1
|
Abla N, Marrast AC, Jambert E, Richardson N, Duparc S, Almond L, Rowland Yeo K, Pan X, Tarning J, Zhao P, Culpepper J, Waitt C, Koldeweij C, Cole S, Butler AS, Khier S, Möhrle JJ, El Gaaloul M. Addressing health equity for breastfeeding women: primaquine for Plasmodium vivax radical cure. Malar J 2024; 23:287. [PMID: 39334094 PMCID: PMC11438061 DOI: 10.1186/s12936-024-05112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Plasmodium vivax malaria remains a global health challenge, with approximately 6.9 million estimated cases in 2022. The parasite has a dormant liver stage, the hypnozoite, which reactivates to cause repeated relapses over weeks, months, or years. These relapses erode patient health, contribute to the burden of malaria, and promote transmission. Radical cure to prevent relapses requires administration of an 8-aminoquinoline, either primaquine or tafenoquine. However, malaria treatment guidelines updated by the World Health Organization (WHO) in October 2023 restrict primaquine use for women breastfeeding children < 6 months of age, or women breastfeeding older children if their child is G6PD deficient or if the child's G6PD status is unknown. Primaquine restrictions assume that 8-aminoquinoline exposures in breast milk would be sufficient to cause haemolysis in the nursing infant should they be G6PD deficient. WHO recommendations for tafenoquine are awaited. Notably, the WHO recommends that infants are breastfed for the first 2 years of life, and exclusively until 6 months old. Repeated pregnancies, followed by extended breastfeeding leaves women in P. vivax endemic regions potentially vulnerable to relapses for many years. This puts women's health at risk, increases the malaria burden, and perpetuates transmission, hindering malaria control and elimination. The benefits of lifting restrictions on primaquine administration to breastfeeding women are significant, avoiding the adverse consequences of repeated episodes of acute malaria, such as severe anaemia. Recent data challenge the restriction of primaquine in breastfeeding women. Clinical pharmacokinetic data in breastfeeding infants ≥ 28 days old show that the exposure to primaquine is very low and less than 1% of the maternal exposure, indicating negligible risk to infants, irrespective of their G6PD status. Physiologically-based pharmacokinetic modelling complements the clinical data, predicting minimal primaquine exposure to infants and neonates via breast milk from early post-partum. This article summarizes the clinical and modelling evidence for a favourable benefit:risk evaluation of P. vivax radical cure with primaquine for breastfeeding women without the need for infant G6PD testing, supporting a change in policy. This adjustment to current treatment guidelines would support health equity in regard to effective interventions to protect women and their children, enhance malaria control strategies, and advance P. vivax elimination.
Collapse
Affiliation(s)
- Nada Abla
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland.
| | - Anne Claire Marrast
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - Elodie Jambert
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | | | - Stephan Duparc
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - Lisa Almond
- Certara Predictive Technologies, Simcyp Division, Sheffield, UK
| | | | - Xian Pan
- Certara Predictive Technologies, Simcyp Division, Sheffield, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Ping Zhao
- Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Catriona Waitt
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
- Infectious Diseases Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Charlotte Koldeweij
- Division of Pharmacology Toxicology, Department of Pharmacy, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Susan Cole
- Medicines and Healthcare products Regulatory Agency (MHRA), 10 South Colonnade, London, UK
| | - Andrew S Butler
- Medicines and Healthcare products Regulatory Agency (MHRA), 10 South Colonnade, London, UK
| | - Sonia Khier
- Pharmacokinetic and Modelling Department, School of Pharmacy, IMAG, CNRS, INRIA, UMR 5149, University of Montpellier, Montpellier, France
| | - Jörg J Möhrle
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| | - Myriam El Gaaloul
- MMV Medicines for Malaria Venture, 20 Route de Pré-Bois, 1215, Geneva 15, Switzerland
| |
Collapse
|
2
|
Wang L, Xie X, Li Z, Li Y. Use of trimethoprim- sulfamethoxazole for treating Pneumocystis jirovecii pneumonia in a patient with glucose-6-phosphate dehydrogenase deficiency: a case report. Front Med (Lausanne) 2024; 11:1443645. [PMID: 39318598 PMCID: PMC11420125 DOI: 10.3389/fmed.2024.1443645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/14/2024] [Indexed: 09/26/2024] Open
Abstract
Background Pneumocystis jirovecii pneumonia (PJP) is an opportunistic infection caused by the yeast-like fungus P. jirovecii. As recommended by some guidelines, the first-line treatment for this infection is trimethoprim-sulfamethoxazole (TMP-SMX), and the second-line treatment includes drugs such as dapsone, pentamidine, primaquine, Atovaquone, clindamycin, and caspofungin. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked gene disorder in which treatment with oxidizing drugs, such as sulfonamides, dapsone, primaquine, can directly destroy hemoglobin present in red blood cells (RBCs), thereby inducing methemoglobin and hemolysis. Case presentation Here, we present the case of a lymphoma patient with previous G6PD deficiency who was admitted to ICU for the treatment of severe pneumonia combined with respiratory failure. PJP was detected by the next-generation sequencing of the bronchoalveolar lavage fluid. The patient was initially treated with the antifungal drug caspofungin; however, this treatment showed poor therapeutic effect. Based on the evaluation of G6PD enzyme activity and the patient's previous history of G6PD deficiency, we finally treated the patient with low-dose TMP-SMX combined with caspofungin and provided rigorous medical care to the patient. Following this treatment, the patient's clinical symptoms improved, lung computed tomography showed reduced pulmonary inflammation, and the fungal β-(1,3)-D-glucan test (G test) showed decreased levels of fungal D-glucan. After 57 days, the TMP-SMX treatment was discontinued. No symptoms related to G6PD deficiency, such as hemolysis, hematuria, and anemia, occurred during the treatment course. Conclusion This is the first report mentioning the successful treatment of Pneumocystis jirovecii pneumonia with a double-drug regimen with low-dose TMP-SMX and caspofungin in a T-lymphoblastic leukemia/lymphoma patient with previous G6PD deficiency. Enzyme activity detection is the first step for anti-PJP treatment in patients with G6PD deficiency. Although patients with mild enzyme deficiency may not show any adverse reactions, we still recommend the regular monitoring of the levels of RBCs, hemoglobin, and hematocrit before and after the use of sulfonamides or sulfoxides and other oxidizing drugs in patients with G6PD deficiency. Among other things, early and correct diagnosis of Pneumocystis jirovecii pneumonia in hematological malignancies patients is very important. Relevant oncologists should be alert to the risk of Pneumocystis jirovecii pneumonia in these patients.
Collapse
Affiliation(s)
- Linyu Wang
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Xianlong Xie
- Department of Intensive Care Unit, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Zhe Li
- Department of Haematology/Oncology and Paediatric Oncology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yan Li
- Department of Pharmacy, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
3
|
Habtamu K, Getachew H, Abossie A, Demissew A, Tsegaye A, Degefa T, Wang X, Lee MC, Zhou G, Kibret S, King CL, Kazura JW, Petros B, Yewhalaw D, Yan G. The effect of single low-dose primaquine treatment for uncomplicated Plasmodium falciparum malaria on haemoglobin levels in Ethiopia: a longitudinal cohort study. Malar J 2024; 23:208. [PMID: 38997771 PMCID: PMC11245871 DOI: 10.1186/s12936-024-05021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND To interrupt residual malaria transmission and achieve successful elimination of Plasmodium falciparum in low-transmission settings, the World Health Organization (WHO) recommends the administration of a single dose of 0.25 mg/kg (or 15 mg/kg for adults) primaquine (PQ) combined with artemisinin-based combination therapy (ACT), without glucose-6-phosphate dehydrogenase (G6PD) testing. However, due to the risk of haemolysis in patients with G6PD deficiency (G6PDd), PQ use is uncommon. Thus, this study aimed to assess the safety of a single low dose of PQ administered to patients with G6PD deficiency. METHODS An observational cohort study was conducted with patients treated for uncomplicated P. falciparum malaria with either single-dose PQ (0.25 mg/kg) (SLD PQ) + ACT or ACT alone. Microscopy-confirmed uncomplicated P. falciparum malaria patients visiting public health facilities in Arjo Didessa, Southwest Ethiopia, were enrolled in the study from September 2019 to November 2022. Patients with uncomplicated P. falciparum malaria were followed up for 28 days through clinical and laboratory diagnosis, such as measurements of G6PD levels and haemoglobin (Hb) concentrations. G6PD levels were measured by a quantiative CareSTART™ POCT S1 biosensor machine. Patient interviews were also conducted, and the type and frequency of clinical complaints were recorded. Hb data were taken on days (D) 7, 14, 21, and 28 following treatment with SLD-PQ + ACT or ACT alone. RESULTS A total of 249 patients with uncomplicated P. falciparum malaria were enrolled in this study. Of these, 83 (33.3%) patients received ACT alone, and 166 (66.7%) received ACT combined with SLD-PQ treatment. The median age of the patients was 20 (IQR 28-15) years. G6PD deficiency was found in 17 (6.8%) patients, 14 males and 3 females. There were 6 (7.2%) and 11 (6.6%) phenotypic G6PD-deficient patients in the ACT alone and ACT + SLD-PQ arms, respectively. The mean Hb levels in patients treated with ACT + SLD-PQ were reduced by an average of 0.45 g/dl (95% CI = 0.39 to 0.52) in the posttreatment phase (D7) compared to a reduction of 0.30 g/dl (95% CI = 0.14 to - 0.47) in patients treated with ACT alone (P = 0.157). A greater mean Hb reduction was observed on day 7 in the G6PDd ACT + SLD-PQ group (- 0.60 g/dL) than in the G6PDd ACT alone group (- 0.48 g/dL); however, there was no statistically significant difference (P = 0.465). Overall, D14 losses were 0.10 g/dl (95% CI = - 0.00 to 0.20) and 0.05 g/dl (95% CI = - 0.123 to 0.22) in patients with and without SLD-PQ, respectively (P = 0.412). CONCLUSIONS This study's findings indicate that using SLD-PQ in combination with ACT is safe for uncomplicated P. falciparum malaria regardless of the patient's G6PD status in Ethiopian settings. Caution should be taken in extrapolating this finding in other settings with diverse G6DP phenotypes.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Medical Laboratory Sciences, Menelik II Medical and Health Science College, Addis Ababa, Ethiopia.
| | - Hallelujah Getachew
- Department of Medical Laboratory Sciences, Arbaminch College of Health Sciences, Arbaminch, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Ashenafi Abossie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arbaminch, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Assalif Demissew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| | - Arega Tsegaye
- College of Natural Science, Department of Biology, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Solomon Kibret
- West Valley Mosquito and Vector Control District, Ontario, CA, USA
| | - Christopher L King
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA
| | - James W Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
4
|
Wattanakul T, Gilder ME, McGready R, Hanpithakpong W, Day NPJ, White NJ, Nosten F, Tarning J, Hoglund RM. Population pharmacokinetic modelling of primaquine exposures in lactating women and breastfed infants. Nat Commun 2024; 15:3851. [PMID: 38719803 PMCID: PMC11078975 DOI: 10.1038/s41467-024-47908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
Current guidelines advise against primaquine treatment for breastfeeding mothers to avoid the potential for haemolysis in infants with G6PD deficiency. To predict the haemolytic risk, the amount of drug received from the breast milk and the resulting infant drug exposure need to be characterised. Here, we develop a pharmacokinetic model to describe the drug concentrations in breastfeeding women using venous, capillary, and breast milk data. A mother-to-infant model is developed to mimic the infant feeding pattern and used to predict their drug exposures. Primaquine and carboxyprimaquine exposures in infants are <1% of the exposure in mothers. Therefore, even in infants with the most severe G6PD deficiency variants, it is highly unlikely that standard doses of primaquine (0.25-1 mg base/kg once daily given to the mother for 1-14 days) would cause significant haemolysis. After the neonatal period, primaquine should not be restricted for breastfeeding women (Clinical Trials Registration: NCT01780753).
Collapse
Affiliation(s)
- Thanaporn Wattanakul
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mary Ellen Gilder
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Warunee Hanpithakpong
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK
| | - Richard M Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, UK.
| |
Collapse
|
5
|
Looareesuwan P, Krudsood S, Lawpoolsri S, Tangpukdee N, Matsee W, Nguitragool W, Wilairatana P. Gametocyte prevalence and risk factors of P. falciparum malaria patients admitted at the Hospital for Tropical Diseases, Thailand: a 20-year retrospective study. Malar J 2023; 22:321. [PMID: 37872594 PMCID: PMC10591378 DOI: 10.1186/s12936-023-04728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND The incidence of malaria in Thailand has dramatically declined over the past two decades, and the goal is to eliminate malaria by 2025. Despite significant progress, one of the key challenges to malaria elimination are undetected gametocyte carriers. Human migration adds complexity to the malaria situation, as it not only sustains local transmission but also poses the risk of spreading drug-resistant parasites. Currently, no study has assessed the prevalence of gametocytes across multiple years in Plasmodium falciparum malaria patients in Thailand, and the risk factors for gametocyte carriage have not been fully explored. METHODS Medical records of all P. falciparum malaria patients admitted from January 1, 2001 to December 31, 2020 at the Hospital for Tropical Diseases, Thailand, were retrospectively examined and a total of 1962 records were included for analysis. Both P. falciparum parasites and gametocytes were diagnosed by microscopy. A regression model was used to evaluate predictors of gametocyte carriage. RESULTS The study demonstrated gametocyte prevalence in low malaria transmission areas. Nine risk factors for gametocyte carriage were identified: age between 15 and 24 years [adjusted odds ratio (aOR) = 1.96, 95% confidence interval (CI) 1.18-3.26], Karen ethnicity (aOR = 2.59, 95% CI 1.56-4.29), preadmission duration of fever > 7 days (aOR = 5.40, 95% CI 3.92-7.41), fever on admission (> 37.5 °C) (aOR = 0.61, 95% CI 0.48-0.77), haemoglobin ≤ 8 g/dL (aOR = 3.32, 95% CI 2.06-5.33), asexual parasite density > 5000-25,000/µL (aOR = 0.71, 95% CI 0.52-0.98), asexual parasite density > 25,000-100,000/µL (aOR = 0.74, 95% CI 0.53-1.03), asexual parasite density > 100,000/µL (aOR = 0.51, 95% CI 0.36-0.72), platelet count ≤ 100,000/µL (aOR = 0.65, 95% CI 0.50-0.85, clinical features of severe malaria (aOR = 2.33, 95% CI 1.76-3.10) and dry season (aOR = 1.41, 95% CI 1.10-1.80). An increasing incidence of imported transnational malaria cases was observed over the past two decades. CONCLUSIONS This is the first study to determine the prevalence of gametocytes among patients with symptomatic P. falciparum malaria, identify the risk factors for gametocyte carriage, and potential gametocyte carriers in Thailand. Blocking transmission is one of the key strategies for eliminating malaria in these areas. The results might provide important information for targeting gametocyte carriers and improving the allocation of resources for malaria control in Thailand. This study supports the already nationally recommended use of a single dose of primaquine in symptomatic P. falciparum malaria patients to clear gametocytes.
Collapse
Affiliation(s)
- Panita Looareesuwan
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Srivicha Krudsood
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Clinical Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Noppadon Tangpukdee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wasin Matsee
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
6
|
Onyamboko MA, Olupot-Olupot P, Were W, Namayanja C, Onyas P, Titin H, Baseke J, Muhindo R, Kayembe DK, Ndjowo PO, Basara BB, Okalebo CB, Williams TN, Uyoga S, Taya C, Bamisaiye A, Fanello C, Maitland K, Day NPJ, Taylor WRJ, Mukaka M. Factors affecting haemoglobin dynamics in African children with acute uncomplicated Plasmodium falciparum malaria treated with single low-dose primaquine or placebo. BMC Med 2023; 21:397. [PMID: 37858129 PMCID: PMC10588240 DOI: 10.1186/s12916-023-03105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/05/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Single low-dose primaquine (SLDPQ) effectively blocks the transmission of Plasmodium falciparum malaria, but anxiety remains regarding its haemolytic potential in patients with glucose-6-phopshate dehydrogenase (G6PD) deficiency. We, therefore, examined the independent effects of several factors on haemoglobin (Hb) dynamics in falciparum-infected children with a particular interest in SLDPQ and G6PD status. METHODS This randomised, double-blind, placebo-controlled, safety trial was conducted in Congolese and Ugandan children aged 6 months-11 years with acute uncomplicated P. falciparum and day (D) 0 Hbs ≥ 6 g/dL who were treated with age-dosed SLDPQ/placebo and weight-dosed artemether lumefantrine (AL) or dihydroartemisinin piperaquine (DHAPP). Genotyping defined G6PD (G6PD c.202T allele), haemoglobin S (HbS), and α-thalassaemia status. Multivariable linear and logistic regression assessed factor independence for continuous Hb parameters and Hb recovery (D42 Hb > D0 Hb), respectively. RESULTS One thousand one hundred thirty-seven children, whose median age was 5 years, were randomised to receive: AL + SLDPQ (n = 286), AL + placebo (286), DHAPP + SLDPQ (283), and DHAPP + placebo (282). By G6PD status, 284 were G6PD deficient (239 hemizygous males, 45 homozygous females), 119 were heterozygous females, 418 and 299 were normal males and females, respectively, and 17 were of unknown status. The mean D0 Hb was 10.6 (SD 1.6) g/dL and was lower in younger children with longer illnesses, lower mid-upper arm circumferences, splenomegaly, and α-thalassaemia trait, who were either G6PDd or heterozygous females. The initial fractional fall in Hb was greater in younger children with higher D0 Hbs and D0 parasitaemias and longer illnesses but less in sickle cell trait. Older G6PDd children with lower starting Hbs and greater factional falls were more likely to achieve Hb recovery, whilst lower D42 Hb concentrations were associated with younger G6PD normal children with lower fractional falls, sickle cell disease, α-thalassaemia silent carrier and trait, and late treatment failures. Ten blood transfusions were given in the first week (5 SLDPQ, 5 placebo). CONCLUSIONS In these falciparum-infected African children, posttreatment Hb changes were unaffected by SLDPQ, and G6PDd patients had favourable posttreatment Hb changes and a higher probability of Hb recovery. These reassuring findings support SLDPQ deployment without G6PD screening in Africa. TRIAL REGISTRATION The trial is registered at ISRCTN 11594437.
Collapse
Affiliation(s)
- Marie A Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Kinshasa, Democratic Republic of Congo
| | - Peter Olupot-Olupot
- Busitema University, P.O. Box 1460, Mbale, Uganda
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Winifred Were
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Cate Namayanja
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Peter Onyas
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Harriet Titin
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Joy Baseke
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Rita Muhindo
- Mbale Clinical Research Institute (MCRI), P.O. Box 1966, Mbale, Uganda
| | - Daddy K Kayembe
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Kinshasa, Democratic Republic of Congo
| | - Pauline O Ndjowo
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Kinshasa, Democratic Republic of Congo
| | - Benjamin B Basara
- Kinshasa School of Public Health, University of Kinshasa, Avenue Tombalbaye 68-78, Kinshasa, Democratic Republic of Congo
| | | | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, London, SW7 2AS, UK
| | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Chiraporn Taya
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
| | - Adeola Bamisaiye
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Caterina Fanello
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
- Institute of Global Health Innovation, Department of Surgery and Cancer, Imperial College London, London, SW7 2AS, UK
| | - Nicholas P J Day
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Walter R J Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, 420/6 Rajvithi Road, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Atarihuana S, Gallardo-Condor J, López-Cortés A, Jimenes-Vargas K, Burgos G, Karina-Zambrano A, Flores-Espinoza R, Coral M, Cabrera-Andrade A. Genetic basis and spatial distribution of glucose-6-phosphate dehydrogenase deficiency in ecuadorian ethnic groups: a malaria perspective. Malar J 2023; 22:283. [PMID: 37752491 PMCID: PMC10521485 DOI: 10.1186/s12936-023-04716-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Glucose-6-phosphate dehydrogenase deficiency (G6PDd) is an X-linked disorder affecting over 400 million people worldwide. Individuals with molecular variants associated with reduced enzymatic activity are susceptible to oxidative stress in red blood cells, thereby increasing the risk of pathophysiological conditions and toxicity to anti-malarial treatments. Globally, the prevalence of G6PDd varies among populations. Accordingly, this study aims to characterize G6PDd distribution within the Ecuadorian population and to describe the spatial distribution of reported malaria cases. METHODS Molecular variants associated with G6PDd were genotyped in 581 individuals from Afro-Ecuadorian, Indigenous, Mestizo, and Montubio ethnic groups. Additionally, spatial analysis was conducted to identify significant malaria clusters with high incidence rates across Ecuador, using data collected from 2010 to 2021. RESULTS The A- c.202G > A and A- c.968T > C variants underpin the genetic basis of G6PDd in the studied population. The overall prevalence of G6PDd was 4.6% in the entire population. However, this frequency increased to 19.2% among Afro-Ecuadorian people. Spatial analysis revealed 12 malaria clusters, primarily located in the north of the country and its Amazon region, with relative risks of infection of 2.02 to 87.88. CONCLUSIONS The findings of this study hold significant implications for public health interventions, treatment strategies, and targeted efforts to mitigate the burden of malaria in Ecuador. The high prevalence of G6PDd among Afro-Ecuadorian groups in the northern endemic areas necessitates the development of comprehensive malaria eradication strategies tailored to this geographical region.
Collapse
Affiliation(s)
- Sebastián Atarihuana
- Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Las Américas, Quito, Ecuador
| | | | - Andrés López-Cortés
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
- Latin American Network for the Implementation and Validation of Clinical Pharmacogenomics Guidelines (RELIVAF-CYTED), Madrid, Spain
| | - Karina Jimenes-Vargas
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
- Department of Computer Science and Information Technologies, Computer Science Faculty, CITIC, RNASA Group, University of A Coruña, A Coruña, Spain
| | - Germán Burgos
- One Health Research Group, Facultad de Medicina, Universidad de las Américas, Quito, Ecuador
- Grupo de Medicina Xenómica, Instituto de Ciencias Forenses, Universidad de Santiago de Compostela, A Coruña, Spain
| | - Ana Karina-Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Rodrigo Flores-Espinoza
- Laboratório de Diagnóstico por DNA (LDD), Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Coral
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador
- Carrera de Medicina Veterinaria, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador
| | - Alejandro Cabrera-Andrade
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito, Ecuador.
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito, Ecuador.
| |
Collapse
|
8
|
Barber BE, Abd-Rahman AN, Webster R, Potter AJ, Llewellyn S, Marquart L, Sahai N, Leelasena I, Birrell GW, Edstein MD, Shanks GD, Wesche D, Moehrle JJ, McCarthy JS. Characterizing the Blood-Stage Antimalarial Activity of Tafenoquine in Healthy Volunteers Experimentally Infected With Plasmodium falciparum. Clin Infect Dis 2023; 76:1919-1927. [PMID: 36795050 PMCID: PMC10249991 DOI: 10.1093/cid/ciad075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND The long-acting 8-aminoquinoline tafenoquine may be a good candidate for mass drug administration if it exhibits sufficient blood-stage antimalarial activity at doses low enough to be tolerated by glucose 6-phosphate dehydrogenase (G6PD)-deficient individuals. METHODS Healthy adults with normal levels of G6PD were inoculated with Plasmodium falciparum 3D7-infected erythrocytes on day 0. Different single oral doses of tafenoquine were administered on day 8. Parasitemia and concentrations of tafenoquine and the 5,6-orthoquinone metabolite in plasma/whole blood/urine were measured and standard safety assessments performed. Curative artemether-lumefantrine therapy was administered if parasite regrowth occurred, or on day 48 ± 2. Outcomes were parasite clearance kinetics, pharmacokinetic and pharmacokinetic/pharmacodynamic (PK/PD) parameters from modelling, and dose simulations in a theoretical endemic population. RESULTS Twelve participants were inoculated and administered 200 mg (n = 3), 300 mg (n = 4), 400 mg (n = 2), or 600 mg (n = 3) tafenoquine. The parasite clearance half-life with 400 mg or 600 mg (5.4 hours and 4.2 hours, respectively) was faster than with 200 mg or 300 mg (11.8 hours and 9.6 hours, respectively). Parasite regrowth occurred after dosing with 200 mg (3/3 participants) and 300 mg (3/4 participants) but not after 400 mg or 600 mg. Simulations using the PK/PD model predicted that 460 mg and 540 mg would clear parasitaemia by a factor of 106 and 109, respectively, in a 60-kg adult. CONCLUSIONS Although a single dose of tafenoquine exhibits potent P. falciparum blood-stage antimalarial activity, the estimated doses to effectively clear asexual parasitemia will require prior screening to exclude G6PD deficiency. Clinical Trials Registration. Australian and New Zealand Clinical Trials Registry (ACTRN12620000995976).
Collapse
Affiliation(s)
- Bridget E Barber
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- University of the Sunshine Coast, Morayfield, Australia
- Royal Brisbane and Women's Hospital, Brisbane, Australia
| | | | - Rebecca Webster
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Adam J Potter
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Louise Marquart
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The University of Queensland, Brisbane, Australia
| | - Nischal Sahai
- University of the Sunshine Coast, Morayfield, Australia
| | | | - Geoffrey W Birrell
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - Michael D Edstein
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | - G Dennis Shanks
- Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
| | | | | | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
- The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| |
Collapse
|
9
|
Taylor WR, Olupot-Olupot P, Onyamboko MA, Peerawaranun P, Weere W, Namayanja C, Onyas P, Titin H, Baseke J, Muhindo R, Kayembe DK, Ndjowo PO, Basara BB, Bongo GS, Okalebo CB, Abongo G, Uyoga S, Williams TN, Taya C, Dhorda M, Tarning J, Dondorp AM, Waithira N, Fanello C, Maitland K, Mukaka M, Day NJP. Safety of age-dosed, single low-dose primaquine in children with glucose-6-phosphate dehydrogenase deficiency who are infected with Plasmodium falciparum in Uganda and the Democratic Republic of the Congo: a randomised, double-blind, placebo-controlled, non-inferiority trial. THE LANCET. INFECTIOUS DISEASES 2023; 23:471-483. [PMID: 36462528 DOI: 10.1016/s1473-3099(22)00658-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022]
Abstract
BACKGROUND WHO recommends gametocytocidal, single low-dose primaquine for blocking the transmission of Plasmodium falciparum; however, safety concerns have hampered the implementation of this strategy in sub-Saharan Africa. We aimed to investigate the safety of age-dosed, single low-dose primaquine in children from Uganda and the Democratic Republic of the Congo. METHODS We conducted this randomised, double-blind, placebo-controlled, non-inferiority trial at the Mbale Regional Referral Hospital, Mbale, Uganda, and the Kinshasa Mahidol Oxford Research Unit, Kinshasa, Democratic Republic of the Congo. Children aged between 6 months and 11 years with acute uncomplicated P falciparum infection and haemoglobin concentrations of at least 6 g/dL were enrolled. Patients were excluded if they had a comorbid illness requiring inpatient treatment, were taking haemolysing drugs for glucose-6-phosphate dehydrogenase (G6PD) deficiency, were allergic to the study drugs, or were enrolled in another clinical trial. G6PD status was defined by genotyping for the G6PD c.202T allele, the cause of the G6PD-deficient A- variant. Participants were randomly assigned (1:1) to receive single low-dose primaquine combined with either artemether-lumefantrine or dihydroartemisinin-piperaquine, dosed by bodyweight. Randomisation was stratified by age and G6PD status. The primary endpoint was the development of profound (haemoglobin <4 g/dL) or severe (haemoglobin <5 g/dL) anaemia with severity features, within 21 days of treatment. Analysis was by intention to treat. The sample size assumed an incidence of 1·5% in the placebo group and a 3% non-inferiority margin. The trial is registered at ISRCTN, 11594437, and is closed to new participants. FINDINGS Participants were recruited at the Mbale Regional Referral Hospital between Dec 18, 2017, and Oct 7, 2019, and at the Kinshasa Mahidol Oxford Research Unit between July 17, 2017, and Oct 5, 2019. 4620 patients were assessed for eligibility. 3483 participants were excluded, most owing to negative rapid diagnostic test or negative malaria slide (n=2982). 1137 children with a median age of 5 years were enrolled and randomly assigned (286 to the artemether-lumefantrine plus single low-dose primaquine group, 286 to the artemether-lumefantrine plus placebo group, 283 to the dihydroartemisinin-piperaquine plus single low-dose primaquine group, and 282 to the dihydroartemisinin-piperaquine plus placebo group). Genotyping of G6PD identified 239 G6PD-c.202T hemizygous males and 45 G6PD-c.202T homozygous females (defining the G6PD-deficient group), 119 heterozygous females, 418 G6PD-c.202C normal males and 299 G6PD-c.202C normal females (defining the non-G6PD-deficient group), and 17 children of unknown status. 67 patients were lost to follow-up and four patients withdrew during the study-these numbers were similar between groups. No participants developed profound anaemia and three developed severe anaemia: from the G6PD-deficient group, none (0%) of 133 patients who received placebo and one (0·66%) of 151 patients who received primaquine (difference -0·66%, 95% CI -1·96 to 0·63; p=0·35); and from the non-G6PD-deficient group, one (0·23%) of 430 patients who received placebo and one (0·25%) of 407 patients who received primaquine (-0·014%, -0·68 to 0·65; p=0·97). INTERPRETATION Gametocytocidal, age-dosed, single low-dose primaquine was well tolerated in children from Uganda and the Democratic Republic of the Congo who were infected with P falciparum, and the safety profile of this treatment was similar to that of the placebo. These data support the wider implementation of single low-dose primaquine in Africa. FUNDING UK Government Department for International Development, UK Medical Research Council, UK National Institute for Health Research, and the Wellcome Trust Joint Global Health Trials Scheme.
Collapse
Affiliation(s)
- Walter R Taylor
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Peter Olupot-Olupot
- Mbale Clinical Research Institute, Mbale, Uganda; Department of Public Health, Busitema University, Mbale, Uganda
| | - Marie A Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Pimnara Peerawaranun
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
| | | | | | - Peter Onyas
- Mbale Clinical Research Institute, Mbale, Uganda
| | | | - Joy Baseke
- Department of Public Health, Busitema University, Mbale, Uganda
| | - Rita Muhindo
- Mbale Clinical Research Institute, Mbale, Uganda
| | - Daddy K Kayembe
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Pauline O Ndjowo
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Benjamin B Basara
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Georgette S Bongo
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | | | - Grace Abongo
- Mbale Clinical Research Institute, Mbale, Uganda
| | - Sophie Uyoga
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Institute of Global Health Innovation, Imperial College London, London, UK
| | - Chiraporn Taya
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand
| | - Mehul Dhorda
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M Dondorp
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Naomi Waithira
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Caterina Fanello
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya; Institute of Global Health Innovation, Imperial College London, London, UK
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J P Day
- Mahidol Oxford Tropical Medicine Clinical Research Unit, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
10
|
Placidi G, Mattu C, Ciardelli G, Campa CC. Small molecules targeting endocytic uptake and recycling pathways. Front Cell Dev Biol 2023; 11:1125801. [PMID: 36968200 PMCID: PMC10036367 DOI: 10.3389/fcell.2023.1125801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/23/2023] [Indexed: 03/12/2023] Open
Abstract
Over the past years a growing number of studies highlighted the pivotal role of intracellular trafficking in cell physiology. Among the distinct transport itineraries connecting the endocytic system, both internalization (endocytosis) and recycling (endocytic recycling) pathways were found fundamental to ensure cellular sensing, cell-to-cell communication, cellular division, and collective cell migration in tissue specific-contexts. Consistently, the dysregulation of endocytic trafficking pathways is correlated with several human diseases including both cancers and neurodegeneration. Aimed at suppress specific intracellular trafficking routes involved in disease onset and progression, huge efforts have been made to identify small molecule inhibitors with suitable pharmacological properties for in vivo administration. Here, we review most used drugs and recently discovered small molecules able to block endocytosis and endocytic recycling pathways. We characterize such pharmacological inhibitors by emphasizing their target specificity, molecular affinity, biological activity and efficacy in both in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Giampaolo Placidi
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Turin, Italy
- Chemical-Physical Processes, National Research Council (CNR-IPCF), Pisa, Italy
| | - Carlo C. Campa
- Italian Institute for Genomic Medicine, Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| |
Collapse
|
11
|
Bancone G, Gilder ME, Win E, Gornsawun G, Penpitchaporn P, Moo PK, Archasuksan L, Wai NS, Win S, Aung KK, Hashmi A, Hanboonkunupakarn B, Nosten F, Carrara VI, McGready R. Technical evaluation and usability of a quantitative G6PD POC test in cord blood: a mixed-methods study in a low-resource setting. BMJ Open 2022; 12:e066529. [PMID: 36523222 PMCID: PMC9748916 DOI: 10.1136/bmjopen-2022-066529] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/24/2022] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVES New point-of-care (POC) quantitative G6PD testing devices developed to provide safe radical cure for Plasmodium vivax malaria may be used to diagnose G6PD deficiency in newborns at risk of severe neonatal hyperbilirubinaemia, improving clinical care, and preventing related morbidity and mortality. METHODS We conducted a mixed-methods study analysing technical performance and usability of the 'STANDARD G6PD' Biosensor when used by trained midwives on cord blood samples at two rural clinics on the Thailand-Myanmar border. RESULTS In 307 cord blood samples, the Biosensor had a sensitivity of 1.000 (95% CI: 0.859 to 1.000) and a specificity of 0.993 (95% CI: 0.971 to 0.999) as compared with gold-standard spectrophotometry to diagnose G6PD-deficient newborns using a receiver operating characteristic (ROC) analysis-derived threshold of ≤4.8 IU/gHb. The Biosensor had a sensitivity of 0.727 (95% CI: 0.498 to 0.893) and specificity of 0.933 (95% CI: 0.876 to 0.969) for 30%-70% activity range in girls using ROC analysis-derived range of 4.9-9.9 IU/gHb. These thresholds allowed identification of all G6PD-deficient neonates and 80% of female neonates with intermediate phenotypes.Need of phototherapy treatment for neonatal hyperbilirubinaemia was higher in neonates with deficient and intermediate phenotypes as diagnosed by either reference spectrophotometry or Biosensor.Focus group discussions found high levels of learnability, willingness, satisfaction and suitability for the Biosensor in this setting. The staff valued the capacity of the Biosensor to identify newborns with G6PD deficiency early ('We can know that early, we can counsel the parents about the chances of their children getting jaundice') and at the POC, including in more rural settings ('Because we can know the right result of the G6PD deficiency in a short time, especially for the clinic which does not have a lab'). CONCLUSIONS The Biosensor is a suitable tool in this resource-constrained setting to identify newborns with abnormal G6PD phenotypes at increased risk of neonatal hyperbilirubinaemia.
Collapse
Affiliation(s)
- Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mary Ellen Gilder
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Elsie Win
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Penporn Penpitchaporn
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Phaw Khu Moo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Laypaw Archasuksan
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Nan San Wai
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Sylverine Win
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ko Ko Aung
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ahmar Hashmi
- Institute for Implementation Science, University of Texas Health Sciences Center (UTHealth), Houston, Texas, USA
- Department of Health Promotion and Behavioral Sciences, School of Public Health, University of Texas Health Sciences Center (UTHealth), Houston, Texas, USA
| | - Borimas Hanboonkunupakarn
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Verena Ilona Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Olvany JM, Williams SM, Zimmerman PA. Global perspectives on CYP2D6 associations with primaquine metabolism and Plasmodium vivax radical cure. Front Pharmacol 2022; 13:752314. [PMID: 36457706 PMCID: PMC9705595 DOI: 10.3389/fphar.2022.752314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Clinical trial and individual patient treatment outcomes have produced accumulating evidence that effective primaquine (PQ) treatment of Plasmodium vivax and P. ovale liver stage hypnozoites is associated with genetic variation in the human cytochrome P450 gene, CYP2D6. Successful PQ treatment of individual and population-wide infections by the Plasmodium species that generate these dormant liver stage forms is likely to be necessary to reach elimination of malaria caused by these parasites globally. Optimizing safe and effective PQ treatment will require coordination of efforts between the malaria and pharmacogenomics research communities.
Collapse
Affiliation(s)
- Jasmine M. Olvany
- The Center for Global Health and Diseases, Pathology Department, Case Western Reserve University, Cleveland, OH, United States
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Scott M. Williams
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Peter A. Zimmerman
- The Center for Global Health and Diseases, Pathology Department, Case Western Reserve University, Cleveland, OH, United States
- Master of Public Health Program, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
13
|
Pfeffer DA, Satyagraha AW, Sadhewa A, Alam MS, Bancone G, Boum Y, Brito M, Cui L, Deng Z, Domingo GJ, He Y, Khan WA, Kibria MG, Lacerda M, Menard D, Monteiro W, Pal S, Parikh S, Roca-Feltrer A, Roh M, Sirdah MM, Wang D, Huang Q, Howes RE, Price RN, Ley B. Genetic Variants of Glucose-6-Phosphate Dehydrogenase and Their Associated Enzyme Activity: A Systematic Review and Meta-Analysis. Pathogens 2022; 11:1045. [PMID: 36145477 PMCID: PMC9502867 DOI: 10.3390/pathogens11091045] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/05/2022] [Accepted: 09/10/2022] [Indexed: 01/12/2023] Open
Abstract
Low glucose-6-phosphate dehydrogenase enzyme (G6PD) activity is a key determinant of drug-induced haemolysis. More than 230 clinically relevant genetic variants have been described. We investigated the variation in G6PD activity within and between different genetic variants. In this systematic review, individual patient data from studies reporting G6PD activity measured by spectrophotometry and corresponding the G6PD genotype were pooled (PROSPERO: CRD42020207448). G6PD activity was converted into percent normal activity applying study-specific definitions of 100%. In total, 4320 individuals from 17 studies across 10 countries were included, where 1738 (40.2%) had one of the 24 confirmed G6PD mutations, and 61 observations (3.5%) were identified as outliers. The median activity of the hemi-/homozygotes with A-(c.202G>A/c.376A>G) was 29.0% (range: 1.7% to 76.6%), 10.2% (range: 0.0% to 32.5%) for Mahidol, 16.9% (range 3.3% to 21.3%) for Mediterranean, 9.0% (range: 2.9% to 23.2%) for Vanua Lava, and 7.5% (range: 0.0% to 18.3%) for Viangchan. The median activity in heterozygotes was 72.1% (range: 16.4% to 127.1%) for A-(c.202G>A/c.376A>G), 54.5% (range: 0.0% to 112.8%) for Mahidol, 37.9% (range: 20.7% to 80.5%) for Mediterranean, 53.8% (range: 10.9% to 82.5%) for Vanua Lava, and 52.3% (range: 4.8% to 78.6%) for Viangchan. A total of 99.5% of hemi/homozygotes with the Mahidol mutation and 100% of those with the Mediterranean, Vanua Lava, and Viangchan mutations had <30% activity. For A-(c.202G>A/c.376A>G), 55% of hemi/homozygotes had <30% activity. The G6PD activity for each variant spanned the current classification thresholds used to define clinically relevant categories of enzymatic deficiency.
Collapse
Affiliation(s)
- Daniel A. Pfeffer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | | | - Arkasha Sadhewa
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka 1212, Bangladesh
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol–Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot 63110, Thailand
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
| | - Yap Boum
- Médecins sans Frontières Epicentre, Mbarara Research Centre, Mbarara, Uganda
- Mbarara University of Science and Technology, Mbarara 1956, Uganda
| | - Marcelo Brito
- Fundaçāo de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
| | - Liwang Cui
- Department of Internal Medicine, University of South Florida, Tampa, FL 33620, USA
| | - Zeshuai Deng
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming 650032, China
| | | | - Yongshu He
- Department of Cell Biology and Medical Genetics, Kunming Medical University, Kunming 650032, China
| | - Wasif A. Khan
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka 1212, Bangladesh
| | - Mohammad Golam Kibria
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Mohakhali, Dhaka 1212, Bangladesh
| | - Marcus Lacerda
- Fundaçāo de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
| | - Didier Menard
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, 75015 Paris, France
- Institute of Parasitology and Tropical Diseases, UR7292 Dynamics of Host-Pathogen Interactions, Federation of Translational Medicine, University of Strasbourg, 67081 Strasbourg, France
| | - Wuelton Monteiro
- Fundaçāo de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus 69040-000, AM, Brazil
| | - Sampa Pal
- Diagnostics Program, PATH, Seattle, WA 98121, USA
| | - Sunil Parikh
- Yale School of Public Health, New Haven, CT 06520, USA
| | - Arantxa Roca-Feltrer
- Malaria Consortium, Phnom Penh Center, Street Sothearos, Tonle Basac, Chamkarmorn, Building “H”, 1st Floor, Room No. 192, Phnom Penh, Cambodia
| | - Michelle Roh
- Malaria Elimination Initiative, Institute for Global Health Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Duoquan Wang
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200000, China
- Chinese Center for Tropical Diseases Research, School of Global Health, School of Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiuying Huang
- School of Life Sciences, Xiamen University, Xiamen 361005, China
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford OX1 2JD, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Benedikt Ley
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin 0810, Australia
| |
Collapse
|
14
|
Zhang Z, Li Q, Shen X, Liao L, Wang X, Song M, Zheng X, Zhu Y, Yang Y. The medication for pneumocystis pneumonia with glucose-6-phosphate dehydrogenase deficiency patients. Front Pharmacol 2022; 13:957376. [PMID: 36160421 PMCID: PMC9490050 DOI: 10.3389/fphar.2022.957376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/05/2022] [Indexed: 11/13/2022] Open
Abstract
Pneumocystis pneumonia (PCP) is an opportunity acquired infection, which is usually easy to occur in patients with AIDS, organ transplantation, and immunosuppressive drugs. The prevention and treatment must be necessary for PCP patients with immunocompromise. And the oxidants are currently a typical regimen, including sulfanilamide, dapsone, primaquine, etc. Glucose-6-phosphate dehydrogenase (G6PD) deficiency is an X-linked gene-disease that affects about 400 million people worldwide. The lack of G6PD in this population results in a decrease in intracellular glutathione synthesis and a weakening of the detoxification ability of the oxidants. As a result, oxidants can directly damage haemoglobin in red blood cells, inducing methemoglobin and hemolysis. When patients with G6PD deficiency have low immunity, they are prone to PCP infection, so choosing drugs that do not induce hemolysis is essential. There are no clear guidelines to recommend the drug choice of this kind of population at home and abroad. This paper aims to demonstrate the drug choice for PCP patients with G6PD deficiency through theoretical research combined with clinical cases.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department of Pharmacy, The First People’s Hospital of Ziyang, Ziyang, China
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qinhui Li
- Department of Medical, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaoyan Shen
- Department of Pharmacy, Chengdu Qingbaijiang District People’s Hospital, Chengdu, China
| | - Lankai Liao
- Intensive Care Unit, The Third Hospital of Mianyang, Mianyang, China
| | - Xia Wang
- Department of Pharmacy, The First People’s Hospital of Ziyang, Ziyang, China
| | - Min Song
- Department of Pharmacy, The First People’s Hospital of Ziyang, Ziyang, China
| | - Xi Zheng
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yulian Zhu
- Department of Pharmacy, Ziyang People’s Hospital, Ziyang, China
- *Correspondence: Yulian Zhu, ; Yong Yang,
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Yulian Zhu, ; Yong Yang,
| |
Collapse
|
15
|
Mungkalasut P, Kiatamornrak P, Jugnam-Ang W, Krudsood S, Cheepsunthorn P, Cheepsunthorn CL. Haematological profile of malaria patients with G6PD and PKLR variants (erythrocytic enzymopathies): a cross-sectional study in Thailand. Malar J 2022; 21:250. [PMID: 36038921 PMCID: PMC9426002 DOI: 10.1186/s12936-022-04267-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background Glucose 6-phosphate dehydrogenase (G6PD) and pyruvate kinase (PKLR) deficiencies are common causes of erythrocyte haemolysis in the presence of antimalarial drugs such as primaquine and tafenoquine. The present study aimed to elucidate such an association by thoroughly investigating the haematological indices in malaria patients with G6PD and PKLRR41Q variants. Methods Blood samples from 255 malaria patients from Thailand, Myanmar, Laos, and Cambodia were collected to determine haematological profile, G6PD enzyme activity and G6PD deficiency variants. The multivariate analysis was performed to investigate the association between anaemia and G6PD MahidolG487A, the most common mutation in this study. Results The prevalence of G6PD deficiency was 11.1% (27/244) in males and 9.1% (1/11) in female. The MAFs of the G6PD MahidolG487A and PKLRR41Q variants were 7.1% and 2.6%, respectively. Compared with patients with wildtype G6PD after controlling for haemoglobinopathies, G6PD-deficient patients with hemizygous and homozygous G6PD MahidolG487A exhibited anaemia with low levels of haemoglobin (11.16 ± 2.65 g/dl, p = 0.041). These patients also exhibited high levels of reticulocytes (3.60%). The median value of G6PD activity before treatment (Day 0) was significantly lower than that of after treatment (Day 28) (5.51 ± 2.54 U/g Hb vs. 6.68 ± 2.45 U/g Hb; p < 0.001). Reticulocyte levels on Day 28 were significantly increased compared to that of on Day 0 (2.14 ± 0.92% vs 1.57 ± 1.06%; p < 0.001). PKLRR41Q had no correlation with anaemia in malaria patients. The risk of anaemia inpatients with G6PDMahidolG487A was higher than wildtype patients (OR = 3.48, CI% 1.24–9.75, p = 0.018). Univariate and multivariate analyses confirmed that G6PDMahidolG487A independently associated with anaemia (< 11 g/dl) after adjusted by age, gender, Plasmodium species, parasite density, PKLRR41Q, and haemoglobinopathies (p < 0.001). Conclusions This study revealed that malaria patients with G6PD MahidolG487A, but not with PKLRR41Q, had anaemia during infection. As a compensatory response to haemolytic anaemia after malaria infection, these patients generated more reticulocytes. The findings emphasize the effect of host genetic background on haemolytic anaemia and the importance of screening patients for erythrocyte enzymopathies and related mutations prior to anti-malarial therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04267-7.
Collapse
Affiliation(s)
- Punchalee Mungkalasut
- Interdisciplinary Programme of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Patcharakorn Kiatamornrak
- Medical Biochemistry Programme, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Watcharapong Jugnam-Ang
- Medical Biochemistry Programme, Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Srivicha Krudsood
- Department of Tropical Hygiene and Clinical Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | |
Collapse
|
16
|
Khan W, Wang YH, Chaurasiya ND, Nanayakkara NPD, Herath HMB, Harrison KA, Dale G, Stanford DA, Dahl EP, McChesney JD, Gul W, ElSohly MA, Khan SI, Fasinu PS, Khan IA, Tekwani BL, Walker LA. Comparative single dose pharmacokinetics and metabolism of racemic primaquine and its enantiomers in human volunteers. Drug Metab Pharmacokinet 2022; 45:100463. [PMID: 35709685 PMCID: PMC9789533 DOI: 10.1016/j.dmpk.2022.100463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022]
Abstract
Primaquine (PQ) is a racemic drug used in treatment of malaria for six decades. Recent studies suggest that the two enantiomers of PQ are differentially metabolized in animals, and this results in different pharmacological and toxicological profiles. The current study characterizes the pharmacokinetic (PK) properties, metabolism and tolerability of the individual enantiomers of PQ in healthy human volunteers with normal glucose-6-phosphate dehydrogenase (G6PD) activity. Two cohorts (at two dose levels), each with 18 subjects, participated in three study arms in a crossover fashion: a single dose of the (-)-R enantiomer (RPQ), a single dose of the (+)-S enantiomer (SPQ), and a single dose of racemic PQ (RSPQ). PQ and its key metabolites carboxyprimaquine (cPQ) and PQ-N-carbamoyl glucuronide (PQ-N-CG) were analyzed. Clear differences were observed in PK and metabolism of the two enantiomers. Relative PQ exposure was higher with SPQ as compared to RPQ. PQ maximum plasma concentration (Cmax) and area under the plasma concentration-time curve were higher for SPQ, while the apparent volume of distribution and total body clearance were higher for RPQ. Metabolism of the two enantiomers showed dramatic differences: plasma PQ-N-CG was derived solely from SPQ, while RPQ was much more efficiently converted to cPQ than was SPQ. Cmax of cPQ and PQ-N-CG were 10 and 2 times higher, respectively, than the parent drugs. The study demonstrates that the PK properties of PQ enantiomers show clear differences, and metabolism is highly enantioselective. Such differences in metabolism suggest potentially distinct toxicity profiles in multi-dose regimens, especially in G6PD-deficient subjects.
Collapse
Affiliation(s)
- Washim Khan
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Yan-Hong Wang
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Narayan D. Chaurasiya
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research Institute, Birmingham, AL, 35205, USA
| | - NP Dhammika Nanayakkara
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - HM Bandara Herath
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Kerri A. Harrison
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Gray Dale
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Donald A. Stanford
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Eric P. Dahl
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | | | - Waseem Gul
- ElSohly Laboratories, Inc., Oxford, MS, 38655, USA
| | - Mahmoud A. ElSohly
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA,Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA,ElSohly Laboratories, Inc., Oxford, MS, 38655, USA
| | - Shabana I. Khan
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA
| | - Pius S. Fasinu
- Department of Pharmacology & Toxicology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ikhlas A. Khan
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA,Departments of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, 38677, USA
| | - Babu L. Tekwani
- Department of Infectious Diseases, Division of Drug Discovery, Southern Research Institute, Birmingham, AL, 35205, USA,Corresponding author. (B.L. Tekwani)
| | - Larry A. Walker
- National Center for Natural Products Research, The University of Mississippi, University, MS, 38677, USA,Corresponding author. (L.A. Walker)
| |
Collapse
|
17
|
Mwaiswelo RO, Ngasala B, Msolo D, Kweka E, Mmbando BP, Mårtensson A. A single low dose of primaquine is safe and sufficient to reduce transmission of Plasmodium falciparum gametocytes regardless of cytochrome P450 2D6 enzyme activity in Bagamoyo district, Tanzania. Malar J 2022; 21:84. [PMID: 35279143 PMCID: PMC8917764 DOI: 10.1186/s12936-022-04100-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Primaquine is a pro-drug and its active metabolite is potent against mature Plasmodium falciparum gametocytes. Primaquine is metabolized by a highly polymorphic cytochrome P450 2D6 (CYP2D6) enzyme. Mutations in the gene encoding this enzyme may lead to impaired primaquine activity. This study assessed if 0.25 mg/kg single-dose primaquine is safe and sufficient to reduce transmission of gametocytes in individuals with no, reduced, or increased CYP2D6 enzyme activity. METHODS Between June 2019 and January 2020 children aged 1-10 years, attending at Yombo dispensary, Bagamoyo district, with confirmed microcopy-determined uncomplicated P. falciparum malaria were enrolled in the study. The enrolled patients were treated with a standard artemether-lumefantrine regimen plus 0.25 mg/kg single-dose primaquine and followed up for 28 days for clinical and laboratory assessment. Primaquine was administered with the first dose of artemether-lumefantrine. Safety assessment involved direct questioning and recording of the nature and incidence of clinical signs and symptoms, and measurement of haemoglobin (Hb) concentration. Blood samples collected from 100 patients were used for assessment of post-treatment infectiousness on day 7 using mosquito membrane feeding assays. Molecular methods were used to determine CYP2D6 and glucose-6-phosphate dehydrogenase (G6PD) status. The primary outcome was the safety of 0.25 mg/kg single-dose primaquine based on CYP2D6 status. RESULTS In total, 157 children [median age 6.4 (Interquartile range 4.0-8.2) years] were recruited, of whom 21.0% (33/157) and 12.7% (20/157) had reduced CYP2D6 and deficient G6PD activity, respectively. Day 3 mean absolute Hb concentration reduction was 1.50 g/dL [95% confidence interval (CI) 1.10-1.90] and 1.51 g/dL (95% CI 1.31-1.71) in reduced and normal CYP2D6 patients, respectively (t = 0.012, p = 0.990). The day 3 mean absolute Hb concentration reduction in G6PD deficient, G6PD normal and heterozygous female was 1.82 g/dL (95% CI 1.32-2.32), 1.48 g/dL (95% CI 1.30-1.67) and 1.47 g/dL (95% CI 0.76-2.18), respectively (F = 0.838, p = 0.435). Sixteen percent (16/98) of the patients each infected at least one mosquito on day 7, and of these, 10.0% (2/20) and 17.9% (14/78) had reduced and normal CYP2D6 enzyme activity, respectively (x2 = 0.736, p = 0.513). CONCLUSION Single-dose 0.25 mg/kg primaquine was safe and sufficient for reducing transmission of P. falciparum gametocytes regardless of CYP2D6 or G6PD status. Trial registration Study registration number: NCT03352843.
Collapse
Affiliation(s)
- Richard Owden Mwaiswelo
- Department of Research and Training, Tropical Pesticides Research Institute, Arusha, Tanzania.
- Department of Microbiology, Immunology and Parasitology, Hubert Kairuki Memorial University, Dar es Salaam, Tanzania.
- Department of Medical Parasitology and Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.
| | - Billy Ngasala
- Department of Medical Parasitology and Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Dominick Msolo
- College of Natural and Applied Sciences, University of Dar Es Salaam, Dar es Salaam, Tanzania
| | - Eliningaya Kweka
- Department of Research and Training, Tropical Pesticides Research Institute, Arusha, Tanzania
| | - Bruno P Mmbando
- Tanga Research Centre, National Institute for Medical Research, Tanga, Tanzania
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| |
Collapse
|
18
|
Chotsiri P, Mahamar A, Hoglund RM, Koita F, Sanogo K, Diawara H, Dicko A, Simpson JA, Bousema T, White NJ, Brown JM, Gosling R, Chen I, Tarning J. Mechanistic Modeling of Primaquine Pharmacokinetics, Gametocytocidal Activity, and Mosquito Infectivity. Clin Pharmacol Ther 2022; 111:676-685. [PMID: 34905220 PMCID: PMC9302630 DOI: 10.1002/cpt.2512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/08/2021] [Indexed: 11/06/2022]
Abstract
Clinical studies have shown that adding a single 0.25 mg base/kg dose of primaquine to standard antimalarial regimens rapidly sterilizes Plasmodium falciparum gametocytes. However, the mechanism of action and overall impact on malaria transmission is still unknown. Using data from 81 adult Malians with P. falciparum gametocytemia who received the standard dihydroartemisinin-piperaquine treatment course and were randomized to receive either a single dose of primaquine between 0.0625 and 0.5 mg base/kg or placebo, we characterized the pharmacokinetic-pharmacodynamic relationships for transmission blocking activity. Both gametocyte clearance and mosquito infectivity were assessed. A mechanistically linked pharmacokinetic-pharmacodynamic model adequately described primaquine and carboxy-primaquine pharmacokinetics, gametocyte dynamics, and mosquito infectivity at different clinical doses of primaquine. Primaquine showed a dose-dependent gametocytocidal effect that precedes clearance. A single low dose of primaquine (0.25 mg/kg) rapidly prevented P. falciparum transmissibility.
Collapse
Affiliation(s)
- Palang Chotsiri
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
| | - Almahamoudou Mahamar
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Richard M. Hoglund
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| | - Fanta Koita
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Koualy Sanogo
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Halimatou Diawara
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Alassane Dicko
- Malaria Research and Training CentreFaculty of Pharmacy and Faculty of Medicine and DentistryUniversity of Science, Techniques and Technologies of BamakoBamakoMali
| | - Julie A. Simpson
- Centre for Epidemiology and BiostatisticsMelbourne School of Population and Global HealthUniversity of MelbourneMelbourneVictoriaAustralia
| | - Teun Bousema
- Radboud Institute of Health SciencesRadboud University Medical CenterNijmegenThe Netherlands
| | - Nicholas J. White
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| | - Joelle M. Brown
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Roly Gosling
- Department of Epidemiology and BiostatisticsUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Global Health GroupMalaria Elimination InitiativeUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Ingrid Chen
- Global Health GroupMalaria Elimination InitiativeUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Joel Tarning
- Mahidol‐Oxford Tropical Medicine Research UnitFaculty of Tropical MedicineMahidol UniversityBangkokThailand
- Centre for Tropical Medicine and Global HealthNuffield Department of MedicineOxford UniversityOxfordUK
| |
Collapse
|
19
|
Mwaiswelo RO, Kabuga H, Kweka EJ, Baraka V. Is it time for Africa to adopt primaquine in the era of malaria control and elimination? Trop Med Health 2022; 50:17. [PMID: 35216617 PMCID: PMC8874101 DOI: 10.1186/s41182-022-00408-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/15/2022] [Indexed: 11/23/2022] Open
Abstract
Primaquine is a gametocytocidal drug known to significantly reduce malaria transmission. However, primaquine induces a dose-dependent acute hemolytic anemia (AHA) in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency that has led to a limited use of the drug especially in Africa where the condition is common. The World Health Organization (WHO) now recommends a single low dose (SLD) of primaquine (0.25 mg/kg) as P. falciparum gametocytocidal without the need for prior screening of G6PD status. Adoption and implementation of SLD primaquine in Africa may probably reduce malaria transmission, a pre-requisite for malaria elimination. This review therefore, focused on the safety of primaquine for control of malaria in Africa. The literature search was performed using online database Google Scholar, PubMed, HINARI, and Science Direct. Search terms used were “malaria”, “primaquine”, “safety”, “G6PD deficiency”, “large scale” or “mass administration”. Clinical trials in many African countries have shown SLD primaquine to be safe especially in a milder African G6PD A- variant. Likewise, large-scale primaquine administrations outside Africa involving hundreds of thousands to tenths of millions of participants and with severe variants of G6PD deficiency have also shown primaquine to be safe and well-tolerated. Fourteen deaths associated with primaquine have been reported globally over the past 6 decades, but none occurred following the administration of SLD primaquine. Available evidence shows that the WHO-recommended SLD primaquine dose added to effective schizonticides is safe and well-tolerated even in individuals with G6PD deficiency, and therefore, it can be safely used in the African population with the mildest G6PD A- variant. Sub-Saharan Africa contributes about 95% of global malaria cases and related deaths. Despite safety concerns adoption of SLD primaquine is needed to further reduce malaria transmission, an essential prerequisite for the elimination of the infection in Africa. Large scale administrations of primaquine for control and elimination of malaria have been implemented in other parts of the world where there are severe variants of G6PD deficiency, but only around 1% of the population had mild adverse effects. African G6PD A- is a milder variant of deficiency, and the hemolysis that occurs following a single 0.25 mg/kg primaquine administration in this group is usually mild and self-limiting. With proper planning and preparation for the management of adverse effects, administration of SLD primaquine plus effective schizonticides, in a form of mass drug administration or seasonal malaria chemoprevention can be used in Africa to reduce malaria transmission.
Collapse
Affiliation(s)
- Richard O Mwaiswelo
- Department of Microbiology, Immunology and Parasitology, Hubert Kairuki Memorial University, P.O Box 65300, Dar es Salaam, Tanzania.
| | - Hamis Kabuga
- Department of Microbiology, Immunology and Parasitology, Hubert Kairuki Memorial University, P.O Box 65300, Dar es Salaam, Tanzania
| | - Eliningaya J Kweka
- Department of Research, Tropical Pesticides Research Institute, P.O Box 3024, Arusha, Tanzania.,Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health Sciences, P.O. Box 1464, Mwanza, Tanzania
| | - Vito Baraka
- National Institute for Medical Research, Tanga Centre, P.O Box 5004, Tanga, Tanzania
| |
Collapse
|
20
|
Pernaute-Lau L, Camara M, Nóbrega de Sousa T, Morris U, Ferreira MU, Gil JP. An update on pharmacogenetic factors influencing the metabolism and toxicity of artemisinin-based combination therapy in the treatment of malaria. Expert Opin Drug Metab Toxicol 2022; 18:39-59. [PMID: 35285373 DOI: 10.1080/17425255.2022.2049235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Artemisinin-based combination therapies (ACTs) are recommended first-line antimalarials for uncomplicated Plasmodium falciparum malaria. Pharmacokinetic/pharmacodynamic variation associated with ACT drugs and their effect is documented. It is accepted to an extent that inter-individual variation is genetically driven, and should be explored for optimized antimalarial use. AREAS COVERED We provide an update on the pharmacogenetics of ACT antimalarial disposition. Beyond presently used antimalarials, we also refer to information available for the most notable next-generation drugs under development. The bibliographic approach was based on multiple Boolean searches on PubMed covering all recent publications since our previous review. EXPERT OPINION The last 10 years have witnessed an increase in our knowledge of ACT pharmacogenetics, including the first clear examples of its contribution as an exacerbating factor for drug-drug interactions. This knowledge gap is still large and is likely to widen as a new wave of antimalarial drug is looming, with few studies addressing their pharmacogenetics. Clinically useful pharmacogenetic markers are still not available, in particular, from an individual precision medicine perspective. A better understanding of the genetic makeup of target populations can be valuable for aiding decisions on mass drug administration implementation concerning region-specific antimalarial drug and dosage options.
Collapse
Affiliation(s)
- Leyre Pernaute-Lau
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal
| | - Mahamadou Camara
- Department of Epidemiology of Parasitic Diseases, Faculty of Pharmacy, Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Taís Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brasil
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Marcelo Urbano Ferreira
- Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José Pedro Gil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden.,Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, University of Lisbon, Lisbon, 1749-016, Portugal.,Global Health and Tropical Medicine, Institute of Hygiene and Tropical Medicine, Nova University of Lisbon, Portugal
| |
Collapse
|
21
|
Bancone G, Chu CS. G6PD Variants and Haemolytic Sensitivity to Primaquine and Other Drugs. Front Pharmacol 2021; 12:638885. [PMID: 33790795 PMCID: PMC8005603 DOI: 10.3389/fphar.2021.638885] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/01/2021] [Indexed: 02/04/2023] Open
Abstract
Restrictions on the cultivation and ingestion of fava beans were first reported as early as the fifth century BC. Not until the late 19th century were clinical descriptions of fava-induced disease reported and soon after characterised as “favism” in the early 20th century. It is now well known that favism as well as drug-induced haemolysis is caused by a deficiency of the glucose-6-phosphate dehydrogenase (G6PD) enzyme, one of the most common enzyme deficiency in humans. Interest about the interaction between G6PD deficiency and therapeutics has increased recently because mass treatment with oxidative 8-aminoquinolines is necessary for malaria elimination. Historically, assessments of haemolytic risk have focused on the clinical outcomes (e.g., haemolysis) associated with either a simplified phenotypic G6PD characterisation (deficient or normal) or an ill-fitting classification of G6PD genetic variants. It is increasingly apparent that detailed knowledge of both aspects is required for a complete understanding of haemolytic risk. While more attention has been devoted recently to better phenotypic characterisation of G6PD activity (including the development of new point-of care tests), the classification of G6PD variants should be revised to be clinically useful in malaria eliminating countries and in populations with prevalent G6PD deficiency. The scope of this work is to summarize available literature on drug-induced haemolysis among individuals with different G6PD variants and to highlight knowledge gaps that could be filled with further clinical and laboratory research.
Collapse
Affiliation(s)
- Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
22
|
Stepniewska K, Humphreys GS, Gonçalves BP, Craig E, Gosling R, Guerin PJ, Price RN, Barnes KI, Raman J, Smit MR, D’Alessandro U, Stone WJR, Bjorkman A, Samuels AM, Arroyo-Arroyo MI, Bastiaens GJH, Brown JM, Dicko A, El-Sayed BB, Elzaki SEG, Eziefula AC, Kariuki S, Kwambai TK, Maestre AE, Martensson A, Mosha D, Mwaiswelo RO, Ngasala BE, Okebe J, Roh ME, Sawa P, Tiono AB, Chen I, Drakeley CJ, Bousema T. Efficacy of Single-Dose Primaquine With Artemisinin Combination Therapy on Plasmodium falciparum Gametocytes and Transmission: An Individual Patient Meta-Analysis. J Infect Dis 2020; 225:1215-1226. [PMID: 32778875 PMCID: PMC8974839 DOI: 10.1093/infdis/jiaa498] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/06/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Since the World Health Organization recommended single low-dose (0.25 mg/kg) primaquine (PQ) in combination with artemisinin-based combination therapies (ACTs) in areas of low transmission or artemisinin-resistant Plasmodium falciparum, several single-site studies have been conducted to assess efficacy. METHODS An individual patient meta-analysis to assess gametocytocidal and transmission-blocking efficacy of PQ in combination with different ACTs was conducted. Random effects logistic regression was used to quantify PQ effect on (1) gametocyte carriage in the first 2 weeks post treatment; and (2) the probability of infecting at least 1 mosquito or of a mosquito becoming infected. RESULTS In 2574 participants from 14 studies, PQ reduced PCR-determined gametocyte carriage on days 7 and 14, most apparently in patients presenting with gametocytemia on day 0 (odds ratio [OR], 0.22; 95% confidence interval [CI], .17-.28 and OR, 0.12; 95% CI, .08-.16, respectively). Rate of decline in gametocyte carriage was faster when PQ was combined with artemether-lumefantrine (AL) compared to dihydroartemisinin-piperaquine (DP) (P = .010 for day 7). Addition of 0.25 mg/kg PQ was associated with near complete prevention of transmission to mosquitoes. CONCLUSIONS Transmission blocking is achieved with 0.25 mg/kg PQ. Gametocyte persistence and infectivity are lower when PQ is combined with AL compared to DP.
Collapse
Affiliation(s)
- Kasia Stepniewska
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Infectious Diseases Data Observatory, Oxford, United Kingdom,Kasia Stepniewska, PhD, WorldWide Antimalarial Resistance Network (WWARN), Centre for Tropical Medicine and Global Health, Churchill Hospital, CCVTM, University of Oxford, Old Road, Oxford OX3 7LE, UK
| | - Georgina S Humphreys
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Infectious Diseases Data Observatory, Oxford, United Kingdom,Green Templeton College, University of Oxford, Oxford, United Kingdom
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elaine Craig
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Infectious Diseases Data Observatory, Oxford, United Kingdom
| | - Roly Gosling
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA,Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Philippe J Guerin
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Infectious Diseases Data Observatory, Oxford, United Kingdom
| | - Ric N Price
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Norther Territory, Australia,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Karen I Barnes
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,University of Cape Town/Medical Research Council Collaborating Centre for Optimising Antimalarial Therapy, University of Cape Town, Cape Town, South Africa,Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jaishree Raman
- University of Cape Town/Medical Research Council Collaborating Centre for Optimising Antimalarial Therapy, University of Cape Town, Cape Town, South Africa,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa,Wits Research Institute for Malaria, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Menno R Smit
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Umberto D’Alessandro
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Will J R Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anders Bjorkman
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aaron M Samuels
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA,Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Maria I Arroyo-Arroyo
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Guido J H Bastiaens
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands,Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Joelle M Brown
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Badria B El-Sayed
- Tropical Medicine Research Institute, National Centre for Research, Khartoum, Sudan
| | - Salah-Eldin G Elzaki
- Tropical Medicine Research Institute, National Centre for Research, Khartoum, Sudan
| | - Alice C Eziefula
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom,Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, United Kingdom
| | | | - Titus K Kwambai
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom,Kenya Medical Research Institute, Kisian, Kenya
| | - Amanda E Maestre
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Andreas Martensson
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Dominic Mosha
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania,Africa Academy for Public Health, Dar es Salaam, Tanzania
| | - Richard O Mwaiswelo
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Billy E Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Joseph Okebe
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michelle E Roh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA,Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Patrick Sawa
- Human Health Division, International Centre for Insect Physiology and Ecology, Mbita Point, Kenya
| | - Alfred B Tiono
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Ingrid Chen
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Chris J Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands,Correspondence: Teun Bousema, PhD, Department of Medical Microbiology, Radboud Institute for Health Science, Radboudumc, PO Box 9101, 6500 HB Nijmegen, The Netherlands ()
| |
Collapse
|
23
|
Rei Yan SL, Wakasuqui F, Wrenger C. Point-of-care tests for malaria: speeding up the diagnostics at the bedside and challenges in malaria cases detection. Diagn Microbiol Infect Dis 2020; 98:115122. [PMID: 32711185 DOI: 10.1016/j.diagmicrobio.2020.115122] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022]
Abstract
Malaria remains as one of the major public health problems worldwide. About 228 million cases occurred in 2018 only, with Africa bearing about 93% of the cases. Asymptomatic population carrying the various forms of the parasite Plasmodium in endemic areas plays an important role in the spread of the disease. To tackle this battle, more sensitive and precise detection kits for malaria are crucial to better control the number of new malaria cases. In this review, we not only discuss some of the available approaches to rapidly detect new malaria cases in endemic areas but also shed light on parallel problems that may affect the detection of individuals infected with the parasite, covering kelch 13 mutation, glucose 6-phosphate dehydrogenase deficiency, and hemoglobin disorders. Available approaches for malaria detection covered in this review are focused on point-of-care tests, including portable polymerase chain reaction and aptamers.
Collapse
Affiliation(s)
- Sun L Rei Yan
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil
| | - Felipe Wakasuqui
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil
| | - Carsten Wrenger
- Department of Parasitology, Institute of Biomedical Sciences at the University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Ethics and Antimalarial Drug Resistance. ETHICS AND DRUG RESISTANCE: COLLECTIVE RESPONSIBILITY FOR GLOBAL PUBLIC HEALTH 2020. [PMCID: PMC7586435 DOI: 10.1007/978-3-030-27874-8_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
There has been impressive progress in malaria control and treatment over the past two decades. One of the most important factors in the decline of malaria-related mortality has been the development and deployment of highly effective treatment in the form of artemisinin-based combination therapies (ACTs). However, recent reports suggest that these gains stand the risk of being reversed due to the emergence of ACT resistance in the Greater Mekong Subregion and the threat of this resistance spreading to Africa, where the majority of the world’s malaria cases occur, with catastrophic consequences. This chapter provides an overview of strategies proposed by malaria experts to tackle artemisinin-resistant malaria, and some of the most important practical ethical issues presented by each of these interventions. The proposed strategies include mass antimalarial drug administrations in selected populations, and mandatory screening of possibly infected individuals prior to entering an area free of artemisinin-resistant malaria. We discuss ethical issues such as tensions between the wishes of individuals versus the broader goal of malaria elimination, and the risks of harm to interventional populations, and conclude by proposing a set of recommendations.
Collapse
|
25
|
Abstract
The scientific community worldwide has realized that malaria elimination will not be possible without development of safe and effective transmission-blocking interventions. Primaquine, the only WHO recommended transmission-blocking drug, is not extensively utilized because of the toxicity issues in G6PD deficient individuals. Therefore, there is an urgent need to develop novel therapeutic interventions that can target malaria parasites and effectively block transmission. But at first, it is imperative to unravel the existing portfolio of transmission-blocking drugs. This review highlights transmission-blocking potential of current antimalarial drugs and drugs that are in various stages of clinical development. The collective analysis of the relationships between the structure and the activity of transmission-blocking drugs is expected to help in the design of new transmission-blocking antimalarials.
Collapse
|
26
|
Chairat K, Jittamala P, Hanboonkunupakarn B, Pukrittayakamee S, Hanpithakpong W, Blessborn D, White NJ, Day NPJ, Tarning J. Enantiospecific pharmacokinetics and drug-drug interactions of primaquine and blood-stage antimalarial drugs. J Antimicrob Chemother 2019; 73:3102-3113. [PMID: 30085149 PMCID: PMC6198747 DOI: 10.1093/jac/dky297] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
Objectives Characterization of the pharmacokinetic properties of the enantiomers of primaquine and carboxyprimaquine following administration of racemic primaquine given alone and in combination with commonly used antimalarial drugs. Methods Enantiomeric pharmacokinetics were evaluated in 49 healthy adult volunteers enrolled in three randomized cross-over studies in which a single dose of primaquine was given alone and then, after a suitable washout period, in combination with chloroquine, dihydroartemisinin/piperaquine or pyronaridine/artesunate. Non-linear mixed-effects modelling was used to characterize pharmacokinetics and assess the impact of drug-drug interactions. Results The volume of distribution of racemic primaquine was decreased by a median (95% CI) of 22.0% (2.24%-39.9%), 24.0% (15.0%-31.5%) and 25.7% (20.3%-31.1%) when co-administered with chloroquine, dihydroartemisinin/piperaquine and pyronaridine/artesunate, respectively. The oral clearance of primaquine was decreased by a median of 19.1% (14.5%-22.8%) when co-administered with pyronaridine/artesunate. These interactions were enantiospecific with a relatively higher effect on (+)-S-primaquine than on (-)-R-primaquine. No drug-drug interaction effects were seen on the pharmacokinetics of either carboxyprimaquine enantiomer. Conclusions Population pharmacokinetic models characterizing the enantiospecific properties of primaquine were developed successfully. Exposure to primaquine, particularly to the (+)-S-primaquine but not the carboxy metabolites, increased by up to 30% when co-administered with commonly used antimalarial drugs. A better mechanistic understanding of primaquine metabolism is required for assessment of its efficacy and haematological toxicity in humans.
Collapse
Affiliation(s)
- Kalayanee Chairat
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Podjanee Jittamala
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Borimas Hanboonkunupakarn
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sasithon Pukrittayakamee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Warunee Hanpithakpong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Daniel Blessborn
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
Camarda G, Jirawatcharadech P, Priestley RS, Saif A, March S, Wong MHL, Leung S, Miller AB, Baker DA, Alano P, Paine MJI, Bhatia SN, O'Neill PM, Ward SA, Biagini GA. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat Commun 2019; 10:3226. [PMID: 31324806 PMCID: PMC6642103 DOI: 10.1038/s41467-019-11239-0] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 07/02/2019] [Indexed: 12/29/2022] Open
Abstract
Primaquine (PQ) is an essential antimalarial drug but despite being developed over 70 years ago, its mode of action is unclear. Here, we demonstrate that hydroxylated-PQ metabolites (OH-PQm) are responsible for efficacy against liver and sexual transmission stages of Plasmodium falciparum. The antimalarial activity of PQ against liver stages depends on host CYP2D6 status, whilst OH-PQm display direct, CYP2D6-independent, activity. PQ requires hepatic metabolism to exert activity against gametocyte stages. OH-PQm exert modest antimalarial efficacy against parasite gametocytes; however, potency is enhanced ca.1000 fold in the presence of cytochrome P450 NADPH:oxidoreductase (CPR) from the liver and bone marrow. Enhancement of OH-PQm efficacy is due to the direct reduction of quinoneimine metabolites by CPR with the concomitant and excessive generation of H2O2, leading to parasite killing. This detailed understanding of the mechanism paves the way to rationally re-designed 8-aminoquinolines with improved pharmacological profiles. Primaquine (PQ) is a widely used anti-malaria drug, but its mechanism of action is unclear. Here, Camarda et al. show that PQ’s activity against liver and sexual Plasmodium stages depends on generation of hydroxylated-PQ metabolites (OH-PQm), which, undergoing further reactions, results in production of H2O2.
Collapse
Affiliation(s)
- Grazia Camarda
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Piyaporn Jirawatcharadech
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Richard S Priestley
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.,ARUK Oxford Drug Discovery Institute, University of Oxford, Oxford, OX3 7FZ, UK
| | - Ahmed Saif
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.,Clinical Laboratory sciences Department, College of Applied Medical Sciences, Najran University, Najran, 61441, Saudi Arabia
| | - Sandra March
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael H L Wong
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Suet Leung
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Alex B Miller
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - David A Baker
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | - Pietro Alano
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, 00161, Italy
| | - Mark J I Paine
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Sangeeta N Bhatia
- Health Sciences and Technology/Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Paul M O'Neill
- Department of Chemistry, University of Liverpool, Liverpool, L69 7ZD, UK
| | - Stephen A Ward
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| | - Giancarlo A Biagini
- Centre for Drugs and Diagnostics Research, Tropical Disease Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK.
| |
Collapse
|
28
|
Chen I, Diawara H, Mahamar A, Sanogo K, Keita S, Kone D, Diarra K, Djimde M, Keita M, Brown J, Roh ME, Hwang J, Pett H, Murphy M, Niemi M, Greenhouse B, Bousema T, Gosling R, Dicko A. Safety of Single-Dose Primaquine in G6PD-Deficient and G6PD-Normal Males in Mali Without Malaria: An Open-Label, Phase 1, Dose-Adjustment Trial. J Infect Dis 2019; 217:1298-1308. [PMID: 29342267 PMCID: PMC5974787 DOI: 10.1093/infdis/jiy014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background The World Health Organization recommendation on the use of a single low dose of primaquine (SLD-PQ) to reduce Plasmodium falciparum malaria transmission requires more safety data. Methods We conducted an open-label, nonrandomized, dose-adjustment trial of the safety of 3 single doses of primaquine in glucose-6-phosphate dehydrogenase (G6PD)-deficient adult males in Mali, followed by an assessment of safety in G6PD-deficient boys aged 11–17 years and those aged 5–10 years, including G6PD-normal control groups. The primary outcome was the greatest within-person percentage drop in hemoglobin concentration within 10 days after treatment. Results Fifty-one participants were included in analysis. G6PD-deficient adult males received 0.40, 0.45, or 0.50 mg/kg of SLD-PQ. G6PD-deficient boys received 0.40 mg/kg of SLD-PQ. There was no evidence of symptomatic hemolysis, and adverse events considered related to study drug (n = 4) were mild. The mean largest within-person percentage change in hemoglobin level between days 0 and 10 was −9.7% (95% confidence interval [CI], −13.5% to −5.90%) in G6PD-deficient adults receiving 0.50 mg/kg of SLD-PQ, −11.5% (95% CI, −16.1% to −6.96%) in G6PD-deficient boys aged 11–17 years, and −9.61% (95% CI, −7.59% to −13.9%) in G6PD-deficient boys aged 5–10 years. The lowest hemoglobin concentration at any point during the study was 92 g/L. Conclusion SLD-PQ doses between 0.40 and 0.50 mg/kg were well tolerated in G6PD-deficient males in Mali. Clinical Trials Registration NCT02535767.
Collapse
Affiliation(s)
- Ingrid Chen
- Malaria Elimination Initiative, Global Health Group, San Francisco.,Department of Epidemiology and Biostatistics, San Francisco
| | - Halimatou Diawara
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako
| | - Sekouba Keita
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako
| | - Daouda Kone
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako
| | - Kalifa Diarra
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako
| | - Moussa Djimde
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako
| | - Mohamed Keita
- National University Hospital of Point G, Bamako, Mali
| | - Joelle Brown
- Department of Epidemiology and Biostatistics, San Francisco
| | - Michelle E Roh
- Malaria Elimination Initiative, Global Health Group, San Francisco.,Department of Epidemiology and Biostatistics, San Francisco
| | - Jimee Hwang
- Malaria Elimination Initiative, Global Health Group, San Francisco.,President's Malaria Initiative, Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Helmi Pett
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Finland
| | - Maxwell Murphy
- School of Medicine, University of California, San Francisco
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Finland
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Roly Gosling
- Malaria Elimination Initiative, Global Health Group, San Francisco.,Department of Epidemiology and Biostatistics, San Francisco
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques and Technologies of Bamako
| |
Collapse
|
29
|
Chu CS, Bancone G, Soe NL, Carrara VI, Gornsawun G, Nosten F. The impact of using primaquine without prior G6PD testing: a case series describing the obstacles to the medical management of haemolysis. Wellcome Open Res 2019; 4:25. [PMID: 31069260 PMCID: PMC6480970 DOI: 10.12688/wellcomeopenres.15100.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 01/10/2023] Open
Abstract
Radical cure of
Plasmodium vivax malaria in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals employs weekly primaquine dosing. This is the only recommended regimen for this patient sub-group. If national malaria programs mandate daily primaquine dosing (the recommended regimen for G6PD normal individuals), then G6PD testing before prescription is necessary to avoid iatrogenic haemolysis in G6PD deficient individuals. In this case series, two
P. vivax infected patients with unknown G6PD status from two different countries were prescribed primaquine as per national malaria program guidelines. During treatment both patients presented to the clinic with symptoms of anaemia after taking primaquine incorrectly. The clinical management of the iatrogenic severe haemolysis that occurred in these patients demonstrates the various adverse effects primaquine can cause, that other common medical treatments also have haemolytic potential, and how the diagnosis of G6PD deficiency can be elusive during acute haemolysis. Health care providers should provide careful instructions about primaquine dosing, be watchful for haemolysis, and have a high index of suspicion for G6PD deficiency in the presence of haemolysis if the G6PD status is previously unknown.
Collapse
Affiliation(s)
- Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nay Lin Soe
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Verena I Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Chu CS, Bancone G, Soe NL, Carrara VI, Gornsawun G, Nosten F. The impact of using primaquine without prior G6PD testing: a case series describing the obstacles to the medical management of haemolysis. Wellcome Open Res 2019; 4:25. [PMID: 31069260 PMCID: PMC6480970 DOI: 10.12688/wellcomeopenres.15100.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2019] [Indexed: 09/29/2023] Open
Abstract
Radical cure of Plasmodium vivax malaria in glucose-6-phosphate dehydrogenase (G6PD) deficient individuals employs weekly primaquine dosing. This is the only recommended regimen for this patient sub-group. If national malaria programs mandate daily primaquine dosing (the recommended regimen for G6PD normal individuals), then G6PD testing before prescription is necessary to avoid iatrogenic haemolysis in G6PD deficient individuals. In this case series, two P. vivax infected patients with unknown G6PD status from two different countries were prescribed primaquine as per national malaria program guidelines. During treatment both patients presented to the clinic with symptoms of anaemia after taking primaquine incorrectly. The clinical management of the iatrogenic severe haemolysis that occurred in these patients demonstrates the various adverse effects primaquine can cause, that other common medical treatments also have haemolytic potential, and how the diagnosis of G6PD deficiency can be elusive during acute haemolysis. Health care providers should provide careful instructions about primaquine dosing, be watchful for haemolysis, and have a high index of suspicion for G6PD deficiency in the presence of haemolysis if the G6PD status is previously unknown.
Collapse
Affiliation(s)
- Cindy S. Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nay Lin Soe
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Verena I. Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Department of Medicine, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Dysoley L, Kim S, Lopes S, Khim N, Bjorges S, Top S, Huch C, Rekol H, Westercamp N, Fukuda MM, Hwang J, Roca-Feltrer A, Mukaka M, Menard D, Taylor WR. The tolerability of single low dose primaquine in glucose-6-phosphate deficient and normal falciparum-infected Cambodians. BMC Infect Dis 2019; 19:250. [PMID: 30871496 PMCID: PMC6419451 DOI: 10.1186/s12879-019-3862-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/01/2019] [Indexed: 12/18/2022] Open
Abstract
Background The WHO recommends single low-dose primaquine (SLDPQ, 0.25 mg/kg body weight) in falciparum-infected patients to block malaria transmission and contribute to eliminating multidrug resistant Plasmodium falciparum from the Greater Mekong Sub region (GMS). However, the anxiety regarding PQ-induced acute haemolytic anaemia in glucose-6-phosphate dehydrogenase deficiency (G6PDd) has hindered its use. Therefore, we assessed the tolerability of SLDPQ in Cambodia to inform national policy. Methods This open randomised trial of dihydroartemisinin-piperaquine (DHAPP) + SLDPQ vs. DHAPP alone recruited Cambodians aged ≥1 year with acute uncomplicated P. falciparum. Randomisation was 4:1 DHAPP+SLDPQ: DHAPP for G6PDd patients and 1:1 for G6PDn patients, according to the results of the qualitative fluorescent spot test. Definitive G6PD status was determined by genotyping. Day (D) 7 haemoglobin (Hb) concentration was the primary outcome measure. Results One hundred nine patients (88 males, 21 females), aged 4–76 years (median 23) were enrolled; 12 were G6PDd Viangchan (9 hemizygous males, 3 heterozygous females). Mean nadir Hb occurred on D7 [11.6 (range 6.4 ─ 15.6) g/dL] and was significantly lower (p = 0.040) in G6PDd (n = 9) vs. G6PDn (n = 46) DHAPP+SLDPQ recipients: 10.9 vs. 12.05 g/dL, Δ = -1.15 (95% CI: -2.24 ─ -0.05) g/dL. Three G6PDn patients had D7 Hb concentrations < 8 g/dL; D7-D0 Hbs were 6.4 ─ 6.9, 7.4 ─ 7.4, and 7.5 ─ 8.2 g/dL. For all patients, mean (range) D7-D0 Hb decline was -1.45 (-4.8 ─ 2.4) g/dL, associated significantly with higher D0 Hb, higher D0 parasitaemia, and receiving DHAPP; G6PDd was not a factor. No patient required a blood transfusion. Conclusions DHAPP+SLDPQ was associated with modest Hb declines in G6PD Viangchan, a moderately severe variant. Our data augment growing evidence that SLDPQ in SE Asia is well tolerated and appears safe in G6PDd patients. Cambodia is now deploying SLDPQ and this should encourage other GMS countries to follow suit. Trial registration The clinicaltrials.gov reference number is NCT02434952. Electronic supplementary material The online version of this article (10.1186/s12879-019-3862-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lek Dysoley
- National Center for National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.,School of Public Health, National Institute of Public Health, Phnom Penh, Cambodia
| | - Saorin Kim
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | | | - Nimol Khim
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Steven Bjorges
- WHO Cambodia country office, Pasteur Street, Phnom Penh, Cambodia
| | | | - Chea Huch
- National Center for National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Huy Rekol
- National Center for National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia
| | - Nelli Westercamp
- Malaria Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd, Atlanta, GA, 30333, USA
| | - Mark M Fukuda
- U.S. President's Malaria Initiative, Malaria Branch, Division Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Bangkok, Thailand
| | - Jimee Hwang
- U.S. President's Malaria Initiative, Malaria Branch, Division Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research unit (MORU), 420/60 Rajvithi Road, Bangkok, 10400, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Didier Menard
- Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Biology of Host-Parasite Interactions Unit, Malaria Genetics and Resistance Group, Institut Pasteur - INSERM U1201 - CNRS ERL9195, Paris, France
| | - Walter R Taylor
- Mahidol Oxford Tropical Medicine Research unit (MORU), 420/60 Rajvithi Road, Bangkok, 10400, Thailand. .,Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
32
|
Bancone G, Menard D, Khim N, Kim S, Canier L, Nguong C, Phommasone K, Mayxay M, Dittrich S, Vongsouvath M, Fievet N, Le Hesran JY, Briand V, Keomany S, Newton PN, Gorsawun G, Tardy K, Chu CS, Rattanapalroj O, Dong LT, Quang HH, Tam-Uyen N, Thuy-Nhien N, Hien TT, Kalnoky M, Nosten F. Molecular characterization and mapping of glucose-6-phosphate dehydrogenase (G6PD) mutations in the Greater Mekong Subregion. Malar J 2019; 18:20. [PMID: 30674319 PMCID: PMC6343352 DOI: 10.1186/s12936-019-2652-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/16/2019] [Indexed: 12/31/2022] Open
Abstract
Background Plasmodium vivax malaria elimination can only be achieved by the deployment of 8-aminoquinolines (primaquine and tafenoquine) in combination with ACT to kill both blood and liver-stage parasites. However, primaquine and the other 8-aminoquinolines cause dose-dependent haemolysis in subjects with G6PD deficiency, an X-linked disorder of red blood cells that is very common in populations living in tropical and subtropical areas. In order to inform safer use of 8-aminoquinolines in the Greater Mekong Subregion, a multi-centre study was carried out to assess the prevalence of G6PD deficiency and to identify the main G6PD variants in samples collected in Cambodia, Lao PDR, Myanmar, Thailand and Vietnam. Methods Blood samples were collected in the five countries during National Malaria Surveys or during Population Surveys. During Population Surveys samples were characterized for G6PD phenotype using the Fluorescent Spot Test. Samples were then genotyped for a panel of G6PD mutations. Results G6PD deficiency was found to be common in the region with an overall mean prevalence of deficient or mutated hemizygous males of 14.0%, ranging from a mean 7.3% in Thailand, 8.1% in Lao PDR, 8.9% in Vietnam, 15.8% in Myanmar and 18.8% in Cambodia. Mahidol and Viangchan mutations were the most common and widespread variants found among the nine investigated. Conclusions Owing to the high prevalence of G6PD deficiency in the Greater Mekong Subregion, strategies for vivax malaria elimination should include point-of-care G6PD testing (both qualitative and quantitative) to allow safe and wide treatment with 8-aminoquinolines. Electronic supplementary material The online version of this article (10.1186/s12936-019-2652-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand. .,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Didier Menard
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia.,Malaria Genetics and Resistance Group, Institut Pasteur, Paris, France
| | - Nimol Khim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Lydie Canier
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Chea Nguong
- National Centre for Parasitology, Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Koukeo Phommasone
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic
| | - Mayfong Mayxay
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic.,Institute of Research and Education Development, University of Health Sciences, Ministry of Health, Vientiane, Lao People's Democratic Republic
| | - Sabine Dittrich
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic.,Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Malavanh Vongsouvath
- Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic
| | - Nadine Fievet
- UMR216-MERIT, French National Research Institute for Sustainable Development (IRD), Paris-5 University, Sorbonne Paris Cité, Paris, France
| | - Jean-Yves Le Hesran
- UMR216-MERIT, French National Research Institute for Sustainable Development (IRD), Paris-5 University, Sorbonne Paris Cité, Paris, France
| | - Valerie Briand
- UMR216-MERIT, French National Research Institute for Sustainable Development (IRD), Paris-5 University, Sorbonne Paris Cité, Paris, France
| | - Sommay Keomany
- Salavan Provincial Hospital, Salavan, Lao People's Democratic Republic
| | - Paul N Newton
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Vientiane, Lao People's Democratic Republic
| | - Gornpan Gorsawun
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Kaelan Tardy
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Le Thanh Dong
- Institute of Malariology, Parasitology and Entomology - Ho Chi Minh City (IMPE-HCM), Ho Chi Minh City, Vietnam
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology - Quy Nhon (IMPE-QN), Quy Nhon, Vietnam
| | - Nguyen Tam-Uyen
- Oxford University Clinical Research Unit, Wellcome Trust Asia Program, in partnership with Hospital For Tropical Diseases (HTD), Ho Chi Minh City, Vietnam
| | - Nguyen Thuy-Nhien
- Oxford University Clinical Research Unit, Wellcome Trust Asia Program, in partnership with Hospital For Tropical Diseases (HTD), Ho Chi Minh City, Vietnam
| | - Tran Tinh Hien
- Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford University Clinical Research Unit, Wellcome Trust Asia Program, in partnership with Hospital For Tropical Diseases (HTD), Ho Chi Minh City, Vietnam
| | | | - Francois Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Morris U, Msellem MI, Mkali H, Islam A, Aydin-Schmidt B, Jovel I, Shija SJ, Khamis M, Ali SM, Hodzic L, Magnusson E, Poirot E, Bennett A, Sachs MC, Tarning J, Mårtensson A, Ali AS, Björkman A. A cluster randomised controlled trial of two rounds of mass drug administration in Zanzibar, a malaria pre-elimination setting-high coverage and safety, but no significant impact on transmission. BMC Med 2018; 16:215. [PMID: 30526588 PMCID: PMC6287359 DOI: 10.1186/s12916-018-1202-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/29/2018] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Mass drug administration (MDA) has the potential to interrupt malaria transmission and has been suggested as a tool for malaria elimination in low-endemic settings. This study aimed to determine the effectiveness and safety of two rounds of MDA in Zanzibar, a pre-elimination setting. METHODS A cluster randomised controlled trial was conducted in 16 areas considered as malaria hotspots, with an annual parasite index of > 0.8%. The areas were randomised to eight intervention and eight control clusters. The intervention included two rounds of MDA with dihydroartemisinin-piperaquine and single low-dose primaquine 4 weeks apart in May-June 2016. Primary and secondary outcomes were cumulative confirmed malaria case incidences 6 months post-MDA and parasite prevalences determined by PCR 3 months post-MDA. Additional outcomes included intervention coverage, treatment adherence, occurrence of adverse events, and cumulative incidences 3, 12, and 16 months post-MDA. RESULTS Intervention coverage was 91.0% (9959/10944) and 87.7% (9355/10666) in the first and second rounds, respectively; self-reported adherence was 82.0% (881/1136) and 93.7% (985/1196). Adverse events were reported in 11.6% (147/1268) and 3.2% (37/1143) of post-MDA survey respondents after both rounds respectively. No serious adverse event was reported. No difference in cumulative malaria case incidence was observed between the control and intervention arms 6 months post-MDA (4.2 and 3.9 per 1000 population; p = 0.94). Neither was there a difference in PCR-determined parasite prevalences 3 months post-MDA (1.4% and 1.7%; OR = 1.0, p = 0.94), although having received at least the first MDA was associated with reduced odds of malaria infection (aOR = 0.35; p = 0.02). Among confirmed malaria cases at health facilities, 26.0% and 26.3% reported recent travel outside Zanzibar in the intervention and control shehias (aOR ≥ 85; p ≤ 0.001). CONCLUSIONS MDA was implemented with high coverage, adherence, and tolerability. Despite this, no significant impact on transmission was observed. The findings suggest that two rounds of MDA in a single year may not be sufficient for a sustained impact on transmission in a pre-elimination setting, especially when the MDA impact is restricted by imported malaria. Importantly, this study adds to the limited evidence for the use of MDA in low transmission settings in sub-Saharan Africa. TRIAL REGISTRATION ClinicalTrials.gov, NCT02721186 (registration date: March 29, 2016).
Collapse
Affiliation(s)
- Ulrika Morris
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mwinyi I. Msellem
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Humphrey Mkali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Atiqul Islam
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Berit Aydin-Schmidt
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Irina Jovel
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Shija Joseph Shija
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Mwinyi Khamis
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Safia Mohammed Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Lamija Hodzic
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Ellinor Magnusson
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Eugenie Poirot
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, USA
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, USA
| | - Michael C. Sachs
- Biostatistics Unit, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Bangkok, Thailand
- Nuffield Department of Clinical Medicine, Centre for Tropical Medicine, University of Oxford, Oxford, UK
| | - Andreas Mårtensson
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Abdullah S. Ali
- Zanzibar Malaria Elimination Programme, Ministry of Health, Zanzibar, Tanzania
| | - Anders Björkman
- Department of Microbiology, Tumor, and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
Mvango S, Matshe WMR, Balogun AO, Pilcher LA, Balogun MO. Nanomedicines for Malaria Chemotherapy: Encapsulation vs. Polymer Therapeutics. Pharm Res 2018; 35:237. [PMID: 30324329 DOI: 10.1007/s11095-018-2517-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/03/2018] [Indexed: 12/29/2022]
Abstract
Malaria is one of the oldest infectious diseases that afflict humans and its history extends back for millennia. It was once prevalent throughout the globe but today it is mainly endemic to tropical regions like sub-Saharan Africa and South-east Asia. Ironically, treatment for malaria has existed for centuries yet it still exerts an enormous death toll. This contradiction is attributed in part to the rapid development of resistance by the malaria parasite to chemotherapeutic drugs. In turn, resistance has been fuelled by poor patient compliance to the relatively toxic antimalarial drugs. While drug toxicity and poor pharmacological potentials have been addressed or ameliorated with various nanomedicine drug delivery systems in diseases like cancer, no clinically significant success story has been reported for malaria. There have been several reviews on the application of nanomedicine technologies, especially drug encapsulation, to malaria treatment. Here we extend the scope of the collation of the nanomedicine research literature to polymer therapeutics technology. We first discuss the history of the disease and how a flurry of scientific breakthroughs in the latter part of the nineteenth century provided scientific understanding of the disease. This is followed by a review of the disease biology and the major antimalarial chemotherapy. The achievements of nanomedicine in cancer and other infectious diseases are discussed to draw parallels with malaria. A review of the current state of the research into malaria nanomedicines, both encapsulation and polymer therapeutics polymer-drug conjugation technologies, is covered and we conclude with a consideration of the opportunities and challenges offered by both technologies.
Collapse
Affiliation(s)
- Sindisiwe Mvango
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.,Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - William M R Matshe
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa
| | - Abideen O Balogun
- Department of Medicine, Nottingham University Hospital, Nottingham, UK
| | - Lynne A Pilcher
- Department of Chemistry, University of Pretoria, Pretoria, 0002, South Africa
| | - Mohammed O Balogun
- Biopolymer Modification & Therapeutics Lab, Polymers & Composites, Materials Science & Manufacturing, Council for Scientific and Industrial Research, Meiring Naude Road, Brummeria, Pretoria, 0001, South Africa.
| |
Collapse
|
35
|
Gilder ME, Hanpithakphong W, Hoglund RM, Tarning J, Win HH, Hilda N, Chu CS, Bancone G, Carrara VI, Singhasivanon P, White NJ, Nosten F, McGready R. Primaquine Pharmacokinetics in Lactating Women and Breastfed Infant Exposures. Clin Infect Dis 2018; 67:1000-1007. [PMID: 29590311 PMCID: PMC6137118 DOI: 10.1093/cid/ciy235] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/21/2018] [Indexed: 02/04/2023] Open
Abstract
Background Primaquine is the only drug providing radical cure of Plasmodium vivax malaria. It is not recommended for breastfeeding women as it causes hemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals, and breast milk excretion and thus infant exposure are not known. Methods Healthy G6PD-normal breastfeeding women with previous P. vivax infection and their healthy G6PD-normal infants between 28 days and 2 years old were enrolled. Mothers took primaquine 0.5 mg/kg/day for 14 days. Primaquine and carboxyprimaquine concentrations were measured in maternal venous plasma, capillary plasma, and breast milk samples and infant capillary plasma samples taken on days 0, 3, 7, and 13. Results In 20 mother-infant pairs, primaquine concentrations were below measurement thresholds in all but 1 infant capillary plasma sample (that contained primaquine 2.6 ng/mL), and carboxyprimaquine was likewise unmeasurable in the majority of infant samples (maximum value 25.8 ng/mL). The estimated primaquine dose received by infants, based on measured breast milk levels, was 2.98 µg/kg/day (ie, ~0.6% of a hypothetical infant daily dose of 0.5 mg/kg). There was no evidence of drug-related hemolysis in the infants. Maternal levels were comparable to levels in nonlactating patients, and adverse events in mothers were mild. Conclusions The concentrations of primaquine in breast milk are very low and therefore very unlikely to cause adverse effects in the breastfeeding infant. Primaquine should not be withheld from mothers breastfeeding infants or young children. More information is needed in neonates. Clinical Trials Registration NCT01780753.
Collapse
Affiliation(s)
- Mary Ellen Gilder
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
| | - Warunee Hanpithakphong
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Richard M Hoglund
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Htun Htun Win
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
| | - Naw Hilda
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
| | - Cindy S Chu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Germana Bancone
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Verena I Carrara
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
| | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Mae Sot
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom
| |
Collapse
|
36
|
Price RN, White NJ. Drugs that reduce transmission of falciparum malaria. THE LANCET. INFECTIOUS DISEASES 2018; 18:585-586. [PMID: 29422385 PMCID: PMC5985155 DOI: 10.1016/s1473-3099(18)30070-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/15/2017] [Indexed: 01/12/2023]
Affiliation(s)
| | - Nicholas J White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, UK; Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
37
|
Dicko A, Roh ME, Diawara H, Mahamar A, Soumare HM, Lanke K, Bradley J, Sanogo K, Kone DT, Diarra K, Keita S, Issiaka D, Traore SF, McCulloch C, Stone WJR, Hwang J, Müller O, Brown JM, Srinivasan V, Drakeley C, Gosling R, Chen I, Bousema T. Efficacy and safety of primaquine and methylene blue for prevention of Plasmodium falciparum transmission in Mali: a phase 2, single-blind, randomised controlled trial. THE LANCET. INFECTIOUS DISEASES 2018; 18:627-639. [PMID: 29422384 PMCID: PMC5968371 DOI: 10.1016/s1473-3099(18)30044-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/10/2017] [Accepted: 12/01/2017] [Indexed: 01/01/2023]
Abstract
BACKGROUND Primaquine and methylene blue are gametocytocidal compounds that could prevent Plasmodium falciparum transmission to mosquitoes. We aimed to assess the efficacy and safety of primaquine and methylene blue in preventing human to mosquito transmission of P falciparum among glucose-6-phosphate dehydrogenase (G6PD)-normal, gametocytaemic male participants. METHODS This was a phase 2, single-blind, randomised controlled trial done at the Clinical Research Centre of the Malaria Research and Training Centre (MRTC) of the University of Bamako (Bamako, Mali). We enrolled male participants aged 5-50 years with asymptomatic P falciparum malaria. G6PD-normal participants with gametocytes detected by blood smear were randomised 1:1:1:1 in block sizes of eight, using a sealed-envelope design, to receive either sulfadoxine-pyrimethamine and amodiaquine, sulfadoxine-pyrimethamine and amodiaquine plus a single dose of 0·25 mg/kg primaquine, dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus 15 mg/kg per day methylene blue for 3 days. Laboratory staff, investigators, and insectary technicians were masked to the treatment group and gametocyte density of study participants. The study pharmacist and treating physician were not masked. Participants could request unmasking. The primary efficacy endpoint, analysed in all infected patients with at least one infectivity measure before and after treatment, was median within-person percentage change in mosquito infectivity 2 and 7 days after treatment, assessed by membrane feeding. This study is registered with ClinicalTrials.gov, number NCT02831023. FINDINGS Between June 27, 2016, and Nov 1, 2016, 80 participants were enrolled and assigned to the sulfadoxine-pyrimethamine and amodiaquine (n=20), sulfadoxine-pyrimethamine and amodiaquine plus primaquine (n=20), dihydroartemisinin-piperaquine (n=20), or dihydroartemisinin-piperaquine plus methylene blue (n=20) groups. Among participants infectious at baseline (54 [68%] of 80), those in the sulfadoxine-pyrimethamine and amodiaquine plus primaquine group (n=19) had a median 100% (IQR 100 to 100) within-person reduction in mosquito infectivity on day 2, a larger reduction than was noted with sulfadoxine-pyrimethamine and amodiaquine alone (n=12; -10·2%, IQR -143·9 to 56·6; p<0·0001). The dihydroartemisinin-piperaquine plus methylene blue (n=11) group had a median 100% (IQR 100 to 100) within-person reduction in mosquito infectivity on day 2, a larger reduction than was noted with dihydroartemisinin-piperaquine alone (n=12; -6·0%, IQR -126·1 to 86·9; p<0·0001). Haemoglobin changes were similar between gametocytocidal arms and their respective controls. After exclusion of blue urine, adverse events were similar across all groups (59 [74%] of 80 participants had 162 adverse events overall, 145 [90%] of which were mild). INTERPRETATION Adding a single dose of 0·25 mg/kg primaquine to sulfadoxine-pyrimethamine and amodiaquine or 3 days of 15 mg/kg per day methylene blue to dihydroartemisinin-piperaquine was highly efficacious for preventing P falciparum transmission. Both primaquine and methylene blue were well tolerated. FUNDING Bill & Melinda Gates Foundation, European Research Council.
Collapse
Affiliation(s)
- Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Michelle E Roh
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA.
| | - Halimatou Diawara
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Harouna M Soumare
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - John Bradley
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Daouda T Kone
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kalifa Diarra
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Sekouba Keita
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Djibrilla Issiaka
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Sekou F Traore
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Charles McCulloch
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Will J R Stone
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands; Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Jimee Hwang
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA; President's Malaria Initiative, Malaria Branch, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Olaf Müller
- Institute of Public Health, Ruprecht-Karls-University, Heidelberg, Germany
| | - Joelle M Brown
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Vinay Srinivasan
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| | - Roly Gosling
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Ingrid Chen
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, Netherlands; Department of Immunology and Infection, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
38
|
Tine RC, Sylla K, Faye BT, Poirot E, Fall FB, Sow D, Wang D, Ndiaye M, Ndiaye JL, Faye B, Greenwood B, Gaye O, Milligan P. Safety and Efficacy of Adding a Single Low Dose of Primaquine to the Treatment of Adult Patients With Plasmodium falciparum Malaria in Senegal, to Reduce Gametocyte Carriage: A Randomized Controlled Trial. Clin Infect Dis 2018; 65:535-543. [PMID: 28605472 PMCID: PMC5848230 DOI: 10.1093/cid/cix355] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 04/25/2017] [Indexed: 12/30/2022] Open
Abstract
Introduction More information is needed about the safety of low-dose primaquine in populations where G6PD deficiency is common. Methods Adults with Plasmodium falciparum malaria were randomized to receive 1 of 3 artemisinin combination therapies (ACTs) with or without primaquine (0.25 mg/kg). Glucose-6-phosphate dehydrogenase (G6PD) status was determined using a rapid test. Patients were followed for 28 days to record hemoglobin concentration, adverse events, and gametocyte carriage. The primary end point was the change in Hb at day 7. Results In sum, 274 patients were randomized, 139 received an ACT alone, and 135 received an ACT + primaquine. The mean reduction in Hb at day 7 was similar in each group, a difference in the ACT + PQ versus the ACT alone group of −0.04 g/dL (95% confidence interval [CI] −0.23, 0.31), but the effect of primaquine differed according to G6PD status. In G6PD-deficient patients the drop in Hb was 0.63 g/dL (95% CI 0.03, 1.24) greater in those who received primaquine than in those who received an ACT alone. In G6PD-normal patients, the reduction in Hb was 0.22 g/dL (95% CI −0.08, 0.52) less in those who received primaquine (interaction P = .01). One G6PD normal patient who received primaquine developed moderately severe anaemia (Hb < 8 g/dL). Dark urine was more frequent in patients who received primaquine. Primaquine was associated with a 73% (95% CI 24–90) reduction in gametocyte carriage (P = .013). Conclusion Primaquine substantially reduced gametocyte carriage. However, the fall in Hb concentration at day 7 was greater in G6PD-deficient patients who received primaquine than in those who did not and one patient who received primaquine developed moderately severe anemia. Clinical Trial registration PACTR201411000937373 (www.pactr.org)
Collapse
Affiliation(s)
- Roger C Tine
- Department of Medical Parasitology, Faculty of Medicine, University Cheikh Anta Diop, Dakar, Senegal
| | - Khadime Sylla
- Department of Medical Parasitology, Faculty of Medicine, University Cheikh Anta Diop, Dakar, Senegal
| | - Babacar T Faye
- Department of Medical Parasitology, Faculty of Medicine, University Cheikh Anta Diop, Dakar, Senegal
| | - Eugenie Poirot
- Malaria Elimination Initiative, Global Health Group, University of California, San Francisco
| | - Fatou B Fall
- National Malaria Control Programme, Ministère de la Santé et de l'Action sociale, Dakar, Senegal
| | - Doudou Sow
- Department of Medical Parasitology, Faculty of Medicine, University Cheikh Anta Diop, Dakar, Senegal
| | - Duolao Wang
- Liverpool School of Tropical Medicine, Liverpool, UK
| | - Magatte Ndiaye
- Department of Medical Parasitology, Faculty of Medicine, University Cheikh Anta Diop, Dakar, Senegal
| | - Jean Louis Ndiaye
- Department of Medical Parasitology, Faculty of Medicine, University Cheikh Anta Diop, Dakar, Senegal
| | - Babacar Faye
- Department of Medical Parasitology, Faculty of Medicine, University Cheikh Anta Diop, Dakar, Senegal
| | - Brian Greenwood
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Oumar Gaye
- Department of Medical Parasitology, Faculty of Medicine, University Cheikh Anta Diop, Dakar, Senegal
| | - Paul Milligan
- Faculty of Epidemiology and Public Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
39
|
Motshoge T, Ababio G, Aleksenko L, Souda S, Muthoga CW, Mutukwa N, Tawe L, Ramatlho P, Gabaitiri L, Chihanga S, Mosweunyane T, Hamda S, Moakofhi K, Ntebela D, Peloewetse E, Mazhani L, Pernica JM, Read J, Quaye IK, Paganotti GM. Prevalence of G6PD deficiency and associated haematological parameters in children from Botswana. INFECTION GENETICS AND EVOLUTION 2018; 63:73-78. [PMID: 29778768 DOI: 10.1016/j.meegid.2018.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 05/15/2018] [Accepted: 05/17/2018] [Indexed: 11/16/2022]
Abstract
Glucose-6-Phosphate Dehydrogenase (G6PD) deficiency is commonly seen in malaria endemic areas as it is known to confer a selective advantage against malaria. Recently, we reported a high proportion of asymptomatic reservoir of Plasmodium vivax in Botswana, that calls for intervention with primaquine to achieve radical cure of vivax malaria. Considering that individuals with this enzyme deficiency are at risk of haemolysis following primaquine treatment, assessment of the population for the relative frequency of G6PD deficiency is imperative. Samples from 3019 children from all the districts of Botswana were successfully genotyped for polymorphisms at positions 202 and 376 of the G6PD gene. Haematological parameters were also measured. The overall population allele frequency (based on the hemizygous male frequency) was 2.30% (95% CI, 1.77-2.83), while the overall frequency of G6PD-deficient genotypes A- (hemizygote and homozygote genotypes only) was 1.26% (95% CI, 0.86-1.66). G6PD deficiency is spread in Botswana according to the historical prevalence of malaria with a North-West to South-East decreasing gradient trend. There was no association between G6PD status and P. vivax infection. G6PD A- form was found to be associated with decreased RBC count and haemoglobin levels without a known cause or illness. In conclusion, we report for the first time the prevalence of G6PD deficiency in Botswana which is relevant for strategies in the malaria elimination campaign. Further work to examine the activities of the enzyme in the Botswana population at risk for malaria is warranted.
Collapse
Affiliation(s)
- Thato Motshoge
- Ministry of Health and Wellness, Private Bag 0038, Gaborone, Botswana; Department of Biological Sciences, University of Botswana, Private Bag 00704, Gaborone, Botswana
| | - Grace Ababio
- Department of Medical Biochemistry, University of Ghana, P.O. Box 143, Korle-Bu, Accra, Ghana
| | - Larysa Aleksenko
- Department of Pathology, University of Namibia, Private Bag 13301, Windhoek, Namibia; Department of Obstetrics and Gynaecology, Lund University, Kvinnokliniken, SUS, 221 85 Lund, Sweden
| | - Sajini Souda
- Department of Pathology, University of Botswana, Private Bag UB 713, Gaborone, Botswana
| | | | - Naledi Mutukwa
- Department of Pathology, University of Botswana, Private Bag UB 713, Gaborone, Botswana
| | - Leabaneng Tawe
- Department of Medical Laboratory Sciences, University of Botswana, Private Bag 00712, Gaborone, Botswana; Sub-Saharan African Network for TB/HIV Research Excellence (SANTHE), Private Bag BO 320, Gaborone, Botswana
| | - Pleasure Ramatlho
- Department of Biological Sciences, University of Botswana, Private Bag 00704, Gaborone, Botswana
| | - Lesego Gabaitiri
- Department of Statistics, University of Botswana, Private Bag 00705, Gaborone, Botswana
| | - Simon Chihanga
- Ministry of Health and Wellness, Private Bag 0038, Gaborone, Botswana
| | | | - Shimeles Hamda
- Ministry of Health and Wellness, Private Bag 0038, Gaborone, Botswana; Department of Family Medicine and Public Health, University of Botswana, Private Bag 0022, Gaborone, Botswana
| | - Kentse Moakofhi
- World Health Organisation, Botswana country office, P.O. Box 1355, Gaborone, Botswana
| | - Davies Ntebela
- Ministry of Health and Wellness, Private Bag 0038, Gaborone, Botswana
| | - Elias Peloewetse
- Department of Biological Sciences, University of Botswana, Private Bag 00704, Gaborone, Botswana
| | - Loeto Mazhani
- Department of Pediatrics and Adolescent Health, University of Botswana, Private Bag 00713, Gaborone, Botswana
| | - Jeffrey M Pernica
- Department of Pediatrics, McMaster University, 1280 Main Street West, Room 3A, Hamilton, Ontario L8S 4K1, Canada
| | - John Read
- Department of Biomedical Sciences, University of Botswana, Private Bag 00713, Gaborone, Botswana
| | - Isaac Kweku Quaye
- Department of Biochemistry and Microbiology, University of Namibia, Private Bag 13301, Windhoek, Namibia
| | - Giacomo Maria Paganotti
- Botswana-University of Pennsylvania Partnership, P.O. Box AC 157, ACH, Gaborone, Botswana; Department of Biomedical Sciences, University of Botswana, Private Bag 00713, Gaborone, Botswana; Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Boulevard Building 421, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Watson J, Taylor WRJ, Bancone G, Chu CS, Jittamala P, White NJ. Implications of current therapeutic restrictions for primaquine and tafenoquine in the radical cure of vivax malaria. PLoS Negl Trop Dis 2018; 12:e0006440. [PMID: 29677199 PMCID: PMC5931686 DOI: 10.1371/journal.pntd.0006440] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 05/02/2018] [Accepted: 04/10/2018] [Indexed: 12/02/2022] Open
Abstract
Background The 8-aminoquinoline antimalarials, the only drugs which prevent relapse of vivax and ovale malaria (radical cure), cause dose-dependent oxidant haemolysis in individuals with glucose-6-phosphate dehydrogenase (G6PD) deficiency. Patients with <30% and <70% of normal G6PD activity are not given standard regimens of primaquine and tafenoquine, respectively. Both drugs are currently considered contraindicated in pregnant and lactating women. Methods Quantitative G6PD enzyme activity data from 5198 individuals were used to estimate the proportions of heterozygous females who would be ineligible for treatment at the 30% and 70% activity thresholds, and the relationship with the severity of the deficiency. This was used to construct a simple model relating allele frequency in males to the potential population coverage of tafenoquine and primaquine under current prescribing restrictions. Findings Independent of G6PD deficiency, the current pregnancy and lactation restrictions will exclude ~13% of females from radical cure treatment. This could be reduced to ~4% if 8-aminoquinolines can be prescribed to women breast-feeding infants older than 1 month. At a 30% activity threshold, approximately 8–19% of G6PD heterozygous women are ineligible for primaquine treatment; at a 70% threshold, 50–70% of heterozygous women and approximately 5% of G6PD wild type individuals are ineligible for tafenoquine treatment. Thus, overall in areas where the G6PDd allele frequency is >10% more than 15% of men and more than 25% of women would be unable to receive tafenoquine. In vivax malaria infected patients these proportions will be lowered by any protective effect against P. vivax conferred by G6PD deficiency. Conclusion If tafenoquine is deployed for radical cure, primaquine will still be needed to obtain high population coverage. Better radical cure antimalarial regimens are needed. More than half of the malaria outside of Sub-Saharan Africa is caused by the parasite Plasmodium vivax which is characterised by multiple relapses of malaria from parasites which persist in the liver. The only drugs which prevent these relapses (radical cure) are the 8-aminoquinolines primaquine and tafenoquine, and they both cause haemolytic anaemia in G6PD deficiency, the most common enzymopathy of man. Neither can currently be prescribed in pregnancy or lactation. Tafenoquine is given as a single dose regimen and is a significant advance over primaquine (recommended as a 14 day regimen). However, a greater number of individuals, mostly females, will be ineligible for tafenoquine treatment due to a tighter restriction on the minimum G6PD enzyme activity considered safe for use of the drug. Using enzyme activity data from over 5000 individuals, we estimate the proportions ineligible due to G6PD deficiency as a function of the deficient allele prevalence. Adding this to simple estimates of pregnancy and lactation, we estimate the proportions of populations who cannot receive either tafenoquine or primaquine radical cure. For the elimination of vivax malaria in areas with a high prevalence of G6PD deficiency, then if tafenoquine is deployed primaquine will still be needed, so better regimens should be developed.
Collapse
Affiliation(s)
- James Watson
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- * E-mail:
| | - Walter R. J. Taylor
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
| | - Germana Bancone
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Cindy S. Chu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Podjanee Jittamala
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J. White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, Oxford, United kingdom
| |
Collapse
|
41
|
Recht J, Ashley EA, White NJ. Use of primaquine and glucose-6-phosphate dehydrogenase deficiency testing: Divergent policies and practices in malaria endemic countries. PLoS Negl Trop Dis 2018; 12:e0006230. [PMID: 29672516 PMCID: PMC5908060 DOI: 10.1371/journal.pntd.0006230] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Primaquine is the only available antimalarial drug that kills dormant liver stages of Plasmodium vivax and Plasmodium ovale malarias and therefore prevents their relapse (‘radical cure’). It is also the only generally available antimalarial that rapidly sterilises mature P. falciparum gametocytes. Radical cure requires extended courses of primaquine (usually 14 days; total dose 3.5–7 mg/kg), whereas transmissibility reduction in falciparum malaria requires a single dose (formerly 0.75 mg/kg, now a single low dose [SLD] of 0.25 mg/kg is recommended). The main adverse effect of primaquine is dose-dependent haemolysis in glucose 6-phosphate dehydrogenase (G6PD) deficiency, the most common human enzymopathy. X-linked mutations conferring varying degrees of G6PD deficiency are prevalent throughout malaria-endemic regions. Phenotypic screening tests usually detect <30% of normal G6PD activity, identifying nearly all male hemizygotes and female homozygotes and some heterozygotes. Unfortunately, G6PD deficiency screening is usually unavailable at point of care, and, as a consequence, radical cure is greatly underused. Both haemolytic risk (determined by the prevalence and severity of G6PD deficiency polymorphisms) and relapse rates vary, so there has been considerable uncertainty in both policies and practices related to G6PD deficiency testing and use of primaquine for radical cure. Review of available information on the prevalence and severity of G6PD variants together with countries’ policies for the use of primaquine and G6PD deficiency testing confirms a wide range of practices. There remains lack of consensus on the requirement for G6PD deficiency testing before prescribing primaquine radical cure regimens. Despite substantially lower haemolytic risks, implementation of SLD primaquine as a P. falciparum gametocytocide also varies. In Africa, a few countries have recently adopted SLD primaquine, yet many with areas of low seasonal transmission do not use primaquine as an antimalarial at all. Most countries that recommended the higher 0.75 mg/kg single primaquine dose for falciparum malaria (e.g., most countries in the Americas) have not changed their recommendation. Some vivax malaria–endemic countries where G6PD deficiency testing is generally unavailable have adopted the once-weekly radical cure regimen (0.75 mg/kg/week for 8 weeks), known to be safer in less severe G6PD deficiency variants. There is substantial room for improvement in radical cure policies and practices.
Collapse
Affiliation(s)
- Judith Recht
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth A. Ashley
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
42
|
Understanding human genetic factors influencing primaquine safety and efficacy to guide primaquine roll-out in a pre-elimination setting in southern Africa. Malar J 2018; 17:120. [PMID: 29558929 PMCID: PMC5859786 DOI: 10.1186/s12936-018-2271-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 12/27/2022] Open
Abstract
Background Primaquine (PQ) is recommended as an addition to standard malaria treatments in pre-elimination settings due to its pronounced activity against mature Plasmodium falciparum gametocytes, the parasite stage responsible for onward transmission to mosquitoes. However, PQ may trigger haemolysis in glucose-6-phosphate dehydrogenase (G6PD)-deficient individuals. Additional human genetic factors, including polymorphisms in the human cytochrome P450 2D6 (CYP2D6) complex, may negatively influence the efficacy of PQ. This study assessed the prevalence of G6PD deficiency and two important CYP2D6 variants in representative pre-elimination settings in South Africa, to inform malaria elimination strategies. Methods Volunteers (n = 248) attending six primary health care facilities in a malaria-endemic region of South Africa were enrolled between October and November 2015. G6PD status was determined phenotypically, using a CareStart™ G6PD rapid diagnostic test (RDT), and genotypically for two common African G6PD variants, namely A+ (A376G) and A− (G202A, A542T, G680T & T968C) by PCR, restriction fragment length polymorphisms (RFLP) and DNA sequencing. CYP2D6*4 and CYP2D6*17 variants were determined with PCR and RFLP. Results A prevalence of 13% (33/248) G6PD deficiency was observed in the cohort by G6PD RDT whilst by genotypic assessment, 32% (79/248) were A+ and 3.2% were A−, respectively. Among the male participants, 11% (6/55) were G6PD A− hemizygous; among females 1% (2/193) were G6PD A− homozygous and 16% (32/193) G6PD A− heterozygous. The strength of agreement between phenotyping and genotyping result was fair (Cohens Kappa κ = 0.310). The negative predictive value for the G6PD RDT for detecting hemizygous, homozygous and heterozygous individuals was 0.88 (95% CI 0.85–0.91), compared to the more sensitive genotyping. The CYP2D6*4 allele frequencies for CYP2D6*4 (inferred poor metabolizer phenotype) and CYP2D6*17 (inferred intermediate metabolizer phenotype) were 3.2 and 19.5%, respectively. Conclusions Phenotypic and genotypic analyses both detected low prevalence of G6PD deficiency and the CYP2D6*4 variants. These findings, combined with increasing data confirming safety of single low-dose PQ in individuals with African variants of G6PD deficiency, supports the deployment of single low-dose PQ as a gametocytocidal drug. PQ would pose minimal risks to the study populations and could be a useful elimination strategy in the study area.
Collapse
|
43
|
Taylor WR, Naw HK, Maitland K, Williams TN, Kapulu M, D'Alessandro U, Berkley JA, Bejon P, Okebe J, Achan J, Amambua AN, Affara M, Nwakanma D, van Geertruyden JP, Mavoko M, Lutumba P, Matangila J, Brasseur P, Piola P, Randremanana R, Lasry E, Fanello C, Onyamboko M, Schramm B, Yah Z, Jones J, Fairhurst RM, Diakite M, Malenga G, Molyneux M, Rwagacondo C, Obonyo C, Gadisa E, Aseffa A, Loolpapit M, Henry MC, Dorsey G, John C, Sirima SB, Barnes KI, Kremsner P, Day NP, White NJ, Mukaka M. Single low-dose primaquine for blocking transmission of Plasmodium falciparum malaria - a proposed model-derived age-based regimen for sub-Saharan Africa. BMC Med 2018; 16:11. [PMID: 29347975 PMCID: PMC5774032 DOI: 10.1186/s12916-017-0990-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/12/2017] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND In 2012, the World Health Organization recommended blocking the transmission of Plasmodium falciparum with single low-dose primaquine (SLDPQ, target dose 0.25 mg base/kg body weight), without testing for glucose-6-phosphate dehydrogenase deficiency (G6PDd), when treating patients with uncomplicated falciparum malaria. We sought to develop an age-based SLDPQ regimen that would be suitable for sub-Saharan Africa. METHODS Using data on the anti-infectivity efficacy and tolerability of primaquine (PQ), the epidemiology of anaemia, and the risks of PQ-induced acute haemolytic anaemia (AHA) and clinically significant anaemia (CSA), we prospectively defined therapeutic-dose ranges of 0.15-0.4 mg PQ base/kg for children aged 1-5 years and 0.15-0.5 mg PQ base/kg for individuals aged ≥6 years (therapeutic indices 2.7 and 3.3, respectively). We chose 1.25 mg PQ base for infants aged 6-11 months because they have the highest rate of baseline anaemia and the highest risks of AHA and CSA. We modelled an anthropometric database of 661,979 African individuals aged ≥6 months (549,127 healthy individuals, 28,466 malaria patients and 84,386 individuals with other infections/illnesses) by the Box-Cox transformation power exponential and tested PQ doses of 1-15 mg base, selecting dosing groups based on calculated mg/kg PQ doses. RESULTS From the Box-Cox transformation power exponential model, five age categories were selected: (i) 6-11 months (n = 39,886, 6.03%), (ii) 1-5 years (n = 261,036, 45.46%), (iii) 6-9 years (n = 20,770, 3.14%), (iv) 10-14 years (n = 12,155, 1.84%) and (v) ≥15 years (n = 328,132, 49.57%) to receive 1.25, 2.5, 5, 7.5 and 15 mg PQ base for corresponding median (1st and 99th centiles) mg/kg PQ base of: (i) 0.16 (0.12-0.25), (ii) 0.21 (0.13-0.37), (iii) 0.25 (0.16-0.38), (iv) 0.26 (0.15-0.38) and (v) 0.27 (0.17-0.40). The proportions of individuals predicted to receive optimal therapeutic PQ doses were: 73.2 (29,180/39,886), 93.7 (244,537/261,036), 99.6 (20,690/20,770), 99.4 (12,086/12,155) and 99.8% (327,620/328,132), respectively. CONCLUSIONS We plan to test the safety of this age-based dosing regimen in a large randomised placebo-controlled trial (ISRCTN11594437) of uncomplicated falciparum malaria in G6PDd African children aged 0.5 - 11 years. If the regimen is safe and demonstrates adequate pharmacokinetics, it should be used to support malaria elimination.
Collapse
Affiliation(s)
- W Robert Taylor
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Division of Tropical and Humanitarian Medicine, University Hospitals of Geneva, Geneva, Switzerland.
| | - Htee Khu Naw
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
| | - Kathryn Maitland
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Wellcome Trust Centre for Clinical Tropical Medicine and Department of Paediatrics, Faculty of Medicine, Imperial College, London, UK
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
- Wellcome Trust Centre for Clinical Tropical Medicine and Department of Paediatrics, Faculty of Medicine, Imperial College, London, UK
| | - Melissa Kapulu
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Umberto D'Alessandro
- MRC Unit, Fajara, Banjul, The Gambia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - James A Berkley
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | - Philip Bejon
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research-Coast, Kilifi, Kenya
| | | | | | | | | | | | | | - Muhindo Mavoko
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Pascal Lutumba
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Junior Matangila
- Department of Tropical Medicine, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | | | - Patrice Piola
- Institut Pasteur de Madagascar, BP 1274, Antananarivo, Madagascar
| | | | - Estrella Lasry
- Kinshasa Mahidol Oxford Research Unit, Kinshasa, Democratic Republic of Congo
| | - Caterina Fanello
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | - Marie Onyamboko
- Kinshasa Mahidol Oxford Research Unit, Kinshasa, Democratic Republic of Congo
- Kinshasa School of Public Health, Kinshasa, Democratic Republic of Congo
| | | | - Zolia Yah
- National Malaria Control Programme, Monrovia, Sierra Leone
| | - Joel Jones
- National Malaria Control Programme, Monrovia, Sierra Leone
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | | | | | - Malcolm Molyneux
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | | | | | | | - Abraham Aseffa
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
| | | | | | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chandy John
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Karen I Barnes
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Peter Kremsner
- Institute of Tropical Medicine, University of Tubingen, Tubingen, Germany
| | - Nicholas P Day
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mavuto Mukaka
- Mahidol Oxford Tropical Medicine Research Unit (MORU), Mahidol University, 420/6 Rajvithi Road, Rajthevee, Bangkok, 10400, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
44
|
Bastiaens GJH, Tiono AB, Okebe J, Pett HE, Coulibaly SA, Gonçalves BP, Affara M, Ouédraogo A, Bougouma EC, Sanou GS, Nébié I, Bradley J, Lanke KHW, Niemi M, Sirima SB, d’Alessandro U, Bousema T, Drakeley C. Safety of single low-dose primaquine in glucose-6-phosphate dehydrogenase deficient falciparum-infected African males: Two open-label, randomized, safety trials. PLoS One 2018; 13:e0190272. [PMID: 29324864 PMCID: PMC5764271 DOI: 10.1371/journal.pone.0190272] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Background Primaquine (PQ) actively clears mature Plasmodium falciparum gametocytes but in glucose-6-phosphate dehydrogenase deficient (G6PDd) individuals can cause hemolysis. We assessed the safety of low-dose PQ in combination with artemether-lumefantrine (AL) or dihydroartemisinin-piperaquine (DP) in G6PDd African males with asymptomatic P. falciparum malaria. Methods and findings In Burkina Faso, G6PDd adult males were randomized to treatment with AL alone (n = 10) or with PQ at 0.25 (n = 20) or 0.40 mg/kg (n = 20) dosage; G6PD-normal males received AL plus 0.25 (n = 10) or 0.40 mg/kg (n = 10) PQ. In The Gambia, G6PDd adult males and boys received DP alone (n = 10) or with 0.25 mg/kg PQ (n = 20); G6PD-normal males received DP plus 0.25 (n = 10) or 0.40 mg/kg (n = 10) PQ. The primary study endpoint was change in hemoglobin concentration during the 28-day follow-up. Cytochrome P-450 isoenzyme 2D6 (CYP2D6) metabolizer status, gametocyte carriage, haptoglobin, lactate dehydrogenase levels and reticulocyte counts were also determined. In Burkina Faso, the mean maximum absolute change in hemoglobin was -2.13 g/dL (95% confidence interval [CI], -2.78, -1.49) in G6PDd individuals randomized to 0.25 PQ mg/kg and -2.29 g/dL (95% CI, -2.79, -1.79) in those receiving 0.40 PQ mg/kg. In The Gambia, the mean maximum absolute change in hemoglobin concentration was -1.83 g/dL (95% CI, -2.19, -1.47) in G6PDd individuals receiving 0.25 PQ mg/kg. After adjustment for baseline concentrations, hemoglobin reductions in G6PDd individuals in Burkina Faso were more pronounced compared to those in G6PD-normal individuals receiving the same PQ doses (P = 0.062 and P = 0.022, respectively). Hemoglobin levels normalized during follow-up. Abnormal haptoglobin and lactate dehydrogenase levels provided additional evidence of mild transient hemolysis post-PQ. Conclusions Single low-dose PQ in combination with AL and DP was associated with mild and transient reductions in hemoglobin. None of the study participants developed moderate or severe anemia; there were no severe adverse events. This indicates that single low-dose PQ is safe in G6PDd African males when used with artemisinin-based combination therapy. Trial registration Clinicaltrials.gov NCT02174900 Clinicaltrials.gov NCT02654730
Collapse
Affiliation(s)
- Guido J. H. Bastiaens
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- * E-mail:
| | - Alfred B. Tiono
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Joseph Okebe
- Disease Control & Elimination Theme, Medical Research Council Unit, Fajara, The Gambia
| | - Helmi E. Pett
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sam A. Coulibaly
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Bronner P. Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Muna Affara
- Disease Control & Elimination Theme, Medical Research Council Unit, Fajara, The Gambia
| | - Alphonse Ouédraogo
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Edith C. Bougouma
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Guillaume S. Sanou
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa Nébié
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - John Bradley
- MRC Tropical Epidemiology Group, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Kjerstin H. W. Lanke
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Mikko Niemi
- Department of Clinical Pharmacology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sodiomon B. Sirima
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Umberto d’Alessandro
- Disease Control & Elimination Theme, Medical Research Council Unit, Fajara, The Gambia
- Department of Disease Control, Faculty of infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
45
|
Kim GJ, Lee SY, Park JH, Ryu BY, Kim JH. Role of Preemptive Genotyping in Preventing Serious Adverse Drug Events in South Korean Patients. Drug Saf 2017; 40:65-80. [PMID: 27638658 DOI: 10.1007/s40264-016-0454-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
INTRODUCTION Preemptive and multi-variant genotyping is suggested to improve the safety of patient drug therapy. The number of South Koreans who would benefit from this approach is unknown. OBJECTIVE We aimed to quantify the number of patients who may experience serious adverse drug events (ADEs) due to high-risk pharmacogenetic variants and who may benefit from preemptive genotyping. METHODS The health claims dataset of the Korean Health Insurance Review and Assessment service for 3 % of the South Korean population for year 2011 was used to calculate the number of patients exposed to 84 drugs covered by National Health Insurance with pharmacogenomic biomarkers. The product of ADE risk-conferring genotype prevalence, ADE prevalence rates, and genotype effect sizes in South Koreans or East Asians derived from published literature and the 1000 Genomes Project, and the drug exposure data were solved to estimate the number of South Koreans in whom preemptive genotyping may prevent serious ADEs. RESULTS Among 1,341,077 patients in the dataset with prescriptions, 47.4 % were prescribed a drug whose response was affected by genetic variants and 31.9 % were prescribed at least one drug with serious ADEs modulated by these variants. Without genetic testing, the number of South Korean patients predicted to experience serious ADEs due to their higher ADE risk genotypes was estimated at 729. Extrapolating this to the total South Korean population indicated that approximately 24,300 patients in 2011 might have benefitted from preemptive genotyping. CONCLUSIONS This study quantified the number of South Korean patients predicted to have serious ADEs and demonstrated the need for preemptive genotyping to assist safer drug therapy in South Korea.
Collapse
Affiliation(s)
- Grace Juyun Kim
- Seoul National University Biomedical Informatics (SNUBI), 28 Yongon-dong, Chongno-gu, Seoul, 110799, South Korea
| | - Soo Youn Lee
- Interdisciplinary Program in Bioinformatics, Seoul National University College of Natural Sciences, 28 Yongon-dong, Chongno-gu, Seoul, 110799, South Korea
| | - Ji Hye Park
- Interdisciplinary Program in Bioinformatics, Seoul National University College of Natural Sciences, 28 Yongon-dong, Chongno-gu, Seoul, 110799, South Korea
| | - Brian Y Ryu
- Interdisciplinary Program in Bioinformatics, Seoul National University College of Natural Sciences, 28 Yongon-dong, Chongno-gu, Seoul, 110799, South Korea
| | - Ju Han Kim
- Seoul National University Biomedical Informatics (SNUBI), 28 Yongon-dong, Chongno-gu, Seoul, 110799, South Korea. .,Division of Biomedical Informatics, Systems Biomedical Informatics National Core Research Center (SBI-NCRC), Seoul National University College of Medicine, 28 Yongon-dong, Chongno-gu, Seoul, 110799, South Korea.
| |
Collapse
|
46
|
Landier J, Kajeechiwa L, Thwin MM, Parker DM, Chaumeau V, Wiladphaingern J, Imwong M, Miotto O, Patumrat K, Duanguppama J, Cerqueira D, Malleret B, Rénia L, Nosten S, von Seidlein L, Ling C, Proux S, Corbel V, Simpson JA, Dondorp AM, White NJ, Nosten FH. Safety and effectiveness of mass drug administration to accelerate elimination of artemisinin-resistant falciparum malaria: A pilot trial in four villages of Eastern Myanmar. Wellcome Open Res 2017; 2:81. [PMID: 29062913 PMCID: PMC5635445 DOI: 10.12688/wellcomeopenres.12240.1] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2017] [Indexed: 01/26/2023] Open
Abstract
Background: Artemisinin and partner drug-resistant falciparum malaria is expanding over the Greater Mekong Sub-region (GMS). Eliminating falciparum malaria in the GMS while drugs still retain enough efficacy could prevent global spread of antimalarial resistance. Eliminating malaria rapidly requires targeting the reservoir of asymptomatic parasite carriers. This pilot trial aimed to evaluate the acceptability, safety, feasibility and effectiveness of mass-drug administration (MDA) in reducing malaria in four villages in Eastern Myanmar. Methods: Villages with ≥30% malaria prevalence were selected. Long-lasting insecticidal bednets (LLINs) and access to malaria early diagnosis and treatment (EDT) were provided. Two villages received MDA immediately and two were followed for nine months pre-MDA. MDA consisted of a 3-day supervised course of dihydroartemisinin-piperaquine and single low-dose primaquine administered monthly for three months. Adverse events (AE) were monitored by interviews and consultations. Malaria prevalence was assessed by ultrasensitive PCR quarterly for 24 months. Symptomatic malaria incidence,entomological indices, and antimalarial resistance markers were monitored. Results: MDA was well tolerated. There were no serious AE and mild to moderate AE were reported in 5.6%(212/3931) interviews. In the smaller villages, participation to three MDA courses was 61% and 57%, compared to 28% and 29% in the larger villages. Baseline prevalence was higher in intervention than in control villages (18.7% (95%CI=16.1-21.6) versus 6.8%(5.2-8.7), p<0.0001) whereas three months after starting MDA, prevalence was lower in intervention villages (0.4%(0.04-1.3) versus 2.7%(1.7-4.1), p=0.0014). After nine months the difference was no longer significant (2.0%(1.0-3.5) versus 0.9%(0.04-1.8), p=0.10). M0-M9 symptomatic falciparum incidence was similar between intervention and control. Before/after MDA comparisons showed that asymptomatic
P. falciparum carriage and anopheline vector positivity decreased significantly whereas prevalence of the artemisinin-resistance molecular marker remained stable. Conclusions: This MDA was safe and feasible, and, could accelerate elimination of
P. falciparum in addition to EDT and LLINs
when community participation was sufficient.
Collapse
Affiliation(s)
- Jordi Landier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ladda Kajeechiwa
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - May Myo Thwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 4280 UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France.,Centre Hospitalier Régional Universitaire de Montpellier, Montpellier, France
| | - Jacher Wiladphaingern
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Mallika Imwong
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Olivo Miotto
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Genomics and Global Health, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK.,Wellcome Trust Sanger Institute, Cambridge, CB10 1SA, UK
| | - Krittaya Patumrat
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jureeporn Duanguppama
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dominique Cerqueira
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Benoit Malleret
- Department of Microbiology & Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119077, Singapore.,Singapore Immunology Network (SIgN), Agency for Science & Technology, Singapore, 138632, Singapore
| | - Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science & Technology, Singapore, 138632, Singapore
| | - Suphak Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Lorenz von Seidlein
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Clare Ling
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Stéphane Proux
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Vincent Corbel
- Maladies Infectieuses et Vecteurs Ecologie, Génétique, Evolution et Contrôle (IRD 224-CNRS 4280 UM1-UM2), Institut de Recherche pour le Développement, Montpellier, France
| | - Julie A Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3053, Australia
| | - Arjen M Dondorp
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Nicholas J White
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
47
|
Uthman OA, Graves PM, Saunders R, Gelband H, Richardson M, Garner P. Safety of primaquine given to people with G6PD deficiency: systematic review of prospective studies. Malar J 2017; 16:346. [PMID: 28830424 PMCID: PMC5568268 DOI: 10.1186/s12936-017-1989-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 08/09/2017] [Indexed: 12/15/2022] Open
Abstract
Background Haemolysis risk with single dose or short course primaquine was evaluated in glucose-6-phosphate dehydrogenase (G6PD) deficient people. Methods Major electronic databases (to August 2016) were searched for single or short course 8-aminoquinolines (8-AQ) in (1) randomized comparisons against placebo in G6PD deficient people; and (2) observational comparisons in G6PD deficient compared to replete people. Two authors independently assessed eligibility, risk-of-bias, and extracted data. Results Five randomized controlled trials and four controlled observational cohorts were included. In G6PD deficient individuals, high-dose (0.75 mg/kg) PQ resulted in lower average haemoglobin levels at 7 days (mean difference [MD] −1.45 g/dl, 95% CI −2.17 to −0.74, 2 trials) and larger percentage fall from baseline to day 7 (MD −10.31%, 95% CI −17.69 to −2.92, 3 trials) compared to placebo. In G6PD deficient compared to replete people, average haemoglobin was lower at 7 days (MD −1.19 g/dl, 95% CI −1.94 to −0.44, 2 trials) and haemoglobin change from baseline to day 7 was greater (MD −9.10%, 95% CI −12.55 to −5.65, 5 trials). One small trial evaluated mid-range PQ dose (0.4–0.5 mg/kg) in G6PD deficient people, with no difference detected in average haemoglobin at day 7 compared to placebo. In one cohort comparing G6PD deficient and replete people there was a greater fall with G6PD deficiency (MD −4.99%, 95% CI −9.96 to −0.02). For low-dose PQ (0.1–0.25 mg/kg) in G6PD deficient people, haemoglobin change from baseline was similar to the placebo group (MD 1.72%, 95% CI −1.89 to 5.34, 2 trials). Comparing low dose PQ in G6PD deficient with replete people, the average haemoglobin was lower in the G6PD deficient group at 7 days (−0.57 g (95% CI −0.97 to −0.17, 1 trial)); although change from baseline was similar (MD −1.45%, 95% CI −5.69 to 2.78, 3 trials). Conclusions Falls in average haemoglobin are less marked with the 0.1 to 0.25 mg/kg PQ than with the 0.75 mg/kg dose, and severe haemolytic events are not common. However, data were limited and the evidence GRADE was low or very low certainty. Electronic supplementary material The online version of this article (doi:10.1186/s12936-017-1989-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Olalekan A Uthman
- Centre for Evidence Synthesis in Global Health, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK. .,Warwick Centre for Applied Health Research and Delivery (WCAHRD), Division of Health Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.
| | - Patricia M Graves
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Cairns, Australia
| | - Rachel Saunders
- Centre for Evidence Synthesis in Global Health, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hellen Gelband
- Cochrane Infectious Disease Group, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
| | - Marty Richardson
- Centre for Evidence Synthesis in Global Health, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Paul Garner
- Centre for Evidence Synthesis in Global Health, Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
48
|
Ong KIC, Kosugi H, Thoeun S, Araki H, Thandar MM, Iwagami M, Hongvanthong B, Brey PT, Kano S, Jimba M. Systematic review of the clinical manifestations of glucose-6-phosphate dehydrogenase deficiency in the Greater Mekong Subregion: implications for malaria elimination and beyond. BMJ Glob Health 2017; 2:e000415. [PMID: 29082022 PMCID: PMC5656182 DOI: 10.1136/bmjgh-2017-000415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 07/06/2017] [Accepted: 07/09/2017] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION To achieve malaria elimination in the Greater Mekong Subregion (GMS) by 2030, proper case management is necessary. 8-aminoquinolines, such as primaquine, are the only available medicines effective in preventing relapse of the hypnozoite stage of Plasmodium vivax, as well as the onward transmission of Plasmodium falciparum. However, primaquine can cause haemolysis in individuals who have glucose-6-phosphate dehydrogenase deficiency (G6PDd). We conducted a systematic review on the reported clinical manifestations of G6PDd to provide a comprehensive overview of the situation in the GMS. METHODS The protocol for this systematic review was registered on PROSPERO: International prospective register of systematic reviews (CRD42016043146). We searched the PubMed/MEDLINE, CINAHL, and Web of Science databases for published articles describing the clinical manifestations of G6PDd in the GMS. We included articles of all study designs from inception until 31 July 2016, reporting the clinical manifestations of G6PDd. We then performed a narrative synthesis of these articles. RESULTS We included 56 articles in this review, 45 of which were from Thailand. Haemolysis in G6PD-deficient individuals was caused not only by primaquine but also by other medicines and infections. Other clinical manifestations of G6PDd that were found were favism, neonatal jaundice and chronic non-spherocytic haemolytic anaemia. G6PDd also influenced the clinical presentations of genetic disorders and infections, such as thalassemia and typhoid fever. CONCLUSION As G6PDd also affects the clinical presentations of other infections, the benefits of G6PD testing and proper record keeping transcend those of malaria case management. Therefore, healthcare workers at the community level should be made familiar with complications resulting from G6PDd as these complications extend beyond the scope of malaria.
Collapse
Affiliation(s)
- Ken Ing Cherng Ong
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic
| | - Hodaka Kosugi
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Sophea Thoeun
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hitomi Araki
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic
| | - Moe Moe Thandar
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Moritoshi Iwagami
- SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic.,Institut Pasteur du Laos, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic.,Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Bouasy Hongvanthong
- SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic.,Center of Malariology, Parasitology and Entomology, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic
| | - Paul T Brey
- SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic.,Institut Pasteur du Laos, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic
| | - Shigeyuki Kano
- SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic.,Institut Pasteur du Laos, Ministry of Health, Vientiane Capital, Lao People's Democratic Republic.,Department of Tropical Medicine and Malaria, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masamine Jimba
- Department of Community and Global Health, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,SATREPS Project (JICA/AMED) for Parasitic Diseases, Vientiane Capital, Lao People's Democratic Republic
| |
Collapse
|
49
|
Chotsiri P, Wattanakul T, Hoglund RM, Hanboonkunupakarn B, Pukrittayakamee S, Blessborn D, Jittamala P, White NJ, Day NPJ, Tarning J. Population pharmacokinetics and electrocardiographic effects of dihydroartemisinin-piperaquine in healthy volunteers. Br J Clin Pharmacol 2017; 83:2752-2766. [PMID: 28695570 PMCID: PMC5698590 DOI: 10.1111/bcp.13372] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 06/21/2017] [Accepted: 06/30/2017] [Indexed: 12/21/2022] Open
Abstract
Aims The aims of the present study were to evaluate the pharmacokinetic properties of dihydroartemisinin (DHA) and piperaquine, potential drug–drug interactions with concomitant primaquine treatment, and piperaquine effects on the electrocardiogram in healthy volunteers. Methods The population pharmacokinetic properties of DHA and piperaquine were assessed in 16 healthy Thai adults using an open‐label, randomized, crossover study. Drug concentration–time data and electrocardiographic measurements were evaluated with nonlinear mixed‐effects modelling. Results The developed models described DHA and piperaquine population pharmacokinetics accurately. Concomitant treatment with primaquine did not affect the pharmacokinetic properties of DHA or piperaquine. A linear pharmacokinetic–pharmacodynamic model described satisfactorily the relationship between the individually corrected QT intervals and piperaquine concentrations; the population mean QT interval increased by 4.17 ms per 100 ng ml–1 increase in piperaquine plasma concentration. Simulations from the final model showed that monthly and bimonthly mass drug administration in healthy subjects would result in median maximum QT interval prolongations of 18.9 ms and 16.8 ms, respectively, and would be very unlikely to result in prolongation of more than 50 ms. A single low dose of primaquine can be added safely to the existing DHA–piperaquine treatment in areas of multiresistant Plasmodium falciparum malaria. Conclusions Pharmacokinetic–pharmacodynamic modelling and simulation in healthy adult volunteers suggested that therapeutic doses of DHA–piperaquine in the prevention or treatment of P. falciparum malaria are unlikely to be associated with dangerous QT prolongation.
Collapse
Affiliation(s)
- Palang Chotsiri
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thanaporn Wattanakul
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Richard M Hoglund
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | | | - Daniel Blessborn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | | | - Nicholas J White
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Nicholas P J Day
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Joel Tarning
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Thu AM, Phyo AP, Landier J, Parker DM, Nosten FH. Combating multidrug-resistant Plasmodium falciparum malaria. FEBS J 2017; 284:2569-2578. [PMID: 28580606 PMCID: PMC5575457 DOI: 10.1111/febs.14127] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/09/2017] [Accepted: 06/01/2017] [Indexed: 01/05/2023]
Abstract
Over the past 50 years, Plasmodium falciparum has developed resistance against all antimalarial drugs used against it: chloroquine, sulphadoxine-pyrimethamine, quinine, piperaquine and mefloquine. More recently, resistance to the artemisinin derivatives and the resulting failure of artemisinin-based combination therapy (ACT) are threatening all major gains made in malaria control. Each time resistance has developed progressively, with delayed clearance of parasites first emerging only in a few regions, increasing in prevalence and geographic range, and then ultimately resulting in the complete failure of that antimalarial. Drawing from this repeated historical chain of events, this article presents context-specific approaches for combating drug-resistant P. falciparum malaria. The approaches begin with a context of drug-sensitive parasites and focus on the prevention of the emergence of drug resistance. Next, the approaches address a scenario in which resistance has emerged and is increasing in prevalence and geographic extent, with interventions focused on disrupting transmission through vector control, early diagnosis and treatment, and the use of new combination therapies. Elimination is also presented as an approach for addressing the imminent failure of all available antimalarials. The final drug resistance context presented is one in which all available antimalarials have failed; leaving only personal protection and the use of new antimalarials (or new combinations of antimalarials) as a viable strategy for dealing with complete resistance. All effective strategies and contexts require a multipronged, holistic approach.
Collapse
Affiliation(s)
- Aung Myint Thu
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| | - Jordi Landier
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Daniel M Parker
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
| |
Collapse
|