1
|
Hurychová J, Dostál J, Kunc M, Šreibr S, Dostálková S, Petřivalský M, Hyršl P, Titěra D, Danihlík J, Dobeš P. Modeling seasonal immune dynamics of honey bee (Apis mellifera L.) response to injection of heat-killed Serratia marcescens. PLoS One 2024; 19:e0311415. [PMID: 39365765 PMCID: PMC11452037 DOI: 10.1371/journal.pone.0311415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/18/2024] [Indexed: 10/06/2024] Open
Abstract
The honey bee, Apis mellifera L., is one of the main pollinators worldwide. In a temperate climate, seasonality affects the life span, behavior, physiology, and immunity of honey bees. In consequence, it impacts their interaction with pathogens and parasites. In this study, we used Bayesian statistics and modeling to examine the immune response dynamics of summer and winter honey bee workers after injection with the heat-killed bacteria Serratia marcescens, an opportunistic honey bee pathogen. We investigated the humoral and cellular immune response at the transcriptional and functional levels using qPCR of selected immune genes, antimicrobial activity assay, and flow cytometric analysis of hemocyte concentration. Our data demonstrate increased antimicrobial activity at transcriptional and functional levels in summer and winter workers after injection, with a stronger immune response in winter bees. On the other hand, an increase in hemocyte concentration was observed only in the summer bee population. Our results indicate that the summer population mounts a cellular response when challenged with heat-killed S. marcescens, while winter honey bees predominantly rely on humoral immune reactions. We created a model describing the honey bee immune response dynamics to bacteria-derived components by applying Bayesian statistics to our data. This model can be employed in further research and facilitate the investigating of the honey bee immune system and its response to pathogens.
Collapse
Affiliation(s)
- Jana Hurychová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jakub Dostál
- Department of Mathematical Analysis and Application of Mathematics, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Martin Kunc
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Sara Šreibr
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Silvie Dostálková
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Hyršl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Dalibor Titěra
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Science Prague, Prague, Czech Republic
| | - Jiří Danihlík
- Department of Biochemistry, Faculty of Science, Palacký University Olomouc, Olomouc, Czech Republic
| | - Pavel Dobeš
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Motta EVS, de Jong TK, Gage A, Edwards JA, Moran NA. Glyphosate effects on growth and biofilm formation in bee gut symbionts and diverse associated bacteria. Appl Environ Microbiol 2024; 90:e0051524. [PMID: 39012136 PMCID: PMC11337805 DOI: 10.1128/aem.00515-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/22/2024] [Indexed: 07/17/2024] Open
Abstract
Biofilm formation is a common adaptation enabling bacteria to thrive in various environments and withstand external pressures. In the context of host-microbe interactions, biofilms play vital roles in establishing microbiomes associated with animals and plants and are used by opportunistic microbes to facilitate survival within hosts. Investigating biofilm dynamics, composition, and responses to environmental stressors is crucial for understanding microbial community assembly and biofilm regulation in health and disease. In this study, we explore in vivo colonization and in vitro biofilm formation abilities of core members of the honey bee (Apis mellifera) gut microbiota. Additionally, we assess the impact of glyphosate, a widely used herbicide with antimicrobial properties, and a glyphosate-based herbicide formulation on growth and biofilm formation in bee gut symbionts as well as in other biofilm-forming bacteria associated with diverse animals and plants. Our results demonstrate that several strains of core bee gut bacterial species can colonize the bee gut, which probably depends on their ability to form biofilms. Furthermore, glyphosate exposure elicits variable effects on bacterial growth and biofilm formation. In some instances, the effects correlate with the bacteria's ability to encode a susceptible or tolerant version of the enzyme inhibited by glyphosate in the shikimate pathway. However, in other instances, no such correlation is observed. Testing the herbicide formulation further complicates comparisons, as results often diverge from glyphosate exposure alone, suggesting that co-formulants influence bacterial growth and biofilm formation. These findings highlight the nuanced impacts of environmental stressors on microbial biofilms, with both ecological and host health-related implications. IMPORTANCE Biofilms are essential for microbial communities to establish and thrive in diverse environments. In the honey bee gut, the core microbiota member Snodgrassella alvi forms biofilms, potentially aiding the establishment of other members and promoting interactions with the host. In this study, we show that specific strains of other core members, including Bifidobacterium, Bombilactobacillus, Gilliamella, and Lactobacillus, also form biofilms in vitro. We then examine the impact of glyphosate, a widely used herbicide that can disrupt the bee microbiota, on bacterial growth and biofilm formation. Our findings demonstrate the diverse effects of glyphosate on biofilm formation, ranging from inhibition to enhancement, reflecting observations in other beneficial or pathogenic bacteria associated with animals and plants. Thus, glyphosate exposure may influence bacterial growth and biofilm formation, potentially shaping microbial establishment on host surfaces and impacting health outcomes.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Tyler K. de Jong
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Alejandra Gage
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| | - Joseph A. Edwards
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
3
|
Sipos T, Glavák C, Turbók J, Somfalvi-Tóth K, Donkó T, Keszthelyi S. Analysis of X-ray irradiation effects on the mortality values and hemolymph immune cell composition of Apis mellifera and its parasite, Varroa destructor. J Invertebr Pathol 2024; 204:108109. [PMID: 38631557 DOI: 10.1016/j.jip.2024.108109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 04/19/2024]
Abstract
Varroa destructor is one of the most destructive enemies of the honey bee, Apis mellifera all around the world. Several control methods are known to control V. destructor, but the efficacy of several alternative control methods remains unexplored. Irradiation can be one of these unknown solutions but before practical application, the effectiveness, and the physiological effects of ionizing radiation on the host and the parasite are waiting to be tested. Therefore, the objective of our study was to investigate the effects of different doses (15, 50, 100, and 150 Gy) of high-energy X-ray irradiation through mortality rates and hemocyte composition changes in A. mellifera workers and record the mortality rates of the parasite. The mortality rate was recorded during short-term (12, 24, and 48 h) and long-term periods (3, 6, 12, 18, and 24d). The sensitivity of the host and the parasite in case of the higher doses of radiation tested (50, 100, and 150 Gy) been demonstrated by total mortality of the host and 90 % of its parasite has been observed on the 18th day after the irradiation. V. destructor showed higher sensitivity (1.52-times higher than the adult honey bee workers) at the lowest dose (15 Gy). A. mellifera hemocytes were influenced significantly by radiation dosage and the elapsed time after treatment. The higher radiation doses increased plasmatocyte numbers in parallel with the decrease in prohemocyte numbers. On the contrary, the numbers of granulocytes and oencoytes increased in the treated samples, but the putative effects of the different dosages on the recorded number of these hemocyte types could not be statistically proven. In summary, based on the outcome of our study X-ray irradiation can be deemed an effective tool for controlling phoretic V. destructor. However, further research is needed to understand the physiological response of the affected organisms.
Collapse
Affiliation(s)
- Tamás Sipos
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor str. 40., H-7400 Kaposvár, Hungary; Institute for Farm Animal Gene Conservation, National Centre for Biodiversity and Gene Conservation, H-2100 Gödöllő, Hungary.
| | - Csaba Glavák
- Moritz Kaposi Teaching Hospital, Dr. József Baka Diagnostic, Radiation Oncology, Research and Teaching Center, Guba Sandor str. 40., H-7400 Kaposvár, Hungary.
| | - Janka Turbók
- Department of Physiology and Animal Health, Institute of Physiology and Nutrition, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor str. 40., H-7400 Kaposvár, Hungary.
| | - Katalin Somfalvi-Tóth
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor str. 40., H-7400 Kaposvár, Hungary.
| | - Tamás Donkó
- Medicopus Nonprofit Ltd., Guba Sándor str. 40., H-7400 Kaposvár, Hungary.
| | - Sándor Keszthelyi
- Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Kaposvár Campus, Guba Sándor str. 40., H-7400 Kaposvár, Hungary.
| |
Collapse
|
4
|
Carlini DB, Winslow SK, Cloppenborg-Schmidt K, Baines JF. Quantitative microbiome profiling of honey bee (Apis mellifera) guts is predictive of winter colony loss in northern Virginia (USA). Sci Rep 2024; 14:11021. [PMID: 38744972 PMCID: PMC11094147 DOI: 10.1038/s41598-024-61199-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
For the past 15 years, the proportion of honey bee hives that fail to survive winter has averaged ~ 30% in the United States. Winter hive loss has significant negative impacts on agriculture, the economy, and ecosystems. Compared to other factors, the role of honey bee gut microbial communities in driving winter hive loss has received little attention. We investigate the relationship between winter survival and honey bee gut microbiome composition of 168 honey bees from 23 hives, nine of which failed to survive through winter 2022. We found that there was a substantial difference in the abundance and community composition of honey bee gut microbiomes based on hive condition, i.e., winter survival or failure. The overall microbial abundance, as assessed using Quantitative Microbiome Profiling (QMP), was significantly greater in hives that survived winter 2022 than in those that failed, and the average overall abundance of each of ten bacterial genera was also greater in surviving hives. There were no significant differences in alpha diversity based on hive condition, but there was a highly significant difference in beta diversity. The bacterial genera Commensalibacter and Snodgrassella were positively associated with winter hive survival. Logistic regression and random forest machine learning models on pooled ASV counts for the genus data were highly predictive of winter outcome, although model performance decreased when samples from the location with no hive failures were excluded from analysis. As a whole, our results show that the abundance and community composition of honey bee gut microbiota is associated with winter hive loss, and can potentially be used as a diagnostic tool in evaluating hive health prior to the onset of winter. Future work on the functional characterization of the honey bee gut microbiome's role in winter survival is warranted.
Collapse
Affiliation(s)
- David B Carlini
- Department of Biology, American University, 4400 Massachusetts Ave. NW, Washington, DC, 20016, USA.
| | - Sundre K Winslow
- Department of Biology, American University, 4400 Massachusetts Ave. NW, Washington, DC, 20016, USA
| | - Katja Cloppenborg-Schmidt
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany
| | - John F Baines
- Section of Evolutionary Medicine, Institute for Experimental Medicine, Kiel University, Arnold-Heller-Str. 3, 24105, Kiel, Germany.
- Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
| |
Collapse
|
5
|
Braglia C, Alberoni D, Garrido PM, Porrini MP, Baffoni L, Scott D, Eguaras MJ, Di Gioia D, Mifsud D. Vairimorpha (Nosema) ceranae can promote Serratia development in honeybee gut: an underrated threat for bees? Front Cell Infect Microbiol 2024; 14:1323157. [PMID: 38808063 PMCID: PMC11131372 DOI: 10.3389/fcimb.2024.1323157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/04/2024] [Indexed: 05/30/2024] Open
Abstract
The genus Serratia harbors opportunistic pathogenic species, among which Serratia marcescens is pathogenic for honeybees although little studied. Recently, virulent strains of S. marcescens colonizing the Varroa destructor mite's mouth were found vectored into the honeybee body, leading to septicemia and death. Serratia also occurs as an opportunistic pathogen in the honeybee's gut with a low absolute abundance. The Serratia population seems controlled by the host immune system, but its presence may represent a hidden threat, ready to arise when honeybees are weakened by biotic and abiotic stressors. To shed light on the Serratia pathogen, this research aims at studying Serratia's development dynamics in the honeybee body and its interactions with the co-occurring fungal pathogen Vairimorpha ceranae. Firstly, the degree of pathogenicity and the ability to permeate the gut epithelial barrier of three Serratia strains, isolated from honeybees and belonging to different species (S. marcescens, Serratia liquefaciens, and Serratia nematodiphila), were assessed by artificial inoculation of newborn honeybees with different Serratia doses (104, 106, and 108 cells/mL). The absolute abundance of Serratia in the gut and in the hemocoel was assessed in qPCR with primers targeting the luxS gene. Moreover, the absolute abundance of Serratia was assessed in the gut of honeybees infected with V. ceranae at different development stages and supplied with beneficial microorganisms and fumagillin. Our results showed that all tested Serratia strains could pass through the gut epithelial barrier and proliferate in the hemocoel, with S. marcescens being the most pathogenic. Moreover, under cage conditions, Serratia better proliferates when a V. ceranae infection is co-occurring, with a positive and significant correlation. Finally, fumagillin and some of the tested beneficial microorganisms could control both Serratia and Vairimorpha development. Our findings suggest a correlation between the two pathogens under laboratory conditions, a co-occurring infection that should be taken into consideration by researches when testing antimicrobial compounds active against V. ceranae, and the related honeybees survival rate. Moreover, our findings suggest a positive control of Serratia by the environmental microorganism Apilactobacillus kunkeei in a in vivo model, confirming the potential of this specie as beneficial bacteria for honeybees.
Collapse
Affiliation(s)
- Chiara Braglia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - Daniele Alberoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - Paula Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Faculty of Exact and Natural Sciences (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), National Scientific and Technical Research Council (CONICET), UNMdP, Centro Asoc. Simple Scientific research Commission Buenos Aires Province (CIC PBA), Mar del Plata, Buenos Aires, Argentina
| | - Martin Pablo Porrini
- Centro de Investigación en Abejas Sociales (CIAS), Faculty of Exact and Natural Sciences (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), National Scientific and Technical Research Council (CONICET), UNMdP, Centro Asoc. Simple Scientific research Commission Buenos Aires Province (CIC PBA), Mar del Plata, Buenos Aires, Argentina
| | - Loredana Baffoni
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | | | - Martin Javier Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Faculty of Exact and Natural Sciences (FCEyN), National University of Mar del Plata (UNMdP), Mar del Plata, Buenos Aires, Argentina
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), National Scientific and Technical Research Council (CONICET), UNMdP, Centro Asoc. Simple Scientific research Commission Buenos Aires Province (CIC PBA), Mar del Plata, Buenos Aires, Argentina
| | - Diana Di Gioia
- Dipartimento di Scienze e Tecnologie Agro-Alimentari (DISTAL), University of Bologna, Bologna, Italy
| | - David Mifsud
- Institute of Earth Systems, L-Universita ta’ Malta, Msida, Malta
| |
Collapse
|
6
|
Gao Y, Liu L, Cui Y, Zhang J, Wu X. The causality of gut microbiota on onset and progression of sepsis: a bi-directional Mendelian randomization analysis. Front Immunol 2024; 15:1266579. [PMID: 38698853 PMCID: PMC11063379 DOI: 10.3389/fimmu.2024.1266579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 03/29/2024] [Indexed: 05/05/2024] Open
Abstract
Background Several observational studies have proposed a potential link between gut microbiota and the onset and progression of sepsis. Nevertheless, the causality of gut microbiota and sepsis remains debatable and warrants more comprehensive exploration. Methods We conducted a two-sample Mendelian randomization (MR) analysis to test the causality between gut microbiota and the onset and progression of sepsis. The genome-wide association study (GWAS) summary statistics for 196 bacterial traits were extracted from the MiBioGen consortium, whereas the GWAS summary statistics for sepsis and sepsis-related outcomes came from the UK Biobank. The inverse-variance weighted (IVW) approach was the primary method used to examine the causal association. To complement the IVW method, we utilized four additional MR methods. We performed a series of sensitivity analyses to examine the robustness of the causal estimates. Results We assessed the causality of 196 bacterial traits on sepsis and sepsis-related outcomes. Genus Coprococcus2 [odds ratio (OR) 0.81, 95% confidence interval (CI) (0.69-0.94), p = 0.007] and genus Dialister (OR 0.85, 95% CI 0.74-0.97, p = 0.016) had a protective effect on sepsis, whereas genus Ruminococcaceae UCG011 (OR 1.10, 95% CI 1.01-1.20, p = 0.024) increased the risk of sepsis. When it came to sepsis requiring critical care, genus Anaerostipes (OR 0.49, 95% CI 0.31-0.76, p = 0.002), genus Coprococcus1 (OR 0.65, 95% CI 0.43-1.00, p = 0.049), and genus Lachnospiraceae UCG004 (OR 0.51, 95% CI 0.34-0.77, p = 0.001) emerged as protective factors. Concerning 28-day mortality of sepsis, genus Coprococcus1 (OR 0.67, 95% CI 0.48-0.94, p = 0.020), genus Coprococcus2 (OR 0.48, 95% CI 0.27-0.86, p = 0.013), genus Lachnospiraceae FCS020 (OR 0.70, 95% CI 0.52-0.95, p = 0.023), and genus Victivallis (OR 0.82, 95% CI 0.68-0.99, p = 0.042) presented a protective effect, whereas genus Ruminococcus torques group (OR 1.53, 95% CI 1.00-2.35, p = 0.049), genus Sellimonas (OR 1.25, 95% CI 1.04-1.50, p = 0.019), and genus Terrisporobacter (OR 1.43, 95% CI 1.02-2.02, p = 0.040) presented a harmful effect. Furthermore, genus Coprococcus1 (OR 0.42, 95% CI 0.19-0.92, p = 0.031), genus Coprococcus2 (OR 0.34, 95% CI 0.14-0.83, p = 0.018), and genus Ruminiclostridium6 (OR 0.43, 95% CI 0.22-0.83, p = 0.012) were associated with a lower 28-day mortality of sepsis requiring critical care. Conclusion This MR analysis unveiled a causality between the 21 bacterial traits and sepsis and sepsis-related outcomes. Our findings may help the development of novel microbiota-based therapeutics to decrease the morbidity and mortality of sepsis.
Collapse
Affiliation(s)
| | | | | | | | - Xiuying Wu
- Department of Anesthesia, ShengJing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Zhong S, Pan L, Wang Z, Zeng Z. Revealing Changes in Ovarian and Hemolymphatic Metabolites Using Widely Targeted Metabolomics between Newly Emerged and Laying Queens of Honeybee ( Apis mellifera). INSECTS 2024; 15:263. [PMID: 38667393 PMCID: PMC11050517 DOI: 10.3390/insects15040263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
The queen bee is a central and pivotal figure within the colony, serving as the sole fertile female responsible for its reproduction. The queen possesses an open circulatory system, with her ovaries immersed in hemolymph. A continuous and intricate transportation and interchange of substances exist between the ovaries and hemolymph of queen bees. To determine the characteristic metabolites in the hemolymph and ovary, as well as understand how their rapid metabolism contributes to the process of egg-laying by queens, we reared Apis mellifera queens from three different age groups: newly emerged queen (NEQ), newly laying queen (NLQ), and old laying queen (OLQ). Using widely targeted metabolomics, our study revealed that the laying queen (NLQ and OLQ) exhibited faster fatty acid metabolism, up-regulated expression of antioxidants, and significant depletion of amino acids compared to the NEQ. This study revealed that the levels of carnitine and antioxidants (GSH, 2-O-α-D-glucopyranosyl-L-ascorbic acid, L-ascorbic acid 2-phosphate, etc.) in the NLQ and OLQ were significantly higher compared to NEQ. However, most of the differentially expressed amino acids, such as L-tryptophan, L-tyrosine, L-aspartic acid, etc., detected in NLQ and OLQ were down-regulated compared to the NEQ. Following egg-laying, pathways in the queens change significantly, e.g., Tryptophan metabolism, Tyrosine metabolism, cAMP signaling pathway, etc. Our results suggest that carnitine and antioxidants work together to maintain the redox balance of the queen. Additionally, various amino acids are responsible for maintaining the queen's egg production.
Collapse
Affiliation(s)
- Shiqing Zhong
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (S.Z.); (L.P.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Luxia Pan
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (S.Z.); (L.P.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zilong Wang
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (S.Z.); (L.P.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| | - Zhijiang Zeng
- Honeybee Research Institute, Jiangxi Agricultural University, Nanchang 330045, China; (S.Z.); (L.P.); (Z.W.)
- Jiangxi Province Key Laboratory of Honeybee Biology and Beekeeping, Nanchang 330045, China
| |
Collapse
|
8
|
Motta EVS, Moran NA. The honeybee microbiota and its impact on health and disease. Nat Rev Microbiol 2024; 22:122-137. [PMID: 38049554 PMCID: PMC10998682 DOI: 10.1038/s41579-023-00990-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 12/06/2023]
Abstract
Honeybees (Apis mellifera) are key pollinators that support global agriculture and are long-established models for developmental and behavioural research. Recently, they have emerged as models for studying gut microbial communities. Earlier research established that hindguts of adult worker bees harbour a conserved set of host-restricted bacterial species, each showing extensive strain variation. These bacteria can be cultured axenically and introduced to gnotobiotic hosts, and some have basic genetic tools available. In this Review, we explore the most recent research showing how the microbiota establishes itself in the gut and impacts bee biology and health. Microbiota members occupy specific niches within the gut where they interact with each other and the host. They engage in cross-feeding and antagonistic interactions, which likely contribute to the stability of the community and prevent pathogen invasion. An intact gut microbiota provides protection against diverse pathogens and parasites and contributes to the processing of refractory components of the pollen coat and dietary toxins. Absence or disruption of the microbiota results in altered expression of genes that underlie immunity, metabolism, behaviour and development. In the field, such disruption by agrochemicals may negatively impact bees. These findings demonstrate a key developmental and protective role of the microbiota, with broad implications for bee health.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas, Austin, TX, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas, Austin, TX, USA.
| |
Collapse
|
9
|
Zhang W, Sun C, Lang H, Wang J, Li X, Guo J, Zhang Z, Zheng H. Toll receptor ligand Spätzle 4 responses to the highly pathogenic Enterococcus faecalis from Varroa mites in honeybees. PLoS Pathog 2023; 19:e1011897. [PMID: 38150483 PMCID: PMC10775982 DOI: 10.1371/journal.ppat.1011897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 01/09/2024] [Accepted: 12/12/2023] [Indexed: 12/29/2023] Open
Abstract
Honeybees play a major role in crop pollination, which supports the agricultural economy and international food supply. The colony health of honeybees is threatened by the parasitic mite Varroa destructor, which inflicts physical injury on the hosts and serves as the vector for variable viruses. Recently, it shows that V. destructor may also transmit bacteria through the feeding wound, yet it remains unclear whether the invading bacteria can exhibit pathogenicity to the honeybees. Here, we incidentally isolate Enterococcus faecalis, one of the most abundant bacteria in Varroa mites, from dead bees during our routine generation of microbiota-free bees in the lab. In vivo tests show that E. faecalis is only pathogenic in Apis mellifera but not in Apis cerana. The expression of antimicrobial peptide genes is elevated following infection in A. cerana. The gene-based molecular evolution analysis identifies positive selection of genes encoding Späetzle 4 (Spz4) in A. cerana, a signaling protein in the Toll pathway. The amino acid sites under positive selection are related to structural changes in Spz4 protein, suggesting improvement of immunity in A. cerana. The knock-down of Spz4 in A. cerana significantly reduces the survival rates under E. faecalis challenge and the expression of antimicrobial peptide genes. Our results indicate that bacteria associated with Varroa mites are pathogenic to adult bees, and the positively selected gene Spz4 in A. cerana is crucial in response to this mite-related pathogen.
Collapse
Affiliation(s)
- Wenhao Zhang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Cheng Sun
- College of Life Sciences, Capital Normal University, Beijing, China
| | - Haoyu Lang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jieni Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xinyu Li
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Zijing Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Hao Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, China
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Bello Gonzalez TDJ, van Gelderen B, Harders F, Vloet R, Voorbergen-Laarman M, de Ruiter B, Haenen OLM. Molecular Characterization of Serratia marcescens Strain Isolated from Yellow Mealworms, Tenebrio molitor, in The Netherlands. INSECTS 2023; 14:770. [PMID: 37754738 PMCID: PMC10531621 DOI: 10.3390/insects14090770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
Insect culture has developed rapidly worldwide; it faces important security and safety control issues, including animal infections and disease development. In the Netherlands, in 2021, a ~30% mortality of mealworms, Tenebrio molitor, occurred at one farm, where over-humid sites in the substrate were observed. Bacterial cultures from both the external and internal partsof fry and larger mealworms were identified by MALDI-TOF to predominantly Serratia marcescens, Staphylococcus xylosus and Staphylococus saprofyticus. Due to the important role of S. marcescens as a potential zoonotic bacterium, we performed a molecular characterization of the isolated strain. Genomic analysis showed a multidrug-resistant S. marcescens isolate carrying a tet (41), aac (6')-Ic, and blaSST-1 chromosomal class C beta-lactamase-resistantgenes, all located on the chromosome. Additionally, several virulence genes were identified. The phylogenetic tree revealed that the S. marcescens strain from this study was similar to other S. marcescens strains from different ecological niches. Although the entomopathogenic activity was not confirmed, this case demonstrates that T. molitor can act as a reservoir and as an alternative path for exposing clinically important antibiotic-resistant bacteria that can affect animals and humans. It underlines the need to keep management factors optimal, before insects and their products enter the feed and food chain.
Collapse
Affiliation(s)
- Teresita d. J. Bello Gonzalez
- Department of Bacteriology, Host Pathogen Interaction and Diagnostic Development, Antimicrobial Resistance Group, Wageningen Bioveterinary Research, Wageningen University Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands
| | - Betty van Gelderen
- National Reference Laboratory for Fish Diseases, Wageningen Bioveterinary Research, Wageningen University Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.v.G.); (R.V.); (M.V.-L.)
| | - Frank Harders
- Department of Epidemiology, Bioinformatics and Animal Models, Wageningen Bioveterinary Research, Wageningen University Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands;
| | - Rianka Vloet
- National Reference Laboratory for Fish Diseases, Wageningen Bioveterinary Research, Wageningen University Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.v.G.); (R.V.); (M.V.-L.)
| | - Michal Voorbergen-Laarman
- National Reference Laboratory for Fish Diseases, Wageningen Bioveterinary Research, Wageningen University Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.v.G.); (R.V.); (M.V.-L.)
| | - Bart de Ruiter
- Independent Researcher, Ringlaan 1, P.O. Box 65, 6961 KJ Eerbeek, The Netherlands;
| | - Olga L. M. Haenen
- National Reference Laboratory for Fish Diseases, Wageningen Bioveterinary Research, Wageningen University Research, P.O. Box 65, 8200 AB Lelystad, The Netherlands; (B.v.G.); (R.V.); (M.V.-L.)
| |
Collapse
|
11
|
Dourado LA, Oliveira LL, Raimundo APP, Cossolin JFS, Oliveira JFD, Serrão JE. Hemocyte morphology of worker subcastes of the leaf-cutting ant Atta sexdens rubropilosa (Hymenoptera: Formicidae). ARTHROPOD STRUCTURE & DEVELOPMENT 2023; 76:101301. [PMID: 37660416 DOI: 10.1016/j.asd.2023.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/10/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Hemocytes are cells present in the hemolymph of insects that play a role in combating invasive pathogens, ensuring defense by the immune system in these organisms. While the types of hemocytes are well known in some insect representatives, data on these cells in Hymenoptera are limited to certain bees and wasps, with little information available for ants. Among ants, the genus Atta has environmental and economic importance, forming highly organized colonies consisting of the queen and workers, with the latter subdivided into subcastes: gardeners, waste removers, foragers, and soldiers, which are exposed to different pathogens. This study describes the morphology of hemocytes in the worker subcastes of Atta sexdens rubropilosa. Hemolymph samples from the ant were submitted to light, confocal, and scanning electron microscopy analyses. Five types of hemocytes were identified in the hemolymph of all ant subcastes, including prohemocytes, oenocytoids, spherulocytes, plasmatocytes, and granulocytes. They exhibited nuclei with a predominance of decondensed chromatin. The granulocytes were the most abundant cell type in the subcastes, followed by prohemocytes, plasmatocytes, oenocytoids, and spherulocytes. Phagocytosis assays reveal that plasmatocytes and granulocytes are the main phagocytic cells in all castes evaluated. This study fills an important gap in understanding the immune response in this ant species.
Collapse
Affiliation(s)
- Lidia Aparecida Dourado
- Department of General Biology, Instituto de Bitecnologia Aplicada à Agropecuária, Federal University of Viçosa, Viçosa, Brazil
| | - Leandro Licursi Oliveira
- Department of General Biology, Instituto de Bitecnologia Aplicada à Agropecuária, Federal University of Viçosa, Viçosa, Brazil
| | - Ana Paula Pereira Raimundo
- Department of General Biology, Instituto de Bitecnologia Aplicada à Agropecuária, Federal University of Viçosa, Viçosa, Brazil
| | - Jamile Fernanda Silva Cossolin
- Department of General Biology, Instituto de Bitecnologia Aplicada à Agropecuária, Federal University of Viçosa, Viçosa, Brazil
| | | | - José Eduardo Serrão
- Department of General Biology, Instituto de Bitecnologia Aplicada à Agropecuária, Federal University of Viçosa, Viçosa, Brazil.
| |
Collapse
|
12
|
Fernandes KE, Stanfield B, Frost EA, Shanahan ER, Susantio D, Dong AZ, Tran TD, Cokcetin NN, Carter DA. Low Levels of Hive Stress Are Associated with Decreased Honey Activity and Changes to the Gut Microbiome of Resident Honey Bees. Microbiol Spectr 2023; 11:e0074223. [PMID: 37289060 PMCID: PMC10434159 DOI: 10.1128/spectrum.00742-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/18/2023] [Indexed: 06/09/2023] Open
Abstract
Honey bees (Apis mellifera) face increasing threats to their health, particularly from the degradation of floral resources and chronic pesticide exposure. The properties of honey and the bee gut microbiome are known to both affect and be affected by bee health. Using samples from healthy hives and hives showing signs of stress from a single apiary with access to the same floral resources, we profiled the antimicrobial activity and chemical properties of honey and determined the bacterial and fungal microbiome of the bee gut and the hive environment. We found honey from healthy hives was significantly more active than honey from stressed hives, with increased phenolics and antioxidant content linked to higher antimicrobial activity. The bacterial microbiome was more diverse in stressed hives, suggesting they may have less capacity to exclude potential pathogens. Finally, bees from healthy and stressed hives had significant differences in core and opportunistically pathogenic taxa in gut samples. Our results emphasize the need for understanding and proactively managing bee health. IMPORTANCE Honey bees serve as pollinators for many plants and crops worldwide and produce valuable hive products such as honey and wax. Various sources of stress can disrupt honey bee colonies, affecting their health and productivity. Growing evidence suggests that honey is vitally important to hive functioning and overall health. In this study, we determined the antimicrobial activity and chemical properties of honey from healthy hives and hives showing signs of stress, finding that honey from healthy hives was significantly more antimicrobial, with increased phenolics and antioxidant content. We next profiled the bacterial and fungal microbiome of the bee gut and the hive environment, finding significant differences between healthy and stressed hives. Our results underscore the need for greater understanding in this area, as we found even apparently minor stress can have implications for overall hive fitness as well as the economic potential of hive products.
Collapse
Affiliation(s)
- Kenya E Fernandes
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Bridie Stanfield
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth A Frost
- ABGU, A Joint Venture of NSW Department of Primary Industries and University of New England, Armidale, New South Wales, Australia
- NSW Department of Primary Industries, Paterson, New South Wales, Australia
| | - Erin R Shanahan
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Sydney, New South Wales, Australia
| | - Daniel Susantio
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew Z Dong
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Trong D Tran
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Nural N Cokcetin
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Australian Institute for Microbiology and Infection, University of Technology, Sydney, New South Wales, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Motta EVS, Arnott RLW, Moran NA. Caffeine Consumption Helps Honey Bees Fight a Bacterial Pathogen. Microbiol Spectr 2023; 11:e0052023. [PMID: 37212661 PMCID: PMC10269917 DOI: 10.1128/spectrum.00520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/07/2023] [Indexed: 05/23/2023] Open
Abstract
Caffeine has long been used as a stimulant by humans. Although this secondary metabolite is produced by some plants as a mechanism of defense against herbivores, beneficial or detrimental effects of such consumption are usually associated with dose. The Western honey bee, Apis mellifera, can also be exposed to caffeine when foraging at Coffea and Citrus plants, and low doses as are found in the nectar of these plants seem to boost memory learning and ameliorate parasite infection in bees. In this study, we investigated the effects of caffeine consumption on the gut microbiota of honey bees and on susceptibility to bacterial infection. We performed in vivo experiments in which honey bees, deprived of or colonized with their native microbiota, were exposed to nectar-relevant concentrations of caffeine for a week, then challenged with the bacterial pathogen Serratia marcescens. We found that caffeine consumption did not impact the gut microbiota or survival rates of honey bees. Moreover, microbiota-colonized bees exposed to caffeine were more resistant to infection and exhibited increased survival rates compared to microbiota-colonized or microbiota-deprived bees only exposed to the pathogen. Our findings point to an additional benefit of caffeine consumption in honey bee health by protecting against bacterial infections. IMPORTANCE The consumption of caffeine is a remarkable feature of the human diet. Common drinks, such as coffee and tea, contain caffeine as a stimulant. Interestingly, honey bees also seem to like caffeine. They are usually attracted to the low concentrations of caffeine found in nectar and pollen of Coffea plants, and consumption improves learning and memory retention, as well as protects against viruses and fungal parasites. In this study, we expanded these findings by demonstrating that caffeine can improve survival rates of honey bees infected with Serratia marcescens, a bacterial pathogen known to cause sepsis in animals. However, this beneficial effect was only observed when bees were colonized with their native gut microbiota, and caffeine seemed not to directly affect the gut microbiota or survival rates of bees. Our findings suggest a potential synergism between caffeine and gut microbial communities in protection against bacterial pathogens.
Collapse
Affiliation(s)
- Erick V. S. Motta
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Ryan L. W. Arnott
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Nancy A. Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
14
|
Bournonville L, Askri D, Arafah K, Voisin SN, Bocquet M, Bulet P. Unraveling the Bombus terrestris Hemolymph, an Indicator of the Immune Response to Microbial Infections, through Complementary Mass Spectrometry Approaches. Int J Mol Sci 2023; 24:ijms24054658. [PMID: 36902086 PMCID: PMC10003634 DOI: 10.3390/ijms24054658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
Pollinators, including Bombus terrestris, are crucial for maintaining biodiversity in ecosystems and for agriculture. Deciphering their immune response under stress conditions is a key issue for protecting these populations. To assess this metric, we analyzed the B. terrestris hemolymph as an indicator of their immune status. Hemolymph analysis was carried out using mass spectrometry, MALDI molecular mass fingerprinting was used for its effectiveness in assessing the immune status, and high-resolution mass spectrometry was used to measure the impact of experimental bacterial infections on the "hemoproteome". By infecting with three different types of bacteria, we observed that B. terrestris reacts in a specific way to bacterial attacks. Indeed, bacteria impact survival and stimulate an immune response in infected individuals, visible through changes in the molecular composition of their hemolymph. The characterization and label-free quantification of proteins involved in specific signaling pathways in bumble bees by bottom-up proteomics revealed differences in protein expression between the non-experimentally infected and the infected bees. Our results highlight the alteration of pathways involved in immune and defense reactions, stress, and energetic metabolism. Lastly, we developed molecular signatures reflecting the health status of B. terrestris to pave the way for diagnosis/prognosis tools in response to environmental stress.
Collapse
Affiliation(s)
- Lorène Bournonville
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Department of Molecular and Cellular Biology, University of Geneva, Sciences III, 30 Quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Dalel Askri
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
| | - Karim Arafah
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
| | - Sébastien N. Voisin
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Phylogene S.A. 62 RN113, 30620 Bernis, France
| | - Michel Bocquet
- Michel Bocquet, Apimedia, 82 Route de Proméry, Pringy, 74370 Annecy, France
| | - Philippe Bulet
- Platform BioPark Archamps, 218 Avenue Marie Curie ArchParc, 74160 Archamps, France
- Institute for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, University Grenoble Alpes, 38000 Grenoble, France
- Correspondence: ; Tel.: +33-4-50-43-25-21
| |
Collapse
|
15
|
Anderson KE, Copeland DC, Erickson RJ, Floyd AS, Maes PC, Mott BM. A high-throughput sequencing survey characterizing European foulbrood disease and Varroosis in honey bees. Sci Rep 2023; 13:1162. [PMID: 36670153 PMCID: PMC9859799 DOI: 10.1038/s41598-023-28085-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
As essential pollinators of ecosystems and agriculture, honey bees (Apis mellifera) are host to a variety of pathogens that result in colony loss. Two highly prevalent larval diseases are European foulbrood (EFB) attributed to the bacterium Melissococcus plutonius, and Varroosis wherein larvae can be afflicted by one or more paralytic viruses. Here we used high-throughput sequencing and qPCR to detail microbial succession of larval development from six diseased, and one disease-free apiary. The disease-free larval microbiome revealed a variety of disease-associated bacteria in early larval instars, but later developmental stages were dominated by beneficial symbionts. Microbial succession associated with EFB pathology differed by apiary, characterized by associations with various gram-positive bacteria. At one apiary, diseased larvae were uniquely described as "melting and deflated", symptoms associated with Varroosis. We found that Acute Bee Paralysis Virus (ABPV) levels were significantly associated with these symptoms, and various gram-negative bacteria became opportunistic in the guts of ABPV afflicted larvae. Perhaps contributing to disease progression, the ABPV associated microbiome was significantly depleted of gram-positive bacteria, a likely result of recent antibiotic application. Our results contribute to the understanding of brood disease diagnosis and treatment, a growing problem for beekeeping and agriculture worldwide.
Collapse
Affiliation(s)
- Kirk E Anderson
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA.
| | - Duan C Copeland
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
- Department of Microbiology, School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Robert J Erickson
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
| | - Amy S Floyd
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Patrick C Maes
- Department of Entomology and Center for Insect Science, University of Arizona, Tucson, AZ, 85721, USA
| | - Brendon M Mott
- Carl Hayden Bee Research Center, USDA Agricultural Research Service, 2000 E. Allen Rd., Tucson, AZ, 85719, USA
| |
Collapse
|
16
|
Qi S, Al Naggar Y, Li J, Liu Z, Xue X, Wu L, El-Seedi HR, Wang K. Acaricide flumethrin-induced sublethal risks in honeybees are associated with gut symbiotic bacterium Gilliamella apicola through microbe-host metabolic interactions. CHEMOSPHERE 2022; 307:136030. [PMID: 35973490 DOI: 10.1016/j.chemosphere.2022.136030] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Flumethrin is one of the few acaricides that permit the control of Varroa disease or varroosis in bee colonies. However, flumethrin accumulates in hive products. We previously discovered that sublethal doses of flumethrin induce significant physiological stress in honeybees (Apis mellifera L.), however its potential impacts on the honeybee gut microenvironment remains unknown. To fill this gap, honeybees were exposed to a field-relevant concentration of flumethrin (10 μg/L) for 14 d and its potential impacts on gut system were evaluated. The results indicated that flumethrin triggered immune responses in the gut but had limited effects on survival and gut microbial composition. However, survival stress drastically increased in bees exposed to antibiotics, suggesting that the gut microbiota is closely related to flumethrin-induced dysbiosis in the bee gut. Based on a non-targeted metabolomics approach, flumethrin at 10 μg/L considerably altered the composition of intestinal metabolites, and we discovered that this metabolic stress was closely linked with a reduction of gut core bacterial endosymbiont Gilliamella spp. through a combination of microbiological and metabolomics investigations. Finally, an in vitro study showed that while flumethrin does not directly inhibit the growth of Gilliamella apicola isolates, it does have a significant impact on the glycerophospholipid metabolism in bacteria cells, which was also observed in host bees. These findings indicated that even though flumethrin administered at environmental relevant concentrations does not significantly induce death in honeybees, it still alters the metabolism balance between honeybees and the gut symbiotic bacterium, G. apicola. The considerable negative impact of flumethrin on the honeybee gut microenvironment emphasizes the importance of properly monitoring acaricide to avoid potential environmental concerns, and further studies are needed to illustrate the mode of action of bee health-gut microbiota-exogenous pesticides.
Collapse
Affiliation(s)
- Suzhen Qi
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Yahya Al Naggar
- Zoology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt; General Zoology, Institute for Biology, Martin Luther University Halle-Wittenberg, Hoher Weg 8, 06120, Halle, Germany
| | - Jiahuan Li
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Zhaoyong Liu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| | - Hesham R El-Seedi
- Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 591, SE-751 24, Uppsala, Sweden; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China.
| | - Kai Wang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, 100093, China.
| |
Collapse
|
17
|
Histometric and morphological damage caused by Serratia marcescens to the tick Rhipicephalus microplus (Acari: Ixodidae). Arch Microbiol 2022; 204:677. [DOI: 10.1007/s00203-022-03275-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
|
18
|
Social microbiota and social gland gene expression of worker honey bees by age and climate. Sci Rep 2022; 12:10690. [PMID: 35739206 PMCID: PMC9226125 DOI: 10.1038/s41598-022-14442-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/07/2022] [Indexed: 11/08/2022] Open
Abstract
Winter forage dearth is a major contributor to honey bee colony loss and can influence disease susceptibility. Honey bees possess a secretory head gland that interfaces with the social environment on many levels. During winter or forage dearth, colonies produce a long-lived (diutinus) worker phenotype that survives until environmental conditions improve. We used a known-age worker cohort to investigate microbiome integrity and social gene expression of workers in early and late winter. We provide additional context by contrasting host-microbial interactions from warm outdoor and cold indoor environments. Our results provide novel evidence that social immune gene expression is associated with worker longevity, and highlight the midgut as a target of opportunistic disease during winter. Host microbial interactions suggest opportunistic disease progression and resistance in long-lived workers, but susceptibility to opportunistic disease in younger workers that emerged during the winter, including increases in Enterobacteriaceae, fungal load and non-core bacterial abundance. The results are consistent with increased social immunity, including host associations with the social microbiota, and a social immune response by long-lived workers to combat microbial opportunism. The cost/benefit ratio associated with limited expression of the diutinus phenotype may be a strong determinant of colony survival during winter forage dearth.
Collapse
|
19
|
Motta EVS, Powell JE, Leonard SP, Moran NA. Prospects for probiotics in social bees. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210156. [PMID: 35491599 PMCID: PMC9058534 DOI: 10.1098/rstb.2021.0156] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Social corbiculate bees are major pollinators. They have characteristic bacterial microbiomes associated with their hives and their guts. In honeybees and bumblebees, worker guts contain a microbiome composed of distinctive bacterial taxa shown to benefit hosts. These benefits include stimulating immune and metabolic pathways, digesting or detoxifying food, and defending against pathogens and parasites. Stressors including toxins and poor nutrition disrupt the microbiome and increase susceptibility to opportunistic pathogens. Administering probiotic bacterial strains may improve the health of individual bees and of hives, and several commercial probiotics are available for bees. However, evidence for probiotic benefits is lacking or mixed. Most bacterial species used in commercial probiotics are not native to bee guts. We present new experimental results showing that cultured strains of native bee gut bacteria colonize robustly while bacteria in a commercial probiotic do not establish in bee guts. A defined community of native bee gut bacteria resembles unperturbed native gut communities in its activation of genes for immunity and metabolism in worker bees. Although many questions remain unanswered, the development of natural probiotics for honeybees, or for commercially managed bumblebees, is a promising direction for protecting the health of managed bee colonies. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - J Elijah Powell
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Sean P Leonard
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
20
|
Molecular Detection and Differentiation of Arthropod, Fungal, Protozoan, Bacterial and Viral Pathogens of Honeybees. Vet Sci 2022; 9:vetsci9050221. [PMID: 35622749 PMCID: PMC9145064 DOI: 10.3390/vetsci9050221] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
The honeybee Apis mellifera is highly appreciated worldwide because of its products, but also as it is a pollinator of crops and wild plants. The beehive is vulnerable to infections due to arthropods, fungi, protozoa, bacteria and/or viruses that manage to by-pass the individual and social immune mechanisms of bees. Due to the close proximity of bees in the beehive and their foraging habits, infections easily spread within and between beehives. Moreover, international trade of bees has caused the global spread of infections, several of which result in significant losses for apiculture. Only in a few cases can infections be diagnosed with the naked eye, by direct observation of the pathogen in the case of some arthropods, or by pathogen-associated distinctive traits. Development of molecular methods based on the amplification and analysis of one or more genes or genomic segments has brought significant progress to the study of bee pathogens, allowing for: (i) the precise and sensitive identification of the infectious agent; (ii) the analysis of co-infections; (iii) the description of novel species; (iv) associations between geno- and pheno-types and (v) population structure studies. Sequencing of bee pathogen genomes has allowed for the identification of new molecular targets and the development of specific genotypification strategies.
Collapse
|
21
|
Genomic characterisation of an entomopathogenic strain of Serratia ureilytica in the critically endangered phasmid Dryococelus australis. PLoS One 2022; 17:e0265967. [PMID: 35442959 PMCID: PMC9020675 DOI: 10.1371/journal.pone.0265967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 03/10/2022] [Indexed: 11/19/2022] Open
Abstract
Between 2014 and 2019, unexpected mortalities were observed in a colony of Dryococelus australis, an endangered stick-insect kept at the Melbourne Zoo for a breeding and conservation program. Pure cultures of Serratia spp. were obtained from the haemolymph of moribund and recently deceased individuals. The combined bacteriological and histopathological observations suggested an infectious cause of these mortalities. Genotyping of Serratia sp. isolated from the insects and their environment revealed a predominant strain profile. A representative isolate, AM923, was entirely sequenced and compared to 616 publicly available Serratia spp. genomes, including 37 associated with insects. The genomes were distributed into 3 distinct groups, with 63% of the insect-associated isolates within a single clade (clade A) containing AM923, separated from most environmental/plant-associated strains (clade B) and human isolates (clade C). Average nucleotide identity and phylogenetic analyses identified AM923 as S. ureilytica and revealed similarities with putatively entomopathogenic strains. An experimental infection model in honey bees (Apis mellifera) confirmed the pathogenic potential of AM923. A urease operon was found in most insect isolates and a PCR assay, based on the ureB gene sequence, was used to confirm the presence of AM923 in experimentally infected bees. This species-specific PCR could be applied to detect entomopathogenic Serratia spp. in infected insects or their environment.
Collapse
|
22
|
Viana TA, Barbosa WF, Jojoa LLB, Bernardes RC, da Silva JS, Jacobs-Lorena M, Martins GF. A Genetically Modified Anti-Plasmodium Bacterium Is Harmless to the Foragers of the Stingless Bee Partamona helleri. MICROBIAL ECOLOGY 2022; 83:766-775. [PMID: 34231036 PMCID: PMC9840896 DOI: 10.1007/s00248-021-01805-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Paratransgenesis consists of genetically engineering an insect symbiont to control vector-borne diseases. Biosafety assessments are a prerequisite for the use of genetically modified organisms (GMOs). Assessments rely on the measurement of the possible impacts of GMOs on different organisms, including beneficial organisms, such as pollinators. The bacterium Serratia AS1 has been genetically modified to express anti-Plasmodium effector proteins and does not impose a fitness cost on mosquitoes that carry it. In the present study, we assessed the impact of this bacterium on the native bee Partamona helleri (Meliponini), an ecologically important species in Brazil. Serratia eGFP AS1 (recombinant strain) or a wild strain of Serratia marcescens were suspended in a sucrose solution and fed to foragers, followed by measurements of survival, feeding rate, and behavior (walking and flying). These bacteria did not change any of the variables measured at 24, 72, and 144 h after the onset of the experiment. Recombinant and wild bacteria were detected in the homogenates of digestive tract during the 144 h period analyzed, but their numbers decreased with time. The recombinant strain was detected in the midgut at 24 h and in the hindgut at 72 h and 144 h after the onset of the experiment under the fluorescent microscope. As reported for mosquitoes, Serratia eGFP AS1 did not compromise the foragers of P. helleri, an ecologically relevant bee.
Collapse
Affiliation(s)
- Thaís Andrade Viana
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Wagner Faria Barbosa
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
- Departamento de Estatística, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | | | - Juliana Soares da Silva
- Departamento de Microbiologia, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Marcelo Jacobs-Lorena
- Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | | |
Collapse
|
23
|
Functional Properties and Antimicrobial Activity from Lactic Acid Bacteria as Resources to Improve the Health and Welfare of Honey Bees. INSECTS 2022; 13:insects13030308. [PMID: 35323606 PMCID: PMC8953987 DOI: 10.3390/insects13030308] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary Honey bees play a pivotal role in the sustainability of ecosystems and biodiversity. Many factors including parasites, pathogens, pesticide residues, forage losses, and poor nutrition have been proposed to explain honey bee colony losses. Lactic acid bacteria (LAB) are normal inhabitants of the gastrointestinal tract of honey bees and their role has been consistently reported in the literature. In recent years, there have been numerous scientific evidence that the intestinal microbiota plays an essential role in honey bee health. Management strategies, based on supplementation of the gut microbiota with probiotics, may be important to increase stress tolerance and disease resistance. In this review, recent scientific advances on the use of LABs as microbial supplements in the diet of honey bees are summarized and discussed. Abstract Honey bees (Apis mellifera) are agriculturally important pollinators. Over the past decades, significant losses of wild and domestic bees have been reported in many parts of the world. Several biotic and abiotic factors, such as change in land use over time, intensive land management, use of pesticides, climate change, beekeeper’s management practices, lack of forage (nectar and pollen), and infection by parasites and pathogens, negatively affect the honey bee’s well-being and survival. The gut microbiota is important for honey bee growth and development, immune function, protection against pathogen invasion; moreover, a well-balanced microbiota is fundamental to support honey bee health and vigor. In fact, the structure of the bee’s intestinal bacterial community can become an indicator of the honey bee’s health status. Lactic acid bacteria are normal inhabitants of the gastrointestinal tract of many insects, and their presence in the honey bee intestinal tract has been consistently reported in the literature. In the first section of this review, recent scientific advances in the use of LABs as probiotic supplements in the diet of honey bees are summarized and discussed. The second section discusses some of the mechanisms by which LABs carry out their antimicrobial activity against pathogens. Afterward, individual paragraphs are dedicated to Chalkbrood, American foulbrood, European foulbrood, Nosemosis, and Varroosis as well as to the potentiality of LABs for their biological control.
Collapse
|
24
|
Motta EVS, Powell JE, Moran NA. Glyphosate induces immune dysregulation in honey bees. Anim Microbiome 2022; 4:16. [PMID: 35193702 PMCID: PMC8862317 DOI: 10.1186/s42523-022-00165-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 02/04/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Similar to many other animals, the honey bee Apis mellifera relies on a beneficial gut microbiota for regulation of immune homeostasis. Honey bees exposed to agrochemicals, such as the herbicide glyphosate or antibiotics, usually exhibit dysbiosis and increased susceptibility to bacterial infection. Considering the relevance of the microbiota-immunity axis for host health, we hypothesized that glyphosate exposure could potentially affect other components of the honey bee physiology, such as the immune system. RESULTS In this study, we investigated whether glyphosate, besides affecting the gut microbiota, could compromise two components of honey bee innate immunity: the expression of genes encoding antimicrobial peptides (humoral immunity) and the melanization pathway (cellular immunity). We also compared the effects of glyphosate on the bee immune system with those of tylosin, an antibiotic commonly used in beekeeping. We found that both glyphosate and tylosin decreased the expression of some antimicrobial peptides, such as apidaecin, defensin and hymenoptaecin, in exposed honey bees, but only glyphosate was able to inhibit melanization in the bee hemolymph. CONCLUSIONS Exposure of honey bees to glyphosate or tylosin can reduce the abundance of beneficial gut bacteria and lead to immune dysregulation.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas at Austin, 2506 Speedway, Austin, TX, 78712, USA.
| | - J Elijah Powell
- Department of Integrative Biology, University of Texas at Austin, 2506 Speedway, Austin, TX, 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, 2506 Speedway, Austin, TX, 78712, USA.
| |
Collapse
|
25
|
Hou J, Mao D, Zhang Y, Huang R, Li L, Wang X, Luo Y. Long-term spatiotemporal variation of antimicrobial resistance genes within the Serratia marcescens population and transmission of S. marcescens revealed by public whole-genome datasets. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127220. [PMID: 34844350 DOI: 10.1016/j.jhazmat.2021.127220] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/05/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
The development of antimicrobial resistance (AMR) is accelerated by the selective pressure exerted by the widespread use of antimicrobial drugs, posing an increasing danger to public health. However, long-term spatiotemporal variation in AMR genes in microorganisms, particularly in bacterial pathogens in response to antibiotic consumption, is not fully understood. Here, we used the NCBI RefSeq database to collect 478 whole-genome sequences for Serratia marcescens ranging from 1961 up to 2019, to document global long-term AMR trends in S. marcescens populations. In total, 100 AMR gene subtypes (16 AMR gene types) were detected in the genomes of S. marcescens populations. We identified 3 core resistance genes in S. marcescens genomes, and a high diversity of AMR genes was observed in S. marcescens genomes after corresponding antibiotics were discovered and introduced into clinical practice, suggesting the adaptation of S. marcescens populations to challenges with therapeutic antibiotics. Our findings indicate spatiotemporal variation of AMR genes in S. marcescens populations in relation to antibiotic consumption and suggest the potential transmission of S. marcescens isolates harboring AMR genes among countries and between the environment and the clinic, representing a public health threat that necessitates international solidarity to overcome.
Collapse
Affiliation(s)
- Jie Hou
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Daqing Mao
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Yulin Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Ruiyang Huang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Linyun Li
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Xiaolong Wang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China
| | - Yi Luo
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300071, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
26
|
Xiang T, Zhou W, Xu C, Xu J, Liu R, Wang N, Xu L, Zhao Y, Luo M, Mo X, Mao Z, Wan Y. Transcriptomic Analysis Reveals Competitive Growth Advantage of Non-pigmented Serratia marcescens Mutants. Front Microbiol 2022; 12:793202. [PMID: 35058908 PMCID: PMC8764370 DOI: 10.3389/fmicb.2021.793202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/26/2021] [Indexed: 11/26/2022] Open
Abstract
Serratia marcescens is a common bacterium well-known for the red secondary metabolite prodigiosin. However, color mutants have long been described. Non-pigmented strains can be found to exist both naturally and under laboratory conditions. It is unclear why S. marcescens loses prodigiosin synthesis capacity in certain conditions. In the present study, we find that the spontaneous color mutants arise within a few generations (about five passages) and rapidly replace the wild-type parent cells (about 24 passages), which indicates a growth advantage of the former. Although, the loss of prodigiosin synthesis genes (pigA-N) is frequently reported as the major reason for pigment deficiency, it was unexpected that the whole gene cluster is completely preserved in the different color morphotypes. Comparative transcriptomic analysis indicates a dramatic variation at the transcriptional level. Most of the pig genes are significantly downregulated in the color morphotypes which directly lead to prodigiosin dyssynthesis. Besides, the transcriptional changes of several other genes have been noticed, of which transcriptional regulators, membrane proteins, and nearly all type VI secretion system (T6SS) components are generally downregulated, while both amino acid metabolite and transport systems are activated. In addition, we delete the transcription regulator slyA to generate a non-pigmented mutant. The ΔslyA strain loses prodigiosin synthesis capacity, but has a higher cell density, and surprisingly enhances the virulence as an entomopathogen. These data indicate that S. marcescens shuts down several high-cost systems and activates the amino acid degradation and transport pathways at the transcriptional level to obtain extra resources, which provides new insights into the competitive growth advantage of bacterial spontaneous color mutants.
Collapse
Affiliation(s)
- Tingting Xiang
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Wei Zhou
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Cailing Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Jing Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Rui Liu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Nuo Wang
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Liang Xu
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yu Zhao
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Minhui Luo
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoxin Mo
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Zeyang Mao
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yongji Wan
- Laboratory of Invertebrate Pathology and Applied Microbiology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| |
Collapse
|
27
|
Honey bee pathogenesis posing threat to its global population: a short review. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY 2022. [DOI: 10.1007/s43538-022-00062-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
28
|
Thaduri S, Marupakula S, Terenius O, Onorati P, Tellgren-Roth C, Locke B, de Miranda JR. Global similarity, and some key differences, in the metagenomes of Swedish varroa-surviving and varroa-susceptible honeybees. Sci Rep 2021; 11:23214. [PMID: 34853367 PMCID: PMC8636477 DOI: 10.1038/s41598-021-02652-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/12/2021] [Indexed: 11/08/2022] Open
Abstract
There is increasing evidence that honeybees (Apis mellifera L.) can adapt naturally to survive Varroa destructor, the primary cause of colony mortality world-wide. Most of the adaptive traits of naturally varroa-surviving honeybees concern varroa reproduction. Here we investigate whether factors in the honeybee metagenome also contribute to this survival. The quantitative and qualitative composition of the bacterial and viral metagenome fluctuated greatly during the active season, but with little overall difference between varroa-surviving and varroa-susceptible colonies. The main exceptions were Bartonella apis and sacbrood virus, particularly during early spring and autumn. Bombella apis was also strongly associated with early and late season, though equally for all colonies. All three affect colony protein management and metabolism. Lake Sinai virus was more abundant in varroa-surviving colonies during the summer. Lake Sinai virus and deformed wing virus also showed a tendency towards seasonal genetic change, but without any distinction between varroa-surviving and varroa-susceptible colonies. Whether the changes in these taxa contribute to survival or reflect demographic differences between the colonies (or both) remains unclear.
Collapse
Affiliation(s)
- Srinivas Thaduri
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Srisailam Marupakula
- Department of Forestry Mycology and Plant Pathology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Olle Terenius
- Department of Cellular and Molecular Biology, BioMedical Centre, Uppsala University, Husargatan 3, 751-24, Uppsala, Sweden
| | - Piero Onorati
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | | | - Barbara Locke
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden
| | - Joachim R de Miranda
- Department of Ecology, Swedish University of Agricultural Sciences, 750-07, Uppsala, Sweden.
| |
Collapse
|
29
|
Leska A, Nowak A, Nowak I, Górczyńska A. Effects of Insecticides and Microbiological Contaminants on Apis mellifera Health. Molecules 2021; 26:5080. [PMID: 34443668 PMCID: PMC8398688 DOI: 10.3390/molecules26165080] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 12/16/2022] Open
Abstract
Over the past two decades, there has been an alarming decline in the number of honey bee colonies. This phenomenon is called Colony Collapse Disorder (CCD). Bee products play a significant role in human life and have a huge impact on agriculture, therefore bees are an economically important species. Honey has found its healing application in various sectors of human life, as well as other bee products such as royal jelly, propolis, and bee pollen. There are many putative factors of CCD, such as air pollution, GMO, viruses, or predators (such as wasps and hornets). It is, however, believed that pesticides and microorganisms play a huge role in the mass extinction of bee colonies. Insecticides are chemicals that are dangerous to both humans and the environment. They can cause enormous damage to bees' nervous system and permanently weaken their immune system, making them vulnerable to other factors. Some of the insecticides that negatively affect bees are, for example, neonicotinoids, coumaphos, and chlorpyrifos. Microorganisms can cause various diseases in bees, weakening the health of the colony and often resulting in its extinction. Infection with microorganisms may result in the need to dispose of the entire hive to prevent the spread of pathogens to other hives. Many aspects of the impact of pesticides and microorganisms on bees are still unclear. The need to deepen knowledge in this matter is crucial, bearing in mind how important these animals are for human life.
Collapse
Affiliation(s)
- Aleksandra Leska
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Adriana Nowak
- Department of Environmental Biotechnology, Lodz University of Technology, Wolczanska 171/173, 90-924 Lodz, Poland
| | - Ireneusz Nowak
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland; (I.N.); (A.G.)
| | - Anna Górczyńska
- Faculty of Law and Administration, University of Lodz, Kopcinskiego 8/12, 90-232 Lodz, Poland; (I.N.); (A.G.)
| |
Collapse
|
30
|
Masry SHD, Taha TH, Botros WA, Mahfouz H, Al-Kahtani SN, Ansari MJ, Hafez EE. Antimicrobial activity of camphor tree silver nano-particles against foulbrood diseases and finding out new strain of Serratia marcescens via DGGE-PCR, as a secondary infection on honeybee larvae. Saudi J Biol Sci 2021; 28:2067-2075. [PMID: 33911922 PMCID: PMC8071921 DOI: 10.1016/j.sjbs.2021.02.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022] Open
Abstract
American foulbrood (AFB) and European foulbrood (EFB) are the two major bacterial diseases affecting honeybees, leading to a decrease in viability of the hive, decreasing honey production, and resulting in significant economic losses to beekeepers. Due to the inefficiency and/or low efficacy of some antibiotics, researches with nanotechnology represent, possibly, new therapeutic strategies. Nanostructure drugs have presented some advantagesover the conventional medicines, such as slow, gradual and controlled release, increased bioavailability, and reduced side-effects. In this study, different infected larvae were collected from two apiaries; the combs that had symptoms of American and European foulbrood were isolated. In vitro antimicrobial activity of camphor tree silver nano-particles against foulbrood diseases were characterized using UV-Vis spectrophotometry and scanning electron microscope (SEM) that proves the formation of silver nanoparticles with size range 160-660 nm. The antimicrobial activity of the silver nanoparticles was tested using agar diffusion assay and proved their ability to effectively cease the pathogenic bacterial growth in both AFB and EFB. DGGE-PCR technique has been applied for the identification of un-common bacterial infections honeybees depending on 16S rRNA amplification from their total extracted DNA and has been identified as Serratia marcescens (TES), deposited in GenBank with a new accession number (MT240613). The results were confirmed strain has been detected by DGGE-PCR analysis causing uniquely infected brood that was attacked by the American Foulbrood It could be concluded that greenly synthesized silver nanoparticles is projected to be used as effective treatment for honeybee bacterial diseases. These material need more investigations under field conditions and study the possibility of its residues in honeybee products such as honey, and beeswax.
Collapse
Affiliation(s)
- Saad Hamdy Daif Masry
- Department of Plant Protection and Molecular Diagnosis, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
- Abu Dhabi Agriculture and Food Safety Authority, Al Ain, United Arab Emirates
| | - Tarek Hosny Taha
- Environmental Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - William A. Botros
- Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Hatem Mahfouz
- Department of Plant Production, Faculty of Environment Agricultural Science, Arish University, Egypt
| | - Saad Naser Al-Kahtani
- Arid Land Agriculture Department, College of Agricultural Sciences & Foods, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mohammad Javed Ansari
- Department of Botany, Hindu College Moradabad (Mahatma Jyotiba Phule Rohilkhand University Bareilly), India
| | - Elsayed Elsayed Hafez
- Department of Plant Protection and Molecular Diagnosis, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| |
Collapse
|
31
|
Overwintering Honey Bee Colonies: Effect of Worker Age and Climate on the Hindgut Microbiota. INSECTS 2021; 12:insects12030224. [PMID: 33807581 PMCID: PMC8000648 DOI: 10.3390/insects12030224] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 01/06/2023]
Abstract
Honey bee overwintering health is essential to meet the demands of spring pollination. Managed honey bee colonies are overwintered in a variety of climates, and increasing rates of winter colony loss have prompted investigations into overwintering management, including indoor climate controlled overwintering. Central to colony health, the worker hindgut gut microbiota has been largely ignored in this context. We sequenced the hindgut microbiota of overwintering workers from both a warm southern climate and controlled indoor cold climate. Congruently, we sampled a cohort of known chronological age to estimate worker longevity in southern climates, and assess age-associated changes in the core hindgut microbiota. We found that worker longevity over winter in southern climates was much lower than that recorded for northern climates. Workers showed decreased bacterial and fungal load with age, but the relative structure of the core hindgut microbiome remained stable. Compared to cold indoor wintering, collective microbiota changes in the southern outdoor climate suggest compromised host physiology. Fungal abundance increased by two orders of magnitude in southern climate hindguts and was positively correlated with non-core, likely opportunistic bacteria. Our results contribute to understanding overwintering honey bee biology and microbial ecology and provide insight into overwintering strategies.
Collapse
|
32
|
Webster G, Mullins AJ, Cunningham-Oakes E, Renganathan A, Aswathanarayan JB, Mahenthiralingam E, Vittal RR. Culturable diversity of bacterial endophytes associated with medicinal plants of the Western Ghats, India. FEMS Microbiol Ecol 2021; 96:5876344. [PMID: 32710748 PMCID: PMC7422900 DOI: 10.1093/femsec/fiaa147] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Bacterial endophytes are found in the internal tissues of plants and have intimate associations with their host. However, little is known about the diversity of medicinal plant endophytes (ME) or their capability to produce specialised metabolites that may contribute to therapeutic properties. We isolated 75 bacterial ME from 24 plant species of the Western Ghats, India. Molecular identification by 16S rRNA gene sequencing grouped MEs into 13 bacterial genera, with members of Gammaproteobacteria and Firmicutes being the most abundant. To improve taxonomic identification, 26 selected MEs were genome sequenced and average nucleotide identity (ANI) used to identify them to the species-level. This identified multiple species in the most common genus as Bacillus. Similarly, identity of the Enterobacterales was also distinguished within Enterobacter and Serratia by ANI and core-gene analysis. AntiSMASH identified non-ribosomal peptide synthase, lantipeptide and bacteriocin biosynthetic gene clusters (BGC) as the most common BGCs found in the ME genomes. A total of five of the ME isolates belonging to Bacillus, Serratia and Enterobacter showed antimicrobial activity against the plant pathogen Pectobacterium carotovorum. Using molecular and genomic approaches we have characterised a unique collection of endophytic bacteria from medicinal plants. Their genomes encode multiple specialised metabolite gene clusters and the collection can now be screened for novel bioactive and medicinal metabolites.
Collapse
Affiliation(s)
- Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Alex J Mullins
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Edward Cunningham-Oakes
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Arun Renganathan
- Department of Studies in Microbiology, University of Mysore, Karnataka, 570006, Mysore, India
| | | | - Eshwar Mahenthiralingam
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff, CF10 3AX, Wales, UK
| | - Ravishankar Rai Vittal
- Department of Studies in Microbiology, University of Mysore, Karnataka, 570006, Mysore, India
| |
Collapse
|
33
|
Houdelet C, Sinpoo C, Chantaphanwattana T, Voisin SN, Bocquet M, Chantawannakul P, Bulet P. Proteomics of Anatomical Sections of the Gut of Nosema-Infected Western Honeybee ( Apis mellifera) Reveals Different Early Responses to Nosema spp. Isolates. J Proteome Res 2020; 20:804-817. [PMID: 33305956 DOI: 10.1021/acs.jproteome.0c00658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Honeybees play an important role in pollinating native plants and agricultural crops and produce valuable hive products. Within the last decade, honeybee colonies have been reported to be in decline, due to both biotic and abiotic stress factors including pathogens and pesticides. This study evaluated the impact of different isolates of Nosema spp. [Nosema apis spores (NA), Nosema ceranae from Apis mellifera from France (NF), N. ceranae from Apis cerana from Thailand (NC1), and N. ceranae from A. mellifera from Thailand (NC2)] on the different gut sections of newly emerged adult A. mellifera bees. With an attempt to decipher the early impact of Nosema spp. on the first barrier against Nosema infection, we used off-gel bottom-up proteomics on the different anatomical sections of the gut four days post inoculation. A total of 2185 identified proteins in the esophagus, 2095 in the crop, 1571 in the midgut, 2552 in the ileum, and 3173 in the rectum were obtained. Using label-free quantification, we observed that the response of the host varies according to the Nosema spp. (N. apis versus N. ceranae) and the geographical origin of Nosema. The proteins in the midgut of A. mellifera, orally inoculated with spores of N. ceranae isolated from France, were the most altered, when compared with controls, exhibiting 50 proteins down-regulated and 16 up-regulated. We thereby established the first mass-spectrometry-based proteomics of different anatomical sections of the gut tissue of Nosema-infected A. mellifera four days post inoculation, following infection by different isolates of Nosema spp. that provoked differential host responses. We reported an alteration of proteins involved in the metabolic pathways and specifically eight proteins of the oxidative phosphorylation pathway. More importantly, we propose that the collagen IV NC1 domain-containing protein may represent an early prognostic marker of the impact of Nosema spores on the A. mellifera health status. Data are available via ProteomeXchange with the identifier PXD021848.
Collapse
Affiliation(s)
- Camille Houdelet
- CR University Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France.,Plateform BioPark Archamps, 260 Avenue Marie Curie, Archparc, 74166 Saint Julien-en Genevois, France
| | - Chainarong Sinpoo
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Sébastien N Voisin
- Plateform BioPark Archamps, 260 Avenue Marie Curie, Archparc, 74166 Saint Julien-en Genevois, France
| | | | - Panuwan Chantawannakul
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.,Environmental Science Research Center (ESRC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Philippe Bulet
- CR University Grenoble Alpes, Institute for Advanced Biosciences, Inserm U1209, CNRS UMR 5309, 38000 Grenoble, France.,Plateform BioPark Archamps, 260 Avenue Marie Curie, Archparc, 74166 Saint Julien-en Genevois, France
| |
Collapse
|
34
|
Motta EVS, Mak M, De Jong TK, Powell JE, O'Donnell A, Suhr KJ, Riddington IM, Moran NA. Oral or Topical Exposure to Glyphosate in Herbicide Formulation Impacts the Gut Microbiota and Survival Rates of Honey Bees. Appl Environ Microbiol 2020; 86:e01150-20. [PMID: 32651208 PMCID: PMC7480383 DOI: 10.1128/aem.01150-20] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Honey bees are important agricultural pollinators that rely on a specific gut microbiota for the regulation of their immune system and defense against pathogens. Environmental stressors that affect the bee gut microbial community, such as antibiotics and glyphosate, can indirectly compromise bee health. Most of the experiments demonstrating these effects have been done under laboratory conditions with pure chemicals. Here, we investigated the oral and topical effects of various concentrations of glyphosate in a herbicide formulation on the honey bee gut microbiota and health under laboratory and field conditions. Under all of these conditions, the formulation, dissolved in sucrose syrup or water, affected the abundance of beneficial bacteria in the bee gut in a dose-dependent way. Mark-recapture experiments also demonstrated that bees exposed to the formulation were more likely to disappear from the colony, once reintroduced after exposure. Although no visible effects were observed for hives exposed to the formulation in field experiments, challenge trials with the pathogen Serratia marcescens, performed under laboratory conditions, revealed that bees from hives exposed to the formulation exhibited increased mortality compared with bees from control hives. In the field experiments, glyphosate was detected in honey collected from exposed hives, showing that worker bees transfer xenobiotics to the hive, thereby extending exposure and increasing the chances of exposure to recently emerged bees. These findings show that different routes of exposure to glyphosate-based herbicide can affect honey bees and their gut microbiota.IMPORTANCE The honey bee gut microbial community plays a vital role in immune response and defense against opportunistic pathogens. Environmental stressors, such as the herbicide glyphosate, may affect the gut microbiota, with negative consequences for bee health. Glyphosate is usually sprayed in the field mixed with adjuvants, which enhance herbicidal activity. These adjuvants may also enhance undesired effects in nontargeted organisms. This seems to be the case for glyphosate-based herbicide on honey bees. As we show in this study, oral exposure to either pure glyphosate or glyphosate in a commercial herbicide formulation perturbs the gut microbiota of honey bees, and topical exposure to the formulation also has a direct effect on honey bee health, increasing mortality in a dose-dependent way and leaving surviving bees with a perturbed microbiota. Understanding the effects of herbicide formulations on honey bees may help to protect these important agricultural pollinators.
Collapse
Affiliation(s)
- Erick V S Motta
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Myra Mak
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Tyler K De Jong
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - J Elijah Powell
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Angela O'Donnell
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Kristin J Suhr
- Mass Spectrometry Facility, Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Ian M Riddington
- Mass Spectrometry Facility, Department of Chemistry, University of Texas at Austin, Austin, Texas, USA
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
35
|
Alameh S, Bartolo G, O’Brien S, Henderson EA, Gonzalez LO, Hartmann S, Klimko CP, Shoe JL, Cote CK, Grill LK, Levitin A, Martchenko Shilman M. Anthrax toxin component, Protective Antigen, protects insects from bacterial infections. PLoS Pathog 2020; 16:e1008836. [PMID: 32866212 PMCID: PMC7458312 DOI: 10.1371/journal.ppat.1008836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 07/24/2020] [Indexed: 01/23/2023] Open
Abstract
Anthrax is a major zoonotic disease of wildlife, and in places like West Africa, it can be caused by Bacillus anthracis in arid nonsylvatic savannahs, and by B. cereus biovar anthracis (Bcbva) in sylvatic rainforests. Bcbva-caused anthrax has been implicated in as much as 38% of mortality in rainforest ecosystems, where insects can enhance the transmission of anthrax-causing bacteria. While anthrax is well-characterized in mammals, its transmission by insects points to an unidentified anthrax-resistance mechanism in its vectors. In mammals, a secreted anthrax toxin component, 83 kDa Protective Antigen (PA83), binds to cell-surface receptors and is cleaved by furin into an evolutionary-conserved PA20 and a pore-forming PA63 subunits. We show that PA20 increases the resistance of Drosophila flies and Culex mosquitoes to bacterial challenges, without directly affecting the bacterial growth. We further show that the PA83 loop known to be cleaved by furin to release PA20 from PA63 is, in part, responsible for the PA20-mediated protection. We found that PA20 binds directly to the Toll activating peptidoglycan-recognition protein-SA (PGRP-SA) and that the Toll/NF-κB pathway is necessary for the PA20-mediated protection of infected flies. This effect of PA20 on innate immunity may also exist in mammals: we show that PA20 binds to human PGRP-SA ortholog. Moreover, the constitutive activity of Imd/NF-κB pathway in MAPKK Dsor1 mutant flies is sufficient to confer the protection from bacterial infections in a manner that is independent of PA20 treatment. Lastly, Clostridium septicum alpha toxin protects flies from anthrax-causing bacteria, showing that other pathogens may help insects resist anthrax. The mechanism of anthrax resistance in insects has direct implications on insect-mediated anthrax transmission for wildlife management, and with potential for applications, such as reducing the sensitivity of pollinating insects to bacterial pathogens.
Collapse
Affiliation(s)
- Saleem Alameh
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Gloria Bartolo
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Summer O’Brien
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Elizabeth A. Henderson
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Leandra O. Gonzalez
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Stella Hartmann
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Jennifer L. Shoe
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Christopher K. Cote
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Laurence K. Grill
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
| | - Anastasia Levitin
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
- * E-mail: (AL); (MMS)
| | - Mikhail Martchenko Shilman
- Henry E. Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, California, United States of America
- * E-mail: (AL); (MMS)
| |
Collapse
|
36
|
Gábor E, Cinege G, Csordás G, Rusvai M, Honti V, Kolics B, Török T, Williams MJ, Kurucz É, Andó I. Identification of reference markers for characterizing honey bee (Apis mellifera) hemocyte classes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103701. [PMID: 32320738 DOI: 10.1016/j.dci.2020.103701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
Cell mediated immunity of the honey bee (Apis mellifera) involves the activity of several hemocyte populations, currently defined by morphological features and lectin binding characteristics. The objective of the present study was to identify molecular markers capable of characterizing subsets of honey bee hemocytes. We developed and employed monoclonal antibodies with restricted reactions to functionally distinct hemocyte subpopulations. Melanizing cells, known as oenocytoids, were defined by an antibody to prophenoloxidase, aggregating cells were identified by the expression of Hemolectin, and phagocytic cells were identified by a marker expressed on granulocytes. We anticipate that this combination of antibodies not only allows for the detection of functionally distinct hemocyte subtypes, but will help to further the exploration of hematopoietic compartments, as well as reveal details of the honey bee cellular immune defense against parasites and microbes.
Collapse
Affiliation(s)
- Erika Gábor
- Immunology Unit, Institute of Genetics, Biological Research Centre, P.O.Box 521, Szeged, H-6701, Hungary.
| | - Gyöngyi Cinege
- Immunology Unit, Institute of Genetics, Biological Research Centre, P.O.Box 521, Szeged, H-6701, Hungary.
| | - Gábor Csordás
- Immunology Unit, Institute of Genetics, Biological Research Centre, P.O.Box 521, Szeged, H-6701, Hungary.
| | - Miklós Rusvai
- University of Veterinary Medicine, 1078, Budapest, István u. 2., Hungary.
| | - Viktor Honti
- Immunology Unit, Institute of Genetics, Biological Research Centre, P.O.Box 521, Szeged, H-6701, Hungary.
| | - Balázs Kolics
- Department of Plant Science and Biotechnology, University of Pannonia, Georgikon Faculty, Deák F. u. 16., 8360, Keszthely, Hungary.
| | - Tibor Török
- Department of Genetics, University of Szeged, Közép Fasor 52, 6726, Szeged, Hungary.
| | - Michael J Williams
- Functional Pharmacology, Department of Neuroscience, Uppsala University, Husargatan 3, Box 593, 751 24, Uppsala, Sweden.
| | - Éva Kurucz
- Immunology Unit, Institute of Genetics, Biological Research Centre, P.O.Box 521, Szeged, H-6701, Hungary.
| | - István Andó
- Immunology Unit, Institute of Genetics, Biological Research Centre, P.O.Box 521, Szeged, H-6701, Hungary.
| |
Collapse
|
37
|
Dalenberg H, Maes P, Mott B, Anderson KE, Spivak M. Propolis Envelope Promotes Beneficial Bacteria in the Honey Bee ( Apis mellifera) Mouthpart Microbiome. INSECTS 2020; 11:E453. [PMID: 32708479 PMCID: PMC7412495 DOI: 10.3390/insects11070453] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/06/2023]
Abstract
Honey bees collect and apply plant resins to the interior of their nest cavity, in order to form a layer around the nest cavity called a propolis envelope. Propolis displays antimicrobial activity against honey bee pathogens, but the effect of propolis on the honey bee microbiome is unknown. Honey bees do not intentionally consume propolis, but they do manipulate propolis with their mouthparts. Because honey bee mouthparts are used for collecting and storing nectar and pollen, grooming and trophallaxis between adults, feeding larvae, and cleaning the colony, they are an important interface between the bees' external and internal environments and serve as a transmission route for core gut bacteria and pathogens alike. We hypothesized that the antimicrobial activity of an experimentally applied propolis envelope would influence the bacterial diversity and abundance of the worker mouthpart microbiome. The results revealed that the mouthparts of worker bees in colonies with a propolis envelope exhibited a significantly lower bacterial diversity and significantly higher bacterial abundance compared to the mouthparts of bees in colonies without a propolis envelope. Based on the taxonomic results, the propolis envelope appeared to reduce pathogenic or opportunistic microbes and promote the proliferation of putatively beneficial microbes on the honey bee mouthparts, thus reinforcing the core microbiome of the mouthpart niche.
Collapse
Affiliation(s)
- Hollie Dalenberg
- Department of Entomology, University of Minnesota, St Paul, MN 55108, USA; (H.D.); (M.S.)
| | - Patrick Maes
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA;
| | - Brendon Mott
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ 85719, USA;
| | - Kirk E. Anderson
- USDA-ARS Carl Hayden Bee Research Center, Tucson, AZ 85719, USA;
| | - Marla Spivak
- Department of Entomology, University of Minnesota, St Paul, MN 55108, USA; (H.D.); (M.S.)
| |
Collapse
|
38
|
Butolo NP, Azevedo P, de Alencar LD, Domingues CEC, Miotelo L, Malaspina O, Nocelli RCF. A high quality method for hemolymph collection from honeybee larvae. PLoS One 2020; 15:e0234637. [PMID: 32555675 PMCID: PMC7302910 DOI: 10.1371/journal.pone.0234637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/29/2020] [Indexed: 11/30/2022] Open
Abstract
The drastic decline of bees is associated with several factors, including the immune system suppression due to the increased exposure to pesticides. A widely used method to evaluate these effects on these insects' immune systems is the counting of circulating hemocytes in the hemolymph. However, the extraction of hemolymph from larvae is quite difficult, and the collected material is frequently contaminated with other tissues and gastrointestinal fluids, which complicates counting. Therefore, the present work established a high quality and easily reproducible method of extracting hemolymph from honeybee larvae (Apis mellifera), the extraction with ophthalmic scissors. Extraction methods with the following tools also were tested: 30G needle, fine-tipped forceps, hypodermic syringe, and capillaries tubes. The hemolymph was obtained via an incision on the larvae’s right side for all methods, except for the extraction with ophthalmic scissors, in which the hemolymph was extracted from the head region. To assess the purity of the collected material, turbidity analyses of the samples using a turbidimeter were proposed, tested, and evaluated. The results showed that the use of ophthalmic scissors provided the clearest samples and was free from contamination. A reference range between 22,432.35 and 24,504.87 NTU (nephelometric turbidity units) was established, in which the collected samples may be considered of high quality and free from contamination.
Collapse
Affiliation(s)
- Nicole Pavan Butolo
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
- * E-mail: (NPB); (PA)
| | - Patricia Azevedo
- Grupo de Genética e Genômica da Conservação, Instituto de Biologia–Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP-SP), Campinas, SP, Brazil
- * E-mail: (NPB); (PA)
| | - Luciano Delmondes de Alencar
- Grupo de Genética e Genômica da Conservação, Instituto de Biologia–Programa de Pós Graduação em Genética e Biologia Molecular, Universidade Estadual de Campinas (UNICAMP-SP), Campinas, SP, Brazil
| | - Caio E. C. Domingues
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
| | - Lucas Miotelo
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
| | - Osmar Malaspina
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
| | - Roberta Cornélio Ferreira Nocelli
- Centro de Estudos de Insetos Sociais–CEIS, Instituto de Biociências–Programa de Pós Graduação em Biologia Celular e Molecular, Universidade Estadual Paulista ‘Júlio de Mesquita Filho’ (UNESP-SP), Rio Claro, SP, Brazil
- Departamento de Ciências da Natureza, Matemática e Educação, Centro de Ciências Agrárias, Universidade Federal de São Carlos (UFSCar-SP), Araras, SP, Brazil
| |
Collapse
|
39
|
Negri P, Villalobos E, Szawarski N, Damiani N, Gende L, Garrido M, Maggi M, Quintana S, Lamattina L, Eguaras M. Towards Precision Nutrition: A Novel Concept Linking Phytochemicals, Immune Response and Honey Bee Health. INSECTS 2019; 10:E401. [PMID: 31726686 PMCID: PMC6920938 DOI: 10.3390/insects10110401] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/02/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
The high annual losses of managed honey bees (Apis mellifera) has attracted intensive attention, and scientists have dedicated much effort trying to identify the stresses affecting bees. There are, however, no simple answers; rather, research suggests multifactorial effects. Several works have been reported highlighting the relationship between bees' immunosuppression and the effects of malnutrition, parasites, pathogens, agrochemical and beekeeping pesticides exposure, forage dearth and cold stress. Here we analyze a possible connection between immunity-related signaling pathways that could be involved in the response to the stress resulted from Varroa-virus association and cold stress during winter. The analysis was made understanding the honey bee as a superorganism, where individuals are integrated and interacting within the colony, going from social to individual immune responses. We propose the term "Precision Nutrition" as a way to think and study bees' nutrition in the search for key molecules which would be able to strengthen colonies' responses to any or all of those stresses combined.
Collapse
Affiliation(s)
- Pedro Negri
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Ethel Villalobos
- Plant and Environmental Protection Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 3050 Maile Way, 310 Gilmore Hall, Honolulu, HI 96822, USA;
| | - Nicolás Szawarski
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Natalia Damiani
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Liesel Gende
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Melisa Garrido
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Matías Maggi
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Silvina Quintana
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| | - Lorenzo Lamattina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
- Instituto de Investigaciones Biológicas (IIB-CONICET), UNMdP, Dean Funes 3350, Mar del Plata CP 7600, Argentina
| | - Martin Eguaras
- Centro de Investigación en Abejas Sociales (CIAS), Universidad Nacional de Mar del Plata (UNMdP), Deán Funes 3350, Mar del Plata CP 7600, Argentina; (N.S.); (N.D.); (L.G.); (M.G.); (M.M.); (S.Q.); (M.E.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina;
| |
Collapse
|
40
|
Natural Product Medicines for Honey Bees: Perspective and Protocols. INSECTS 2019; 10:insects10100356. [PMID: 31635365 PMCID: PMC6835950 DOI: 10.3390/insects10100356] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 12/15/2022]
Abstract
The western honey bee remains the most important pollinator for agricultural crops. Disease and stressors threaten honey bee populations and productivity during winter- and summertime, creating costs for beekeepers and negative impacts on agriculture. To combat diseases and improve overall bee health, researchers are constantly developing honey bee medicines using the tools of microbiology, molecular biology and chemistry. Below, we present a manifesto alongside standardized protocols that outline the development and a systematic approach to test natural products as ‘bee medicines’. These will be accomplished in both artificial rearing conditions and in colonies situated in the field. Output will be scored by gene expression data of host immunity, bee survivorship, reduction in pathogen titers, and more subjective merits of the compound in question. Natural products, some of which are already encountered by bees in the form of plant resins and nectar compounds, provide promising low-cost candidates for safe prophylaxis or treatment of bee diseases.
Collapse
|
41
|
Ebeling J, Knispel H, Fünfhaus A, Genersch E. The biological role of the enigmatic C3larvinAB toxin of the honey bee pathogenic bacterium Paenibacillus larvae. Environ Microbiol 2019; 21:3091-3106. [PMID: 31187922 DOI: 10.1111/1462-2920.14709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 11/30/2022]
Abstract
Paenibacillus larvae is the causative agent of the notifiable epizootic American foulbrood, a fatal bacterial disease of honey bee larvae. The species P. larvae has been classified into four differentially virulent and prevalent genotypes (ERIC I-IV), which also differ in their virulence factor equipment. Recently, a novel P. larvae toxin, the C3-like C3larvin, has been described. Genome analysis now revealed that the C3larvin gene is actually a part of a toxin locus encompassing two genes encoding a binary AB toxin with the A subunit being C3larvin (C3larvinA) and a putative B subunit (C3larvinB) encoded by the second gene. Sequence and structural analyses demonstrated that C3larvinB is a homologue of the Bacillus anthracis protective antigen (PA), the B subunit of anthrax toxin. The C3larvinAB toxin locus was interrupted by point mutations in all analysed P. larvae ERIC I and ERIC II strains. Only one P. larvae ERIC III/IV strain harboured an uninterrupted toxin locus comprising full-length genes for C3larvinA and B. Exposure bioassays did not substantiate a role as virulence factor for C3larvinAB in P. larvae ERIC I/II. However, the PA homologue C3larvinB had an influence on the virulence of the unique P. larvae strain expressing the functional C3larvinAB locus.
Collapse
Affiliation(s)
- Julia Ebeling
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, 16540, Hohen Neuendorf, Germany
| | - Henriette Knispel
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, 16540, Hohen Neuendorf, Germany
| | - Anne Fünfhaus
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, 16540, Hohen Neuendorf, Germany
| | - Elke Genersch
- Department of Molecular Microbiology and Bee Diseases, Institute for Bee Research, 16540, Hohen Neuendorf, Germany.,Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Mikrobiologie und Tierseuchen, 14163, Berlin, Germany
| |
Collapse
|
42
|
Draft Genome Sequences of 38 Serratia marcescens Isolates Associated with Acroporid Serratiosis. Microbiol Resour Announc 2019; 8:8/14/e00194-19. [PMID: 30948466 PMCID: PMC6449557 DOI: 10.1128/mra.00194-19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Serratia marcescens is a Gram-negative bacterium causally linked to acroporid serratiosis, a form of white pox disease implicated in the decline of elkhorn corals. We report draft genomes of 38 S. marcescens isolates collected from host and nonhost sources. Serratia marcescens is a Gram-negative bacterium causally linked to acroporid serratiosis, a form of white pox disease implicated in the decline of elkhorn corals. We report draft genomes of 38 S. marcescens isolates collected from host and nonhost sources. The availability of these genomes will aid future analyses of acroporid serratiosis.
Collapse
|
43
|
Ramsey SD, Ochoa R, Bauchan G, Gulbronson C, Mowery JD, Cohen A, Lim D, Joklik J, Cicero JM, Ellis JD, Hawthorne D, vanEngelsdorp D. Varroa destructor feeds primarily on honey bee fat body tissue and not hemolymph. Proc Natl Acad Sci U S A 2019; 116:1792-1801. [PMID: 30647116 PMCID: PMC6358713 DOI: 10.1073/pnas.1818371116] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The parasitic mite Varroa destructor is the greatest single driver of the global honey bee health decline. Better understanding of the association of this parasite and its host is critical to developing sustainable management practices. Our work shows that this parasite is not consuming hemolymph, as has been the accepted view, but damages host bees by consuming fat body, a tissue roughly analogous to the mammalian liver. Both hemolymph and fat body in honey bees were marked with fluorescent biostains. The fluorescence profile in the guts of mites allowed to feed on these bees was very different from that of the hemolymph of the host bee but consistently matched the fluorescence profile unique to the fat body. Via transmission electron microscopy, we observed externally digested fat body tissue in the wounds of parasitized bees. Mites in their reproductive phase were then fed a diet composed of one or both tissues. Mites fed hemolymph showed fitness metrics no different from the starved control. Mites fed fat body survived longer and produced more eggs than those fed hemolymph, suggesting that fat body is integral to their diet when feeding on brood as well. Collectively, these findings strongly suggest that Varroa are exploiting the fat body as their primary source of sustenance: a tissue integral to proper immune function, pesticide detoxification, overwinter survival, and several other essential processes in healthy bees. These findings underscore a need to revisit our understanding of this parasite and its impacts, both direct and indirect, on honey bee health.
Collapse
Affiliation(s)
- Samuel D Ramsey
- Department of Entomology, University of Maryland, College Park, MD 20742;
| | - Ronald Ochoa
- Agricultural Research Service, Systematic Entomology Laboratory, United States Department of Agriculture, Beltsville, MD 20705
| | - Gary Bauchan
- Agricultural Research Service, Soybean Genomics & Improvement Laboratory, Electron and Confocal Microscopy Unit, United States Department of Agriculture, Beltsville, MD 20705
| | - Connor Gulbronson
- Agricultural Research Service, Floral and Nursery Plant Research Unit, Electron and Confocal Microscopy Unit, United States Department of Agriculture, Beltsville, MD 20705
| | - Joseph D Mowery
- Agricultural Research Service, Soybean Genomics & Improvement Laboratory, Electron and Confocal Microscopy Unit, United States Department of Agriculture, Beltsville, MD 20705
| | - Allen Cohen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695
| | - David Lim
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Judith Joklik
- Department of Entomology, University of Maryland, College Park, MD 20742
| | - Joseph M Cicero
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611
| | - James D Ellis
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611
| | - David Hawthorne
- Department of Entomology, University of Maryland, College Park, MD 20742
| | | |
Collapse
|
44
|
Huang SK, Ye KT, Huang WF, Ying BH, Su X, Lin LH, Li JH, Chen YP, Li JL, Bao XL, Hu JZ. Influence of Feeding Type and Nosema ceranae Infection on the Gut Microbiota of Apis cerana Workers. mSystems 2018; 3:e00177-18. [PMID: 30417114 PMCID: PMC6222045 DOI: 10.1128/msystems.00177-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/16/2018] [Indexed: 12/26/2022] Open
Abstract
The gut microbiota plays an essential role in the health of bees. To elucidate the effect of feed and Nosema ceranae infection on the gut microbiota of honey bee (Apis cerana), we used 16S rRNA sequencing to survey the gut microbiota of honey bee workers fed with sugar water or beebread and inoculated with or without N. ceranae. The gut microbiota of A. cerana is dominated by Serratia, Snodgrassella, and Lactobacillus genera. The overall gut microbiota diversity was show to be significantly differential by feeding type. N. ceranae infection significantly affects the gut microbiota only in bees fed with sugar water. Higher abundances of Lactobacillus, Gluconacetobacter, and Snodgrassella and lower abundances of Serratia were found in bees fed with beebread than in those fed with sugar water. N. ceranae infection led to a higher abundance of Snodgrassella and a lower abundance of Serratia in sugar-fed bees. Imputed bacterial Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways showed the significant metagenomics functional differences by feeding and N. ceranae infections. Furthermore, A. cerana workers fed with sugar water showed lower N. ceranae spore loads but higher mortality than those fed with beebread. The cumulative mortality was strongly positive correlated (rho = 0.61) with the changes of overall microbiota dissimilarities by N. ceranae infection. Both feeding types and N. ceranae infection significantly affect the gut microbiota in A. cerana workers. Beebread not only provides better nutrition but also helps establish a more stable gut microbiota and therefore protects bees in response to N. ceranae infection. IMPORTANCE The gut microbiota plays an essential role in the health of bees. Scientific evidence suggests that diet and infection can affect the gut microbiota and modulate the health of the gut; however, the interplay between those two factors and the bee gut microbiota is not well known. In this study, we used a high-throughput sequencing method to monitor the changes of gut microbiota associated with both feeding types and Nosema ceranae infection. Our results showed that the gut microbiota composition and diversity of Asian honey bee were significantly associated with both feeding types and the N. ceranae infection. More interestingly, bees fed with beebread showed higher microbiota stability and lower mortality rates than those fed with sugar water when infected by N. ceranae. Those data suggest that beebread has the potential not only to provide better nutrition but also help to establish a more stable gut microbiota to protect bees against N. ceranae infection.
Collapse
Affiliation(s)
- Shao K. Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Kun T. Ye
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Wei F. Huang
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Bi H. Ying
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Xin Su
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Li H. Lin
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Jiang H. Li
- College of Bee Science, Fujian Agriculture and Forestry University, Fujian, China
| | - Yan P. Chen
- USDA-ARS Bee Research Lab, Beltsville, Maryland, USA
| | - Ji L. Li
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Science, Beijing, China
| | - Xiu L. Bao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jian Z. Hu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
45
|
Honey bees as models for gut microbiota research. Lab Anim (NY) 2018; 47:317-325. [PMID: 30353179 DOI: 10.1038/s41684-018-0173-x] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/07/2018] [Indexed: 12/15/2022]
Abstract
The gut microbiota of the honey bee (Apis mellifera) offers several advantages as an experimental system for addressing how gut communities affect their hosts and for exploring the processes that determine gut community composition and dynamics. A small number of bacterial species dominate the honey bee gut community. These species are restricted to bee guts and can be grown axenically and genetically manipulated. Large numbers of microbiota-free hosts can be economically reared and then inoculated with single isolates or defined communities to examine colonization patterns and effects on host phenotypes. Honey bees have been studied extensively, due to their importance as agricultural pollinators and as models for sociality. Because of this history of bee research, the physiology, development, and behavior of honey bees is relatively well understood, and established behavioral and phenotypic assays are available. To date, studies on the honey bee gut microbiota show that it affects host nutrition, weight gain, endocrine signaling, immune function, and pathogen resistance, while perturbation of the microbiota can lead to reduced host fitness. As in humans, the microbiota is concentrated in the distal part of the gut, where it contributes to digestion and fermentation of plant cell wall components. Much like the human gut microbiota, many bee gut bacteria are specific to the bee gut and can be directly transmitted between individuals through social interaction. Although simpler than the human gut microbiota, the bee gut community presents opportunities to understand the processes that govern the assembly of specialized gut communities as well as the routes through which gut communities impact host biology.
Collapse
|
46
|
Abstract
Recently, it has become apparent that multiple factors are responsible for honey bee decline, including climate change, pests and pathogens, pesticides, and loss of foraging habitat. Of the large number of pathogens known to infect honey bees, very few are bacteria. Because adult workers abandon hives when diseased, many of their pathogens may go unnoticed. Here we characterized the virulence of Serratia marcescens strains isolated from honey bee guts and hemolymph. Our results indicate that S. marcescens, an opportunistic pathogen of many plants and animals, including humans, is a virulent opportunistic pathogen of honey bees, which could contribute to bee decline. Aside from the implications for honey bee health, the discovery of pathogenic S. marcescens strains in honey bees presents an opportunity to better understand how opportunistic pathogens infect and invade hosts. Although few honey bee diseases are known to be caused by bacteria, pathogens of adult worker bees may be underrecognized due to social immunity mechanisms. Specifically, infected adult bees typically abandon the hive or are removed by guards. Serratia marcescens, an opportunistic pathogen of many plants and animals, is often present at low abundance in the guts of honey bee workers and has recently been isolated from Varroa mites and from the hemolymph of dead and dying honey bees. However, the severity and prevalence of S. marcescens pathogenicity in honey bees have not been fully investigated. Here we characterized three S. marcescens strains isolated from the guts of honey bees and one previously isolated from hemolymph. In vivo tests confirmed that S. marcescens is pathogenic in workers. All strains caused mortality when a few cells were injected into the hemocoel, and the gut-isolated strains caused mortality when administered orally. In vitro assays and comparative genomics identified possible mechanisms of virulence of gut-associated strains. Expression of antimicrobial peptide and phenoloxidase genes was not elevated following infection, suggesting that these S. marcescens strains derived from honey bees can evade the immune response in their hosts. Finally, surveys from four locations in the United States indicated the presence of S. marcescens in the guts of over 60% of the worker bees evaluated. Taken together, these results suggest that S. marcescens is a widespread opportunistic pathogen of adult honey bees and that it may be highly virulent under some conditions such as perturbation of the normal gut microbiota or the presence of Varroa mites that puncture the integument, thereby enabling entry of bacterial cells.
Collapse
|
47
|
Leonard SP, Perutka J, Powell JE, Geng P, Richhart DD, Byrom M, Kar S, Davies BW, Ellington AD, Moran NA, Barrick JE. Genetic Engineering of Bee Gut Microbiome Bacteria with a Toolkit for Modular Assembly of Broad-Host-Range Plasmids. ACS Synth Biol 2018; 7:1279-1290. [PMID: 29608282 DOI: 10.1021/acssynbio.7b00399] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Engineering the bacteria present in animal microbiomes promises to lead to breakthroughs in medicine and agriculture, but progress is hampered by a dearth of tools for genetically modifying the diverse species that comprise these communities. Here we present a toolkit of genetic parts for the modular construction of broad-host-range plasmids built around the RSF1010 replicon. Golden Gate assembly of parts in this toolkit can be used to rapidly test various antibiotic resistance markers, promoters, fluorescent reporters, and other coding sequences in newly isolated bacteria. We demonstrate the utility of this toolkit in multiple species of Proteobacteria that are native to the gut microbiomes of honey bees ( Apis mellifera) and bumble bees (B ombus sp.). Expressing fluorescent proteins in Snodgrassella alvi, Gilliamella apicola, Bartonella apis, and Serratia strains enables us to visualize how these bacteria colonize the bee gut. We also demonstrate CRISPRi repression in B. apis and use Cas9-facilitated knockout of an S. alvi adhesion gene to show that it is important for colonization of the gut. Beyond characterizing how the gut microbiome influences the health of these prominent pollinators, this bee microbiome toolkit (BTK) will be useful for engineering bacteria found in other natural microbial communities.
Collapse
|
48
|
Fünfhaus A, Ebeling J, Genersch E. Bacterial pathogens of bees. CURRENT OPINION IN INSECT SCIENCE 2018; 26:89-96. [PMID: 29764667 DOI: 10.1016/j.cois.2018.02.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Accepted: 02/02/2018] [Indexed: 05/09/2023]
Abstract
Pollination is an indispensable ecosystem service provided by many insects, especially by wild and managed bee species. Hence, reports on large scale honey bee colony losses and on population declines of many wild bees were alarming and resulted in increased awareness of the importance of bee health and increased interest in bee pathogens. To serve this interest, this review will give a comprehensive overview on bacterial bee pathogens by covering not only the famous pathogens (Paenibacillus larvae, Melissococcus plutonius), but also the orphan pathogens which have largely been neglected by the scientific community so far (spiroplasmas) and the pathogens which were only recently discovered as being pathogenic to bees (Serratia marcescens, Lysinibacillus sphaericus).
Collapse
Affiliation(s)
- Anne Fünfhaus
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Julia Ebeling
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany
| | - Elke Genersch
- Institute for Bee Research, Department of Molecular Microbiology and Bee Diseases, Friedrich-Engels-Str. 32, 16540 Hohen Neuendorf, Germany; Freie Universität Berlin, Fachbereich Veterinärmedizin, Institut für Mikrobiologie und Tierseuchen, Robert-von-Ostertag-Str. 7-13, 14163 Berlin, Germany.
| |
Collapse
|
49
|
Raymann K, Moran NA. The role of the gut microbiome in health and disease of adult honey bee workers. CURRENT OPINION IN INSECT SCIENCE 2018; 26:97-104. [PMID: 29764668 PMCID: PMC6010230 DOI: 10.1016/j.cois.2018.02.012] [Citation(s) in RCA: 228] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/13/2017] [Accepted: 02/02/2018] [Indexed: 05/11/2023]
Abstract
The role of the gut microbiome in animal health has become increasingly evident. Unlike most other insects, honey bees possess a highly conserved and specialized core gut microbiome, which consists of nine bacterial species and is acquired mostly through social transmission. Five of these species are ubiquitous in honey bees and are also present in bumble bees. Recent studies have shown that the bee gut microbiome plays a role in metabolism, immune function, growth and development, and protection against pathogens. Disruption of the gut microbiome has also been shown to have detrimental effects on bee health. Overall, evidence suggests that the gut microbiome plays an important role in bee health and disease.
Collapse
Affiliation(s)
- Kasie Raymann
- Department of Integrative Biology, University of Texas at Austin, 2506 Speedway. NMS 4.216, Stop C0930, Austin, TX 78712, United States
| | - Nancy A Moran
- Department of Integrative Biology, University of Texas at Austin, 2506 Speedway. NMS 4.216, Stop C0930, Austin, TX 78712, United States.
| |
Collapse
|
50
|
Chen S, Blom J, Walker ED. Genomic, Physiologic, and Symbiotic Characterization of Serratia marcescens Strains Isolated from the Mosquito Anopheles stephensi. Front Microbiol 2017; 8:1483. [PMID: 28861046 PMCID: PMC5561391 DOI: 10.3389/fmicb.2017.01483] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/24/2017] [Indexed: 11/14/2022] Open
Abstract
Strains of Serratia marcescens, originally isolated from the gut lumen of adult female Anopheles stephensi mosquitoes, established persistent infection at high rates in adult A. stephensi whether fed to larvae or in the sugar meal to adults. By contrast, the congener S. fonticola originating from Aedes triseriatus had lower infection in A. stephensi, suggesting co-adaptation of Serratia strains in different species of host mosquitoes. Coinfection at high infection rate in adult A. stephensi resulted after feeding S. marcescens and Elizabethkingia anophelis in the sugar meal, but when fed together to larvae, infection rates with E. anophelis were much higher than were S. marcescens in adult A. stephensi, suggesting a suppression effect of coinfection across life stages. A primary isolate of S. marcescens was resistant to all tested antibiotics, showed high survival in the mosquito gut, and produced alpha-hemolysins which contributed to lysis of erythrocytes ingested with the blood meal. Genomes of two primary isolates from A. stephensi, designated S. marcescens ano1 and ano2, were sequenced and compared to other Serratia symbionts associated with insects, nematodes and plants. Serratia marcescens ano1 and ano2 had predicted virulence factors possibly involved in attacking parasites and/or causing opportunistic infection in mosquito hosts. S. marcescens ano1 and ano2 possessed multiple mechanisms for antagonism against other microorganisms, including production of bacteriocins and multi-antibiotic resistance determinants. These genes contributing to potential anti-malaria activity including serralysins, hemolysins and chitinases are only found in some Serratia species. It is interesting that genome sequences in S. marcescens ano1 and ano2 are distinctly different from those in Serratia sp. Ag1 and Ag2 which were isolated from Anopheles gambiae. Compared to Serratia sp. Ag1 and Ag2, S. marcescens ano1 and ano2 have more rRNAs and many important genes involved in commensal and anti-parasite traits.
Collapse
Affiliation(s)
- Shicheng Chen
- Department of Microbiology and Molecular Genetics, Michigan State UniversityEast Lansing, MI, United States
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-UniversityGiessen, Germany
| | - Edward D. Walker
- Department of Microbiology and Molecular Genetics, Michigan State UniversityEast Lansing, MI, United States
- Department of Entomology, Michigan State UniversityEast Lansing, MI, United States
| |
Collapse
|