1
|
Tauchi T, Moriya S, Okabe S, Kazama H, Miyazawa K, Takano N. Vitamin K2 sensitizes the efficacy of venetoclax in acute myeloid leukemia by targeting the NOXA-MCL-1 pathway. PLoS One 2024; 19:e0307662. [PMID: 39052583 PMCID: PMC11271855 DOI: 10.1371/journal.pone.0307662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Promising outcomes have been reported in elder patients with acute myeloid leukemia (AML) using combined therapy of venetoclax (VEN) and azacytidine (AZA) in recent years. However, approximately one-third of patients appear to be refractory to this therapy. Vitamin K2 (VK2) shows apoptosis-inducing activity in AML cells, and daily oral VK2 (menaquinone-4, GlakayR) has been approved for patients with osteoporosis in Japan. We observed a high response rate to AZA plus VEN therapy, with no 8-week mortality in the newly diagnosed AML patients consuming daily VK2 in our hospital. The median age of the patients was 75.9 years (range 66-84) with high-risk features. Patients received AZA 75 mg/m2 on D1-7, VEN 400 mg on D1-28, and daily VK2 45 mg. The CR/CRi ratio was 94.7% (18/19), with a CR rate of 79%. Complete cytogenetic CR was achieved in 15 of 19 (79%) patients, and MRD negativity in 2 of 15 (13%) evaluable CR patients. Owing to the extremely high response rate in clinical settings, we further attempted to investigate the underlying mechanisms. The combination of VK2 and VEN synergistically induced apoptosis in all five AML cell lines tested. VK2, but not VEN, induced mitochondrial reactive oxygen species (ROS), leading to the transcriptional upregulation of NOXA, followed by MCL-1 repression. ROS scavengers repressed VK2 induced-NOXA expression and led to the cancellation of pronounced apoptosis and the downregulation of MCL-1 by VK2 plus VEN. Additionally, knockdown and knockout of NOXA resulted in abrogation of the MCL-1 repression as well as enhanced cytotoxicity by the two-drug combination, indicating that VK2 suppresses MCL-1 via ROS-mediated NOXA induction. These data suggest that the dual inhibition of BCL-2 by VEN and MCL-1 by VK2 is responsible for the remarkable clinical outcomes in our patients. Therefore, large-scale clinical trials are required.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Aged
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Vitamin K 2/pharmacology
- Vitamin K 2/analogs & derivatives
- Vitamin K 2/therapeutic use
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Female
- Male
- Aged, 80 and over
- Apoptosis/drug effects
- Cell Line, Tumor
- Signal Transduction/drug effects
- Drug Synergism
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Reactive Oxygen Species/metabolism
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Tetsuzo Tauchi
- Shinyurigaoka General Hospital, Asou-ku, Kawasaki, Kanagawa, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Seiichi Okabe
- Department of Hematology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
2
|
Sadler RA, Shoveller AK, Shandilya UK, Charchoglyan A, Wagter-Lesperance L, Bridle BW, Mallard BA, Karrow NA. Beyond the Coagulation Cascade: Vitamin K and Its Multifaceted Impact on Human and Domesticated Animal Health. Curr Issues Mol Biol 2024; 46:7001-7031. [PMID: 39057059 PMCID: PMC11276079 DOI: 10.3390/cimb46070418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin K (VK) is an essential micronutrient impacting many systems in the body. This lipid-soluble vitamin is found in various plant and animal products and is absorbed via the lymphatic system. This biomolecule's importance to human health includes but is not limited to its promotion of brain, cardiovascular, bone, and immune functions. These biological properties are also necessary for maintaining domesticated animal health. The synergistic impact of both VK and vitamin D (VD) maximizes these health benefits, specifically for the circulatory and skeletal systems. This manuscript reviews VK's properties, molecular structures, nutrikinetics, mechanisms of action, daily requirements, safety in supplemental form, biomarkers used for its detection, and impacts on various organs. The purpose of synthesizing this information is to evaluate the potential uses of VK for the treatment or prevention of diseases.
Collapse
Affiliation(s)
- Rebecka A. Sadler
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Anna K. Shoveller
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Umesh K. Shandilya
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
| | - Armen Charchoglyan
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Advanced Analysis Centre, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Lauraine Wagter-Lesperance
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Byram W. Bridle
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bonnie A. Mallard
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
- Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Niel A. Karrow
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (R.A.S.); (A.K.S.); (U.K.S.)
- ImmunoCeutica Inc., Cambridge, ON N1T 1N6, Canada; (A.C.); (L.W.-L.); (B.W.B.); (B.A.M.)
| |
Collapse
|
3
|
Zhang T, O’Connor C, Sheridan H, Barlow JW. Vitamin K2 in Health and Disease: A Clinical Perspective. Foods 2024; 13:1646. [PMID: 38890875 PMCID: PMC11172246 DOI: 10.3390/foods13111646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Vitamins are essential organic compounds that vary widely in chemical structure and are vital in small quantities for numerous biochemical and biological functions. They are critical for metabolism, growth, development and maintaining overall health. Vitamins are categorised into two groups: hydrophilic and lipophilic. Vitamin K (VK), a lipophilic vitamin, occurs naturally in two primary forms: phylloquinone (VK1), found in green leafy vegetables and algae, and Menaquinones (VK2), present in certain fermented and animal foods and widely formulated in VK supplements. This review explores the possible factors contributing to VK deficiency, including dietary influences, and discusses the pharmacological and therapeutic potential of supplementary VK2, examining recent global clinical studies on its role in treating diseases such as osteoporosis, osteoarthritis, rheumatoid arthritis, cardiovascular disease, chronic kidney disease, diabetes, neurodegenerative disorders and cancers. The analysis includes a review of published articles from multiple databases, including Scopus, PubMed, Google Scholar, ISI Web of Science and CNKI, focusing on human studies. The findings indicate that VK2 is a versatile vitamin essential for human health and that a broadly positive correlation exists between VK2 supplementation and improved health outcomes. However, clinical data are somewhat inconsistent, highlighting the need for further detailed research into VK2's metabolic processes, biomarker validation, dose-response relationships, bioavailability and safety. Establishing a Recommended Daily Intake for VK2 could significantly enhance global health.
Collapse
Affiliation(s)
- Tao Zhang
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, 7, D07 ADY7 Dublin, Ireland;
- The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
| | - Christine O’Connor
- School of Food Science & Environmental Health, Technological University Dublin, Grangegorman, 7, D07 ADY7 Dublin, Ireland;
| | - Helen Sheridan
- The Trinity Centre for Natural Products Research (NatPro), School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland
| | - James W. Barlow
- Department of Chemistry, RCSI University of Medicine and Health Sciences, 2, D02 YN77 Dublin, Ireland
| |
Collapse
|
4
|
Chang X, Zhu Z, Weng L, Tang X, Liu T, Zhu M, Liu J, Tang W, Zhang Y, Chen X. Selective Manipulation of the Mitochondria Oxidative Stress in Different Cells Using Intelligent Mesoporous Silica Nanoparticles to Activate On-Demand Immunotherapy for Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307310. [PMID: 38039438 DOI: 10.1002/smll.202307310] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 11/03/2023] [Indexed: 12/03/2023]
Abstract
Herein, the vitamin K2 (VK2)/maleimide (MA) coloaded mesoporous silica nanoparticles (MSNs), functional molecules including folic acid (FA)/triphenylphosphine (TPP)/tetrapotassium hexacyanoferrate trihydrate (THT), as well as CaCO3 are explored to fabricate a core-shell-corona nanoparticle (VMMFTTC) for on-demand anti-tumor immunotherapy. After application, the tumor-specific acidic environment first decomposed CaCO3 corona, which significantly levitates the pH value of tumor tissue to convert M2 type macrophage to the antitumor M1 type. The resulting VMMFTT would then internalize in both tumor cells and macrophages via FA-assisted endocytosis and free endocytosis, respectively. These distinct processes generate different amount of VMMFTT in above two cells followed by 1) TPP-induced accumulation in the mitochondria, 2) THT-mediated effective capture of various signal ions to cut off signal transmission and further inhibit glutathione (GSH) generation, 3) ions catalyzed reactive oxygen species (ROS) production through Fenton reaction, 4) sustained release of VK2 and MA to further enhance the ROS production and GSH depletion, which caused significant apoptosis of tumor cells and additional M2-to-M1 macrophage polarization via different processes of oxidative stress. Moreover, the primary tumor apoptosis further matures surrounding immature dendritic cells and activates T cells to continuously promote the antitumor immunotherapy.
Collapse
Affiliation(s)
- Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, P. R. China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Chen A, Li J, Shen N, Huang H, Hang Q. Vitamin K: New insights related to senescence and cancer metastasis. Biochim Biophys Acta Rev Cancer 2024; 1879:189057. [PMID: 38158025 DOI: 10.1016/j.bbcan.2023.189057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/04/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
Several clinical trials and experimental studies have recently shown that vitamin K (VK) supplementation benefits the human body. Specifically, VK participates in coagulation and is associated with cellular senescence and cancer. VK has a potential anticancer effect in various cancers, such as pancreatic and prostate cancers. Through anti-inflammatory and antioxidant effects, VK can prevent senescence and inhibit cancer metastasis. Therefore, cancer prognosis can be improved by preventing cellular senescence. In addition, VK can inhibit the proliferation, growth, and differentiation of cancer cells through various mechanisms, including induction of c-myc and c-fos genes, regulation of B-cell lymphoma-2 (Bcl-2) and p21 genes, and angiogenesis inhibition. This review aims to discuss the relationship among VK, cellular senescence, and cancer metastasis and thus may improve comprehension of the specific functions of VK in human health. The potential application of VK as an adjuvant therapy for cancer (or in combination with traditional chemotherapy drugs or other vitamins) has also been highlighted.
Collapse
Affiliation(s)
- Anqi Chen
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jialu Li
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Nianxuan Shen
- Medical College, Yangzhou University, Yangzhou 225001, China
| | - Haifeng Huang
- Department of Laboratory Medicine, The First People's Hospital of Yancheng, Yancheng 224006, China; Department of Laboratory Medicine, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224006, China.
| | - Qinglei Hang
- Department of Laboratory Medicine, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225001, China.
| |
Collapse
|
6
|
Dugbartey GJ, Relouw S, McFarlane L, Sener A. Redox System and Oxidative Stress-Targeted Therapeutic Approaches in Bladder Cancer. Antioxidants (Basel) 2024; 13:287. [PMID: 38539821 PMCID: PMC10967649 DOI: 10.3390/antiox13030287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 08/29/2024] Open
Abstract
Bladder cancer (BCa) is the most common genitourinary malignancy, with a high global incidence and recurrence rate that is paired with an increasing caregiver burden and higher financial cost, in addition to increasing morbidity and mortality worldwide. Histologically, BCa is categorized into non-muscle invasive, muscle invasive, and metastatic BCa, on the basis of which the therapeutic strategy is determined. Despite all innovations and recent advances in BCa research, conventional therapies such as chemotherapy, immunotherapy, radiotherapy, and surgery fall short in the complete management of this important malignancy. Besides this worrying trend, the molecular basis of BCa development also remains poorly understood. Burgeoning evidence from experimental and clinical studies suggests that oxidative stress resulting from an imbalance between reactive oxygen species (ROS) generation and the body's antioxidant production plays an integral role in BCa development and progression. Hence, ROS-induced oxidative stress-related pathways are currently under investigation as potential therapeutic targets of BCa. This review focuses on our current understanding regarding ROS-associated pathways in BCa pathogenesis and progression, as well as on antioxidants as potential adjuvants to conventional BCa therapy.
Collapse
Affiliation(s)
- George J. Dugbartey
- Department of Surgery, Division of Urology, London Health Sciences Centre, University of Western Ontario, London, ON N6A 5A5, Canada
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Legon, Accra P.O. Box LG43, Ghana
- Department of Physiology & Pharmacology, Accra College of Medicine, Accra P.O. Box CT 9828, Ghana
| | - Sydney Relouw
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Liam McFarlane
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Alp Sener
- Department of Surgery, Division of Urology, London Health Sciences Centre, University of Western Ontario, London, ON N6A 5A5, Canada
- Matthew Mailing Center for Translational Transplant Studies, London Health Sciences Centre, Western University, London, ON N6A 5A5, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada
| |
Collapse
|
7
|
Cui Y, Zhang W, Yang P, Zhu S, Luo S, Li M. Menaquinone-4 prevents medication-related osteonecrosis of the jaw through the SIRT1 signaling-mediated inhibition of cellular metabolic stresses-induced osteoblast apoptosis. Free Radic Biol Med 2023; 206:33-49. [PMID: 37364692 DOI: 10.1016/j.freeradbiomed.2023.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Long-term usage of bisphosphonates, especially zoledronic acid (ZA), induces osteogenesis disorders and medication-related osteonecrosis of the jaw (MRONJ) in patients, thereby contributing to the destruction of bone remodeling and the continuous progression of osteonecrosis. Menaquinone-4 (MK-4), a specific vitamin K2 isoform converted by the mevalonate (MVA) pathway in vivo, exerts the promotion of bone formation, whereas ZA administration suppresses this pathway and results in endogenous MK-4 deficiency. However, no study has evaluated whether exogenous MK-4 supplementation can prevent ZA-induced MRONJ. Here we showed that MK-4 pretreatment partially ameliorated mucosal nonunion and bone sequestration among ZA-treated MRONJ mouse models. Moreover, MK-4 promoted bone regeneration and inhibited osteoblast apoptosis in vivo. Consistently, MK-4 downregulated ZA-induced osteoblast apoptosis in MC3T3-E1 cells and suppressed the levels of cellular metabolic stresses, including oxidative stress, endoplasmic reticulum stress, mitochondrial dysfunction, and DNA damage, which were accompanied by elevated sirtuin 1 (SIRT1) expression. Notably, EX527, an inhibitor of the SIRT1 signaling pathway, abolished the inhibitory effects of MK-4 on ZA-induced cell metabolic stresses and osteoblast damage. Combined with experimental evidences from MRONJ mouse models and MC3T3-E1 cells, our findings suggested that MK-4 prevents ZA-induced MRONJ by inhibiting osteoblast apoptosis through suppression of cellular metabolic stresses in a SIRT1-dependent manner. The results provide a novel translational direction for the clinical application of MK-4 for preventing MRONJ.
Collapse
Affiliation(s)
- Yajun Cui
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China
| | - Weidong Zhang
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China
| | - Panpan Yang
- Department of Oral and Maxillofacial Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Road, 250021, Jinan, China
| | - Siqi Zhu
- Center of Osteoporosis and Bone Mineral Research, Shandong University, China; The Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shenglei Luo
- Department of Oral and Maxillofacial Surgery, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250033, 247 Beiyuan Street, Jinan, Shandong, China.
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, China; Center of Osteoporosis and Bone Mineral Research, Shandong University, China.
| |
Collapse
|
8
|
Zhan Y, Chen Q, Song Y, Wei X, Zhao T, Chen B, Li C, Zhang W, Jiang Y, Tan Y, Du B, Xiao J, Wang K. Berbamine Hydrochloride inhibits lysosomal acidification by activating Nox2 to potentiate chemotherapy-induced apoptosis via the ROS-MAPK pathway in human lung carcinoma cells. Cell Biol Toxicol 2023; 39:1297-1317. [PMID: 36070022 DOI: 10.1007/s10565-022-09756-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023]
Abstract
Autophagy is typically activated in cancer cells as a rescue strategy in response to cellular stress (e.g., chemotherapy). Herein, we found that Berbamine Hydrochloride (Ber) can act as an effective inhibitor of the late stage of autophagic flux, thereby potentiating the killing effect of chemotherapy agents. Lung carcinoma cells exposed to Ber exhibited increased autophagosomes, marked by LC3-II upregulation. The increased level of p62 after Ber treatment indicated that the autophagic flux was blocked at the late stage. The lysosome staining assay and cathepsin maturation detection indicated impaired lysosomal acidification. We found that Nox2 exhibited intensified co-localization with lysosomes in Ber-treated cells. Nox2 is a key enzyme for superoxide anion production capable of transferring electrons into the lysosomal lumen, thereby neutralizing the inner protons; this might explain the aberrant acidification. This hypothesis is further supported by the observed reversal of lysosomal cathepsin maturation by Nox2 inhibitors. Finally, Ber combined with cisplatin exhibited a synergistic killing effect on lung carcinoma cells. Further data suggested that lung carcinoma cells co-treated with Ber and cisplatin accumulated excessive reactive oxygen species (ROS), which typically activated MAPK-mediated mitochondria-dependent apoptosis. The enhanced anti-cancer effect of Ber combined with cisplatin was also confirmed in an in vivo xenograft mouse model. These findings indicate that Ber might be a promising adjuvant for enhancing the cancer cell killing effect of chemotherapy via the inhibition of autophagy. In this process, Nox2 might be a significant mediator of Ber-induced aberrant lysosomal acidification.
Collapse
Affiliation(s)
- Yujuan Zhan
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qiugu Chen
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue Song
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xianli Wei
- Department of Medical Instruments, Guangdong Food and Drug Vocational College, Guangzhou, 510520, People's Republic of China
| | - Tingxiu Zhao
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Chengxi Li
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Wenbo Zhang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, SAR 999077, China
| | - Yuhui Tan
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Biaoyan Du
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jianyong Xiao
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Kun Wang
- Department of Pathology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
9
|
Narvaez CJ, Bak MJ, Salman N, Welsh J. Vitamin K2 enhances the tumor suppressive effects of 1,25(OH) 2D 3 in triple negative breast cancer cells. J Steroid Biochem Mol Biol 2023; 231:106307. [PMID: 37030416 PMCID: PMC10752295 DOI: 10.1016/j.jsbmb.2023.106307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/10/2023]
Abstract
K vitamins are well known as essential cofactors for hepatic γ-carboxylation of coagulation factors, but their potential role in chronic diseases including cancer is understudied. K2, the most abundant form of vitamin K in tissues, exerts anti-cancer effects via diverse mechanisms which are not completely understood. Our studies were prompted by previous work demonstrating that the K2 precursor menadione synergized with 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) to inhibit growth of MCF7 luminal breast cancer cells. Here we assessed whether K2 modified the anti-cancer effects of 1,25(OH)2D3 in triple negative breast cancer (TNBC) cell models. We examined the independent and combined effects of these vitamins on morphology, cell viability, mammosphere formation, cell cycle, apoptosis and protein expression in three TNBC cell models (MDA-MB-453, SUM159PT, Hs578T). We found that all three TNBC cell lines expressed low levels of the vitamin D receptor (VDR) and were modestly growth inhibited by 1,25(OH)2D3 in association with cell cycle arrest in G0/G1. Induction of differentiated morphology by 1,25(OH)2D3 was observed in two of the cell lines (MDA-MB-453, Hs578T). Treatment with K2 alone reduced viability of MDA-MB-453 and SUM159PT cells but not Hs578T cells. Co-treatment with 1,25(OH)2D3 and K2 significantly reduced viable cell number relative to either treatment alone in Hs578T and SUM159PT cells. The combination treatment induced G0/G1 arrest in MDA-MB-453 cells, Hs578T and SUM159PT cells. Combination treatment altered mammosphere size and morphology in a cell specific manner. Of particular interest, treatment with K2 increased VDR expression in SUM159PT cells suggesting that the synergistic effects in these cells may be secondary to increased sensitivity to 1,25(OH)2D3. The phenotypic effects of K2 in TNBC cells did not correlate with γ-carboxylation suggesting non-canonical actions. In summary, 1,25(OH)2D3 and K2 exert tumor suppressive effects in TNBC cells, inducing cell cycle arrest leading to differentiation and/or apoptosis depending on the specific cell line. Further mechanistic studies to clarify common and unique targets of these two fat soluble vitamins in TNBC are warranted.
Collapse
Affiliation(s)
- Carmen J Narvaez
- Cancer Research Center, University at Albany, Rensselaer, NY 12144, United States
| | - Min Ji Bak
- Cancer Research Center, University at Albany, Rensselaer, NY 12144, United States
| | - Natalia Salman
- Cancer Research Center, University at Albany, Rensselaer, NY 12144, United States
| | - JoEllen Welsh
- Cancer Research Center, University at Albany, Rensselaer, NY 12144, United States.
| |
Collapse
|
10
|
Mansour SW, Selim SA, Salama SA, Hussein S, Abozaid ER. Anti-apoptotic effect of menaquinone-7 protects the brain of ovariectomized rats. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
Abstract
Abstract
Background
Mood and memory deterioration occurs after ovariectomy (OVX) with various degrees and sometimes requires medical intervention. Menaquinone-7 (MK-7) is a potent isoform of vitamin K2 and has many effects on the bone and cardiovascular system. However, the effect of MK-7 on the brain and its mechanisms of action are still unclear. This study was performed to investigate the effect of MK-7 on mood and memory disorders following ovariectomy. Thirty-two female albino rats were divided into four groups (n = 8). Group I (control group) included sham-operated rats with sunflower oil intake. Group II (K2) included sham-operated rats with an intake of MK-7 dissolved in sunflower oil. Group III (K2 OVX) included ovariectomized rats with an intake of MK-7 dissolved in sunflower oil. Group IV(OVX) included ovariectomized rats with sunflower oil intake. Working memory, anxiety, depression, and sociability behaviors were investigated in all groups. Gene expression of BAX, BCL2, and p53 was measured in the hippocampus of all groups by real-time PCR. Besides, BAX/BCL2 ratio was calculated.
Results
Working memory, anxiety, depression, and sociability behaviors in the OVX rats showed a significant change compared to the sham-operated. However, the intake of MK-7 after the OVX resulted in significant improvement. Regarding hydrogen peroxide and MDA activity, they were significantly higher in the OVX group compared to the sham-operated groups, while in the K2OVX group, their activity showed a significant decrease in comparison with the OVX group. However, catalase and total antioxidant capacity were significantly lower in the OVX group compared to the sham-operated group, while in the k2OVX group, their activity showed a significant increase in comparison with the OVX group. The OVX group showed a significant elevation in the BAX, BAX/BCl2 ratio, and P53, but BCL2 was significantly reduced. However, the intake of MK-7 caused a significant improvement.
Conclusions
Our study showed that the OVX group showed significant physiological, biochemical, and molecular changes, which can be prevented by MK-7 intake.
Collapse
|
11
|
Dong X, Li X, Gan Y, Ding J, Wei B, Zhou L, Cui W, Li W. TRAF4-mediated ubiquitination-dependent activation of JNK/Bcl-xL drives radioresistance. Cell Death Dis 2023; 14:102. [PMID: 36765039 PMCID: PMC9918491 DOI: 10.1038/s41419-023-05637-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/12/2023]
Abstract
The E3 ligase TNF receptor-associated factor 4 (TRAF4) is upregulated and closely associated with tumorigenesis and the progression of multiple human malignancies. However, its effect on radiosensitivity in colorectal cancer (CRC) has not been elucidated. The present study found that TRAF4 was significantly increased in CRC clinical tumor samples. Depletion of TRAF4 impaired the malignant phenotype of CRC cells and sensitized irradiation-induced cell death. Irradiation activated the c-Jun N-terminal kinases (JNKs)/c-Jun signaling via increasing JNKs K63-linked ubiquitination and phosphorylation. Furthermore, c-Jun activation triggered the transcription of the antiapoptotic protein Bcl-xL, thus contributing to the radioresistance of CRC cells. TRAF4 was positively correlated with c-Jun and Bcl-xL, and blocking TRAF4 or inhibiting Bcl-xL with inhibitor markedly promoted ionizing radiation (IR)-induced intrinsic apoptosis and sensitized CRC cells to radiotherapy in vitro and in vivo. Our findings illustrate a potential mechanism of radioresistance, emphasizing the clinical value of targeting the TRAF4/Bcl-xL axis in CRC therapy.
Collapse
Affiliation(s)
- Xin Dong
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaoying Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Yu Gan
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jie Ding
- Department of Anesthesia, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Baojun Wei
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Li Zhou
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, Hunan, 410008, China
| | - Wei Cui
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Wei Li
- Department of Radiology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| |
Collapse
|
12
|
Welsh J, Bak MJ, Narvaez CJ. New insights into vitamin K biology with relevance to cancer. Trends Mol Med 2022; 28:864-881. [PMID: 36028390 PMCID: PMC9509427 DOI: 10.1016/j.molmed.2022.07.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/23/2022] [Accepted: 07/22/2022] [Indexed: 10/24/2022]
Abstract
Phylloquinone (vitamin K1) and menaquinones (vitamin K2 family) are essential for post-translational γ-carboxylation of a small number of proteins, including clotting factors. These modified proteins have now been implicated in diverse physiological and pathological processes including cancer. Vitamin K intake has been inversely associated with cancer incidence and mortality in observational studies. Newly discovered functions of vitamin K in cancer cells include activation of the steroid and xenobiotic receptor (SXR) and regulation of oxidative stress, apoptosis, and autophagy. We provide an update of vitamin K biology, non-canonical mechanisms of vitamin K actions, the potential functions of vitamin K-dependent proteins in cancer, and observational trials on vitamin K intake and cancer.
Collapse
Affiliation(s)
- JoEllen Welsh
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA.
| | - Min Ji Bak
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| | - Carmen J Narvaez
- Cancer Research Center and Department of Environmental Health Sciences, University at Albany, Rensselaer, NY 12144, USA
| |
Collapse
|
13
|
Lee EH, Kim HT, Chun SY, Chung JW, Choi SH, Lee JN, Kim BS, Yoo ES, Kwon TG, Kim TH, Ha YS. Role of the JNK Pathway in Bladder Cancer. Onco Targets Ther 2022; 15:963-971. [PMID: 36091874 PMCID: PMC9462548 DOI: 10.2147/ott.s374908] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Bladder cancer, one of the most frequently diagnosed cancers worldwide, is associated with high morbidity and mortality and a poor prognosis. The bladder cancer types include 1) non-muscle invasive bladder cancer (NMIBC) and 2) muscle invasive bladder cancer (MIBC). Metastases and chemoresistance in MIBC patients are the leading causes of the high death rate. c-Jun N-terminal kinase (JNK) is an important factor for the undifferentiated state of cancer cells. JNK belongs to the mitogen-activated protein kinases (MAPKs) family; it is activated by various extracellular stimuli, such as stress, radiation, and growth factors and mediates diverse cellular functions, such as apoptosis, autophagy, proliferation, invasion, and migration by mediating AKT (Ak strain transforming), ATG (Autophagy related), mTOR (Mammalian target of rapamycin), and caspases 3, 8, and 9. This review describes the JNK-related functions, mechanisms, and signaling in bladder cancer.
Collapse
Affiliation(s)
- Eun Hye Lee
- Joint Institution of Regenerative Medicine, Kyungpook National University, Daegu, Korea
| | - Hyun Tae Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - So Young Chun
- BioMedical Research Institute, Kyungpook National University Hospital, Daegu, Korea
| | - Jae-Wook Chung
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Seock Hwan Choi
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Jun Nyung Lee
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Bum Soo Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Eun Sang Yoo
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Tae Gyun Kwon
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Tae-Hwan Kim
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Yun-Sok Ha
- Department of Urology, School of Medicine, Kyungpook National University, Daegu, Korea
| |
Collapse
|
14
|
Mulberry Ethanol Extract and Rutin Protect Alcohol-Damaged GES-1 Cells by Inhibiting the MAPK Pathway. Molecules 2022; 27:molecules27134266. [PMID: 35807511 PMCID: PMC9268384 DOI: 10.3390/molecules27134266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Mulberry extract has been proven to have the effect of resisting alcohol damage, but its mechanism is still unclear. In this study, the composition of mulberry ethanol extract (MBE) was identified by LC-MS/MS and the main components of MBE were ascertained by measuring. Gastric mucosal epithelial (GES-1) cells were used to elucidate the mechanism of MBE and rutin (the central part of MBE) helped protect against alcohol damage. The results revealed that phenolics accounted for the majority of MBE, accounting for 308.6 mg/g gallic acid equivalents and 108 substances were identified, including 37 flavonoids and 50 non-flavonoids. The treatment of 400 μg/mL MBE and 320 μM rutin reduced early cell apoptosis and the content of intracellular reactive oxygen species, malondialdehyde and increased glutathione. The qPCR results indicated that the MBE inhibits the expression of genes in the mitogen-activated protein kinase (MAPK) pathway, including p38, JNK, ERK and caspase-3; rutin inhibits the expression of p38 and caspase-3. Overall, MBE was able to reduce the oxidative stress of GES-1 cells and regulated apoptosis-related genes of the MAPK pathway. This study provides information for developing anti-ethanol injury drugs or functional foods.
Collapse
|
15
|
Deng Y, Zhang Z, Hong Y, Feng L, Su Y, Xu D. Schisandrin A alleviates mycophenolic acid-induced intestinal toxicity by regulating cell apoptosis and oxidative damage. Toxicol Mech Methods 2022; 32:580-587. [PMID: 35321622 DOI: 10.1080/15376516.2022.2057263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The gastrointestinal side effects of mycophenolic acid affect its efficacy in kidney transplant patients, which may be due to its toxicity to the intestinal epithelial mechanical barrier, including intestinal epithelial cell apoptosis and destruction of tight junctions. The toxicity mechanism of mycophenolic acid is related to oxidative stress-mediated the activation of mitogen-activated protein kinases (MAPK). Schisandrin A (Sch A), one of the main active components of the Schisandra chinensis, can protects intestinal epithelial cells from deoxynivalenol-induced cytotoxicity and oxidative damage by antioxidant effects. The aim of this study was to investigate the protective effect and potential mechanism of Sch A on mycophenolic acid-induced damage in intestinal epithelial cell. The results showed that Sch A significantly reversed the mycophenolic acid-induced cell viability reduction, restored the expression of tight junction protein ZO-1, occludin and reduced cell apoptosis. In addition, Sch A inhibited mycophenolic acid-mediated MAPK activation and reactive oxygen species (ROS) increase. Collectively, our study showed that Sch A protected intestinal epithelial cells from mycophenolic acid intestinal toxicity, at least in part, by reducing oxidative stress and inhibiting MAPK signaling pathway.
Collapse
Affiliation(s)
- Yiyun Deng
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhe Zhang
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuanyuan Hong
- School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lijuan Feng
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yong Su
- The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Dujuan Xu
- School of Pharmacy, Anhui Medical University, Hefei, China.,The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
16
|
Exploring the Immune-Boosting Functions of Vitamins and Minerals as Nutritional Food Bioactive Compounds: A Comprehensive Review. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020555. [PMID: 35056870 PMCID: PMC8779769 DOI: 10.3390/molecules27020555] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/04/2022] [Accepted: 01/10/2022] [Indexed: 02/06/2023]
Abstract
Food components have long been recognized to play a fundamental role in the growth and development of the human body, conferring protective functionalities against foreign matter that can be severe public health problems. Micronutrients such as vitamins and minerals are essential to the human body, and individuals must meet their daily requirements through dietary sources. Micronutrients act as immunomodulators and protect the host immune response, thus preventing immune evasion by pathogenic organisms. Several experimental investigations have been undertaken to appraise the immunomodulatory functions of vitamins and minerals. Based on these experimental findings, this review describes the immune-boosting functionalities of micronutrients and the mechanisms of action through which these functions are mediated. Deficiencies of vitamins and minerals in plasma concentrations can lead to a reduction in the performance of the immune system functioning, representing a key contributor to unfavorable immunological states. This review provides a descriptive overview of the characteristics of the immune system and the utilization of micronutrients (vitamins and minerals) in preventative strategies designed to reduce morbidity and mortality among patients suffering from immune invasions or autoimmune disorders.
Collapse
|
17
|
Yu X, Su Q, Chang X, Chen K, Yuan P, Liu T, Tian R, Bai Y, Zhang Y, Chen X. Multimodal obstruction of tumorigenic energy supply via bionic nanocarriers for effective tumor therapy. Biomaterials 2021; 278:121181. [PMID: 34653932 DOI: 10.1016/j.biomaterials.2021.121181] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 09/05/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Sufficient energy generation based on effective transport of nutrient via abundant blood vessels in tumor tissue and subsequent oxidative metabolism in mitochondria is critical for growth, proliferation and migration of tumor. Thus the strategy to cut off this transport pathway (blood vessels) and simultaneously close the power house (mitochondria) is highly desired for tumor treatment. Herein, we fabricated a bionic nanocarrier with core-shell-corona structure to give selective and effective tumor therapy via stepwise destruction of existed tumor vessel, inhibition of tumor angiogenesis and dysfunction of tumor mitochondria. The core of this bionic nanocarrier consists of combretastatin A4 phosphate (CA4P) and vitamin K2 (VK2) co-loaded mesoporous silica nanoparticle (MSNs), which is in charge of the vasculature destruction and mitochondrial dysfunction after cargos release. The N-tert-butylacrylamide (TBAM) and tri-sulfated N-acetylglucosamine (TSAG) shell served as artificial affinity reagent against vascular endothelial growth factor (VEGF) for angiogenesis inhibition. As to guarantee that these actions only happened in tumor, the hyaluronic acid (HA) corona was introduced to endow the nanocarrier with tumor targeting property and stimuli-responsiveness for accurate therapy. Both in vitro and in vivo results indicated that the CA4P/VK2-MSNs-TBAM/TSAG-HA (CVMMGH for short) nanocarrier combined well-controllable manipulation of tumor vasculature and tumor mitochondria to effectivly cut off the tumorigenic energy supply, which performed significant inhibition of tumor growth, demonstrating the great candidate of our strategy for effective tumor therapy.
Collapse
Affiliation(s)
- Xiaoqian Yu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qi Su
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Xiaowei Chang
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Kun Chen
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China
| | - Pingyun Yuan
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ran Tian
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yongkang Bai
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, PR China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
18
|
Arthur RA, Dos Santos Bezerra R, Ximenez JPB, Merlin BL, de Andrade Morraye R, Neto JV, Fava NMN, Figueiredo DLA, de Biagi CAO, Montibeller MJ, Guimarães JB, Alves EG, Schreiner M, da Costa TS, da Silva CFL, Malheiros JM, da Silva LHB, Ribas GT, Achallma DO, Braga CM, Andrade KFA, do Carmo Alves Martins V, Dos Santos GVN, Granatto CF, Terin UC, Sanches IH, Ramos DE, Garay-Malpartida HM, de Souza GMP, Slavov SN, Silva WA. Microbiome and oral squamous cell carcinoma: a possible interplay on iron metabolism and its impact on tumor microenvironment. Braz J Microbiol 2021; 52:1287-1302. [PMID: 34002353 PMCID: PMC8324744 DOI: 10.1007/s42770-021-00491-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 04/06/2021] [Indexed: 12/23/2022] Open
Abstract
There is increasing evidence showing positive association between changes in oral microbiome and the occurrence of oral squamous cell carcinoma (OSCC). Alcohol- and nicotine-related products can induce microbial changes but are still unknown if these changes are related to cancerous lesion sites. In an attempt to understand how these changes can influence the OSCC development and maintenance, the aim of this study was to investigate the oral microbiome linked with OSCC as well as to identify functional signatures and associate them with healthy or precancerous and cancerous sites. Our group used data of oral microbiomes available in public repositories. The analysis included data of oral microbiomes from electronic cigarette users, alcohol consumers, and precancerous and OSCC samples. An R-based pipeline was used for taxonomic and functional prediction analysis. The Streptococcus spp. genus was the main class identified in the healthy group. Haemophilus spp. predominated in precancerous lesions. OSCC samples revealed a higher relative abundance compared with the other groups, represented by an increased proportion of Fusobacterium spp., Prevotella spp., Haemophilus spp., and Campylobacter spp. Venn diagram analysis showed 52 genera exclusive of OSCC samples. Both precancerous and OSCC samples seemed to present a specific associated functional pattern. They were menaquinone-dependent protoporphyrinogen oxidase pattern enhanced in the former and both 3',5'-cyclic-nucleotide phosphodiesterase (purine metabolism) and iron(III) transport system ATP-binding protein enhanced in the latter. We conclude that although precancerous and OSCC samples present some differences on microbial profile, both microbiomes act as "iron chelators-like" potentially contributing to tumor growth.
Collapse
Affiliation(s)
- Rodrigo Alex Arthur
- Preventive and Community Dentistry Department, Faculty of Dentistry, Federal University of Rio Grande do Sul, Porto Alegre, RS, 90035-003, Brazil
| | - Rafael Dos Santos Bezerra
- Postgraduate Program in Clinical Oncology, Stem Cells and Cell Therapy, Faculty of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
- Center for Cell-Based Therapy (CEPID/FAPESP), Molecular Genetics and Bioinformatics Laboratory - MGBL, National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, 14049-900, Brazil
| | - João Paulo Bianchi Ximenez
- Center for Cell-Based Therapy (CEPID/FAPESP), Molecular Genetics and Bioinformatics Laboratory - MGBL, National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Bruna Laís Merlin
- Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Raphael de Andrade Morraye
- Center for Cell-Based Therapy (CEPID/FAPESP), Molecular Genetics and Bioinformatics Laboratory - MGBL, National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
- Ribeirão Preto Medical School, University of Sao Paulo, Ribeirao Preto, SP, 14049-900, Brazil
| | - João Valentini Neto
- Department of Nutrition, School of Public Health, University of Sao Paulo, São Paulo, SP, 01246-904, Brazil
| | - Natália Melo Nasser Fava
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, SP, 13563-120, Brazil
| | - David Livingstone Alves Figueiredo
- Institute for Cancer Research (IPEC), Guarapuava, PR, 85015-430, Brazil
- Department of Medicine, UNICENTRO, Guarapuava, PR, 85015-430, Brazil
| | - Carlos Alberto Oliveira de Biagi
- Center for Cell-Based Therapy (CEPID/FAPESP), Molecular Genetics and Bioinformatics Laboratory - MGBL, National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, 14049-900, Brazil
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil
| | - Maria Jara Montibeller
- Department of Food and Nutrition, School of Pharmaceutical Sciences, São Paulo State University, Araraquara, SP, Brazil
| | - Jhefferson Barbosa Guimarães
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of Sao Paulo, Ribeirão Preto, SP, Brazil
| | - Ellen Gomes Alves
- Undergraduate in Biological Sciences, Institute of Health Sciences, Universidade Paulista, Ribeirão Preto, SP, Brazil
| | - Monique Schreiner
- Graduate Program in Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, PR, Brazil
| | - Tiago Silva da Costa
- Department of Biological Sciences and Health, Federal University of Amapá, Macapá, AP, Brazil
| | - Charlie Felipe Liberati da Silva
- Graduate Program in Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, PR, Brazil
| | | | - Luan Henrique Burda da Silva
- Graduate Program in Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, PR, Brazil
| | - Guilherme Taborda Ribas
- Graduate Program in Bioinformatics, Professional and Technological Education Sector, Federal University of Paraná, Curitiba, PR, Brazil
| | - Daisy Obispo Achallma
- Laboratorios de Investigación y Desarrollo, FARVET, Chincha Alta, Ica, Perú & Centro de Investigación de Genética y Biología Molecular (CIGBM), Universidad de San Martín de Porres, Lima, Perú
| | - Camila Margalho Braga
- Graduate Program in Parasitic Biology in the Amazon, Pará State University, Belém, PA, Brazil
| | - Karen Flaviane Assis Andrade
- Department of Electrical and Biomedical Engineering, Institute of Technology, Federal University of Pará, Belém, PA, Brazil
| | | | | | | | | | - Igor Henrique Sanches
- Institute of Pathology Tropical and Public Health, Federal University of Goiás, Goiânia, GO, Brazil
| | - Diana Estefania Ramos
- Department of Oral; Maxillofacial Surgery, and Periodontology, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Gabriela Marcelino Pereira de Souza
- Center for Cell-Based Therapy (CEPID/FAPESP), Molecular Genetics and Bioinformatics Laboratory - MGBL, National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, 14049-900, Brazil
| | - Svetoslav Nanev Slavov
- Center for Cell-Based Therapy (CEPID/FAPESP), Molecular Genetics and Bioinformatics Laboratory - MGBL, National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, 14049-900, Brazil
| | - Wilson Araújo Silva
- Center for Cell-Based Therapy (CEPID/FAPESP), Molecular Genetics and Bioinformatics Laboratory - MGBL, National Institute of Science and Technology in Stem Cell and Cell Therapy (INCTC/CNPq), Regional Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501, Ribeirão Preto, SP, 14049-900, Brazil.
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, 14049-900, Brazil.
- Center for Cell-Based Therapy (CEPID/FAPESP), Molecular Genetics and Bioinformatics Laboratory - MGBL, Blood Center of Ribeirão Preto, Rua Tenente Catão Roxo, 2501 - 14051-140 Ribeirão Preto, São Paulo, Brasil.
| |
Collapse
|
19
|
Administration of 4-Hydroxy-3,5-Di-Tertbutyl Cinnamic Acid Restores Mitochondrial Function in Rabbits with Cerebral Ischemia. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2019-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of the study is to evaluate the effect of 4-hydroxy-3,5- di-tertbutyl cinnamic acid on the change in mitochondrial function under conditions of experimental cerebral ischemia in rabbits. The study was performed on 48 male rabbits, which were used for modeling permanent cerebral ischemia by occlusion of the common carotid arteries. The test compound was administered before modeling ischemia for 14 days and after the occurrence of reproducing ischemia, in a similar time interval. After that, neurological deficit and the parameters of mitochondrial respiration, the intensity of anaerobic processes, the latent opening time of the mitochondrial permeability transition pore, the value of the mitochondrial membrane potential and the concentration of caspase – 3 were determined. The administration of 100 mg/kg of 4-hydroxy-3,5-di-tertbutyl cinnamic acid into the animals reduced neurological deficit and restored the mitochondrial membrane potential. Prophylactic administration of 4-hydroxy- 3,5-di-tertbutyl cinnamic acid, contributed to an increase in ATPgenerating ability, the maximum level of respiration and respiratory capacity by 4.1 times (p<0.01), 4.8 times (p<0.01) and 4.3 times (p<0.01), respectively. With therapeutic administration, these indicators increased by 11 times (p<0.01), 12.2 times (p<0.01) and 8.6 times (p<0.01), respectively. Also, both the prophylactic and therapeutic use of 4-hydroxy-3,5-di-tret-butyl cinnamic acid normalized aerobic/anaerobic metabolism, as well as reduced the concentration of caspase-3. Based on the obtained data, significant cerebroprotective properties of 4-hydroxy-3,5- di-tertbutyl cinnamic acid can be assumed. Moreover, the potential mechanism of action of this compound may be mediated by the normalization of mitochondrial function.
Collapse
|
20
|
Jo JH, Park HS, Lee DH, Han JH, Heo KS, Myung CS. Rosuvastatin Inhibits the Apoptosis of Platelet-Derived Growth Factor-Stimulated Vascular Smooth Muscle Cells by Inhibiting p38 via Autophagy. J Pharmacol Exp Ther 2021; 378:10-19. [PMID: 33846234 DOI: 10.1124/jpet.121.000539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
The secretion of platelet-derived growth factors (PDGFs) into vascular smooth muscle cells (VSMCs) induced by specific stimuli, such as oxidized low-density lipoprotein (LDL) cholesterol, initially increases the proliferation and migration of VSMCs, and continuous stimulation leads to VSMC apoptosis, resulting in the formation of atheroma. Autophagy suppresses VSMC apoptosis, and statins can activate autophagy. Thus, this study aimed to investigate the mechanism of the autophagy-mediated vasoprotective activity of rosuvastatin, one of the most potent statins, in VSMCs continuously stimulated with PDGF-BB, a PDGF isoform, at a high concentration (100 ng/ml) to induce phenotypic switching of VSMC. Rosuvastatin inhibited apoptosis in a concentration-dependent manner by reducing cleaved caspase-3 and interleukin-1β (IL-1β) levels and reduced intracellular reactive oxygen species (ROS) levels in PDGF-stimulated VSMCs. It also inhibited PDGF-induced p38 phosphorylation and increased the expression of microtubule-associated protein light chain 3 (LC3) and the conversion of LC3-I to LC3-II in PDGF-stimulated VSMCs. The ability of rosuvastatin to inhibit apoptosis and p38 phosphorylation was suppressed by treatment with 3-methyladenine (an autophagy inhibitor) but promoted by rapamycin (an autophagy activator) treatment. SB203580, a p38 inhibitor, reduced the PDGF-induced increase in intracellular ROS levels and inhibited the formation of cleaved caspase-3, indicating the suppression of apoptosis. In carotid ligation model mice, rosuvastatin decreased the thickness and area of the intima and increased the area of the lumen. In conclusion, our observations suggest that rosuvastatin inhibits p38 phosphorylation through autophagy and subsequently reduces intracellular ROS levels, leading to its vasoprotective activity. SIGNIFICANCE STATEMENT: This study shows the mechanism responsible for the vasoprotective activity of rosuvastatin in vascular smooth muscle cells under prolonged platelet-derived growth factor stimulation. Rosuvastatin inhibits p38 activation through autophagy, thereby suppressing intracellular reactive oxygen species levels, leading to the inhibition of apoptosis and reductions in the intima thickness and area. Overall, these results suggest that rosuvastatin can be used as a novel treatment to manage chronic vascular diseases such as atherosclerosis.
Collapse
Affiliation(s)
- Jun-Hwan Jo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Hyun-Soo Park
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Do-Hyung Lee
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Joo-Hui Han
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Kyung-Sun Heo
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| | - Chang-Seon Myung
- Department of Pharmacology, Chungnam National University College of Pharmacy, Daejeon, Republic of Korea
| |
Collapse
|
21
|
The Role of Vitamin K in Humans: Implication in Aging and Age-Associated Diseases. Antioxidants (Basel) 2021; 10:antiox10040566. [PMID: 33917442 PMCID: PMC8067486 DOI: 10.3390/antiox10040566] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/17/2022] Open
Abstract
As human life expectancy is rising, the incidence of age-associated diseases will also increase. Scientific evidence has revealed that healthy diets, including good fats, vitamins, minerals, or polyphenolics, could have antioxidant and anti-inflammatory activities, with antiaging effects. Recent studies demonstrated that vitamin K is a vital cofactor in activating several proteins, which act against age-related syndromes. Thus, vitamin K can carboxylate osteocalcin (a protein capable of transporting and fixing calcium in bone), activate matrix Gla protein (an inhibitor of vascular calcification and cardiovascular events) and carboxylate Gas6 protein (involved in brain physiology and a cognitive decline and neurodegenerative disease inhibitor). By improving insulin sensitivity, vitamin K lowers diabetes risk. It also exerts antiproliferative, proapoptotic, autophagic effects and has been associated with a reduced risk of cancer. Recent research shows that protein S, another vitamin K-dependent protein, can prevent the cytokine storm observed in COVID-19 cases. The reduced activation of protein S due to the pneumonia-induced vitamin K depletion was correlated with higher thrombogenicity and possibly fatal outcomes in COVID-19 patients. Our review aimed to present the latest scientific evidence about vitamin K and its role in preventing age-associated diseases and/or improving the effectiveness of medical treatments in mature adults ˃50 years old.
Collapse
|
22
|
Oxidative stress in bladder cancer: an ally or an enemy? Mol Biol Rep 2021; 48:2791-2802. [PMID: 33733384 DOI: 10.1007/s11033-021-06266-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Bladder cancer (BC) is the most common cancer of the urinary tract and despite all innovations, remains a major challenge due to high morbidity and mortality. Genomic and epigenetic analyses allowed the discovery of new genes and pathways involved in the pathogenesis and regulation of BC. However, the effect on mortality has been modest and the development of new targets for BC treatment are needed. Recent evidence suggests that cancer cells are under increased stress associated with oncogenic transformation, with changes in metabolic activity and increased generation of reactive oxygen species (ROS). The increased amounts of ROS in cancer cells are associated with stimulation of cellular proliferation, promotion of mutations and genetic instability, as well as alterations in cellular sensitivity to anticancer agents. Since these mechanisms occur in cancer cells, there is a close link between oxidative stress (OS) and BC with implications in prevention, carcinogenesis, prognosis, and treatment. We address the role of OS as an enemy towards BC development, as well as an ally to fight against BC. This review promises to expand our treatment options for BC with OS-based therapies and launches this approach as an opportunity to improve our ability to select patients most likely to respond to personalized therapy.
Collapse
|
23
|
Wang X, Qiao J, Zou C, Zhao Y, Huang Y. Sesamin induces cell cycle arrest and apoptosis through p38/C-Jun N-terminal kinase mitogen-activated protein kinase pathways in human colorectal cancer cells. Anticancer Drugs 2021; 32:248-256. [PMID: 33534411 DOI: 10.1097/cad.0000000000001031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Sesamin, a lignan compound, exhibits a variety of biological activities and possesses potent anticancer properties on some human cancers. However, its effect on human colorectal cancer (CRC) remains to be elucidated. To investigate the effects of sesamin on CRC cells and further to explore the mechanisms, cell viability, cell cycle and apoptosis assays were performed in this study. We found that sesamin had a selective antiproliferation of CRC cell line HCT116 in a dose- and time-dependent manner, but no obvious effect on human normal colorectal mucosa epithelial cell FHC. Further study showed that sesamin-induced cell cycle arrest and decreased the expression of Cyclin D1 significantly and dose-dependently in HCT116 cells. Moreover, sesamin dose-dependently triggered apoptosis of HCT116 but not FHC, and promoted the expression levels of proapoptotic biomarkers Bax, cleaved caspase-3 and cleaved PARP-1 and inhibited the expression of antiapoptotic biomarker Bcl-2. Western blot analysis was used to reveal the possible signaling pathways, and we found that sesamin upregulated the phosphorylation expression levels of C-Jun N-terminal kinase (JNK) and p38 except ERK1/2 in a dose-dependent way in both HCT116 and another CRC cell line SW480. Moreover, we found that the apoptosis effect induced by sesamin was partially eliminated by inhibiting JNK or p38 activation. Finally, we showed that sesamin effectively reduced the growth of xenograft tumors derived from cell lines with limited toxicity. Taken together, the potential ability of sesamin to induce cell cycle arrest and apoptosis was shown to be via the p38 and JNK mitogen-activated protein kinase signaling pathways, which may be one of the mechanisms of the anticancer activity of this low-toxic agent.
Collapse
Affiliation(s)
| | | | | | - Yutao Zhao
- Institute of Anesthesia, Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | | |
Collapse
|
24
|
Mandal JP, Shiue CN, Chen YC, Lee MC, Yang HH, Chang HH, Hu CT, Liao PC, Hui LC, You RI, Wu WS. PKCδ mediates mitochondrial ROS generation and oxidation of HSP60 to relieve RKIP inhibition on MAPK pathway for HCC progression. Free Radic Biol Med 2021; 163:69-87. [PMID: 33307168 DOI: 10.1016/j.freeradbiomed.2020.12.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 12/15/2022]
Abstract
Both protein kinase C (PKC) and reactive oxygen species (ROS) are well-known signaling messengers cross-talking with each other to activate mitogen-activated protein kinases (MAPKs) for progression of hepatocellular carcinoma (HCC). However, the underlying mechanisms are not well elucidated. Especially, whether mitochondrial ROS (mtROS) is involved and how it triggers MAPK signaling are intriguing. In this study, we found mtROS generation and phosphorylation of MAPKs were mediated by PKCδ in HCCs treated with the tumor promoter 12-O-tetradecanoyl-phorbol-13-acetate (TPA). Heat shock protein 60 (HSP60), one of the chaperones in mitochondria was the major protein oxidized in TPA-treated HCCs. Moreover, depletion of HSP60 or expression of HSP60 cysteine mutant prevented TPA-induced phosphorylation of MAPKs. To delineate how HSP60 mediated MAPK activation, the role of Raf kinase inhibitor protein (RKIP), a negative regulator of MAPK, was investigated. TPA dissociated RKIP from HSP60 in both mitochondria and cytosol, concurrently with translocation of HSP60 and MAPK from mitochondria to cytosol, which was associated with robust phosphorylation of MAPKs in the cytosol. Moreover, TPA induced opposite phenotypical changes of HCCs, G1 cell cycle arrest, and cell migration, which were prevented by mtROS scavengers and depletion of PKCδ and HSP60. Consistently, TPA increased the migration-related genes, hydrogen peroxide inducible clone5, matrix metalloproteinase-1/3, lamininγ2, and suppressed the cell cycle regulator cyclin E1 (CCNE1) via PKCδ/mtROS/HSP60/MAPK-axis. Finally, c-jun and c-fos were required for TPA-induced expression of the migration-related genes and a novel microRNA, miR-6134, was responsible for TPA-induced suppression of CCNE1. In conclusion, PKCδ cross-talked with mtROS to trigger HSP60 oxidation for release of RKIP to activate MAPK, regulating gene expression for migration, and G1 cell cycle arrest in HCC. Targeted therapy aiming at key players like PKCδ, RKIP, and HSP60 is promising for preventing HCC progression.
Collapse
Affiliation(s)
| | - Chiou-Nan Shiue
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan.
| | - Yen-Cheng Chen
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical foundation, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Ming-Che Lee
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical foundation, Hualien, Taiwan; School of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Hsueh-Hui Yang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970, Taiwan.
| | - Hsin-Hou Chang
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan.
| | - Chi-Tan Hu
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan; Division of Gastroenterology, Department of Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical foundation, Hualien, Taiwan; Research Centre for Hepatology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical foundation, Hualien, Taiwan.
| | - Pei-Chen Liao
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan.
| | - Lin-Ching Hui
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Ren-In You
- Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Wen-Sheng Wu
- Division of General Surgery, Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical foundation, Hualien, Taiwan; Department of Laboratory Medicine and Biotechnology, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
25
|
Najafi M, Mortezaee K, Rahimifard M, Farhood B, Haghi-Aminjan H. The role of curcumin/curcuminoids during gastric cancer chemotherapy: A systematic review of non-clinical study. Life Sci 2020; 257:118051. [DOI: 10.1016/j.lfs.2020.118051] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/01/2020] [Accepted: 07/01/2020] [Indexed: 02/07/2023]
|
26
|
Picropodophyllotoxin, an Epimer of Podophyllotoxin, Causes Apoptosis of Human Esophageal Squamous Cell Carcinoma Cells Through ROS-Mediated JNK/P38 MAPK Pathways. Int J Mol Sci 2020; 21:ijms21134640. [PMID: 32629820 PMCID: PMC7369713 DOI: 10.3390/ijms21134640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC), a major histologic type of esophageal cancer, is one of the frequent causes of cancer-related death worldwide. Picropodophyllotoxin (PPT) is the main component of Podophyllum hexandrum root with antitumor activity via apoptosis-mediated mechanisms in several cancer cells. However, the underlying mechanism of the PPT effects in apoptosis induction in cancer remains ambiguous. Hence, in this study, we evaluate the anti-cancer effects of PPT in apoptotic signaling pathway-related mechanisms in ESCC cells. First, to verify the effect of PPT on ESCC cell viability, we employed an MTT assay. PPT inhibited the viability of ESCC cells in time- and dose-dependent manners. PPT induced G2/M phase cell cycle arrest and annexin V-stained cell apoptosis through the activation of the c-Jun N-terminal kinase (JNK)/p38 pathways. Furthermore, the treatment of KYSE 30 and KYSE 450 ESCC cells with PPT induced apoptosis involving the regulation of endoplasmic reticulum stress- and apoptosis-related proteins by reactive oxygen species (ROS) generation, the loss of mitochondrial membrane potential, and multi-caspase activation. In conclusion, our results indicate that the apoptotic effect of PPT on ESCC cells has the potential to become a new anti-cancer drug by increasing ROS levels and inducing the JNK/p38 signaling pathways.
Collapse
|
27
|
Xu WT, Li TZ, Li SM, Wang C, Wang H, Luo YH, Piao XJ, Wang JR, Zhang Y, Zhang T, Xue H, Cao LK, Jin CH. Cytisine exerts anti-tumour effects on lung cancer cells by modulating reactive oxygen species-mediated signalling pathways. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:84-95. [PMID: 31852250 DOI: 10.1080/21691401.2019.1699813] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cytisine is a natural product isolated from plants and is a member of the quinolizidine alkaloid family. This study aims to investigate the effect of cytisine in human lung cancer. Cell viability was determined using the CCK-8 assay, and the results showed that cytisine inhibited the growth of lung cancer cell lines. The apoptotic effects were evaluated using flow cytometry, and the results showed that cytisine induced mitochondrial-dependent apoptosis through loss of the mitochondrial membrane potential; increased expression of BAD, cleaved caspase-3, and cleaved-PARP; and decreased expression levels of Bcl-2, pro-caspase-3, and pro-PARP. In addition, cytisine caused G2/M phase cell cycle arrest that was associated with inhibiting the AKT signalling pathway. During apoptosis, cytisine increased the phosphorylation levels of JNK, p38, and I-κB, and decreased the phosphorylation levels of ERK, STAT3, and NF-κB. Furthermore, cytisine treatment led to the generation of ROS, and the NAC attenuated cytisine-induced apoptosis. In vivo, cytisine administration significantly inhibited the lung cancer cell xenograft tumorigenesis. In conclusion, cytisine plays a critical role in suppressing the carcinogenesis of lung cancer cells through cell cycle arrest and induction of mitochondria-mediated apoptosis, suggesting that it may be a promising candidate for the treatment of human lung cancer.
Collapse
Affiliation(s)
- Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tian-Zhu Li
- Molecular Medicine Research Center, School of Basic Medical Science, Chifeng University, Chifeng, China
| | - Shu-Mei Li
- Hemodialysis Center, Daqing Oilfield General Hospital, Daqing, China
| | - Cheng Wang
- Pharmacy Department, Daqing Oilfield General Hospital, Daqing, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, the Fifth Affiliated Hospital of Harbin Medical University, Daqing, China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China
| | - Long-Kui Cao
- Department of Food Science and Engineering, College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,National Coarse Cereals Engineering Research Center, Daqing, China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,Department of Food Science and Engineering, College of Food Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, China.,National Coarse Cereals Engineering Research Center, Daqing, China
| |
Collapse
|
28
|
Li Y, Guo F, Guan Y, Chen T, Ma K, Zhang L, Wang Z, Su Q, Feng L, Liu Y, Zhou Y. Novel Anthraquinone Compounds Inhibit Colon Cancer Cell Proliferation via the Reactive Oxygen Species/JNK Pathway. Molecules 2020; 25:molecules25071672. [PMID: 32260423 PMCID: PMC7180728 DOI: 10.3390/molecules25071672] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/02/2020] [Accepted: 04/02/2020] [Indexed: 12/16/2022] Open
Abstract
A series of amide anthraquinone derivatives, an important component of some traditional Chinese medicines, were structurally modified and the resulting antitumor activities were evaluated. The compounds showed potent anti-proliferative activities against eight human cancer cell lines, with no noticeable cytotoxicity towards normal cells. Among the candidate compounds, 1-nitro-2-acyl anthraquinone-leucine (8a) showed the greatest inhibition of HCT116 cell activity with an IC50 of 17.80 μg/mL. In addition, a correlation model was established in a three-dimensional quantitative structure-activity relationship (3D-QSAR) study using Comparative Molecular Field Analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). Moreover, compound 8a effectively killed tumor cells by reactive oxygen species (ROS)-JNK activation, causing an increase in ROS levels, JNK phosphorylation, and mitochondrial stress. Cytochrome c was then released into cytoplasm, which, in turn activated the cysteine protease pathway and ultimately induced tumor cell apoptosis, suggesting a potential use of this compound for colon cancer treatment.
Collapse
|
29
|
Liu D, Qiu X, Xiong X, Chen X, Pan F. Current updates on the role of reactive oxygen species in bladder cancer pathogenesis and therapeutics. Clin Transl Oncol 2020; 22:1687-1697. [PMID: 32189139 PMCID: PMC7423792 DOI: 10.1007/s12094-020-02330-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
Bladder cancer (BCa) is the fourth most common urological malignancy in the world, it has become the costliest cancer to manage due to its high rate of recurrence and lack of effective treatment modalities. As a natural byproduct of cellular metabolism, reactive oxygen species (ROS) have an important role in cell signaling and homeostasis. Although up-regulation of ROS is known to induce tumorigenesis, growing evidence suggests a number of agents that can selectively kill cancer cells through ROS induction. In particular, accumulation of ROS results in oxidative stress-induced apoptosis in cancer cells. So, ROS is a double-edged sword. A modest level of ROS is required for cancer cells to survive, whereas excessive levels kill them. This review summarizes the up-to-date findings of oxidative stress-regulated signaling pathways and transcription factors involved in the etiology and progression of BCa and explores the possible therapeutic implications of ROS regulators as therapeutic agents for BCa.
Collapse
Affiliation(s)
- D Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - X Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - X Xiong
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - X Chen
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Institute of Brain Research, Key Laboratory of Neurological Diseases, Ministry of Education, Hubei Provincial Key Laboratory of Neurological Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - F Pan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
30
|
Sun X, Liu H, Wang P, Wang L, Ni W, Yang Q, Wang H, Tang H, Zhao G, Zheng Z. Construction of a novel MK-4 biosynthetic pathway in Pichia pastoris through heterologous expression of HsUBIAD1. Microb Cell Fact 2019; 18:169. [PMID: 31601211 PMCID: PMC6786277 DOI: 10.1186/s12934-019-1215-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 02/07/2023] Open
Abstract
Background With a variety of physiological and pharmacological functions, menaquinone is an essential prenylated product that can be endogenously converted from phylloquinone (VK1) or menadione (VK3) via the expression of Homo sapiens UBIAD1 (HsUBIAD1). The methylotrophic yeast, Pichia pastoris, is an attractive expression system that has been successfully applied to the efficient expression of heterologous proteins. However, the menaquinone biosynthetic pathway has not been discovered in P. pastoris. Results Firstly, we constructed a novel synthetic pathway in P. pastoris for the production of menaquinone-4 (MK-4) via heterologous expression of HsUBIAD1. Then, the glyceraldehyde-3-phosphate dehydrogenase constitutive promoter (PGAP) appeared to be mostsuitable for the expression of HsUBIAD1 for various reasons. By optimizing the expression conditions of HsUBIAD1, its yield increased by 4.37 times after incubation at pH 7.0 and 24 °C for 36 h, when compared with that under the initial conditions. We found HsUBIAD1 expressed in recombinant GGU-23 has the ability to catalyze the biosynthesis of MK-4 when using VK1 and VK3 as the isopentenyl acceptor. In addition, we constructed a ribosomal DNA (rDNA)-mediated multi-copy expression vector for the fusion expression of SaGGPPS and PpIDI, and the recombinant GGU-GrIG afforded higher MK-4 production, so that it was selected as the high-yield strain. Finally, the yield of MK-4 was maximized at 0.24 mg/g DCW by improving the GGPP supply when VK3 was the isopentenyl acceptor. Conclusions In this study, we constructed a novel synthetic pathway in P. pastoris for the biosynthesis of the high value-added prenylated product MK-4 through heterologous expression of HsUBIAD1 and strengthened accumulation of GGPP. This approach could be further developed and accomplished for the biosynthesis of other prenylated products, which has great significance for theoretical research and industrial application.
Collapse
Affiliation(s)
- Xiaowen Sun
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Hui Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Li Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China
| | - Wenfeng Ni
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Qiang Yang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Han Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Hengfang Tang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.,University of Science and Technology of China, Hefei, 230026, Anhui, People's Republic of China
| | - Genhai Zhao
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
| | - Zhiming Zheng
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, People's Republic of China.
| |
Collapse
|
31
|
Wang H, Luo YH, Shen GN, Piao XJ, Xu WT, Zhang Y, Wang JR, Feng YC, Li JQ, Zhang Y, Zhang T, Wang SN, Xue H, Wang HX, Wang CY, Jin CH. Two novel 1,4‑naphthoquinone derivatives induce human gastric cancer cell apoptosis and cell cycle arrest by regulating reactive oxygen species‑mediated MAPK/Akt/STAT3 signaling pathways. Mol Med Rep 2019; 20:2571-2582. [PMID: 31322207 PMCID: PMC6691246 DOI: 10.3892/mmr.2019.10500] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/12/2019] [Indexed: 12/15/2022] Open
Abstract
1,4-Naphthoquinone derivatives have superior anticancer effects, but their use has been severely limited in clinical practice due to adverse side effects. To reduce the side effects and extend the anticancer effects of 1,4-naphthoquinone derivatives, 2-(butane-1-sulfinyl)-1,4-naphthoquinone (BQ) and 2-(octane-1-sulfinyl)-1,4-naphthoquinone (OQ) were synthesized, and their anticancer activities were investigated. The anti-proliferation effects, determined by MTT assays, showed that BQ and OQ significantly inhibited the viability of gastric cancer cells and had no significant cytotoxic effect on normal cell lines. The apoptotic effect was determined by flow cytometry, and the results showed that BQ and OQ induced cell apoptosis by regulating the mitochondrial pathway and cell cycle arrest at the G2/M phase via inhibition of the Akt signaling pathway in AGS cells. Furthermore, BQ and OQ significantly increased the levels of reactive oxygen species (ROS) and this effect was blocked by the ROS scavenger NAC in AGS cells. BQ and OQ induced apoptosis by upregulating the protein expression of p38 and JNK and downregulating the levels of ERK and STAT3. Furthermore, expression levels of these proteins were also blocked after NAC treatment. These results demonstrated that BQ and OQ induced apoptosis and cell cycle arrest at the G2/M phase in AGS cells by stimulating ROS generation, which caused subsequent activation of MAPK, Akt and STAT3 signaling pathways. Thus, BQ and OQ may serve as potential therapeutic agents for the treatment of human gastric cancer.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Ying-Hua Luo
- Department of Grass Science, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Gui-Nan Shen
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Xian-Ji Piao
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang 163316, P.R. China
| | - Wan-Ting Xu
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yi Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jia-Ru Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yu-Chao Feng
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Jin-Qian Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Tong Zhang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Shi-Nong Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hui Xue
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Hong-Xing Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Chang-Yuan Wang
- Department of Food Science and Engineering, College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, College of Life Science and Technology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| |
Collapse
|
32
|
Li J, Zheng L, Wang X, Yao K, Shi L, Sun X, Yang G, Jiang L, Zhang C, Wang Y, Jiang L, Liu X. Taurine protects INS-1 cells from apoptosis induced by Di(2-ethylhexyl) phthalate via reducing oxidative stress and autophagy. Toxicol Mech Methods 2019; 29:445-456. [DOI: 10.1080/15376516.2019.1588931] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jianing Li
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, PR China
| | - Liangliang Zheng
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, PR China
| | - Xue Wang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, PR China
| | - Kun Yao
- Department of Orthopedics, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, PR China
| | - Limin Shi
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, PR China
| | - Xiance Sun
- Department of Occupational and Environmental Health, College of Public Health, Dalian Medical University, Dalian, Liaoning, PR China
- Natural Products Engineering Technology Center, Dalian Medical University, Dalian, Liaoning, PR China
| | - Guang Yang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, PR China
| | - Lijie Jiang
- Department of Internal Medicine, The Afliated Zhong Shan Hospital of Dalian University, Dalian, Liaoning, PR China
| | - Cong Zhang
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, PR China
| | - Yan Wang
- Department of Endocrinology, the Second Hospital of Chaoyang, Chaoyang, China
| | - Liping Jiang
- Natural Products Engineering Technology Center, Dalian Medical University, Dalian, Liaoning, PR China
- Preventive Medicine Laboratory College of Public Health, Dalian Medical University, Dalian, Liaoning, PR China
| | - Xiaofang Liu
- Department of Nutrition and Food Safety, College of Public Health, Dalian Medical University, Dalian, Liaoning, PR China
| |
Collapse
|
33
|
Saputra WD, Aoyama N, Komai M, Shirakawa H. Menaquinone-4 Suppresses Lipopolysaccharide-Induced Inflammation in MG6 Mouse Microglia-Derived Cells by Inhibiting the NF-κB Signaling Pathway. Int J Mol Sci 2019; 20:E2317. [PMID: 31083359 PMCID: PMC6540242 DOI: 10.3390/ijms20092317] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 12/31/2022] Open
Abstract
The overactivation of microglia is known to trigger inflammatory reactions in the central nervous system, which ultimately induce neuroinflammatory disorders including Alzheimer's disease. However, increasing evidence has shown that menaquinone-4 (MK-4), a subtype of vitamin K2, can attenuate inflammation in the peripheral system. Whereas it was also observed at high levels within the brain, its function in this organ has not been well characterized. Therefore, we investigated the effect of MK-4 on microglial activation and clarified the underlying mechanism. Mouse microglia-derived MG6 cells were exposed to lipopolysaccharide (LPS) either with or without MK-4 pretreatment. Cell responses with respect to inflammatory cytokines (Il-1β, Tnf-α, and Il-6) were measured by qRT-PCR. We further analyzed the phosphorylation of TAK1, IKKα/β, and p65 of the NF-κB subunit by Western blotting. We observed that in LPS-induced MG6 cells, MK-4 dose-dependently suppressed the upregulation of inflammatory cytokines at the mRNA level. It also significantly decreased the phosphorylation of p65, but did not affect that TAK1 and IKKα/β. Furthermore, the nuclear translocation of NF-κB in LPS-induced MG6 cells was inhibited by MK-4. These results indicate that MK-4 attenuates microglial inflammation by inhibiting NF-κB signaling.
Collapse
Affiliation(s)
- Wahyu Dwi Saputra
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan.
| | - Nao Aoyama
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan.
| | - Michio Komai
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan.
| | - Hitoshi Shirakawa
- Laboratory of Nutrition, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan.
- International Education and Research Center for Food Agricultural Immunology, Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan.
| |
Collapse
|
34
|
Tan GX, Wang XN, Tang YY, Cen WJ, Li ZH, Wang GC, Jiang JW, Wang XC. PP-22 promotes autophagy and apoptosis in the nasopharyngeal carcinoma cell line CNE-2 by inducing endoplasmic reticulum stress, downregulating STAT3 signaling, and modulating the MAPK pathway. J Cell Physiol 2019; 234:2618-2630. [PMID: 30191969 DOI: 10.1002/jcp.27076] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/28/2018] [Indexed: 12/24/2022]
Abstract
Paris polyphylla var. yunnanensis, named Chong Lou, is considered an antitumor substance. In this study, we investigated the effect of PP-22, a monomer purified from P. polyphylla var. yunnanensis, on the nasopharyngeal carcinoma cell line CNE-2 in vitro. The results showed that PP-22 could inhibit the proliferation of CNE-2 cells via the induction of apoptosis, with evidence of the characteristic morphological changes in the apoptosis in the nucleus and an increase in Annexin V-positive cells. In addition, we found that PP-22 could activate the p38 mitogen-activated protein kinase (MAPK) pathway and that this activation was reversed by SB203580, a specific inhibitor of the p38 MAPK pathway. In contrast, PP-22 promoted apoptosis via an intrinsic pathway, including the endoplasmic reticulum stress pathway, in a caspase-dependent manner. A further study showed that PP-22 also induced apoptosis by downregulating the signal transducers and activators of transcription 3 (STAT3) pathway, and the inhibitory effect was also confirmed by STAT3 small interfering RNA. In addition, PP-22 could promote autophagy by inhibiting the extracellular regulated protein kinases (ERK) pathway. And autophagy plays a protective role against apoptosis. Together, these data show that PP-22 promotes autophagy and apoptosis in the nasopharyngeal carcinoma CNE-2 cell line.
Collapse
Affiliation(s)
- Gui-Xiang Tan
- Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou, China
- Department of Gastroenterology, People's Hospital of Qingyuan, Guangdong, China
| | - Xin-Ning Wang
- Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Yun-Yun Tang
- Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Wan-Jing Cen
- Department of Stomatology, Guangzhou Development District Hospital, Guangzhou, China
| | - Zhen-Hua Li
- Translation Research Institute, Jinan University, Guangzhou, China
| | - Guo-Cai Wang
- Institute of Traditional Chinese Medicine & Natural Products, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jian-Wei Jiang
- Department of Biochemistry, Basic Medical College, Jinan University, Guangzhou, China
| | - Xi-Cheng Wang
- Department of Oncology, First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
35
|
He J, Zhong W, Zhang M, Zhang R, Hu W. P38 Mitogen-activated Protein Kinase and Parkinson's Disease. Transl Neurosci 2018; 9:147-153. [PMID: 30473884 PMCID: PMC6234472 DOI: 10.1515/tnsci-2018-0022] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 08/08/2018] [Indexed: 01/01/2023] Open
Abstract
Parkinson's disease, the second major neurodegenerative disease, has created a great impact on the elder people. Although the mechanisms underlying Parkinson's disease are not fully understood, considerable evidence suggests that neuro-inflammation, oxidative stress, mitochondrial dysfunction, cell proliferation, differentiation and apoptosis are involved in the disease. p38MAPK, an important member of the mitogen-activated protein family, controls several important functions in the cell, suggesting a potential pathogenic role in PD. This review provides a brief description of the role and mechanism of p38MAPK in Parkinson's disease.
Collapse
Affiliation(s)
- Jianying He
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Wenwen Zhong
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Ming Zhang
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
| | - Rongping Zhang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Weiyan Hu
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
- The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming, China
- Monash Immune Regeneration and Neuroscience Laboratories, Department of Anatomy and Developmental Biology, Monash University, Melbourne, Australia
| |
Collapse
|
36
|
Zhang W, Li Y, Wang P. Long non-coding RNA-ROR aggravates myocardial ischemia/reperfusion injury. ACTA ACUST UNITED AC 2018; 51:e6555. [PMID: 29694511 PMCID: PMC5937723 DOI: 10.1590/1414-431x20186555] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022]
Abstract
Long non-coding RNAs (lncRNAs) play an important role in the pathogenesis of cardiovascular diseases, especially in myocardial infarction and ischemia/reperfusion (I/R). However, the underlying molecular mechanism remains unclear. In this study, we determined the role and the possible underlying molecular mechanism of lncRNA-ROR in myocardial I/R injury. H9c2 cells and human cardiomyocytes (HCM) were subjected to either hypoxia/reoxygenation (H/R), I/R or normal conditions (normoxia). The expression levels of lncRNA-ROR were detected in serum of myocardial I/R injury patients, H9c2 cells, and HCM by qRT-PCR. Then, levels of lactate dehydrogenase (LDH), malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GSH-PX) were measured by kits. Cell viability, apoptosis, apoptosis-associated factors, and p38/MAPK pathway were examined by MTT, flow cytometry, and western blot assays. Furthermore, reactive oxygen species (ROS) production was determined by H2DCF-DA and MitoSOX Red probes with flow cytometry. NADPH oxidase activity and NOX2 protein levels were measured by lucigenin chemiluminescence and western blot. Results showed that lncRNA-ROR expression was increased in I/R patients and in H/R treatment of H9c2 cells and HCM. Moreover, lncRNA-ROR significantly promoted H/R-induced myocardial injury via stimulating release of LDH, MDA, SOD, and GSH-PX. Furthermore, lncRNA-ROR decreased cell viability, increased apoptosis, and regulated expression of apoptosis-associated factors. Additionally, lncRNA-ROR increased phosphorylation of p38 and ERK1/2 expression and inhibition of p38/MAPK, and rescued lncRNA-ROR-induced cell injury in H9c2 cells and HCM. ROS production, NADPH oxidase activity, and NOX2 protein levels were promoted by lncRNA-ROR. These data suggested that lncRNA-ROR acted as a therapeutic agent for the treatment of myocardial I/R injury.
Collapse
Affiliation(s)
- Weiwei Zhang
- Department of Cardiology, Dezhou People's Hospital, Dezhou, China
| | - Ying Li
- Interventional Center, Dezhou People's Hospital, Dezhou, China
| | - Peng Wang
- Department of Cardiology, Dezhou People's Hospital, Dezhou, China
| |
Collapse
|
37
|
Liu J, Zhai R, Zhao J, Kong F, Wang J, Jiang W, Xin Q, Xue X, Luan Y. Programmed cell death 4 overexpression enhances sensitivity to cisplatin via the JNK/c-Jun signaling pathway in bladder cancer. Int J Oncol 2018; 52:1633-1642. [PMID: 29512740 DOI: 10.3892/ijo.2018.4303] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 02/28/2018] [Indexed: 11/06/2022] Open
Abstract
The aim of the present study was to evaluate the effects of programmed cell death 4 (PDCD4) on cell proliferation and apoptosis, and to elucidate the potential role of the Jun N-terminal kinase (JNK)/c-Jun pathway in human bladder cancer (BCa) cells. Mixed BCa cells were transfected with plasmids containing PDCD4 (PDCD4-pcDNA3). The sensitivity to cisplatin was analyzed using cell viability, invasion/migration, apoptosis, flow cytometry, wound healing and Transwell assays at different transfection times. Furthermore, epithelial-to-mesenchymal transition (EMT) markers were detected by immunofluorescence staining, and the protein expression of c-Jun, and phosphorylated Jun N-terminal kinase (p-JNK) and c-Jun (p-c-Jun, Ser-73) were also tested using western blotting. It was observed that BCa cell proliferation and invasion and tumor growth were significantly inhibited, whereas apoptosis was enhanced in PDCD4-transfected cells treated with cisplatin compared with controls. Moreover, the western blotting and immunofluorescence results demonstrated that PDCD4 upregulated the expression of epithelial cell markers, but downregulated the expression of mesenchymal cell markers. Furthermore, overexpression of PDCD4 reduced the protein levels of p-JNK and p-c-Jun. Taken together, the findings of the present study indicate that PDCD4 enhances the sensitivity of BCa cells to cisplatin, partially via regulation of the JNK/c-Jun pathway, and reverses EMT. In conclusion, the results of the present study suggested that PDCD4, a nuclear/cytoplasmic shuttling protein with multiple functions, plays an important role in the development and progression of human BCa.
Collapse
Affiliation(s)
- Junli Liu
- Laboratory of Clinical Molecular Biology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Ruirui Zhai
- Department of Pediatrics, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jingjie Zhao
- Laboratory of Clinical Molecular Biology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Feng Kong
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Jue Wang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Wen Jiang
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Qian Xin
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xia Xue
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yun Luan
- Central Research Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
38
|
Dasari S, Samy ALPA, Kajdacsy-Balla A, Bosland MC, Munirathinam G. Vitamin K2, a menaquinone present in dairy products targets castration-resistant prostate cancer cell-line by activating apoptosis signaling. Food Chem Toxicol 2018; 115:218-227. [PMID: 29432837 DOI: 10.1016/j.fct.2018.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 01/31/2018] [Accepted: 02/07/2018] [Indexed: 12/14/2022]
Abstract
The aim of this study was to evaluate the therapeutic effects of vitamin K2 (VK2) on castration-resistant prostate cancer (CRPC) and its anti-cancer mechanisms in a pre-clinical study using a VCaP cell line (ATCC® CRL-2876™) which was established from a vertebral bone metastasis from a patient with hormone refractory prostate cancer. Our data showed that VK2 significantly inhibited CRPC VCaP cell proliferation in a dose-dependent manner at 48 h treatment in vitro. In addition, VK2 reduced the migration potential of VCaP cells and inhibited anchorage-independent growth of these cells. Our results also showed that VK2 induces apoptosis in VCaP cells. Furthermore, VK2 enforced growth arrest in VCaP cells by activating cellular senescence. Notably, VK2 treatment elevated the levels of reactive oxygen species in VCaP cells. Western blot analysis revealed that VK2 downregulated the expression of androgen receptor, BiP, survivin, while activating caspase-3 and -7, PARP-1 cleavage, p21 and DNA damage response marker, phospho-H2AX in VCaP cells. In conclusion, our study suggests that VK2 might be a potential anti-cancer agent for CRPC by specifically targeting key anti-apoptotic, cell cycle progression and metastasis-promoting signaling molecules.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Department of Biomedical Sciences, University of Illinois-College of Medicine, Rockford, IL, USA
| | | | | | - Maarten C Bosland
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, USA
| | - Gnanasekar Munirathinam
- Department of Biomedical Sciences, University of Illinois-College of Medicine, Rockford, IL, USA.
| |
Collapse
|
39
|
Ji L, Zhong B, Jiang X, Mao F, Liu G, Song B, Wang CY, Jiao Y, Wang JP, Xu ZB, Li X, Zhan B. Actein induces autophagy and apoptosis in human bladder cancer by potentiating ROS/JNK and inhibiting AKT pathways. Oncotarget 2017; 8:112498-112515. [PMID: 29348843 PMCID: PMC5762528 DOI: 10.18632/oncotarget.22274] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/20/2017] [Indexed: 02/06/2023] Open
Abstract
Human bladder cancer is a common genitourinary malignant cancer worldwide. However, new therapeutic strategies are required to overcome its stagnated survival rate. Triterpene glycoside Actein (ACT), extracted from the herb black cohosh, suppresses the growth of human breast cancer cells. Our study attempted to explore the role of ACT in human bladder cancer cell growth and to reveal the underlying molecular mechanisms. We found that ACT significantly impeded the bladder cancer cell proliferation via induction of G2/M cycle arrest. Additionally, ACT administration triggered autophagy and apoptosis in bladder cancer cells, proved by the autophagosome formation, LC3B-II accumulation, improved cleavage of Caspases/poly (ADP-ribose) polymerase (PARP). Furthermore, reduction of reactive oxygen species (ROS) and p-c-Jun N-terminal kinase (JNK) could markedly reverse ACT-induced autophagy and apoptosis. In contrast, AKT and mammalian target of rapamycin (mTOR) were greatly de-phosphorylated by ACT, while suppressing AKT and mTOR activity could enhance the effects of ACT on apoptosis and autophagy induction. In vivo, ACT reduced the tumor growth with little toxicity. Taken together, our findings indicated that ACT suppressed cell proliferation, induced autophagy and apoptosis through promoting ROS/JNK activation, and blunting AKT pathway in human bladder cancer, which indicated that ACT might be an effective candidate against human bladder cancer in future.
Collapse
Affiliation(s)
- Lu Ji
- Department of Urology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Bing Zhong
- Department of Urology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Xi Jiang
- Department of Urology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Fei Mao
- Department of Urology, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Gang Liu
- Department of Orthopaedics, Huai’an First People's Hospital, Nanjing Medical University, Huai’an 223300, China
| | - Bin Song
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Cheng-Yuan Wang
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Yong Jiao
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Jiang-Ping Wang
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Zhi-Bin Xu
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Xing Li
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| | - Bo Zhan
- Branch of Raw Material and Natural Products, Far East Biological Products Co. LTD., Nanjing 210009, China
| |
Collapse
|
40
|
Dragh MA, Xu Z, Al-Allak ZS, Hong L. Vitamin K2 Prevents Lymphoma in Drosophila. Sci Rep 2017; 7:17047. [PMID: 29213118 PMCID: PMC5719063 DOI: 10.1038/s41598-017-17270-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023] Open
Abstract
Previous studies have established the anticancer effect of vitamin K2 (VK2). However, its effect on lymphoma induced by UBIAD1/heix mutation in Drosophila remains unknown. Therefore, we aimed to develop an in vivo model of lymphoma for the precise characterization of lymphoma phenotypes. We also aimed to improve the understanding of the mechanisms that underlie the preventative effects of VK2 on lymphoma. Our results demonstrated that VK2 prevents lymphoma by acting as an electron carrier and by correcting the function and structure of mitochondria by inhibiting mitochondrial reactive oxygen species production mtROS. Our work identifies mitochondria as a key player in cancer therapy strategies.
Collapse
Affiliation(s)
- Maytham A Dragh
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.,Department of Biology College of Life Science, Misan University, Amarah, Iraq
| | - Zhiliang Xu
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Zainab S Al-Allak
- Department of Biology College of Life Science, Misan University, Amarah, Iraq
| | - Ling Hong
- Department of Genetics and Developmental Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China.
| |
Collapse
|
41
|
Costunolide enhances doxorubicin-induced apoptosis in prostate cancer cells via activated mitogen-activated protein kinases and generation of reactive oxygen species. Oncotarget 2017; 8:107701-107715. [PMID: 29296199 PMCID: PMC5746101 DOI: 10.18632/oncotarget.22592] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/04/2017] [Indexed: 01/02/2023] Open
Abstract
The management of castration-resistant prostate cancer (CRPC) is challenging, attributable to a lack of efficacious therapies. Chemotherapy is one of the most important treatments for CRPC. Doxorubicin has been extensively used in many different tumors and is often combined with other drugs to enhance effects and reduce toxicity. Costunolide is a natural sesquiterpene lactone with anti-cancer properties. In this study, we first demonstrated that the combination of costunolide and doxorubicin induced apoptosis significantly more than either drug alone in prostate cancer cell lines. Costunolide combined with doxorubicin induced mitochondria-mediated apoptosis through a loss of mitochondrial membrane potential and modulation of Bcl-2 family proteins. We found that this drug combination significantly increased the production of reactive oxygen species (ROS), as well as phosphorylation of c-jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases, which play upstream roles in mitochondria-mediated apoptosis. Further studies showed that N-acetyl cysteine blocked JNK and p38 phosphorylation, suggesting that ROS were upstream activators of JNK and p38. However, a JNK inhibitor, but not a p38 inhibitor, blocked the increase in ROS observed in cells treated with a combination of costunolide and doxorubicin, suggesting that ROS and JNK could activate each other. In vivo, inhibition of tumor growth and induction of apoptosis were greater in mice treated with the costunolide and doxorubicin combination than in mice treated with either drug alone, without an increase in toxicity. Therefore, we suggested that costunolide in combination with doxorubicin was a new potential chemotherapeutic strategy for treating prostate cancer.
Collapse
|
42
|
Lu Y, Hao C, He W, Tang C, Shao Z. Experimental research on preventing mechanical phlebitis arising from indwelling needles in intravenous therapy by external application of mirabilite. Exp Ther Med 2017; 15:276-282. [PMID: 29250150 PMCID: PMC5729698 DOI: 10.3892/etm.2017.5347] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 09/25/2017] [Indexed: 11/21/2022] Open
Abstract
Various types of complications arising from intravenous indwelling needles have become a challenge in clinical care. It is urgent to seek a simple and cost-effective method for prevention and treatment of phlebitis. We investigated the roles of mirabilite in preventing and treating phlebitis caused by intravenous indwelling needles and provide guidance for prevention and treatment of mechanical phlebitis caused by intravenous indwelling needles. A total of 57 healthy congeneric big-eared New Zealand rabbits were randomly divided into 3 groups: blank control, indwelling needle, and group with external application of mirabilite. The ear vein of each rabbit was punctured with an intravenous indwelling needle. The ear vein specimens were taken at 3, 5, and 7 days after indwelling. The hematoxylin and eosin stained pathological tissue sections of the ear veins of the rabbits in each group were observed. The expression levels of IL-1 and IL-6, and tumour necrosis factor-α (TNF-α) in the vascular tissue of the ear veins of the rabbits in each group were detected with the immunofluorescence method. In the blank control group, there was no inflammatory cellular infiltration and no proliferation of fibrous tissue around the vascular wall. With the increase of the indwelling time, proliferation of fibrous tissue in vascular wall, increased inflammatory cellular infiltration and organized thrombus in the vascular tissue occurred in the ear veins of the rabbits in the indwelling needle group and group with external application of mirabilite. Compared with the indwelling needle group, the group with external application of mirabilite had significantly decreased fibrous tissue in the vascular wall and significantly decreased inflammatory cellular infiltration. At the same point in indwelling time, the expression levels of IL-1, IL-6, and TNF-α in the indwelling needle and group with external application of mirabilite were significantly higher than that in the blank control group (P<0.05). The expression levels of IL-1, IL-6, and TNF-α in the group with external application of mirabilite were lower than that in the indwelling needle group (P<0.05). The expression levels of IL-1, IL-6, and TNF-α are positively correlated with the indwelling time within the same group at different points in time. In conclusion, external application of mirabilite can significantly decrease infiltration of venous inflammatory cells of the rabbit ear margin, proliferation of fibrous tissue and thrombosis in the vascular wall, significant decrease the expression levels of IL-1, IL-6, and TNF-α in the mechanical phlebitis caused by intravenous indwelling needles, and decrease the inflammatory responses of the ear veins of rabbits.
Collapse
Affiliation(s)
- Yanyan Lu
- College of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 321001, P.R. China
| | - Chunyan Hao
- College of Nursing, Jinzhou Medical University, Jinzhou, Liaoning 321001, P.R. China
| | - Wubin He
- Biological Treatment of Experimental Center, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 321001, P.R. China
| | - Can Tang
- Spinal Ward of Bone Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 321001, P.R. China
| | - Zhenya Shao
- Spinal Ward of Bone Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning 321001, P.R. China
| |
Collapse
|
43
|
Crosstalk Influence between P38MAPK and Autophagy on Mitochondria-Mediated Apoptosis Induced by Anti-Fas Antibody/Actinomycin D in Human Hepatoma Bel-7402 Cells. Molecules 2017; 22:molecules22101705. [PMID: 29039784 PMCID: PMC6151482 DOI: 10.3390/molecules22101705] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/02/2017] [Accepted: 10/02/2017] [Indexed: 12/16/2022] Open
Abstract
Our previous study indicated that anti-Fas antibody/actinomycin D (AF/AD) induced apoptosis of human hepatocellular carcinoma Bel-7402 cells; however, crosstalk influence between P38MAPK and autophagy on mitochondria-mediated apoptosis induced by AF/AD in Bel-7402 cells remains unclear. Therefore, effect of AF/AD on apoptosis, autophagy, phosphorylated-P38MAPK (p-P38MAPK), and membrane potential (ΔΨm) with or without the P38MAPK inhibitor SB203580 or the autophagy inhibitor 3-methyladenine (3-MA) in Bel-7402 cells was investigated in the present study. The results showed that AF/AD resulted in induction of apoptosis concomitant with autophagy, upregulation of p-P38MAPK and autophagy-associated gene proteins (Atg5-Atg12 protein complex, Atg7, Atg10, Beclin-1, LC3 I, and LC3 II), and downregulation of ΔΨm in Bel-7402 cells. In contrast, SB203580 attenuated the effects of AF/AD in Bel-7402 cells. Furthermore, the findings also demonstrated that 3-MA inhibited the impact of AF/AD on autophagy, Atg5-Atg12 protein complex, Atg7, Atg10, Beclin-1, LC3 I, LC3 II, and ΔΨm, and promoted the influence of AF/AD on apoptosis and p-P38MAPK in Bel-7402 cells. Taken together, we conclude that crosstalk between P38MAPK and autophagy regulates mitochondria-mediated apoptosis induced by AF/AD in Bel-7402 cells.
Collapse
|
44
|
Shi J, Zhou S, Kang L, Ling H, Chen J, Duan L, Song Y, Deng Y. Evaluation of the antitumor effects of vitamin K2 (menaquinone-7) nanoemulsions modified with sialic acid-cholesterol conjugate. Drug Deliv Transl Res 2017; 8:1-11. [DOI: 10.1007/s13346-017-0424-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
45
|
Ge GF, Shi WW, Yu CH, Jin XY, Zhang HH, Zhang WY, Wang LC, Yu B. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits. Toxicol Appl Pharmacol 2017; 318:23-32. [DOI: 10.1016/j.taap.2017.01.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 01/19/2017] [Accepted: 01/22/2017] [Indexed: 12/14/2022]
|
46
|
Di W, Khan M, Gao Y, Cui J, Wang D, Qu M, Feng L, Maryam A, Gao H. Vitamin K4 inhibits the proliferation and induces apoptosis of U2OS osteosarcoma cells via mitochondrial dysfunction. Mol Med Rep 2016; 15:277-284. [PMID: 27959452 DOI: 10.3892/mmr.2016.6001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 09/02/2016] [Indexed: 11/06/2022] Open
Abstract
Vitamin K (VK) is a group of fat‑soluble vitamins, which serve important roles in blood coagulation and bone metabolism. A recent study reported that several VK subtypes possess antitumor properties, however the antitumor effects of VK in osteosarcoma are unknown. The present study aimed to identify the antitumor effects of VK in osteosarcoma and the possible underlying mechanism of action. The effect of VK4 on cell viability was determined using a 3‑(4,5‑dimethylthiazol‑2‑yl)‑2,5‑diphenyltetrazolium bromide (MTT) assay. Cellular and nuclear morphological changes were observed by phase contrast microscopy. Cell cycle analysis, apoptotic rate, mitochondrial membrane potential and levels of reactive oxygen species (ROS) were detected by flow cytometry. In vitro cancer cell migration activities were evaluated using a Wound healing assay and Transwell microplates. The results demonstrated that VK4 arrested the cells in S phase and induced apoptosis. Additional mechanistic studies indicated that the induction of apoptosis by VK4 was associated with the increased production of reactive oxygen species, dissipation of the mitochondrial membrane potential, decreased Bcl‑2 family protein expression levels and activation of caspase‑3. In conclusion, the results suggest that the sensitivity of U2OS osteosarcoma cells to VK4 may be as a result of mitochondrial dysfunction. As it is readily available for human consumption, VK4 may therefore present a novel therapeutic candidate for the treatment of patients with osteosarcoma.
Collapse
Affiliation(s)
- Weihua Di
- Department of Pain Treatment, Binzhou Medical University Affiliated Hospital, Binzhou, Shandong 256600, P.R. China
| | - Muhammad Khan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116041, P.R. China
| | - Yong Gao
- Department of Pain Treatment, Binzhou Medical University Affiliated Hospital, Binzhou, Shandong 256600, P.R. China
| | - Jing Cui
- Department of Pain Treatment, Binzhou Medical University Affiliated Hospital, Binzhou, Shandong 256600, P.R. China
| | - Deqiang Wang
- Department of Pain Treatment, Binzhou Medical University Affiliated Hospital, Binzhou, Shandong 256600, P.R. China
| | - Mingfen Qu
- Department of Pain Treatment, Binzhou Medical University Affiliated Hospital, Binzhou, Shandong 256600, P.R. China
| | - Liangtao Feng
- Department of Pain Treatment, Binzhou Medical University Affiliated Hospital, Binzhou, Shandong 256600, P.R. China
| | - Amara Maryam
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning 116041, P.R. China
| | - Hongwen Gao
- Department of Pathology, Jilin University Bethune Second Hospital, Changchun, Jilin 130041, P.R. China
| |
Collapse
|