1
|
Mihalovičová L, Kunšteková V, Miláček D, Feješ A, Tekeľová M, Renczés E, Celec P, Borbélyová V. Infrared Thermal Imaging during the Estrous Cycle in Adult Wistar Rats. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2024; 63:397-402. [PMID: 38471747 PMCID: PMC11270034 DOI: 10.30802/aalas-jaalas-23-000087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/16/2023] [Accepted: 02/05/2024] [Indexed: 03/14/2024]
Abstract
The collection and examination method of vaginal smears is the standard for the determination of ovulation or phases of the estrous cycle of rodents used in research. However, this method is time consuming and may not be amenable to continual monitoring of a large number of animals. Infrared thermography has recently emerged as a noninvasive technique that requires relatively little handling of animals. The body temperature of rodents has been shown to correlate with the ocular surface temperature. This study aimed to evaluate the use of thermographic monitoring of the ocular surface for the identification of estrus in rats. Vaginal smears were collected from female Wistar rats (n = 22) for 14 consecutive days. Core body temperature was estimated by measuring ocular surface temperature using a thermal camera; vaginal temperature was measured using a digital thermometer. Average temperatures were calculated for each rat for each phase of the estrous cycle. The highest core body and vaginal temperature were measured during the estrus phase (37.2 ± 0.6 °C and 37.7 ± 0.6 °C, respectively). The temperatures then fell as the rat entered the diestrus phase (36.8 ± 0.5 °C and 37 ± 0.5 °C). The core body temperature was positively correlated with vaginal temperature (r = 0.697, P < 0.001). In conclusion, thermography is a less invasive method of determining estrus in rats as compared with vaginal smear collection. However, thermography is less accurate and requires at least a 12-d period of measurement.
Collapse
Affiliation(s)
- Lucia Mihalovičová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova, Bratislava, Slovakia
- Department of Environmental Medicine, Faculty of Public Health, Slovak Medical University, Limbová, Bratislava, Slovakia; and
| | - Veronika Kunšteková
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova, Bratislava, Slovakia
| | - Dávid Miláček
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova, Bratislava, Slovakia
| | - Andrej Feješ
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova, Bratislava, Slovakia
| | - Mária Tekeľová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova, Bratislava, Slovakia
| | - Emese Renczés
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova, Bratislava, Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova, Bratislava, Slovakia
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova, Bratislava, Slovakia
| | - Veronika Borbélyová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, Sasinkova, Bratislava, Slovakia
| |
Collapse
|
2
|
Basavaraj C, Grant AD, Aras SG, Erickson EN. Deep Learning Model Using Continuous Skin Temperature Data Predicts Labor Onset. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.25.24303344. [PMID: 38464102 PMCID: PMC10925356 DOI: 10.1101/2024.02.25.24303344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Background Changes in body temperature anticipate labor onset in numerous mammals, yet this concept has not been explored in humans. Methods We evaluated patterns in continuous skin temperature data in 91 pregnant women using a wearable smart ring. Additionally, we collected daily steroid hormone samples leading up to labor in a subset of 28 pregnancies and analyzed relationships among hormones and body temperature trajectory. Finally, we developed a novel autoencoder long-short-term-memory (AE-LSTM) deep learning model to provide a daily estimation of days until labor onset. Results Features of temperature change leading up to labor were associated with urinary hormones and labor type. Spontaneous labors exhibited greater estriol to α-pregnanediol ratio, as well as lower body temperature and more stable circadian rhythms compared to pregnancies that did not undergo spontaneous labor. Skin temperature data from 54 pregnancies that underwent spontaneous labor between 34 and 42 weeks of gestation were included in training the AE-LSTM model, and an additional 40 pregnancies that underwent artificial induction of labor or Cesarean without labor were used for further testing. The model was trained only on aggregate 5-minute skin temperature data starting at a gestational age of 240 until labor onset. During cross-validation AE-LSTM average error (true - predicted) dropped below 2 days at 8 days before labor, independent of gestational age. Labor onset windows were calculated from the AE-LSTM output using a probabilistic distribution of model error. For these windows AE-LSTM correctly predicted labor start for 79% of the spontaneous labors within a 4.6-day window at 7 days before true labor, and 7.4-day window at 10 days before true labor. Conclusion Continuous skin temperature reflects progression toward labor and hormonal status during pregnancy. Deep learning using continuous temperature may provide clinically valuable tools for pregnancy care.
Collapse
Affiliation(s)
- Chinmai Basavaraj
- Department of Computer Science, The University of Arizona, Tucson, AZ, USA
| | | | - Shravan G Aras
- Center for Biomedical Informatics and Biostatistics, The University of Arizona Health Sciences, Tucson, AZ, USA
| | | |
Collapse
|
3
|
Kaminski TW, Brzoska T, Li X, Vats R, Katoch O, Dubey RK, Bagale K, Watkins SC, McVerry BJ, Pradhan-Sundd T, Zhang L, Robinson KM, Nyunoya T, Sundd P. Lung microvascular occlusion by platelet-rich neutrophil-platelet aggregates promotes cigarette smoke-induced severe flu. JCI Insight 2024; 9:e167299. [PMID: 38060312 PMCID: PMC10906226 DOI: 10.1172/jci.insight.167299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/05/2023] [Indexed: 01/24/2024] Open
Abstract
Cigarette smoking is associated with a higher risk of ICU admissions among patients with flu. However, the etiological mechanism by which cigarette smoke (CS) exacerbates flu remains poorly understood. Here, we show that a mild dose of influenza A virus promotes a severe lung injury in mice preexposed to CS but not room air for 4 weeks. Real-time intravital (in vivo) lung imaging revealed that the development of acute severe respiratory dysfunction in CS- and flu-exposed mice was associated with the accumulation of platelet-rich neutrophil-platelet aggregates (NPAs) in the lung microcirculation within 2 days following flu infection. These platelet-rich NPAs formed in situ and grew larger over time to occlude the lung microvasculature, leading to the development of pulmonary ischemia followed by the infiltration of NPAs and vascular leakage into the alveolar air space. These findings suggest, for the first time to our knowledge, that an acute onset of platelet-driven thrombo-inflammatory response in the lung contributes to the development of CS-induced severe flu.
Collapse
Affiliation(s)
- Tomasz W. Kaminski
- Thrombosis and Hemostasis Program, VERSITI Blood Research Institute, Milwaukee, Wisconsin, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
| | - Tomasz Brzoska
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
- Division of Hematology and Oncology, and
| | - Xiuying Li
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ravi Vats
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
- Department of Bioengineering
| | - Omika Katoch
- Thrombosis and Hemostasis Program, VERSITI Blood Research Institute, Milwaukee, Wisconsin, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
| | - Rikesh K. Dubey
- Thrombosis and Hemostasis Program, VERSITI Blood Research Institute, Milwaukee, Wisconsin, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
| | - Kamal Bagale
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Simon C. Watkins
- Center for Biologic Imaging, and
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bryan J. McVerry
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tirthadipa Pradhan-Sundd
- Transfusion Medicine, Vascular Biology and Cell Therapy Program, VERSITI Blood Research Institute, Milwaukee, Wisconsin, USA
| | - Lianghui Zhang
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Keven M. Robinson
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Toru Nyunoya
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Prithu Sundd
- Thrombosis and Hemostasis Program, VERSITI Blood Research Institute, Milwaukee, Wisconsin, USA
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute (VMI)
- Division of Pulmonary Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering
| |
Collapse
|
4
|
Georgescu T. The role of maternal hormones in regulating autonomic functions during pregnancy. J Neuroendocrinol 2023; 35:e13348. [PMID: 37936545 DOI: 10.1111/jne.13348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 08/24/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023]
Abstract
Offspring development relies on numerous physiological changes that occur in a mother's body, with hormones driving many of these adaptations. Amongst these, the physiological functions controlled by the autonomic nervous system are required for the mother to survive and are adjusted to meet the demands of the growing foetus and to ensure a successful birth. The hormones oestrogen, progesterone, and lactogenic hormones rise significantly during pregnancy, suggesting they may also play a role in regulating the maternal adaptations linked to autonomic nervous system functions, including respiratory, cardiovascular, and thermoregulatory functions. Indeed, expression of pregnancy hormone receptors spans multiple brain regions known to regulate these physiological functions. This review examines how respiratory, cardiovascular, and thermoregulatory functions are controlled by these pregnancy hormones by focusing on their action on central nervous system circuits. Inadequate adaptations in these systems during pregnancy can give rise to several pregnancy complications, highlighting the importance in understanding the mechanistic underpinnings of these changes and potentially identifying ways to treat pregnancy-associated afflictions using hormones.
Collapse
Affiliation(s)
- T Georgescu
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
5
|
Bruce LK, Kasl P, Soltani S, Viswanath VK, Hartogensis W, Dilchert S, Hecht FM, Chowdhary A, Anglo C, Pandya L, Dasgupta S, Altintas I, Gupta A, Mason AE, Smarr BL. Variability of temperature measurements recorded by a wearable device by biological sex. Biol Sex Differ 2023; 14:76. [PMID: 37915069 PMCID: PMC10619297 DOI: 10.1186/s13293-023-00558-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Females have been historically excluded from biomedical research due in part to the documented presumption that results with male subjects will generalize effectively to females. This has been justified in part by the assumption that ovarian rhythms will increase the overall variance of pooled random samples. But not all variance in samples is random. Human biometrics are continuously changing in response to stimuli and biological rhythms; single measurements taken sporadically do not easily support exploration of variance across time scales. Recently we reported that in mice, core body temperature measured longitudinally shows higher variance in males than cycling females, both within and across individuals at multiple time scales. METHODS Here, we explore longitudinal human distal body temperature, measured by a wearable sensor device (Oura Ring), for 6 months in females and males ranging in age from 20 to 79 years. In this study, we did not limit the comparisons to female versus male, but instead we developed a method for categorizing individuals as cyclic or acyclic depending on the presence of a roughly monthly pattern to their nightly temperature. We then compared structure and variance across time scales using multiple standard instruments. RESULTS Sex differences exist as expected, but across multiple statistical comparisons and timescales, there was no one group that consistently exceeded the others in variance. When variability was assessed across time, females, whether or not their temperature contained monthly cycles, did not significantly differ from males both on daily and monthly time scales. CONCLUSIONS These findings contradict the viewpoint that human females are too variable across menstrual cycles to include in biomedical research. Longitudinal temperature of females does not accumulate greater measurement error over time than do males and the majority of unexplained variance is within sex category, not between them.
Collapse
Affiliation(s)
- Lauryn Keeler Bruce
- UC San Diego Health Department of Biomedical Informatics, University of California San Diego, San Diego, CA, USA
| | - Patrick Kasl
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, , La Jolla, San Diego, CA, USA
| | - Severine Soltani
- Bioinformatics and Systems Biology, University of California San Diego, San Diego, CA, USA
| | - Varun K Viswanath
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Wendy Hartogensis
- Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA, USA
| | - Stephan Dilchert
- Department of Management, Zicklin School of Business, Baruch College, The City University of New York, New York, NY, USA
| | - Frederick M Hecht
- Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA, USA
| | - Anoushka Chowdhary
- Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA, USA
| | - Claudine Anglo
- Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA, USA
| | - Leena Pandya
- Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA, USA
| | - Subhasis Dasgupta
- San Diego Supercomputer Center, University of California San Diego, San Diego, CA, USA
| | - Ilkay Altintas
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
- San Diego Supercomputer Center, University of California San Diego, San Diego, CA, USA
| | - Amarnath Gupta
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
- San Diego Supercomputer Center, University of California San Diego, San Diego, CA, USA
| | - Ashley E Mason
- Osher Center for Integrative Health, University of California San Francisco, San Francisco, CA, USA
| | - Benjamin L Smarr
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, 9500 Gilman Dr, , La Jolla, San Diego, CA, USA.
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA.
| |
Collapse
|
6
|
Grant AD, Kriegsfeld LJ. Neural substrates underlying rhythmic coupling of female reproductive and thermoregulatory circuits. Front Physiol 2023; 14:1254287. [PMID: 37753455 PMCID: PMC10518419 DOI: 10.3389/fphys.2023.1254287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Coordinated fluctuations in female reproductive physiology and thermoregulatory output have been reported for over a century. These changes occur rhythmically at the hourly (ultradian), daily (circadian), and multi-day (ovulatory) timescales, are critical for reproductive function, and have led to the use of temperature patterns as a proxy for female reproductive state. The mechanisms underlying coupling between reproductive and thermoregulatory systems are not fully established, hindering the expansion of inferences that body temperature can provide about female reproductive status. At present, numerous digital tools rely on temperature to infer the timing of ovulation and additional applications (e.g., monitoring ovulatory irregularities and progression of puberty, pregnancy, and menopause are developed based on the assumption that reproductive-thermoregulatory coupling occurs across timescales and life stages. However, without clear understanding of the mechanisms and degree of coupling among the neural substrates regulating temperature and the reproductive axis, whether such approaches will bear fruit in particular domains is uncertain. In this overview, we present evidence supporting broad coupling among the central circuits governing reproduction, thermoregulation, and broader systemic physiology, focusing on timing at ultradian frequencies. Future work characterizing the dynamics of reproductive-thermoregulatory coupling across the lifespan, and of conditions that may decouple these circuits (e.g., circadian disruption, metabolic disease) and compromise female reproductive health, will aid in the development of strategies for early detection of reproductive irregularities and monitoring the efficacy of fertility treatments.
Collapse
Affiliation(s)
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA, United States
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, United States
- Department of Integrative Biology, University of California, Berkeley, CA, United States
- Graduate Group in Endocrinology, University of California, Berkeley, CA, United States
| |
Collapse
|
7
|
Erickson EN, Gotlieb N, Pereira LM, Myatt L, Mosquera-Lopez C, Jacobs PG. Predicting labor onset relative to the estimated date of delivery using smart ring physiological data. NPJ Digit Med 2023; 6:153. [PMID: 37598232 PMCID: PMC10439919 DOI: 10.1038/s41746-023-00902-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/10/2023] [Indexed: 08/21/2023] Open
Abstract
The transition from pregnancy into parturition is physiologically directed by maternal, fetal and placental tissues. We hypothesize that these processes may be reflected in maternal physiological metrics. We enrolled pregnant participants in the third-trimester (n = 118) to study continuously worn smart ring devices monitoring heart rate, heart rate variability, skin temperature, sleep and physical activity from negative temperature coefficient, 3-D accelerometer and infrared photoplethysmography sensors. Weekly surveys assessed labor symptoms, pain, fatigue and mood. We estimated the association between each metric, gestational age, and the likelihood of a participant's labor beginning prior to (versus after) the clinical estimated delivery date (EDD) of 40.0 weeks with mixed effects regression. A boosted random forest was trained on the physiological metrics to predict pregnancies that naturally passed the EDD versus undergoing onset of labor prior to the EDD. Here we report that many raw sleep, activity, pain, fatigue and labor symptom metrics are correlated with gestational age. As gestational age advances, pregnant individuals have lower resting heart rate 0.357 beats/minute/week, 0.84 higher heart rate variability (milliseconds) and shorter durations of physical activity and sleep. Further, random forest predictions determine pregnancies that would pass the EDD with accuracy of 0.71 (area under the receiver operating curve). Self-reported symptoms of labor correlate with increased gestational age and not with the timing of labor (relative to EDD) or onset of spontaneous labor. The use of maternal smart ring-derived physiological data in the third-trimester may improve prediction of the natural duration of pregnancy relative to the EDD.
Collapse
Affiliation(s)
- Elise N Erickson
- College of Nursing / College of Pharmacy, The University of Arizona, Tucson, AZ, USA.
- Midwifery Division, School of Nursing, Oregon Health & Science University, Portland, OR, USA.
| | | | - Leonardo M Pereira
- Department of Obstetrics & Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Leslie Myatt
- Department of Obstetrics & Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Clara Mosquera-Lopez
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| | - Peter G Jacobs
- Artificial Intelligence for Medical Systems (AIMS) Lab, Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
8
|
Grant AD, Kriegsfeld LJ. Continuous body temperature as a window into adolescent development. Dev Cogn Neurosci 2023; 60:101221. [PMID: 36821877 PMCID: PMC9981811 DOI: 10.1016/j.dcn.2023.101221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/06/2023] [Accepted: 02/18/2023] [Indexed: 02/22/2023] Open
Abstract
Continuous body temperature is a rich source of information on hormonal status, biological rhythms, and metabolism, all of which undergo stereotyped change across adolescence. Due to the direct actions of these dynamic systems on body temperature regulation, continuous temperature may be uniquely suited to monitoring adolescent development and the impacts of exogenous reproductive hormones or peptides (e.g., hormonal contraception, puberty blockers, gender affirming hormone treatment). This mini-review outlines how traditional methods for monitoring the timing and tempo of puberty may be augmented by markers derived from continuous body temperature. These features may provide greater temporal precision, scalability, and reduce reliance on self-report, particularly in females. Continuous body temperature data can now be gathered with ease across a variety of wearable form factors, providing the opportunity to develop tools that aid in individual, parental, clinical, and researcher awareness and education.
Collapse
Affiliation(s)
- Azure D Grant
- Levels Health, Inc., New York City, NY 10003, United States
| | - Lance J Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA 94720, United States; Department of Integrative Biology, University of California, Berkeley, CA 94720, United States; Graduate Group in Endocrinology, University of California, Berkeley, CA 94720, United States; The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
9
|
Riggle JP, Kay LM, Onishi KG, Falk DT, Smarr BL, Zucker I, Prendergast BJ. Modified Wavelet Analyses Permit Quantification of Dynamic Interactions Between Ultradian and Circadian Rhythms. J Biol Rhythms 2022; 37:631-654. [PMID: 36380564 PMCID: PMC11024927 DOI: 10.1177/07487304221128652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Circadian rhythms provide daily temporal structure to cellular and organismal biological processes, ranging from gene expression to cognition. Higher-frequency (intradaily) ultradian rhythms are similarly ubiquitous but have garnered far less empirical study, in part because of the properties that define them-multimodal periods, non-stationarity, circadian harmonics, and diurnal modulation-pose challenges to their accurate and precise quantification. Wavelet analyses are ideally suited to address these challenges, but wavelet-based measurement of ultradian rhythms has remained largely idiographic. Here, we describe novel analytical approaches, based on discrete and continuous wavelet transforms, which permit quantification of rhythmic power distribution across a broad ultradian spectrum, as well as precise identification of period within empirically determined ultradian bands. Moreover, the aggregation of normalized wavelet matrices allows group-level analyses of experimental treatments, thereby circumventing limitations of idiographic approaches. The accuracy and precision of these wavelet analyses were validated using in silico and in vivo models with known ultradian features. Experiments in male and female mice yielded robust and repeatable measures of ultradian period and power in home cage locomotor activity, confirming and extending reports of ultradian rhythm modulation by sex, gonadal hormones, and circadian entrainment. Seasonal changes in day length modulated ultradian period and power, and exerted opposite effects in the light and dark phases of the 24 h day, underscoring the importance of evaluating ultradian rhythms with attention to circadian phase. Sex differences in ultradian rhythms were more prominent at night and depended on gonadal hormones in male mice. Thus, relatively straightforward modifications to the wavelet procedure allowed quantification of ultradian rhythms with appropriate time-frequency resolution, generating accurate, and repeatable measures of period and power which are suitable for group-level analyses. These analytical tools may afford deeper understanding of how ultradian rhythms are generated and respond to interoceptive and exteroceptive cues.
Collapse
Affiliation(s)
- Jonathan P. Riggle
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
- Department of Physiology, University of California, San Francisco, San Francisco, California
| | - Leslie M. Kay
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois
- Committee on Computational Neuroscience, The University of Chicago, Chicago, Illinois
| | - Kenneth G. Onishi
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
| | - David T. Falk
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
| | - Benjamin L. Smarr
- Department of Bioengineering and the Halicioğlu Data Science Institute, University of California, San Diego, La Jolla, California
| | - Irving Zucker
- Department of Psychology, University of California, Berkeley, Berkeley, California
- Department of Integrative Biology, University of California, Berkeley, Berkeley, California
| | - Brian J. Prendergast
- Department of Psychology and Institute for Mind and Biology, The University of Chicago, Chicago, Illinois
- Committee on Neurobiology, The University of Chicago, Chicago, Illinois
| |
Collapse
|
10
|
Smarr B, Kriegsfeld LJ. Female mice exhibit less overall variance, with a higher proportion of structured variance, than males at multiple timescales of continuous body temperature and locomotive activity records. Biol Sex Differ 2022; 13:41. [PMID: 35870975 PMCID: PMC9308033 DOI: 10.1186/s13293-022-00451-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractDespite recent work demonstrating that female rodents and humans do not show greater variance in behavior and physiology than males due to ovulatory cycles, many researchers still default to using males in their investigations. Although government funding agencies now require inclusion of female subjects where applicable, the erroneous belief that the study of males reduces overall data variance continues to result in male subject bias. Recently, we reported the first direct experimental refutation of this belief by examining continuous body temperature and locomotor activity in male and female mice. These findings revealed that males exceeded female variance within and across individuals over time, showing greater variance within a day than females do across an entire estrous cycle. However, the possibility remains that male variance within a day is impacted by ultradian rhythms, analogous to the influence of infradian estrous cycles on female variance, and both sexes show predictable, structured variance across the day. If structures underlying variance can be predicted, then the variance can be statistically accounted for, reducing experimental error and increasing precision of measurements. Here we assess these continuous body temperature and activity data for the contributions of structured and unstructured variance to overall variance within and across individuals at ultradian, circadian, and infradian timescales. In no instance do females exceed male variance, and in most instances male variance exceeds female variance. Additionally, more female variance is accounted for by temporal structure. In conclusion, even when estrous cycles are not controlled for, females show less variability than males, and this advantage can be further capitalized upon by inclusion of known temporal patterns to control for previously unknown but structured sources of variance.
Collapse
|
11
|
Goodday S, Karlin D, Suver C, Friend S. The Post-Roe Political Landscape Demands a Morality of Caution for Women's Health. J Med Internet Res 2022; 24:e41417. [PMID: 36264611 PMCID: PMC9634512 DOI: 10.2196/41417] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/08/2022] [Accepted: 10/07/2022] [Indexed: 11/13/2022] Open
Abstract
The recent Supreme Court decision (ie, Dobbs v. Jackson Women's Health Organization), revoking the constitutional right to abortion in the United States, has the potential to dramatically disrupt progress in women's health research. The typical safeguards to ensure confidentiality and privacy of research participants in studies that collect certain types of personal health information may not hold against criminal investigations surrounding suspected pregnancy terminations. There are additional risks to participants in digital health research studies involving the use of wearable devices capable of tracking physiological measures, such as body temperature and heart rate, as these have shown promise for tracking conception and could be used to identify pregnancy termination signatures. There are strategies researchers can use to protect the safety of participants in health research who could get pregnant, while also maintaining integrity of research methods. The objective of this viewpoint is to discuss potential strategies to protect research participants' privacy that include the minimization of nonessential sensitive personal health information and anonymization protocols in the event of miscarriage or termination of pregnancy. We invite others to join this discussion so as to not let the current political landscape impede progress in women's health and reproductive research, while also protecting research participants.
Collapse
Affiliation(s)
- Sarah Goodday
- 4YouandMe, Seattle, WA, United States
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Daniel Karlin
- 4YouandMe, Seattle, WA, United States
- Department of Psychiatry, Tufts University School of Medicine, Boston, MA, United States
- MindMed Inc, New York, NY, United States
| | | | - Stephen Friend
- 4YouandMe, Seattle, WA, United States
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Grant AD, Wilbrecht L, Kriegsfeld LJ. Sex Differences in Pubertal Circadian and Ultradian Rhythmic Development Under Semi-naturalistic Conditions. J Biol Rhythms 2022; 37:442-454. [PMID: 35502708 PMCID: PMC9329191 DOI: 10.1177/07487304221092715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Biological rhythms in core body temperature (CBT) provide informative markers of adolescent development under controlled laboratory conditions. However, it is unknown whether these markers are preserved under more variable, semi-naturalistic conditions, and whether CBT may therefore prove useful in a real-world setting. To evaluate this possibility, we examined fecal steroid concentrations and CBT rhythms from pre-adolescence (p26) through early adulthood (p76) in intact male and female Wistar rats under natural light and climate at the Stephen Glickman Field Station for the Study of Behavior, Ecology and Reproduction. Despite greater environmental variability, CBT markers of pubertal onset and its rhythmic progression were comparable with those previously reported in laboratory conditions in female rats and extend actigraphy-based findings in males. Specifically, sex differences emerged in CBT circadian rhythm (CR) power and amplitude prior to pubertal onset and persisted into early adulthood, with females exhibiting elevated CBT and decreased CR power compared with males. Within-day (ultradian rhythm [UR]) patterns also exhibited a pronounced sex difference associated with estrous cyclicity. Pubertal onset, defined by vaginal opening, preputial separation, and sex steroid concentrations, occurred later than previously reported under lab conditions for both sexes. Vaginal opening and increased fecal estradiol concentrations were closely tied to the commencement of 4-day oscillations in CBT and UR power. By contrast, preputial separation and the first rise in testosterone concentration were not associated with adolescent changes to CBT rhythms in male rats. Together, males and females exhibited unique temporal patterning of CBT and sex steroids across pubertal development, with tractable associations between hormonal concentrations, external development, and temporal structure in females. The preservation of these features outside the laboratory supports CBT as a strong candidate for translational pubertal monitoring under semi-naturalistic conditions in females.
Collapse
Affiliation(s)
- Azure D. Grant
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, United States
| | - Linda Wilbrecht
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, United States
- Department of Psychology, University of California, Berkeley, CA, 94720, United States
| | - Lance J. Kriegsfeld
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, United States
- Department of Psychology, University of California, Berkeley, CA, 94720, United States
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, United States
- Graduate Group in Endocrinology, University of California, Berkeley, CA, 94720, United States
| |
Collapse
|
13
|
Grant AD, Erickson EN. Birth, love, and fear: Physiological networks from pregnancy to parenthood. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 11:100138. [PMID: 35757173 PMCID: PMC9227990 DOI: 10.1016/j.cpnec.2022.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 12/01/2022] Open
Abstract
Pregnancy and childbirth are among the most dramatic physiological and emotional transformations of a lifetime. Despite their central importance to human survival, many gaps remain in our understanding of the temporal progression of and mechanisms underlying the transition to new parenthood. The goal of this paper is to outline the physiological and emotional development of the maternal-infant dyad from late pregnancy to the postpartum period, and to provide a framework to investigate this development using non-invasive timeseries. We focus on the interaction among neuroendocrine, emotional, and autonomic outputs in the context of late pregnancy, parturition, and post-partum. We then propose that coupled dynamics in these outputs can be leveraged to map both physiologic and pathologic pregnancy, parturition, and parenthood. This approach could address gaps in our knowledge and enable early detection or prediction of problems, with both personalized depth and broad population scale.
Collapse
Affiliation(s)
- Azure D. Grant
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, 94720, United States
- Levels Health Inc., 228 Park Ave. South, PMB 63877, New York, NY, 10003, United States
| | - Elise N. Erickson
- Oregon Health and Science University, Portland, OR, 97239, United States
| |
Collapse
|
14
|
Grant A, Smarr B. Feasibility of continuous distal body temperature for passive, early pregnancy detection. PLOS DIGITAL HEALTH 2022; 1:e0000034. [PMID: 36812529 PMCID: PMC9931282 DOI: 10.1371/journal.pdig.0000034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/01/2022] [Indexed: 01/02/2023]
Abstract
Most American women become aware of pregnancy ~3-7 weeks after conceptive sex, and all must seek testing to confirm their pregnant status. The delay between conceptive sex and pregnancy awareness is often a time in which contraindicated behaviors take place. However, there is long standing evidence that passive, early pregnancy detection may be possible using body temperature. To address this possibility, we analyzed 30 individuals' continuous distal body temperature (DBT) in the 180 days surrounding self-reported conceptive sex in comparison to self-reported pregnancy confirmation. Features of DBT nightly maxima changed rapidly following conceptive sex, reaching uniquely elevated values after a median of 5.5 ± 3.5 days, whereas individuals reported a positive pregnancy test result at a median of 14.5 ± 4.2 days. Together, we were able to generate a retrospective, hypothetical alert a median of 9 ± 3.9 days prior to the date at which individuals received a positive pregnancy test. Continuous temperature-derived features can provide early, passive indication of pregnancy onset. We propose these features for testing and refinement in clinical settings, and for exploration in large, diverse cohorts. The development of pregnancy detection using DBT may reduce the delay from conception to awareness and increase the agency of pregnant individuals.
Collapse
Affiliation(s)
- Azure Grant
- The Helen Wills Neuroscience Institute, University of California, Berkeley, California, United States of America
| | - Benjamin Smarr
- Department of Bioengineering, University of California, San Diego, California, United States of America
- Halicioğlu Institute for Data Science, University of California, San Diego, California, United States of America
| |
Collapse
|
15
|
Topilko T, Diaz SL, Pacheco CM, Verny F, Rousseau CV, Kirst C, Deleuze C, Gaspar P, Renier N. Edinger-Westphal peptidergic neurons enable maternal preparatory nesting. Neuron 2022; 110:1385-1399.e8. [PMID: 35123655 PMCID: PMC9090132 DOI: 10.1016/j.neuron.2022.01.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 11/10/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
Abstract
Optimizing reproductive fitness in mammalians requires behavioral adaptations during pregnancy. Maternal preparatory nesting is an essential behavior for the survival of the upcoming litter. Brain-wide immediate early gene mapping in mice evoked by nesting sequences revealed that phases of nest construction strongly activate peptidergic neurons of the Edinger-Westphal nucleus in pregnant mice. Genetic ablation, bidirectional neuromodulation, and in vitro and in vivo activity recordings demonstrated that these neurons are essential to modulate arousal before sleep to promote nesting specifically. We show that these neurons enable the behavioral effects of progesterone on preparatory nesting by modulating a broad network of downstream targets. Our study deciphers the role of midbrain CART+ neurons in behavioral adaptations during pregnancy vital for reproductive fitness.
Collapse
Affiliation(s)
- Thomas Topilko
- Sorbonne Université, Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Silvina L Diaz
- Sorbonne Université, Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Instituto de Biología Celular y Neurociencia Prof. E de Robertis (IBCN), Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina
| | - Catarina M Pacheco
- Sorbonne Université, Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Florine Verny
- Sorbonne Université, Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Charly V Rousseau
- Sorbonne Université, Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Christoph Kirst
- Sorbonne Université, Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Charlotte Deleuze
- Sorbonne Université, Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Patricia Gaspar
- Sorbonne Université, Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France
| | - Nicolas Renier
- Sorbonne Université, Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié Salpêtrière, Paris, France.
| |
Collapse
|
16
|
Grant AD, Wilbrecht L, Kriegsfeld LJ. Adolescent Development of Biological Rhythms in Female Rats: Estradiol Dependence and Effects of Combined Contraceptives. Front Physiol 2021; 12:752363. [PMID: 35615288 PMCID: PMC9126190 DOI: 10.3389/fphys.2021.752363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/11/2021] [Indexed: 01/23/2023] Open
Abstract
Adolescence is a period of continuous development, including the maturation of endogenous rhythms across systems and timescales. Although, these dynamic changes are well-recognized, their continuous structure and hormonal dependence have not been systematically characterized. Given the well-established link between core body temperature (CBT) and reproductive hormones in adults, we hypothesized that high-resolution CBT can be applied to passively monitor pubertal development and disruption with high fidelity. To examine this possibility, we used signal processing to investigate the trajectory of CBT rhythms at the within-day (ultradian), daily (circadian), and ovulatory timescales, their dependence on estradiol (E2), and the effects of hormonal contraceptives. Puberty onset was marked by a rise in fecal estradiol (fE2), followed by an elevation in CBT and circadian power. This time period marked the commencement of 4-day rhythmicity in fE2, CBT, and ultradian power marking the onset of the estrous cycle. The rise in circadian amplitude was accelerated by E2 treatment, indicating a role for this hormone in rhythmic development. Contraceptive administration in later adolescence reduced CBT and circadian power and resulted in disruption to 4-day cycles that persisted after discontinuation. Our data reveal with precise temporal resolution how biological rhythms change across adolescence and demonstrate a role for E2 in the emergence and preservation of multiscale rhythmicity. These findings also demonstrate how hormones delivered exogenously in a non-rhythmic pattern can disrupt rhythmic development. These data lay the groundwork for a future in which temperature metrics provide an inexpensive, convenient method for monitoring pubertal maturation and support the development of hormone therapies that better mimic and support human chronobiology.
Collapse
Affiliation(s)
- Azure D. Grant
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Linda Wilbrecht
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Lance J. Kriegsfeld
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Graduate Group in Endocrinology, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
17
|
van den Heuvel MI, Hect JL, Smarr BL, Qawasmeh T, Kriegsfeld LJ, Barcelona J, Hijazi KE, Thomason ME. Maternal stress during pregnancy alters fetal cortico-cerebellar connectivity in utero and increases child sleep problems after birth. Sci Rep 2021; 11:2228. [PMID: 33500446 PMCID: PMC7838320 DOI: 10.1038/s41598-021-81681-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 12/16/2020] [Indexed: 01/07/2023] Open
Abstract
Child sleep disorders are increasingly prevalent and understanding early predictors of sleep problems, starting in utero, may meaningfully guide future prevention efforts. Here, we investigated whether prenatal exposure to maternal psychological stress is associated with increased sleep problems in toddlers. We also examined whether fetal brain connectivity has direct or indirect influence on this putative association. Pregnant women underwent fetal resting-state functional connectivity MRI and completed questionnaires on stress, worry, and negative affect. At 3-year follow-up, 64 mothers reported on child sleep problems, and in the subset that have reached 5-year follow-up, actigraphy data (N = 25) has also been obtained. We observe that higher maternal prenatal stress is associated with increased toddler sleep concerns, with actigraphy sleep metrics, and with decreased fetal cerebellar-insular connectivity. Specific mediating effects were not identified for the fetal brain regions examined. The search for underlying mechanisms of the link between maternal prenatal stress and child sleep problems should be continued and extended to other brain areas.
Collapse
Affiliation(s)
| | - Jasmine L Hect
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Benjamin L Smarr
- Department of Bioengineering and Halicioglu Data Science Institute, UCSD, San Diego, CA, USA
| | - Tamara Qawasmeh
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Lance J Kriegsfeld
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - Jeanne Barcelona
- Department of Kinesiology, Health, and Sport Studies, Wayne State University, Detroit, MI, USA
| | - Kowsar E Hijazi
- Department of Psychology, Wayne State University, Detroit, MI, USA
| | - Moriah E Thomason
- Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, NYU Langone Medical Center, New York, USA
- Department of Population Health, New York University Grossman School of Medicine, NYU Langone Medical Center, New York, USA
| |
Collapse
|
18
|
Smarr BL, Aschbacher K, Fisher SM, Chowdhary A, Dilchert S, Puldon K, Rao A, Hecht FM, Mason AE. Feasibility of continuous fever monitoring using wearable devices. Sci Rep 2020; 10:21640. [PMID: 33318528 PMCID: PMC7736301 DOI: 10.1038/s41598-020-78355-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/19/2020] [Indexed: 12/03/2022] Open
Abstract
Elevated core temperature constitutes an important biomarker for COVID-19 infection; however, no standards currently exist to monitor fever using wearable peripheral temperature sensors. Evidence that sensors could be used to develop fever monitoring capabilities would enable large-scale health-monitoring research and provide high-temporal resolution data on fever responses across heterogeneous populations. We launched the TemPredict study in March of 2020 to capture continuous physiological data, including peripheral temperature, from a commercially available wearable device during the novel coronavirus pandemic. We coupled these data with symptom reports and COVID-19 diagnosis data. Here we report findings from the first 50 subjects who reported COVID-19 infections. These cases provide the first evidence that illness-associated elevations in peripheral temperature are observable using wearable devices and correlate with self-reported fever. Our analyses support the hypothesis that wearable sensors can detect illnesses in the absence of symptom recognition. Finally, these data support the hypothesis that prediction of illness onset is possible using continuously generated physiological data collected by wearable sensors. Our findings should encourage further research into the role of wearable sensors in public health efforts aimed at illness detection, and underscore the importance of integrating temperature sensors into commercially available wearables.
Collapse
Affiliation(s)
- Benjamin L Smarr
- Department of Bioengineering and Halicioglu Data Science Institute, University of California, San Diego, 9500 Gilman Drive MC 0412, La Jolla, CA, 92093-0412, USA.
| | - Kirstin Aschbacher
- Division of Cardiology, School of Medicine, University of California, San Francisco, San Francisco, USA.,Health Data Architect, Science Team, Oura, San Francisco, USA
| | - Sarah M Fisher
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, USA
| | - Anoushka Chowdhary
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, USA
| | - Stephan Dilchert
- Department of Management, Baruch College, CUNY, New York and preValio LLC, Minneapolis, USA
| | - Karena Puldon
- School of Medicine, University of California, San Francisco, San Francisco, USA
| | - Adam Rao
- School of Medicine, University of California, San Francisco, San Francisco, USA
| | - Frederick M Hecht
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, USA
| | - Ashley E Mason
- Osher Center for Integrative Medicine, University of California San Francisco, San Francisco, USA.,Department of Psychiatry, University of California, San Francisco, San Francisco, USA
| |
Collapse
|
19
|
Grant AD, Newman M, Kriegsfeld LJ. Ultradian rhythms in heart rate variability and distal body temperature anticipate onset of the luteinizing hormone surge. Sci Rep 2020; 10:20378. [PMID: 33230235 PMCID: PMC7683606 DOI: 10.1038/s41598-020-76236-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/20/2020] [Indexed: 11/13/2022] Open
Abstract
The menstrual cycle is characterized by predictable patterns of physiological change across timescales. Although patterns of reproductive hormones across the menstrual cycle, particularly ultradian rhythms, are well described, monitoring these measures repeatedly to predict the preovulatory luteinizing hormone (LH) surge is not practical. In the present study, we explored whether non-invasive measures coupled to the reproductive system: high frequency distal body temperature (DBT), sleeping heart rate (HR), sleeping heart rate variability (HRV), and sleep timing, could be used to anticipate the preovulatory LH surge in women. To test this possibility, we used signal processing to examine these measures in 45 premenopausal and 10 perimenopausal cycles alongside dates of supra-surge threshold LH and menstruation. Additionally, urinary estradiol and progesterone metabolites were measured daily surrounding the LH surge in 20 cycles. Wavelet analysis revealed a consistent pattern of DBT and HRV ultradian rhythm (2-5 h) power that uniquely enabled anticipation of the LH surge at least 2 days prior to its onset in 100% of individuals. Together, the present findings reveal fluctuations in distal body temperature and heart rate variability that consistently anticipate the LH surge, suggesting that automated ultradian rhythm monitoring may provide a novel and convenient method for non-invasive fertility assessment.
Collapse
Affiliation(s)
- Azure D Grant
- The Helen Wills Neuroscience Institute, University of California, 175 Li Ka Shing Center, MC # 3370, Berkeley, CA, 94720, USA
| | - Mark Newman
- Precision Analytical, McMinnville, OR, 97128, USA
| | - Lance J Kriegsfeld
- The Helen Wills Neuroscience Institute, University of California, 175 Li Ka Shing Center, MC # 3370, Berkeley, CA, 94720, USA.
- Department of Psychology, University of California, Berkeley, CA, 94720, USA.
- Department of Integrative Biology, University of California, Berkeley, CA, 94720, USA.
- Graduate Group in Endocrinology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
20
|
Using Circadian Rhythm Patterns of Continuous Core Body Temperature to Improve Fertility and Pregnancy Planning. J Circadian Rhythms 2020; 18:5. [PMID: 33024445 PMCID: PMC7518073 DOI: 10.5334/jcr.200] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Objective Review relationships among circadian clocks, core body temperature (CBT), and fertility in women. Methods Scoping literature review. Results Circadian clocks are a ubiquitous adaptation to the most predictable environmental events - the daily cycles of light and dark. Core body temperature (CBT) also follows a circadian rhythm. Additionally, CBT is tightly controlled by a combination of neuronal circuits that begin in the hypothalamus and involve many other portions of the brain as well as a wide range of peripheral mechanisms. In women with normal reproductive function, the diurnal temperature pattern for CBT is strongly influenced by the menstrual cycle of reproductive hormones, primarily estradiol and progesterone, which modulate the activity of hypothalamic neural circuits involved in body temperature control, resulting in an infradian CBT rhythm. Conclusions Analysis of CBT via continuous recording reveals patterns in the interactions of circadian and infradian CBT rhythms capable of accurately predicting the fertility window and hormonal patterns suggesting oligo-ovulation and subfertility. New wearable technologies can facilitate employment of hormone-associated changes in CBT for pregnancy planning and offer clinical insight to infertility and menopause.
Collapse
|
21
|
Dorsch M, Wittur I, Garrels W. Efficiency of timed pregnancies in C57BL/6 and BALB/c mice by mating one male with up to four females. Lab Anim 2020; 54:23677219897687. [PMID: 32046590 DOI: 10.1177/0023677219897687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
For a wide range of biomedical approaches, an accurate estimate of the age of embryos or pups is important. Overnight mating is the method that is mostly used to establish timed pregnancies. The oestrus cycle in mice repeats every four to five days. So, not all females will get pregnant because they are not in oestrus. Therefore, the aim of this study was to analyse whether polygamous mating could increase the rate of timed pregnancies per breeding cage and female. We compared overnight timed mating regimes with up to four females per male, using C57BL/6 and BALB/c mice as well as F1 hybrids of these two strains. The number of vaginal plugs, number of females that gave birth and weaned litter (including size and weaning weight) were recorded. Our results showed that the plug and pregnancy rate decreased, but the productivity per breeding cage increased for polygamous mating regimes. The proportion of females with vaginal plugs and females that gave birth was significantly higher in monogamous mating. The proportion of plugged females that gave birth, as well as litter size and weaning weight, were not influenced by the mating regime. After analysing 513 breeding cages with a total of 1090 females, we found that polygamous mating with up to three females per male can increase the number of timed pregnancies. However, in the mating regime with more than three females, the rate of timed pregnancy as well as number of pups per female declined.
Collapse
Affiliation(s)
- Martina Dorsch
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Isabell Wittur
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Wiebke Garrels
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| |
Collapse
|
22
|
Padilla SL, Johnson CW, Barker FD, Patterson MA, Palmiter RD. A Neural Circuit Underlying the Generation of Hot Flushes. Cell Rep 2019; 24:271-277. [PMID: 29996088 DOI: 10.1016/j.celrep.2018.06.037] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 05/24/2018] [Accepted: 06/08/2018] [Indexed: 12/15/2022] Open
Abstract
Hot flushes are a sudden feeling of warmth commonly associated with the decline of gonadal hormones at menopause. Neurons in the arcuate nucleus of the hypothalamus that express kisspeptin and neurokinin B (Kiss1ARH neurons) are candidates for mediating hot flushes because they are negatively regulated by sex hormones. We used a combination of genetic and viral technologies in mice to demonstrate that artificial activation of Kiss1ARH neurons evokes a heat-dissipation response resulting in vasodilation (flushing) and a corresponding reduction of core-body temperature in both females and males. This response is sensitized by ovariectomy. Brief activation of Kiss1ARH axon terminals in the preoptic area of the hypothalamus recapitulates this response, while pharmacological blockade of neurokinin B (NkB) receptors in the same brain region abolishes it. We conclude that transient activation of Kiss1ARH neurons following sex-hormone withdrawal contributes to the occurrence of hot flushes via NkB release in the rostral preoptic area.
Collapse
Affiliation(s)
- Stephanie L Padilla
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Christopher W Johnson
- Graduate Program in Neuroscience, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Forrest D Barker
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Michael A Patterson
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA; Departments of Biochemistry and Genome Sciences, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Smarr B, Cutler T, Loh DH, Kudo T, Kuljis D, Kriegsfeld L, Ghiani CA, Colwell CS. Circadian dysfunction in the Q175 model of Huntington's disease: Network analysis. J Neurosci Res 2019; 97:1606-1623. [PMID: 31359503 DOI: 10.1002/jnr.24505] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/29/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022]
Abstract
Disturbances in sleep/wake cycle are a common complaint of individuals with Huntington's disease (HD) and are displayed by HD mouse models. The underlying mechanisms, including the possible role of the circadian timing system, have been the topic of a number of recent studies. The (z)Q175 mouse is a knock-in model in which the human exon 1 sequence of the huntingtin gene is inserted into the mouse DNA with approximately 190 CAG repeats. Among the numerous models available, the heterozygous Q175 offers strong construct validity with a single copy of the mutation, genetic precision of the insertion and control of mutation copy number. In this review, we will summarize the evidence that this model exhibits disrupted diurnal and circadian rhythms in locomotor activity. We found overwhelming evidence for autonomic dysfunction including blunted daily rhythms in heart rate and core body temperature (CBT), reduced heart rate variability, and almost a complete failure of the sympathetic arm of the autonomic nervous system to function during the baroreceptor reflex. Mechanistically, the Q175 mouse model exhibits deficits in the neural output of the central circadian clock, the suprachiasmatic nucleus along with an enhancement of at least one type of potassium current in these neurons. Finally, we report a novel network analysis examining the phase coherence between activity, CBT, and cardiovascular measures. Such analyses found that even young Q175 mutants (heterozygous or homozygous) show coherence degradation, and suggests that loss of phase coherence is a variable that should be considered as a possible biomarker for HD.
Collapse
Affiliation(s)
- Benjamin Smarr
- Department of Psychology, University of California Berkeley, Berkeley, California.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California
| | - Tamara Cutler
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Dawn H Loh
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Takashi Kudo
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Dika Kuljis
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Lance Kriegsfeld
- Department of Psychology, University of California Berkeley, Berkeley, California.,Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, California
| | - Cristina A Ghiani
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California.,Department of Pathology, University of California Los Angeles, Los Angeles, California.,Laboratory Medicine, University of California Los Angeles, Los Angeles, California
| | - Christopher S Colwell
- Laboratory of Circadian and Sleep Medicine, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
24
|
Cintron-Colon R, Shankar K, Sanchez-Alavez M, Conti B. Gonadal hormones influence core body temperature during calorie restriction. Temperature (Austin) 2019; 6:158-168. [PMID: 31286026 DOI: 10.1080/23328940.2019.1607653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 12/29/2022] Open
Abstract
During calorie restriction (CR), endotherms adjust several physiological processes including the decrease of core body temperature (Tb) and reduction of energy expenditure. We recently found that CR-induced hypothermia is regulated in a sex-dependent manner in mice with lowered central insulin-like growth factor receptor signaling. Here, we describe the contribution of sex hormones to CR-induced hypothermia in wild type C57BL6 mice by measuring Tb of female and male mice following bilateral gonadectomy and hormonal replacement. Specifically, we evaluated the effects of progesterone (P4), 17-ß estradiol (E2), a combination of both (P4 + E2) in females and of 5-α dihydrotestosterone (5-α DHT) in males. Gonadectomy resulted in an earlier and stronger CR-induced hypothermia in both sexes. These effects were fully antagonized in females by E2 replacement, but not by P4, which had only minor and partial effects when used alone and did not prevent the action of E2 during CR when both hormones were given in combination. 5-α-DHT had only minor and transient effects on preventing the reduction of Tb during CR on gonadectomized male mice. These findings indicate that gonadal hormones contribute to sex-specific regulation of Tb and energy expenditure when nutrient availability is scarce. Abbreviations: AL: ad libitum; ANOVA: analysis of variance; CR: calorie restriction; E2: 17-ß estradiol; GNX: gonadectomy or gonadectomized; IGF-1R: insulin-like growth factor 1 receptor; POA: preoptic area; P4: progesterone; RM: repeated measures; SD: standard deviation; SEM: standard error of mean; Tb: core body temperature; WT: wildtype; 5-α DHT: 5-α dihydrotestosterone.
Collapse
Affiliation(s)
- Rigo Cintron-Colon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Kokila Shankar
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Manuel Sanchez-Alavez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.,Facultad de Medicina y Psicología, Universidad Autónoma de Baja California, Tijuana, México
| | - Bruno Conti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
25
|
Kisspeptin Neurons in the Arcuate Nucleus of the Hypothalamus Orchestrate Circadian Rhythms and Metabolism. Curr Biol 2019; 29:592-604.e4. [PMID: 30744968 DOI: 10.1016/j.cub.2019.01.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 12/10/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022]
Abstract
Successful reproduction in female mammals is precisely timed and must be able to withstand the metabolic demand of pregnancy and lactation. We show that kisspeptin-expressing neurons in the arcuate hypothalamus (Kiss1ARH) of female mice control the daily timing of food intake, along with the circadian regulation of locomotor activity, sleep, and core body temperature. Toxin-induced silencing of Kiss1ARH neurons shifts wakefulness and food consumption to the light phase and induces weight gain. Toxin-silenced mice are less physically active and have attenuated temperature rhythms. Because the rhythm of the master clock in the suprachiasmatic nucleus (SCN) appears to be intact, we hypothesize that Kiss1ARH neurons signal to neurons downstream of the master clock to modulate the output of the SCN. We conclude that, in addition to their well-established role in regulating fertility, Kiss1ARH neurons are a critical component of the hypothalamic circadian oscillator network that times overt rhythms of physiology and behavior.
Collapse
|
26
|
Pantier LK, Li J, Christian CA. Estrous Cycle Monitoring in Mice with Rapid Data Visualization and Analysis. Bio Protoc 2019; 9:e3354. [PMID: 32695847 DOI: 10.21769/bioprotoc.3354] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The estrous cycle provides a readout of reproductive health in female laboratory rodents, and estrous cycle stage can be an important physiological variable. Accurate assessment of estrous cycle stage is also important in producing timed pregnancies for developmental studies. Here, we provide a protocol for evaluation of estrous cycle stage through a minimally invasive procedure of acquiring cells lining the vaginal cavity and immediate microscopic visual assessment of these cells without drying or staining. When performed over several consecutive days, the pattern of progression through the four main stages of the estrous cycle, and disruptions to this pattern, can be determined. We also present software that enables more efficient cycle stage data analysis and pattern visualization. These protocols and tools will thus facilitate the incorporation of female animals in laboratory experiments and enhance the assessment of relationships between the reproductive cycle and overall physiology and behavior.
Collapse
Affiliation(s)
- Leanna K Pantier
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jiang Li
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Catherine A Christian
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
27
|
Grant AD, Wilsterman K, Smarr BL, Kriegsfeld LJ. Evidence for a Coupled Oscillator Model of Endocrine Ultradian Rhythms. J Biol Rhythms 2018; 33:475-496. [PMID: 30132387 DOI: 10.1177/0748730418791423] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Whereas long-period temporal structures in endocrine dynamics have been well studied, endocrine rhythms on the scale of hours are relatively unexplored. The study of these ultradian rhythms (URs) has remained nascent, in part, because a theoretical framework unifying ultradian patterns across systems has not been established. The present overview proposes a conceptual coupled oscillator network model of URs in which oscillating hormonal outputs, or nodes, are connected by edges representing the strength of node-node coupling. We propose that variable-strength coupling exists both within and across classic hormonal axes. Because coupled oscillators synchronize, such a model implies that changes across hormonal systems could be inferred by surveying accessible nodes in the network. This implication would at once simplify the study of URs and open new avenues of exploration into conditions affecting coupling. In support of this proposed framework, we review mammalian evidence for (1) URs of the gut-brain axis and the hypothalamo-pituitary-thyroid, -adrenal, and -gonadal axes, (2) UR coupling within and across these axes; and (3) the relation of these URs to body temperature. URs across these systems exhibit behavior broadly consistent with a coupled oscillator network, maintaining both consistent URs and coupling within and across axes. This model may aid the exploration of mammalian physiology at high temporal resolution and improve the understanding of endocrine system dynamics within individuals.
Collapse
Affiliation(s)
- Azure D Grant
- The Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Kathryn Wilsterman
- Department of Integrative Biology, University of California, Berkeley, California
| | - Benjamin L Smarr
- Department of Psychology, University of California, Berkeley, California
| | - Lance J Kriegsfeld
- The Helen Wills Neuroscience Institute, University of California, Berkeley, California.,Department of Psychology, University of California, Berkeley, California
| |
Collapse
|
28
|
Chmura HE, Glass TW, Williams CT. Biologging Physiological and Ecological Responses to Climatic Variation: New Tools for the Climate Change Era. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00092] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
29
|
Ladyman SR, Carter KM, Grattan DR. Energy homeostasis and running wheel activity during pregnancy in the mouse. Physiol Behav 2018; 194:83-94. [PMID: 29738792 DOI: 10.1016/j.physbeh.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/13/2018] [Accepted: 05/04/2018] [Indexed: 01/08/2023]
Abstract
Pregnancy and lactation are metabolically challenging states, where the mother must supply all the energy requirements for the developing fetus and growing pups respectively. The aim of the current study was to characterize many aspects of energy homeostasis before and during pregnancy in the mouse, and to examine the role of voluntary activity on changes in energy expenditure during pregnancy. In a secondary aim, we evaluate measures of energy homeostasis during pregnancy in mice that successfully reared their litter or in mice that went on to abandon their litter, to determine if an impairment in pregnancy-induced adaptation of energy homeostasis might underlie the abandonment of pups soon after birth. During pregnancy, food intake was increased, characterized by increased meal size and duration but not number of meals per day. The duration of time spent inactive, predicted to indicate sleep behaviour, was increased both early and late in pregnancy compared to pre-pregnancy levels. Increased x + y beam breaks, as a measure of activity increased during pregnancy and this reflected an increase in ambulatory behaviour in mid pregnancy and an increase in non-ambulatory movement in late pregnancy. Energy expenditure, as measured by indirect calorimetry, increased across pregnancy, likely due to the growth and development of fetal tissue. There was also a dramatic reduction in voluntary wheel running as soon as the mice became pregnant. Compared with successful pregnancies and lactations, pregnancies where pups were abandoned soon after birth were associated with reduced body weight gain and an increase in running wheel activity at the end of pregnancy, but no difference in food intake or energy expenditure. Overall, during pregnancy there are multiple adaptations to change energy homeostasis, resulting in partitioning of provisions of energy to the developing fetus and storing energy for future metabolic demands.
Collapse
Affiliation(s)
- S R Ladyman
- Centre for Neuroendocrinology, Department of Anatomy School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - K M Carter
- Centre for Neuroendocrinology, Department of Anatomy School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - D R Grattan
- Centre for Neuroendocrinology, Department of Anatomy School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
30
|
Maternal and Early-Life Circadian Disruption Have Long-Lasting Negative Consequences on Offspring Development and Adult Behavior in Mice. Sci Rep 2017; 7:3326. [PMID: 28607386 PMCID: PMC5468226 DOI: 10.1038/s41598-017-03406-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/28/2017] [Indexed: 01/31/2023] Open
Abstract
Modern life involves chronic circadian disruption through artificial light and these disruptions are associated with numerous mental and physical health maladies. Because the developing nervous system is particularly vulnerable to perturbation, we hypothesized that early-life circadian disruption would negatively impact offspring development and adult function. Pregnant mice were subjected to chronic circadian disruption from the time of uterine implantation through weaning. To dissociate in utero from postnatal effects, a subset of litters was cross-fostered at birth from disrupted dams to control dams and vice versa. Postnatal circadian disruption was associated with reduced adult body mass, social avoidance, and hyperactivity. In utero disruption resulted in more pronounced social avoidance and hyperactivity, phenotypes not abrogated by cross-fostering to control mothers. To examine whether circadian disruption affects development by acting as an early life stressor, we examined birthweight, litter size, maternal cannibalism, and epigenetic modifications. None of these variables differed between control and disrupted dams, or resembled patterns seen following early-life stress. Our findings indicate that developmental chronic circadian disruption permanently affects somatic and behavioral development in a stage-of-life-dependent manner, independent of early life stress mechanisms, underscoring the importance of temporal structure during development, both in utero and early postnatal life.
Collapse
|
31
|
Smarr BL, Grant AD, Zucker I, Prendergast BJ, Kriegsfeld LJ. Sex differences in variability across timescales in BALB/c mice. Biol Sex Differ 2017; 8:7. [PMID: 28203366 PMCID: PMC5301430 DOI: 10.1186/s13293-016-0125-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/26/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Females are markedly underinvestigated in the biological and behavioral sciences due to the presumption that cyclic hormonal changes across the ovulatory cycle introduce excess variability to measures of interest in comparison to males. However, recent analyses indicate that male and female mice and rats exhibit comparable variability across numerous physiological and behavioral measures, even when the stage of the estrous cycle is not considered. Hormonal changes across the ovulatory cycle likely contribute cyclic, intra-individual variability in females, but the source(s) of male variability has, to our knowledge, not been investigated. It is unclear whether male variability, like that of females, is temporally structured and, therefore, quantifiable and predictable. Finally, whether males and females exhibit variability on similar time scales has not been explored. METHODS These questions were addressed by collecting chronic, high temporal resolution locomotor activity (LA) and core body temperature (CBT) data from male and female BALB/c mice. RESULTS Contrary to expectation, males are more variable than females over the course of the day (diel variability) and exhibit higher intra-individual daily range than females in both LA and CBT. Between mice of a given sex, variability is comparable for LA but the inter-individual daily range in CBT is greater for males. To identify potential rhythmic processes contributing to these sex differences, we employed wavelet transformations across a range of periodicities (1-39 h). CONCLUSIONS Although variability in circadian power is comparable between the sexes for both LA and CBT, infradian variability is greater in females and ultradian variability is greater in males. Thus, exclusion of female mice from studies because of estrous cycle variability may increase variance in investigations where only male measures are collected over a span of several hours and limit generalization of findings from males to females.
Collapse
Affiliation(s)
- Benjamin L. Smarr
- Department of Psychology, University of California, Berkeley, CA 94720 USA
| | - Azure D. Grant
- Department of Psychology, University of California, Berkeley, CA 94720 USA
| | - Irving Zucker
- Department of Psychology, University of California, Berkeley, CA 94720 USA
- Department of Integrative Biology, University of California, Berkeley, CA USA
| | | | - Lance J. Kriegsfeld
- Department of Psychology, University of California, Berkeley, CA 94720 USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720 USA
| |
Collapse
|