1
|
Hunt AC, Rasor BJ, Seki K, Ekas HM, Warfel KF, Karim AS, Jewett MC. Cell-Free Gene Expression: Methods and Applications. Chem Rev 2024. [PMID: 39700225 DOI: 10.1021/acs.chemrev.4c00116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Cell-free gene expression (CFE) systems empower synthetic biologists to build biological molecules and processes outside of living intact cells. The foundational principle is that precise, complex biomolecular transformations can be conducted in purified enzyme or crude cell lysate systems. This concept circumvents mechanisms that have evolved to facilitate species survival, bypasses limitations on molecular transport across the cell wall, and provides a significant departure from traditional, cell-based processes that rely on microscopic cellular "reactors." In addition, cell-free systems are inherently distributable through freeze-drying, which allows simple distribution before rehydration at the point-of-use. Furthermore, as cell-free systems are nonliving, they provide built-in safeguards for biocontainment without the constraints attendant on genetically modified organisms. These features have led to a significant increase in the development and use of CFE systems over the past two decades. Here, we discuss recent advances in CFE systems and highlight how they are transforming efforts to build cells, control genetic networks, and manufacture biobased products.
Collapse
Affiliation(s)
- Andrew C Hunt
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Blake J Rasor
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Holly M Ekas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Katherine F Warfel
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois 60611, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
2
|
Schloßhauer JL, Tholen L, Körner A, Kubick S, Chatzopoulou S, Hönow A, Zemella A. Promoting the production of challenging proteins via induced expression in CHO cells and modified cell-free lysates harboring T7 RNA polymerase and mutant eIF2α. Synth Syst Biotechnol 2024; 9:416-424. [PMID: 38601208 PMCID: PMC11004649 DOI: 10.1016/j.synbio.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/12/2024] [Accepted: 03/16/2024] [Indexed: 04/12/2024] Open
Abstract
Chinese hamster ovary (CHO) cells are crucial in biopharmaceutical production due to their scalability and capacity for human-like post-translational modifications. However, toxic proteins and membrane proteins are often difficult-to-express in living cells. Alternatively, cell-free protein synthesis can be employed. This study explores innovative strategies for enhancing the production of challenging proteins through the modification of CHO cells by investigating both, cell-based and cell-free approaches. A major result in our study involves the integration of a mutant eIF2 translation initiation factor and T7 RNA polymerase into CHO cell lysates for cell-free protein synthesis. This resulted in elevated yields, while eliminating the necessity for exogenous additions during cell-free production, thereby substantially enhancing efficiency. Additionally, we explore the potential of the Rosa26 genomic site for the integration of T7 RNA polymerase and cell-based tetracycline-controlled protein expression. These findings provide promising advancements in bioproduction technologies, offering flexibility to switch between cell-free and cell-based protein production as needed.
Collapse
Affiliation(s)
- Jeffrey L. Schloßhauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
- Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
- Institute for Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Lena Tholen
- Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
| | - Alexander Körner
- Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus –Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Potsdam, Germany
- Institute for Chemistry and Biochemistry, Laboratory of Protein Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Sofia Chatzopoulou
- Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
| | - Anja Hönow
- New/era/mabs GmbH, August-Bebel-Str. 89, 14482, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology-IZI, Branch Bioanalytics and Bioprocesses-IZI-BB, Am Mühlenberg, Potsdam, Germany
| |
Collapse
|
3
|
Zhao Y, Wang S. Experimental and biophysical modeling of transcription and translation dynamics in bacterial- and mammalian-based cell-free expression systems. SLAS Technol 2024; 29:100036. [PMID: 35231628 DOI: 10.1016/j.slast.2022.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 11/20/2022]
Abstract
Cell-free expression (CFE) systems have been used extensively in systems and synthetic biology as a promising platform for manufacturing proteins and chemicals. Currently, the most widely used CFE system is in vitro protein transcription and translation platform. As the rapidly increased applications and uses, it is crucial to have a standard biophysical model for quantitative studies of gene circuits, which will provide a fundamental understanding of basic working mechanisms of CFE systems. Current modeling approaches mainly focus on the characterization of E. coli-based CFE systems, a computational model that can be utilized for both bacterial- and mammalian-based CFE has not been investigated. Here, we developed a simple ODE (ordinary differential equation)-based biophysical model to simulate transcription and translation dynamics for both bacterial- and mammalian- based CFE systems. The key parameters were estimated and adjusted based on experimental results. We next tested four gene circuits to characterize kinetic dynamics of transcription and translation in E. coli- and HeLa-based CFE systems. The real-time transcription and translation were monitored using Broccoli aptamer, double stranded locked nucleic acid (dsLNA) probe and fluorescent protein. We demonstrated the difference of kinetic dynamics for transcription and translation in both systems, which will provide valuable information for quantitative genomic and proteomic studies. This simple biophysical model and the experimental data for both E. coli- and HeLa-based CFE will be useful for researchers that are interested in genetic engineering and CFE bio-manufacturing.
Collapse
Affiliation(s)
- Yuwen Zhao
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, United States; Department of Biomedical Engineering, Lehigh University, Bethlehem, PA, 18015, United States
| | - Shue Wang
- Department of Chemistry, Chemical and Biomedical Engineering, Tagliatela College of Engineering, University of New Haven, West Haven, CT, 06516, United States.
| |
Collapse
|
4
|
Ramm F, Kaser D, König I, Fellendorf J, Wenzel D, Zemella A, Papatheodorou P, Barth H, Schmidt H. Synthesis of biologically active Shiga toxins in cell-free systems. Sci Rep 2024; 14:6043. [PMID: 38472311 PMCID: PMC11636806 DOI: 10.1038/s41598-024-56190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/04/2024] [Indexed: 03/14/2024] Open
Abstract
Shiga toxins (Stx) produced by pathogenic bacteria can cause mild to severe diseases in humans. Thus, the analysis of such toxins is of utmost importance. As an AB5 toxin, Stx consist of a catalytic A-subunit acting as a ribosome-inactivating protein (RIP) and a B-pentamer binding domain. In this study we synthesized the subunits and holotoxins from Stx and Stx2a using different cell-free systems, namely an E. coli- and CHO-based cell-free protein synthesis (CFPS) system. The functional activity of the protein toxins was analyzed in two ways. First, activity of the A-subunits was assessed using an in vitro protein inhibition assay. StxA produced in an E. coli cell-free system showed significant RIP activity at concentrations of 0.02 nM, whereas toxins synthesized in a CHO cell-free system revealed significant activity at concentrations of 0.2 nM. Cell-free synthesized StxA2a was compared to StxA2a expressed in E. coli cells. Cell-based StxA2a had to be added at concentrations of 20 to 200 nM to yield a significant RIP activity. Furthermore, holotoxin analysis on cultured HeLa cells using an O-propargyl-puromycin assay showed significant protein translation reduction at concentrations of 10 nM and 5 nM for cell-free synthesized toxins derived from E. coli and CHO systems, respectively. Overall, these results show that Stx can be synthesized using different cell-free systems while remaining functionally active. In addition, we were able to use CFPS to assess the activity of different Stx variants which can further be used for RIPs in general.
Collapse
Affiliation(s)
- Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
| | - Danny Kaser
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
- Institute of Nutritional Science - Nutritional Toxicology, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Irina König
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Juliane Fellendorf
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Dana Wenzel
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Panagiotis Papatheodorou
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Holger Barth
- Institute of Experimental and Clinical Pharmacology, Toxicology and Pharmacology of Natural Products, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Herbert Schmidt
- Department of Food Microbiology and Hygiene, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany.
| |
Collapse
|
5
|
Zemella A, Beer K, Ramm F, Wenzel D, Düx A, Merkel K, Calvignac-Spencer S, Stern D, Dorner MB, Dorner BG, Widulin N, Schnalke T, Walter C, Wolbert A, Schmid BG, Mankertz A, Santibanez S. Vaccine-induced neutralizing antibodies bind to the H protein of a historical measles virus. Int J Med Microbiol 2024; 314:151607. [PMID: 38367508 DOI: 10.1016/j.ijmm.2024.151607] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/19/2024] Open
Abstract
Measles is a highly contagious airborne viral disease. It can lead to serious complications and death and is preventable by vaccination. The live-attenuated measles vaccine (LAMV) derived from a measles virus (MV) isolated in 1954 has been in use globally for six decades and protects effectively by providing a durable humoral and cell-mediated immunity. Our study addresses the temporal stability of epitopes on the viral surface glycoprotein hemagglutinin (H) which is the major target of MV-neutralizing antibodies. We investigated the binding of seven vaccine-induced MV-H-specific monoclonal antibodies (mAbs) to cell-free synthesized MV-H proteins derived from the H gene sequences obtained from a lung specimen of a fatal case of measles pneumonia in 1912 and an isolate from a current case. The binding of four out of seven mAbs to the H protein of both MV strains provides evidence of epitopes that are stable for more than 100 years. The binding of the universally neutralizing mAbs RKI-MV-12b and RKI-MV-34c to the H protein of the 1912 MV suggests the long-term stability of highly conserved epitopes on the MV surface.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Kerstin Beer
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Dana Wenzel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476 Potsdam, Germany
| | - Ariane Düx
- Viral Evolution, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany; Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), 17489 Greifswald, Germany
| | - Kevin Merkel
- Viral Evolution, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Sebastien Calvignac-Spencer
- Viral Evolution, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany; Helmholtz Institute for One Health, Helmholtz-Centre for Infection Research (HZI), 17489 Greifswald, Germany; Faculty of Mathematics and Natural Sciences, University of Greifswald, 17489 Greifswald, Germany
| | - Daniel Stern
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Martin B Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Brigitte G Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | | | | | - Cornelia Walter
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Anne Wolbert
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Bernhard G Schmid
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Annette Mankertz
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany
| | - Sabine Santibanez
- WHO Measles/Rubella European RRL and NRC Measles, Mumps, Rubella, Robert Koch-Institut, Seestr. 10, D-13353 Berlin, Germany.
| |
Collapse
|
6
|
Schloßhauer JL, Dondapati SK, Kubick S, Zemella A. A Cost-Effective Pichia pastoris Cell-Free System Driven by Glycolytic Intermediates Enables the Production of Complex Eukaryotic Proteins. Bioengineering (Basel) 2024; 11:92. [PMID: 38247969 PMCID: PMC10813726 DOI: 10.3390/bioengineering11010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
Cell-free systems are particularly attractive for screening applications and the production of difficult-to-express proteins. However, the production of cell lysates is difficult to implement on a larger scale due to large time requirements, cultivation costs, and the supplementation of cell-free reactions with energy regeneration systems. Consequently, the methylotrophic yeast Pichia pastoris, which is widely used in recombinant protein production, was utilized in the present study to realize cell-free synthesis in a cost-effective manner. Sensitive disruption conditions were evaluated, and appropriate signal sequences for translocation into ER vesicles were identified. An alternative energy regeneration system based on fructose-1,6-bisphosphate was developed and a ~2-fold increase in protein production was observed. Using a statistical experiment design, the optimal composition of the cell-free reaction milieu was determined. Moreover, functional ion channels could be produced, and a G-protein-coupled receptor was site-specifically modified using the novel cell-free system. Finally, the established P. pastoris cell-free protein production system can economically produce complex proteins for biotechnological applications in a short time.
Collapse
Affiliation(s)
- Jeffrey L. Schloßhauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Located at the Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, 01968 Senftenberg, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, 14469 Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, 14476 Potsdam, Germany (S.K.)
| |
Collapse
|
7
|
Knauer JF, Schulz C, Zemella A, Wüstenhagen DA, Walter RM, Küpper JH, Kubick S. Synthesis of mono Cytochrome P450 in a modified CHO-CPR cell-free protein production platform. Sci Rep 2024; 14:1271. [PMID: 38218994 PMCID: PMC10787779 DOI: 10.1038/s41598-024-51781-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024] Open
Abstract
Cytochromes P450 (CYPs) are a group of monooxygenases that can be found in almost all kinds of organisms. For CYPs to receive electrons from co-substrate NADPH, the activity of NADPH-Cytochrome-P450-oxidoreductase (CPR) is required as well. In humans, CYPs are an integral part of liver-based phase-1 biotransformation, which is essential for the metabolization of multiple xenobiotics and drugs. Consequently, CYPs are important players during drug development and therefore these enzymes are implemented in diverse screening applications. For these applications it is usually advantageous to use mono CYP microsomes containing only the CYP of interest. The generation of mono-CYP containing mammalian cells and vesicles is difficult since endogenous CYPs are present in many cell types that contain the necessary co-factors. By obtaining translationally active lysates from a modified CHO-CPR cell line, it is now possible to generate mono CYPs in a cell-free protein synthesis process in a straightforward manner. As a proof of principle, the synthesis of active human CYPs from three different CYP450 gene families (CYP1A2, CYP2B6 and CYP3A4), which are of outstanding interest in industry and academia was demonstrated. Luciferase based activity assays confirm the activity of the produced CYPs and enable the individual adaptation of the synthesis process for efficient cell-free enzyme production. Furthermore, they allow for substrate and inhibitor screenings not only for wild-type CYPs but also for mutants and further CYP isoforms and variants. As an example, the turnover of selected CYP substrates by cell-free synthesized CYPs was demonstrated via an indirect luciferase assay-based screening setup.
Collapse
Affiliation(s)
- Jan Felix Knauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
| | - Christian Schulz
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Ruben Magnus Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Jan-Heiner Küpper
- Institute of Biotechnology, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus -Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
8
|
Schloßhauer JL, Zemella A, Dondapati SK, Thoring L, Meyer M, Kubick S. Enhancing the performance of a mutant pyrrolysyl-tRNA synthetase to create a highly versatile eukaryotic cell-free protein synthesis tool. Sci Rep 2023; 13:15236. [PMID: 37709815 PMCID: PMC10502014 DOI: 10.1038/s41598-023-42198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/06/2023] [Indexed: 09/16/2023] Open
Abstract
Modification of proteins with a broad range of chemical functionalities enables the investigation of protein structure and activity by manipulating polypeptides at single amino acid resolution. Indeed, various functional groups including bulky non-canonical amino acids like strained cyclooctenes could be introduced by the unique features of the binding pocket of the double mutant pyrrolysyl-tRNA synthetase (Y306A, Y384F), but the instable nature of the enzyme limits its application in vivo. Here, we constructed a cell-free protein production system, which increased the overall enzyme stability by combining different reaction compartments. Moreover, a co-expression approach in a one-pot reaction allowed straightforward site-specific fluorescent labeling of the functional complex membrane protein cystic fibrosis transmembrane conductance regulator. Our work provides a versatile platform for introducing various non-canonical amino acids into difficult-to-express proteins for structural and fluorescence based investigation of proteins activity.
Collapse
Affiliation(s)
- Jeffrey L Schloßhauer
- Fraunhofer Project Group PZ-Syn of the Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Institute of Biotechnology,, Brandenburg University of Technology Cottbus-Senftenberg, Am Mühlenberg, Potsdam, Germany
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany.
| | - Srujan K Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Manpreet Meyer
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus -Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Potsdam, Germany
- Laboratory of Protein Biochemistry, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| |
Collapse
|
9
|
Manzer ZA, Selivanovitch E, Ostwalt AR, Daniel S. Membrane protein synthesis: no cells required. Trends Biochem Sci 2023; 48:642-654. [PMID: 37087310 DOI: 10.1016/j.tibs.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/20/2023] [Accepted: 03/22/2023] [Indexed: 04/24/2023]
Abstract
Despite advances in membrane protein (MP) structural biology and a growing interest in their applications, these proteins remain challenging to study. Progress has been hindered by the complex nature of MPs and innovative methods will be required to circumvent technical hurdles. Cell-free protein synthesis (CFPS) is a burgeoning technique for synthesizing MPs directly into a membrane environment using reconstituted components of the cellular transcription and translation machinery in vitro. We provide an overview of CFPS and how this technique can be applied to the synthesis and study of MPs. We highlight numerous strategies including synthesis methods and folding environments, each with advantages and limitations, to provide a survey of how CFPS techniques can advance the study of MPs.
Collapse
Affiliation(s)
- Zachary A Manzer
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Ekaterina Selivanovitch
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Alexis R Ostwalt
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Susan Daniel
- R.F. School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
10
|
Pandey Y, Dondapati SK, Wüstenhagen D, Kubick S. Cell-Free Synthesis and Electrophysiological Analysis of Multipass Voltage-Gated Ion Channels Tethered in Microsomal Membranes. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 186:103-120. [PMID: 37640910 DOI: 10.1007/10_2023_228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Cell-free protein synthesis (CFPS) has emerged as a powerful tool for the rapid synthesis and analysis of various structurally and functionally distinct proteins. These include 'difficult-to-express' membrane proteins such as large multipass ion channel receptors. Owing to their membrane localization, eukaryotic CFPS supplemented with endoplasmic reticulum (ER)-derived microsomal vesicles has proven to be an efficient system for the synthesis of functional membrane proteins. Here we demonstrate the applicability of the eukaryotic cell-free systems based on lysates from the mammalian Chinese Hamster Ovary (CHO) and insect Spodoptera frugiperda (Sf21) cells. We demonstrate the efficiency of the systems in the de novo cell-free synthesis of the human cardiac ion channels: ether-a-go-go potassium channel (hERG) KV11.1 and the voltage-gated sodium channel hNaV1.5.
Collapse
Affiliation(s)
- Yogesh Pandey
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institut für Biochemie und Biologie, University of Potsdam, Potsdam, OT Golm, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.
| | - Doreen Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
- Institute of Chemistry and Biochemistry-Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Science, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
11
|
Nagappa LK, Sato W, Alam F, Chengan K, Smales CM, Von Der Haar T, Polizzi KM, Adamala KP, Moore SJ. A ubiquitous amino acid source for prokaryotic and eukaryotic cell-free transcription-translation systems. Front Bioeng Biotechnol 2022; 10:992708. [PMID: 36185432 PMCID: PMC9524191 DOI: 10.3389/fbioe.2022.992708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022] Open
Abstract
Cell-free gene expression (CFE) systems are an attractive tool for engineering within synthetic biology and for industrial production of high-value recombinant proteins. CFE reactions require a cell extract, energy system, amino acids, and DNA, to catalyse mRNA transcription and protein synthesis. To provide an amino acid source, CFE systems typically use a commercial standard, which is often proprietary. Herein we show that a range of common microbiology rich media (i.e., tryptone, peptone, yeast extract and casamino acids) unexpectedly provide an effective and low-cost amino acid source. We show that this approach is generalisable, by comparing batch variability and protein production in the following range of CFE systems: Escherichia coli (Rosetta™ 2 (DE3), BL21(DE3)), Streptomyces venezuelae and Pichia pastoris. In all CFE systems, we show equivalent or increased protein synthesis capacity upon replacement of the commercial amino acid source. In conclusion, we suggest rich microbiology media provides a new amino acid source for CFE systems with potential broad use in synthetic biology and industrial biotechnology applications.
Collapse
Affiliation(s)
| | - Wakana Sato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Farzana Alam
- Centre for Synthetic Biology, Imperial College London, London, United Kingdom
| | | | | | | | - Karen M Polizzi
- Centre for Synthetic Biology, Imperial College London, London, United Kingdom
- Department of Chemical Engineering, Imperial College London, London, United Kingdom
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States
| | - Simon J Moore
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
12
|
Haueis L, Stech M, Kubick S. A Cell-free Expression Pipeline for the Generation and Functional Characterization of Nanobodies. Front Bioeng Biotechnol 2022; 10:896763. [PMID: 35573250 PMCID: PMC9096027 DOI: 10.3389/fbioe.2022.896763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-free systems are well-established platforms for the rapid synthesis, screening, engineering and modification of all kinds of recombinant proteins ranging from membrane proteins to soluble proteins, enzymes and even toxins. Also within the antibody field the cell-free technology has gained considerable attention with respect to the clinical research pipeline including antibody discovery and production. Besides the classical full-length monoclonal antibodies (mAbs), so-called "nanobodies" (Nbs) have come into focus. A Nb is the smallest naturally-derived functional antibody fragment known and represents the variable domain (VHH, ∼15 kDa) of a camelid heavy-chain-only antibody (HCAb). Based on their nanoscale and their special structure, Nbs display striking advantages concerning their production, but also their characteristics as binders, such as high stability, diversity, improved tissue penetration and reaching of cavity-like epitopes. The classical way to produce Nbs depends on the use of living cells as production host. Though cell-based production is well-established, it is still time-consuming, laborious and hardly amenable for high-throughput applications. Here, we present for the first time to our knowledge the synthesis of functional Nbs in a standardized mammalian cell-free system based on Chinese hamster ovary (CHO) cell lysates. Cell-free reactions were shown to be time-efficient and easy-to-handle allowing for the "on demand" synthesis of Nbs. Taken together, we complement available methods and demonstrate a promising new system for Nb selection and validation.
Collapse
Affiliation(s)
- Lisa Haueis
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.,Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany
| |
Collapse
|
13
|
Ledsgaard L, Ljungars A, Rimbault C, Sørensen CV, Tulika T, Wade J, Wouters Y, McCafferty J, Laustsen AH. Advances in antibody phage display technology. Drug Discov Today 2022; 27:2151-2169. [PMID: 35550436 DOI: 10.1016/j.drudis.2022.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/24/2022] [Accepted: 05/04/2022] [Indexed: 01/06/2023]
Abstract
Phage display technology can be used for the discovery of antibodies for research, diagnostic, and therapeutic purposes. In this review, we present and discuss key parameters that can be optimized when performing phage display selection campaigns, including the use of different antibody formats and advanced strategies for antigen presentation, such as immobilization, liposomes, nanodiscs, virus-like particles, and whole cells. Furthermore, we provide insights into selection strategies that can be used for the discovery of antibodies with complex binding requirements, such as targeting a specific epitope, cross-reactivity, or pH-dependent binding. Lastly, we provide a description of specialized phage display libraries for the discovery of bispecific antibodies and pH-sensitive antibodies. Together, these methods can be used to improve antibody discovery campaigns against all types of antigen. Teaser: This review provides an overview of the different strategies that can be exploited to improve the success rate of antibody phage display discovery campaigns, addressing key parameters, such as antigen presentation, selection methodologies, and specialized libraries.
Collapse
Affiliation(s)
- Line Ledsgaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Charlotte Rimbault
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Christoffer V Sørensen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Tulika Tulika
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Jack Wade
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - Yessica Wouters
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark
| | - John McCafferty
- Department of Medicine, Addenbrookes Hospital, Box 157, Hills Road, Cambridge, CB2 0QQ, UK; Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Andreas H Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.
| |
Collapse
|
14
|
Ramm F, Dondapati SK, Trinh HA, Wenzel D, Walter RM, Zemella A, Kubick S. The Potential of Eukaryotic Cell-Free Systems as a Rapid Response to Novel Zoonotic Pathogens: Analysis of SARS-CoV-2 Viral Proteins. Front Bioeng Biotechnol 2022; 10:896751. [PMID: 35519622 PMCID: PMC9061942 DOI: 10.3389/fbioe.2022.896751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
The ongoing pandemic caused by the novel coronavirus (SARS-CoV-2) has led to more than 445 million infections and the underlying disease, COVID-19, resulted in more than 6 million deaths worldwide. The scientific world is already predicting future zoonotic diseases. Hence, rapid response systems are needed to tackle future epidemics and pandemics. Here, we present the use of eukaryotic cell-free systems for the rapid response to novel zoonotic diseases represented by SARS-CoV-2. Non-structural, structural and accessory proteins encoded by SARS-CoV-2 were synthesized by cell-free protein synthesis in a fast and efficient manner. The inhibitory effect of the non-structural protein 1 on protein synthesis could be shown in vitro. Structural proteins were quantitatively detected by commercial antibodies, therefore facilitating cell-free systems for the validation of available antibodies. The cytotoxic envelope protein was characterized in electrophysiological planar lipid bilayer measurements. Hence, our study demonstrates the potential of eukaryotic cell-free systems as a rapid response mechanism for the synthesis, functional characterization and antibody validation against a viral pathogen.
Collapse
Affiliation(s)
- Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Srujan K. Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Hoai Anh Trinh
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Department of Applied Biochemistry, Institute of Biotechnology, Technical University Berlin, Berlin, Germany
| | - Dana Wenzel
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Ruben M. Walter
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Department of Applied Biochemistry, Institute of Biotechnology, Technical University Berlin, Berlin, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus–Senftenberg, The Brandenburg Medical School Theodor Fontane, The University of Potsdam, Potsdam, Germany
- *Correspondence: Stefan Kubick,
| |
Collapse
|
15
|
Brookwell A, Oza JP, Caschera F. Biotechnology Applications of Cell-Free Expression Systems. Life (Basel) 2021; 11:life11121367. [PMID: 34947898 PMCID: PMC8705439 DOI: 10.3390/life11121367] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cell-free systems are a rapidly expanding platform technology with an important role in the engineering of biological systems. The key advantages that drive their broad adoption are increased efficiency, versatility, and low cost compared to in vivo systems. Traditionally, in vivo platforms have been used to synthesize novel and industrially relevant proteins and serve as a testbed for prototyping numerous biotechnologies such as genetic circuits and biosensors. Although in vivo platforms currently have many applications within biotechnology, they are hindered by time-constraining growth cycles, homeostatic considerations, and limited adaptability in production. Conversely, cell-free platforms are not hindered by constraints for supporting life and are therefore highly adaptable to a broad range of production and testing schemes. The advantages of cell-free platforms are being leveraged more commonly by the biotechnology community, and cell-free applications are expected to grow exponentially in the next decade. In this study, new and emerging applications of cell-free platforms, with a specific focus on cell-free protein synthesis (CFPS), will be examined. The current and near-future role of CFPS within metabolic engineering, prototyping, and biomanufacturing will be investigated as well as how the integration of machine learning is beneficial to these applications.
Collapse
Affiliation(s)
- August Brookwell
- Department of Chemistry & Biochemistry, College of Science & Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
| | - Javin P. Oza
- Department of Chemistry & Biochemistry, College of Science & Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
- Correspondence: (J.P.O.); (F.C.)
| | - Filippo Caschera
- Nuclera Nucleics Ltd., Cambridge CB4 0GD, UK
- Correspondence: (J.P.O.); (F.C.)
| |
Collapse
|
16
|
Ramm F, Stech M, Zemella A, Frentzel H, Kubick S. The Pore-Forming Hemolysin BL Enterotoxin from Bacillus cereus: Subunit Interactions in Cell-Free Systems. Toxins (Basel) 2021; 13:toxins13110807. [PMID: 34822591 PMCID: PMC8623112 DOI: 10.3390/toxins13110807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/05/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
The tripartite enterotoxin Hemolysin BL (Hbl) has been widely characterized as a hemolytic and cytotoxic virulence factor involved in foodborne diarrheal illness caused by Bacillus cereus. Previous studies have described the formation of the Hbl complex and aimed to identify the toxin’s mode of action. In this study, we analyzed the assembly of Hbl out of its three individual subunits L1, L2 and B in a soluble as well as a putative membrane bound composition using a Chinese hamster ovary (CHO) cell-free system. Subunits were either coexpressed or synthesized individually in separate cell-free reactions and mixed together afterwards. Hemolytic activity of cell-free synthesized subunits was demonstrated on 5% sheep blood agar and identified both synthesis procedures, coexpression as well as individual synthesis of each subunit, as functional for the synthesis of an active Hbl complex. Hbl’s ability to perforate cell membranes was evaluated using a propidium iodide uptake assay. These data suggested that coexpressed Hbl subunits augmented cytotoxic activity with increasing concentrations. Further, a pre-pore-complex of L1-L2 showed cytotoxic effects suggesting the possibility of an interaction between the cell membrane and the pre-pore-complex. Overall, this study shows that cell-free protein synthesis is a fast and efficient way to study the assembly of multiple protein subunits in soluble as well as vesicular fractions.
Collapse
Affiliation(s)
- Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; (F.R.); (M.S.); (A.Z.)
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; (F.R.); (M.S.); (A.Z.)
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; (F.R.); (M.S.); (A.Z.)
| | - Hendrik Frentzel
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany;
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476 Potsdam, Germany; (F.R.); (M.S.); (A.Z.)
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus–Senftenberg, Brandenburg Medical School Theodor Fontane and the University of Potsdam, 14476 Potsdam, Germany
- Correspondence: ; Tel.: +49-331-58-187-306; Fax: +49-331-58-187-199
| |
Collapse
|
17
|
Synthesis of Fluorescently Labeled Antibodies Using Non-Canonical Amino Acids in Eukaryotic Cell-Free Systems. Methods Mol Biol 2021. [PMID: 33950390 DOI: 10.1007/978-1-0716-1406-8_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Cell-free protein synthesis (CFPS) enables the development of antibody conjugates, such as fluorophore conjugates and antibody-drug conjugates (ADCs), in a rapid and straightforward manner. In the first part, we describe the cell-free synthesis of antibodies containing fluorescent non-canonical amino acids (ncaa) by using pre-charged tRNA. In the second part, we describe the cell-free synthesis of antibodies containing ncaa by using an orthogonal system, followed by the site-specific conjugation of the fluorescent dye DyLight 650-phosphine. The expression of the antibodies containing ncaa was analyzed by SDS-PAGE, followed by autoradiography and the labeling by in-gel fluorescence. Two different fluorescently labeled antibodies could be generated.
Collapse
|
18
|
McSweeney MA, Styczynski MP. Effective Use of Linear DNA in Cell-Free Expression Systems. Front Bioeng Biotechnol 2021; 9:715328. [PMID: 34354989 PMCID: PMC8329657 DOI: 10.3389/fbioe.2021.715328] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022] Open
Abstract
Cell-free expression systems (CFEs) are cutting-edge research tools used in the investigation of biological phenomena and the engineering of novel biotechnologies. While CFEs have many benefits over in vivo protein synthesis, one particularly significant advantage is that CFEs allow for gene expression from both plasmid DNA and linear expression templates (LETs). This is an important and impactful advantage because functional LETs can be efficiently synthesized in vitro in a few hours without transformation and cloning, thus expediting genetic circuit prototyping and allowing expression of toxic genes that would be difficult to clone through standard approaches. However, native nucleases present in the crude bacterial lysate (the basis for the most affordable form of CFEs) quickly degrade LETs and limit expression yield. Motivated by the significant benefits of using LETs in lieu of plasmid templates, numerous methods to enhance their stability in lysate-based CFEs have been developed. This review describes approaches to LET stabilization used in CFEs, summarizes the advancements that have come from using LETs with these methods, and identifies future applications and development goals that are likely to be impactful to the field. Collectively, continued improvement of LET-based expression and other linear DNA tools in CFEs will help drive scientific discovery and enable a wide range of applications, from diagnostics to synthetic biology research tools.
Collapse
Affiliation(s)
- Megan A McSweeney
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| | - Mark P Styczynski
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| |
Collapse
|
19
|
A broadly cross-reactive monoclonal antibody against hepatitis E virus capsid antigen. Appl Microbiol Biotechnol 2021; 105:4957-4973. [PMID: 34129082 PMCID: PMC8236046 DOI: 10.1007/s00253-021-11342-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 12/27/2022]
Abstract
Abstract To generate a hepatitis E virus (HEV) genotype 3 (HEV-3)–specific monoclonal antibody (mAb), the Escherichia coli–expressed carboxy-terminal part of its capsid protein was used to immunise BALB/c mice. The immunisation resulted in the induction of HEV-specific antibodies of high titre. The mAb G117-AA4 of IgG1 isotype was obtained showing a strong reactivity with the homologous E. coli, but also yeast-expressed capsid protein of HEV-3. The mAb strongly cross-reacted with ratHEV capsid protein derivatives produced in both expression systems and weaker with an E. coli–expressed batHEV capsid protein fragment. In addition, the mAb reacted with capsid protein derivatives of genotypes HEV-2 and HEV-4 and common vole hepatitis E virus (cvHEV), produced by the cell-free synthesis in Chinese hamster ovary (CHO) and Spodoptera frugiperda (Sf21) cell lysates. Western blot and line blot reactivity of the mAb with capsid protein derivatives of HEV-1 to HEV-4, cvHEV, ratHEV and batHEV suggested a linear epitope. Use of truncated derivatives of ratHEV capsid protein in ELISA, Western blot, and a Pepscan analysis allowed to map the epitope within a partially surface-exposed region with the amino acid sequence LYTSV. The mAb was also shown to bind to human patient–derived HEV-3 from infected cell culture and to hare HEV-3 and camel HEV-7 capsid proteins from transfected cells by immunofluorescence assay. The novel mAb may serve as a useful tool for further investigations on the pathogenesis of HEV infections and might be used for diagnostic purposes. Key points • The antibody showed cross-reactivity with capsid proteins of different hepeviruses. • The linear epitope of the antibody was mapped in a partially surface-exposed region. • The antibody detected native HEV-3 antigen in infected mammalian cells. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11342-7.
Collapse
|
20
|
Fogeron ML, Lecoq L, Cole L, Harbers M, Böckmann A. Easy Synthesis of Complex Biomolecular Assemblies: Wheat Germ Cell-Free Protein Expression in Structural Biology. Front Mol Biosci 2021; 8:639587. [PMID: 33842544 PMCID: PMC8027086 DOI: 10.3389/fmolb.2021.639587] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022] Open
Abstract
Cell-free protein synthesis (CFPS) systems are gaining more importance as universal tools for basic research, applied sciences, and product development with new technologies emerging for their application. Huge progress was made in the field of synthetic biology using CFPS to develop new proteins for technical applications and therapy. Out of the available CFPS systems, wheat germ cell-free protein synthesis (WG-CFPS) merges the highest yields with the use of a eukaryotic ribosome, making it an excellent approach for the synthesis of complex eukaryotic proteins including, for example, protein complexes and membrane proteins. Separating the translation reaction from other cellular processes, CFPS offers a flexible means to adapt translation reactions to protein needs. There is a large demand for such potent, easy-to-use, rapid protein expression systems, which are optimally serving protein requirements to drive biochemical and structural biology research. We summarize here a general workflow for a wheat germ system providing examples from the literature, as well as applications used for our own studies in structural biology. With this review, we want to highlight the tremendous potential of the rapidly evolving and highly versatile CFPS systems, making them more widely used as common tools to recombinantly prepare particularly challenging recombinant eukaryotic proteins.
Collapse
Affiliation(s)
- Marie-Laure Fogeron
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Laura Cole
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| | - Matthias Harbers
- CellFree Sciences, Yokohama, Japan
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, Labex Ecofect, UMR 5086 CNRS/Université de Lyon, Lyon, France
| |
Collapse
|
21
|
Sakono M, Hayakawa R. Repressor-Like On-Off Regulation of Protein Expression by the DNA-Binding Transcription Activator-Like Effector in T7 Promoter-Based Cell-Free Protein Synthesis. Chembiochem 2020; 22:888-893. [PMID: 33085169 DOI: 10.1002/cbic.202000591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/21/2020] [Indexed: 01/24/2023]
Abstract
The aim of this study was to develop a transcription activator-like effector (TALE)-based technology to regulate protein synthesis in cell-free systems. We attempted to regulate the T7 promoter system, which has no natural mechanism of expression control, and sought to arbitrarily induce protein expression through the formation and dissociation of TALE and target DNA complexes. Protein synthesis was performed in a cell-free system in the presence of TALE, which recognized and bound to a sequence upstream of the T7 promoter, and protein expression was suppressed by approximately 80 % compared to in the absence of TALE. This suggests that masking part of the promoter region strongly suppresses protein synthesis. Additionally, competitive inhibition of TALE binding to the target DNA template led to protein synthesis levels that were equivalent to the levels in the absence of TALE. Our results demonstrate that DNA recognition by TALE can regulate the expression of the T7 promoter system.
Collapse
Affiliation(s)
- Masafumi Sakono
- Department of Applied Chemistry Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| | - Ryoto Hayakawa
- Department of Applied Chemistry Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama, 930-8555, Japan
| |
Collapse
|
22
|
Hershewe J, Kightlinger W, Jewett MC. Cell-free systems for accelerating glycoprotein expression and biomanufacturing. J Ind Microbiol Biotechnol 2020; 47:977-991. [PMID: 33090335 PMCID: PMC7578589 DOI: 10.1007/s10295-020-02321-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022]
Abstract
Protein glycosylation, the enzymatic modification of amino acid sidechains with sugar moieties, plays critical roles in cellular function, human health, and biotechnology. However, studying and producing defined glycoproteins remains challenging. Cell-free glycoprotein synthesis systems, in which protein synthesis and glycosylation are performed in crude cell extracts, offer new approaches to address these challenges. Here, we review versatile, state-of-the-art systems for biomanufacturing glycoproteins in prokaryotic and eukaryotic cell-free systems with natural and synthetic N-linked glycosylation pathways. We discuss existing challenges and future opportunities in the use of cell-free systems for the design, manufacture, and study of glycoprotein biomedicines.
Collapse
Affiliation(s)
- Jasmine Hershewe
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Weston Kightlinger
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA.,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA.,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA. .,Chemistry of Life Processes Institute, Northwestern University, 2170 Campus Drive, Evanston, IL, 60208-3120, USA. .,Center for Synthetic Biology, Northwestern University, Technological Institute E136, 2145 Sheridan Road, Evanston, IL, 60208-3120, USA. .,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, 676 North Saint Clair Street, Suite 1200, Chicago, IL, 60611-3068, USA. .,Simpson Querrey Institute, Northwestern University, 303 East Superior Street, Suite 11-131, Chicago, IL, 60611-2875, USA.
| |
Collapse
|
23
|
Abstract
Proteins are the main source of drug targets and some of them possess therapeutic potential themselves. Among them, membrane proteins constitute approximately 50% of the major drug targets. In the drug discovery pipeline, rapid methods for producing different classes of proteins in a simple manner with high quality are important for structural and functional analysis. Cell-free systems are emerging as an attractive alternative for the production of proteins due to their flexible nature without any cell membrane constraints. In a bioproduction context, open systems based on cell lysates derived from different sources, and with batch-to-batch consistency, have acted as a catalyst for cell-free synthesis of target proteins. Most importantly, proteins can be processed for downstream applications like purification and functional analysis without the necessity of transfection, selection, and expansion of clones. In the last 5 years, there has been an increased availability of new cell-free lysates derived from multiple organisms, and their use for the synthesis of a diverse range of proteins. Despite this progress, major challenges still exist in terms of scalability, cost effectiveness, protein folding, and functionality. In this review, we present an overview of different cell-free systems derived from diverse sources and their application in the production of a wide spectrum of proteins. Further, this article discusses some recent progress in cell-free systems derived from Chinese hamster ovary and Sf21 lysates containing endogenous translocationally active microsomes for the synthesis of membrane proteins. We particularly highlight the usage of internal ribosomal entry site sequences for more efficient protein production, and also the significance of site-specific incorporation of non-canonical amino acids for labeling applications and creation of antibody drug conjugates using cell-free systems. We also discuss strategies to overcome the major challenges involved in commercializing cell-free platforms from a laboratory level for future drug development.
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus-Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
24
|
Techno-Economic Assessment of Cell-Free Synthesis of Monoclonal Antibodies Using CHO Cell Extracts. Processes (Basel) 2020. [DOI: 10.3390/pr8040454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell-free protein synthesis (CFPS) is an emerging tool for the rapid production of difficult-to-express proteins as well as for identifying protein synthesis bottlenecks. In CFPS, the biotic phase is substituted by extracts of living cells devoid of any of their own genetic material. The main advantage is that these systems delineate cell growth from recombinant protein production, enabling the expression of targets that would otherwise place too big a burden on living cells. We have conducted a techno-economic analysis of a CFPS system to produce monoclonal antibodies (mAbs) using extracts of Chinese hamster ovary (CHO) cells. We compare the performance of the CFPS system with two alternative production strategies: stable and transient gene expression in CHO cells. Our assessment shows that the viability of CFPS for mAb production requires a significant increase in the product yield and the recycling of high-cost components such as DNA. Nevertheless, CFPS shows significant promise for personalized medicine applications, providing a platform for on-demand production and simplified supply chains.
Collapse
|
25
|
Ramm F, Dondapati SK, Thoring L, Zemella A, Wüstenhagen DA, Frentzel H, Stech M, Kubick S. Mammalian cell-free protein expression promotes the functional characterization of the tripartite non-hemolytic enterotoxin from Bacillus cereus. Sci Rep 2020; 10:2887. [PMID: 32076011 PMCID: PMC7031377 DOI: 10.1038/s41598-020-59634-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/23/2020] [Indexed: 11/29/2022] Open
Abstract
Bacillus cereus is increasingly recognized as an opportunistic pathogen causing local and systemic infections. The causative strains typically produce three pore-forming enterotoxins. This study focusses on the tripartite non-hemolytic enterotoxin (Nhe). Until today, studies have tried to elucidate the structure, complex formation and cell binding mechanisms of the tripartite Nhe toxin. Here, we demonstrate the synthesis of the functional tripartite Nhe toxin using eukaryotic cell-free systems. Single subunits, combinations of two Nhe subunits as well as the complete tripartite toxin were tested. Functional activity was determined by hemolytic activity on sheep blood agar plates, planar lipid bilayer measurements as well as cell viability assessment using the MTT assay. Our results demonstrate that cell-free protein synthesis based on translationally active eukaryotic lysates is a platform technology for the fast and efficient synthesis of functionally active, multicomponent toxins.
Collapse
Affiliation(s)
- Franziska Ramm
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.,Freie Universität Berlin, Institute of Chemistry and Biochemistry - Biochemistry, Takustr. 6, 14195, Berlin, Germany
| | - Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Doreen Anja Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Hendrik Frentzel
- German Federal Institute for Risk Assessment, Department of Biological Safety, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany. .,Faculty of Health Sciences, joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, the Brandenburg Medical School Theodor Fontane and the University of Potsdam, Potsdam, Germany.
| |
Collapse
|
26
|
Dondapati SK, Lübberding H, Zemella A, Thoring L, Wüstenhagen DA, Kubick S. Functional Reconstitution of Membrane Proteins Derived From Eukaryotic Cell-Free Systems. Front Pharmacol 2019; 10:917. [PMID: 31543813 PMCID: PMC6728924 DOI: 10.3389/fphar.2019.00917] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/22/2019] [Indexed: 11/23/2022] Open
Abstract
Cell-free protein synthesis (CFPS) based on eukaryotic Sf21 lysate is gaining interest among researchers due to its ability to handle the synthesis of complex human membrane proteins (MPs). Additionally Sf21 cell-free systems contain endogenous microsomal vesicles originally derived from the endoplasmic reticulum (ER). After CFPS, MPs will be translocated into the microsomal vesicles membranes present in the lysates. Thus microsomal membranes offer a natural environment for de novo synthesized MPs. Despite the advantage of synthesizing complex MPs with post translational modifications directly into the microsomal membranes without any additional solubilization supplements, batch based Sf21 cell-free synthesis suffers from low yields. The bottleneck for MPs in particular after the synthesis and incorporation into the microsomal membranes is to analyze their functionality. Apart from low yields of the synthesized MPs with batch based cell-free synthesis, the challenges arise in the form of cytoskeleton elements and peripheral endogenous proteins surrounding the microsomes which may impede the functional analysis of the synthesized proteins. So careful sample processing after the synthesis is particularly important for developing the appropriate functional assays. Here we demonstrate how MPs (native and batch synthesized) from ER derived microsomes can be processed for functional analysis by electrophysiology and radioactive uptake assay methods. Treatment of the microsomal membranes either with a sucrose washing step in the case of human serotonin transporter (hSERT) and sarco/endoplasmic reticulum Ca2+/ATPase (SERCA) pump or with mild detergents followed by the preparation of proteoliposomes in the case of the human voltage dependent anionic channel (hVDAC1) helps to analyze the functional properties of MPs.
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Henning Lübberding
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg, Potsdam, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane, University of Potsdam, Potsdam, Germany
| |
Collapse
|
27
|
A Combined Cell-Free Protein Synthesis and Fluorescence-Based Approach to Investigate GPCR Binding Properties. Methods Mol Biol 2019; 1947:57-77. [PMID: 30969411 DOI: 10.1007/978-1-4939-9121-1_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fluorescent labeling of de novo synthesized proteins is in particular a valuable tool for functional and structural studies of membrane proteins. In this context, we present two methods for the site-specific fluorescent labeling of difficult-to-express membrane proteins in combination with cell-free protein synthesis. The cell-free protein synthesis system is based on Chinese Hamster Ovary Cells (CHO) since this system contains endogenous membrane structures derived from the endoplasmic reticulum. These so-called microsomes enable a direct integration of membrane proteins into a biological membrane. In this protocol the first part describes the fluorescent labeling by using a precharged tRNA, loaded with a fluorescent amino acid. The second part describes the preparation of a modified aminoacyl-tRNA-synthetase and a suppressor tRNA that are applied to the CHO cell-free system to enable the incorporation of a non-canonical amino acid. The reactive group of the non-canonical amino acid is further coupled to a fluorescent dye. Both methods utilize the amber stop codon suppression technology. The successful fluorescent labeling of the model G protein-coupled receptor adenosine A2A (Adora2a) is analyzed by in-gel-fluorescence, a reporter protein assay, and confocal laser scanning microscopy (CLSM). Moreover, a ligand-dependent conformational change of the fluorescently labeled Adora2a was analyzed by bioluminescence resonance energy transfer (BRET).
Collapse
|
28
|
Dondapati SK, Pietruschka G, Thoring L, Wüstenhagen DA, Kubick S. Cell-free synthesis of human toll-like receptor 9 (TLR9): Optimization of synthesis conditions and functional analysis. PLoS One 2019; 14:e0215897. [PMID: 31022289 PMCID: PMC6483205 DOI: 10.1371/journal.pone.0215897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 04/10/2019] [Indexed: 11/23/2022] Open
Abstract
The Toll-like receptor family belongs to the group of pathogen recognition receptors which is responsible for the discrimination of self and non-self pathogen-associated molecular patterns (PAMP's). Toll-like receptors play an important role in the innate immunity and defects in protein expression or polymorphism is linked to various diseases such as Systemic Lupus Erythematosus (SLE). The elucidation of the underlying mechanism is crucial for future treatment and therapeutics of toll-like receptor linked diseases. Herein, we report the cell-free synthesis of human Toll-like receptor 9 (hTLR9) using CHO lysate and the continuous exchange cell-free (CECF) synthesis platform. The functionality of this protein was demonstrated by an ELISA binding assay using the ectodomain of TLR9 (TLR9-ECD).
Collapse
Affiliation(s)
- Srujan Kumar Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Georg Pietruschka
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Doreen A. Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Potsdam, Germany
| |
Collapse
|
29
|
Gregorio NE, Levine MZ, Oza JP. A User's Guide to Cell-Free Protein Synthesis. Methods Protoc 2019; 2:E24. [PMID: 31164605 PMCID: PMC6481089 DOI: 10.3390/mps2010024] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023] Open
Abstract
Cell-free protein synthesis (CFPS) is a platform technology that provides new opportunities for protein expression, metabolic engineering, therapeutic development, education, and more. The advantages of CFPS over in vivo protein expression include its open system, the elimination of reliance on living cells, and the ability to focus all system energy on production of the protein of interest. Over the last 60 years, the CFPS platform has grown and diversified greatly, and it continues to evolve today. Both new applications and new types of extracts based on a variety of organisms are current areas of development. However, new users interested in CFPS may find it challenging to implement a cell-free platform in their laboratory due to the technical and functional considerations involved in choosing and executing a platform that best suits their needs. Here we hope to reduce this barrier to implementing CFPS by clarifying the similarities and differences amongst cell-free platforms, highlighting the various applications that have been accomplished in each of them, and detailing the main methodological and instrumental requirement for their preparation. Additionally, this review will help to contextualize the landscape of work that has been done using CFPS and showcase the diversity of applications that it enables.
Collapse
Affiliation(s)
- Nicole E Gregorio
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Max Z Levine
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| | - Javin P Oza
- Center for Applications in Biotechnology, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
- Department of Chemistry and Biochemistry, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
30
|
Liu WQ, Zhang L, Chen M, Li J. Cell-free protein synthesis: Recent advances in bacterial extract sources and expanded applications. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
Hutchings CJ, Colussi P, Clark TG. Ion channels as therapeutic antibody targets. MAbs 2018; 11:265-296. [PMID: 30526315 PMCID: PMC6380435 DOI: 10.1080/19420862.2018.1548232] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/12/2022] Open
Abstract
It is now well established that antibodies have numerous potential benefits when developed as therapeutics. Here, we evaluate the technical challenges of raising antibodies to membrane-spanning proteins together with enabling technologies that may facilitate the discovery of antibody therapeutics to ion channels. Additionally, we discuss the potential targeting opportunities in the anti-ion channel antibody landscape, along with a number of case studies where functional antibodies that target ion channels have been reported. Antibodies currently in development and progressing towards the clinic are highlighted.
Collapse
Affiliation(s)
| | | | - Theodore G. Clark
- TetraGenetics Inc, Arlington Massachusetts, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca New York, USA
| |
Collapse
|
32
|
Lu M, Zhao X, Xing H, Xun Z, Yang T, Cai C, Wang D, Ding P. Liposome-chaperoned cell-free synthesis for the design of proteoliposomes: Implications for therapeutic delivery. Acta Biomater 2018; 76:1-20. [PMID: 29625253 DOI: 10.1016/j.actbio.2018.03.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/20/2018] [Accepted: 03/27/2018] [Indexed: 12/12/2022]
Abstract
Cell-free (CF) protein synthesis has emerged as a powerful technique platform for efficient protein production in vitro. Liposomes have been widely studied as therapeutic carriers due to their biocompatibility, biodegradability, low toxicity, flexible surface manipulation, easy preparation, and higher cargo encapsulation capability. However, rapid immune clearance, insufficient targeting capacity, and poor cytoplasmic delivery efficiency substantially restrict their clinical application. The incorporation of functional membrane proteins (MPs) or peptides allows the transfer of biological properties to liposomes and imparts them with improved circulation, increased targeting, and efficient intracellular delivery. Liposome-chaperoned CF synthesis enables production of proteoliposomes in one-step reaction, which not only substantially simplifies the production procedure but also keeps protein functionality intact. Building off these observations, proteoliposomes with integrated MPs represent an excellent candidate for therapeutic delivery. In this review, we describe recent advances in CF synthesis with emphasis on detailing key factors for improving CF expression efficiency. Furthermore, we provide insights into strategies for rational design of proteoliposomal nanodelivery systems via CF synthesis. STATEMENT OF SIGNIFICANCE Liposome-chaperoned CF synthesis has emerged as a powerful approach for the design of recombinant proteoliposomes in one-step reaction. The incorporation of bioactive MPs or peptides into liposomes via CF synthesis can facilitate the development of proteoliposomal nanodelivery systems with improved circulation, increased targeting, and enhanced cellular delivery capacity. Moreover, by adapting lessons learned from natural delivery vehicles, novel bio-inspired proteoliposomes with enhanced delivery properties could be produced in CF systems. In this review, we first give an overview of CF synthesis with focus on enhancing protein expression in liposome-chaperoned CF systems. Furthermore, we intend to provide insight into harnessing CF-synthesized proteoliposomes for efficient therapeutic delivery.
Collapse
|
33
|
Vito D, Smales CM. The Long Non-Coding RNA Transcriptome Landscape in CHO Cells Under Batch and Fed-Batch Conditions. Biotechnol J 2018; 13:e1800122. [PMID: 29781203 DOI: 10.1002/biot.201800122] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/16/2018] [Indexed: 12/18/2022]
Abstract
The role of non-coding RNAs in determining growth, productivity, and recombinant product quality attributes in Chinese hamster ovary (CHO) cells has received much attention in recent years, exemplified by studies into microRNAs in particular. However, other classes of non-coding RNAs have received less attention. One such class are the non-coding RNAs known collectively as long non-coding RNAs (lncRNAs). The authors have undertaken the first landscape analysis of the lncRNA transcriptome in CHO using a mouse based microarray that also provided for the surveillance of the coding transcriptome. The authors report on those lncRNAs present in a model host CHO cell line under batch and fed-batch conditions on two different days and relate the expression of different lncRNAs to each other. The authors demonstrate that the mouse microarray is suitable for the detection and analysis of thousands of CHO lncRNAs and validated a number of these by qRT-PCR. The authors then further analyzed the data to identify those lncRNAs whose expression changed the most between growth and stationary phases of culture or between batch and fed-batch culture to identify potential lncRNA targets for further functional studies with regard to their role in controlling growth of CHO cells. The authors discuss the implications for the publication of this rich dataset and how this may be used by the community.
Collapse
Affiliation(s)
- Davide Vito
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| | - Christopher Mark Smales
- Industrial Biotechnology Centre and School of Biosciences, University of Kent, Canterbury, CT2 7NJ, Kent, UK
| |
Collapse
|
34
|
Wang S, Majumder S, Emery NJ, Liu AP. Simultaneous monitoring of transcription and translation in mammalian cell-free expression in bulk and in cell-sized droplets. Synth Biol (Oxf) 2018; 3:ysy005. [PMID: 30003145 PMCID: PMC6034425 DOI: 10.1093/synbio/ysy005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/24/2018] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Transcription and translation are two critical processes during eukaryotic gene expression that regulate cellular activities. The development of mammalian cell-free expression (CFE) systems provides a platform for studying these two critical processes in vitro for bottom-up synthetic biology applications such as construction of an artificial cell. Moreover, real-time monitoring of the dynamics of synthesized mRNA and protein is key to characterize and optimize gene circuits before implementing in living cells or in artificial cells. However, there are few tools for measurement of mRNA and protein dynamics in mammalian CFE systems. Here, we developed a locked nucleic acid (LNA) probe for monitoring transcription in a HeLa-based CFE system in real-time. By using this LNA probe in conjunction with a fluorescent reporter protein, we were able to simultaneously monitor mRNA and protein dynamics in bulk reactions and cell-sized single-emulsion droplets. We found rapid production of mRNA transcripts that decreased over time as protein production ensued in bulk reactions. Our results also showed that transcription in cell-sized droplets has different dynamics compared to the transcription in bulk reactions. The use of this LNA probe in conjunction with fluorescent proteins in HeLa-based mammalian CFE system provides a versatile in vitro platform for studying mRNA dynamics for bottom-up synthetic biology applications.
Collapse
Affiliation(s)
- Shue Wang
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Sagardip Majumder
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicholas J Emery
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA.,Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Biophysics Program, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
35
|
Hoffmann B, Löhr F, Laguerre A, Bernhard F, Dötsch V. Protein labeling strategies for liquid-state NMR spectroscopy using cell-free synthesis. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:1-22. [PMID: 29548364 DOI: 10.1016/j.pnmrs.2017.11.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 05/17/2023]
Abstract
Preparation of a protein sample for liquid-state nuclear magnetic resonance (NMR) spectroscopy analysis requires optimization of many parameters. This review describes labeling strategies for obtaining assignments of protein resonances. Particular emphasis is placed on the advantages of cell-free protein production, which enables exclusive labeling of the protein of interest, thereby simplifying downstream processing steps and increasing the availability of different labeling strategies for a target protein. Furthermore, proteins can be synthesized in milligram yields, and the open nature of the cell-free system allows the addition of stabilizers, scrambling inhibitors or hydrophobic solubilization environments directly during the protein synthesis, which is especially beneficial for membrane proteins. Selective amino acid labeling of the protein of interest, the possibility of addressing scrambling issues and avoiding the need for labile amino acid precursors have been key factors in enabling the introduction of new assignment strategies based on different labeling schemes as well as on new pulse sequences. Combinatorial selective labeling methods have been developed to reduce the number of protein samples necessary to achieve a complete backbone assignment. Furthermore, selective labeling helps to decrease spectral overlap and overcome size limitations for solution NMR analysis of larger complexes, oligomers, intrinsically disordered proteins and membrane proteins.
Collapse
Affiliation(s)
- Beate Hoffmann
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Aisha Laguerre
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Frank Bernhard
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany
| | - Volker Dötsch
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University, Max-von-Laue Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
36
|
Thoring L, Kubick S. Versatile Cell-Free Protein Synthesis Systems Based on Chinese Hamster Ovary Cells. Methods Mol Biol 2018; 1850:289-308. [PMID: 30242694 DOI: 10.1007/978-1-4939-8730-6_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We present an alternative production platform for the synthesis of complex proteins. Apart from conventionally applied protein production using engineered mammalian cell lines, this protocol describes the preparation and principle of cell-free protein synthesis systems based on CHO cell lysates. The CHO cell-free system contains endogenous microsomes derived from the endoplasmic reticulum, which enables a direct integration of membrane proteins into a nature like milieu and the introduction of posttranslational modifications. Different steps of system development are described including the cultivation of CHO cells, cell harvesting and cell disruption to prepare translationally active CHO cell lysates. The requirements for DNA templates and the generation of linear DNA templates suitable for the CHO cell-free reaction is further depicted to underline the opportunity to produce different protein variants in a short period. This experimental setup provides a basis for high-throughput applications. The productivity of the CHO cell-free systems is further increased by using a non-canonical translation initiation due to the attachment of an internal ribosomal entry site of the Cricket paralysis virus (CRPV IRES) to the 5´ UTR of the desired gene. In this way, a direct interaction of the IRES structure with the ribosome facilitates a translation factor independent initiation of translation. Cell-free reactions were performed in fast and efficient batch reactions leading to protein yields up to 40 μg/mL. The reaction format was further adjusted to a continuous exchange CHO cell-free reaction (CHO CECF) to prolong reaction time and thereby increase the productivity of the cell-free systems. Finally, protein yields up to 1 g/L were obtained. The CHO CECF system represents a sophisticated resource to address structural and functional aspects of difficult-to-express proteins in fundamental and applied research.
Collapse
Affiliation(s)
- Lena Thoring
- Cell-free and Cell-based Bioproduction, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Potsdam-Golm, Germany
| | - Stefan Kubick
- Cell-free and Cell-based Bioproduction, Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB), Potsdam-Golm, Germany.
| |
Collapse
|
37
|
Stech M, Nikolaeva O, Thoring L, Stöcklein WFM, Wüstenhagen DA, Hust M, Dübel S, Kubick S. Cell-free synthesis of functional antibodies using a coupled in vitro transcription-translation system based on CHO cell lysates. Sci Rep 2017; 7:12030. [PMID: 28931913 PMCID: PMC5607253 DOI: 10.1038/s41598-017-12364-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/07/2017] [Indexed: 11/09/2022] Open
Abstract
Antibodies are indispensable tools for basic research as well as diagnostic and therapeutic applications. Consequently, the development of alternative manufacturing strategies which circumvent the hurdles connected to conventional antibody production technologies is of enormous interest. To address this issue, we demonstrate the synthesis of complex antibody formats, in particular immunoglobulin G (IgG) and single-chain variable fragment Fc fusion (scFv-Fc), in a microsome-containing cell-free system based on translationally active chinese hamster ovary (CHO) cell lysates. To mimic the environment for antibody folding and assembly present in living cells, antibody genes were fused to an endoplasmic reticulum (ER)-specific signal sequence. Signal-peptide induced translocation of antibody polypeptide chains into the lumen of ER microsomes was found to be the prerequisite for antibody chain assembly and functionality. In this context, we show the rapid synthesis of antibody molecules in different reaction formats, including batch and continuous-exchange cell-free (CECF) reactions, depending on the amount of protein needed for further analysis. In addition, we demonstrate site-specific and residue-specific labeling of antibodies with fluorescent non-canonical amino acids. In summary, our study describes a novel antibody production platform which combines the highly efficient mammalian protein folding machinery of CHO cells with the benefits of cell-free protein synthesis.
Collapse
Affiliation(s)
- M Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - O Nikolaeva
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.,Technische Universität Berlin, Institut für Biotechnologie, Medizinische Biotechnologie, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - L Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.,Technische Universität Berlin, Institut für Biotechnologie, Medizinische Biotechnologie, Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - W F M Stöcklein
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - D A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany
| | - M Hust
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - S Dübel
- Technische Universität Braunschweig, Institute for Biochemistry, Biotechnology and Bioinformatics, Department of Biotechnology, Spielmannstr. 7, 38106, Braunschweig, Germany
| | - S Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, 14476, Potsdam, Germany.
| |
Collapse
|
38
|
Thoring L, Dondapati SK, Stech M, Wüstenhagen DA, Kubick S. High-yield production of "difficult-to-express" proteins in a continuous exchange cell-free system based on CHO cell lysates. Sci Rep 2017; 7:11710. [PMID: 28916746 PMCID: PMC5601898 DOI: 10.1038/s41598-017-12188-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/06/2017] [Indexed: 11/10/2022] Open
Abstract
Cell-free protein synthesis (CFPS) represents a promising technology for efficient protein production targeting especially so called "difficult-to-express" proteins whose synthesis is challenging in conventional in vivo protein production platforms. Chinese hamster ovary (CHO) cells are one of the most prominent and safety approved cell lines for industrial protein production. In this study we demonstrated the ability to produce high yields of various protein types including membrane proteins and single chain variable fragments (scFv) in a continuous exchange cell-free (CECF) system based on CHO cell lysate that contains endogenous microsomal structures. We showed significant improvement of protein yield compared to batch formatted reactions and proved biological activity of synthesized proteins using various analysis technologies. Optimized CECF reaction conditions led to membrane protein yields up to 980 µg/ml, which is the highest protein yield reached in a microsome containing eukaryotic cell-free system presented so far.
Collapse
Affiliation(s)
- Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Srujan K Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany.
| |
Collapse
|
39
|
Thoring L, Dondapati SK, Stech M, Wüstenhagen DA, Kubick S. High-yield production of "difficult-to-express" proteins in a continuous exchange cell-free system based on CHO cell lysates. Sci Rep 2017; 7:11710. [PMID: 28916746 DOI: 10.1038/s41598-017-12188-12188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/06/2017] [Indexed: 05/28/2023] Open
Abstract
Cell-free protein synthesis (CFPS) represents a promising technology for efficient protein production targeting especially so called "difficult-to-express" proteins whose synthesis is challenging in conventional in vivo protein production platforms. Chinese hamster ovary (CHO) cells are one of the most prominent and safety approved cell lines for industrial protein production. In this study we demonstrated the ability to produce high yields of various protein types including membrane proteins and single chain variable fragments (scFv) in a continuous exchange cell-free (CECF) system based on CHO cell lysate that contains endogenous microsomal structures. We showed significant improvement of protein yield compared to batch formatted reactions and proved biological activity of synthesized proteins using various analysis technologies. Optimized CECF reaction conditions led to membrane protein yields up to 980 µg/ml, which is the highest protein yield reached in a microsome containing eukaryotic cell-free system presented so far.
Collapse
Affiliation(s)
- Lena Thoring
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
- Institute for Biotechnology, Technical University of Berlin (TUB), Gustav-Meyer-Allee 25, 13355, Berlin, Germany
| | - Srujan K Dondapati
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
| | - Marlitt Stech
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
| | - Doreen A Wüstenhagen
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalytics and Bioprocesses (IZI-BB), Am Mühlenberg 13, D-14476, Potsdam, Germany.
| |
Collapse
|
40
|
Jérôme V, Thoring L, Salzig D, Kubick S, Freitag R. Comparison of cell-based versus cell-free mammalian systems for the production of a recombinant human bone morphogenic growth factor. Eng Life Sci 2017; 17:1097-1107. [PMID: 32624737 DOI: 10.1002/elsc.201700005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/14/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
The human bone morphogenetic protein-2 (hBMP2) is a glycoprotein, which induces de novo bone formation. Here, recombinant production in stably transfected Chinese Hamster Ovary (CHO) cells is compared to transient expression in Human Embryo Kidney (HEK) cells and cell-free synthesis in CHO cell lysates containing microsomal structures as sites of post-translational processing. In case of the stably transfected cells, growth rates and viabilities were similar to those of the parent cells, while entry into the death phase of the culture was delayed. The maximum achievable rhBMP2 concentration in these cultures was 153 pg/mL. Up to 280 ng/mL could be produced in the transient expression system. In both cases the rhBMP-2 was found to interact with the producer cells, which presumably contributed to the low yields. In the cell-free system, hBMP2 yields could be increased to almost 40 μg/mL, reached within three hours. The cell-free system thus approached productivities for the active (renatured) protein previously only recorded for bacterial hosts, while assuring comprehensive post-translational processing.
Collapse
Affiliation(s)
- Valérie Jérôme
- Chair for Process Biotechnology University of Bayreuth Germany
| | - Lena Thoring
- Department of Cell-free and Cell-based Bioproduction, Fraunhofer Institute for Cell Therapy and Immunology (IZI) Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB) Germany
| | - Denise Salzig
- Chair for Process Biotechnology University of Bayreuth Germany
| | - Stefan Kubick
- Department of Cell-free and Cell-based Bioproduction, Fraunhofer Institute for Cell Therapy and Immunology (IZI) Branch Bioanalytics and Bioprocesses Potsdam-Golm (IZI-BB) Germany
| | - Ruth Freitag
- Chair for Process Biotechnology University of Bayreuth Germany
| |
Collapse
|
41
|
Zemella A, Grossmann S, Sachse R, Sonnabend A, Schaefer M, Kubick S. Qualifying a eukaryotic cell-free system for fluorescence based GPCR analyses. Sci Rep 2017. [PMID: 28623260 PMCID: PMC5473880 DOI: 10.1038/s41598-017-03955-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Membrane proteins are key elements in cell-mediated processes. In particular, G protein-coupled receptors (GPCRs) have attracted increasing interest since they affect cellular signaling. Furthermore, mutations in GPCRs can cause acquired and inheritable diseases. Up to date, there still exist a number of GPCRs that has not been structurally and functionally analyzed due to difficulties in cell-based membrane protein production. A promising approach for membrane protein synthesis and analysis has emerged during the last years and is known as cell-free protein synthesis (CFPS). Here, we describe a simply portable method to synthesize GPCRs and analyze their ligand-binding properties without the requirement of additional supplements such as liposomes or nanodiscs. This method is based on eukaryotic cell lysates containing translocationally active endogenous endoplasmic reticulum-derived microsomes where the insertion of GPCRs into biologically active membranes is supported. In this study we present CFPS in combination with fast fluorescence-based screening methods to determine the localization, orientation and ligand-binding properties of the endothelin B (ET-B) receptor upon expression in an insect-based cell-free system. To determine the functionality of the cell-free synthesized ET-B receptor, we analyzed the binding of its ligand endothelin-1 (ET-1) in a qualitative fluorescence-based assay and in a quantitative radioligand binding assay.
Collapse
Affiliation(s)
- Anne Zemella
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Solveig Grossmann
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Rita Sachse
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Andrei Sonnabend
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany
| | - Michael Schaefer
- Rudolf-Boehm-Institut für Pharmakologie und Toxikologie, Medizinische Fakultät, Härtelstraße 16-18, 04107, Leipzig, Germany
| | - Stefan Kubick
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Branch Bioanalysis and Bioprocesses, Potsdam-Golm, Am Mühlenberg 13, 14476, Potsdam, Germany.
| |
Collapse
|