1
|
Buchalska B, Kamińska K, Kowara M, Sobiborowicz-Sadowska A, Cudnoch-Jędrzejewska A. Doxorubicin or Epirubicin Versus Liposomal Doxorubicin Therapy-Differences in Cardiotoxicity. Cardiovasc Toxicol 2025:10.1007/s12012-024-09952-4. [PMID: 39810066 DOI: 10.1007/s12012-024-09952-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 12/23/2024] [Indexed: 01/16/2025]
Abstract
Doxorubicin (DOX) is an important drug used in the treatment of many malignancies. Unfortunately DOX causes various side effects, with cardiotoxicity being the most characteristic. Risk factors for DOX induced cardiotoxicity (DIC) include cumulative dose of DOX, preexisting cardiovascular diseases, dyslipidemia, diabetes, smoking, along with the use of other cardiotoxic agents. Development of DIC is associated with many pathological phenomena - increased oxidative stress, as well as upregulation of ferroptosis, apoptosis, necrosis, and autophagy. In DIC expression of many microRNAs is also deregulated. In order to avoid cardiotoxicity and still use DOX effectively DOX derivatives such as epirubicin were synthesized. Nowadays a new liposomal form of DOX (L-DOX) appeared as an alternative to conventional treatment with greatly reduced cardiotoxicity. L-DOX can be divided into two groups of substances - pegylated (PLD) with increased solubility and stability, and non-pegylated (NLPD). Many metaanalyses, clinical along with preclinical studies have shown L-DOX treatment is associated with a smaller decrease of left ventricular ejection fraction (LVEF) and other heart functions, but efficacy of this treatment is comparable to the use of convenctional DOX.
Collapse
Affiliation(s)
- Barbara Buchalska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Katarzyna Kamińska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.
| | - Michał Kowara
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Aleksandra Sobiborowicz-Sadowska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
2
|
Gómez-Pastor S, Maugard A, Walker HR, Elies J, Børsum KE, Grimaldi G, Reina G, Ruiz A. CD-44 targeted nanoparticles for combination therapy in an in vitro model of triple-negative breast cancer: Targeting the tumour inside out. Colloids Surf B Biointerfaces 2025; 249:114504. [PMID: 39817967 DOI: 10.1016/j.colsurfb.2025.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer defined by the lack of three key receptors: estrogen, progesterone, and HER2. This lack of receptors makes TNBC difficult to treat with hormone therapy or drugs, and so it is characterised by a poor prognosis compared to other kinds of breast cancer. This study explores photoactive Poly(lactic-co-glycolic acid) (PLGA) nanoparticles as a potential therapeutic strategy for TNBC. The nanoparticles are functionalised with hyaluronic acid (HA) for targeted delivery to CD-44 receptors overexpressed in TNBC cells, especially under hypoxic conditions. Additionally, we co-loaded the nanoparticles with Doxorubicin (Dox) and Indocyanine Green (ICG) to enable combinatorial chemo-photothermal therapy. After carefully optimising the formulation, we propose an effortless and reproducible preparation of the nanodrugs. We demonstrate that HA-conjugated nanoparticles effectively target TNBC cells and inhibit their proliferation while the treatment efficiency is enhanced during near-infrared light irradiation. We also prove that our treatment is effective in a 3D cell culture model, highlighting the importance of tumour architecture and the metabolic stage of the cells in the tumour microenvironment. This approach is promising for a tumour-targeted theragnostic for TNBC with improved efficacy in hypoxic microenvironments.
Collapse
Affiliation(s)
- Silvia Gómez-Pastor
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom; Departamento de Biología, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Auréane Maugard
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom
| | - Harriet R Walker
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom
| | - Jacobo Elies
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom
| | - Kaja E Børsum
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom
| | - Giulia Grimaldi
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom; School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford BD7 1DP, United Kingdom.
| | - Giacomo Reina
- Empa Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland.
| | - Amalia Ruiz
- Institute of Cancer Therapeutics, University of Bradford, Bradford, Richmond Rd, Bradford BD7 1DP, United Kingdom.
| |
Collapse
|
3
|
Allen-Taylor D, Boro G, Cabato P, Mai C, Nguyen K, Rijal G. Staphylococcus epidermidis biofilm in inflammatory breast cancer and its treatment strategies. Biofilm 2024; 8:100220. [PMID: 39318870 PMCID: PMC11420492 DOI: 10.1016/j.bioflm.2024.100220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Bacterial biofilms represent a significant challenge in both clinical and industrial settings because of their robust nature and resistance to antimicrobials. Biofilms are formed by microorganisms that produce an exopolysaccharide matrix, protecting function and supporting for nutrients. Among the various bacterial species capable of forming biofilms, Staphylococcus epidermidis, a commensal organism found on human skin and mucous membranes, has emerged as a prominent opportunistic pathogen, when introduced into the body via medical devices, such as catheters, prosthetic joints, and heart valves. The formation of biofilms by S. epidermidis on these surfaces facilitates colonization and provides protection against host immune responses and antibiotic therapies, leading to persistent and difficult-to-treat infections. The possible involvement of biofilms for breast oncogenesis has recently created the curiosity. This paper therefore delves into S. epidermidis biofilm involvement in breast cancer. S. epidermidis biofilms can create a sustained inflammatory environment through their metabolites and can break DNA in breast tissue, promoting cellular proliferation, angiogenesis, and genetic instability. Preventing biofilm formation primarily involves preventing bacterial proliferation using prophylactic measures and sterilization of medical devices and equipment. In cancer treatment, common modalities include chemotherapy, surgery, immunotherapy, alkylating agents, and various anticancer drugs. Understanding the relationship between anticancer drugs and bacterial biofilms is crucial, especially for those undergoing cancer treatment who may be at increased risk of bacterial infections, for improving patient outcomes. By elucidating these interactions, strategies to prevent or disrupt biofilm formation, thereby reducing the incidence of infections associated with medical devices and implants, can be identified.
Collapse
Affiliation(s)
- D. Allen-Taylor
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Boro
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - P.M. Cabato
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - C. Mai
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - K. Nguyen
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| | - G. Rijal
- Department of Medical Laboratory Sciences, Public Health, and Nutrition Science, College of Health Sciences, Tarleton State University, a Member of Texas A & M University System, Fort Worth, Texas, 76036, USA
| |
Collapse
|
4
|
Kubat GB, Ulger O, Atalay O, Fatsa T, Turkel I, Ozerklig B, Celik E, Ozenc E, Simsek G, Tuncer M. The effects of exercise and mitochondrial transplantation alone or in combination against Doxorubicin-induced skeletal muscle atrophy. J Muscle Res Cell Motil 2024; 45:233-251. [PMID: 38822935 DOI: 10.1007/s10974-024-09676-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Doxorubicin (DOX) is a chemotherapy drug used to treat various types of cancer, but it is associated with significant side effects such as skeletal muscle atrophy. Exercise has been found to prevent skeletal muscle atrophy through the modulation of mitochondrial pathways. Mitochondrial transplantation (MT) may mitigate toxicity, neurological disorders, kidney and liver injury, and skeletal muscle atrophy. The objective of this study was to evaluate the effects of MT, exercise, and MT with exercise on DOX-induced skeletal muscle atrophy. Male Sprague Dawley rats were randomly assigned to the following groups: control, DOX, MT with DOX, exercise with DOX, and exercise with MT and DOX. A 10-day treadmill running exercise and MT (6.5 µg/100 µL) to tibialis anterior (TA) muscle were administered prior to a single injection of DOX (20 mg/kg). Our data showed that exercise and MT with exercise led to an increase in cross-sectional area of the TA muscle. Exercise, MT and MT with exercise reduced inflammation and maintained mitochondrial enzyme activity. Additionally, exercise and MT have been shown to regulate mitochondrial fusion/fission. Our findings revealed that exercise and MT with exercise prevented oxidative damage. Furthermore, MT and MT with exercise decreased apoptosis and MT with exercise triggered mitochondrial biogenesis. These findings demonstrate the importance of exercise in the prevention of skeletal muscle atrophy and emphasize the significant benefits of MT with exercise. To the best of our knowledge, this is the first study to demonstrate the therapeutic effects of MT with exercise in DOX-induced skeletal muscle atrophy.
Collapse
Affiliation(s)
- Gokhan Burcin Kubat
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey.
- Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey.
| | - Oner Ulger
- Department of Mitochondria and Cellular Research, Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
- Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Ozbeyen Atalay
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Tugba Fatsa
- Gulhane Health Sciences Institute, University of Health Sciences, Ankara, Turkey
| | - Ibrahim Turkel
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Berkay Ozerklig
- Department of Exercise and Sport Sciences, Faculty of Sport Sciences, Hacettepe University, Ankara, Turkey
| | - Ertugrul Celik
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Emrah Ozenc
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Gulcin Simsek
- Department of Pathology, Gulhane Training and Research Hospital, University of Health Sciences, Ankara, Turkey
| | - Meltem Tuncer
- Department of Physiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
5
|
Kim SG, Kim SJ, Duong TV, Cho Y, Park B, Kadam US, Park HS, Hong JC. Autocrine Motility Factor and Its Peptide Derivative Inhibit Triple-Negative Breast Cancer by Regulating Wound Repair, Survival, and Drug Efflux. Int J Mol Sci 2024; 25:11714. [PMID: 39519266 PMCID: PMC11546756 DOI: 10.3390/ijms252111714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) presents a significant challenge in oncology due to its aggressive nature and limited targeted therapeutic options. This study explores the potential of autocrine motility factor (AMF) and an AMF-derived peptide as novel treatments for TNBC. AMF, primarily secreted by neoplastic cells, plays a crucial role in cancer cell motility, metastasis, and proliferation. The research demonstrates that AMF and its derived peptide inhibit TNBC cell proliferation by modulating cellular migration, redox homeostasis, apoptotic pathways, and drug efflux mechanisms. Dose-dependent antiproliferative effects were observed across three TNBC cell lines, with higher concentrations impairing cellular migration. Mechanistic studies revealed decreased glucose-6-phosphate dehydrogenase expression and elevated reactive oxygen species production, suggesting redox imbalance as a primary mediator of apoptosis. Combination studies with conventional therapeutics showed near-complete eradication of resistant TNBC cells. The observed reduction in p53 levels and increased intranuclear doxorubicin accumulation highlight the AMF/AMF peptide's potential as multidrug resistance modulators. This study underscores the promise of using AMF/AMF peptide as a novel therapeutic approach for TNBC, addressing current treatment limitations and warranting further investigation.
Collapse
Affiliation(s)
- Se Gie Kim
- Department of Cosmetic Science, Kyungsung University, Busan 48434, Republic of Korea
| | - Seok Joong Kim
- Department of Food and Nutrition, College of Natural and Information Science, Dongduk Women’s University, Seoul 02758, Republic of Korea
| | - Thanh Van Duong
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yuhan Cho
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| | - Bogeun Park
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| | - Hee Sung Park
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| | - Jong Chan Hong
- Division of Applied Life Science (BK21 Four), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.C.); (U.S.K.)
| |
Collapse
|
6
|
Matusik K, Kamińska K, Sobiborowicz-Sadowska A, Borzuta H, Buczma K, Cudnoch-Jędrzejewska A. The significance of the apelinergic system in doxorubicin-induced cardiotoxicity. Heart Fail Rev 2024; 29:969-988. [PMID: 38990214 PMCID: PMC11306362 DOI: 10.1007/s10741-024-10414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
Cancer is the leading cause of death worldwide, and the number of cancer-related deaths is expected to increase. Common types of cancer include skin, breast, lung, prostate, and colorectal cancers. While clinical research has improved cancer therapies, these treatments often come with significant side effects such as chronic fatigue, hair loss, and nausea. In addition, cancer treatments can cause long-term cardiovascular complications. Doxorubicin (DOX) therapy is one example, which can lead to decreased left ventricle (LV) echocardiography (ECHO) parameters, increased oxidative stress in cellular level, and even cardiac fibrosis. The apelinergic system, specifically apelin and its receptor, together, has shown properties that could potentially protect the heart and mitigate the damages caused by DOX anti-cancer treatment. Studies have suggested that stimulating the apelinergic system may have therapeutic benefits for heart damage induced by DOX. Further research in chronic preclinical models is needed to confirm this hypothesis and understand the mechanism of action for the apelinergic system. This review aims to collect and present data on the effects of the apelinergic system on doxorubicin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Katarzyna Matusik
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Katarzyna Kamińska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland.
| | - Aleksandra Sobiborowicz-Sadowska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Hubert Borzuta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Kasper Buczma
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Jomova K, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, Valko M. Several lines of antioxidant defense against oxidative stress: antioxidant enzymes, nanomaterials with multiple enzyme-mimicking activities, and low-molecular-weight antioxidants. Arch Toxicol 2024; 98:1323-1367. [PMID: 38483584 PMCID: PMC11303474 DOI: 10.1007/s00204-024-03696-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 01/31/2024] [Indexed: 03/27/2024]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are well recognized for playing a dual role, since they can be either deleterious or beneficial to biological systems. An imbalance between ROS production and elimination is termed oxidative stress, a critical factor and common denominator of many chronic diseases such as cancer, cardiovascular diseases, metabolic diseases, neurological disorders (Alzheimer's and Parkinson's diseases), and other disorders. To counteract the harmful effects of ROS, organisms have evolved a complex, three-line antioxidant defense system. The first-line defense mechanism is the most efficient and involves antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx). This line of defense plays an irreplaceable role in the dismutation of superoxide radicals (O2•-) and hydrogen peroxide (H2O2). The removal of superoxide radicals by SOD prevents the formation of the much more damaging peroxynitrite ONOO- (O2•- + NO• → ONOO-) and maintains the physiologically relevant level of nitric oxide (NO•), an important molecule in neurotransmission, inflammation, and vasodilation. The second-line antioxidant defense pathway involves exogenous diet-derived small-molecule antioxidants. The third-line antioxidant defense is ensured by the repair or removal of oxidized proteins and other biomolecules by a variety of enzyme systems. This review briefly discusses the endogenous (mitochondria, NADPH, xanthine oxidase (XO), Fenton reaction) and exogenous (e.g., smoking, radiation, drugs, pollution) sources of ROS (superoxide radical, hydrogen peroxide, hydroxyl radical, peroxyl radical, hypochlorous acid, peroxynitrite). Attention has been given to the first-line antioxidant defense system provided by SOD, CAT, and GPx. The chemical and molecular mechanisms of antioxidant enzymes, enzyme-related diseases (cancer, cardiovascular, lung, metabolic, and neurological diseases), and the role of enzymes (e.g., GPx4) in cellular processes such as ferroptosis are discussed. Potential therapeutic applications of enzyme mimics and recent progress in metal-based (copper, iron, cobalt, molybdenum, cerium) and nonmetal (carbon)-based nanomaterials with enzyme-like activities (nanozymes) are also discussed. Moreover, attention has been given to the mechanisms of action of low-molecular-weight antioxidants (vitamin C (ascorbate), vitamin E (alpha-tocopherol), carotenoids (e.g., β-carotene, lycopene, lutein), flavonoids (e.g., quercetin, anthocyanins, epicatechin), and glutathione (GSH)), the activation of transcription factors such as Nrf2, and the protection against chronic diseases. Given that there is a discrepancy between preclinical and clinical studies, approaches that may result in greater pharmacological and clinical success of low-molecular-weight antioxidant therapies are also subject to discussion.
Collapse
Affiliation(s)
- Klaudia Jomova
- Department of Chemistry, Faculty of Natural Sciences, Constantine The Philosopher University in Nitra, Nitra, 949 74, Slovakia
| | - Suliman Y Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Saleh H Alwasel
- Zoology Department, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Sciences, University of Hradec Kralove, 50005, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Valko
- Faculty of Chemical and Food Technology, Slovak University of Technology, 812 37, Bratislava, Slovakia.
| |
Collapse
|
8
|
Borović Šunjić S, Jaganjac M, Vlainić J, Halasz M, Žarković N. Lipid Peroxidation-Related Redox Signaling in Osteosarcoma. Int J Mol Sci 2024; 25:4559. [PMID: 38674143 PMCID: PMC11050283 DOI: 10.3390/ijms25084559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Oxidative stress and lipid peroxidation play important roles in numerous physiological and pathological processes, while the bioactive products of lipid peroxidation, lipid hydroperoxides and reactive aldehydes, act as important mediators of redox signaling in normal and malignant cells. Many types of cancer, including osteosarcoma, express altered redox signaling pathways. Such redox signaling pathways protect cancer cells from the cytotoxic effects of oxidative stress, thus supporting malignant transformation, and eventually from cytotoxic anticancer therapies associated with oxidative stress. In this review, we aim to explore the status of lipid peroxidation in osteosarcoma and highlight the involvement of lipid peroxidation products in redox signaling pathways, including the involvement of lipid peroxidation in osteosarcoma therapies.
Collapse
Affiliation(s)
- Suzana Borović Šunjić
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| | | | | | | | - Neven Žarković
- Laboratory for Oxidative Stress, Division of Molecular Medicine, Ruder Boskovic Institute, Bijenicka 54, 10000 Zagreb, Croatia; (M.J.); (J.V.); (M.H.)
| |
Collapse
|
9
|
Singh D, Singh R, Akindele AJ. Therapeutic potential of nicorandil beyond anti-anginal drug: A review on current and future perspectives. Heliyon 2024; 10:e28922. [PMID: 38617945 PMCID: PMC11015415 DOI: 10.1016/j.heliyon.2024.e28922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/16/2024] Open
Abstract
Nicorandil (NIC) is a well-known anti-anginal agent, which has been recommended as one of the second-line treatments for chronic stable angina as justified by the European guidelines. It shows an efficacy equivalent to that of classic anti-anginal agents. NIC has also been used clinically in various cardiovascular diseases such as variant or unstable angina and reperfusion-induced damage following coronary angioplasty or thrombolysis. Different mechanisms have been involved in the protective effects of nicorandil in various diseases, including opening of adenosine triphosphate-sensitive potassium (KATP) channel and donation of nitric oxide (NO). In recent years, NIC has been found to show numerous pharmacological activities such as neuroprotective, nephroprotective, hepatoprotective, cardioprotective, and testicular protective effects, among other beneficial effects on the body. The present review dwells on the pharmacological potentials of NIC beyond its anti-anginal action.
Collapse
Affiliation(s)
- Dhirendra Singh
- M.M College of Pharmacy, Maharishi Markandeshwar Mullana, Ambala, Haryana, India
| | - Randhir Singh
- Departments of Pharmacology, Central University of Punjab, Bhatinda, Punjab, India
| | - Abidemi James Akindele
- Department of Pharmacology, Therapeutics & Toxicology, Faculty of Basic Medical Sciences, College of Medicine, University of Lagos, Idi-Araba, P.M.B. 12003 Lagos, Nigeria
| |
Collapse
|
10
|
Mah CK, Ahmed N, Lopez NA, Lam DC, Pong A, Monell A, Kern C, Han Y, Prasad G, Cesnik AJ, Lundberg E, Zhu Q, Carter H, Yeo GW. Bento: a toolkit for subcellular analysis of spatial transcriptomics data. Genome Biol 2024; 25:82. [PMID: 38566187 PMCID: PMC11289963 DOI: 10.1186/s13059-024-03217-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
The spatial organization of molecules in a cell is essential for their functions. While current methods focus on discerning tissue architecture, cell-cell interactions, and spatial expression patterns, they are limited to the multicellular scale. We present Bento, a Python toolkit that takes advantage of single-molecule information to enable spatial analysis at the subcellular scale. Bento ingests molecular coordinates and segmentation boundaries to perform three analyses: defining subcellular domains, annotating localization patterns, and quantifying gene-gene colocalization. We demonstrate MERFISH, seqFISH + , Molecular Cartography, and Xenium datasets. Bento is part of the open-source Scverse ecosystem, enabling integration with other single-cell analysis tools.
Collapse
Affiliation(s)
- Clarence K Mah
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center, La Jolla, CA, USA
| | - Noorsher Ahmed
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center, La Jolla, CA, USA
| | - Nicole A Lopez
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Dylan C Lam
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Sanford Stem Cell Institute Innovation Center, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Avery Pong
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
| | - Alexander Monell
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Colin Kern
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Yuanyuan Han
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Gino Prasad
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Anthony J Cesnik
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Emma Lundberg
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Pathology, Stanford University, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Quan Zhu
- Center for Epigenomics, University of California San Diego, La Jolla, CA, USA
| | - Hannah Carter
- Division of Medical Genetics, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA.
- Sanford Stem Cell Institute Innovation Center, La Jolla, CA, USA.
- Stem Cell Program, University of California San Diego, La Jolla, CA, USA.
- Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
11
|
Rajaeinejad M, Parhizkar-Roudsari P, Khoshfetrat M, Kazemi-Galougahi MH, Mosaed R, Arjmand R, Mohsenizadeh SA, Arjmand B. Management of Fluoropyrimidine-Induced Cardiac Adverse Outcomes Following Cancer Treatment. Cardiovasc Toxicol 2024; 24:184-198. [PMID: 38324115 DOI: 10.1007/s12012-024-09834-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 01/20/2024] [Indexed: 02/08/2024]
Abstract
Advancements in cancer treatments have improved survival rates but have also led to increased cardiotoxicities, which can cause adverse cardiovascular events or worsen pre-existing conditions. Herein, cardiotoxicity is a severe adverse effect of 5-fluorouracil (5-FU) therapy in cancer patients, with reported incidence rates ranging from 1 to 20%. Some studies have also suggested subclinical effects and there are reports which have documented instances of cardiac arrest or sudden death during 5-FU treatment, highlighting the importance of timely management of cardiovascular symptoms. However, despite being treated with conventional medical approaches for this cardiotoxicity, a subset of patients has demonstrated suboptimal or insufficient responses. The frequent use of 5-FU in chemotherapy and its association with significant morbidity and mortality indicates the need for a greater understanding of 5-FU-associated cardiotoxicity. It is essential to reduce the adverse effects of anti-tumor medications while preserving their efficacy, which can be achieved through drugs that mitigate toxicity associated with these drugs. Underpinning cardiotoxicity associated with 5-FU therapy also has the potential to offer valuable guidance in pinpointing pharmacological approaches that can be employed to prevent or ameliorate these effects. The present study provides an overview of management strategies for cardiac events induced by fluoropyrimidine-based cancer treatments. The review encompasses the underlying molecular and cellular mechanisms of cardiotoxicity, associated risk factors, and diagnostic methods. Additionally, we provide information on several available treatments and drug choices for angina resulting from 5-FU exposure, including nicorandil, ranolazine, trimetazidine, ivabradine, and sacubitril-valsartan, which have demonstrated potential in mitigating or protecting against chemotherapy-induced adverse cardiac effects.
Collapse
Affiliation(s)
- Mohsen Rajaeinejad
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar-Roudsari
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical sciences, Tehran, Iran
- Iranian Cancer Control Center, Tehran, Iran
| | - Mehran Khoshfetrat
- Department of Cardiology, School of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | | | - Reza Mosaed
- Infection Diseases Research Center, AJA University of Medical Sciences, Tehran, Iran
- Student Research Committee, AJA University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Babak Arjmand
- Department of Internal Medicine, School of Medicine, AJA University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Fahmy MI, Khalaf SS, Yassen NN, Sayed RH. Nicorandil attenuates cisplatin-induced acute kidney injury in rats via activation of PI3K/AKT/mTOR signaling cascade and inhibition of autophagy. Int Immunopharmacol 2024; 127:111457. [PMID: 38160566 DOI: 10.1016/j.intimp.2023.111457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/18/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Cisplatin is a highly effective antitumor agent, but its clinical use is limited due to critical adverse reactions including acute kidney injury (AKI). Nicorandil is an approved antianginal agent decreasing ischemia by potassium channel opening. The aim of this study was to investigate the nephroprotective effects of nicorandil and the possible role of activating PI3K/AKT/mTOR pathway in ameliorating cisplatin-induced AKI. Forty male Wistar rats were randomly allocated in 4 groups (n = 10). Group I: rats received the vehicle and served as control. Group II: rats received a single dose of cisplatin (7 mg/kg, i.p) on the 10th day of the experiment and served as AKI group. Group III: rats received cisplatin as in group II and nicorandil (3 mg/kg/day, p.o) for 14 days. Group IV: rats received cisplatin and nicorandil as in group III as well as wortmannin (15 μg/kg, i.v) for 14 days. Nicorandil exhibited obvious nephroprotective effects via the activation of PI3K/AKT/mTOR pathway. Moreover, nicorandil succeed to reduce the expression of the autophagy markers beclin-1 and LC-3II/I. In parallel, nicorandil showed anti-inflammatory and antiapoptotic effects via inhibition of NF-κB inflammatory pathway and depression of Bax/Bcl-2 ratio. Wortmannin, the PI3K inhibitor, was used to demonstrate the proposed pathway. Our study showed the nephroprotective effects of nicorandil in cisplatin-induced AKI in rats via activation of PI3K/AKT/mTOR signaling cascade, inhibition of autophagy, anti-inflammatory, anti-apoptotic, anti-oxidant activities. Thus, nicorandil could represent a promising renoprotective agent in cancer patients treated with cisplatin.
Collapse
Affiliation(s)
- Mohamed I Fahmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr University for Science and Technology (MUST), 12585, Giza, Egypt
| | - Samar S Khalaf
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, 11785, Cairo, Egypt
| | - Noha N Yassen
- Pathology Department, National Research Centre, El-Buhouth St., Dokki, Cairo 12622, Egypt
| | - Rabab H Sayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; School of Pharmacy, Newgiza University, Giza, Egypt.
| |
Collapse
|
13
|
Lee AS, Hung CL, Lai TS, Chung CH. Investigation of the Therapeutic Potential of Organic Nitrates in Mortality Reduction Following Acute Myocardial Infarction in Hyperlipidemia Patients: A Population-Based Cohort Study. J Pers Med 2024; 14:124. [PMID: 38276246 PMCID: PMC10820449 DOI: 10.3390/jpm14010124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Dyslipidemia is a known risk factor for cardiac dysfunction, and lipid-lowering therapy with statins reduces symptoms and reduces hospitalization related to left ventricular heart failure. Acute myocardial infarction (AMI) is a cause of morbidity and mortality worldwide. In this study, we aimed to determine the real-world AMI treatment drug combination used in Taiwan by using the NHI database to understand the treatment outcomes of current clinical medications prescribed for hyperlipidemia patients with AMI. METHODS Using the NHI Research Database (NHIRD), we conducted a retrospective cohort study that compared different treatments for AMI in hyperlipidemia patients in the period from 2016 to 2018. We compared the survival outcomes between those treated with and without organic nitrates in this cohort. RESULTS We determined that most hyperlipidemia patients were aged 61-70 y (29.95-31.46% from 2016 to 2018), and the annual AMI risk in these patients was <1% (0.42-0.68% from 2016 to 2018). The majority of hyperlipidemia patients with AMI were women, and 25.64% were aged 61-70 y. Receiving organic nitrates was associated with lower all-cause mortality rates (HR, 95% CI, p-value = 0.714, 0.674-0.756, p < 0.0001). After multivariate analysis, the overall survival in four groups (beta-blockers, beta-blocker + diuretics, diuretics, and others) receiving an organic nitrate treatment was significantly higher than in the groups that were not treated with organic nitrates (beta-blockers HR = 0.536, beta-blocker + diuretics HR = 0.620, diuretics HR = 0.715, and others HR = 0.690). CONCLUSIONS The survival benefit was significantly greater in patients treated with organic nitrates than in those treated without organic nitrates, especially when combined with diuretics. A combination of organic nitrates could be a better treatment option for hyperlipidemia patients with AMI.
Collapse
Affiliation(s)
- An-Sheng Lee
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan;
| | - Chung-Lieh Hung
- Division of Cardiology, Departments of Internal Medicine, MacKay Memorial Hospital, Taipei 10449, Taiwan;
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan;
| | - Thung-Shen Lai
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City 25245, Taiwan;
| | - Ching-Hu Chung
- Department of Medicine, Mackay Medical College, New Taipei City 25245, Taiwan;
| |
Collapse
|
14
|
Nagarajan M, Maadurshni GB, Manivannan J. Exposure to low dose of Bisphenol A (BPA) intensifies kidney oxidative stress, inflammatory factors expression and modulates Angiotensin II signaling under hypertensive milieu. J Biochem Mol Toxicol 2024; 38:e23533. [PMID: 37718616 DOI: 10.1002/jbt.23533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/18/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
Humans are constantly exposed to low concentrations of ubiquitous environmental pollutant, Bisphenol A (BPA). Due to the prevalence of hypertension (one of the major risk factors of cardiovascular disease [CVD]) in the population, it is necessary to explore the adverse effect of BPA under hypertension associated pathogenic milieu. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME) induced hypertensive Wistar rats to low dose BPA (50 μg/kg) for 30 days period. In tissue samples immunohistochemistry, real-time quantitative polymerase chain reaction and enzymatic assays were conducted. Moreover, studies on primary kidney cell culture were employed to explore the impact of low dose of BPA exposure at nanomolar level (20-80 nM range) on renal cells through various fluorescence assays. The observed results illustrate that BPA exposure potentiates/aggravates hypertension induced tissue abnormalities (renal fibrosis), oxidative stress (ROS generation), elevated angiotensin-converting enzyme activity, malfunction of the antioxidant and tricarboxylic acid cycle enzymes, tissue lipid abnormalities and inflammatory factor expression (both messenger RNA and protein level of TNF-α and IL-6). Further, in vitro exposure of nM levels of BPA to primary kidney cells modulates oxidative stress (both superoxide and total ROS), mitochondrial physiology (reduced mitochondrial transmembrane potential-∆ψm) and lipid peroxidation in a dose dependent manner. In addition, angiotensin II induced ROS generation was aggravated further by BPA during coexposure in kidney cells. Therefore, during risk assessment, a precise investigation on BPA exposure in hypertensive (CVD vulnerable) populations is highly suggested.
Collapse
Affiliation(s)
- Manigandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
15
|
Yun C, Kim SH, Kwon D, Byun MR, Chung KW, Lee J, Jung YS. Doxorubicin Attenuates Free Fatty Acid-Induced Lipid Accumulation via Stimulation of p53 in HepG2 Cells. Biomol Ther (Seoul) 2024; 32:94-103. [PMID: 38148555 PMCID: PMC10762281 DOI: 10.4062/biomolther.2023.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is characterized by excessive accumulation of fat in the liver, and there is a global increase in its incidence owing to changes in lifestyle and diet. Recent findings suggest that p53 is involved in the development of non-alcoholic fatty liver disease; however, the association between p53 expression and the disease remains unclear. Doxorubicin, an anticancer agent, increases the expression of p53. Therefore, this study aimed to investigate the role of doxorubicin-induced p53 upregulation in free fatty acid (FFA)-induced intracellular lipid accumulation. HepG2 cells were pretreated with 0.5 μg/mL of doxorubicin for 12 h, followed by treatment with FFA (0.5 mM) for 24 h to induce steatosis. Doxorubicin pretreatment upregulated p53 expression and downregulated the expression of endoplasmic reticulum stress- and lipid synthesis-associated genes in the FFA -treated HepG2 cells. Additionally, doxorubicin treatment upregulated the expression of AMP-activated protein kinase, a key modulator of lipid metabolism. Notably, siRNA-targeted p53 knockdown reversed the effects of doxorubicin in HepG2 cells. Moreover, doxorubicin treatment suppressed FFA -induced lipid accumulation in HepG2 spheroids. Conclusively, these results suggest that doxorubicin possesses potential application for the regulation of lipid metabolism by enhance the expression of p53 an in vitro NAFLD model.
Collapse
Affiliation(s)
- Chawon Yun
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Sou Hyun Kim
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Doyoung Kwon
- College of Pharmacy, Jeju Research Institute of Pharmaceutical Sciences, Jeju National University, Jeju 63243, Republic of Korea
| | - Mi Ran Byun
- College of Pharmacy, Daegu Catholic University, Gyeongsan 38430, Republic of Korea
| | - Ki Wung Chung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Young-Suk Jung
- Department of Pharmacy, College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
16
|
Hassan HA, Ahmed HS, Hassan DF. Free radicals and oxidative stress: Mechanisms and therapeutic targets. Hum Antibodies 2024; 32:151-167. [PMID: 39031349 DOI: 10.3233/hab-240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
BACKGROUND Free radicals are small extremely reactive species that have unpaired electrons. Free radicals include subgroups of reactive species, which are all a product of regular cellular metabolism. Oxidative stress happens when the free radicals production exceeds the capacity of the antioxidant system in the body's cells. OBJECTIVE The current review clarifies the prospective role of antioxidants in the inhibition and healing of diseases. METHODS Information on oxidative stress, free radicals, reactive oxidant species, and natural and synthetic antioxidants was obtained by searching electronic databases like PubMed, Web of Science, and Science Direct, with articles published between 1987 and 2023 being included in this review. RESULTS Free radicals exhibit a dual role in living systems. They are toxic byproducts of aerobic metabolism that lead to oxidative injury and tissue disorders and act as signals to activate appropriate stress responses. Endogenous and exogenous sources of reactive oxygen species are discussed in this review. Oxidative stress is a component of numerous diseases, including diabetes mellitus, atherosclerosis, cardiovascular disease, Alzheimer's disease, Parkinson's disease, and cancer. Although various small molecules assessed as antioxidants have shown therapeutic prospects in preclinical studies, clinical trial outcomes have been inadequate. Understanding the mechanisms through which antioxidants act, where, and when they are active may reveal a rational approach that leads to more tremendous pharmacological success. This review studies the associations between oxidative stress, redox signaling, and disease, the mechanisms through which oxidative stress can donate to pathology, the antioxidant defenses, the limits of their effectiveness, and antioxidant defenses that can be increased through physiological signaling, dietary constituents, and probable pharmaceutical interference. Prospective clinical applications of enzyme mimics and current progress in metal- and non-metal-based materials with enzyme-like activities and protection against chronic diseases have been discussed. CONCLUSION This review discussed oxidative stress as one of the main causes of illnesses, as well as antioxidant systems and their defense mechanisms that can be useful in inhibiting these diseases. Thus, the positive and deleterious effects of antioxidant molecules used to lessen oxidative stress in numerous human diseases are discussed. The optimal level of vitamins and minerals is the amount that achieves the best feed benefit, best growth rate, and health, including immune efficiency, and provides sufficient amounts to the body.
Collapse
|
17
|
Nagarajan M, Maadurshni GB, Manivannan J. Bisphenol A (BPA) exposure aggravates hepatic oxidative stress and inflammatory response under hypertensive milieu - Impact of low dose on hepatocytes and influence of MAPK and ER stress pathways. Food Chem Toxicol 2024; 183:114197. [PMID: 38029875 DOI: 10.1016/j.fct.2023.114197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/27/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
Human exposure to the hazardous chemical, Bisphenol A (BPA), is almost ubiquitous. Due to the prevalence of hypertension (CVD risk factor) in the aged human population, it is necessary to explore its adverse effect in hypertensive subjects. The current study exposed the Nω-nitro-l-arginine methyl ester (L-NAME) induced hypertensive Wistar rats to human exposure relevant low dose of BPA (50 μg/kg) for 30 days period. The liver biochemical parameters, histopathology, immunohistochemistry, gene expression (RT-qPCR), trace elements (ICP-MS), primary rat hepatocytes cell culture and metabolomic (1H NMR) assessments were performed. Results illustrate that BPA exposure potentiates/aggravates hypertension induced tissue abnormalities (hepatic fibrosis), oxidative stress, ACE activity, malfunction of the antioxidant system, lipid abnormalities and inflammatory factor (TNF-α and IL-6) expression. Also, in cells, BPA increased ROS generation, mitochondrial dysfunction and lipid peroxidation without any impact on cytotoxicity and caspase 3 and 9 activation. Notably, BPA exposure modulate lipid metabolism (cholesterol and fatty acid) in primary hepatocytes. Finally, the influence of ERK1/2, p38MAPK, ER stress and oxidative stress during relatively high dose of BPA elicited cytotoxicity was observed. Therefore, a precise hazardous risk investigation of BPA exposure in hypertensive populations is highly recommended.
Collapse
Affiliation(s)
- Manikandan Nagarajan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Jeganathan Manivannan
- Environmental Health and Toxicology Laboratory, Department of Environmental Sciences, School of Life Sciences, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
18
|
Alharbi FK, Alshehri ZS, Alshehri FF, Alhajlah S, Khalifa HA, Dahran N, Ghonimi WAM. The role of hesperidin as a cardioprotective strategy against doxorubicin-induced cardiotoxicity: The antioxidant, anti-inflammatory, antiapoptotic, and cytoprotective potentials. Open Vet J 2023; 13:1718-1728. [PMID: 38292716 PMCID: PMC10824083 DOI: 10.5455/ovj.2023.v13.i12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/12/2023] [Indexed: 02/01/2024] Open
Abstract
Background Doxorubicin (DOX), an anthracycline antibiotic, is a powerful chemotherapeutic agent effective against multiple types of cancer, particularly lung, breast, bladder and hematologic neoplasia (lymphomas and leukemia). However, its therapeutic usage is restricted by its known cardiotoxicity, which is associated with the production of oxidative stress. Enhancing antioxidant capacity represents a promising approach to mitigate DOX-induced cardiotoxicity. Hesperidin (HES), a citrus bioflavonoid, possesses several pharmacological effects, such as anti-inflammatory and antioxidant characteristics. Aim This study was designed to evaluate the cardiotoxicity of DOX and assess the possible cardioprotective role of HES. Methods Groups of Wistar rats were either treated with DOX (4 mg/kg. bw., once a week for five consecutive weeks, intraperitoneally) or received co-treatment with HES (100 mg/kg. bw./day in distilled water, 5 days in a week for five consecutive weeks, administered orally). Heart and blood samples were obtained for histological, immunohistochemical, and biochemical assessments. Results DOX administration resulted in severe cardiotoxicity, as evidenced by significant elevations in cardiac biomarkers, including Troponin I (CTnI), Creatine kinase (CK-Total), Creatine kinase isoenzyme-MB (CK-MB), lactate dehydrogenase (LDH), and Aspartate aminotransferase (AST). DOX also elevated pro-inflammatory cytokines, such as Interferon γ (IFN-γ), Interleukin 1β (IL-1β), and Tumor necrosis factor α (TNF-α). Furthermore, DOX-induced oxidative stress and substantially reduced the levels of antioxidant enzymes, including Glutathione peroxidase (GPX), Superoxide dismutase (SOD), and Catalase (CAT). Histopathologically, DOX caused severe Zenker's necrosis, cardiomyocyte disarray, sarcoplasmic vacuolizations, cardiomyocyte congestion, and inflammatory cell infiltration. Immunohistochemically, DOX exhibited extensive apoptosis, as indicated by strong positive immuno-localization against anti-caspase-3 antibody. In contrast, co-treatment with HES protected cardiac tissues against cardiotoxicity of DOX, as indicated by the amelioration of histological abnormalities and the normalization of biochemical values. Conclusion We can conclude that DOX induces severe cardiotoxicity characterized by oxidative stress, inflammation, pathological alterations, and apoptosis. Co-treatment with HES demonstrates significant cardioprotective effects by virtue of its potent anti-inflammatory, antioxidant, cytoprotective, and antiapoptotic characteristics.
Collapse
Affiliation(s)
- Fawiziah Khalaf Alharbi
- Department of Biology, College of Science, Buraydah, Qassim University, Buraydah, Saudi Arabia
| | - Zafer S. Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Faez F. Alshehri
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Hesham A. Khalifa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Naief Dahran
- Department of Anatomy, Faculty of Medicine, University of Jeddah, Jeddah, Saudi Arabia
| | - Wael A. M. Ghonimi
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
19
|
Akturk G, Micili SC, Gursoy Doruk O, Hocaoglu N, Akan P, Ergur BU, Ahmed S, Kalkan S. Effects of nicorandil on QT prolongation and myocardial damage caused by citalopram in rats. Biotech Histochem 2023; 98:479-491. [PMID: 37466068 DOI: 10.1080/10520295.2023.2233417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Citalopram is a selective serotonin re-uptake inhibitor (SSRI) antidepressant; it exhibits the greatest cardiotoxic effect among SSRIs. Citalopram can cause drug-induced long QT syndrome (LQTS) and ventricular arrhythmias. We investigated the protective effect of nicorandil, a selective mitochondrial KATP (mito-KATP) channel opener, on LQTS and myocardial damage caused by citalopram in male rats. In a preliminary study, we determined that the minimum citalopram dose that prolonged the QT interval was 102 mg/kg injected intraperitoneally. For the main study, rats were divided randomly into five experimental groups: untreated control, normal saline + citalopram, nicorandil + citalopram, 5-hydroxydecanoate (5-HD) + citalopram, 5-HD + nicorandil + citalopram. Biochemical and histologic data from blood and heart tissue samples from six untreated control rats were evaluated. Electrocardiographic parameters including QRS duration, QT interval, corrected QT interval (QTc) and heart rate (HR) were assessed, and biochemical parameters including malondialdehyde, reduced glutathione, glutathione peroxidase, superoxide dismutase were measured. We also performed histomorphologic and immunohistochemical examination of heart tissue. Citalopram prolonged QT-QTc intervals significantly and increased significantly the histomorphologic score and proportion of apoptotic cells, but produced no differences in the oxidant and antioxidant parameters. Nicorandil did not prevent citalopram induced QT-QTc interval prolongation and produced no significant changes in oxidant and antioxidant parameters; however, it did reduce histologic damage and apoptosis caused by citalopram.
Collapse
Affiliation(s)
- Gozde Akturk
- Department of Medical Pharmacology, Dokuz Eylul University School of Medicine, Izmir, Turkey
- Department of Medical Pharmacology, Mustafa Kemal University School of Medicine, Hatay, Turkey
| | - Serap Cilaker Micili
- Department of Histology and Embryology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Ozlem Gursoy Doruk
- Department of Medical Biochemistry, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Nil Hocaoglu
- Department of Medical Pharmacology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Pinar Akan
- Department of Medical Biochemistry, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Bekir Ugur Ergur
- Department of Histology and Embryology, Dokuz Eylul University School of Medicine, Izmir, Turkey
- Department of Histology and Embryology, Kyrenia University School of Medicine, Kyrenia, Cyprus
| | - Samar Ahmed
- Department of Biochemistry, Dokuz Eylul University Graduate School of Health Sciences, Izmir, Turkey
| | - Sule Kalkan
- Department of Medical Pharmacology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| |
Collapse
|
20
|
Walling B, Bharali P, Ramachandran D, Viswanathan K, Hazarika S, Dutta N, Mudoi P, Manivannan J, Manjunath Kamath S, Kumari S, Vishwakarma V, Sorhie V, Gogoi B, Acharjee SA, Alemtoshi. In-situ biofabrication of bacterial nanocellulose (BNC)/graphene oxide (GO) nano-biocomposite and study of its cationic dyes adsorption properties. Int J Biol Macromol 2023; 251:126309. [PMID: 37573902 DOI: 10.1016/j.ijbiomac.2023.126309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/29/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
In the present study, bacterial nanocellulose/graphene oxide nano-biocomposites (BNC-GO-NBCs) were fabricated by Komagataeibacter saccharivorans NUWB1 using an in-situ method involving three time-dependent approaches. Physicochemical studies showed that the chosen dried BNC-GO-NBC possessed a three-dimensional interconnected porous structure of BNC with GO layers embedded within the BNC fibrils. BNC-GO-NBC had a crystallinity index of 74.21 %, higher thermostability up to 380 °C and could withstand a tensile load of 84.72 MPa. N2 adsorption-desorption isotherm of the BNC-GO-NBC was found to be of type IV, suggesting a mesoporous type structure with a total pore volume and surface area of 6.232e-04 cc g-1 and 10.498 m2. BNC-GO-NBC exhibited remarkable adsorption capacity for two cationic dyes, Rhodamine B (RhB) and Acridine Orange (AO), and the adsorption data conformed well to the Langmuir isotherm (R2 = 0.99) and pseudo-second-order model. Thermodynamic studies indicated that the adsorption process was spontaneous and endothermic. Additionally, the BNC-GO-NBC displayed the potential for regeneration, with the ability to be recycled up to five times. Further, the antibacterial activity, cell cytotoxicity and oxidative stress assays of the BNC-GO-NBC revealed its non-cytotoxic nature. The findings of the present investigation evidently suggest the potentiality of BNC-GO-NBC in the application of dye adsorption and other environmental applications.
Collapse
Affiliation(s)
- Bendangtula Walling
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto 798627, Nagaland, India
| | - Pranjal Bharali
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto 798627, Nagaland, India.
| | - D Ramachandran
- Centre for Nanoscience & Nanotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai 600119, Tamil Nadu, India
| | - K Viswanathan
- Centre for Nanoscience & Nanotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai 600119, Tamil Nadu, India
| | - Swapnali Hazarika
- Chemical Engineering Group, CSIR-North East Institute of Science & Technology, Jorhat 785006, Assam, India
| | - Nipu Dutta
- Department of Chemical Science, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Pronab Mudoi
- Department of Molecular Biology & Biotechnology, Tezpur University, Napaam, Tezpur 784028, Assam, India
| | - Jeganathan Manivannan
- Environmental Health & Toxicology Laboratory, Department of Environmental Science, Bharathiar University, Tamil Nadu, India
| | - S Manjunath Kamath
- Centre for Nanoscience & Nanotechnology, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Rajiv Gandhi Road, Chennai 600119, Tamil Nadu, India
| | - Sony Kumari
- Department of Applied Biology, University of Science and Technology, Meghalaya, Ri Bhoi, Baridua 793101, India
| | - Vinita Vishwakarma
- Centre for Nanoscience and Nanotechnology, Galgotias University, Greater Noida, NCR Delhi, India
| | - Viphrezolie Sorhie
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto 798627, Nagaland, India
| | - Bhagyudoy Gogoi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto 798627, Nagaland, India
| | - Shiva Aley Acharjee
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto 798627, Nagaland, India
| | - Alemtoshi
- Applied Environmental Microbial Biotechnology Laboratory, Department of Environmental Science, Nagaland University, Lumami, Zunheboto 798627, Nagaland, India
| |
Collapse
|
21
|
Bedair AF, Wahid A, El-Mezayen NS, El-Yazbi AF, Khalil HA, Hassan NW, Afify EA. Nicorandil/ morphine crosstalk accounts for antinociception and hepatoprotection in hepatic fibrosis in rats: Distinct roles of opioid/cGMP and NO/KATP pathways. Biomed Pharmacother 2023; 165:115068. [PMID: 37392650 DOI: 10.1016/j.biopha.2023.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023] Open
Abstract
Previous report indicated that nicorandil potentiated morphine antinociception and attenuated hepatic injury in liver fibrotic rats. Herein, the underlying mechanisms of nicorandil/morphine interaction were investigated using pharmacological, biochemical, histopathological, and molecular docking studies. Male Wistar rats were injected intraperitoneally (i.p.) with carbon tetrachloride (CCl4, 40%, 2 ml/kg) twice weekly for 5 weeks to induce hepatic fibrosis. Nicorandil (15 mg/kg/day) was administered per os (p.o.) for 14 days in presence of the blockers; glibenclamide (KATP channel blocker, 5 mg/kg, p.o.), L-NG-nitro-arginine methyl ester (L-NAME, nitric oxide synthase inhibitor, 15 mg/kg, p.o.), methylene blue (MB, guanylyl cyclase inhibitor, 2 mg/kg, i.p.) and naltrexone (opioid antagonist, 20 mg/kg, i.p.). At the end of the 5th week, analgesia was evaluated using tail flick and formalin tests along with biochemical determinations of liver function tests, oxidative stress markers and histopathological examination of liver tissues. Naltrexone and MB inhibited the antinociceptive activity of the combination. Furthermore, combined nicorandil/morphine regimen attenuated the release of endogenous peptides. Docking studies revealed a possible interaction of nicorandil on µ, κ and δ opioid receptors. Nicorandil/morphine combination protected against liver damage as evident by decreased liver enzymes, liver index, hyaluronic acid, lipid peroxidation, fibrotic insults, and increased superoxide dismutase activity. Nicorandil/morphine hepatoprotection and antioxidant activity were inhibited by glibenclamide and L-NAME but not by naltrexone or MB. These findings implicate opioid activation/cGMP versus NO/KATP channels in the augmented antinociception, and hepatoprotection, respectively, of the combined therapy and implicate provoked cross talk by nicorandil and morphine on opioid receptors and cGMP signaling pathway. That said, nicorandil/morphine combination provides a potential multitargeted therapy to alleviate pain and preserve liver function.
Collapse
Affiliation(s)
- Asser F Bedair
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Nesrine S El-Mezayen
- Department of Pharmacology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Amira F El-Yazbi
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Hadeel A Khalil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Nayera W Hassan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
22
|
Uruski P, Matuszewska J, Leśniewska A, Rychlewski D, Niklas A, Mikuła-Pietrasik J, Tykarski A, Książek K. An integrative review of nonobvious puzzles of cellular and molecular cardiooncology. Cell Mol Biol Lett 2023; 28:44. [PMID: 37221467 DOI: 10.1186/s11658-023-00451-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/17/2023] [Indexed: 05/25/2023] Open
Abstract
Oncologic patients are subjected to four major treatment types: surgery, radiotherapy, chemotherapy, and immunotherapy. All nonsurgical forms of cancer management are known to potentially violate the structural and functional integrity of the cardiovascular system. The prevalence and severity of cardiotoxicity and vascular abnormalities led to the emergence of a clinical subdiscipline, called cardiooncology. This relatively new, but rapidly expanding area of knowledge, primarily focuses on clinical observations linking the adverse effects of cancer therapy with deteriorated quality of life of cancer survivors and their increased morbidity and mortality. Cellular and molecular determinants of these relations are far less understood, mainly because of several unsolved paths and contradicting findings in the literature. In this article, we provide a comprehensive view of the cellular and molecular etiology of cardiooncology. We pay particular attention to various intracellular processes that arise in cardiomyocytes, vascular endothelial cells, and smooth muscle cells treated in experimentally-controlled conditions in vitro and in vivo with ionizing radiation and drugs representing diverse modes of anti-cancer activity.
Collapse
Affiliation(s)
- Paweł Uruski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Julia Matuszewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Aleksandra Leśniewska
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Daniel Rychlewski
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Arkadiusz Niklas
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Justyna Mikuła-Pietrasik
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Andrzej Tykarski
- Department of Hypertensiology, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland
| | - Krzysztof Książek
- Department of Pathophysiology of Ageing and Civilization Diseases, Poznań University of Medical Sciences, Długa ½ Str., 61-848, Poznan, Poland.
| |
Collapse
|
23
|
Abdelgawad IY, Agostinucci K, Sadaf B, Grant MKO, Zordoky BN. Metformin mitigates SASP secretion and LPS-triggered hyper-inflammation in Doxorubicin-induced senescent endothelial cells. FRONTIERS IN AGING 2023; 4:1170434. [PMID: 37168843 PMCID: PMC10164964 DOI: 10.3389/fragi.2023.1170434] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023]
Abstract
Introduction: Doxorubicin (DOX), a chemotherapeutic drug, induces senescence and increases the secretion of senescence-associated secretory phenotype (SASP) in endothelial cells (ECs), which contributes to DOX-induced inflammaging. Metformin, an anti-diabetic drug, demonstrates senomorphic effects on different models of senescence. However, the effects of metformin on DOX-induced endothelial senescence have not been reported before. Senescent ECs exhibit a hyper-inflammatory response to lipopolysachharide (LPS). Therefore, in our current work, we identified the effects of metformin on DOX-induced endothelial senescence and LPS-induced hyper-inflammation in senescent ECs. Methods: ECs were treated with DOX ± metformin for 24 h followed by 72 h incubation without DOX to establish senescence. Effects of metformin on senescence markers expression, SA-β-gal activity, and SASP secretion were assessed. To delineate the molecular mechanisms, the effects of metformin on major signaling pathways were determined. The effect of LPS ± metformin was determined by stimulating both senescent and non-senescent ECs with LPS for an additional 24 h. Results: Metformin corrected DOX-induced upregulation of senescence markers and decreased the secretion of SASP factors and adhesion molecules. These effects were associated with a significant inhibition of the JNK and NF-κB pathway. A significant hyper-inflammatory response to LPS was observed in DOX-induced senescent ECs compared to non-senescent ECs. Metformin blunted LPS-induced upregulation of pro-inflammatory SASP factors. Conclusion: Our study demonstrates that metformin mitigates DOX-induced endothelial senescence phenotype and ameliorates the hyper-inflammatory response to LPS. These findings suggest that metformin may protect against DOX-induced vascular aging and endothelial dysfunction and ameliorate infection-induced hyper-inflammation in DOX-treated cancer survivors.
Collapse
Affiliation(s)
| | | | | | | | - Beshay N. Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN, United States
| |
Collapse
|
24
|
Zaky DA, Sayed RH, Mohamed YS. Liraglutide limits the immunogenic cell death-mediated ROS propagation and PI3K/AKT inactivation after doxorubicin-induced gonadotoxicity in rats: Involvement of the canonical Hedgehog trajectory. Int Immunopharmacol 2023; 119:110212. [PMID: 37094542 DOI: 10.1016/j.intimp.2023.110212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/11/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023]
Abstract
Chemotherapy-accompanied reproductive dysfunction has lately begun to draw the attention of the scientific community owing to the irreversible impact on the patient's quality of life. Here we tended to investigate the potential role of liraglutide (LRG) in modulating the canonical Hedgehog (Hh) signaling in doxorubicin (DXR)-induced gonadotoxicity in rats. Female virgin Wistar rats were divided into 4 groups; control, DXR-treated (25 mg/kg, single i.p. injection), LRG-treated (150 μg/Kg/day, s.c) and itraconazole (ITC; 150 mg/kg/day, p.o)-pretreated group, as the Hh pathway inhibitor. Treatment with LRG potentiated the PI3K/AKT/p-GSK3β cascade and relieved the oxidative burden-induced by the DXR-driven immunogenic cell death (ICD). LRG also upregulated the expression of the Desert hedgehog ligand (DHh) and the patched-1 (PTCH1) receptor and augmented the protein level of Indian hedgehog (IHh) ligand, Gli1 and cyclin-D1 (CD1). Besides, hypertranscription of IHh, DHh, Ptch1, Smo, Gli1/2 and CD1 genes along with a transcriptional recession of Gli3 gene were reported in LRG-treated group. ITC pre-administration partially abrogated this positive effect of LRG, proving the implication of the examined pathway. Microscopically, LRG ameliorated the follicular atresia noticed in the DXR group; effect that was, at least partially, declined by ITC pre-treatment. These findings end to a conclusion that LRG treatment might hinder the DXR-associated reproductive toxicity, resultant from ROS generated by the cells undergoing ICD, and trigger follicular growth and repair by the PI3K/AKT- dependent switching-on of the canonical Hh pathway.
Collapse
Affiliation(s)
- Doaa A Zaky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rabab H Sayed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Yasmin S Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
25
|
Bedair AF, Wahid A, El-Mezayen NS, Afify EA. Nicorandil reduces morphine withdrawal symptoms, potentiates morphine antinociception, and ameliorates liver fibrosis in rats. Life Sci 2023; 319:121522. [PMID: 36822314 DOI: 10.1016/j.lfs.2023.121522] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
AIMS Chronic liver disease (CLD) is a serious medical condition affecting patients globally and pain management poses a unique challenge. ATP-sensitive potassium channels (KATP) are expressed in nociceptive neurons and hepatic cells. We tested the hypothesis whether morphine and nicorandil, KATP channel opener, alone and in combination possess hepatoprotective, antinociceptive effect and alter morphine physical dependence. MAIN METHODS Intraperitoneal injection (i.p.) of carbon tetrachloride (CCl4) induced liver fibrosis in male Wistar rats. Nicorandil (15 mg/kg/day) was administered per os for two weeks. Morphine (3.8, 5, 10 mg/kg, i.p.) was administered prior to antinociception testing in tail flick and formalin tests. Morphine physical dependence following naloxone injection, fibrotic, oxidative stress markers, and liver histopathology were assessed. KEY FINDINGS Morphine alone, produced insignificant changes of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), hepatic hydroxyproline (Hyp), malondialdehyde (MDA), and superoxide dismutase (SOD) levels and exerted significant antinociception in the pain models. Nicorandil alone protected against liver damage (decreased serum ALT, AST, HA, hepatic Hyp, MDA, increased SOD levels, improved fibrosis scores). Nicorandil/morphine combination produced remarkable hepatoprotection and persistent analgesia compared to morphine alone as evidenced by reduced (EC50) of morphine. Nicorandil augmented morphine analgesia and markedly decreased withdrawal signs in morphine-dependent rats. SIGNIFICANCE The data showed for the first time, the hepatoprotection and augmented antinociception mediated by nicorandil/morphine combination in liver fibrosis via antioxidant and antifibrotic mechanisms. Nicorandil ameliorated withdrawal signs in morphine dependence in CLD. Thus, combining nicorandil/morphine provides a novel treatment strategy to ameliorate hepatic injury, potentiate antinociception and overcome morphine-induced physical dependence in liver fibrosis.
Collapse
Affiliation(s)
- Asser F Bedair
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt.
| | - Ahmed Wahid
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt.
| | - Nesrine S El-Mezayen
- Department of Pharmacology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt.
| | - Elham A Afify
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Alexandria, Alexandria, Egypt.
| |
Collapse
|
26
|
Murali R, Balasubramaniam V, Srinivas S, Sundaram S, Venkatraman G, Warrier S, Dharmarajan A, Gandhirajan RK. Deregulated Metabolic Pathways in Ovarian Cancer: Cause and Consequence. Metabolites 2023; 13:metabo13040560. [PMID: 37110218 PMCID: PMC10141515 DOI: 10.3390/metabo13040560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/06/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ovarian cancers are tumors that originate from the different cells of the ovary and account for almost 4% of all the cancers in women globally. More than 30 types of tumors have been identified based on the cellular origins. Epithelial ovarian cancer (EOC) is the most common and lethal type of ovarian cancer which can be further divided into high-grade serous, low-grade serous, endometrioid, clear cell, and mucinous carcinoma. Ovarian carcinogenesis has been long attributed to endometriosis which is a chronic inflammation of the reproductive tract leading to progressive accumulation of mutations. Due to the advent of multi-omics datasets, the consequences of somatic mutations and their role in altered tumor metabolism has been well elucidated. Several oncogenes and tumor suppressor genes have been implicated in the progression of ovarian cancer. In this review, we highlight the genetic alterations undergone by the key oncogenes and tumor suppressor genes responsible for the development of ovarian cancer. We also summarize the role of these oncogenes and tumor suppressor genes and their association with a deregulated network of fatty acid, glycolysis, tricarboxylic acid and amino acid metabolism in ovarian cancers. Identification of genomic and metabolic circuits will be useful in clinical stratification of patients with complex etiologies and in identifying drug targets for personalized therapies against cancer.
Collapse
Affiliation(s)
- Roopak Murali
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Vaishnavi Balasubramaniam
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Satish Srinivas
- Department of Radiation Oncology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sandhya Sundaram
- Department of Pathology, Sri Ramachandra Medical College & Research Institute, Sri Ramachandra Institute of Higher Education & Research (Deemed to be University), Porur, Chennai 600116, India
| | - Ganesh Venkatraman
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
- Cuor Stem Cellutions Pvt Ltd., Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore 560065, India
| | - Arun Dharmarajan
- Department of Biomedical Sciences, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
- Stem Cell and Cancer Biology Laboratory, Curtin University, Perth, WA 6102, Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6102, Australia
- Curtin Health and Innovation Research Institute, Curtin University, Perth, WA 6102, Australia
| | - Rajesh Kumar Gandhirajan
- Department of Human Genetics, Faculty of Biomedical Sciences Technology and Research, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai 600116, India
| |
Collapse
|
27
|
Sahin O, Akturk G, Cilaker Micili S, Gursoy Doruk O, Karapinar F, Hocaoglu N, Ergur BU, Akan P, Tuncok Y, Kalkan S. Effect of the selective mitochondrial KATP channel opener nicorandil on the QT prolongation and myocardial damage induced by amitriptyline in rats. J Pharm Pharmacol 2023; 75:415-426. [PMID: 36527252 DOI: 10.1093/jpp/rgac089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022]
Abstract
OBJECTIVES The aim of this study is to evaluate the protective effect of nicorandil, a selective mitochondrial KATP channel opener, on QT prolongation and myocardial damage induced by amitriptyline. METHODS The dose of amitriptyline (intraperitoneal, i.p.) that prolong the QT interval was found 75 mg/kg. Rats were randomized into five groups the control group, amitriptyline group, nicorandil (selective mitochondrial KATP channel opener, 3 mg/kg i.p.) + amitriptyline group, 5-hdyroxydecanoate (5-HD, selective mitochondrial KATP channel blocker, 10 mg/kg i.p.) + amitriptyline group and 5-HD + nicorandil + amitriptyline group. Cardiac parameters, biochemical and histomorphological/immunohistochemical examinations were evaluated. p < 0.05 was accepted as statistically significant. KEY FINDINGS Amitriptyline caused statistically significant prolongation of QRS duration, QT interval and QTc interval (p < 0.05). It also caused changes in tissue oxidant (increase in malondialdehyde)/anti-oxidant (decrease in glutathione peroxidase) parameters (p < 0.05), myocardial damage and apoptosis (p < 0.01 and p < 0.001). While nicorandil administration prevented amitriptyline-induced QRS, QT, QTc prolongation (p < 0.05), myocardial damage and apoptosis (p < 0.05), it did not affect the changes in oxidative parameters (p > 0.05). CONCLUSIONS Our results suggest that nicorandil, a selective mitochondrial KATP channel opener, plays a protective role in amitriptyline-induced QT prolongation and myocardial damage. Mitochondrial KATP channel opening and anti-apoptotic effects may play a role in the cardioprotective effect of nicorandil.
Collapse
Affiliation(s)
- Orhan Sahin
- Dokuz Eylul University, School of Medicine, Department of Medical Pharmacology, Izmir, Turkey
| | - Gozde Akturk
- Dokuz Eylul University, School of Medicine, Department of Medical Pharmacology, Izmir, Turkey.,Mustafa Kemal University, School of Medicine, Department of Medical Pharmacology, Hatay, Turkey
| | - Serap Cilaker Micili
- Dokuz Eylul University, School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Ozlem Gursoy Doruk
- Dokuz Eylul University, School of Medicine, Department of Medical Biochemistry, Izmir, Turkey
| | - Fazilet Karapinar
- Dokuz Eylul University, School of Medicine, Department of Medical Pharmacology, Izmir, Turkey
| | - Nil Hocaoglu
- Dokuz Eylul University, School of Medicine, Department of Medical Pharmacology, Izmir, Turkey
| | - Bekir Ugur Ergur
- Dokuz Eylul University, School of Medicine, Department of Histology and Embryology, Izmir, Turkey.,Kyrenia University, School of Medicine, Department of Histology and Embryology, Kyrenia, Cyprus
| | - Pinar Akan
- Dokuz Eylul University, School of Medicine, Department of Medical Biochemistry, Izmir, Turkey
| | - Yesim Tuncok
- Dokuz Eylul University, School of Medicine, Department of Medical Pharmacology, Izmir, Turkey
| | - Sule Kalkan
- Dokuz Eylul University, School of Medicine, Department of Medical Pharmacology, Izmir, Turkey
| |
Collapse
|
28
|
Moiseeva N, Eroshenko D, Laletina L, Rybalkina E, Susova O, Karamysheva A, Tolmacheva I, Nazarov M, Grishko V. The Molecular Mechanisms of Oleanane Aldehyde-β-enone Cytotoxicity against Doxorubicin-Resistant Cancer Cells. BIOLOGY 2023; 12:biology12030415. [PMID: 36979107 PMCID: PMC10045559 DOI: 10.3390/biology12030415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Oleanane aldehyde-β-enone (OA), being the semi-synthetic derivative of the triterpenoid betulin, effectively inhibits the proliferation of HBL-100 and K562 cancer cells (IC50 0.47–0.53 µM), as well as the proliferation of their resistant subclones with high P-gp expression HBL-100/Dox, K562/i-S9 and K562/i-S9_Dox (IC50 0.45−1.24 µM). A molecular docking study, rhodamine efflux test, synergistic test with Dox, and ABC transporter gene expression were used to investigate the ability of OA to act as a P-gp substrate or inhibitor against Dox-resistant cells. We noted a trend toward a decrease in ABCB1, ABCC1 and ABCG2 expression in HBL-100 cells treated with OA. The in silico and in vitro methods suggested that OA is neither a direct inhibitor nor a competitive substrate of P-gp in overexpressing P-gp cancer cells. Thus, OA is able to overcome cellular resistance and can accumulate in Dox-resistant cells to realize toxic effects. The set of experiments suggested that OA toxic action can be attributed to activating intrinsic/extrinsic or only intrinsic apoptosis pathways in Dox-sensitive and Dox-resistant cancer cells, respectively. The cytotoxicity of OA in resistant cells is likely mediated by a mitochondrial cell death pathway, as demonstrated by positive staining with Annexin V–FITC, an increasing number of cells in the subG0/G1 phase, reactive oxygen species generation, mitochondrial dysfunction, cytochrome c migration and caspases-9,-6 activation.
Collapse
Affiliation(s)
- Natalia Moiseeva
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Daria Eroshenko
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
| | - Lidia Laletina
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Ekaterina Rybalkina
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Olga Susova
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Aida Karamysheva
- The N.N. Blokhin National Medical Research Center of Oncology, Health Ministry of Russia, 115478 Moscow, Russia
| | - Irina Tolmacheva
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
| | - Mikhail Nazarov
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
| | - Victoria Grishko
- Institute of Technical Chemistry, Perm Federal Scientific Centre, Ural Branch, Russian Academy of Science, 614013 Perm, Russia
- Correspondence:
| |
Collapse
|
29
|
Doxorubicin-An Agent with Multiple Mechanisms of Anticancer Activity. Cells 2023; 12:cells12040659. [PMID: 36831326 PMCID: PMC9954613 DOI: 10.3390/cells12040659] [Citation(s) in RCA: 145] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Doxorubicin (DOX) constitutes the major constituent of anti-cancer treatment regimens currently in clinical use. However, the precise mechanisms of DOX's action are not fully understood. Emerging evidence points to the pleiotropic anticancer activity of DOX, including its contribution to DNA damage, reactive oxygen species (ROS) production, apoptosis, senescence, autophagy, ferroptosis, and pyroptosis induction, as well as its immunomodulatory role. This review aims to collect information on the anticancer mechanisms of DOX as well as its influence on anti-tumor immune response, providing a rationale behind the importance of DOX in modern cancer therapy.
Collapse
|
30
|
Jiang L, Chen HY, He CH, Xu HB, Zhou ZR, Wu MS, Fodjo EK, He Y, Hafez ME, Qian RC, Li DW. Dual-Modal Apoptosis Assay Enabling Dynamic Visualization of ATP and Reactive Oxygen Species in Living Cells. Anal Chem 2023; 95:3507-3515. [PMID: 36724388 DOI: 10.1021/acs.analchem.2c05671] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
ATP and reactive oxygen species (ROS) are considered significant indicators of cell apoptosis. However, visualizing the interplay between apoptosis-related ATP and ROS is challenging. Herein, we developed a metal-organic framework (MOF)-based nanoprobe for an apoptosis assay using duplex imaging of cellular ATP and ROS. The nanoprobe was fabricated through controlled encapsulation of gold nanorods with a thin zirconium-based MOF layer, followed by modification of the ROS-responsive molecules 2-mercaptohydroquinone and 6-carboxyfluorescein-labeled ATP aptamer. The nanoprobe enables ATP and ROS visualization via fluorescence and surface-enhanced Raman spectroscopy, respectively, avoiding the mutual interference that often occurs in single-mode methods. Moreover, the dual-modal assay effectively showed dynamic imaging of ATP and ROS in cancer cells treated with various drugs, revealing their apoptosis-related pathways and interactions that differ from those under normal conditions. This study provides a method for studying the relationship between energy metabolism and redox homeostasis in cell apoptosis processes.
Collapse
Affiliation(s)
- Lei Jiang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.,College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, P. R. China
| | - Hua-Ying Chen
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Cai-Hong He
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Han-Bin Xu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ze-Rui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Man-Sha Wu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Essy Kouadio Fodjo
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.,Laboratory of Physical Chemistry, Felix Houphouet Boigny University, Abidjan 225, Cote d'Ivoire
| | - Yue He
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Mahmoud Elsayed Hafez
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.,Department of Chemistry, Faculty of Science Beni-Suef University, Beni-Suef 62511, Egypt
| | - Ruo-Can Qian
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Da-Wei Li
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology & Dynamic Chemistry, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
31
|
Chmil V, Filipová A, Tichý A. Looking for the phoenix: the current research on radiation countermeasures. Int J Radiat Biol 2023; 99:1148-1166. [PMID: 36745819 DOI: 10.1080/09553002.2023.2173822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/06/2022] [Accepted: 12/26/2022] [Indexed: 02/08/2023]
Abstract
PURPOSE Ionizing radiation (IR) is widely applied in radiotherapy for the treatment of over 50% of cancer patients. IR is also intensively used in medical diagnostics on a daily basis in imaging. Moreover, recent geopolitical events have re-ignited the real threat of the use of nuclear weapons. Medical radiation countermeasures represent one of the effective protection strategies against the effects of IR. The aim of this review was to summarize the most commonly used strategies and procedures in the development of radiation countermeasures and to evaluate the current state of their research, with a focus on those in the clinical trial phase. METHODS Clinical trials for this review were selected in accordance with the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement. The search was performed in the clinicaltrials.gov database as of May 2022. RESULTS Our search returned 263 studies, which were screened and of which 25 were included in the review. 10 of these studies had been completed, 3 with promising results: KMRC011 increased G-CSF, IL-6, and neutrophil counts suggesting potential for the treatment of hematopoietic acute radiation syndrome (H-ARS); GC4419 reduced the number of patients with severe oral mucositis and its duration; the combination of enoxaparin, pentoxifylline, and ursodeoxycholic acid reduced the incidence of focal radiation-induced liver injury. CONCLUSION The agents discovered so far show significant side effects or low efficacy, and hence most of the tested agents terminate in the early stages of development. In addition, the low profitability of this type of drug demotivates the private sector to invest in such research. To overcome this problem, there is a need to involve more public resources in funding. Among the technological opportunities, a deeper use of in silico approaches seems to be prospective.
Collapse
Affiliation(s)
- Vojtěch Chmil
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Alžběta Filipová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
- Biomedical Research Centre, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
32
|
Wan Y, He B, Zhu D, Wang L, Huang R, Wang S, Wang C, Zhang M, Ma L, Gao F. Nicorandil Ameliorates Doxorubicin-Induced Cardiotoxicity in Rats, as Evaluated by 7 T Cardiovascular Magnetic Resonance Imaging. Cardiovasc Drugs Ther 2023; 37:39-51. [PMID: 34595611 PMCID: PMC9834367 DOI: 10.1007/s10557-021-07252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 02/05/2023]
Abstract
PURPOSE Doxorubicin-induced cardiotoxicity (DIC) is a common side effect of doxorubicin chemotherapy, and a major mechanism of DIC is inflammation. However, no effective method exists to prevent DIC. In the present study, we investigated the cardioprotective effects of nicorandil against DIC using multiparametric cardiac magnetic resonance (CMR) imaging and elucidated the anti-inflammatory properties of nicorandil in rat models. METHODS Male Sprague-Dawley rats received four weekly intraperitoneal doxorubicin doses (4 mg/kg/injection) to establish the DIC model. After treatment with or without nicorandil (3 mg/kg/day) or diazoxide (10 mg/kg/day) orally, all the groups underwent weekly CMR examinations, including cardiac function and strain assessment and T2 mapping, for 6 weeks. Additionally, blood samples and hearts were collected to examine inflammation and histopathology. RESULTS According to our results, the earliest DIC CMR parameter in the doxorubicin group was T2 mapping time prolongation compared with the DIC rats treated with nicorandil (doxorubicin+nicorandil group) at week 2. Subsequently, the left ventricular ejection fraction (LVEF) and global peak systolic myocardial strain in the doxorubicin group were significantly reduced, and nicorandil effectively inhibited these effects at week 6. Our results were confirmed by histopathological evaluations. Furthermore, nicorandil treatment had a protective effect against the doxorubicin-induced inflammatory response. Interestingly, similar protective results were obtained using the KATP channel opener diazoxide. CONCLUSION Collectively, our findings indicate that nicorandil application ameliorates DIC in rats with significantly higher cardiac function and myocardial strain and less fibrosis, apoptosis and inflammatory cytokine production. Nicorandil prevents T2 abnormalities in the early stages of DIC, showing a high clinical value for early nicorandil treatment in chemotherapy patients.
Collapse
Affiliation(s)
- Yixuan Wan
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Bo He
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Dongyong Zhu
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China
| | - Lei Wang
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China
| | - Ruijue Huang
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Shiyu Wang
- Department of Radiology, Huashan Hospital, Shanghai, China
| | - Chunhua Wang
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, Radiation Oncology Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Shanghai, China
| | - Mengdi Zhang
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Lu Ma
- Basic Medical School, Yunnan University of Chinese Medicine, Kunming, China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, 610041, China.
- Molecular Imaging Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
33
|
Ziganshina AY, Mansurova EE, Voloshina AD, Lyubina AP, Amerhanova SK, Shulaeva MM, Nizameev IR, Kadirov MK, Bakhtiozina LR, Semenov VE, Antipin IS. Thymine-Modified Nanocarrier for Doxorubicin Delivery in Glioblastoma Cells. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020551. [PMID: 36677608 PMCID: PMC9864328 DOI: 10.3390/molecules28020551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/30/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
Brain tumor glioblastoma is one of the worst types of cancer. The blood-brain barrier prevents drugs from reaching brain cells and shields glioblastoma from treatment. The creation of nanocarriers to improve drug delivery and internalization effectiveness may be the solution to this issue. In this paper, we report on a new nanocarrier that was developed to deliver the anticancer drug doxorubicin to glioblastoma cells. The nanocarrier was obtained by nanoemulsion polymerization of diallyl disulfide with 1-allylthymine. Diallyl disulfide is a redox-sensitive molecule involved in redox cell activities, and thymine is a uracil derivative and one of the well-known bioactive compounds that can enhance the pharmacological activity of doxorubicin. Doxorubicin was successfully introduced into the nanocarrier with a load capacity of about 4.6%. Biological studies showed that the doxorubicin nanocarrier composition is far more cytotoxic to glioblastoma cells (T98G) than it is to cancer cells (M-HeLa) and healthy cells (Chang liver). The nanocarrier improves the penetration of doxorubicin into T98G cells and accelerates the cells' demise, as is evident from flow cytometry and fluorescence microscopy data. The obtained nanocarrier, in our opinion, is a promising candidate for further research in glioblastoma therapy.
Collapse
Affiliation(s)
- Albina Y. Ziganshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
- Correspondence:
| | - Elina E. Mansurova
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Lobachevsky Str. 1/29, 420008 Kazan, Russia
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Syumbelya K. Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Marina M. Shulaeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Irek R. Nizameev
- Department of Nanotechnologies in Electronics, Kazan National Research Technical University Named after A. N. Tupolev—KAI, 10, K. Marx Str., 420111 Kazan, Russia
| | - Marsil K. Kadirov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Leysan R. Bakhtiozina
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, Lobachevsky Str. 1/29, 420008 Kazan, Russia
| | - Vyacheslav E. Semenov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| | - Igor S. Antipin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov Str. 8, 420088 Kazan, Russia
| |
Collapse
|
34
|
Lima EA, Wyde RA, Sorace AG, Yankeelov TE. Optimizing combination therapy in a murine model of HER2+ breast cancer. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING 2022; 402:115484. [PMID: 37800167 PMCID: PMC10552906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Human epidermal growth factor receptor 2 positive (HER2+) breast cancer is frequently treated with drugs that target the HER2 receptor, such as trastuzumab, in combination with chemotherapy, such as doxorubicin. However, an open problem in treatment design is to determine the therapeutic regimen that optimally combines these two treatments to yield optimal tumor control. Working with data quantifying temporal changes in tumor volume due to different trastuzumab and doxorubicin treatment protocols in a murine model of human HER2+ breast cancer, we propose a complete framework for model development, calibration, selection, and treatment optimization to find the optimal treatment protocol. Through different assumptions for the drug-tumor interactions, we propose ten different models to characterize the dynamic relationship between tumor volume and drug availability, as well as the drug-drug interaction. Using a Bayesian framework, each of these models are calibrated to the dataset and the model with the highest Bayesian information criterion weight is selected to represent the biological system. The selected model captures the inhibition of trastuzumab due to pre-treatment with doxorubicin, as well as the increase in doxorubicin efficacy due to pre-treatment with trastuzumab. We then apply optimal control theory (OCT) to this model to identify two optimal treatment protocols. In the first optimized protocol, we fix the maximum dosage for doxorubicin and trastuzumab to be the same as the maximum dose delivered experimentally, while trying to minimize tumor burden. Within this constraint, optimal control theory indicates the optimal regimen is to first deliver two doses of trastuzumab on days 35 and 36, followed by two doses of doxorubicin on days 37 and 38. This protocol predicts an additional 45% reduction in tumor burden compared to that achieved with the experimentally delivered regimen. In the second optimized protocol we fix the tumor control to be the same as that obtained experimentally, and attempt to reduce the doxorubicin dose. Within this constraint, the optimal regimen is the same as the first optimized protocol but uses only 43% of the doxorubicin dose used experimentally. This protocol predicts tumor control equivalent to that achieved experimentally. These results strongly suggest the utility of mathematical modeling and optimal control theory for identifying therapeutic regimens maximizing efficacy and minimizing toxicity.
Collapse
Affiliation(s)
- Ernesto A.B.F. Lima
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, United States of America
- Texas Advanced Computing Center, The University of Texas at Austin, United States of America
| | - Reid A.F. Wyde
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, United States of America
| | - Anna G. Sorace
- Department of Radiology, The University of Alabama at Birmingham, United States of America
- Department of Biomedical Engineering, The University of Alabama at Birmingham, United States of America
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham, United States of America
| | - Thomas E. Yankeelov
- Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, United States of America
- Department of Biomedical Engineering, The University of Texas at Austin, United States of America
- Department of Diagnostic Medicine, The University of Texas at Austin, United States of America
- Department of Oncology, The University of Texas at Austin, United States of America
- Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, United States of America
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, United States of America
| |
Collapse
|
35
|
Muehlberg F, Kornfeld M, Zange L, Ghani S, Reichardt A, Reichardt P, Schulz‐Menger J. Early myocardial oedema can predict subsequent cardiomyopathy in high-dose anthracycline therapy. ESC Heart Fail 2022; 10:616-627. [PMID: 36404640 PMCID: PMC9871709 DOI: 10.1002/ehf2.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 10/06/2022] [Accepted: 11/07/2022] [Indexed: 11/22/2022] Open
Abstract
AIMS This study aims to assess subclinical changes in functional and morphologic myocardial MR parameters very early into a repetitive high-dose anthracycline treatment (planned cumulative dose >650 mg/m2 ), which may predict subsequent development of anthracycline-induced cardiomyopathy (aCMP). METHODS Thirty sarcoma patients with previous exposition of 300-360 mg/m2 doxorubicin-equivalent chemotherapy who were planned for a second treatment of anthracycline-based chemotherapy (360 mg/m2 doxorubicin-equivalent) were recruited. Enrolled individuals received three CMR studies (before treatment, 48 h after first anthracycline treatment and upon completion of treatment). Native T1 mapping (MOLLI 5s(3s)3s), T2 mapping, and extracellular volume (ECV) maps were acquired in addition to a conventional CMR with SSFP-cine imaging at 1.5 T. Patients were given 0.2 mmol/kg gadoteridol for ECV quantification and LGE imaging. Blood samples for cardiac biomarkers were obtained before each scan. Development of relevant aCMP was defined as drop of left ventricular ejection fraction (LVEF) by >10% compared with baseline. RESULTS Twenty-three complete datasets were available for analysis. Median treatment time was 20.7 ± 3.0 weeks. Eight patients developed aCMP with LVEF reduction >10% until end of chemotherapy. Baseline LVEF was not different between patients with and without subsequent aCMP. Patients with aCMP had decreased LV mass upon completion of therapy (99.4 ± 26.5 g vs. 90.3 ± 24.8 g; P = 0.02), whereas patients without aCMP did not show a change in LV mass (91.5 ± 20.0 g vs. 89.0 ± 23.6 g; P > 0.05). On strain analysis, GLS (-15.3 ± 1.3 vs. -13.4 ± 1.6; P = 0.02) and GCS (-16.7 ± 2.1 vs. -14.9 ± 2.6; P = 0.04) were decreased in aCMP patients upon completion of therapy, whereas non-aCMP individuals showed no change in GLS (-15.4 ± 3.3 vs. -15.4 ± 3.4; P = 0.97). When assessed 48 h after first dose of anthracyclines, patients with subsequent aCMP had significantly elevated myocardial T2 times compared with before therapy (53.0 ± 2.8 ms vs. 49.3 ± 5.2 ms, P = 0.02) than patients who did not develop aCMP (50.7 ± 5.1 ms vs. 51.1 ± 3.9 ms, P > 0.05). Native T1 times decreased at 48 h after first dose irrespective of development of subsequent aCMP (1020.2 ± 28.4 ms vs. 973.5 ± 40.3 ms). Upon completion of therapy, patients with aCMP had increased native T1 compared with baseline (1050.8 ± 17.9 ms vs. 1022.4 ± 22.0 ms; P = 0.01), whereas non-aCMP patients did not (1034.5 ± 46.6 ms vs. 1018.4 ± 29.7 ms; P = 0.15). No patient developed new myocardial scars or compact myocardial fibrosis under chemotherapy. Cardiac biomarkers were elevated independent of development of aCMP. CONCLUSIONS With high cumulative anthracycline doses, early increase of T2 times 48 h after first treatment with anthracyclines can predict the development of subsequent aCMP after completion of chemotherapy. Early drop of native T1 times occurs irrespective of development of aCMP in high-dose anthracycline therapy.
Collapse
Affiliation(s)
- Fabian Muehlberg
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center – a joint cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine; and HELIOS Hospital Berlin Buch, Department of Cardiology and Nephrology, DZHK (German Center for Cardiovascular Research) partner siteBerlinGermany
| | - Markus Kornfeld
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center – a joint cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine; and HELIOS Hospital Berlin Buch, Department of Cardiology and Nephrology, DZHK (German Center for Cardiovascular Research) partner siteBerlinGermany
| | - Leonora Zange
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center – a joint cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine; and HELIOS Hospital Berlin Buch, Department of Cardiology and Nephrology, DZHK (German Center for Cardiovascular Research) partner siteBerlinGermany
| | - Saeed Ghani
- Department for Interdisciplinary Oncology and Sarcoma CenterHELIOS Hospital Berlin‐BuchBerlinGermany
| | - Annette Reichardt
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center – a joint cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine; and HELIOS Hospital Berlin Buch, Department of Cardiology and Nephrology, DZHK (German Center for Cardiovascular Research) partner siteBerlinGermany
| | - Peter Reichardt
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center – a joint cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine; and HELIOS Hospital Berlin Buch, Department of Cardiology and Nephrology, DZHK (German Center for Cardiovascular Research) partner siteBerlinGermany
| | - Jeanette Schulz‐Menger
- Working Group on Cardiovascular Magnetic Resonance, Experimental and Clinical Research Center – a joint cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine; and HELIOS Hospital Berlin Buch, Department of Cardiology and Nephrology, DZHK (German Center for Cardiovascular Research) partner siteBerlinGermany
| |
Collapse
|
36
|
Liu Y, Shu J, Liu T, Xie J, Li T, Li H, Li L. Nicorandil protects against coronary microembolization-induced myocardial injury by suppressing cardiomyocyte pyroptosis via the AMPK/TXNIP/NLRP3 signaling pathway. Eur J Pharmacol 2022; 936:175365. [DOI: 10.1016/j.ejphar.2022.175365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/25/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
|
37
|
Saleh DO, Mahmoud SS, Hassan A, Sanad EF. Doxorubicin-induced hepatic toxicity in rats: Mechanistic protective role of Omega-3 fatty acids through Nrf2/HO-1 activation and PI3K/Akt/GSK-3β axis modulation. Saudi J Biol Sci 2022; 29:103308. [PMID: 35677895 PMCID: PMC9167977 DOI: 10.1016/j.sjbs.2022.103308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/15/2022] [Accepted: 05/15/2022] [Indexed: 11/14/2022] Open
Abstract
Doxorubicin (DOX), a common antibiotic used to treat a variety of tumors, has several substantial adverse effects that limit its clinical use. As a result, finding effective protective agents to combat DOX-induced organ damage is a necessity. The current study was set to delineate the hepatoprotective role of omega‐3 fatty acids (ω-3FA) against DOX-mediated acute liver damage in rats and the underlined mechanism of GSK-3β inhibition. Five groups of rats were orally received either saline (groups 1 & 2) or ω-3FA (25, 50 and 100 mg/kg/day; groups 3, 4 & 5, respectively) for 28 consecutive days. Single DOX intraperitoneal injection (20 mg/kg) was used to induce hepatic toxicity in all groups except group 1 (negative control). Blood samples and liver tissues were collected 48-hr after injection. Our results revealed that pre-administration of ω-3FA (25, 50 and 100 mg/kg) to DOX-induced hepatic injured rats showed a significant reduction in serum hepatic injury biomarkers (ALT, AST, total and direct bilirubin) as well as hepatic contents of MDA, GSH, Nrf2 and HO-1. Additionally, hepatic PI3K, pAkt and GSK-3β have been restored significantly in a dose-dependent manner. Furthermore, all the hepatic histopathological features have been retained upon ω-3FA treatment together with the immunostaining intensity of tumor necrosis factor-α and caspase-3. These results suggest that ω-3FA have shown a marked activation of the Nrf2/HO-1 signaling pathway and modulation of the PI3K/pAkt/GSK-3β axis against DOX-induced hepatotoxicity.
Collapse
|
38
|
Negrea G, Rauca VF, Meszaros MS, Patras L, Luput L, Licarete E, Toma VA, Porfire A, Muntean D, Sesarman A, Banciu M. Active Tumor-Targeting Nano-formulations Containing Simvastatin and Doxorubicin Inhibit Melanoma Growth and Angiogenesis. Front Pharmacol 2022; 13:870347. [PMID: 35450036 PMCID: PMC9016200 DOI: 10.3389/fphar.2022.870347] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/08/2022] [Indexed: 01/17/2023] Open
Abstract
Primary melanoma aggressiveness is determined by rapid selection and growth of cellular clones resistant to conventional treatments, resulting in metastasis and recurrence. In addition, a reprogrammed tumor-immune microenvironment supports melanoma progression and response to therapy. There is an urgent need to develop selective and specific drug delivery strategies for modulating the interaction between cancer cells and immune cells within the tumor microenvironment. This study proposes a novel combination therapy consisting of sequential administration of simvastatin incorporated in IL-13-functionalized long-circulating liposomes (IL-13-LCL-SIM) and doxorubicin encapsulated into PEG-coated extracellular vesicles (PEG-EV-DOX) to selectively target both tumor-associated macrophages and melanoma cells. To this end, IL-13 was conjugated to LCL-SIM which was obtained via the lipid film hydration method. EVs enriched from melanoma cells were passively loaded with doxorubicin. The cellular uptake of rhodamine-tagged nano-particles and the antiproliferative potential of the treatments by using the ELISA BrdU-colorimetric immunoassay were investigated in vitro. Subsequently, the therapeutic agents were administered i.v in B16.F10 melanoma-bearing mice, and tumor size was monitored during treatment. The molecular mechanisms of antitumor activity were investigated using angiogenic and inflammatory protein arrays and western blot analysis of invasion (HIF-1) and apoptosis markers (Bcl-xL and Bax). Quantification of oxidative stress marker malondialdehyde (MDA) was determined by HPLC. Immunohistochemical staining of angiogenic markers CD31 and VEGF and of pan-macrophage marker F4/80 was performed to validate our findings. The in vitro data showed that IL-13-functionalized LCL were preferentially taken up by tumor-associated macrophages and indicated that sequential administration of IL-13-LCL-SIM and PEG-EV-DOX had the strongest antiproliferative effect on tumor cells co-cultured with tumor-associated macrophages (TAMs). Accordingly, strong inhibition of tumor growth in the group treated with the sequential combination therapy was reported in vivo. Our data suggested that the antitumor action of the combined treatment was exerted through strong inhibition of several pro-angiogenic factors (VEGF, bFGF, and CD31) and oxidative stress-induced upregulation of pro-apoptotic protein Bax. This novel drug delivery strategy based on combined active targeting of both cancer cells and immune cells was able to induce a potent antitumor effect by disruption of the reciprocal interactions between TAMs and melanoma cells.
Collapse
Affiliation(s)
- Giorgiana Negrea
- Doctoral School in Integrative Biology, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Valentin-Florian Rauca
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Department of Dermatology and Allergology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marta Szilvia Meszaros
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Laura Patras
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Lavinia Luput
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Emilia Licarete
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Molecular Biology Centre, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Vlad-Alexandru Toma
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania.,Department of Experimental Biology and Biochemistry, Institute of Biological Research, Branch of NIRDBS Bucharest, Cluj-Napoca, Romania
| | - Alina Porfire
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Dana Muntean
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania
| | - Alina Sesarman
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| | - Manuela Banciu
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, "Babes-Bolyai" University, Cluj-Napoca, Romania
| |
Collapse
|
39
|
Abdelgawad IY, Agostinucci K, Zordoky BN. Cardiovascular ramifications of therapy-induced endothelial cell senescence in cancer survivors. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166352. [PMID: 35041996 PMCID: PMC8844223 DOI: 10.1016/j.bbadis.2022.166352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/15/2022]
Abstract
Cancer survivorship has remarkably improved over the past decades; nevertheless, cancer survivors are burdened with multiple health complications primarily caused by their cancer therapy. Therapy-induced senescence is recognized as a fundamental mechanism contributing to adverse health complications in cancer survivors. In this mini-review, we will discuss the recent literature describing the mechanisms of cancer therapy-induced senescence. We will focus on endothelial cell senescence since it has been shown to be a key player in numerous cardiovascular complications. We will also discuss novel senotherapeutic approaches that have the potential to combat therapy-induced endothelial cell senescence.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Kevin Agostinucci
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| |
Collapse
|
40
|
Chavda V, Chaurasia B, Garg K, Deora H, Umana GE, Palmisciano P, Scalia G, Lu B. Molecular mechanisms of oxidative stress in stroke and cancer. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2021.100029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
41
|
Sheibani M, Azizi Y, Shayan M, Nezamoleslami S, Eslami F, Farjoo MH, Dehpour AR. Doxorubicin-Induced Cardiotoxicity: An Overview on Pre-clinical Therapeutic Approaches. Cardiovasc Toxicol 2022; 22:292-310. [DOI: 10.1007/s12012-022-09721-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/12/2022] [Indexed: 12/20/2022]
|
42
|
Wei Y, Wang Z, Yang J, Xu R, Deng H, Ma S, Fang T, Zhang J, Shen Q. Reactive oxygen species / photothermal therapy dual-triggered biomimetic gold nanocages nanoplatform for combination cancer therapy via ferroptosis and tumor-associated macrophage repolarization mechanism. J Colloid Interface Sci 2022; 606:1950-1965. [PMID: 34695762 DOI: 10.1016/j.jcis.2021.09.160] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/06/2021] [Accepted: 09/26/2021] [Indexed: 12/12/2022]
Abstract
With the continuous development of cancer nanotechnology, an important trend in the research is to combine the broad application prospects of functional nanomaterials with recent biological discoveries and technological advances. Herein, a cancer cell membrane-camouflaged gold nanocage loading doxorubicin (DOX) and l-buthionine sulfoximine (BSO) (denoted as m@Au-D/B NCs) was constructed as an innovative nanoplatform to confer promising cancer combination therapy by evoking effective ferroptosis and immune responses. Briefly, the loading of BSO and DOX could induce ferroptosis through simultaneous effective glutathione (GSH) consumption and reactive oxygen species (ROS) accumulation. Gold nanocages (AuNCs) with distinct anti-tumor application performance was utilized as ideal nanocarrier for drug loading, evoking photothermal effects and photochemical catalysis to generate more ROS under near-infrared (NIR) irradiation. Moreover, m@Au-D/B NCs-mediated photothermal therapy (PTT) combined with ROS production could repolarize the tumor-associated macrophages (TAMs) from pro-tumor (M2) phenotype to anti-tumor (M1) phenotype, thus improving tumor-suppressive immune environment and then promoting the activation of effector cells and release of pro-inflammatory cytokines, in which the antitumor responses were evoked robustly in a methodical approach. The anti-tumor effects in vivo implied that m@Au-D/B NCs could significantly inhibit tumor growth without severe toxicity. Hence, this homotypic targeting nanosystem could offer an auspicious anticancer access by triggering combination cancer therapy via ferroptosis and tumor-associated macrophage repolarization mechanism.
Collapse
Affiliation(s)
- Yawen Wei
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhihua Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jie Yang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rui Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huizi Deng
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Siyu Ma
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tianxu Fang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jun Zhang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qi Shen
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
43
|
Gartz M, Haberman M, Prom MJ, Beatka MJ, Strande JL, Lawlor MW. A Long-Term Study Evaluating the Effects of Nicorandil Treatment on Duchenne Muscular Dystrophy-Associated Cardiomyopathy in mdx Mice. J Cardiovasc Pharmacol Ther 2022; 27:10742484221088655. [PMID: 35353647 DOI: 10.1177/10742484221088655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) is a neuromuscular disease caused by dystrophin gene mutations affecting striated muscle. Due to advances in skeletal muscle treatment, cardiomyopathy has emerged as a leading cause of death. Previously, nicorandil, a drug with antioxidant and nitrate-like properties, ameliorated cardiac damage and improved cardiac function in young, injured mdx mice. Nicorandil mitigated damage by stimulating antioxidant activity and limiting pro-oxidant expression. Here, we examined whether nicorandil was similarly cardioprotective in aged mdx mice. METHODS AND RESULTS Nicorandil (6 mg/kg) was given over 15 months. Echocardiography of mdx mice showed some functional defects at 12 months compared to wild-type (WT) mice, but not at 15 months. Disease manifestation was evident in mdx mice via treadmill assays and survival, but not open field and grip strength assays. Cardiac levels of SOD2 and NOX4 were decreased in mdx vs. WT. Nicorandil increased survival in mdx but did not alter cardiac function, fibrosis, diaphragm function or muscle fatigue. CONCLUSIONS In contrast to our prior work in young, injured mdx mice, nicorandil did not exert cardioprotective effects in 15 month aged mdx mice. Discordant findings may be explained by the lack of cardiac disease manifestation in aged mdx mice compared to WT, whereas significant cardiac dysfunction was previously seen with the sub-acute injury in young mice. Therefore, we are not able to conclude any cardioprotective effects with long-term nicorandil treatment in aging mdx mice.
Collapse
Affiliation(s)
- Melanie Gartz
- Department of Cell Biology, Neurobiology and Anatomy, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Cardiovascular Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret Haberman
- Cardiovascular Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mariah J Prom
- Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Margaret J Beatka
- Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jennifer L Strande
- Cardiovascular Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| | - Michael W Lawlor
- Neuroscience Research Center, 5506Medical College of Wisconsin, Milwaukee, WI, USA.,Department of Pathology and Laboratory Medicine, 5506Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
44
|
Salvador D, Bastos V, Oliveira H. Hyperthermia Enhances Doxorubicin Therapeutic Efficacy against A375 and MNT-1 Melanoma Cells. Int J Mol Sci 2021; 23:ijms23010035. [PMID: 35008457 PMCID: PMC8744762 DOI: 10.3390/ijms23010035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/17/2021] [Accepted: 12/18/2021] [Indexed: 12/28/2022] Open
Abstract
Melanoma is the deadliest form of skin cancer, and its incidence has alarmingly increased in the last few decades, creating a need for novel treatment approaches. Thus, we evaluated the combinatorial effect of doxorubicin (DOX) and hyperthermia on A375 and MNT-1 human melanoma cell lines. Cells were treated with DOX for 24, 48, and 72 h and their viabilities were assessed. The effect of DOX IC10 and IC20 (combined at 43 °C for 30, 60, and 120 min) on cell viability was further analyzed. Interference on cell cycle dynamics, reactive oxygen species (ROS) production, and apoptosis upon treatment (with 30 min at 43 °C and DOX at the IC20 for 48 h) were analyzed by flow cytometry. Combined treatment significantly decreased cell viability, but not in all tested conditions, suggesting that the effect depends on the drug concentration and heat treatment duration. Combined treatment also mediated a G2/M phase arrest in both cell lines, as well as increasing ROS levels. Additionally, it induced early apoptosis in MNT-1 cells, while in A375 cells this effect was similar to the one caused by hyperthermia alone. These findings demonstrate that hyperthermia enhances DOX effect through cell cycle arrest, oxidative stress, and apoptotic cell death.
Collapse
|
45
|
Doxorubicin suppresses chondrocyte differentiation by stimulating ROS production. Eur J Pharm Sci 2021; 167:106013. [PMID: 34547383 DOI: 10.1016/j.ejps.2021.106013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 12/21/2022]
Abstract
BACKGROUND Doxorubicin (DOX) is widely used as an effective chemotherapy agent in human cancer. Our study aimed to explore the specific mechanism of DOX in osteoarthritis (OA). METHODS A mouse OA model was established by destabilizing the medial meniscus (DMM), and the role of DOX was determined by intraperitoneally injecting 5 or 10 mg/kg DOX. The expression of collagen type-II (Col-2) was detected by immunohistochemistry staining, and the expression of plasma interleukin (IL)-6 (IL-6), IL-1beta (IL-1β), and tumor necrosis factor (TNF)-alpha (TNF-α) was evaluated by specific ELISA kits, and the expression of Sry-related HMG box 9 (SOX-9) was detected by western blot. Bone marrow mesenchymal stem cells (BMMSCs) were used to explore the mechanism of DOX in vitro. Reactive oxygen species (ROS) production was determined by flow cytometry. Cell viability was measured by Cell Counting Kit-8 (CCK-8) assay. Chondrocyte differentiation was evaluated by Alcian blue staining assay. The expression of chondrocyte differentiation-related markers was detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR). RESULTS DOX exposure exacerbated OA progression and inhibited chondrocyte differentiation of BMMSCs. DOX also increased ROS production in BMMSCs. Meanwhile, DOX further increased the elevation of plasma IL-6, IL-1β and TNF-α induced by DMM and obviously reduced the expression of chondrocyte differentiation-related markers, including collagen type II a1 (Col2A1), collagen type X alpha 1 (Col10A1), and aggrecan. Moreover, ROS scavengers NAC and MitoQ efficiently alleviated DOX toxicity, including ROS production and chondrocyte differentiation in BMMSCs. CONCLUSION Our study revealed that DOX suppressed chondrocyte differentiation by stimulating ROS production, providing a novel theoretical strategy for the clinical treatment of OA caused by DOX.
Collapse
|
46
|
Fant C, Granzotto A, Mestas JL, Ngo J, Lafond M, Lafon C, Foray N, Padilla F. DNA Double-Strand Breaks in Murine Mammary Tumor Cells Induced by Combined Treatment with Doxorubicin and Controlled Stable Cavitation. ULTRASOUND IN MEDICINE & BIOLOGY 2021; 47:2941-2957. [PMID: 34315620 DOI: 10.1016/j.ultrasmedbio.2021.05.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 06/13/2023]
Abstract
Chemotherapeutic agents such as doxorubicin induce cell cytotoxicity through induction of DNA double-strand breaks. Recent studies have reported the occurrence of DNA double-strand breaks in different cell lines exposed to cavitational ultrasound. As ultrasound stable cavitation can potentiate the therapeutic effects of cytotoxic drugs, we hypothesized that combined treatment with unseeded stable cavitation and doxorubicin would lead to increased DNA damage and would reduce cell viability and proliferation in vitro. In this study, we describe how we determined, using 4T1 murine mammary carcinoma as a model cell line, that unseeded stable cavitation combined with doxorubicin leads to additive DNA double-strand break induction. Combined treatment with doxorubicin and unseeded stable cavitation significantly reduced cell viability and proliferation at 72 h. A mechanistic study of the potential mechanisms of action of the combined treatment identified the presence of cavitation necessary to increase early DNA double-strand break induction, likely mediated by a bystander effect with release of extracellular calcium.
Collapse
Affiliation(s)
- Cécile Fant
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | | | - Jean-Louis Mestas
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | - Jacqueline Ngo
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | - Maxime Lafond
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | - Cyril Lafon
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France
| | | | - Frédéric Padilla
- LabTAU, INSERM, Centre Léon Bérard, Université Lyon 1, Univ-Lyon, Lyon, France; Focused Ultrasound Foundation, Charlottesville, Virginia, USA; Department of Radiology, University of Virginia School of Medicine, Charlottesville, Virginia, USA.
| |
Collapse
|
47
|
Serpeloni JM, Specian AFL, Ribeiro DL, Tuttis K, Heredia-Vieira SC, Vilegas W, Martínez-López W, Varanda EA, de Syllos Cólus IM. Selective anticancer effects of Serjania marginata Casar. extract in gastric cells are mediated by antioxidant response. ENVIRONMENTAL TOXICOLOGY 2021; 36:1544-1556. [PMID: 33885224 DOI: 10.1002/tox.23151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/17/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
Gastric cancer is the fifth most common malignancy worldwide. Serjania marginata Casar. (SM) displays anti-inflammatory properties and has been used to treat gastrointestinal disorders. In the current study, we examined whether the hydroethanolic extract of SM leaves exerted cytotoxic, mutagenic, and protective effects in non-tumor gastric epithelium cells (MNP01) and gastric adenocarcinoma cells (ACP02) in vitro and analyzed whether its action was selective. Initially, cell viability (MTT assay), cell cycle kinetics (flow cytometry), and cell proliferation (total protein content) were analyzed. In addition, genomic instability (cytokinesis-block micronucleus cytome assay), anti/pro-oxidant status (CM-H2 DCFDA probe), and transcriptional expression (RT-qPCR) of genes related to cell cycle, cell death, and antioxidant defense were also evaluated. The SM extract was cytotoxic toward MNP01 and ACP02 cells at concentrations greater than 300 and 100 μg·ml-1 , respectively, and decreased protein content only toward ACP02 cells at 200 μg ml-1 . In ACP02 cells, the SM extract at 100 μg·ml-1 associated with doxorubicin (DXR; 0.2 μg ml-1 ) clearly promoted cell cycle arrest at the G2/M phase. The extract alone was not mutagenic to either cell type and reversed DXR-induced DNA damage and H2 O2 -induced oxidative stress in MNP01 cells. The gene expression experiments showed that SM hydroethanolic extract exerts an antioxidant response via NFE2L2 activation in non-tumor gastric cells, and cell cycle arrest (G2/M) in ACP02 gastric cancer cells via the TP53 pathway. The selective action of SM indicates that it is a promising therapeutic agent to treat gastric diseases and merits further studies.
Collapse
Affiliation(s)
- Juliana Mara Serpeloni
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - Ana Flavia Leal Specian
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - Diego Luis Ribeiro
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | - Katiuska Tuttis
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| | | | - Wagner Vilegas
- Experimental Campus of São Vicente, São Paulo State University (UNESP), São Vicente, Brazil
| | - Wilner Martínez-López
- Epigenetics and Genomic Instability Laboratory, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Eliana Aparecida Varanda
- Department of Biological Sciences, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - Ilce Mara de Syllos Cólus
- Department of General Biology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Brazil
| |
Collapse
|
48
|
Li F. The beneficial role of vitamin B12 in injury induced by ischemia/reperfusion: Beyond scavenging superoxide? JOURNAL OF EXPERIMENTAL NEPHROLOGY 2021; 2:3-6. [PMID: 34291234 PMCID: PMC8291747 DOI: 10.46439/nephrology.2.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vitamin B12 (B12) is required for cellular metabolism and DNA synthesis as a co-enzyme; it also possesses anti-reactive oxygen species (ROS) property as a superoxide scavenger. B12 deficiency has been implicated in multiple diseases such as megaloblastic anemia, and this disease can be effectively cured by supplementation of B12. Multiple studies suggest that B12 also benefits the conditions associated with excess ROS. Recently, we have reported that oral high dose B12 decreases superoxide level and renal injury induced by ischemia/reperfusion in mice. Here, we discuss potential mechanism(s) other than decreasing superoxide by which B12 executes its beneficial effects.
Collapse
Affiliation(s)
- Feng Li
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
49
|
Sullivan RT, Lam NT, Haberman M, Beatka MJ, Afzal MZ, Lawlor MW, Strande JL. Cardioprotective effect of nicorandil on isoproterenol induced cardiomyopathy in the Mdx mouse model. BMC Cardiovasc Disord 2021; 21:302. [PMID: 34130633 PMCID: PMC8207777 DOI: 10.1186/s12872-021-02112-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/07/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) associated cardiomyopathy is a major cause of morbidity and mortality. In an in vitro DMD cardiomyocyte model, nicorandil reversed stress-induced cell injury through multiple pathways implicated in DMD. We aimed to test the efficacy of nicorandil on the progression of cardiomyopathy in mdx mice following a 10-day treatment protocol. METHODS A subset of mdx mice was subjected to low-dose isoproterenol injections over 5 days to induce a cardiac phenotype and treated with vehicle or nicorandil for 10 days. Baseline and day 10 echocardiograms were obtained to assess cardiac function. At 10 days, cardiac tissue was harvested for further analysis, which included histologic analysis and assessment of oxidative stress. Paired student's t test was used for in group comparison, and ANOVA was used for multiple group comparisons. RESULTS Compared to vehicle treated mice, isoproterenol decreased ejection fraction and fractional shortening on echocardiogram. Nicorandil prevented isoproterenol induced cardiac dysfunction. Isoproterenol increased cardiac fibrosis, which nicorandil prevented. Isoproterenol increased gene expression of NADPH oxidase, which decreased to baseline with nicorandil treatment. Superoxide dismutase 2 protein expression increased in those treated with nicorandil, and xanthine oxidase activity decreased in mice treated with nicorandil during isoproterenol stress compared to all other groups. CONCLUSIONS In conclusion, nicorandil is cardioprotective in mdx mice and warrants continued investigation as a therapy for DMD associated cardiomyopathy.
Collapse
Affiliation(s)
- Rachel T Sullivan
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Ngoc T Lam
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Margaret Haberman
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Margaret J Beatka
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Muhammad Z Afzal
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | - Jennifer L Strande
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Milwaukee, WI, 53226, USA
| |
Collapse
|
50
|
Kim CW, Choi KC. Effects of anticancer drugs on the cardiac mitochondrial toxicity and their underlying mechanisms for novel cardiac protective strategies. Life Sci 2021; 277:119607. [PMID: 33992675 DOI: 10.1016/j.lfs.2021.119607] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
Mitochondria are organelles that play a pivotal role in the production of energy in cells, and vital to the maintenance of cellular homeostasis due to the regulation of many biochemical processes. The heart contains a lot of mitochondria because those muscles require a lot of energy to keep supplying blood through the circulatory system, implying that the energy generated from mitochondria is highly dependent. Thus, cardiomyocytes are sensitive to mitochondrial dysfunction and are likely to be targeted by mitochondrial toxic drugs. It has been reported that some anticancer drugs caused unwanted toxicity to mitochondria. Mitochondrial dysfunction is related to aging and the onset of many diseases, such as obesity, diabetes, cancer, cardiovascular and neurodegenerative diseases. Mitochondrial toxic mechanisms can be mainly explained concerning reactive oxygen species (ROS)/redox status, calcium homeostasis, and endoplasmic reticulum stress (ER) stress signaling. The toxic mechanisms of many anticancer drugs have been revealed, but more studying and understanding of the mechanisms of drug-induced mitochondrial toxicity is required to develop mitochondrial toxicity screening system as well as novel cardioprotective strategies for the prevention of cardiac disorders of drugs. This review focuses on the cardiac mitochondrial toxicity of commonly used anticancer drugs, i.e., doxorubicin, mitoxantrone, cisplatin, arsenic trioxide, and cyclophosphamide, and their possible chemopreventive agents that can prevent or alleviate cardiac mitochondrial toxicity.
Collapse
Affiliation(s)
- Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|