1
|
Schauer S, Othman A. High-Throughput RPLC-MS/MS Quantification of Short- and Medium-Chain Fatty Acids. Methods Mol Biol 2025; 2855:195-207. [PMID: 39354310 DOI: 10.1007/978-1-0716-4116-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Short- and medium-chain fatty acids (SMCFA) are monocarboxylic acids with a carbon chain length of 1-12 carbon atoms. They are mainly produced in humans by the gut microbiota, play crucial metabolic roles, are vital for intestinal health, and have multifaceted impact on immune and neurological functions. Accurate detection and quantification of SMCFA in different human biofluids is achieved using 3-nitro phenylhydrazine (3-NPH) derivatization of the free fatty acids followed by reverse phase liquid chromatography (RPLC) separation and detection by tandem mass spectrometry (MS/MS). Here, we describe the simultaneous measurement of 14 SMCFA and lactate in detail. All 3-NPH-SMCFA-hydrazones are separated in less than 5 min with an 8-min total run time (injection-to-injection). Linear dynamic range over 0.1-500 μM is achieved for most SCFAs, while it is 0.05-100 μM for MCFAs. Validation of the procedure depicts good linearity (R2 > 0.98) and repeatability (CV ≤ 20%). The lower limit of detection (LLOD) is 10-30 nM. The lower limit of quantification (LLOQ) is 50-100 nM for most analytes, while it is 0.5 μM for acetate. In conclusion, the method offers several benefits compared to alternative methods regarding throughput, selectivity, sensitivity, and robustness.
Collapse
Affiliation(s)
- Stefan Schauer
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Alaa Othman
- Functional Genomics Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Yu SJ, Lee KY, Lee HG. Impact of different organic acids on heat-moisture treated potato starch for enhancing prebiotic potential. Food Sci Biotechnol 2024; 33:3347-3356. [PMID: 39328227 PMCID: PMC11422530 DOI: 10.1007/s10068-024-01575-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/18/2024] [Accepted: 04/04/2024] [Indexed: 09/28/2024] Open
Abstract
This research verified the in vitro digestive properties of potato starch modified with citric acid (CA), malic acid (MA), and tartaric acid (TA), and evaluated its prebiotic potential. The resistant starch (RS) content in CA- or MA-modified starch was greater than that in native starch. Furthermore, after cooking, all modified starches exhibited an increase in RS content by 2.3 to 3.3 times compared to native starch, which has a 29.81% RS content, demonstrating high thermal stability. Probiotic bacteria demonstrated increased viability, raiging form 6.38-6.85 log CFU/mL, when cultured with modified starch, in contrast to 4.48 log CFU/mL with glucose. During animal testing, modified starches consistently improved gastrointestinal transit, fecal moisture, and lipid levels. Notably, CA-, MA- or TA-modified starches promoted beneficial bacteria growth by providing short-chain fatty acids, with CA-modified starch proving to be the most potent.
Collapse
Affiliation(s)
- Soo Jin Yu
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| | - Kwang Yeon Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| | - Hyeon Gyu Lee
- Department of Food and Nutrition, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791 Republic of Korea
| |
Collapse
|
3
|
Piccioni A, Spagnuolo F, Candelli M, Voza A, Covino M, Gasbarrini A, Franceschi F. The Gut Microbiome in Sepsis: From Dysbiosis to Personalized Therapy. J Clin Med 2024; 13:6082. [PMID: 39458032 PMCID: PMC11508704 DOI: 10.3390/jcm13206082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 10/09/2024] [Indexed: 10/28/2024] Open
Abstract
Sepsis is a complex clinical syndrome characterized by an uncontrolled inflammatory response to an infection that may result in septic shock and death. Recent research has revealed a crucial link between sepsis and alterations in the gut microbiota, showing that the microbiome could serve an essential function in its pathogenesis and prognosis. In sepsis, the gut microbiota undergoes significant dysbiosis, transitioning from a beneficial commensal flora to a predominance of pathobionts. This transformation can lead to a dysfunction of the intestinal barrier, compromising the host's immune response, which contributes to the severity of the disease. The gut microbiota is an intricate system of protozoa, fungi, bacteria, and viruses that are essential for maintaining immunity and metabolic balance. In sepsis, there is a reduction in microbial heterogeneity and a predominance of pathogenic bacteria, such as proteobacteria, which can exacerbate inflammation and negatively influence clinical outcomes. Microbial compounds, such as short-chain fatty acids (SCFAs), perform a crucial task in modulating the inflammatory response and maintaining intestinal barrier function. However, the role of other microbiota components, such as viruses and fungi, in sepsis remains unclear. Innovative therapeutic strategies aim to modulate the gut microbiota to improve the management of sepsis. These include selective digestive decontamination (SDD), probiotics, prebiotics, synbiotics, postbiotics, and fecal microbiota transplantation (FMT), all of which have shown potential, although variable, results. The future of sepsis management could benefit greatly from personalized treatment based on the microbiota. Rapid and easy-to-implement tests to assess microbiome profiles and metabolites associated with sepsis could revolutionize the disease's diagnosis and management. These approaches could not only improve patient prognosis but also reduce dependence on antibiotic therapies and promote more targeted and sustainable treatment strategies. Nevertheless, there is still limited clarity regarding the ideal composition of the microbiota, which should be further characterized in the near future. Similarly, the benefits of therapeutic approaches should be validated through additional studies.
Collapse
Affiliation(s)
- Andrea Piccioni
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
| | - Fabio Spagnuolo
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Marcello Candelli
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
| | - Antonio Voza
- Department of Emergency Medicine, IRCCS-Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | - Marcello Covino
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Antonio Gasbarrini
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
- Medical and Surgical Science Department, Fondazione Policlinico Universitario A. Gemelli-IRCCS, 00168 Rome, Italy
| | - Francesco Franceschi
- Department of Emergency Medicine, Fondazione Policlinico Universitario Agostino Gemelli-IRCCS, 00168 Rome, Italy; (A.P.); (M.C.); (M.C.); (F.F.)
- Faculty of Medicine and Surgery, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| |
Collapse
|
4
|
Senina A, Markelova M, Khusnutdinova D, Siniagina M, Kupriyanova O, Synbulatova G, Kayumov A, Boulygina E, Grigoryeva T. Two-Year Study on the Intra-Individual Dynamics of Gut Microbiota and Short-Chain Fatty Acids Profiles in Healthy Adults. Microorganisms 2024; 12:1712. [PMID: 39203554 PMCID: PMC11357285 DOI: 10.3390/microorganisms12081712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/17/2024] [Indexed: 09/03/2024] Open
Abstract
While the gut microbiome has been intensively investigated for more than twenty years already, its role in various disorders remains to be unraveled. At the same time, questions about what changes in the gut microbiota can be considered as normal or pathological and whether communities are able to recover after exposure to negative factors (diseases, medications, environmental factors) are still unclear. Here, we describe changes in the gut microbiota composition and the content of short-chain fatty acids in adult healthy volunteers (n = 15) over a 24 month-period. Intraindividual variability in gut microbial composition was 40%, whereas the short chain fatty acids profile remained relatively stable (2-year variability 20%, inter-individual 26%). The changes tend to accumulate over time. Nevertheless, both short-term and long-term changes in the gut microbiome composition were significantly smaller within individuals than interindividual differences (two-year interindividual variability was 75%). Seasonal changes in gut microbiota were found more often in autumn and spring involving the content of minor representatives (less than 1.5% of the community in average) in the phyla Actinobacteriota, Firmicutes and Proteobacteria.
Collapse
Affiliation(s)
- Anastasia Senina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Maria Markelova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Dilyara Khusnutdinova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Maria Siniagina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Olga Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
- Regional Research and Testing Center “Pharmexpert”, Kazan State Medical University, 420012 Kazan, Russia
| | - Gulnaz Synbulatova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Airat Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Eugenia Boulygina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| | - Tatiana Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia; (A.S.); (M.M.); (D.K.); (M.S.); (G.S.); (A.K.); (E.B.)
| |
Collapse
|
5
|
Otite SV, Lag-Brotons AJ, Ezemonye LI, Martin AD, Pickup RW, Semple KT. Volatile Fatty Acids Effective as Antibacterial Agents against Three Enteric Bacteria during Mesophilic Anaerobic Incubation. Molecules 2024; 29:1908. [PMID: 38731399 PMCID: PMC11085169 DOI: 10.3390/molecules29091908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
The antibacterial effects of a selection of volatile fatty acids (acetic, propionic, butyric, valeric, and caproic acids) relevant to anaerobic digestion were investigated at 1, 2 and 4 g/L. The antibacterial effects were characterised by the dynamics of Enterococcus faecalis NCTC 00775, Escherichia coli JCM 1649 and Klebsiella pneumoniae A17. Mesophilic anaerobic incubation to determine the minimum bactericidal concentration (MBC) and median lethal concentration of the VFAs was carried out in Luria Bertani broth at 37 °C for 48 h. Samples collected at times 0, 3, 6, 24 and 48 h were used to monitor bacterial kinetics and pH. VFAs at 4 g/L demonstrated the highest bactericidal effect (p < 0.05), while 1 g/L supported bacterial growth. The VFA cocktail was the most effective, while propionic acid was the least effective. Enterococcus faecalis NCTC 00775 was the most resistant strain with the VFAs MBC of 4 g/L, while Klebsiella pneumoniae A17 was the least resistant with the VFAs MBC of 2 g/L. Allowing a 48 h incubation period led to more log decline in the bacterial numbers compared to earlier times. The VFA cocktail, valeric, and caproic acids at 4 g/L achieved elimination of the three bacteria strains, with over 7 log10 decrease within 48 h.
Collapse
Affiliation(s)
- Saanu Victoria Otite
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, UK;
| | | | - Lawrence I. Ezemonye
- Centre for Global Eco-Innovation Nigeria, University of Benin, Benin City PMB 300313, Nigeria
- Vice Chancellor’s Office, Igbinedion University Okada, Benin City PMB 0006, Nigeria
| | - Alastair D. Martin
- Engineering Department, Gillow Avenue, Lancaster University, Lancaster LA1 4YW, UK
| | - Roger W. Pickup
- Division of Biomedical and Life Sciences, Furness Building, Lancaster University, Lancaster LA1 4YG, UK
| | - Kirk T. Semple
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, UK;
| |
Collapse
|
6
|
Kopczyńska J, Kowalczyk M. The potential of short-chain fatty acid epigenetic regulation in chronic low-grade inflammation and obesity. Front Immunol 2024; 15:1380476. [PMID: 38605957 PMCID: PMC11008232 DOI: 10.3389/fimmu.2024.1380476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Obesity and chronic low-grade inflammation, often occurring together, significantly contribute to severe metabolic and inflammatory conditions like type 2 diabetes (T2D), cardiovascular disease (CVD), and cancer. A key player is elevated levels of gut dysbiosis-associated lipopolysaccharide (LPS), which disrupts metabolic and immune signaling leading to metabolic endotoxemia, while short-chain fatty acids (SCFAs) beneficially regulate these processes during homeostasis. SCFAs not only safeguard the gut barrier but also exert metabolic and immunomodulatory effects via G protein-coupled receptor binding and epigenetic regulation. SCFAs are emerging as potential agents to counteract dysbiosis-induced epigenetic changes, specifically targeting metabolic and inflammatory genes through DNA methylation, histone acetylation, microRNAs (miRNAs), and long non-coding RNAs (lncRNAs). To assess whether SCFAs can effectively interrupt the detrimental cascade of obesity and inflammation, this review aims to provide a comprehensive overview of the current evidence for their clinical application. The review emphasizes factors influencing SCFA production, the intricate connections between metabolism, the immune system, and the gut microbiome, and the epigenetic mechanisms regulated by SCFAs that impact metabolism and the immune system.
Collapse
Affiliation(s)
- Julia Kopczyńska
- Laboratory of Lactic Acid Bacteria Biotechnology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | |
Collapse
|
7
|
Marosvölgyi T, Mintál K, Farkas N, Sipos Z, Makszin L, Szabó É, Tóth A, Kocsis B, Kovács K, Hormay E, Lénárd L, Karádi Z, Bufa A. Antibiotics and probiotics-induced effects on the total fatty acid composition of feces in a rat model. Sci Rep 2024; 14:6542. [PMID: 38503819 PMCID: PMC10951306 DOI: 10.1038/s41598-024-57046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/13/2024] [Indexed: 03/21/2024] Open
Abstract
Fatty acids (FAs) play important roles as membrane components and signal transduction molecules. Changes in short chain FA (SCFA) composition are associated with gut microbiota modifications. However, the effect of bacteria-driven changes on the detailed FA spectrum has not been explored yet. We investigated the effect of antibiotics (ABx) and/or probiotics, in four treatment groups on rat stool FA composition. Principal component analysis indicated that the chromatogram profiles of the treatment groups differ, which was also observed at different time points. Linear mixed effects models showed that in the parameters compared (sampling times, treatments. and their interactions), both the weight percentage and the concentration of FAs were affected by ABx and probiotic administration. This study found that the gut microbiome defines trans and branched saturated FAs, most saturated FAs, and unsaturated FAs with less carbon atoms. These results are among the first ones to demonstrate the restoring effects of a probiotic mixture on a substantial part of the altered total FA spectrum, and also revealed a previously unknown relationship between gut bacteria and a larger group of FAs. These findings suggest that intestinal bacteria produce not only SCFAs but also other FAs that may affect the host's physiological processes.
Collapse
Affiliation(s)
- Tamás Marosvölgyi
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Kitti Mintál
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Zoltán Sipos
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Lilla Makszin
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Éva Szabó
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, Pécs, 7624, Hungary.
| | - Attila Tóth
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Krisztina Kovács
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, 7624, Hungary
| | - Edina Hormay
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - László Lénárd
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Zoltán Karádi
- Institute of Physiology, Medical School, University of Pécs, Pécs, 7624, Hungary
- Medical and Engineering Multidisciplinary Cellular Bioimpedance Research Group, Szentágothai Research Centre, University of Pécs, Pécs, 7624, Hungary
| | - Anita Bufa
- Institute of Bioanalysis, Medical School, University of Pécs, Pécs, 7624, Hungary
| |
Collapse
|
8
|
Krolenko EV, Kupriyanova OV, Nigmatullina LS, Grigoryeva TV, Roumiantsev SA, Shestopalov AV. Changes of the Concentration of Short-Chain Fatty Acids in the Intestines of Mice with Different Types of Obesity. Bull Exp Biol Med 2024; 176:347-353. [PMID: 38342814 DOI: 10.1007/s10517-024-06022-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 02/13/2024]
Abstract
We studied the production of short-chain fatty acids (SCFA) by the intestinal microbiota in mice with obesity caused by a diet and a genetic defect in the leptin receptor gene. In mice, intestinal contents were examined and SCFA were quantitatively assayed by gas chromatography. SCFA concentration in the intestinal contents of mice with alimentary obesity model was significantly lower in the first phase of the experiment (day 14), and the change in their production in dynamics was fundamentally different from this process in the control group (standard diet). The dynamics of the concentration of these metabolites in the model of genetic obesity was similar to that in the control, but the production of SCFA was significantly reduced in mice with leptin resistance in the middle phase (day 60) of the experiment. These findings indicate that the production of SCFA is more influenced by the diet than by leptin resistance.
Collapse
Affiliation(s)
- E V Krolenko
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia.
| | - O V Kupriyanova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - L S Nigmatullina
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - T V Grigoryeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - S A Roumiantsev
- Center of Digital and Translational Biomedicine, LLC "Center for Molecular Health", Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Center of Endocrinology, State Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - A V Shestopalov
- Center of Digital and Translational Biomedicine, LLC "Center for Molecular Health", Moscow, Russia
- Oncology, and Immunology, Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Ministry of Health of the Russian Federation, Moscow, Russia
- Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, Moscow, Russia
- National Medical Research Center of Endocrinology, State Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
Effect of dietary inclusion of mealworm frass on growth, hematology, and serum biochemistry of sheep. Trop Anim Health Prod 2023; 55:106. [PMID: 36881277 DOI: 10.1007/s11250-023-03518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/11/2023] [Indexed: 03/08/2023]
Abstract
Frass is the main component of worm by-product which exhibit anti-microbial and anti-pathogenic properties. In the present study, we assessed the possibility of mealworm frass in sheep feeding regime and evaluated its effect on health and growth performance of sheep. A total of 09 experimental sheep (18-24 months of age) were grouped into three categories (T1, T3, and T3); each group comprised 3 animals including 2 males and 1 female. Group T1 was considered control, group T2 contains 75% commercial feed and 25 mealworm frass, and T3 was 50:50 of commercial feed and mealworm frass. The sheep in group T2 showed average weight gain of 2.9 kg; however, when the dietary inclusion increased up to 50% of mealworm frass or decreased up to 50% of concentrate feed, the average weight gain decreased up to 2.01 kg (group T3). Moreover, the sheep fed with 25% mealworm frass exhibited the lowest feed refusal percentage (6.33%) in total duration of the dietary period (6 weeks). The highest volume of RBC was found in blood collected from sheep fed within group T2 (10.22 1012/L ± 0.34), followed by sheep fed in group T3 (8.96 × 1012/L ± 0.99) (P < 0.05). Significantly (P < 0.05) highest MCV volume in fL (femtoliter) was found in group T2 (32.83 ± 0.44) followed by group T3 (31.23 ± 0.23). The animals in group T3 showed significantly (P < 0.05) highest MCHC volume (40.47 g/dL ± 0.62) followed by group T2 (38.77 ± 0.97). Similar trend was found in MPV (fL); significantly (P < 0.05) highest MPV volume was found in group T3 (12.63 ± 0.09) followed by group T2 (12.53 ± 0.33). Significantly (P < 0.05) high serum phosphorous (P) (6.00 ± 0.29), TG (60.03 ± 3.11), and TP (7.63 g/dL ± 0.23) levels were found in group T3, followed by animals in group T2. We can conclude that inclusion of mealworm frass to replace 25% commercial concentrate feed improved the growth rate and overall health status of the sheep. The present study laid a foundation for the utilization of the mealworm frass (waste product) in ruminant feeding.
Collapse
|
10
|
Batool M, Keating C, Javed S, Nasir A, Muddassar M, Ijaz UZ. A Cross-Sectional Study of Potential Antimicrobial Resistance and Ecology in Gastrointestinal and Oral Microbial Communities of Young Normoweight Pakistani Individuals. Microorganisms 2023; 11:microorganisms11020279. [PMID: 36838244 PMCID: PMC9965051 DOI: 10.3390/microorganisms11020279] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
Antimicrobial resistance (AMR) is a major global public health concern mainly affecting low- and middle-income countries (LMICs) due to lack of awareness, inadequate healthcare and sanitation infrastructure, and other environmental factors. In this study, we aimed to link microbial assembly and covariates (body mass index, smoking, and use of antibiotics) to gut microbiome structure and correlate the predictive antimicrobial gene prevalence (piARG) using PICRUSt2. We examined the gastrointestinal and oral microbial profiles of healthy adults in Pakistan through 16S rRNA gene sequencing with a focus on different ethnicities, antibiotic usage, drinking water type, smoking, and other demographic measures. We then utilised a suite of innovative statistical tools, driven by numerical ecology and machine learning, to address the above aims. We observed that drinking tap water was the main contributor to increased potential AMR signatures in the Pakistani cohort compared to other factors considered. Microbial niche breadth analysis highlighted an aberrant gut microbial signature of smokers with increased age. Moreover, covariates such as smoking and age impact the human microbial community structure in this Pakistani cohort.
Collapse
Affiliation(s)
- Maria Batool
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ciara Keating
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Sundus Javed
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
| | - Arshan Nasir
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
| | - Muhammad Muddassar
- Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
- Correspondence: (M.M.); (U.Z.I.)
| | - Umer Zeeshan Ijaz
- James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3GE, UK
- College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
- Correspondence: (M.M.); (U.Z.I.)
| |
Collapse
|
11
|
Jiang W, Wu J, Zhu S, Xin L, Yu C, Shen Z. The Role of Short Chain Fatty Acids in Irritable Bowel Syndrome. J Neurogastroenterol Motil 2022; 28:540-548. [PMID: 36250361 PMCID: PMC9577580 DOI: 10.5056/jnm22093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/07/2022] [Indexed: 11/20/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is characterized by abdominal pain and disordered bowel habits. The etiology of IBS is multifactorial, including abnormal gut-brain interactions, visceral hypersensitivity, altered colon motility, and psychological factors. Recent studies have shown that the intestinal microbiota and its metabolites short chain fatty acids (SCFAs) may be involved in the pathogenesis of IBS. SCFAs play an important role in the pathophysiology of IBS. We discuss the underlying mechanisms of action of SCFAs in intestinal inflammation and immunity, intestinal barrier integrity, motility, and the microbiota-gut-brain axis. Limited to previous studies, further studies are required to investigate the mechanisms of action of SCFAs in IBS and provide more precise therapeutic strategies for IBS.
Collapse
Affiliation(s)
- Wenxi Jiang
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Jiali Wu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shefeng Zhu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Linying Xin
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhe Shen
- Department of Gastroenterology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
12
|
Interaction Between Altered Gut Microbiota and Sepsis: A Hypothesis or an Authentic Fact? J Intensive Care Med 2022; 38:121-131. [DOI: 10.1177/08850666221102796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sepsis, as an important public health concern, is one of the leading causes of death in hospitals around the world, accounting for 25% of all deaths. Nowadays, several factors contribute to the development of sepsis. The role of the gut microbiota and the response state of the aberrant immune system is dominant. The effect of the human microbiome on health is undeniable, and gut microbiota is even considered a body organ. It is now clear that the alteration in the normal balance of the microbiota (dysbiosis) is associated with a change in the status of immune system responses. Owing to the strong association between the gut microbiota and its metabolites particularly short-chain fatty acids with many illnesses, the gut microbiota has a unique position in the research of microbiologists and even clinicians. This review aimed to analyze studies’ results on the association between microbiota and sepsis, with a substantial understanding of their relationship. As a result, an extensive and comprehensive search was conducted on this issue in existing databases.
Collapse
|
13
|
O'Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fülling C, Morley SJ, Clarke G, Schellekens H, Cryan JF. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol Cell Endocrinol 2022; 546:111572. [PMID: 35066114 DOI: 10.1016/j.mce.2022.111572] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
The role of the intestinal microbiota as a regulator of gut-brain axis signalling has risen to prominence in recent years. Understanding the relationship between the gut microbiota, the metabolites it produces, and the brain will be critical for the subsequent development of new therapeutic approaches, including the identification of novel psychobiotics. A key focus in this regard have been the short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fibre, which include butyrate, acetate, and propionate. Ongoing research is focused on the entry of SCFAs into systemic circulation from the gut lumen, their migration to cerebral circulation and across the blood brain barrier, and their potential to exert acute and chronic effects on brain structure and function. This review aims to discuss our current mechanistic understanding of the direct and indirect influence that SCFAs have on brain function, behaviour and physiology, which will inform future microbiota-targeted interventions for brain disorders.
Collapse
Affiliation(s)
| | - Michael K Collins
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Emily G Knox
- APC Microbiome Ireland, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - María R Aburto
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Shane J Morley
- APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland.
| |
Collapse
|
14
|
Hong M, Cheng L, Liu Y, Wu Z, Zhang P, Zhang X. Mechanisms Underlying the Interaction Between Chronic Neurological Disorders and Microbial Metabolites via Tea Polyphenols Therapeutics. Front Microbiol 2022; 13:823902. [PMID: 35401435 PMCID: PMC8991060 DOI: 10.3389/fmicb.2022.823902] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/24/2022] [Indexed: 12/14/2022] Open
Abstract
The number of hydroxyl groups and existence of characteristic structural groups in tea polyphenols (TP) make them have antioxidant activity, which gives TP anti-inflammatory effects, toward protecting the intestinal flora and brain neurons. Host-associated microbial metabolites are emerging as dominant modifiers of the central nervous system. As yet, the investigations on host-microbiota crosstalking remain challenging, studies focusing on metabolites such as serotonin, short-chain fatty acids, and others have pinpointed multiple actionable signaling pathways relevant to host health. However, there are still complexities and apparent limitations inherent in transforming complex human diseases to corresponding animal models. Here, we choose to discuss several intestinal metabolites with research value, as crucial areas for assessing TP-mediated chronic brain diseases interactions with microbial.
Collapse
Affiliation(s)
- Mengyu Hong
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, China
| |
Collapse
|
15
|
Zhu JH, Mao Q, Wang SY, Liu H, Zhou SS, Zhang W, Kong M, Zhu H, Li SL. Optimization and validation of direct gas chromatography-mass spectrometry method for simultaneous quantification of ten short-chain fatty acids in rat feces. J Chromatogr A 2022; 1669:462958. [PMID: 35303574 DOI: 10.1016/j.chroma.2022.462958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/06/2023]
Abstract
Short-chain fatty acids (SCFAs) play key roles in maintaining health and treating disease. Quantification of important fecal SCFAs is necessary to facilitate the clarification of their biological roles. However, the existing quantifying methods mainly depend on complicated precolumn derivatization, and/or are unable to determine formic acid, a SCFA commonly associated with toxicity. In this study, a direct gas chromatography-mass spectrometry (GC-MS) method for simultaneous quantification of ten SCFAs including formic acid in rat feces was developed. The approach was optimized in terms of chromatographic and spectrometric conditions as well as sample preparation. DB-FFAP capillary column with temperature programming was used to get baseline separation and symmetrical peak shape of SCFAs without precolumn derivatization in a relatively short running time (8 min). Multiple reaction monitoring (MRM) scan mode was employed to enhance the sensitivity and selectivity of SCFAs. Acidification with 50% HCl and immediate extraction with diethyl ether were utilized to achieve sample preparation of ten SCFAs from feces. Furthermore, the developed method was validated with wide linear range, high sensitivity and precision, low matrix effect and acceptable accuracy. The established method was successfully applied to compare the contents of fecal SCFAs between normal and immunosuppressed animal models.
Collapse
Affiliation(s)
- Jin-Hao Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Qian Mao
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Si-Yu Wang
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Hui Liu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China
| | - Shan-Shan Zhou
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Wei Zhang
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - Ming Kong
- Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China
| | - He Zhu
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| | - Song-Lin Li
- Department of Pharmaceutical Analysis, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Department of Metabolomics, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China.
| |
Collapse
|
16
|
Zhao H, Zhou J, Lu H, Xi A, Luo M, Wang K, Lv H, Wang H, Wang P, Miao J, Xu Z. Azithromycin pretreatment exacerbates atopic dermatitis in trimellitic anhydride-induced model mice accompanied by correlated changes in the gut microbiota and serum cytokines. Int Immunopharmacol 2022; 102:108388. [PMID: 34819259 DOI: 10.1016/j.intimp.2021.108388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022]
Abstract
Atopic dermatitis (AD) is a common inflammatory skin disease. This study aims to investigate the effect of azithromycin (AZI) pretreatment, a common macrolide-type antibiotic, on the trimellitic anhydride (TMA) induced AD-like symptoms in mice. AZI (25 mg/kg, once daily, 5 days) was administered intragastrically before the 10-day TMA challenge. AD-like symptoms were assessed by ear thickening, scratching behavior, and pathological or immunofluorescence staining; Cytokines in the skin tissue and serum were measured by cytometric bead array; and the compositions of gut microbiota were assessed by 16S rRNA gene sequencing. AZI pretreatment accelerated the development of ear thickening and enhanced the severity of developed AD-like symptoms. AZI pretreatment promoted the infiltrations of neutrophil-like cells, T cells, and mast cells in ear skin. AZI pretreatment elevated the levels of IL-4, IL-6, and IL-17A in the ear skin of AD model mice, but it increased serum TNF-α and IL-6. AZI-pretreatment increased four gut bacterial genera (Bacteroides, Candidatus_Saccharibacteria_unclassified, Acetatifactor, Firmicutes_unclassified) but depleted three short-chain fatty acids producing gut bacterial genera (Alistipes, Clostridiales_unclassified, Butyricicoccus). AD-associated symptoms were positively associated with skin IL-4 and IL-17A, serum TNF-α, and IL-6, and Acetatifactor, but they negatively correlated to the three decreased gut bacterial genera (Alistipes, Clostridiales_unclassified, Butyricicoccus). Thus, our results demonstrate that AZI exposure deteriorates TMA-induced AD-like symptoms in mice, which is related to the imbalances of gut microbiota and skin/serum cytokines.
Collapse
Affiliation(s)
- Huawei Zhao
- Department of Pharmacy, Zhejiang University School of Medicine Children's Hospital, Hangzhou, Zhejiang, China
| | - Jia Zhou
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Haimei Lu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Anran Xi
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Mengxian Luo
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Keer Wang
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Hongjie Lv
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Huijuan Wang
- Department of Pharmacy, Zhejiang University School of Medicine Children's Hospital, Hangzhou, Zhejiang, China
| | - Ping Wang
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Jing Miao
- Department of Pharmacy, Zhejiang University School of Medicine Children's Hospital, Hangzhou, Zhejiang, China.
| | - Zhenghao Xu
- Laboratory of Rheumatology & Institute of TCM Clinical Basic Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China.
| |
Collapse
|
17
|
Li J, Wang L, Chen H, Yang Z, Chen S, Wang J, Zhou Y, Xuan R. The Diagnostic Potential of Gut Microbiota-Derived Short-Chain Fatty Acids in Preeclampsia. Front Pediatr 2022; 10:878924. [PMID: 35722486 PMCID: PMC9203731 DOI: 10.3389/fped.2022.878924] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/16/2022] [Indexed: 01/30/2023] Open
Abstract
Preeclampsia (PE) is a complex pregnancy-related hypertensive disorder leading to multiorgan dysfunction. It has high maternal, fetal, and neonatal morbidity and mortality rates. The study of gut microbiota and its metabolites in PE deserves further exploration. Thirty-eight pregnant women with PE and 29 healthy pregnant women in the third trimester of their pregnancy were recruited in this study. We used a targeted metabolomics approach to evaluate the short-chain fatty acids (SCFAs) in serum samples. The correlation between SCFAs and clinical characteristics was also explored. The results of mass spectrometry (MS) showed significant differences at the metabolomics level of SCFAs between the PE and healthy control. The metabolic levels of acetate, propionate, isobutyrate, and valerate were significantly increased in the PE group than in the healthy control group. In contrast, caproic acid and butyrate levels were significantly reduced. The correlation analysis showed that urea, systolic, and diastolic blood pressure levels were positively correlated with four types of SCFAs (acetic acid, propionic acid, isobutyric acid, and valeric acid) which increased in the PE group. Furthermore, the neutrophil percentage and the fetal birth weight were negatively correlated with isobutyric acid and valeric acid. In addition, the receiver operating characteristic (ROC) analysis using a generalized linear model showed that multiple SCFAs would be potential diagnostic markers for PE, with high specificity, sensitivity, and area under the curve (AUC). Among them, isobutyric acid (sensitivity: 97.4%, specificity: 100%, AUC = 1.00), propionic acid (sensitivity: 86.8%, specificity: 93.3%, AUC = 0.954) and acetic acid (sensitivity: 86.8%, specificity: 83.3%, AUC = 0.891) depicted significantly higher diagnostic value and potential clinical applications. In summary, the results of this study indicate that SCFAs have the potential to become effective biomarkers for early screening of PE.
Collapse
Affiliation(s)
- Jialin Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China.,School of Medicine, Ningbo University, Ningbo, China
| | - Lin Wang
- Ningbo Yinzhou No.2 Hospital, Ningbo, China
| | - Haimin Chen
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education Ningbo University, Ningbo, China
| | - Zhenglun Yang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Siqian Chen
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Jiayi Wang
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yuping Zhou
- Department of Gastroenterology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China.,Institute of Digestive Disease of Ningbo University, Ningbo, China
| | - Rongrong Xuan
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
18
|
Ouyang Y, Liu D, Zhang L, Li X, Chen X, Zhao C. Green Alga Enteromorpha prolifera Oligosaccharide Ameliorates Ageing and Hyperglycemia through Gut-Brain Axis in Age-Matched Diabetic Mice. Mol Nutr Food Res 2021; 66:e2100564. [PMID: 34894199 DOI: 10.1002/mnfr.202100564] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 10/25/2021] [Indexed: 12/12/2022]
Abstract
SCOPE To investigate the anti-ageing and anti-diabetic effects of Enteromorpha prolifera oligosaccharide (EPO) in age-matched streptozocin-induced diabetic mice. METHODS AND RESULTS LC-MS metabolomics and 16S rRNA sequencing is used to identify the brain metabolites and gut microbiota, respectively. EPO could significantly improve glucose metabolism and activity of total superoxide dismutase in serum. It also could regulate the tricarboxylic acid cycle, arginine, and inosine-related metabolic pathways in the brain of aged diabetic mice. Inosine is found to enhance the relative expressions of daf-2, daf-16, and skn-1 in insulin-resistant Caenorhabditis elegans. Additionally, EPO could alter the composition and diversity of gut microbiota in mice. It could upregulate the Signal Transducer and Activator of Transcription 3/Forkhead Box O1 (FOXO1)/B cell lymphoma 6 (Bcl-6) pathways in the brain and the c-Jun N-terminal Kinase (JNK)/FOXO1/Bcl-6 signaling axis in the intestine to regulate glucose metabolite status and ageing in mice. EPO could also improve the levels of glucagon-like peptide type 1 (GLP1) expression in the gut, thereby inducing high expression of GLP1 receptor in the brain to control glucose metabolites through the brain-gut axis. Enterococcus is negatively correlated with AMP in the brain and could be a potential hallmark species in age-related diabetes. CONCLUSIONS These results suggest that EPO could be a potential novel natural drug for the treatment of diabetes in the elderly.
Collapse
Affiliation(s)
- Yuezhen Ouyang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Liu
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lizhu Zhang
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiaoqing Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Xinhua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chao Zhao
- Engineering Research Centre of Fujian-Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou, 350002, China.,College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
19
|
Lactobacillus casei Zhang exerts probiotic effects to antibiotic-treated rats. Comput Struct Biotechnol J 2021; 19:5888-5897. [PMID: 34815833 PMCID: PMC8573083 DOI: 10.1016/j.csbj.2021.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 02/08/2023] Open
Abstract
Probiotics administration can facilitate the restoration of host gut microbiota/metabolome after antibiotic treatment. Yet, the mechanism behind such beneficial effects remains unclear. This study constructed a rat model of antibiotic-induced gut dysbiosis to monitor the effects and mechanism of probiotic (Lactobacillus casei Zhang) treatment in maintaining gut homeostasis and restoring the gut microbiota/metabolome. Forty rats were randomly divided into four groups (n = 10 per group): control receiving only saline (Ctrl), antibiotic (AB-Ctrl), antibiotic followed by probiotic (AB-Prob), and antibiotic plus probiotic followed by probiotic (AB + Prob). Rat fecal microbiota and sera were collected at four time points from pre-treatment to post-treatment. The probiotic-treated group (AB + Prob) had significantly more Parabacteroides (P.) goldsteinii after one week of antibiotic and probiotic intervention but fewer antibiotic resistance genes (ARGs)-possessing bacteria (Clostridioides difficile and Burkholderiales bacterium). Consistently, metabolomics data revealed that both probiotic groups had more acetic acid, propionic acid, butyric acid, and valeric acid post treatment. Moreover, a potential probiotic species, P. goldsteinii, strongly correlated with L. casei, as well as propionic acid, butyric acid, and valeric acid. Furthermore, administering probiotic lowered the serum IL-1α level. In contrast, the antibiotic-recipients had a higher irreversible level of IL-1α, suggesting inflammation of the rats. Thus, antibiotic treatment not only led to host gut dysbiosis, but inflammatory responses and an increase in gut ARGs. Daily L. casei Zhang supplementation could alleviate the side effect of cefdinir intervention and facilitate the restoration of gut microbial homeostasis, and these probiotic effects might involve P. goldsteinii-mediated beneficial activities.
Collapse
|
20
|
Schlatterer K, Beck C, Schoppmeier U, Peschel A, Kretschmer D. Acetate sensing by GPR43 alarms neutrophils and protects from severe sepsis. Commun Biol 2021; 4:928. [PMID: 34330996 PMCID: PMC8324776 DOI: 10.1038/s42003-021-02427-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
Bacterial sepsis is a major cause of mortality resulting from inadequate immune responses to systemic infection. Effective immunomodulatory approaches are urgently needed but it has remained elusive, which targets might be suitable for intervention. Increased expression of the G-protein-coupled receptor GPR43, which is known to govern intestinal responses to acetate, has been associated with sepsis patient survival but the mechanisms behind this observation have remained unclear. We show that elevated serum acetate concentrations prime neutrophils in a GPR43-dependent fashion, leading to enhanced neutrophil chemotaxis, oxidative burst, cytokine release and upregulation of phagocytic receptors. Consequently, acetate priming improved the capacity of human neutrophils to eliminate methicillin-resistant Staphylococcus aureus. Acetate administration increased mouse serum acetate concentrations and primed neutrophils. Notably, it rescued wild-type mice from severe S. aureus sepsis and reduced bacterial numbers in peripheral organs by several magnitudes. Acetate treatment improved the sepsis course even when applied several hours after onset of the infection, which recommends GPR43 as a potential target for sepsis therapy. Our study indicates that the severity of sepsis depends on transient neutrophil priming by appropriate blood acetate concentrations. Therapeutic interventions based on GPR43 stimulation could become valuable strategies for reducing sepsis-associated morbidity and mortality.
Collapse
Affiliation(s)
- Katja Schlatterer
- grid.10392.390000 0001 2190 1447Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany ,grid.452463.2German Center for Infection Research, partner site Tübingen, Tübingen, Germany ,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
| | - Christian Beck
- grid.10392.390000 0001 2190 1447Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany ,grid.452463.2German Center for Infection Research, partner site Tübingen, Tübingen, Germany ,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
| | - Ulrich Schoppmeier
- grid.452463.2German Center for Infection Research, partner site Tübingen, Tübingen, Germany ,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany ,grid.10392.390000 0001 2190 1447Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Medical Microbiology and Hygiene, University of Tübingen, Tübingen, Germany
| | - Andreas Peschel
- grid.10392.390000 0001 2190 1447Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany ,grid.452463.2German Center for Infection Research, partner site Tübingen, Tübingen, Germany ,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
| | - Dorothee Kretschmer
- grid.10392.390000 0001 2190 1447Interfaculty Institute for Microbiology and Infection Medicine Tübingen (IMIT), Infection Biology, University of Tübingen, Tübingen, Germany ,grid.452463.2German Center for Infection Research, partner site Tübingen, Tübingen, Germany ,Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, Tübingen, Germany
| |
Collapse
|
21
|
Pham U, Alvarado L, Suess GJ, Shamsi SA, Frantz K. Separation of short and medium-chain fatty acids using capillary electrophoresis with indirect photometric detection: Part I: Identification of fatty acids in rat feces. Electrophoresis 2021; 42:1914-1923. [PMID: 34288007 DOI: 10.1002/elps.202100100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/29/2021] [Accepted: 07/16/2021] [Indexed: 12/11/2022]
Abstract
Short and medium-chain fatty acids (SMCFAs) are known as essential metabolites found in gut microbiota that function as modulators in the development and progression of many inflammatory conditions as well as in the regulation of cell metabolism. Currently, there are few simple and low-cost analytical methods available for the determination of SMCFA. This report focuses on SMCFA analysis utilizing CE with indirect photometric detection (CE-IPD). A ribonucleotide electrolyte, 5'-adenosine mono-phosphate (5'-AMP), is investigated as an IPD reagent due to its high molar absorptivity and dynamic reserve compatible with separation and detection of SMCFA. The operating parameters like the composition of organic solvent, millimolar concentrations of the complexing agent (alpha-cyclodextrin), 5'-AMP and non-absorbing electrolyte (boric acid), as well as the applied voltage, are optimized for resolution, efficiency, and signal-to-noise ratio. A baseline resolution of all nine SMCFAs is achieved in less than 15 min. Additionally, the developed CE-IPD method shows promising potential to identifying SMCFA in rat fecal supernatant. The presented analytical assay is simple, economical, and has considerably good repeatability. The intraday and interday RSD of less than 1 and 2% for relative migration time, as well as less than 14 and 15% for peak area, respectively, were obtained for SMCFA in fecal solution.
Collapse
Affiliation(s)
- Uyen Pham
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Luis Alvarado
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Gregory J Suess
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Shahab A Shamsi
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Kyle Frantz
- Neuroscience Institute and Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
22
|
Abstract
Sepsis has been characterized as a dysregulated host response to infection, and the role of the microbiome as a key influencer of this response is emerging. Disruption of the microbiome while treating sepsis with antibiotics can itself result in immune dysregulation. Alterations in the gut microbiome resulting from sepsis and its treatment have been implicated in organ dysfunction typical of sepsis across multiple tissues including the lung, kidney, and brain. Multiple microbiota-directed interventions are currently under investigation in the setting of sepsis, including fecal transplant, the administration of dietary fiber, and the use of antibiotic scavengers that attenuate the effects of antibiotics on the gut microbiota while allowing them to concentrate at the primary sites of infection. The emerging evidence shows that the gut microbiome interacts with various elements of the septic response, and provides yet another reason to consider the judicious use of antibiotics via antibiotic stewardship programs.
Collapse
Affiliation(s)
- William D Miller
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Chicago, Chicago, Illinois, USA
| | - Robert Keskey
- Department of Surgery, University of Chicago, Pritzker School of Medicine , Chicago, Illinois, USA
| | - John C Alverdy
- Department of Surgery, University of Chicago, Pritzker School of Medicine , Chicago, Illinois, USA
| |
Collapse
|
23
|
Mojsak P, Rey-Stolle F, Parfieniuk E, Kretowski A, Ciborowski M. The role of gut microbiota (GM) and GM-related metabolites in diabetes and obesity. A review of analytical methods used to measure GM-related metabolites in fecal samples with a focus on metabolites' derivatization step. J Pharm Biomed Anal 2020; 191:113617. [PMID: 32971497 DOI: 10.1016/j.jpba.2020.113617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/12/2022]
Abstract
Disruption of gut microbiota (GM) composition is increasingly related to the pathogenesis of various metabolic diseases. Additionally, GM is responsible for the production and transformation of metabolites involved in the development of metabolic disorders, such as obesity and type 2 diabetes mellitus (T2DM). The current state of knowledge regarding the composition of GM and GM-related metabolites in relation to the progress and development of obesity and T2DM is presented in this review. To understand the relationships between GM-related metabolites and the development of metabolic disorders, their accurate qualitative and quantitative measurement in biological samples is needed. Feces represent a valuable biological matrix which composition may reflect the health status of the lower gastrointestinal tract and the whole organism. Mass spectrometry (MS), mainly in combination with gas chromatography (GC) or liquid chromatography (LC), is commonly used to measure fecal metabolites. However, profiling metabolites in such a complex matrix as feces is challenging from both analytical chemistry and biochemistry standpoints. Chemical derivatization is one of the most effective methods used to overcome these problems. In this review, we provide a comprehensive summary of the derivatization methods of GM-related metabolites prior to GC-MS or LC-MS analysis, which have been published in the last five years (2015-2020). Additionally, analytical methods used for the analysis of GM-related metabolites without the derivatization step are also presented.
Collapse
Affiliation(s)
- Patrycja Mojsak
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Fernanda Rey-Stolle
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, Spain
| | - Ewa Parfieniuk
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Adam Kretowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland; Department of Endocrinology, Diabetology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
| | - Michal Ciborowski
- Metabolomics Laboratory, Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland.
| |
Collapse
|
24
|
Lee JHJ, Zhu J. Optimizing Secondary Electrospray Ionization High-Resolution Mass Spectrometry (SESI-HRMS) for the Analysis of Volatile Fatty Acids from Gut Microbiome. Metabolites 2020; 10:E351. [PMID: 32872254 PMCID: PMC7570293 DOI: 10.3390/metabo10090351] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/19/2022] Open
Abstract
Gut microbiota plays essential roles in maintaining gut homeostasis. The composition of gut microbes and their metabolites are altered in response to diet and remedial agents such as antibiotics. However, little is known about the effect of antibiotics on the gut microbiota and their volatile metabolites. In this study, we evaluated the impact of a moderate level of ampicillin treatment on volatile fatty acids (VFAs) of gut microbial cultures using an optimized real-time secondary electrospray ionization coupled with high-resolution mass spectrometry (SESI-HRMS). To evaluate the ionization efficiency, different types of electrospray solvents and concentrations of formic acid as an additive (0.01, 0.05, and 0.1%, v/v) were tested using VFAs standard mixture (C2-C7). As a result, the maximum SESI-HRMS signals of all studied m/z values were observed from water with 0.01% formic acid than those from the aqueous methanolic solutions. Optimal temperatures of sample inlet and ion chamber were set at 130 °C and 85 °C, respectively. SESI spray pressure at 0.5 bar generated the maximum intensity than other tested values. The optimized SESI-HRMS was then used for the analysis of VFAs in gut microbial cultures. We detected that the significantly elevated C4 and C7 VFAs in the headspace of gut microbial cultures six hours after ampicillin treatment (1 mg/L). In conclusion, our results suggested that the optimized SESI-HRMS method can be suitable for the analysis of VFAs from gut microbes in a rapid, sensitive, and non-invasive manner.
Collapse
Affiliation(s)
- Jisun H. J. Lee
- Department of Human Sciences, The Ohio State University, Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA;
- James Comprehensive Cancer Center, The Ohio State University, Wiseman Hall, 400 W 12th Ave, Columbus, OH 43210, USA
| | - Jiangjiang Zhu
- Department of Human Sciences, The Ohio State University, Campbell Hall, 1787 Neil Avenue, Columbus, OH 43210, USA;
- James Comprehensive Cancer Center, The Ohio State University, Wiseman Hall, 400 W 12th Ave, Columbus, OH 43210, USA
| |
Collapse
|
25
|
Lopez-Santamarina A, Mondragon ADC, Lamas A, Miranda JM, Franco CM, Cepeda A. Animal-Origin Prebiotics Based on Chitin: An Alternative for the Future? A Critical Review. Foods 2020; 9:E782. [PMID: 32545663 PMCID: PMC7353569 DOI: 10.3390/foods9060782] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
The human gut microbiota has been revealed in recent years as a factor that plays a decisive role in the maintenance of human health, as well as in the development of many non-communicable diseases. This microbiota can be modulated by various dietary factors, among which complex carbohydrates have a great influence. Although most complex carbohydrates included in the human diet come from vegetables, there are also options to include complex carbohydrates from non-vegetable sources, such as chitin and its derivatives. Chitin, and its derivatives such as chitosan can be obtained from non-vegetable sources, the best being insects, crustacean exoskeletons and fungi. The present review offers a broad perspective of the current knowledge surrounding the impacts of chitin and its derived polysaccharides on the human gut microbiota and the profound need for more in-depth investigations into this topic. Overall, the effects of whole insects or meal on the gut microbiota have contradictory results, possibly due to their high protein content. Better results are obtained for the case of chitin derivatives, regarding both metabolic effects and effects on the gut microbiota composition.
Collapse
Affiliation(s)
| | | | | | | | | | - Alberto Cepeda
- Laboratorio de Higiene Inspección y Control de Alimentos. Departamento de Química Analítica, Nutrición y Bromatología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (A.L.-S.); (A.d.C.M.); (A.L.); (J.M.M.); (C.M.F.)
| |
Collapse
|
26
|
Intestinal microbiome analysis demonstrates azithromycin post-treatment effects improve when combined with lactulose. World J Pediatr 2020; 16:168-176. [PMID: 31583533 DOI: 10.1007/s12519-019-00315-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Next-generation sequencing has revolutionized our perspective on the gut microbiome composition, revealing the true extent of the adverse effects of antibiotics. The impact of antibiotic treatment on gut microbiota must be considered and researched to provide grounds for establishing new treatment strategies that are less devastating on commensal bacteria. This study investigates the impact on gut microbiome when a commonly used antibiotic, azithromycin is administered, as well as uncovers the benefits induced when it is used in combination with lactulose, a prebiotic known to enhance the proliferation of commensal microbes. METHODS 16S rRNA gene sequencing analysis of stool samples obtained from 87 children treated with azithromycin in combination with or without lactulose have been determined. Children's gut microbial profile was established at the pre- and post-treatment stage. RESULTS Azithromycin caused an increase in the relative abundance of opportunistic pathogens such as Streptococcus that was evident 60 days after treatment. While few days after treatment, children who also received lactulose started to show a higher relative abundance of saccharolytic bacteria such as Lactobacillus, Enterococcus, Anaerostipes, Blautia and Roseburia, providing a protective role against opportunistic pathogens. In addition, azithromycin-prebiotic combination was able to provide a phylogenetic profile more similar to the pre-treatment stage. CONCLUSION It is suggested that during azithromycin treatment, lactulose is able to reinstate the microbiome equilibrium much faster as it promotes saccharolytic microbes and provides a homeostatic effect that minimizes the opportunistic pathogen colonization.
Collapse
|
27
|
Fu Z, Han L, Zhang P, Mao H, Zhang H, Wang Y, Gao X, Liu E. Cistanche polysaccharides enhance echinacoside absorption in vivo and affect the gut microbiota. Int J Biol Macromol 2020; 149:732-740. [PMID: 31987946 DOI: 10.1016/j.ijbiomac.2020.01.216] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 08/30/2019] [Accepted: 01/22/2020] [Indexed: 01/08/2023]
Abstract
The polysaccharides and phenylethanoid glycosides from Cistanche deserticola have been demonstrated with various health benefits, however the interactive effect between these two kinds of compounds in vivo are not in detail known. The objective of this study was to investigate the synergistic actions of cistanche polysaccharides with phenylethanoid glycoside and the effects of polysaccharides on gut microbiota. Sprague-Dawley rats were fed with different kinds of cistanche polysaccharides for 20 days, on the last day, all rats were administered the echinacoside at 100 mg/kg. The results were compared mainly on the difference of pharmacokinetic parameters, gut microbiota composition, and short chain fatty acids contents. The results indicated that all the cistanche polysaccharides, including crude polysaccharide, high molecular weight polysaccharide and low molecular weight polysaccharide, could regulate the gut microbiota diversity, increase beneficial bacteria and particularly enhance the growth of Prevotella spp. as well as improve the production of short chain fatty acids and the absorption of echinacoside. By exploring the synergistic actions of polysaccharides with small molecules, these findings suggest that cistanche polysaccharides, particularly low molecular weight polysaccharides, could be used as a gut microbiota manipulator for health promotion.
Collapse
Affiliation(s)
- Zhifei Fu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Lifeng Han
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Peng Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Haoping Mao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Han Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Yuefei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China
| | - Xiumei Gao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China.
| | - Erwei Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China; Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, PR China.
| |
Collapse
|
28
|
de Carvalho NM, Madureira AR, Pintado ME. The potential of insects as food sources - a review. Crit Rev Food Sci Nutr 2019; 60:3642-3652. [PMID: 31868531 DOI: 10.1080/10408398.2019.1703170] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Entomophagy is a long-time practice and a food source for many cultures. Still, many societies have abandoned it a long time ago, and regard it as a primal behavior. However, nowadays, the challenge for food demand, with the urge of new nutritional sources, and the problems of undernourishment, mainly on underdeveloped countries, has reached a point where a new perspective is demanded. This review gathers some of the most recent studies regarding the potential benefits and concerns of entomophagy, trying to show the potential of insects as food source and possible ways to introduce them in cultures that have disregarded entomophagy. Entomophagy is taking its place, showing the grand potential of insects as feed and food source. As neophobia and disgust are the main western cultures barriers to accept entomophagy, today's comprehension of this practice and processing capabilities can take that source, to any dish in any form. A simple but nutritive insect powder can create a path to a widely, sustainable, rich food source-insects.
Collapse
Affiliation(s)
- Nelson Mota de Carvalho
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Ana Raquel Madureira
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Manuela Estevez Pintado
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| |
Collapse
|
29
|
Cryan JF, O'Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, Guzzetta KE, Jaggar M, Long-Smith CM, Lyte JM, Martin JA, Molinero-Perez A, Moloney G, Morelli E, Morillas E, O'Connor R, Cruz-Pereira JS, Peterson VL, Rea K, Ritz NL, Sherwin E, Spichak S, Teichman EM, van de Wouw M, Ventura-Silva AP, Wallace-Fitzsimons SE, Hyland N, Clarke G, Dinan TG. The Microbiota-Gut-Brain Axis. Physiol Rev 2019; 99:1877-2013. [DOI: 10.1152/physrev.00018.2018] [Citation(s) in RCA: 1243] [Impact Index Per Article: 248.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The importance of the gut-brain axis in maintaining homeostasis has long been appreciated. However, the past 15 yr have seen the emergence of the microbiota (the trillions of microorganisms within and on our bodies) as one of the key regulators of gut-brain function and has led to the appreciation of the importance of a distinct microbiota-gut-brain axis. This axis is gaining ever more traction in fields investigating the biological and physiological basis of psychiatric, neurodevelopmental, age-related, and neurodegenerative disorders. The microbiota and the brain communicate with each other via various routes including the immune system, tryptophan metabolism, the vagus nerve and the enteric nervous system, involving microbial metabolites such as short-chain fatty acids, branched chain amino acids, and peptidoglycans. Many factors can influence microbiota composition in early life, including infection, mode of birth delivery, use of antibiotic medications, the nature of nutritional provision, environmental stressors, and host genetics. At the other extreme of life, microbial diversity diminishes with aging. Stress, in particular, can significantly impact the microbiota-gut-brain axis at all stages of life. Much recent work has implicated the gut microbiota in many conditions including autism, anxiety, obesity, schizophrenia, Parkinson’s disease, and Alzheimer’s disease. Animal models have been paramount in linking the regulation of fundamental neural processes, such as neurogenesis and myelination, to microbiome activation of microglia. Moreover, translational human studies are ongoing and will greatly enhance the field. Future studies will focus on understanding the mechanisms underlying the microbiota-gut-brain axis and attempt to elucidate microbial-based intervention and therapeutic strategies for neuropsychiatric disorders.
Collapse
Affiliation(s)
- John F. Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kenneth J. O'Riordan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitlin S. M. Cowan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kiran V. Sandhu
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Thomaz F. S. Bastiaanssen
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcus Boehme
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Martin G. Codagnone
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Sofia Cussotto
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Christine Fulling
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Anna V. Golubeva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Katherine E. Guzzetta
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Caitriona M. Long-Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joshua M. Lyte
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Jason A. Martin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Alicia Molinero-Perez
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Moloney
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emanuela Morelli
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Enrique Morillas
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Rory O'Connor
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Joana S. Cruz-Pereira
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Veronica L. Peterson
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Nathaniel L. Ritz
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Eoin Sherwin
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Emily M. Teichman
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Marcel van de Wouw
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Ana Paula Ventura-Silva
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Shauna E. Wallace-Fitzsimons
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Niall Hyland
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| | - Timothy G. Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; and Department of Physiology, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Holota Y, Dovbynchuk T, Kaji I, Vareniuk I, Dzyubenko N, Chervinska T, Zakordonets L, Stetska V, Ostapchenko L, Serhiychuk T, Tolstanova G. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS One 2019; 14:e0220642. [PMID: 31437166 PMCID: PMC6705842 DOI: 10.1371/journal.pone.0220642] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/19/2019] [Indexed: 12/19/2022] Open
Abstract
Epidemiological studies revealed that antibiotics exposure increases a risk of inflammatory bowel diseases (IBD) development. It remained largely unknown how antibiotic-induced dysbiosis confers the risk for enhanced inflammatory response. The aim of the present study was to test the hypothesis that SCFAs, their receptors and transporters mediate the antibiotic long-term effects on the functional state of colonic mucosa and susceptibility to the experimental colitis. Male Wistar rats were treated daily for 14 days with antibiotic ceftriaxone (300 mg/kg, i.m.) or vehicle; euthanized by CO2 inhalation followed by cervical dislocation in 1, 14 or 56 days after antibiotic withdrawal. We found increased cecum weight and sustained changes in microbiota composition after ceftriaxone treatment with increased number of conditionally pathogenic enterobacteria, E. coli, Clostridium, Staphylococcus spp. and hemolytic bacteria even at 56 days after antibiotic withdrawal. The concentration of SCFAs was decreased after ceftriaxone withdrawal. We found decreased immunoreactivity of the FFA2, FFA3 receptors, SMCT1 and increased MCT1 & MCT4 transporters of SCFAs in colon mucosa. These changes evoked a significant shift in colonic mucosal homeostasis: the disturbance of oxidant-antioxidant balance; activation of redox-sensitive transcription factor HIF1α and ERK1/2 MAP kinase; increased colonic epithelial permeability and bacterial translocation to blood; morphological remodeling of the colonic tissue. Ceftriaxone pretreatment significantly reinforced inflammation during experimental colitis 56 days after ceftriaxone withdrawal, which was confirmed by increased histopathology of colitis, Goblet cell dysfunction, colonic dilatation and wall thickening, and increased serum levels of inflammatory cytokines (TNF-α and IL-10). Since the recognition of the importance of microbiota metabolic activity rather than their composition in the development of inflammatory disorders, e.g. IBD, the present study is the first report on the role of the SCFA system in the long lasting side effects of antibiotic treatment and its implication in IBD development.
Collapse
Affiliation(s)
- Yuliia Holota
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | - Izumi Kaji
- UCLA/CURE West LA VA Medical Center, Los Angeles, California, United States of America
| | - Igor Vareniuk
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
| | | | | | | | | | | | | | - Ganna Tolstanova
- Taras Shevchenko National University of Kyiv, Kyiv, Ukraine
- * E-mail: ,
| |
Collapse
|
31
|
Study of in vitro digestion of Tenebrio molitor flour for evaluation of its impact on the human gut microbiota. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
32
|
Liu XY, Liu D, Lin GP, Wu YJ, Gao LY, Ai C, Huang YF, Wang MF, El-Seedi HR, Chen XH, Zhao C. Anti-ageing and antioxidant effects of sulfate oligosaccharides from green algae Ulva lactuca and Enteromorpha prolifera in SAMP8 mice. Int J Biol Macromol 2019; 139:342-351. [PMID: 31377292 DOI: 10.1016/j.ijbiomac.2019.07.195] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 07/22/2019] [Accepted: 07/28/2019] [Indexed: 12/16/2022]
Abstract
Oligosaccharides from green algae Ulva lactuca (ULO) and Enteromorpha prolifera (EPO) were used for investigation of anti-ageing effects and the underlying mechanism in SAMP8 mice. The structural properties of ULO and EPO were analyzed by fourier-transform infrared spectroscopy, gas chromatography-mass spectrometry, and agarose gel electrophoresis. These oligosaccharides enhanced the glutathione, superoxide dismutase, catalase, and telomerase levels and total antioxidant capicity, and decreased the levels of malondialdehyde and advanced glycation end products. After ULO and EPO treatment, the levels of inflammatory factors, including IFN-γ, TNF-α, and IL-6, decreased; the BDNF and ChAT levels increased; and hippocampal neurons were protected. Downregulation of the p53 and FOXO1 genes and upregulation of the Sirt1 gene indicated that ULO and EPO have potential therapeutic effects in the prevention of ageing in SAMP8 mice. By 16S rRNA gene high-throughput sequencing, the abundance of Desulfovibrio was discovered to be markedly different in mice treated with ULO and EPO. The abundances of Verrucomicrobiaceae, Odoribacteraceae, Mogibacteriaceae, Planococcaceae, and Coriobacteriaceae were positively correlated with age-related indicators. These results demonstrated that oligosaccharides from U. lactuca and E. prolifera are ideal candidate compounds that can be used in functional foods and pharmaceuticals to prevent ageing.
Collapse
Affiliation(s)
- Xiao-Yan Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dan Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guo-Peng Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi-Jing Wu
- Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Lu-Ying Gao
- Department of Pediatrics, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Chao Ai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yi-Fan Huang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ming-Fu Wang
- Food and Nutrition Department, Providence University, Taichung 43301, Taiwan
| | - Hesham R El-Seedi
- Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Biomedical Centre, Box 574, SE-751 23, Uppsala, Sweden
| | - Xin-Hua Chen
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chao Zhao
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Chinese Medical Sciences, State Key Laboratory of Quality Control in Chinese Medicine, University of Macau, Taipa, Macau, China.
| |
Collapse
|
33
|
Shubitowski TB, Poll BG, Natarajan N, Pluznick JL. Short-chain fatty acid delivery: assessing exogenous administration of the microbiome metabolite acetate in mice. Physiol Rep 2019; 7:e14005. [PMID: 30810289 PMCID: PMC6391713 DOI: 10.14814/phy2.14005] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are fermentation by-products of gut microbes which have been linked to positive effects on host physiology; the most abundant SCFA is acetate. Exogenous administration of acetate alters host metabolism, immune function, and blood pressure, making it a biologic of interest. The effects of acetate have been attributed to activation of G-protein-coupled receptors and other proteins (i.e., HDACs), often occurring at locations distant from the gut such as the pancreas or the kidney. However, due to technical difficulties and costs, studies have often delivered exogenous acetate without determining if systemic plasma acetate levels are altered. Thus, it is unclear to what extent each method of acetate delivery may alter systemic plasma acetate levels. In this study, we aimed to determine if acetate is elevated after exogenous administration by drinking water (DW), oral gavage (OG), or intraperitoneal (IP) injection, and if so, over what timecourse, to best inform future studies. Using a commercially available kit, we demonstrated that sodium acetate delivered over 21 days in DW does not elicit a measurable change in systemic acetate over baseline. However, when acetate is delivered by OG or IP injection, there are rapid, reproducible, and dose-dependent changes in plasma acetate. These studies report, for the first time, the timecourse of changes in plasma acetate following acetate administration by three common methods, and thus inform the best practices for exogenous acetate delivery.
Collapse
Affiliation(s)
| | - Brian G. Poll
- Department of PhysiologyJohns Hopkins School of MedicineBaltimoreMaryland
| | - Niranjana Natarajan
- Department of Stem Cell and Regenerative BiologyHarvard Stem Cell InstituteHarvard UniversityCambridgeMassachusetts
| | | |
Collapse
|
34
|
Zhang R, Anderson E, Chen P, Addy M, Cheng Y, Wang L, Liu Y, Ruan R. Intermittent-vacuum assisted thermophilic co-digestion of corn stover and liquid swine manure: Salinity inhibition. BIORESOURCE TECHNOLOGY 2019; 271:16-23. [PMID: 30261332 DOI: 10.1016/j.biortech.2018.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 06/08/2023]
Abstract
In this study, the effects of Intermittent-Vacuum Stripping (IVS) on activities of methanogenesis in co-digestion of corn stover with liquid swine manure (LSM + CS) under thermophilic anaerobic digestion (TAD) conditions were evaluated. A 65% methanogenesis activity inhibition was observed in pretreated LSM plus corn stover (pLSM + CS), while 60 and 165 mL/L/day CH4 productions were achieved in pLSM + CS and LSM + CS, respectively. The high salinity condition (5.28%) after IVS pretreatment was considered the primary inhibitor in pLSM + CS, while the ammonia (≤600 mg/L), C:N ratio (15.52) and volatile solid loading rate (3 g/kg-1·day-1) didn't show a negative effect on CH4 production. When salinities were increased from 2% to 4% and 8%, 50% and 100% inhibition were observed respectively. The butyrate accumulation was a potential indicator of the non-salinity-inhibition status for methanogenesis in TAD.
Collapse
Affiliation(s)
- Renchuan Zhang
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Erik Anderson
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Paul Chen
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Min Addy
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Yanling Cheng
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Lu Wang
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA
| | - Yuhuan Liu
- The Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, 235 Nanjing Road, Nanchang City, Jiangxi 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55112, USA.
| |
Collapse
|
35
|
Bajaj JS, Kakiyama G, Savidge T, Takei H, Kassam ZA, Fagan A, Gavis EA, Pandak WM, Nittono H, Hylemon PB, Boonma P, Haag A, Heuman DM, Fuchs M, John B, Sikaroodi M, Gillevet PM. Antibiotic-Associated Disruption of Microbiota Composition and Function in Cirrhosis Is Restored by Fecal Transplant. Hepatology 2018; 68:1549-1558. [PMID: 29665102 DOI: 10.1002/hep.30037] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 04/02/2018] [Accepted: 04/06/2018] [Indexed: 12/11/2022]
Abstract
UNLABELLED Patients with cirrhosis are often exposed to antibiotics that can lead to resistance and fungal overgrowth. The role of fecal microbial transplant (FMT) in restoring gut microbial function is unclear in cirrhosis. In a Food and Drug Administration-monitored phase 1 clinical safety trial, patients with decompensated cirrhosis on standard therapies (lactulose and rifaximin) were randomized to standard-of-care (SOC, no antibiotics/FMT) or 5 days of broad-spectrum antibiotics followed by FMT from a donor enriched in Lachnospiraceae and Ruminococcaceae. Microbial composition (diversity, family-level relative abundances), function (fecal bile acid [BA] deconjugation, 7α-dehydroxylation, short-chain fatty acids [SCFAs]), and correlations between Lachnospiraceae, Ruminococcaceae, and clinical variables were analyzed at baseline, postantibiotics, and 15 days post-FMT. FMT was well tolerated. Postantibiotics, there was a reduced microbial diversity and autochthonous taxa relative abundance. This was associated with an altered fecal SCFA and BA profile. Correlation linkage changes from beneficial at baseline to negative after antibiotics. All of these parameters became statistically similar post-FMT to baseline levels. No changes were seen in the SOC group. CONCLUSION In patients with advanced cirrhosis on lactulose and rifaximin, FMT restored antibiotic-associated disruption in microbial diversity and function. (Hepatology 2018; 00:000-000).
Collapse
Affiliation(s)
- Jasmohan S Bajaj
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA
| | - Genta Kakiyama
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA
| | - Tor Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Hajime Takei
- Junshin Clinic Bile Acid Institute, Tokyo, Japan
| | | | - Andrew Fagan
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA
| | - Edith A Gavis
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA
| | - William M Pandak
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA
| | | | - Phillip B Hylemon
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA
| | - Prapaporn Boonma
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Anthony Haag
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX
| | - Douglas M Heuman
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA
| | - Michael Fuchs
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA
| | - Binu John
- Virginia Commonwealth University and McGuire VA Medical Center, Richmond, VA
| | | | | |
Collapse
|
36
|
Mullish BH, McDonald JAK, Thursz MR, Marchesi JR. Antibiotic-Associated Disruption of Microbiota Composition and Function in Cirrhosis Is Restored by Fecal Transplant. Hepatology 2018; 68:1205. [PMID: 29774567 PMCID: PMC6342253 DOI: 10.1002/hep.30090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/23/2018] [Accepted: 04/24/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Benjamin H Mullish
- Liver Unit/Division of Integrative Systems Medicine and Digestive Disease, St Mary’s Hospital Campus, Imperial College London
| | - Julie A K McDonald
- Liver Unit/Division of Integrative Systems Medicine and Digestive Disease, St Mary’s Hospital Campus, Imperial College London
| | - Mark R Thursz
- Liver Unit/Division of Integrative Systems Medicine and Digestive Disease, St Mary’s Hospital Campus, Imperial College London
| | - Julian R Marchesi
- Liver Unit/Division of Integrative Systems Medicine and Digestive Disease, St Mary’s Hospital Campus, Imperial College London,School of Biosciences, Cardiff University
| |
Collapse
|
37
|
Ge Y, Liu W, Tao H, Zhang Y, Liu L, Liu Z, Qiu B, Xu T. Effect of industrial trans-fatty acids-enriched diet on gut microbiota of C57BL/6 mice. Eur J Nutr 2018; 58:2625-2638. [PMID: 30120538 DOI: 10.1007/s00394-018-1810-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 08/13/2018] [Indexed: 02/08/2023]
Abstract
PURPOSE Previous studies have shown that industrially originated trans-fatty acids (iTFAs) are associated with several chronic diseases, but the underlying mechanisms remain unknown. Because gut microbiota play a critical role in human health, diet competent induced gut microbiota dysbiosis may contributing to disease pathogenesis. Therefore, the present study examined the impact of iTFA on gut microbiota, help understanding the underling mechanism of iTFA-associated chronic diseases. METHODS Forty male 8-week-old mice were divided into 4 groups and randomly assigned to diets containing soybean oil (non-iTFA) or partially hydrogenated soybean oil (iTFA). The intervention groups were: (1) low soybean oil (LS); (2) high soybean oil (HS); (3) low partially hydrogenated oil (LH) and (4) high partially hydrogenated oil (HH). The gut microbiota profiles were determined by 16S rRNA gene sequencing. Physiological parameters and the inflammatory status of the small intestine and other tissues were analyzed. Short-chain fatty acid levels in feces were measured using gas chromatography. RESULTS The intake of iTFA increased the abundance of well-documented 'harmful' bacteria, such as Proteobacteria and Desulfovibrionaceae (P < 0.05), whereas it decreased relative abundance of 'beneficial' bacteria, such as Bacteroidetes, Lachnospiraceae, Bacteroidales S24-7 (P < 0.05). Surprisingly, the intake of iTFA increased the abundance of the probiotic Lactobacillaceae (P < 0.05). Additionally, the intake of iTFA induced increase of inflammatory parameters, as well as a numerical decrease of fecal butyric acid and valeric acid. CONCLUSIONS This study, to our knowledge, is the first to demonstrate that the consumption of iTFA resulted in a significant dysbiosis of gut microbiota, which may contribute to the development of chronic diseases associated with iTFA.
Collapse
Affiliation(s)
- Yueting Ge
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China.,The Laboratory of Food Nutrition and Functional Factors, School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China.
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Yu Zhang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| | - Lina Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| | - Zhenhua Liu
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, USA
| | - Bin Qiu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China.
| | - Tongcheng Xu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, Jinan, China
| |
Collapse
|
38
|
Mullish BH. Letter: improvements in mental health after faecal microbiota transplantation-an underexplored treatment-related benefit? Aliment Pharmacol Ther 2018; 47:1562-1563. [PMID: 29876945 PMCID: PMC6343820 DOI: 10.1111/apt.14626] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Benjamin H Mullish
- Division of Integrative Systems Medicine and Digestive Disease, St Mary’s Hospital Campus, Imperial College London, London, UK,Corresponding author via: Dr Benjamin Mullish, Division of Integrative Systems Medicine and Digestive Disease/Liver Unit, 10 Floor, QEQM Wing, St Mary’s Hospital Campus, Imperial College London, South Wharf Road, Paddington, London, W2 1NY, United Kingdom, , Telephone: +44(0)203 312 6454, Fax: +44(0)207 724 9369
| |
Collapse
|
39
|
Kočová Vlčková H, Pilařová V, Svobodová P, Plíšek J, Švec F, Nováková L. Current state of bioanalytical chromatography in clinical analysis. Analyst 2018; 143:1305-1325. [DOI: 10.1039/c7an01807j] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Chromatographic methods have become popular in clinical analysis in both routine and research laboratories.
Collapse
Affiliation(s)
- H. Kočová Vlčková
- Deparment of Analytical Chemistry
- Faculty of Pharmacy in Hradec Králové
- Charles University
- Hradec Králové
- Czech Republic
| | - V. Pilařová
- Deparment of Analytical Chemistry
- Faculty of Pharmacy in Hradec Králové
- Charles University
- Hradec Králové
- Czech Republic
| | - P. Svobodová
- Deparment of Analytical Chemistry
- Faculty of Pharmacy in Hradec Králové
- Charles University
- Hradec Králové
- Czech Republic
| | - J. Plíšek
- Deparment of Analytical Chemistry
- Faculty of Pharmacy in Hradec Králové
- Charles University
- Hradec Králové
- Czech Republic
| | - F. Švec
- Deparment of Analytical Chemistry
- Faculty of Pharmacy in Hradec Králové
- Charles University
- Hradec Králové
- Czech Republic
| | - L. Nováková
- Deparment of Analytical Chemistry
- Faculty of Pharmacy in Hradec Králové
- Charles University
- Hradec Králové
- Czech Republic
| |
Collapse
|
40
|
WU D, YANG JJ, YANG F, ZHANG BY, DU J, WANG YF, XU RQ. Analysis of Alkaline and Neutral Volatile Metabolites in Feces by Gas Chromatography-Tandem Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2017. [DOI: 10.1016/s1872-2040(17)61019-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
41
|
Xiao M, Yang J, Feng Y, Zhu Y, Chai X, Wang Y. Metaproteomic strategies and applications for gut microbial research. Appl Microbiol Biotechnol 2017; 101:3077-3088. [PMID: 28293710 DOI: 10.1007/s00253-017-8215-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 02/28/2017] [Accepted: 03/04/2017] [Indexed: 01/16/2023]
Abstract
The human intestine hosts various complex microbial communities that are closely associated with multiple health and disease processes. Determining the composition and function of these microbial communities is critical to unveil disease mechanisms and promote human health. Recently, meta-omic strategies have been developed that use high-throughput techniques to provide a wealth of information, thus accelerating the study of gut microbes. Metaproteomics is a newly emerged analytical approach that aims to identify proteins on a large scale in complex environmental microbial communities (e.g., the gut microbiota). This review introduces the recent analytical strategies and applications of metaproteomics, with a focus on advances in gut microbiota research, including a discussion of the limitations and challenges of these approaches.
Collapse
Affiliation(s)
- Mingming Xiao
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Junjun Yang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Yuxin Feng
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Yan Zhu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Xin Chai
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China.,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China
| | - Yuefei Wang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China. .,Research and Development Center of Traditional Chinese Medicine, Tianjin International Joint Academy of Biotechnology and Medicine, Tianjin, 300457, China.
| |
Collapse
|