522107 DOI: 10.1177/1040638720932906] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Species of genus Chlamydia are important pathogens of animals, with a worldwide distribution and broad host range. Some species, such as Chlamydia psittaci, also pose a zoonotic disease risk. Abortion is one of the many diseases that has been associated with chlamydial infections in animals, with most attention focused on the economic impacts to sheep production. The role of chlamydia in equine abortions is unknown. Using the family-specific 23S ribosomal RNA (rRNA) Chlamydiaceae real-time PCR, we tested 169 formalin-fixed, paraffin-embedded fetal membrane samples from 162 equine abortion cases collected between 2000 and 2018 in Switzerland. Two equine abortion cases (1.2%) tested positive for Chlamydiaceae. Further analyses by the species-specific 23S rRNA ArrayMate microarray and sequencing of a fragment of the 16S rRNA gene revealed C. abortus and C. psittaci. In both cases, equine herpesvirus 1 was also present, which might have been the abortion cause, alone or in synergy with Chlamydia. The prevalence of abortigenic chlamydial species in equine abortion cases in our study was significantly lower than rates described elsewhere. Zoonotic chlamydial agents present in equine fetal membranes nevertheless should be considered a potential risk to humans during foaling, abortion, or stillbirth.
Collapse
Affiliation(s)
- Sibylle Baumann
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland (Baumann, Marti, Borel)
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland (Gurtner)
| | - Corinne Gurtner
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland (Baumann, Marti, Borel)
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland (Gurtner)
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland (Baumann, Marti, Borel)
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland (Gurtner)
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland (Baumann, Marti, Borel)
- Institute of Animal Pathology, Vetsuisse Faculty, University of Bern, Bern, Switzerland (Gurtner)
| |
Collapse
|
18
|
Isolation of Tetracycline-Resistant Chlamydia suis from a Pig Herd Affected by Reproductive Disorders and Conjunctivitis. Antibiotics (Basel) 2020; 9:antibiotics9040187. [PMID: 32316412 PMCID: PMC7235844 DOI: 10.3390/antibiotics9040187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 01/01/2023] Open
Abstract
Due to various challenges in diagnosing chlamydiosis in pigs, antibiotic treatment is usually performed before any molecular or antibiotic susceptibility testing. This could increase the occurrence of tetracycline-resistant Chlamydia (C.) suis isolates in the affected pig population and potentiate the reoccurrence of clinical signs. Here, we present a case of an Austrian pig farm, where tetracycline resistant and sensitive C. suis isolates were isolated from four finishers with conjunctivitis. On herd-level, 10% of the finishers suffered from severe conjunctivitis and sows showed a high percentage of irregular return to estrus. Subsequent treatment of whole-herd using oxytetracycline led to a significant reduction of clinical signs. Retrospective antibiotic susceptibility testing revealed tetracycline resistance and decreased susceptibility to doxycycline in half of the ocular C. suis isolates, and all isolates were able to partially recover following a single-dose tetracycline treatment in vitro. These findings were later confirmed in vivo, when all former clinical signs recurred three months later. This case report raises awareness of tetracycline resistance in C. suis and emphasizes the importance of preventative selection of tetracycline resistant C. suis isolates.
Collapse
|
19
|
PREVALENCE OF CHLAMYDIACEAE AND TETRACYCLINE RESISTANCE GENES IN WILD BOARS OF CENTRAL EUROPE. J Wildl Dis 2020; 56:512-522. [PMID: 32216676 DOI: 10.7589/2019-11-275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Our aim was to investigate the occurrence and distribution of Chlamydia suis and other Chlamydiaceae in the wild boar (Sus scrofa) population of Switzerland and Northern Italy and the detection of tetracycline resistance genes by PCR. We collected a total of 471 conjunctival swabs (n=292), rectal swabs (n=147), and lung tissue samples (n=32) belonging to 292 wild boars. The prevalence of Chlamydiaceae in the investigated wild boar populations was very low (1.4%, 4/292). We found C. suis in rectal or conjunctival swabs but not in lung samples. The low chlamydial prevalence might be attributed to limited contacts between wild boars and outdoor domestic pigs due to strict biosecurity measures or limited numbers of rural pig herds. The tetA(C) gene fragment was detected in six samples, which were all negative for Chlamydiaceae, and was probably not of chlamydial origin but more likely from other bacteria. The low tetracycline resistance rate in wild boar might be explained by the lack of selective pressure. However, transmission of resistance genes from domestic pigs to wild boar or selective pressure in the environment could lead to the development and spread of tetracycline-resistant C. suis strains in wild boars.
Collapse
|
20
|
Cross-sectional study on Chlamydiaceae prevalence and associated risk factors on commercial and backyard poultry farms in Mexico. Prev Vet Med 2020; 176:104922. [PMID: 32062044 DOI: 10.1016/j.prevetmed.2020.104922] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/04/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Chlamydiaceae infections in poultry are mainly due to Chlamydia psittaci and Chlamydia gallinacea. While C. psittaci has long been known to affect birds and to have zoonotic potential, C. gallinacea is a newly described species that has been found to be widespread in chickens. As no data were available regarding the presence of Chlamydiaceae in Mexican poultry, a cross-sectional survey to detect the presence of Chlamydiaceae on commercial and backyard farms was carried out in eight federal states of Mexico with a high poultry density. Individual cloacal swabs were collected on 14 large-scale commercial poultry farms with controlled environment houses, 23 large-scale commercial poultry farms with open-sided houses, and 16 backyard farms. Samples were tested using a specific Chlamydiaceae real-time PCR technique. Chlamydial species were subsequently identified by a species-specific real-time PCR method. Information on potential risk factors was collected through a questionnaire. Logistic regression was performed to identify risk factors associated with Chlamydiaceae-positive results at the farm level on commercial farms. For backyard farms, a mixed-effect logistic regression model was used to consider information collected either at the animal or at the farm level. Overall, 7.1 % (n = 1/14) of controlled environment commercial farms, 26.1 % (n = 6/23) of open-sided commercial farms, and 75.0 % (n = 12/16) of backyard farms were Chlamydiaceae-positive. Apparent prevalence increased inversely to the level of confinement (controlled environment vs open-sided poultry houses vs backyards). Chlamydia gallinacea was the only chlamydial species detected. On commercial farms, egg-laying hen flocks had 6.7 times higher odds of being Chlamydiaceae-infected than broilers flocks (OR = 6.7, 95 % CI: 1.1-44.3, p = 0.04). On backyard farms, two variables were significantly associated with Chlamydiaceae infection: the lack of antibiotic use (OR = 8.4, 95 % CI: 1.84-38.49, p = 0.006), and an impaired health status (OR=8.8, 95 % CI: 1.9-38.9, p = 0.004). Further studies should be carried out to investigate the impact of C. gallinacea infection on egg quality and production performance in egg-laying hen flocks.
Collapse
|
21
|
Vogler BR, Trinkler M, Marti H, Borel N, Pesch T, Prähauser B, Hoop R, Mattmann P, Albini S. Survey on Chlamydiaceae in cloacal swabs from Swiss turkeys demonstrates absence of Chlamydia psittaci and low occurrence of Chlamydia gallinacean. PLoS One 2019; 14:e0226091. [PMID: 31821353 PMCID: PMC6903705 DOI: 10.1371/journal.pone.0226091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/19/2019] [Indexed: 11/18/2022] Open
Abstract
In Switzerland, domestic turkey meat is a niche product. Turkeys are fattened on mixed family-based farms scattered across the country, with most providing access to an uncovered outdoor pasture for the birds. Swiss fattening turkeys may therefore get infected with Chlamydiaceae via wild birds or their faeces, potentially shedding these bacteria at a later stage. The aim of the present study was to acquire baseline data about the shedding of Chlamydiaceae in clinically unremarkable Swiss fattening turkeys at slaughter, potentially exposing slaughterhouse workers to infection. In this large-scale study, 1008 cloacal swabs of Swiss turkeys out of 53 flocks from 28 different grow-out farms with uncovered outdoor pasture were collected over the course of 14 months and examined for the occurrence of Chlamydiaceae by a family-specific 23S-rRNA real-time PCR. Positive samples were further analyzed by Chlamydia psittaci (C. psittaci)-specific real-time PCR and the Arraymate DNA Microarray for species identification. All samples were negative for C. psittaci, but seven swabs out of one flock were tested positive for Chlamydia gallinacea (0.7%). Although turkeys with access to pasture may have contact with Chlamydiaceae-harbouring wild birds or their faeces, the infection rate in Swiss turkeys was shown to be low.
Collapse
Affiliation(s)
- Barbara Renate Vogler
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Michal Trinkler
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Hanna Marti
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Borel
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Theresa Pesch
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Barbara Prähauser
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Richard Hoop
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Prisca Mattmann
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Sarah Albini
- National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
22
|
Jelocnik M, Taylor-Brown A, O'Dea C, Anstey S, Bommana S, Masters N, Katouli M, Jenkins C, Polkinghorne A. Detection of a range of genetically diverse chlamydiae in Australian domesticated and wild ungulates. Transbound Emerg Dis 2019; 66:1132-1137. [PMID: 30873753 DOI: 10.1111/tbed.13171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Abstract
Chlamydiae are globally widespread obligate intracellular bacteria, which several species are a well-recognized threat to human and animal health. In Australia, the most successful chlamydial species are the infamous koala pathogen C. pecorum, and C. psittaci, an emerging pathogen associated with zoonotic events. Little is known about infections caused by other chlamydial organisms in Australian livestock or wildlife. Considering that these hosts can be encountered by humans at the animal/human interface, in this study, we investigated genetic diversity of chlamydial organisms infecting Australian domesticated and wild ungulates. A total of 185 samples from 129 domesticated (cattle, horses, sheep, and pigs) and 29 wild (deer) ungulate hosts were screened with C. pecorum and C. psittaci species-specific assays, followed by a screen with pan-Chlamydiales assay. Overall, chlamydial DNA was detected in 120/185 (65%) samples, including all ungulate hosts. Species-specific assays further revealed that C. pecorum and C. psittaci DNA were detected in 27% (50/185) and 6% (11/185) of the samples, respectively, however from domesticated hosts only. A total of 46 "signature" 16S rRNA sequences were successfully resolved by sequencing and were used for phylogenetic analyses. Sequence analyses revealed that genetically diverse novel as well as traditional chlamydial organisms infect an expanded range of ungulate hosts in Australia. Detection of the C. psittaci and C. pecorum in livestock, and novel taxa infecting horses and deer raises questions about the genetic make-up and pathogenic potential of these organisms, but also concerns about risks of spill-over between livestock, humans, and native wildlife.
Collapse
Affiliation(s)
- Martina Jelocnik
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Alyce Taylor-Brown
- Animal Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Christian O'Dea
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Susan Anstey
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Sankhya Bommana
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Nicole Masters
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Mohamad Katouli
- Genecology Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Cheryl Jenkins
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| | - Adam Polkinghorne
- Animal Research Centre, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
23
|
Bommana S, Polkinghorne A. Mini Review: Antimicrobial Control of Chlamydial Infections in Animals: Current Practices and Issues. Front Microbiol 2019; 10:113. [PMID: 30778341 PMCID: PMC6369208 DOI: 10.3389/fmicb.2019.00113] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022] Open
Abstract
Chlamydia are a genus of successful obligate intracellular pathogens spread across humans, wildlife, and domesticated animals. The most common species reported in livestock in this genus are Chlamydia abortus, Chlamydia psittaci, Chlamydia suis, and Chlamydia pecorum. Chlamydial infections trigger a series of inflammatory disease-related sequelae including arthritis, conjunctivitis, pneumonia, and abortion. Other bacteria in the phylum Chlamydiae have also been reported in livestock and wildlife but their impact on animal health is less clear. Control of chlamydial infections relies on the use of macrolides, fluoroquinolones, and tetracyclines. Tetracycline resistance (TETR) reported for porcine C. suis strains in association with the use of tetracycline feed is a potentially significant concern given experimental evidence highlighting that the genetic elements inferring TETR may be horizontally transferred to other chlamydial species. As documented in human Chlamydia trachomatis infections, relapse of infections, bacterial shedding post-antibiotic treatment, and disease progression despite chlamydial clearance in animals have also been reported. The identification of novel chlamydiae as well as new animal hosts for previously described chlamydial pathogens should place a renewed emphasis on basic in vivo studies to demonstrate the efficacy of existing and new antimicrobial treatment regimes. Building on recent reviews of antimicrobials limited to C. trachomatis and C. suis, this review will explore the use of antimicrobials, the evidence and factors that influence the treatment failure of chlamydial infections in animals and the future directions in the control of these important veterinary pathogens.
Collapse
Affiliation(s)
- Sankhya Bommana
- The Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Adam Polkinghorne
- The Animal Research Centre, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| |
Collapse
|
24
|
Borel N, Marti H, Pospischil A, Pesch T, Prähauser B, Wunderlin S, Seth-Smith HMB, Low N, Flury R. Chlamydiae in human intestinal biopsy samples. Pathog Dis 2018; 76:5185114. [PMID: 30445531 PMCID: PMC6276272 DOI: 10.1093/femspd/fty081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/09/2018] [Indexed: 01/07/2023] Open
Abstract
Chlamydia trachomatis is frequently detected in anorectal specimens from men and women. A recent hypothesis suggests that C. trachomatis is a natural commensal organism asymptomatically colonizing the gastrointestinal tract. In this study, we investigated the presence of chlamydial DNA and antigen in intestinal biopsy samples taken during colonoscopy. Cases (n = 32) were patients whose histopathology reports included the term ‘chlamydia’, suggesting a possible history of infection. Control patients (n = 234) did not have chlamydia mentioned in their histopathology report and all tested negative for Chlamydiaceae DNA by 23S ribosomal RNA-based real-time PCR. Amongst the cases, C. trachomatis DNA was detected in the appendix and colon of two female and one male patients. Chlamydia abortus DNA was present in the colon of a fourth female patient. Thus, chlamydial DNA could be demonstrated in intestinal biopsy samples proximal to the anorectal site and inclusions were identified in rectum or appendix of two of these patients by immunohistochemistry. However, the findings in two cases were compatible with sexually acquired C. trachomatis. The identification of C. trachomatis DNA/antigen does not prove the presence of active infection with replicating bacteria. Larger prospective studies on fresh tissue samples are required to confirm the data obtained in this study.
Collapse
Affiliation(s)
- Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Andreas Pospischil
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Theresa Pesch
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Barbara Prähauser
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Sabina Wunderlin
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Helena M B Seth-Smith
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, CH-8057 Zurich, Switzerland
| | - Nicola Low
- Institute of Social and Preventive Medicine, University of Bern, Mittelstrasse 43, CH-3012 Bern, Switzerland
| | - Renata Flury
- Cantonal Hospital Winterthur, Brauerstrasse 15, CH-8400 Winterthur, Switzerland
| |
Collapse
|
25
|
Kieckens E, Van den Broeck L, Van Gils M, Morré S, Vanrompay D. Co-Occurrence of Chlamydia suis DNA and Chlamydia suis-Specific Antibodies in the Human Eye. Vector Borne Zoonotic Dis 2018; 18:677-682. [PMID: 30251925 DOI: 10.1089/vbz.2017.2256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Chlamydia suis is a swine pathogen that causes economic losses due to reproductive failure. Recently, C. suis has been detected in human eyes. However, knowledge of the zoonotic potential is still limited. C. suis infections in swine could present a risk for public health because (1) tetracycline-resistant C. suis strains are emerging in the pork industry, (2) tetracycline resistance gene transfers in vitro from C. suis to the human pathogen Chlamydia trachomatis and as previously demonstrated, (3) C. suis and C. trachomatis can be both present in the human eye. Pig farmers were sampled during a seminar in West-Flanders. Conjunctival swabs for detection of C. suis and C. trachomatis and for the detection of mucosal antibodies against C. suis and C. trachomatis were collected. The farmers completed a questionnaire designed to assess information on the following: (1) the health status of their pigs, (2) administration of veterinary drugs, (3) their professional and nonprofessional activities, (4) general health status, (5) smoking habits, (6) use of medication, (7) allergies, and (8) clinical signs/history. Thirty-three on 40 (82.5%) farmers participated. None of the conjunctival swabs contained C. trachomatis DNA and mucosal antibodies against C. trachomatis were not detected. Six of 33 (18.2%) farmers had C. suis DNA in their eyes and 22 of 33 (67%) swabs contained C. suis-specific mucosal antibodies. The older the farmer, higher the chance of finding C. suis antibodies in the eye. There was a significant correlation between the presence of conjunctivitis in the pigs and the occurrence of C. suis DNA in the eye of their owner. This study shows that C. suis may transfer from pigs to the human eye as specific mucosal antibodies were detected in conjunctivae of pig farmers. Veterinarians, general practitioners, and occupational physicians should be aware of the zoonotic potential of C. suis.
Collapse
Affiliation(s)
- Evelien Kieckens
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Laura Van den Broeck
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Mathias Van Gils
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Servaas Morré
- Laboratory of Immunogenetics, Department of Medical Microbiology and Infection Control, VU University Medical Centre, Amsterdam, the Netherlands
- Faculty of Health, Medicine and Life Sciences, Department of Genetics and Cell Biology, Institute for Public Health Genomics, Research School GROW (School for Oncology and Developmental Biology), University of Maastricht, Maastricht, the Netherlands
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
26
|
Marti H, Borel N, Dean D, Leonard CA. Evaluating the Antibiotic Susceptibility of Chlamydia - New Approaches for in Vitro Assays. Front Microbiol 2018; 9:1414. [PMID: 30018602 PMCID: PMC6037721 DOI: 10.3389/fmicb.2018.01414] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 06/08/2018] [Indexed: 11/13/2022] Open
Abstract
Pigs are the natural hosts of Chlamydia suis, the only Chlamydia species known to spontaneously acquire homotypic resistance conferred by a class C tetracycline resistance gene. Various susceptibility assays have existed for several years, but there is no widely accepted, standardized assay to determine chlamydial antibiotic susceptibility. In this study, we developed new approaches to determine the in vitro susceptibility of Chlamydia to different antibiotics in view of existing protocols. Specifically, the minimal inhibitory concentration (MIC) is based on a consensus of both inclusion number reduction and alteration of inclusion size and morphology upon antibiotic exposure. In addition to these, we employed a recovery assay, allowing observation of the chlamydial response to drug removal and subsequent recovery, as compared to both continued exposure and to the unexposed control. We propose a simple and fast screening method to detect tetracycline resistant C. suis strains within 2 to 3 days with minimal use of consumables. For proof of principle, we evaluated the susceptibility of three C. suis field strains and the reference strain S45/6 to tetracycline, sulfamethoxazole, and penicillin, antibiotics commonly used to prevent respiratory and gastrointestinal diseases on fattening pig farms. We found that tetracycline sensitive strains can easily be distinguished from resistant strains using the evaluation parameters proposed in this study. Moreover, we report that S45/6 is sensitive to sulfamethoxazole while all evaluated C. suis field strains showed some degree of sulfamethoxazole resistance. Finally, we confirm that Penicillin G induces the chlamydial stress response in all evaluated C. suis strains.
Collapse
Affiliation(s)
- Hanna Marti
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland.,Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, United States
| | - Nicole Borel
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, UCSF Benioff Children's Hospital Oakland Research Institute, Oakland, CA, United States.,Joint Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, United States.,Joint Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA, United States.,School of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Cory A Leonard
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Novel Chlamydia species isolated from snakes are temperature-sensitive and exhibit decreased susceptibility to azithromycin. Sci Rep 2018; 8:5660. [PMID: 29618824 PMCID: PMC5884828 DOI: 10.1038/s41598-018-23897-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 03/22/2018] [Indexed: 11/09/2022] Open
Abstract
Chlamydia species have recently been recognized as emerging pathogens in snakes. However, isolation of novel snake chlamydiae is critical and their growth characteristics are largely unknown. In this study, two novel chlamydial species are described: Chlamydia serpentis and Chlamydia poikilothermis, isolated after attempts on 23 cloacal and choanal swabs from 18 PCR-positive captive snakes originating from different Swiss snake collections. Isolation success, growth curve and infectivity rates over a 48-hour time period were dependent on temperature (37 °C for C. serpentis, 28 °C for C. poikilothermis). C. serpentis and C. poikilothermis were sensitive to tetracycline and moxifloxacin during evaluation by in vitro antibiotic susceptibility assay but intermediate to resistant (2–4 μg/ml) to azithromycin. Whole genome sequencing of the isolates provided proof of the novel species status, and gives insights into the evolution of these branches of genus Chlamydia.
Collapse
|
28
|
Vanrompay D, Nguyen TLA, Cutler SJ, Butaye P. Antimicrobial Resistance in Chlamydiales, Rickettsia, Coxiella, and Other Intracellular Pathogens. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0003-2017. [PMID: 29651977 PMCID: PMC11633567 DOI: 10.1128/microbiolspec.arba-0003-2017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Indexed: 12/26/2022] Open
Abstract
This article will provide current insights into antimicrobial susceptibilities and resistance of an important group of bacterial pathogens that are not phylogenetically related but share lifestyle similarities in that they are generally considered to be obligate intracellular microbes. As such, there are shared challenges regarding methods for their detection and subsequent clinical management. Similarly, from the laboratory perspective, susceptibility testing is rarely undertaken, though molecular approaches might provide new insights. One should also bear in mind that the highly specialized microbial lifestyle restricts the opportunity for lateral gene transfer and, consequently, acquisition of resistance.
Collapse
Affiliation(s)
- Daisy Vanrompay
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Thi Loan Anh Nguyen
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Sally J Cutler
- School of Health, Sport, and Bioscience, University of East London, London, United Kingdom
| | - Patrick Butaye
- Department of BioSciences, Ross University, School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis, West Indies and Department of Pathology, Bacteriology, and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
| |
Collapse
|
29
|
Walker E, Jelocnik M, Bommana S, Timms P, Carver S, Polkinghorne A. Understanding the health and production impacts of endemic Chlamydia pecorum infections in lambs. Vet Microbiol 2018; 217:90-96. [PMID: 29615263 DOI: 10.1016/j.vetmic.2018.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/15/2018] [Accepted: 03/09/2018] [Indexed: 11/25/2022]
Abstract
Lamydia pecorum is a globally recognised livestock pathogen that is capable of causing severe and economically significant diseases such as arthritis in sheep and cattle. Relatively little information is available on the clinical progression of disease and the long-term effects of asymptomatic and symptomatic chlamydiosis in sheep. Recent studies in calves indicate that endemic C. pecorum infections may reduce growth rates. To investigate the clinical health parameters and production impacts of endemic C. pecorum infection in an Australian commercial lamb flock, we performed bimonthly sampling and clinical health assessments on 105 Border Leicester lambs from two to ten months of age. Chlamydial status was investigated via serology and species-specific quantitative PCR. Throughout the study period, conjunctivitis remained a persistent clinical feature while signs of arthritis (e.g. palpable synovial joint effusions) resolved in a subset of lambs while persisting in others. Clinical disease and C. pecorum infection were highest at six months of age (weaning). As previously reported, peak seroconversion tends to occur two months after the onset of clinical symptoms (6 months of age), with lambs clearing chlamydial infection by 10 months of age, despite ongoing disease still being present at this time. Notably, the presence of chlamydial infection did not affect lamb mass or growth rates throughout the study. At necropsy, C. pecorum was not detected within the joints of lambs with chronic arthritis. Molecular analysis of the strains in this flock suggest that the infecting strains circulating in this flock are clonal C. pecorum pathotypes, denoted ST 23, commonly associated with conjunctivitis and polyarthritis in Australian sheep. This study provides a platform for further research in the epidemiology and disease transmission dynamics of C. pecorum infections in sheep.
Collapse
Affiliation(s)
- Evelyn Walker
- Central West Local Land Services, Dubbo, NSW, 2830, Australia; Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Martina Jelocnik
- Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Sankhya Bommana
- Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Peter Timms
- Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia
| | - Scott Carver
- School of Biological Sciences, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, University of the Sunshine Coast, Sippy Downs, QLD, 4556, Australia.
| |
Collapse
|
30
|
Borel N, Polkinghorne A, Pospischil A. A Review on Chlamydial Diseases in Animals: Still a Challenge for Pathologists? Vet Pathol 2018; 55:374-390. [PMID: 29310550 DOI: 10.1177/0300985817751218] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chlamydiae have a worldwide distribution causing a wide range of diseases in human hosts, livestock, and companion animals as well as in wildlife and exotic species. Moreover, they can persist in their hosts as asymptomatic infections for extended periods of time. The introduction of molecular techniques has revolutionized the Chlamydia field by expanding the host range of known chlamydial species but also by discovering new species and even new families of bacteria in the broader order Chlamydiales. The wide range of hosts, diseases, and tissues affected by chlamydiae complicate the diagnosis such that standard diagnostic approaches for these bacteria are rare. Bacteria of the Chlamydiales order are small and their inclusions are difficult to detect by standard microscopy. With the exception of avian and ovine chlamydiosis, macroscopic and/or histologic changes might not be pathognomic or indicative for a chlamydial infection or even not present at all. Moreover, detection of chlamydial DNA in specimens in the absence of other methods or related pathological lesions questions the significance of such findings. The pathogenic potential of the majority of recently identified Chlamydia-related bacteria remains largely unknown and awaits investigation through experimental or natural infection models including histomorphological characterization of associated lesions. This review aims to summarize the historical background and the most important developments in the field of animal chlamydial research in the past 5 years with a special focus on pathology. It will summarize the current nomenclature, present critical thoughts about diagnostics, and give an update on chlamydial infections in domesticated animals such as livestock, companion animals and birds, as well as free-ranging and captive wild animals such as reptiles, fish, and marsupials.
Collapse
Affiliation(s)
- Nicole Borel
- 1 Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| | - Adam Polkinghorne
- 2 Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Australia
| | - Andreas Pospischil
- 1 Department of Pathobiology, Institute of Veterinary Pathology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
De Puysseleyr K, Kieckens E, De Puysseleyr L, Van den Wyngaert H, Ahmed B, Van Lent S, Creasy HH, Myers GSA, Vanrompay D. Development of a Chlamydia suis-specific antibody enzyme-linked immunosorbent assay based on the use of a B-cell epitope of the polymorphic membrane protein C. Transbound Emerg Dis 2018; 65:e457-e469. [PMID: 29314736 DOI: 10.1111/tbed.12783] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Indexed: 12/21/2022]
Abstract
Chlamydia suis infections lead to economic loss in the pork industry. Chlamydia suis infections could be successfully treated with tetracyclines until the appearance of a tetracycline resistant phenotype, which was acquired via horizontal gene transfer of the tet(C) gene. Given the importance of C. suis as a swine pathogen and as a recently emerged tetracycline resistant pathogen with zoonotic potential, our aim was to develop a sensitive C. suis-specific antibody ELISA based on the polymorphic membrane proteins (Pmps). Chlamydia Pmps are important virulence factors and candidate antigens for serodiagnosis. We identified nine Pmps (PmpA to I) in C. suis strain MD56 using a recently developed Hidden-Markov model. PmpC was the most promising candidate for the development of a C. suis-specific antibody ELISA as the protein was absent in C. abortus, C. pecorum and C. psittaci which also infect pigs and as the protein contained C. suis-specific amino acid regions, absent in C. trachomatis PmpC. We identified an immunodominant B-cell epitope in C. suis PmpC using experimental porcine sera. The sensitivity and specificity of the PmpC ELISA was compared to the complement fixation test (CFT) and to a recombinant MOMP ELISA using experimental sera. The PmpC ELISA detected all positive control sera and was in contrast to CFT and the rMOMP ELISA 100% C. suis specific as positive control sera against other Chlamydia species did not react in the PmpC ELISA. The test was successfully validated using slaughterhouse sera and sera from clinically affected pigs. The PmpC ELISA could assist in diminishing the spread of C. suis infections in the pork industry.
Collapse
Affiliation(s)
- K De Puysseleyr
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - E Kieckens
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - L De Puysseleyr
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - H Van den Wyngaert
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - B Ahmed
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - S Van Lent
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| | - H H Creasy
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - G S A Myers
- i3 Institute, University of Technology, Sydney, NSW, Australia
| | - D Vanrompay
- Department of Animal Production, Faculty of Bioscience Engineering, Ghent University, Gent, Belgium
| |
Collapse
|
32
|
Li M, Jelocnik M, Yang F, Gong J, Kaltenboeck B, Polkinghorne A, Feng Z, Pannekoek Y, Borel N, Song C, Jiang P, Li J, Zhang J, Wang Y, Wang J, Zhou X, Wang C. Asymptomatic infections with highly polymorphic Chlamydia suis are ubiquitous in pigs. BMC Vet Res 2017; 13:370. [PMID: 29191191 PMCID: PMC5710075 DOI: 10.1186/s12917-017-1295-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/22/2017] [Indexed: 01/09/2023] Open
Abstract
Background Chlamydia suis is an important, globally distributed, highly prevalent and diverse obligate intracellular pathogen infecting pigs. To investigate the prevalence and genetic diversity of C. suis in China, 2,137 nasal, conjunctival, and rectal swabs as well as whole blood and lung samples of pigs were collected in 19 regions from ten provinces of China in this study. Results We report an overall positivity of 62.4% (1,334/2,137) of C. suis following screening by Chlamydia spp. 23S rRNA-based FRET-PCR and high-resolution melting curve analysis and confirmatory sequencing. For C. suis-positive samples, 33.3 % of whole blood and 62.5% of rectal swabs were found to be positive for the C. suis tetR(C) gene, while 13.3% of whole blood and 87.0% of rectal swabs were positive for the C. suis tet(C) gene. Phylogenetic comparison of partial C. suis ompA gene sequences revealed significant genetic diversity in the C. suis strains. This genetic diversity was confirmed by C. suis-specific multilocus sequence typing (MLST), which identified 26 novel sequence types among 27 examined strains. Tanglegrams based on MLST and ompA sequences provided evidence of C. suis recombination amongst the strains analyzed. Conclusions Genetically highly diverse C. suis strains are exceedingly prevalent in pigs. As it stands, the potential pathogenic effect of C. suis on pig health and production of C. suis remains unclear and will be the subject of further investigations. Further study is also required to address the transmission of C. suis between pigs and the risk of 'spill-over' and 'spill-back' of infections to wild animals and humans. Electronic supplementary material The online version of this article (10.1186/s12917-017-1295-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Min Li
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Martina Jelocnik
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, QLD, Maroochydore, Australia
| | - Feng Yang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Jianseng Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, China
| | | | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education & Engineering, University of the Sunshine Coast, QLD, Maroochydore, Australia
| | - Zhixin Feng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences; Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, National Center for Engineering Research of Veterinary Bio-Products, Nanjing, China
| | - Yvonne Pannekoek
- Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole Borel
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Chunlian Song
- Yunnan Agricultural University College of Animal Science & Technology, Kunming, Yunnan, China
| | - Ping Jiang
- Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jing Li
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Jilei Zhang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Yaoyao Wang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Jiawei Wang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Xin Zhou
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China
| | - Chengming Wang
- Yangzhou University College of Veterinary Medicine, Yangzhou, Jiangsu, People's Republic of China. .,College of Veterinary Medicine, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
33
|
Leonard CA, Schoborg RV, Borel N. Productive and Penicillin-Stressed Chlamydia pecorum Infection Induces Nuclear Factor Kappa B Activation and Interleukin-6 Secretion In Vitro. Front Cell Infect Microbiol 2017; 7:180. [PMID: 28553623 PMCID: PMC5425588 DOI: 10.3389/fcimb.2017.00180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/25/2017] [Indexed: 11/13/2022] Open
Abstract
Nuclear factor kappa B (NFκB) is an inflammatory transcription factor that plays an important role in the host immune response to infection. The potential for chlamydiae to activate NFκB has been an area of interest, however most work has focused on chlamydiae impacting human health. Given that inflammation characteristic of chlamydial infection may be associated with severe disease outcomes or contribute to poor overall fitness in farmed animals, we evaluated the ability of porcine chlamydiae to induce NFκB activation in vitro. C. pecorum infection induced both NFκB nuclear translocation and activation at 2 hours post infection (hpi), an effect strongly enhanced by suppression of host de novo protein synthesis. C. suis and C. trachomatis showed less capacity for NFκB activation compared to C. pecorum, suggesting a species-specific variation in NFκB activation. At 24 hpi, C. pecorum induced significant NFκB activation, an effect not abolished by penicillin (beta lactam)-induced chlamydial stress. C. pecorum-dependent secretion of interleukin 6 was also detected in the culture supernatant of infected cells at 24 hpi, and this effect, too, was unchanged by penicillin-induced chlamydial stress. Taken together, these results suggest that NFκB participates in the early inflammatory response to C. pecorum and that stressed chlamydiae can promote inflammation.
Collapse
Affiliation(s)
- Cory A Leonard
- Department of Pathobiology, Institute of Veterinary Pathology, University of ZurichZurich, Switzerland
| | - Robert V Schoborg
- Department of Biomedical Sciences, Center for Inflammation, Infectious Disease and Immunity, James H. Quillen College of Medicine, East Tennessee State UniversityJohnson City, TN, USA
| | - Nicole Borel
- Department of Pathobiology, Institute of Veterinary Pathology, University of ZurichZurich, Switzerland
| |
Collapse
|
34
|
Singh G, Sharma D, Singh V, Rani J, Marotta F, Kumar M, Mal G, Singh B. In silico functional elucidation of uncharacterized proteins of Chlamydia abortus strain LLG. Future Sci OA 2017; 3:FSO169. [PMID: 28344832 PMCID: PMC5351547 DOI: 10.4155/fsoa-2016-0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
AIM This study reports structural modeling, molecular dynamics profiling of hypothetical proteins in Chlamydia abortus genome database. METHODOLOGY The hypothetical protein sequences were extracted from C. abortus LLG Genome Database for functional elucidation using in silico methods. RESULTS Fifty-one proteins with their roles in defense, binding and transporting other biomolecules were unraveled. Forty-five proteins were found to be nonhomologous to proteins present in hosts infected by C. abortus. Of these, 31 proteins were related to virulence. The structural modeling of two proteins, first, WP_006344020.1 (phosphorylase) and second, WP_006344325.1 (chlamydial protease/proteasome-like activity factor) were accomplished. The conserved active sites necessary for the catalytic function were analyzed. CONCLUSION The finally concluded proteins are envisioned as possible targets for developing drugs to curtail chlamydial infections, however, and should be validated by molecular biological methods.
Collapse
Affiliation(s)
- Gagandeep Singh
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Shahpur 176206, India
| | - Dixit Sharma
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Shahpur 176206, India
| | - Vikram Singh
- Centre for Computational Biology & Bioinformatics, Central University of Himachal Pradesh, Shahpur 176206, India
| | - Jyoti Rani
- Department of Botany, Punjabi University, Patiala 147002, India
| | - Francessco Marotta
- ReGenera Research Group of Aging-Intervention & Montenapoleone Medical Centre, Milano, Italy
| | - Manoj Kumar
- Department of Microbiology & Immunology, National Institute of Nutrition, Hyderabad 500007, India
| | - Gorakh Mal
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur 176061, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur 176061, India
- *Author for correspondence:
| |
Collapse
|
35
|
Seth-Smith HM, Wanninger S, Bachmann N, Marti H, Qi W, Donati M, di Francesco A, Polkinghorne A, Borel N. The Chlamydia suis Genome Exhibits High Levels of Diversity, Plasticity, and Mobile Antibiotic Resistance: Comparative Genomics of a Recent Livestock Cohort Shows Influence of Treatment Regimes. Genome Biol Evol 2017; 9:750-760. [PMID: 28338777 PMCID: PMC5381551 DOI: 10.1093/gbe/evx043] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/18/2022] Open
Abstract
Chlamydia suis is an endemic pig pathogen, belonging to a fascinating genus of obligate intracellular pathogens. Of particular interest, this is the only chlamydial species to have naturally acquired genes encoding for tetracycline resistance. To date, the distribution and mobility of the Tet-island are not well understood. Our study focused on whole genome sequencing of 29 C. suis isolates from a recent porcine cohort within Switzerland, combined with data from USA tetracycline-resistant isolates. Our findings show that the genome of C. suis is very plastic, with unprecedented diversity, highly affected by recombination and plasmid exchange. A large diversity of isolates circulates within Europe, even within individual Swiss farms, suggesting that C. suis originated around Europe. New World isolates have more restricted diversity and appear to derive from European isolates, indicating that historical strain transfers to the United States have occurred. The architecture of the Tet-island is variable, but the tetA(C) gene is always intact, and recombination has been a major factor in its transmission within C. suis. Selective pressure from tetracycline use within pigs leads to a higher number of Tet-island carrying isolates, which appear to be lost in the absence of such pressure, whereas the loss or gain of the Tet-island from individual strains is not observed. The Tet-island appears to be a recent import into the genome of C. suis, with a possible American origin.
Collapse
Affiliation(s)
- Helena M.B. Seth-Smith
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Sabrina Wanninger
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Nathan Bachmann
- Centre for Animal Health Innovation, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Hanna Marti
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Centre Zurich, University of Zurich, Switzerland
| | - Manuela Donati
- DIMES, Microbiology, Policlinico S. Orsola, University of Bologna, Italy
| | - Antonietta di Francesco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Nicole Borel
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|
36
|
Marti H, Kim H, Joseph SJ, Dojiri S, Read TD, Dean D. Tet(C) Gene Transfer between Chlamydia suis Strains Occurs by Homologous Recombination after Co-infection: Implications for Spread of Tetracycline-Resistance among Chlamydiaceae. Front Microbiol 2017; 8:156. [PMID: 28223970 PMCID: PMC5293829 DOI: 10.3389/fmicb.2017.00156] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 01/20/2017] [Indexed: 11/13/2022] Open
Abstract
Chlamydia suis is a swine pathogen that has also recently been found to cause zoonotic infections of the human eye, pharynx, and gastrointestinal tract. Many strains contain a tetracycline class C gene [tet(C)] cassette that confers tetracycline resistance. The cassette was likely originally acquired by horizontal gene transfer from a Gram-negative donor after the introduction of tetracycline into animal feed in the 1950s. Various research groups have described the capacity for different Chlamydia species to exchange DNA by homologous recombination. Since over 90% of C. suis strains are tetracycline resistant, they represent a potential source for antibiotic-resistance spread within and between Chlamydiaceae species. Here, we examined the genetics of tet(C)-transfer among C. suis strains. Tetracycline-sensitive C. suis strain S45 was simultaneously or sequentially co-infected with tetracycline-resistant C. suis strains in McCoy cells. Potential recombinants were clonally purified by a harvest assay derived from the classic plaque assay. C. suis strain Rogers132, lacking transposases IS200 and IS605, was the most efficient donor, producing two unique recombinants detected in three of the 56 (5.4%) clones screened. Recombinants were found to have a minimal inhibitory concentration (MIC) of 8-16 μg/mL for tetracycline. Resistance remained stable over 10 passages as long as recombinants were initially grown in tetracycline at twice the MIC of S45 (0.032 μg/mL). Genomic analysis revealed that tet(C) had integrated into the S45 genome by homologous recombination at two unique sites depending on the recombinant: a 55 kb exchange between nrqF and pckG, and a 175 kb exchange between kdsA and cysQ. Neither site was associated with inverted repeats or motifs associated with recombination hotspots. Our findings show that cassette transfer into S45 has low frequency, does not require IS200/IS605 transposases, is stable if initially grown in tetracycline, and results in multiple genomic configurations. We provide a model for stable cassette transfer to better understand the capability for cassette acquisition by Chlamydiaceae species that infect humans, a matter of public health importance.
Collapse
Affiliation(s)
- Hanna Marti
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Hoyon Kim
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Sandeep J Joseph
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, AtlantaGA, USA; Department of Human Genetics, Emory University School of Medicine, AtlantaGA, USA
| | - Stacey Dojiri
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, Oakland CA, USA
| | - Timothy D Read
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, AtlantaGA, USA; Department of Human Genetics, Emory University School of Medicine, AtlantaGA, USA
| | - Deborah Dean
- Center for Immunobiology and Vaccine Development, University of California at San Francisco/Benioff Children's Hospital Oakland Research Institute, OaklandCA, USA; Joint Graduate Program in Bioengineering, University of California, San Francisco, San FranciscoCA, USA; Joint Graduate Program in Bioengineering, University of California, Berkeley, BerkeleyCA, USA; Departments of Medicine and Pediatrics, University of California, San Francisco, San FranciscoCA, USA
| |
Collapse
|
37
|
Selective Pressure Promotes Tetracycline Resistance of Chlamydia Suis in Fattening Pigs. PLoS One 2016; 11:e0166917. [PMID: 27893834 PMCID: PMC5125646 DOI: 10.1371/journal.pone.0166917] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
In pigs, Chlamydia suis has been associated with respiratory disease, diarrhea and conjunctivitis, but there is a high rate of inapparent C. suis infection found in the gastrointestinal tract of pigs. Tetracycline resistance in C. suis has been described in the USA, Italy, Switzerland, Belgium, Cyprus and Israel. Tetracyclines are commonly used in pig production due to their broad-spectrum activity and relatively low cost. The aim of this study was to isolate clinical C. suis samples in cell culture and to evaluate their antibiotic susceptibility in vitro under consideration of antibiotic treatment on herd level. Swab samples (n = 158) identified as C. suis originating from 24 farms were further processed for isolation, which was successful in 71% of attempts with a significantly higher success rate from fecal swabs compared to conjunctival swabs. The farms were divided into three treatment groups: A) farms without antibiotic treatment, B) farms with prophylactic oral antibiotic treatment of the whole herd consisting of trimethoprime, sulfadimidin and sulfathiazole (TSS), or C) farms giving herd treatment with chlortetracycline with or without tylosin and sulfadimidin (CTS). 59 isolates and their corresponding clinical samples were selected and tested for the presence or absence of the tetracycline resistance class C gene [tet(C)] by conventional PCR and isolates were further investigated for their antibiotic susceptibility in vitro. The phenotype of the investigated isolates was either classified as tetracycline sensitive (Minimum inhibitory concentration [MIC] < 2 μg/ml), intermediate (2 μg/ml ≤ MIC < 4 μg/ml) or resistant (MIC ≥ 4 μg/ml). Results of groups and individual pigs were correlated with antibiotic treatment and time of sampling (beginning/end of the fattening period). We found clear evidence for selective pressure as absence of antibiotics led to isolation of only tetracycline sensitive or intermediate strains whereas tetracycline treatment resulted in a greater number of tetracycline resistant isolates.
Collapse
|
38
|
Brown MA, Potroz MG, Teh SW, Cho NJ. Natural Products for the Treatment of Chlamydiaceae Infections. Microorganisms 2016; 4:E39. [PMID: 27754466 PMCID: PMC5192522 DOI: 10.3390/microorganisms4040039] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022] Open
Abstract
Due to the global prevalence of Chlamydiae, exploring studies of diverse antichlamydial compounds is important in the development of effective treatment strategies and global infectious disease management. Chlamydiaceae is the most widely known bacterial family of the Chlamydiae order. Among the species in the family Chlamydiaceae, Chlamydia trachomatis and Chlamydia pneumoniae cause common human diseases, while Chlamydia abortus, Chlamydia psittaci, and Chlamydia suis represent zoonotic threats or are endemic in human food sources. Although chlamydial infections are currently manageable in human populations, chlamydial infections in livestock are endemic and there is significant difficulty achieving effective treatment. To combat the spread of Chlamydiaceae in humans and other hosts, improved methods for treatment and prevention of infection are needed. There exist various studies exploring the potential of natural products for developing new antichlamydial treatment modalities. Polyphenolic compounds can inhibit chlamydial growth by membrane disruption, reestablishment of host cell apoptosis, or improving host immune system detection. Fatty acids, monoglycerides, and lipids can disrupt the cell membranes of infective chlamydial elementary bodies (EBs). Peptides can disrupt the cell membranes of chlamydial EBs, and transferrins can inhibit chlamydial EBs from attachment to and permeation through the membranes of host cells. Cellular metabolites and probiotic bacteria can inhibit chlamydial infection by modulating host immune responses and directly inhibiting chlamydial growth. Finally, early stage clinical trials indicate that polyherbal formulations can be effective in treating chlamydial infections. Herein, we review an important body of literature in the field of antichlamydial research.
Collapse
Affiliation(s)
- Mika A Brown
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Singapore 637553, Singapore.
- Department of Chemical Engineering, Northeastern University, 360 Huntington Avenue, Boston, MA 02115, USA.
| | - Michael G Potroz
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Seoh-Wei Teh
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Singapore 637553, Singapore.
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.
- Centre for Biomimetic Sensor Science, 50 Nanyang Drive, Singapore 637553, Singapore.
| |
Collapse
|
39
|
Burnard D, Polkinghorne A. Chlamydial infections in wildlife-conservation threats and/or reservoirs of 'spill-over' infections? Vet Microbiol 2016; 196:78-84. [PMID: 27939160 DOI: 10.1016/j.vetmic.2016.10.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 10/12/2016] [Accepted: 10/14/2016] [Indexed: 12/25/2022]
Abstract
Members of the order Chlamydiales are biphasic intracellular pathogens known to cause disease in both humans and animals. As we learn more about the genetic diversity of this group of pathogens, evidence is growing that these bacteria infect a broader range of animal hosts than previously thought. Over 400 host species are now documented globally with the majority of these being wild animals. Given the impact of chlamydial infections on humans and domesticated animals, the identification of members of the order Chlamydiales in wildlife raises significant questions over a) their impact on animal health and b) the relationships to those strains also found in humans and domestic animals. In some species such as the iconic marsupial, the koala, the conservation impact is known with chlamydial infections associated with debilitating disease, however, in general, little is known about the pathogenic potential of Chlamydiae infecting most wildlife hosts. Accumulating evidence suggests contact with wild animals is a risk factor for infections in domestic animals and/or humans. Beyond the well-recognised zoonotic pathogen, Chlamydia psittaci, a range of studies have now reported traditional pathogens in the family Chlamydiaceae such as Chlamydia pecorum, Chlamydia suis, Chlamydia pneumoniae and Chlamydia abortus in wild animals. The spectre of cross-host transmission 'spill-over' and 'spill-back' in the epidemiology of infections is of potential concern, however, comprehensive epidemiological studies are lacking for most of these. Accurate evaluation of the significance of chlamydial infections in wildlife is otherwise hampered by i) the cross-sectional nature of most impact studies, ii) a lack of standardised diagnostic approaches, iii) limited study sizes, and iv) biases associated with opportunistic sampling.
Collapse
Affiliation(s)
- Delaney Burnard
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia.
| |
Collapse
|
40
|
Penicillin G-Induced Chlamydial Stress Response in a Porcine Strain of Chlamydia pecorum. Int J Microbiol 2016; 2016:3832917. [PMID: 26997956 PMCID: PMC4779511 DOI: 10.1155/2016/3832917] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/26/2016] [Indexed: 01/14/2023] Open
Abstract
Chlamydia pecorum causes asymptomatic infection and pathology in ruminants, pigs, and koalas. We characterized the antichlamydial effect of the beta lactam penicillin G on Chlamydia pecorum strain 1710S (porcine abortion isolate). Penicillin-exposed and mock-exposed infected host cells showed equivalent inclusions numbers. Penicillin-exposed inclusions contained aberrant bacterial forms and exhibited reduced infectivity, while mock-exposed inclusions contained normal bacterial forms and exhibited robust infectivity. Infectious bacteria production increased upon discontinuation of penicillin exposure, compared to continued exposure. Chlamydia-induced cell death occurred in mock-exposed controls; cell survival was improved in penicillin-exposed infected groups. Similar results were obtained both in the presence and in the absence of the eukaryotic protein translation inhibitor cycloheximide and at different times of initiation of penicillin exposure. These data demonstrate that penicillin G induces the chlamydial stress response (persistence) and is not bactericidal, for this chlamydial species/strain in vitro, regardless of host cell de novo protein synthesis.
Collapse
|