1
|
Demir S, Alemdar NT, Yulug E, Demir EA, Durmus TB, Mentese A, Aliyazicioglu Y. Usnic acid suppresses inflammation and endoplasmic reticulum stress in a methotrexate-induced pulmonary toxicity model via modulating Nrf2 pathway. SOUTH AFRICAN JOURNAL OF BOTANY 2025; 177:572-578. [DOI: 10.1016/j.sajb.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Ewees MGED, Mostafa-Hadeab G, Saber S, El-Meguid EAA, Sree HTA, Abdel Rahman FEZS, Mahmoud NI. Linagliptin mitigates cisplatin-induced kidney impairment via mitophagy regulation in rats, with emphasis on SIRT-3/PGC-1α, PINK-1 and Parkin-2. Toxicol Appl Pharmacol 2024; 491:117048. [PMID: 39102946 DOI: 10.1016/j.taap.2024.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Cisplatin (CDDP) often leads to kidney impairment, limiting its effectiveness in cancer treatment. The lack of mitophagy in proximal tubules exacerbates this issue. Hence, targeting SIRT-3 and PGC1-α shows promise in mitigating CDDP-induced kidney damage. The potential renoprotective effects of linagliptin, however, remain poorly understood. This study represents the first exploration of linagliptin's impact on CDDP-induced kidney impairment in rats, emphasizing its potential role in mitophagic pathways. The experiment involved four rat groups: Group (I) received saline only, Group (II) received a single intraperitoneal injection of CDDP at 6 mg/kg. Groups (III) and (IV) received linagliptin at 6 and 10 mg/kg p.o., respectively, seven days before CDDP administration, continuing for an additional four days. Various parameters, including renal function tests, oxidative stress, TNF-α, IL-1β, IL-6, PGC-1α, FOXO-3a, p-ERK1, and the gene expression of SIRT-3 and P62 in renal tissue, were assessed. Linagliptin improved renal function, increased antioxidant enzyme activity, and decreased IL-1β, TNF-α, and IL-6 expression. Additionally, linagliptin significantly upregulated PGC-1α and PINK-1/Parkin-2 expression while downregulating P62 expression. Moreover, linagliptin activated FOXO-3a and SIRT-3, suggesting a potential enhancement of mitophagy. Linagliptin demonstrated a positive impact on various factors related to kidney health in the context of CDDP-induced impairment. These findings suggest a potential role for linagliptin in improving cancer treatment outcomes. Clinical trials are warranted to further investigate and validate its efficacy in a clinical setting.
Collapse
Affiliation(s)
- Mohamed Gamal El-Din Ewees
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt.
| | - Gomaa Mostafa-Hadeab
- Department of Pharmacology, Medical College, Jouf University, Sakaka 11564, Saudi Arabia.
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt.
| | - Eman Ali Abd El-Meguid
- Department of Anatomy and Embryology, Faculty of Medicine, Fayoum University, Fayoum 63511, Egypt.
| | - Haidy Tamer Abo Sree
- Department of Basic Sciences, Biochemistry, Faculty of Oral and Dental Medicine, Nahda University, Beni-Suef 11787, Egypt.
| | | | - Nesreen Ishak Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 11787, Egypt
| |
Collapse
|
3
|
Mosaoa RM, Al-Rabia MW, Asfour HZ, Alhakamy NA, Mansouri RA, El-Agamy DS, Abdulaal WH, Mohamed GA, Ibrahim SRM, Elshal M. Targeting SIRT1/AMPK/Nrf2/NF-кB by sitagliptin protects against oxidative stress-mediated ER stress and inflammation during ANIT-induced cholestatic liver injury. Toxicology 2024; 507:153889. [PMID: 39029735 DOI: 10.1016/j.tox.2024.153889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/09/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Intrahepatic cholestasis is a common clinical form of hepatobiliary injury characterized by the intrahepatic accumulation of toxic bile acids. Besides its antidiabetic activity, the dipeptidyl peptidase IV inhibitor sitagliptin (SG) has been recently assigned diverse pharmacological activities and therapeutic potential against different disorders owing to its emerging antioxidant and anti-inflammatory properties. The current study explored the potential hepatoprotective effect of SG on α-naphthyl isothiocyanate (ANIT)-induced cholestatic liver injury (CLI) in mice and investigate its possible targeted signaling pathways. Mice received SG (10 and 20 mg/kg) for four consecutive days, two days before and after a single oral administration of ANIT (75 mg/kg). Our results revealed that SG administration remarkably prevented ANIT-induced histopathological lesions in the liver and maintained hepatic functions and oxidative/antioxidant balance. Ultimately, SG counteracted the inflammatory response in the liver, as indicated by the marked suppression of hepatic expression of NF-κB, TNF-α, and IL-6. Moreover, it inhibited the endoplasmic reticulum (ER) stress response in the liver. These beneficial effects of SG were accompanied by upregulation of SIRT1, p-AMPK, and Nrf2 expressions while downregulating keap1 expression in the liver. In conclusion, this study is the first to demonstrate the ability of SG to protect against ANIT-induced CLI through modulating multiple signaling cascades, including SIRT1/AMPK, Nrf2/keap1, and NF-кB, which resulted in enhanced antioxidant capacity and repressed inflammatory and ER stress responses in the liver.
Collapse
Affiliation(s)
- Rami M Mosaoa
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia; Experimental Biochemistry Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia; Center of Artificial Intelligence for Precision Medicines, king Abdulaziz University, Jeddah, Saudi Arabia.
| | - Mohammed W Al-Rabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Hani Z Asfour
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Nabil A Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Rasha A Mansouri
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 22254, Saudi Arabia.
| | - Dina S El-Agamy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Wesam H Abdulaal
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia; Department of Biochemistry, Faculty of Science, Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Gamal A Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| | - Sabrin R M Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia.
| | - Mahmoud Elshal
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| |
Collapse
|
4
|
Yoshino Y, Fujii Y, Chihara K, Nakae A, Enmi JI, Yoshioka Y, Miyawaki I. Non-invasive differentiation of hepatic steatosis and steatohepatitis in a mouse model using nitroxyl radical as an MRI-contrast agent. Toxicol Rep 2024; 12:1-9. [PMID: 38173653 PMCID: PMC10758964 DOI: 10.1016/j.toxrep.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Drug-induced steatohepatitis is considered more serious than drug-induced hepatic steatosis, so that differentiating between the two is crucial in drug development. In addition, early detection of drug-induced steatohepatitis is considered important since recovery is possible with drug withdrawal. However, no method has been established to differentiate between the two. In the development of drug-induced steatohepatitis, reactive oxygen species (ROS) is excessively generated in the liver. It has been reported that ROS can be monitored with electron spin resonance (ESR) and dynamic nuclear polarization-magnetic resonance imaging (DNP-MRI) by using nitroxyl radicals, which are known to participate in various in vivo redox reactions. The decay/reduction rate, which is an index for monitoring nitroxyl radicals, has been reported to be increased in tissues with excessive ROS levels other than liver, but decreased in methionine choline deficient (MCD) diet-induced steatohepatitis with excess ROS. Therefore, looking to differentiate between drug-induced hepatic steatosis and steatohepatitis, we examined whether the reduction rate decreases in steatohepatitis other than the MCD-diet induced disease and whether the decrease could be detected by MRI. We used STAM™ mice in which hepatic steatosis and steatohepatitis developed sequentially under diabetic conditions. 3-carbamoyl-PROXYL (CmP), one of the nitroxyl radicals, was injected intravenously during the MRI procedure and the reduction rate was calculated. The reduction rate was significantly higher in early steatohepatitis than in hepatic steatosis and the control. Excess ROS in early steatohepatitis was detected by an immunohistochemical marker for ROS. Therefore, it was indicated that the increase or decrease in the reduction rate in steatohepatitis differs depending on the model, and early steatohepatitis could be noninvasively differentiated from hepatic steatosis using CmP in MRI. Since the change in direction of the reduction rate in steatohepatitis in clinical studies could be predicted by confirming the reduction rate in preclinical studies, the present method, which can be used consistently in clinical and preclinical studies, warrants consideration as a candidate monitoring method for differentiating between early drug-induced steatohepatitis and hepatic steatosis in drug development.
Collapse
Affiliation(s)
- Yuka Yoshino
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita city, Osaka 565-0871, Japan
| | - Yuta Fujii
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita city, Osaka 565-0871, Japan
| | - Kazuhiro Chihara
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| | - Aya Nakae
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita city, Osaka 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Jun-ichiro Enmi
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita city, Osaka 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Yoshichika Yoshioka
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita city, Osaka 565-0871, Japan
- Center for Information and Neural Networks (CiNet), Osaka University and National Institute of Information and Communications Technology (NICT), 1-4 Yamadaoka, Suita City, Osaka 565-0871, Japan
| | - Izuru Miyawaki
- Preclinical Research Unit, Sumitomo Pharma Co., Ltd., 3-1-98 Kasugade-naka, Konohana-ku, Osaka 554-0022, Japan
| |
Collapse
|
5
|
Mohammed RS, Ibrahim FM, El-Akad RH, Al-Mokaddem AK, Ahmed KA, Ashour WES, Attia HN. Antiarthritic activity of Physalis peruviana fruit extract via inhibition of inflammatory mediators: Integrated in vitro, in vivo and in silico study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117502. [PMID: 38030020 DOI: 10.1016/j.jep.2023.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE P. peruviana fruit, native to Andean region, is cultivated worldwide for its adaptability to various soil natures and climatic conditions. It is increasingly consumed for its high nutritional profile and history of ethnomedical uses including treatment of arthritis. Little pharmacological evidences support this folk use except for previous in vitro study that reported significant inhibition of protein denaturation. AIM OF THE STUDY The study aims at providing new in vivo evidence on antiarthritic activity of P. peruviana fruits in vivo that justifies its traditional use through mechanism-based experiment. MATERIAL AND METHODS Inhibition of inflammatory mediators is considered one of the key treatments to alleviate painful symptoms of rheumatoid arthritis (RA). Anti-inflammatory activity was assessed against COX-1 and COX-2 activity in vitro. Serum TNFα, IL-1β and IL-6 were traced using in vivo model of adjuvant-induced arthritis. Gross/inflammatory changes in rat paw, relative mass indices of spleen and liver were further investigated together with joint tissue histoarchitecture. Seven metabolites from different phytochemical classes, that were previously reported in P. peruviana fruit, were evaluated in silico against TNF-α target protein (PDB ID: 2AZ5) to assess their inhibitory effect. This was followed by assessment of their drug-likeness based on Lipinski's rule according to their physicochemical and pharmacokinetic properties. RESULTS High dose of extract (E-1000 mg) improved adjuvant-induced cachexia and attenuated immune-inflammatory responses in paw and serum parameters, with equipotent effect to MTX, in addition to minimal side effect profile on spleen and liver. Histopathological study of knee joint tissues confirmed dose-dependent improvement in arthritic groups treated with P. peruviana fruit extracts. The insilico study recommended steroidal lactones withaperuvin E/C and hydroxywithanolide E as promising lead compounds for inhibiting TNF enzyme as evidenced by docking scores of 6.301, 5.488 and 5.763 kcal/mol, respectively, fitting as well the Lipinski's rule of drug likeness. CONCLUSION The study provided novel approach that rationalize folk use of P. peruviana fruit in treatment of arthritis.
Collapse
Affiliation(s)
- Reda S Mohammed
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Dokki, P.O. Box 12622, Egypt.
| | - Faten M Ibrahim
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Dokki, P.O. Box 12622, Egypt.
| | - Radwa H El-Akad
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Dokki, P.O. Box 12622, Egypt.
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Kawkab A Ahmed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt.
| | - Wedian E-S Ashour
- Pharmacognosy Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Dokki, P.O. Box 12622, Egypt.
| | - Hanan N Attia
- Medicinal and Pharmaceutical Chemistry Department (Pharmacology group), Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki-Giza- P.O. Box 12622, Egypt.
| |
Collapse
|
6
|
Allam MM, Ibrahim RM, El Gazzar WB, Said MA. Dipeptedyl peptidase-4 (DPP-4) inhibitor downregulates HMGB1/TLR4/NF-κB signaling pathway in a diabetic rat model of non-alcoholic fatty liver disease. Arch Physiol Biochem 2024; 130:87-95. [PMID: 34543583 DOI: 10.1080/13813455.2021.1975758] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/27/2021] [Indexed: 02/06/2023]
Abstract
CONTEXT Inflammatory and immune pathways play a crucial role in the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Sitagliptin blocks the dipeptidyl peptidase-4 (DPP-4) enzyme, mechanisms that alter inflammatory pathways and the innate immune system, and by which Sitagliptin affects the pathogenesis of NAFLD weren't previously discussed. OBJECTIVE This study aims to understand the interaction between Sitagliptin and innate immune response in order to meliorate NAFLD. METHODS Thirty- two Wistar male albino rats were categorised into four groups. Rats have received a standard diet or a high-fat diet either with or without Sitagliptin. Serum HMGB1, protein and mRNA expressions of hepatic TLR4 and NF-κB, inflammatory cytokines, and histopathological changes were analysed. RESULTS An ameliorative action of Sitagliptin in NAFLD was demonstrated via decreasing HMGB1-mediated TLR4/NF-κB signalling in order to suppress inflammation and reduce insulin resistance. CONCLUSION Sitagliptin may in fact prove to be a beneficial therapeutic intervention in NAFLD.
Collapse
Affiliation(s)
- Mona M Allam
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Reham M Ibrahim
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Walaa Bayoumie El Gazzar
- Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha City, Egypt
| | - Mona A Said
- Department of Physiology, Faculty of Medicine, Benha University, Benha City, Egypt
| |
Collapse
|
7
|
Tashkandi HM, Althagafy HS, Jaber FA, Alamri T, Al-Abbas NS, Shaer NA, Harakeh S, Hassanein EHM. Vinpocetine mitigates methotrexate-induced duodenal intoxication by modulating NF-κB, JAK1/STAT-3, and RIPK1/RIPK3/MLKL signals. Immunopharmacol Immunotoxicol 2024; 46:11-19. [PMID: 37493389 DOI: 10.1080/08923973.2023.2239491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
OBJECTIVES Methotrexate (MTX) is an antimetabolite agent widely used to manage a variety of tumors and autoimmune diseases. Nonetheless, MTX-induced intestinal intoxication is a serious adverse effect limiting its clinical utility. Inflammation and oxidative stress are possible mechanisms for MTX-induced intestinal toxicity. Vinpocetine (VNP) is a derivative of the alkaloid vincamine with potent anti-inflammatory and antioxidant effects. The current study investigated the protective intestinal impact of VNP in attenuating MTX-induced intestinal intoxication in rats. MATERIALS AND METHODS VNP was administered orally in a dose of 20 mg/kg, while MTX was injected intraperitoneal in a dose of 20 mg/kg. RESULTS VNP administration attenuated drastic histological changes induced by MTX and preserved both normal villus and crypt histology. VNP significantly attenuated oxidative injury by upregulating intestinal Nrf2 and HO-1 expression. VNP attenuated inflammation by reducing MPO, NO2-, TNF-α, and IL-1β levels mediated by downregulating NF-κB, NDAPH-oxidase, IRF3, p-JAK-1, and p-STAT-3 expressions. Moreover, VNP potently counteracted intestinal necroptosis by effectively downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins. CONCLUSION Therefore, VNP may represent a promising approach that can attenuate intestinal toxicity in patients receiving MTX.
Collapse
Affiliation(s)
- Hanaa M Tashkandi
- Department of General Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Turki Alamri
- Family and Community Medicine Department, Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nouf S Al-Abbas
- Jamoum University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nehad A Shaer
- Department of Chemistry, Al Lieth University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| |
Collapse
|
8
|
Azadian R, Mohammadalipour A, Memarzadeh MR, Hashemnia M, Aarabi MH. Examining hepatoprotective effects of astaxanthin against methotrexate-induced hepatotoxicity in rats through modulation of Nrf2/HO-1 pathway genes. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:371-380. [PMID: 37450013 DOI: 10.1007/s00210-023-02581-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/15/2023] [Indexed: 07/18/2023]
Abstract
Methotrexate (MTX), as a folic acid antagonist, is an effective drug in treating a wide range of malignancies and autoimmune diseases. However, the clinical use of MTX has been limited due to its side effects, the most common of which is hepatotoxicity. In this study, rats were randomly divided into six groups: three treatment groups received methotrexate and different doses of astaxanthin (AX) for 14 days. At the end of the study, blood samples were collected to determine serum levels of ALT, AST, ALP, and LDH. Also, liver tissues were isolated to evaluate antioxidant enzymes and markers of oxidative stress, histopathological damage, and expression of NF-E2-related transcription factor (Nrf2) and Heme oxygenase-1 (HO-1) genes. The results showed that administration of MTX significantly increased the levels of ALT, AST, ALP, and LDH in the blood, markers of oxidative stress, and histopathological damage in liver tissue and significantly reduced the levels of antioxidant enzymes and the expression of Nrf2 and HO-1 genes. On the other hand, treatment with AX decreased blood levels of ALT, AST, ALP, and LDH and oxidative stress markers and remarkably raises the activity of antioxidant enzymes and expression of Nrf2 and HO-1 genes in liver tissue. In addition, histopathological lesions were improved with AX administration. The findings of this study indicated that AX may be useful for the prevention of MTX-induced hepatotoxicity by improving oxidative and inflammatory changes.
Collapse
Affiliation(s)
- Razieh Azadian
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Adel Mohammadalipour
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammad Hosein Aarabi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
9
|
Maleki R, Noorbakhsh MF, Kazemipour N, Masoudian M, Namazi F, Nazifi S. The hepatoprotective effects of sitagliptin against cyclophosphamide-induced hepatotoxicity in rat. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:193-200. [PMID: 39315284 PMCID: PMC11416847 DOI: 10.22099/mbrc.2024.49925.1964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Hepatotoxicity is a serious side effects of cyclophosphamide. Thus, the present research investigates the protective properties of sitagliptin against cyclophosphamide-induced hepatotoxicity. Fifty male rats were randomly divided into five groups. They were pre-treated with either sitagliptin or normal saline once a day for the first ten days of the study. To induce acute hepatotoxicity, cyclophosphamide (200 mg/kg, i.p) was injected only one time and 45 min after the last dose of sitagliptin. The rats were sacrificed on the 11th day, and their blood and liver were collected for biochemical, gene expression, and histopathological assessments. Our results showed that cyclophosphamide induced obvious liver toxicity as marked by an increase in serum levels of alanine transaminase and aspartate transaminase, reduced serum albumin and total protein levels, in addition to histopathological changes. The malondialdehyde, tumor necrosis factor-α, and interleukin-6 levels were also elevated and total antioxidant capacity declined in serum and hepatic homogenates. Sitagliptin magnificently attenuated the cylophosphamide-induced histological alterations, improved liver function tests, enhanced total antioxidant capacity, and decreased malondialdehyde, tumor necrosis factor-α, and interleukin-6 in the blood and hepatic tissues. These findings suggest that sitagliptin has hepatoprotective activity against cyclophosphamide toxicity, which may be due to its antioxidant and anti-inflammatory effects.
Collapse
Affiliation(s)
- Reza Maleki
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | | | - Nasrin Kazemipour
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Maliheh Masoudian
- Molecular Department of Central Laboratory, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Fatemeh Namazi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Saeed Nazifi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
10
|
Alqahtani QH, Alshehri S, Alhusaini AM, Sarawi WS, Alqarni SS, Mohamed R, Kumar MN, Al-Saab J, Hasan IH. Protective Effects of Sitagliptin on Streptozotocin-Induced Hepatic Injury in Diabetic Rats: A Possible Mechanisms. Diseases 2023; 11:184. [PMID: 38131990 PMCID: PMC10743245 DOI: 10.3390/diseases11040184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023] Open
Abstract
Diabetes is a ubiquitous disease that causes several complications. It is associated with insulin resistance, which affects the metabolism of proteins, carbohydrates, and fats and triggers liver diseases such as fatty liver disease, steatohepatitis, fibrosis, and cirrhosis. Despite the effectiveness of Sitagliptin (ST) as an antidiabetic drug, its role in diabetes-induced liver injury is yet to be fully investigated. Therefore, this study aims to investigate the effect of ST on hepatic oxidative injury, inflammation, apoptosis, and the mTOR/NF-κB/NLRP3 signaling pathway in streptozotocin (STZ)-induced liver injury. Rats were allocated into four groups: two nondiabetic groups, control rats and ST rats (100 mg/kg), and two diabetic groups induced by STZ, and they received either normal saline or ST for 90 days. Diabetic rats showed significant hyperglycemia, hyperlipidemia, and elevation in liver enzymes. After STZ induction, the results revealed remarkable increases in hepatic oxidative stress, inflammation, and hepatocyte degeneration. In addition, STZ upregulated the immunoreactivity of NF-κB/p65, NLRP3, and mTOR but downregulated IKB-α in liver tissue. The use of ST mitigated metabolic and hepatic changes induced by STZ; it also reduced oxidative stress, inflammation, and hepatocyte degeneration. The normal expression of NF-κB/p65, NLRP3, mTOR, and IKB-α were restored with ST treatment. Based on that, our study revealed for the first time the hepatoprotective effect of ST that is mediated by controlling inflammation, oxidative stress, and mTOR/NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- Qamraa H. Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Samiyah Alshehri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Ahlam M. Alhusaini
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Wedad S. Sarawi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Sana S. Alqarni
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Raessa Mohamed
- Department of Histology, College of Medicine, King Saud University, P.O. Box 2925, Riyadh 11461, Saudi Arabia;
| | - Meha N. Kumar
- Department of Clinical Medicine, Shanghai Medical College, Fudan University, Shanghai 200233, China;
| | - Juman Al-Saab
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| | - Iman H. Hasan
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (Q.H.A.); (S.A.); (A.M.A.); (W.S.S.); (J.A.-S.)
| |
Collapse
|
11
|
Radwan SM, Abdel-Latif GA, Abbas SS, Elmongy NF, Wasfey EF. The beneficial effects of l-carnitine and infliximab in methotrexate-induced hepatotoxicity: Emphasis on Notch1/Hes-1 signaling. Arch Pharm (Weinheim) 2023; 356:e2300312. [PMID: 37625018 DOI: 10.1002/ardp.202300312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Methotrexate (MTX)-induced hepatotoxicity is a serious adverse effect that may limit its use. Therefore, eligible drugs to ameliorate MTX-induced hepatotoxicity are required. l-Carnitine (LC) is a natural molecule with beneficial metabolic effects and infliximab (INF) is an anti-inflammatory monoclonal antibody against tumor necrosis factor-alpha (TNF-α). Recently, Notch1/Hes-1 signaling was found to play a key role in the pathogenesis of liver injury. However, its role in MTX-induced hepatotoxicity is unclear. This study aimed to evaluate the modulatory effects of LC or INF on MTX-induced hepatotoxicity and to explore the underlying mechanism with emphasis on the Notch1/Hes-1 signaling pathway. Sixty rats were randomized into six groups (n = 10): (1) control (saline); (2) MTX (20 mg/kg MTX, intraperitoneal [ip], once); (3) LC group (500 mg/kg ip, 5 days); (4) INF (7 mg/kg INF ip, once); (5) MTX+LC (20 mg/kg ip, once, 500 mg/kg ip, 5 days, respectively); (6) MTX+INF (20 mg/kg ip, once, 7 mg/kg INF ip, once, respectively). Oxidative stress, inflammatory markers, and Notch1/Hes-1 were investigated. MTX induced the expression of Notch1 and Hes-1 proteins and increased the levels of TNF-α, interleukin (IL)-6, and IL-1β in the liver. Cotreatment with LC or INF showed apparent antioxidant and anti-inflammatory effects. Interestingly, the downregulation of Notch1 and Hes-1 expression was more prominent in LC cotreatment as compared with INF. In conclusion, LC or INF attenuates MTX-induced hepatotoxicity through modulation of Notch1/Hes-1 signaling. The LC ameliorative effect against MTX-induced hepatotoxicity is significantly better than that of INF. Therefore, LC cotreatment may present a safe and therapeutically effective therapy in alleviating MTX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sara M Radwan
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ghada A Abdel-Latif
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Samah S Abbas
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
- Translational and Clinical Research Unit, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Noura F Elmongy
- Physiology Department, Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
12
|
Yusuf AA, Lawal B, Alozieuwa UB, Onikanni AS, Lukman HY, Fadaka AO, Olawale F, Osuji O, Sani S, Owolabi MS, Adewuyi AH, Yusuf DH, Batiha GES, Ataya FS, Fouad D. Attenuating effects of Azanza garckeana fractions on glycemo-impaired-associated dyslipidemia, hepatopathy, and nephropathy. Am J Transl Res 2023; 15:5997-6014. [PMID: 37969197 PMCID: PMC10641334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023]
Abstract
OBJECTIVES The use of medicinal plants for diabetes treatment is increasing owing to their effectiveness and safety compared to synthetic drugs. Thus, the ameliorative effects of Azanza garckeana (F. Hoffm.) fractions in diabetes-induced dyslipidemia, hepatopathy, and nephropathy in rats were evaluated in this study. METHODS Rats with alloxan (120 mg/kg body weight (BW))-induced diabetes were randomized into different groups (n=5) and treated with the crude methanolic extract, and fractions (n-hexane, ethyl acetate, and aqueous fractions) of A. garckeana each at 100, 200, and 400 mg/kg BW. Glibenclamide (5 mg/kg BW) was used as a reference drug, and all treatments were administered orally daily for 6 weeks. RESULTS Our data revealed that treatment with the crude extract caused a dose-dependent hypoglycemic effect of 61.32±3.45%, 76.05±3.05%, and 78.59±5.90% at 100, 200, and 400 mg/kg BW, respectively and improved the BW of the animals. The extract also ameliorated the elevated cholesterol, triglyceride, low-density lipoprotein cholesterol, and increased serum levels of high-density lipoprotein cholesterol compared with untreated control animals. The extract also reversed serum biochemical alterations in aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, creatinine, total and direct bilirubin, urea, and uric acid that were observed in untreated diabetic rats. Interestingly, the A. garckeana fraction also exhibited significant protection against diabetes-induced dyslipidemia, hepatopathy, and nephropathy in rats, with the ethyl acetate fraction exhibiting a remarkable protective effect. The LC-MS characterisation of the active fraction identified the presence of various phenolic and flavonoid compounds that could be responsible for the bioactivity of the fraction. CONCLUSION Collectively, this study suggests the potential application of A. garckeana for effective treatment of diabetic nephropathy, with the ethyl acetate fraction of this plant representing a reserve of potential candidates for developing new drugs.
Collapse
Affiliation(s)
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; Academia SinicaTaipei 11529, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical UniversityTaipei 11031, Taiwan
| | | | - Amos S Onikanni
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical UniversityTaichung, Taiwan
- Department of Chemical Sciences, Biochemistry Unit, Afe-Babalola UniversityAdo-Ekiti, Ekiti State, Nigeria
| | - Halimat Yusuf Lukman
- Department of Chemical Sciences, Biochemistry Unit, College of Natural and Applied Sciences, Summit UniversityOffa, PMB 4412, Nigeria
| | - Adewale O Fadaka
- Department of Biotechnology, University of The Western CapeBelleville, South Africa
| | - Femi Olawale
- Nano Gene and Drug Delivery Group, University of Kwazulu NatalSouth Africa
| | - Obinna Osuji
- Department of Chemistry, Faculty of Physical Sciences, Alex Ekwueme Federal University Ndufu AlikeP.M.B 1010, Abakaliki, Ebonyi State, Nigeria
| | - Saidu Sani
- Department of Biochemistry and Molecular Biology, Faculty of Science, Federal University Ndufu-Alike IkwoP.M.B. 1010, Abakaliki, Ebonyi State, Nigeria
| | | | | | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour UniversityDamanhour 22511, AlBeheira, Egypt
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud UniversityPO Box 2455, Riyadh 11451, Saudi Arabia
| | - Dalia Fouad
- Department of Zoology, College of Science, King Saud UniversityPO Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
13
|
ERGİN AD, OLTULU Ç, TÜRKER NP, DEMİRBOLAT GM. In vitro hepatotoxicity evaluation of methotrexate-loaded niosome formulation: fabrication, characterization and cell culture studies. Turk J Med Sci 2023; 53:872-882. [PMID: 38031943 PMCID: PMC10760534 DOI: 10.55730/1300-0144.5651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 08/18/2023] [Accepted: 03/07/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Methotrexate (MTX) is a folic acid antagonist that is widely used to treat osteosarcoma, leukemia, breast cancer, and autoimmune and inflammatory diseases. The most important concerns with MTX are its poor solubility and high toxicity, particularly in liver cells. To enhance its solubility and to minimize its toxicity, we encapsulated MTX in niosomes and investigated its hepatotoxicity mechanisms using genetic biomarkers. METHODS Niosomes were successfully prepared using a modified thin film method, and the prepared monodisperse smallsized formulation was subsequently characterized. In vitro cytotoxicity studies were performed both in hepatocarcinoma (HEP3G) and healthy liver (AML12) cell lines. Specifically, immunofluorescence assay and evaluation of the expression levels of apoptotic, antioxidant, heat shock protein, and oxidative stress genes were performed. RESULTS The formulation had a particle size of 117.1 ± 33 nm, a surface charge of -38.41 ± 0.7 mV, and an encapsulation efficiency of 59.7% ± 2.3%. The results showed that the niosomal formulation exhibited significantly higher cytotoxic effects in HEP3G than in AML12. The immunofluorescence and genetic analyses showed that the increased cytotoxicity of niosomes resulted mainly from oxidative stress and slight apoptosis. DISCUSSION These results demonstrated that niosomal drug delivery systems could be a new potential formulation for minimizing MTX-related hepatotoxicity.
Collapse
Affiliation(s)
- Ahmet Doğan ERGİN
- Department of Neuroscience, University of Torino, Torino,
Italy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Trakya University, Edirne,
Turkiye
| | - Çağatay OLTULU
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Trakya University, Edirne,
Turkiye
| | - Nebiye Pelin TÜRKER
- Technology Research Development Application and Research Center, Trakya University, Edirne,
Turkiye
| | - Gülen Melike DEMİRBOLAT
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Acıbadem Mehmet Ali Aydınlar University, İstanbul,
Turkiye
| |
Collapse
|
14
|
Afkhami Fard L, Malekinejad H, Esmaeilzadeh Z, Jafari A, Khezri MR, Ghasemnejad-Berenji M. Protective effects of sitagliptin on methotrexate-induced nephrotoxicity in rats. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2023; 41:22-35. [PMID: 37010136 DOI: 10.1080/26896583.2023.2186683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Methotrexate (MTX), a cytotoxic chemotherapeutic and immunosuppressant agent, is widely used in the treatment of autoimmune diseases and different types of cancers. However, its use has been limited by its life-threatening side effects, including nephrotoxicity and hepatotoxicity. The purpose of this study was to investigate the protective effect of sitagliptin on methotrexate (MTX)-induced nephrotoxicity in rats. Twenty-four rats were divided into four groups: control group, which received the vehicle for 6 days; MTX group, which received a single dose of MTX, followed by five daily doses of vehicle dosing; MTX + sitagliptin group, which received a single dose of MTX 1 h after the first sitagliptin treatment and six daily doses of sitagliptin; and sitagliptin group, which received sitagliptin for 6 days. Both MTX and sitagliptin were given as intraperitoneal injections at a dose of 20 mg/kg body weight. All rats were euthanized on the seventh day of the study. Kidney tissues were harvested and blood samples were collected. Serum levels of blood urea nitrogen (BUN) and creatinine were evaluated. Furthermore, catalase, glutathione peroxidase, superoxide dismutase activities, and malondialdehyde (MDA) levels were determined in kidney tissue. In addition, histopathological analysis was conducted. Histopathological evaluation showed that MTX-induced marked kidney injury. Biochemical analysis revealed a significant increase of BUN and creatinine in the serum of the MTX group. Furthermore, oxidative stress and depressed antioxidant system of the kidney tissues were evident in the MTX group. Sitagliptin did not affect these endpoints when administered alone, but it significantly attenuated the observed MTX-induced effects. These results suggest that sitagliptin exhibits potent anti-oxidant properties against the nephrotoxicity induced by MTX in rats.
Collapse
Affiliation(s)
- Leila Afkhami Fard
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hassan Malekinejad
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Zeinab Esmaeilzadeh
- Department of Nutrition, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
- Department of Biochemistry, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Abbas Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Morteza Ghasemnejad-Berenji
- Experimental and Applied Pharmaceutical Research Center, Urmia University of Medical Sciences, Urmia, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
15
|
Hassanein EHM, Sayed AM, El-Ghafar OAMA, Omar ZMM, Rashwan EK, Mohammedsaleh ZM, Kyung SY, Park JH, Kim HS, Ali FEM. Apocynin abrogates methotrexate-induced nephrotoxicity: role of TLR4/NF-κB-p65/p38-MAPK, IL-6/STAT-3, PPAR-γ, and SIRT1/FOXO3 signaling pathways. Arch Pharm Res 2023; 46:339-359. [PMID: 36913116 DOI: 10.1007/s12272-023-01436-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/25/2023] [Indexed: 03/14/2023]
Abstract
The present study was designed to evaluate the potential renoprotective impacts of apocynin (APC) against nephrotoxicity induced by methotrexate (MTX) administration. To fulfill this aim, rats were allocated into four groups: control; APC (100 mg/kg/day; orally); MTX (20 mg/kg; single intraperitoneal dose at the end of the 5th day of the experiment); and APC +MTX (APC was given orally for 5 days before and 5 days after induction of renal toxicity by MTX). On the 11th day, samples were collected to estimate kidney function biomarkers, oxidative stress, pro-inflammatory cytokines, and other molecular targets. Compared to the MTX control group, treatment with APC significantly decreased urea, creatinine, and KIM-1 levels and improved kidney histological alterations. Furthermore, APC restored oxidant/antioxidant balance, as evidenced by a remarkable alleviation of MDA, GSH, SOD, and MPO levels. Additionally, the iNOS, NO, p-NF-κB-p65, Ace-NF-κB-p65, TLR4, p-p38-MAPK, p-JAK1, and p-STAT-3 expressions were reduced, while the IκBα, PPAR-γ, SIRT1, and FOXO3 expressions were significantly increased. In NRK-52E cells, MTX-induced cytotoxicity was protected by APC in a concentration-dependent manner. In addition, increased expression of p-STAT-3 and p-JAK1/2 levels were reduced in MTX-treated NRK-52E cells by APC. The in vitro experiments revealed that APC-protected MTX-mediated renal tubular epithelial cells were damaged by inhibiting the JAK/STAT3 pathway. Besides, our in vivo and in vitro results were confirmed by predicting computational pharmacology results using molecular docking and network pharmacology analysis. In conclusion, our findings proved that APC could be a good candidate for MTX-induced renal damage due to its strong antioxidative and anti-inflammatory bioactivities.
Collapse
Affiliation(s)
- Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, 71524, Asyut, Egypt
| | - Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Asyut, Egypt
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni- Suef, Egypt
| | - Zainab M M Omar
- Department of Pharmacology, College of Medicine, Al-Azhar University, 71524, Asyut, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, 42421, Sakaka, Saudi Arabia
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, 71491, Tabuk, Kingdom of Saudi Arabia
| | - So Young Kyung
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Jae Hyeon Park
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, School of Pharmacy, Sungkyunkwan University, 16419, Suwon, Republic of Korea.
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, 71524, Asyut, Egypt
| |
Collapse
|
16
|
W Hawas U, El-Ansari MA, Osman AF, Galal AF, Abou El-Kassem LT. Flavonoid constituents and protective efficacy of Citrus reticulate (Blanco) leaves ethanolic extract on thioacetamide-induced liver injury rats. Biomarkers 2023; 28:160-167. [PMID: 36420657 DOI: 10.1080/1354750x.2022.2151645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Context: Oxidative stress leads to deleterious processes in the liver that resulted in liver diseases.Objective: To evaluate antioxidant activity and hepatoprotective potential of ethanolic leaves extract of Citrus reticulate against hepatic dysfunction induced by thioacetamide (TAA).Materials and Methods: Flavonoid constituents were isolated from the ethanol extract by chromatographic techniques and identified by the spectroscopic analyses. Antioxidant activity was determined using DPPH assay. Hepatotoxicity was induced in rats via intraperitoneal injection of TAA and the ethanol extract was orally administrated at a dose of 100 mg/kg/day for four weeks. Serum biomarkers, hepatic antioxidant enzymes, tumour necrosis factor-alpha (TNF-α), hepatic hydroxyproline levels, and histopathology were examined.Results: Ten known flavonoids were identified, among of them, 6,3`-dimethoxyluteolin and 8,3`-dimethoxyluteolin possessed the highest antioxidant activity. The substantially elevated serum enzymatic levels of ALT, ALP, and bilirubin were found to be restored towards normalisation significantly by the plant extract. Furthermore, the markers including MDA, GSH, SOD, NO, and protein carbonyl which were close to oxidative damage, were restored. Meanwhile, the extract treatment decreased TNF-α level and also was able to reverse the induced fibrosis by significantly reducing the hydroxyproline content. Moreover, histopathological studies further substantiate the protective effect of the extract.Conclusion: C. reticulate leaves extract is a rich source of phytochemicals with in vitro and in vivo protective effects.
Collapse
Affiliation(s)
- Usama W Hawas
- Marine Chemistry Department, Faculty of Marine Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.,Phytochemistry and Plant Systematic Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed A El-Ansari
- Phytochemistry and Plant Systematic Department, National Research Centre, Dokki, Cairo, Egypt
| | - Abeer F Osman
- Chemistry of Natural compounds Department, National Research Centre, Dokki, Cairo, Egypt
| | - Asmaa F Galal
- Narcotics, Ergogenics and Poisons Department, National Research Centre, Dokki, Cairo, Egypt
| | - Lamia T Abou El-Kassem
- Chemistry Department, Faculty of Sciences & Arts, King Abdulaziz University, Rabigh, Saudi Arabia.,Pharmacognosy Department, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
17
|
Famurewa AC, Asogwa NT, Ezea SC. Antidiabetic drug sitagliptin blocks cyclophosphamide cerebral neurotoxicity by activating Nrf2 and suppressing redox cycle imbalance, inflammatory iNOS/NO/NF-κB response and caspase-3/Bax activation in rats. Int Immunopharmacol 2023; 116:109816. [PMID: 36774854 DOI: 10.1016/j.intimp.2023.109816] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/17/2023] [Accepted: 01/28/2023] [Indexed: 02/12/2023]
Abstract
Cyclophosphamide (CYP) is a classic DNA-interacting anticancer agent with broad application in chemotherapy. However, CYP cerebral neurotoxicity is a worrisome side effect for clinicians and patients. Strategies to mitigate the underlying oxidative inflammatory cascades and neuroapoptosis induced by CYP are urgently needed. Herein, we have repurposed an antidiabetic drug, sitagliptin (STG), for a possible abrogation of CYP-induced cerebral neurotoxicity in rats. Healthy rats were administered STG (20 mg/kg body weight) for 5 days prior to neurotoxicity induced by CYP (200 mg/kg body weight, ip) on day 5 only, and rats were sacrificed after 24 h post-CYP injection. CYP caused profound increases in the cerebral levels of nitric oxide (NO), acetylcholinesterase (AChE), malondialdehyde (MDA), interleukin-1β (IL-1β), interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), nuclear factor-kappaB (NF-κB), inducible nitric oxide synthase (iNOS), caspase-3 and Bax protein compared to the control. Furthermore, CYP markedly depressed the activities of glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD), along with levels of reduced glutathione (GSH) and nuclear factor erythroid 2-related factor2 (Nrf2) compared to the control (p < 0.05). Interestingly, STG pretreatment inhibited the CYP-induced alterations in caspase-3, Bax, pro-inflammatory cytokines, NO, iNOS, AChE, NF-κB, and restored the cerebral antioxidant apparatus, including the Nrf2 and histopathological abrasions. Therefore, these findings show that STG could be repurposed to prevent CYP-induced cerebral toxicity in the brain.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria; Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal University, Karnataka State, India.
| | - Nnaemeka T Asogwa
- Central Research and Diagnostic Laboratory, Tanke, Ilorin, Kwara State, Nigeria
| | - Samson C Ezea
- Department of Pharmacognosy and Environmental Medicine, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| |
Collapse
|
18
|
Morin ameliorates methotrexate-induced hepatotoxicity via targeting Nrf2/HO-1 and Bax/Bcl2/Caspase-3 signaling pathways. Mol Biol Rep 2023; 50:3479-3488. [PMID: 36781607 DOI: 10.1007/s11033-023-08286-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023]
Abstract
BACKGROUND Organ toxicity limits the therapeutic efficacy of methotrexate (MTX), an anti-metabolite therapeutic that is frequently used as an anti-cancer and immunosuppressive medicine. Hepatocellular toxicity is among the most severe side effects of long-term MTX use. The present study unveils new confirmations as regards the remedial effects of morin on MTX-induced hepatocellular injury through regulation of oxidative stress, apoptosis and MAPK signaling. METHODS AND RESULTS Rats were subjected to oral treatment of morin (50 and 100 mg/kg body weight) for 10 days. Hepatotoxicity was induced by single intraperitoneal injection of MTX (20 mg/kg body weight) on the 5th day. MTX related hepatic injury was associated with increased MDA while decreased GSH levels, the activities of endogen antioxidants (glutathione peroxidase, superoxide dismutase and catalase) and mRNA levels of HO-1 and Nrf2 in the hepatic tissue. MTX treatment also resulted in apoptosis in the liver tissue via increasing mRNA transcript levels of Bax, caspase-3, Apaf-1 and downregulation of Bcl-2. Conversely, treatment with morin at different doses (50 and 100 mg/kg) considerably mitigated MTX-induced oxidative stress and apoptosis in the liver tissue. Morin also mitigated MTX-induced increases of ALT, ALP and AST levels, downregulated mRNA expressions of matrix metalloproteinases (MMP-2 and MMP-9), MAPK14 and MAPK15, JNK, Akt2 and FOXO1 genes. CONCLUSION According to the findings of this study, morin may be a potential way to shield the liver tissue from the oxidative damage and apoptosis.
Collapse
|
19
|
Abstract
Methotrexate is a key component of the treatment of inflammatory rheumatic diseases and the mainstay of therapy in rheumatoid arthritis. Hepatotoxicity has long been a concern for prescribers envisaging long-term treatment with methotrexate for their patients. However, the putative liver toxicity of methotrexate should be evaluated in the context of advances in our knowledge of the pathogenesis and natural history of liver disease, especially non-alcoholic fatty liver disease (NAFLD). Notably, patients with NAFLD are at increased risk for methotrexate hepatotoxicity, and methotrexate can worsen the course of NAFLD. Understanding the mechanisms of acute hepatotoxicity can facilitate the interpretation of elevated concentrations of liver enzymes in this context. Liver fibrosis and the mechanisms of fibrogenesis also need to be considered in relation to chronic exposure to methotrexate. A number of non-invasive tests for liver fibrosis are available for use in patients with rheumatic disease, in addition to liver biopsy, which can be appropriate for particular individuals. On the basis of the available evidence, practical suggestions for pretreatment screening and long-term monitoring of methotrexate therapy can be made for patients who have (or are at risk for) chronic liver disease.
Collapse
|
20
|
Nataraj B, Hemalatha D, Malafaia G, Maharajan K, Ramesh M. "Fishcide" effect of the fungicide difenoconazole in freshwater fish (Labeo rohita): A multi-endpoint approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159425. [PMID: 36244480 DOI: 10.1016/j.scitotenv.2022.159425] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/27/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Difenoconazole is widely used to protect crops, fruits, and vegetables. However, this fungicide can enter aquatic environments and cause harmful effects to non-target organisms and induce little-known biological disorders. Thus, aiming to expand our knowledge about the ecotoxicity of difenoconazole on freshwater ichthyofauna, we aimed to determine the median lethal concentration (LC50) of difenoconazole and evaluate its possible impacts from different toxicity biomarkers, using freshwater fish Labeo rohita as a model system. Using the probit analysis method, the 96 h LC50 value of difenoconazole in the fish was calculated as 4.5 mg L-1. Posteriorly, fish were exposed to two sublethal concentrations (0.45 mg L-1 1/10th and 0.9 mg L-1 1/5th LC50 value) for 21 days. A significant reduction of superoxide dismutase (SOD) and catalase (CAT) activity was noted in the gill, liver, and kidneys of fish compared to the control groups. The level of glutathione-S-transferase (GST) and lipid peroxidation (LPO) activity was higher in all vital tissues of difenoconazole-treated fish. Histological alterations in the gill include epithelial lifting, lamellar fusion, hypertrophy, and epithelial necrosis. At the same time, the liver showed pyknotic nucleus, vacuolation, cellular edema and tubular necrosis, shrinkage of glomeruli, vacuolation, and pyknotic nuclei in the kidney. DNA damage was increased significantly with tail formation based on the concentration and time-dependent manner. Therefore, our study confirms that the exposure of L. rohita to difenoconazole induces negative biological consequences and sheds light on the danger of this fungicide for freshwater fish species. We believe that studies like ours can support actions and strategies for the remediation/mitigation of aquatic pollution by difenoconazole and for the conservation of freshwater ichthyofauna.
Collapse
Affiliation(s)
- Bojan Nataraj
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India
| | - Devan Hemalatha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; Department of Zoology, PSG College of Arts & Science, Coimbatore, Tamil Nadu 641014, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Kannan Maharajan
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India; DRDO-BU Center for Life Sciences, Bharathiar University Campus, Coimbatore, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641046, India.
| |
Collapse
|
21
|
El-Kashef DH, Sewilam HM. Empagliflozin mitigates methotrexate-induced hepatotoxicity: Targeting ASK-1/JNK/Caspase-3 pathway. Int Immunopharmacol 2023; 114:109494. [PMID: 36462340 DOI: 10.1016/j.intimp.2022.109494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022]
Abstract
Methotrexate (MTX) administration causes hepatotoxicity, a serious side effect limiting its clinical use. Therefore, this study was performed to investigate the beneficial effect of empagliflozin (Empa) against MTX-induced hepatotoxicity. Adult male albino mice were pre-treated with Empa (at 10 or 25 mg/kg/d, orally) for 6 days and then received a single MTX injection (at 20 mg/kg, intraperitoneally). Empa effectively ameliorated MTX-induced structural and functional alterations. It significantly decreased transaminase, alkaline phosphatase, and gamma-glutamyl transferase levels and increased albumin levels in the serum. Moreover, Empa restored the oxidant/antioxidant balance as indicated by reduced malondialdehyde and total nitrite/nitrate contents and elevated reduced glutathione level and superoxide dismutase activity. Additionally, Empa (10 and 25 mg/kg) markedly suppressed the elevated levels of tumor necrosis factor-alpha, interleukin-6, apoptosis signal-regulating kinase1, c-Jun N-terminal kinase, BCL2 associated X protein, and Caspase-3 in hepatic tissues and increased the hepatic interleukin-10 levels. Furthermore, Empa substantially decreased nuclear factor kappa B expression in hepatic tissues. These biochemical findings were further confirmed by histopathological and transmission electron microscopy observations. Therefore, Empa might be used as an adjuvant to ameliorate MTX-induced hepatotoxicity after further clinical evaluation.
Collapse
Affiliation(s)
- Dalia H El-Kashef
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt.
| | - Haitham M Sewilam
- Department of Histology, Faculty of Medicine, Helwan University, Cairo, Egypt
| |
Collapse
|
22
|
Promising hepatoprotective effects of lycopene in different liver diseases. Life Sci 2022; 310:121131. [PMID: 36306869 DOI: 10.1016/j.lfs.2022.121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
23
|
Aboubakr EM, Ibrahim ARN, Ali FEM, Mourad AAE, Ahmad AM, Hofni A. Fasudil Ameliorates Methotrexate-Induced Hepatotoxicity by Modulation of Redox-Sensitive Signals. Pharmaceuticals (Basel) 2022; 15:1436. [PMID: 36422565 PMCID: PMC9693476 DOI: 10.3390/ph15111436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Methotrexate (MTX) is one of the most widely used cytotoxic chemotherapeutic agents, and it is used in the treatment of different autoimmune disorders. However, the clinical applications of MTX are limited by its hepatic toxicity. Hence, the present study was conducted to evaluate the efficacy of fasudil (Rho-Kinase inhibitor) in the amelioration of MTX hepatotoxicity and the possible underlying mechanisms. Experimentally, 32 male Sprague Dawley rats were used and divided into four groups: control, MTX (20 mg/kg, i.p., single dose), fasudil (10 mg/kg/day i.p.) for one week, and fasudil plus MTX. It was found that MTX significantly induced hepatitis and hepatocellular damage, as shown by abnormal histological findings and liver dysfunction (ALT and AST), with up-regulation of the inflammatory mediators NF-κB-p65 and IL-1β. Moreover, MTX remarkably disrupted oxidant/antioxidant status, as evidenced by malondialdehyde (MDA) up-regulation associated with the depletion of superoxide dismutase (SOD), catalase, and reduced glutathione (GSH) levels. Moreover, MTX reduced the hepatic expression of B-cell lymphoma 2 (Bcl-2). On the contrary, the i.p. administration of fasudil significantly ameliorated MTX hepatotoxicity by histopathological improvement, restoring oxidant/antioxidant balance, preventing hepatic inflammation, and improving the hepatic anti-apoptotic capability. Furthermore, fasudil hepatic concentration was determined for the first time using the validated RP-HPLC method. In conclusion, the present study revealed that fasudil has a reliable hepatoprotective effect against MTX hepatotoxicity with underlying antioxidant, anti-inflammatory, and anti-apoptotic mechanisms. It also introduced a new method for the determination of fasudil hepatic tissue concentration using the RP-HPLC technique.
Collapse
Affiliation(s)
- Esam M. Aboubakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Ahmed R. N. Ibrahim
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia 61511, Egypt
| | - Fares E. M. Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Ahmed A. E. Mourad
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Port-Said University, Port-Said 42511, Egypt
| | - Adel M. Ahmad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| | - Amal Hofni
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, South Valley University, Qena 83523, Egypt
| |
Collapse
|
24
|
Dogra A, Kour D, Bhardwaj M, Dhiman S, Kumar A, Vij B, Kumar A, Nandi U. Glabridin Plays Dual Action to Augment the Efficacy and Attenuate the Hepatotoxicity of Methotrexate in Arthritic Rats. ACS OMEGA 2022; 7:34341-34351. [PMID: 36188236 PMCID: PMC9520544 DOI: 10.1021/acsomega.2c03948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
Glabridin is chemically an isoflavane class of natural phenols and is found mainly in the roots of Glycyrrhiza glabra. It has several beneficial pharmacological actions for the management of inflammatory disorders as well as can counteract drug-induced toxic effects. On the other hand, methotrexate (MTX) is the first-line disease-modifying antirheumatic drug for the treatment of rheumatoid arthritis. However, its treatment is associated with major side effects like hepatotoxicity. In the quest to explore a suitable combination therapy that can improve the efficacy and reduce the hepatotoxicity of MTX, we hypothesized that glabridin might serve the purpose for which there is no literature precedent to date. We explored the antiarthritic efficacy of MTX in the presence or the absence of glabridin using Mycobacterium-induced arthritic model in rats. The results of reduction in paw swelling, inhibition of serum cytokines (TNF-α, IL-6, and IL-1β), and improvement in the bone joints from radiological and histopathological findings suggest that glabridin can substantially augment the antiarthritic efficacy of MTX. Further, results of concomitant glabridin treatment with MTX in the experimental time frame demonstrate that glabridin could considerably prevent the MTX-induced hepatic alteration in serum biochemical markers (SGPT and SGOT) and oxidative stress markers (malondialdehyde (MDA) and glutathione reduced (GSH)). Moreover, glabridin showed a marked effect in impeding the regulation of NF-κB/IκBα and Nrf2/Keap1 pathways in the hepatic tissues. The results of simultaneous administration of glabridin with MTX in the rat model indicate that glabridin had no pronounced effect of causing severe alteration in the pharmacokinetic behavior of MTX. In summary, glabridin can significantly potentiate the antiarthritic efficacy of MTX and can also minimize its hepatotoxicity via the inhibition of inflammation and oxidative stress. Further research should be performed to develop glabridin as a phytotherapeutics for the improved efficacy and better tolerability of MTX at the reduced dose level of MTX.
Collapse
Affiliation(s)
- Ashish Dogra
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dilpreet Kour
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahir Bhardwaj
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit Kumar
- Natural
Product and Medicinal Chemistry (NPMC) Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Bhavna Vij
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
| | - Ajay Kumar
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- PK-PD
Toxicology (PPT) Division, CSIR-Indian Institute
of Integrative Medicine, Jammu 180001, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
25
|
Famurewa AC, Mukherjee AG, Wanjari UR, Sukumar A, Murali R, Renu K, Vellingiri B, Dey A, Valsala Gopalakrishnan A. Repurposing FDA-approved drugs against the toxicity of platinum-based anticancer drugs. Life Sci 2022; 305:120789. [PMID: 35817170 DOI: 10.1016/j.lfs.2022.120789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/02/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022]
Abstract
Platinum-based anticancer drugs (PADs), mainly cisplatin, carboplatin, and oxaliplatin, are widely used efficacious long-standing anticancer agents for treating several cancer types. However, clinicians worry about PAD chemotherapy and its induction of severe non-targeted organ toxicity. Compelling evidence has shown that toxicity of PAD on delicate body organs is associated with free radical generation, DNA impairment, endocrine and mitochondrial dysfunctions, oxidative inflammation, apoptosis, endoplasmic reticulum stress, and activation of regulator signaling proteins, cell cycle arrest, apoptosis, and pathways. The emerging trend is the repurposing of FDA-approved non-anticancer drugs (FNDs) for combating the side effects toxicity of PADs. Thus, this review chronicled the mechanistic preventive and therapeutic effects of FNDs against PAD organ toxicity in preclinical studies. FNDs are potential clinical drugs for the modulation of toxicity complications associated with PAD chemotherapy. Therefore, FNDs may be suggested as non-natural agent inhibitors of unpalatable side effects of PADs.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medicine, Alex Ekwueme Federal University, Ndufu-Alike lkwo, Nigeria.
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Aarthi Sukumar
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal 700073, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
26
|
Zhai Z, Huang Y, Zhang Y, Zhao L, Li W. Clinical Research Progress of Small Molecule Compounds Targeting Nrf2 for Treating Inflammation-Related Diseases. Antioxidants (Basel) 2022; 11:1564. [PMID: 36009283 PMCID: PMC9405369 DOI: 10.3390/antiox11081564] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/08/2022] [Indexed: 11/16/2022] Open
Abstract
Studies have found that inflammation is a symptom of various diseases, such as coronavirus disease 2019 (COVID-19) and rheumatoid arthritis (RA); it is also the source of other diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), lupus erythematosus (LE), and liver damage. Nrf2 (nuclear factor erythroid 2-related factor 2) is an important multifunctional transcription factor in cells and plays a central regulatory role in cellular defense mechanisms. In recent years, several studies have found a strong association between the activation of Nrf2 and the fight against inflammation-related diseases. A number of small molecule compounds targeting Nrf2 have entered clinical research. This article reviews the research status of small molecule compounds that are in clinical trials for the treatment of COVID-19, rheumatoid arthritis, Alzheimer's disease, Parkinson's disease, lupus erythematosus, and liver injury.
Collapse
Affiliation(s)
- Zhenzhen Zhai
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanxin Huang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yawei Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Lili Zhao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wen Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation, Henan Province & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education & Key Laboratory of Henan Province for Drug Quality and Evaluation, Zhengzhou 450001, China
| |
Collapse
|
27
|
Mozafari N, Dehshahri A, Ashrafi H, Mohammadi-Samani S, Shahbazi MA, Heidari R, Azarpira N, Azadi A. Vesicles of yeast cell wall-sitagliptin to alleviate neuroinflammation in Alzheimer's disease. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102575. [PMID: 35714923 DOI: 10.1016/j.nano.2022.102575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/26/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
A cell-based drug delivery system based on yeast-cell wall loaded with sitagliptin, a drug with an anti-inflammatory effect, was developed to control neuroinflammation associated with Alzheimer's disease. The optimized nanoparticles had a spherical shape with a negative surface charge, and were shown to be less toxic than the carrier and sitagliptin. Moreover, the nanoparticles caused anti-inflammatory effects against tumor necrosis factor-alpha in mice model of neuroinflammation. The pharmacokinetics study showed the brain concentration of drug in the nanoparticles group was much higher than in the control group. To evaluate the effect of P-glycoprotein on brain entry of sitagliptin, the experiment was repeated with verapamil, as a P-glycoprotein inhibitor. Brain concentration of the nanoparticles group remained approximately unchanged, proving the "Trojan Horse" effect of the developed nanocarriers. The results are promising for using yeast-cell wall as a carrier for targeted delivery to immune cells for the management of inflammation.
Collapse
Affiliation(s)
- Negin Mozafari
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Dehshahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hajar Ashrafi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soliman Mohammadi-Samani
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, the Netherlands; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Pharmaceutical Sciences Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
Acar H, Sorgun O, Yurtseve G, Bora ES, Erbaş O. Antifibrotic preventive effect of polyethylene glycol (PEG) 3350 in methotrexateinduced hepatoxicity model. Acta Cir Bras 2022; 37:e370507. [PMID: 35894304 PMCID: PMC9323303 DOI: 10.1590/acb370507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/20/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Liver damage caused by drugs and other chemicals accounts for about 5% of all cases. Methotrexate (MTX), a folic acid analogue, is a first-line synthetic antimetabolite agent routinely used in the treatment of rheumatoid arthritis and other autoimmune and chronic inflammatory diseases. Polyethylene glycol (PEG) has antioxidant activity. In this study, we evaluated biochemically and histopathologically the antifibrotic effect of PEG 3350 administered intraperitoneally to prevent methotrexate-induced liver damage in rats. METHODS A total of 30 male rats including 10 rats was given no drugs (normal group), and 20 rats received single-dose 20 mg/kg MTXfor induced liver injury in this study. MTX was given to 20 rats, which were divided in two groups. Group 1 rats was given PEG30 mg/kg/day (Merck) intraperitoneally, and Group 2 rats % 0.9 NaCl saline 1 mL/kg/day intraperitoneally daily for two weeks. RESULTS Transforming growth factor beta (TGF-β), plasma malondialdehyde (MDA), liver MDA, serum tumour necrosis factor alpha (TNF-α), alanine aminotransferase and plasma pentraxin-3 levels and, according to tissue histopathology, hepatocyte necrosis, fibrosis and cellular infiltration were significantly better in MTX+PEG group than in MTX+saline group. CONCLUSIONS PEG 3350 is a hope for toxic hepatitis due to other causes, since liver damage occurs through oxidative stress and cell damage, similar to all toxic drugs.
Collapse
Affiliation(s)
- Hüseyin Acar
- MD. Izmir Atatürk Training and Research Hospital - Department of Emergency Medicine - Izmir, Turkey
| | - Omay Sorgun
- MD. Ödemiş State Hospital - Department of Emergency Medicine - İzmir, Turkey
| | - Güner Yurtseve
- MD. Izmir Atatürk Training and Research Hospital - Department of Emergency Medicine - Izmir, Turkey
| | - Ejder Saylav Bora
- MD. Izmir Atatürk Training and Research Hospital - Department of Emergency Medicine - Izmir, Turkey
| | - Oytun Erbaş
- Associate professor. Demiroğlu Bilim University - Faculty of Medicine - Department of Physiology - Istanbul, Turkey
| |
Collapse
|
29
|
Farid M, Aboul Naser AF, Salem M, Ahmed YR, Emam M, Hamed MA. Chemical compositions of Commiphora opobalsamum stem bark to alleviate liver complications in streptozotocin-induced diabetes in rats: Role of oxidative stress and DNA damage. Biomarkers 2022; 27:671-683. [DOI: 10.1080/1354750x.2022.2099015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Mai Farid
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Asmaa F. Aboul Naser
- Department of Therapeutic Chemistry, National Research Centre, Dokki Giza, Egypt
| | - Maha Salem
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Yomna R. Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki Giza, Egypt
| | - Mahmoud Emam
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza 12622, Egypt
| | - Manal A. Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki Giza, Egypt
| |
Collapse
|
30
|
Famurewa AC, Aja PM, Medewase JO, Abi I, Ogbonna OC, Ofor CC, Nwonuma CO, Asogwa NT, Erejuwa OO. Dipeptidyl Peptidase-4 Inhibitor Sitagliptin Exhibits Antioxidant Mechanism for Abrogation of Cyclophosphamide-Induced Cardiac Damage and Oxidative Hepatorenal Toxicity in Rats. Drug Res (Stuttg) 2022; 72:396-403. [PMID: 35772725 DOI: 10.1055/a-1842-7596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Cyclophosphamide (CYP) is a potent DNA-interactive anticancer drug; however, its clinical drawbacks are chiefly associated with induction of oxidative multi-organ toxicity. Sitagliptin (STG) is an antidiabetic dipeptidyl peptidase-4 inhibitor drug with antioxidant efficacy. Herein, we have explored whether STG could abrogate the CYP-induced oxidative stress-mediated cardiac and hepatorenal toxicities in male rats. Sitagliptin (20 mg/kg, o.p) was administered to rats for 5 consecutive days against organ toxicities induced by CYP (200 mg/kg, i.p) on day 5 only. CYP induced marked injuries in the liver, kidney and heart underscored by prominent increases in serum activities of ALT, AST, LDH, creatine kinase and levels of urea, uric acid and creatinine, while albumin level significantly decreased compared to normal control rats. Further, CYP considerably reduced the activities of SOD, CAT, GPx, and levels of GSH, whereas MDA level increased significantly in comparison to control rats. These biochemical alterations were confirmed by multiple histopathological lesions in the tissues. Interestingly, the STG pretreatment abrogated the biochemical and histopathological changes induced by CYP. These results provide first evidence that repurposing STG may protect the liver, kidney and heart from the oxidative deterioration associated with CYP chemotherapy.
Collapse
Affiliation(s)
- Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| | - Patrick M Aja
- Department of Biochemistry, Faculty of Biological Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - John O Medewase
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Innocent Abi
- Department of Physiology, Benue State University, Makurdi, Benue State, Nigeria
| | - Okoro C Ogbonna
- Department of Medical Biochemistry, School of Basic Medical Science, Federal University of Technology, Owerri, Imo State, Nigeria
| | - Casimir C Ofor
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Ebonyi State University, Abakaliki, Ebonyi State, Nigeria
| | - Charles O Nwonuma
- Department of Biochemistry, Landmark University, Omu-Aran, Kwara State, Nigeria
| | - Nnaemeka T Asogwa
- Central Research and Diagnostic Laboratory, Tanke, Ilorin, Kwara State, Nigeria
| | - Omotayo O Erejuwa
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Medicine, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, Ikwo, Ebonyi State, Nigeria
| |
Collapse
|
31
|
Attallah NGM, Mokhtar FA, Elekhnawy E, Heneidy SZ, Ahmed E, Magdeldin S, Negm WA, El-Kadem AH. Mechanistic Insights on the In Vitro Antibacterial Activity and In Vivo Hepatoprotective Effects of Salvinia auriculata Aubl against Methotrexate-Induced Liver Injury. Pharmaceuticals (Basel) 2022; 15:ph15050549. [PMID: 35631375 PMCID: PMC9145932 DOI: 10.3390/ph15050549] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/24/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Methotrexate (MTX) is widely used in the treatment of numerous malignancies; however, its use is associated with marked hepatotoxicity. Herein, we assessed the possible hepatoprotective effects of Salvinia auriculata methanol extract (SAME) against MTX-induced hepatotoxicity and elucidated the possible fundamental mechanisms that mediated such protective effects for the first time. Forty mice were randomly allocated into five groups (eight/group). Control saline, MTX, and MTX groups were pre-treated with SAME 10, 20, and 30 mg/kg. The results revealed that MTX caused a considerable increase in blood transaminase and lactate dehydrogenase levels, oxidative stress, significant activation of the Nod-like receptor-3 (NLPR3)/caspase-1 inflammasome axis, and its downstream inflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18). MTX also down-regulated nuclear factor erythroid 2-related factor 2 (Nrf2) expression. Additionally, it increased the immunostaining of nuclear factor kappa-B (NF-κB) and downstream inflammatory mediators. Furthermore, the hepatic cellular apoptosis was dramatically up-regulated in the MTX group. On the contrary, prior treatment with SAME significantly improved biochemical, histopathological, immunohistochemical alterations caused by MTX in a dose-dependent manner. The antibacterial activity of SAME has also been investigated against Acinetobacter baumannii clinical isolates. LC-ESI-MS/MS contributed to the authentication of the studied plant and identified 24 active constituents that can be accountable for the SAME-exhibited effects. Thus, our findings reveal new evidence of the hepatoprotective and antibacterial properties of SAME that need further future investigation.
Collapse
Affiliation(s)
- Nashwah G. M. Attallah
- Department of Pharmaceutical Science, College of Pharmacy, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Fatma Alzahraa Mokhtar
- Department of Pharmacognosy, Faculty of Pharmacy, ALSalam University, Kafr El Zayat 31616, Al Gharbiya, Egypt
- Correspondence: (F.A.M.); (W.A.N.)
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| | - Selim Z. Heneidy
- Department of Botany & Microbiology, Faculty of Science, Alexandria University, Alexandria 21521, Egypt;
| | - Eman Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt;
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo 11441, Egypt;
| | - Sameh Magdeldin
- Proteomics and Metabolomics Research Program, Department of Basic Research, Children’s Cancer Hospital 57357, Cairo 11441, Egypt;
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
- Correspondence: (F.A.M.); (W.A.N.)
| | - Aya H. El-Kadem
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt;
| |
Collapse
|
32
|
Does DPP-IV Inhibition Offer New Avenues for Therapeutic Intervention in Malignant Disease? Cancers (Basel) 2022; 14:cancers14092072. [PMID: 35565202 PMCID: PMC9103952 DOI: 10.3390/cancers14092072] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary There is growing interest in identifying the effects of antidiabetic agents on cancer risk, progression, and anti-cancer treatment due to the long-term use of these medications and the inherently increased risk of malignancies in diabetic patients. Tumor development and progression are affected by multiple mediators in the tumor microenvironment, several of which may be proteolytically modified by the multifunctional protease dipeptidyl peptidase-IV (DPP-IV, CD26). Currently, low-molecular-weight DPP-IV inhibitors (gliptins) are used in patients with type 2 diabetes based on the observation that DPP-IV inhibition enhances insulin secretion by increasing the bioavailability of incretins. However, the DPP-IV-mediated cleavage of other biopeptides and chemokines is also prevented by gliptins. The potential utility of gliptins in other areas of medicine, including cancer, is therefore being evaluated. Here, we critically review the existing evidence on the role of DPP-IV inhibitors in cancer pathogenesis, their potential to be used in anti-cancer treatment, and the possible perils associated with this approach. Abstract Dipeptidyl peptidase IV (DPP-IV, CD26) is frequently dysregulated in cancer and plays an important role in regulating multiple bioactive peptides with the potential to influence cancer progression and the recruitment of immune cells. Therefore, it represents a potential contributing factor to cancer pathogenesis and an attractive therapeutic target. Specific DPP-IV inhibitors (gliptins) are currently used in patients with type 2 diabetes mellitus to promote insulin secretion by prolonging the activity of the incretins glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). Nevertheless, the modulation of the bioavailability and function of other DPP-IV substrates, including chemokines, raises the possibility that the use of these orally administered drugs with favorable side-effect profiles might be extended beyond the treatment of hyperglycemia. In this review, we critically examine the possible utilization of DPP-IV inhibition in cancer prevention and various aspects of cancer treatment and discuss the potential perils associated with the inhibition of DPP-IV in cancer. The current literature is summarized regarding the possible chemopreventive and cytotoxic effects of gliptins and their potential utility in modulating the anti-tumor immune response, enhancing hematopoietic stem cell transplantation, preventing acute graft-versus-host disease, and alleviating the side-effects of conventional anti-tumor treatments.
Collapse
|
33
|
Alorabi M, Mohammed DS, Mostafa-Hedeab G, El-Sherbeni SA, Negm WA, Mohammed AIA, Al-kuraishy HM, Nasreldin N, Alotaibi SS, Lawal B, Batiha GES, Conte-Junior CA. Combination Treatment of Omega-3 Fatty Acids and Vitamin C Exhibited Promising Therapeutic Effect against Oxidative Impairment of the Liver in Methotrexate-Intoxicated Mice. BIOMED RESEARCH INTERNATIONAL 2022; 2022:4122166. [PMID: 35496049 PMCID: PMC9045995 DOI: 10.1155/2022/4122166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/29/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023]
Abstract
Drug-induced liver injury (DILI) is the main cause of liver damage mediated by the excretion of toxic active drug metabolites. Omega-3 fatty acids and vitamin C have potent antioxidant, anti-inflammatory, and antiapoptotic effects that could offer protection against oxidative stress and liver damage. This study evaluated the hepatoprotective effect of omega-3 and vitamin C alone as well as in a combined form in methotrexate- (MTX-) induced acute liver injury in mice. Male ICR mice of seven groups (7 mice per group) were used. Groups 1 (control group) and 2 (MTX) received 0.9% saline/day (po) for 9 days. Groups 3 and 4 received 100 and 200 mg/kg bw/day omega-3 (po), respectively, for 9 days. Groups 5 and 6 received 100 and 200 mg/kg bw/day vitamin C (po), respectively, for 9 days, while group 7 received omega-3 (100 mg/kg bw/day) and vitamin C (100 mg/kg bw/day) (po) for 9 days. All animals in groups 2 to 7 received 20 mg/kg/day MTX (I.P.) once on the 10th day. Our results revealed that MTX significantly induced the elevation of transaminases, alkaline phosphates (ALP), lactate dehydrogenase (LDH), and malonaldehyde (MDA) while depleting the levels of superoxide dismutase (SOD) and glutathione (GSH) when compared to the control group. Treatment with omega-3 fatty acids or vitamin C significantly attenuated the antioxidants and biochemical alterations in a dose-independent manner. Our molecular docking study of ligand-receptor interaction revealed that both ascorbic acid and omega-3 docked well to the binding cavity of LDH with high binding affinities of -5.20 and -4.50 kcal/mol, respectively. The histopathological features were also improved by treatment with omega-3 and vitamin C. The combined form of omega-3 and vitamin C showed a remarkable improvement in the liver enzymes, oxidative stress biomarkers, and the histopathological architecture of the mice. Conclusively, the combination of omega-3 and vitamin C demonstrated a synergistic therapeutic effect against MTX-intoxicated mice, hence representing a potential novel strategy for the management of drug-induced liver disorders.
Collapse
Affiliation(s)
- Mohammed Alorabi
- Department of Biotechnology, College of Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Doha Saad Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Al-Mustansiriyah, Iraq
| | - Gomaa Mostafa-Hedeab
- Pharmacology Department & Health Research Unit, Medical College, Jouf University, Jouf, Saudi Arabia
- Pharmacology Department–Faculty of Medicine, Beni-Suef University, Egypt
| | - Suzy A. El-Sherbeni
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta 31111, Egypt
| | - Ali Ismail A. Mohammed
- Department of Clinical Pharmacology, College of Medicine, University of Al-Mustansiriyah, Iraq
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology, College of Medicine, University of Al-Mustansiriyah, Iraq
| | - Nani Nasreldin
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, New Valley University, El-Kharga, P.O. Box 72511, Egypt
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Sciences, Taif University, P.O.Box 11099, Taif 21944, Saudi Arabia
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro 21941-598, Brazil
| |
Collapse
|
34
|
Hasan Khudhair D, Al-Gareeb AI, Al-kuraishy HM, El-Kadem AH, Elekhnawy E, Negm WA, Saber S, Cavalu S, Tirla A, Alotaibi SS, Batiha GES. Combination of Vitamin C and Curcumin Safeguards Against Methotrexate-Induced Acute Liver Injury in Mice by Synergistic Antioxidant Effects. Front Med (Lausanne) 2022; 9:866343. [PMID: 35492324 PMCID: PMC9047671 DOI: 10.3389/fmed.2022.866343] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Methotrexate (MTX), an antineoplastic and immunosuppressive drug, widely used in the treatment of different types of cancers and the management of chronic inflammatory diseases. However, its use is associated with hepatotoxicity. Vitamin C (VC) and curcumin (CUR) exhibit anti-inflammatory and antioxidant effects. Thus, we aimed to investigate the potential hepatoprotective effects of VC and CUR pretreatment alone and in combination against MTX-induced hepatotoxicity. Albino mice were randomly divided into 7 groups: the control group, which received only normal saline; MTX group; VC group, pretreated with VC (100 or 200 mg/kg/day orally) for 10 days; CUR group, pretreated with CUR (10 or 20 mg/kg/day orally); and combination group, which received VC (100 mg/kg) and CUR (10 mg/kg). MTX was administered (20 mg/kg, intraperitoneally) to all the groups on the tenth day to induce hepatotoxicity. Forty eight hours after MTX administration, the mice were anesthetized. Blood samples were collected, the liver was removed for biochemical analysis, and a part of the tissue was preserved in formalin for histopathological analysis. The results indicated that pretreatment with a combination of VC and CUR induced a more significant decrease in the serum levels of alanine transaminase, aspartate transaminase, alkaline phosphatase, and lactic dehydrogenase and a significant increase in the tissue level of superoxide dismutase and glutathione; furthermore, it induced a significant decrease in malondialdehyde levels and improvement in histopathological changes in the liver tissues, confirming the potential hepatoprotective effects of the combination therapy on MTX-induced liver injury. To conclude, MTX-induced hepatotoxicity is mediated by induction of oxidative stress as evident by increased lipid peroxidation and reduction of antioxidant enzyme activity. Pretreatment with VC, CUR or their combination reduces the MTX-induced hepatotoxicity by antioxidant and anti-inflammatory effects. However, the combined effect of VC and CUR provided a synergistic hepatoprotective effect that surpasses pretreatment with CUR alone but seems to be similar to that of VC 200 mg/kg/day. Therefore, VC and CUR combination or a large dose of VC could be effective against MTX-induced hepatotoxicity. In this regard, further studies are warranted to confirm the combined hepatoprotective effect of VC and CUR against MTX-induced hepatotoxicity.
Collapse
Affiliation(s)
- Dhekra Hasan Khudhair
- Department of Clinical Pharmacology and Medicine, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, University of Al-Mustansiriyah, Baghdad, Iraq
| | - Aya H. El-Kadem
- Department of Pharmacology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Walaa A. Negm
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Adrian Tirla
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| |
Collapse
|
35
|
El-Hagrassi AM, Osman AF, El-Naggar ME, Mowaad NA, Khalil S, Hamed MA. Phytochemical constituents and protective efficacy of Schefflera arboricola L. leaves extract against thioacetamide-induced hepatic encephalopathy in rats. Biomarkers 2022; 27:375-394. [PMID: 35234557 DOI: 10.1080/1354750x.2022.2048892] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Context: Hepatic encephalopathy (HE) is a severe neuropsychiatric syndrome resulting from liver failure. Objective: To evaluate the protective effect of Schefflera arboricola L. leaves methanol extract against thioacetamide (TAA) induced HE in rats. Materials and methods: GC/MS, LC-ESI-MS and the total phenolic and flavonoid contents were determined. The methanol extract was orally administrated (100 and 200 mg/kg) for 21 days. TAA (200 mg/kg) was given intraperitoneally on day 19 and continued for three days. The evaluation was done by measuring alanine aminotransferases (ALT), alkaline phosphatase (ALP), ammonia, reduced glutathione (GSH), malondialdehyde (MDA), nitric oxide (NO) alpha tumor necrotic factor (TNFα), toll like receptor (TLR4), interleukin 1 beta (IL-1β), interlukin 6 (IL-6), cyclooxygenase 2(COX2), B cell lymphoma (BCL2), alpha smooth muscle actin (α-SMA) and cluster of differentiation 163 (CD163). The histological features of liver and brain were conducted. Results: Forty five compounds were identified from the n-hexane fraction, while twenty nine phenolic compounds were determined from the methanol extract. Pretreatment with the plant extract returned most of the measurements under investigation to nearly normal. Conclusion: Due to its richness with bioactive compounds, Schefflera arboricola L. leaves extract succeeded to exert anti-fibrotic, anti-inflammatory and antioxidants properties in TAA-induced HE in rats with more efficacy to its high protective dose.
Collapse
Affiliation(s)
- Ali M El-Hagrassi
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Giza, Egypt
| | - Abeer F Osman
- Chemistry of Natural Compounds Department, National Research Centre, Dokki, Giza, Egypt
| | - Mostafa E El-Naggar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Sadat City, Menoufia, Egypt
| | - Noha A Mowaad
- Department of Narcotics, Ergogenic Acids and Poisons, National Research Centre, Dokki, Giza, Egypt
| | - Sahar Khalil
- Department of Histology & Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal A Hamed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
36
|
Alfwuaires MA. Galangin mitigates oxidative stress, inflammation, and apoptosis in a rat model of methotrexate hepatotoxicity. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:20279-20288. [PMID: 34729716 DOI: 10.1007/s11356-021-16804-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
Methotrexate (MTX) is an efficient chemotherapeutic agent for treating various malignancies and autoimmune diseases. However, the long-term use of MTX can result in hepatotoxicity and this limits its use. Galangin (Gal) is a potent flavonoid with various biological activities; however, its protective effect against MTX hepatotoxicity has not been previously investigated. This study evaluated the hepatoprotective of Gal against MTX-induced liver injury. Rats received Gal for 10 days and a single dose of MTX (20 mg/kg) at day 7. The administration of MTX induced liver damage reflected by increased serum biomarkers of liver function and histopathological manifestations. MTX increased hepatic reactive oxygen species (ROS), nitric oxide (NO), malondialdehyde (MDA), and pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6), and diminished GSH and antioxidant enzymes. Gal relieved liver injury, ameliorated liver function, oxidative stress, and inflammation markers, and increased antioxidants in MTX-treated rats. In addition, Gal decreased the expression of inflammation and apoptosis markers in MTX-treated rats. In conclusion, Gal possesses a hepatoprotective effect mediated by attenuating oxidative damage, inflammation, and apoptosis in rats.
Collapse
Affiliation(s)
- Manal A Alfwuaires
- Department of Biological Sciences, Faculty of Science, King Faisal University, Al-Ahsa, 31982, Saudi Arabia.
| |
Collapse
|
37
|
Saud MA, Saud NA, Hamad MA, Farhan Gar L. Role of Salvia officinalis Silver Nanoparticles in Attenuation Renal Damage in Rabbits Exposed to Methotrexate. ARCHIVES OF RAZI INSTITUTE 2022; 77:151-162. [PMID: 35891727 PMCID: PMC9288605 DOI: 10.22092/ari.2021.356313.1821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 10/21/2021] [Indexed: 06/15/2023]
Abstract
Nanomaterials are now considered in an extensive range of applications in various fields such as biotechnology and biomedicine. The present study aimed to investigate the protective role of Salvia officinalis Silver Nanoparticles (SOSNPs) as an anti-oxidant on nephrotic damage induced by methotrexate (MTX) in adult rabbits. Green silver nanoparticles were synthesized using alcoholic extract of Salvia officinalis (S. Officinalis) leaves and were characterized by UV-spectrophotometry and scanning electron microscope. The mixing of the plant extract of S. Officinalis with silver nitrate solution leads to the change of the reaction mixture color to yellowish within 1 h and dark brown after 8 h. For studying the protective role of SOSNPs, a total of 28 adult Wistar albino rabbits were divided into four groups and treated intramuscularly (twice per week) for 45 days as follows: T1: S. Officinalis (150 mg/kg B.W), T2: SOSNPs (150 mg/kg B.W); T3: MTX (0.25 mg/kg B.W) and SOSNPs (150 mg/kg B.W); T4: MTX (0.25 mg/kg B.W). Blood was collected at 0, 15, 30, and 45 days using retro-orbital sinus and cardiac puncture technique, and the serum factors including malondialdehyde (MDA), glutathione (GSH) in serum, creatinine, as well as blood urea nitrogen and uric acid concentrations were measured at the next step. The results indicated that MTX (T4) caused a case of oxidative stress by a significant decrease in GSH and MDA as well as an increase in serum creatinine, urea, and uric acid concentrations. On the other hand, the protective roles of S. Officinalis and SOSNPs given concurrently with MTX were clarified in T2 and T3 groups, where there was the alleviation of renal damage through the correction of the previously mentioned parameters as well as the correction of anti-oxidant status. Finally, the present study documented the anti-oxidant activity and renal protective effects of SOSNPs against the damaging effects of MTX in rabbits.
Collapse
Affiliation(s)
- M A Saud
- Biotechnology and Environmental Center, University of Al-Fallujah, Fallujah, Al Anbar, Iraq
| | - N A Saud
- College of Education for Pure Sciences, Department of Biology, University of Anbar, Ramadi, Al Anbar, Iraq
| | - M A Hamad
- Biotechnology and Environmental Center, University of Al-Fallujah, Fallujah, Al Anbar, Iraq
| | - L Farhan Gar
- Biotechnology and Environmental Center, University of Al-Fallujah, Fallujah, Al Anbar, Iraq
| |
Collapse
|
38
|
Evaluation of the antiapoptotic and anti-inflammatory properties of chitosan in methotrexate-induced oral mucositis in rats. Mol Biol Rep 2022; 49:3237-3245. [PMID: 35064410 DOI: 10.1007/s11033-022-07158-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/17/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Methotrexate (MTX), a chemotherapeutic agent, is known to cause oral mucositis. Chitosan has been shown to have a protective effect in inflammatory animal models. This research aimed to examine the protective effect of chitosan against oral mucositis caused by MTX. METHODS AND RESULTS Wistar albino rats were randomly divided into three groups. Control (n = 8), (saline via oral gavage for 5 days), MTX (n = 8), (60 mg/kg single dose MTX intraperitoneally on the 1st day and for the following 4 days saline via oral gavage), and MTX + chitosan (n = 8), (1st day single dose 60 mg/kg MTX intraperitoneally and followed with 200 mg/kg chitosan via oral gavage for 4 days). After 24 h of the last dose, the animals were euthanised. Blood, tongue, buccal and palatal mucosa tissues were collected. Serum interleukin 1-beta (IL1-β), tumour necrosis factor-alpha (TNF-α), matrix metalloproteinase (MMP-1, and MMP-2) activities, tissue bcl-2/bax ratio and the expression of caspase-3 (casp-3), and casp-9 were detected. The tissues were also examined histologically. Serum TNF-α, IL1-β, MMP-1 and MMP-2 activities and tissue casp-3 and casp-9 activities significantly increased but the bcl-2/bax ratio significantly decreased in the MTX group compared those of the control group. Histologically, diffuse inflammatory cells were observed in MTX group. However, In the MTX + chitosan group, all the values were close to those of the control group. CONCLUSION It was demonstrated that chitosan has a protective effect against oral mucosal damage caused by MTX. Thus, it may be a candidate agent against MTX induced oral mucositis.
Collapse
|
39
|
Hasan RA, Algareeb A. Hepatoprotective effects of alpha-lipoic acid, Vitamin C alone, or in combination on methotrexate-induced liver injury. MUSTANSIRIYA MEDICAL JOURNAL 2022; 21:41. [DOI: 10.4103/mj.mj_23_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
40
|
Khalaf MM, Hassanein EHM, Shalkami AGS, Hemeida RAM, Mohamed WR. Diallyl Disulfide Attenuates Methotrexate-Induced Hepatic Oxidative Injury, Inflammation and Apoptosis and Enhances its Anti-Tumor Activity. Curr Mol Pharmacol 2022; 15:213-226. [PMID: 34042041 DOI: 10.2174/1874467214666210525153111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/03/2021] [Accepted: 02/08/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Methotrexate (MTX) is used potently for a wide range of diseases. However, hepatic intoxication by MTX hinders its clinical use. OBJECTIVES The present study was conducted to investigate the diallyl disulfide (DADS) ability to ameliorate MTX-induced hepatotoxicity. METHODS Thirty-two rats were randomly divided into four groups: normal control, DADS (50 mg/kg/day, orally), MTX (single i.p. injection of 20 mg/kg) and DADS+MTX. Liver function biomarkers, histopathological examinations, oxidative stress, inflammation, and apoptosis biomarkers were investigated. Besides, an in vitro cytotoxic activity study was conducted to explore the modulatory effects of DADS on MTX cytotoxic activity using Caco-2, MCF-7, and HepG2 cells. RESULTS DADS significantly reduced the increased serum activities of ALT, AST, ALP, and LDH. These results were confirmed by the alleviation of liver histopathological changes. It restored the decreased GSH content and SOD activity, while significantly decreased MTX-induced elevations in both MDA and NO2 - contents. The hepatoprotective effects were mechanistically mediated through the up-regulation of hepatic Nrf-2 and the down-regulation of Keap-1, P38MAPK, and NF- κB expression levels. In addition, an increase in Bcl-2 level with a decrease in the expression of both Bax and caspase-3 was observed. The in vitro study showed that DADS increased MTX antitumor efficacy. CONCLUSION DADS potently alleviated MTX-induced hepatotoxicity through the modulation of Keap-1/Nrf-2, P38MAPK/NF-κB and apoptosis signaling pathways and effectively enhanced the MTX cytotoxic effects, which could be promising for further clinical trials.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef,Egypt
| | - Emad H M Hassanein
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut,Egypt
| | - Abdel-Gawad S Shalkami
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut,Egypt
| | - Ramadan A M Hemeida
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut,Egypt
| | - Wafaa R Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef,Egypt
| |
Collapse
|
41
|
Ghoneum M, El-Gerbed MSA. Human placental extract ameliorates methotrexate-induced hepatotoxicity in rats via regulating antioxidative and anti-inflammatory responses. Cancer Chemother Pharmacol 2021; 88:961-971. [PMID: 34505929 PMCID: PMC8536621 DOI: 10.1007/s00280-021-04349-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/27/2021] [Indexed: 01/24/2023]
Abstract
PURPOSE Methotrexate (MTX) induces hepatotoxicity, limiting its clinical efficacy as a widely known chemotherapy drug. In the current study, we examined the protective effect of human placenta extract (HPE) against MTX-induced liver damage in rats, as well as its ability to regulate antioxidative and anti-inflammatory liver responses. METHODS Male rats were orally administered MTX at a daily dose of 5 mg/kg-body-weight in the presence or absence of HPE (10.08 mg/kg) for 2 weeks. We measured the biological effects of MTX and HPE on the levels of liver enzymes, lipid profile, lipid peroxidation, oxidative stress biomarkers, and cytokines [tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and interleukin-10 (IL-10)]. In addition, histological examination and histopathological scoring of liver tissues were performed. RESULTS MTX-treated rats showed significantly increased (p < 0.001) liver enzyme levels for aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), total bilirubin, total cholesterol, and triglyceride levels. However, HPE supplementation in MTX-treated rats significantly decreased (p < 0.001) these elevated levels. HPE supplementation also significantly reduced the oxidative stress biomarker malondialdehyde (MDA), reversed the reduction in glutathione (GSH), and markedly increased the antioxidant enzyme activities of catalase (CAT) and superoxide dismutase (SOD) in the livers of MTX-treated rats. Furthermore, HPE supplementation significantly decreased the MTX-elevated levels of the pro-inflammatory cytokines TNF-α, IL-6, and IL-10. Histopathological examinations showed that MTX produced severe cellular damage and inflammatory lesions in liver tissues, while treatment with HPE improved hepatic histologic architecture. CONCLUSION HPE has the ability to ameliorate methotrexate-induced liver injury in rats by mechanisms that include boosting antioxidative responses and down-regulating MDA and pro-inflammatory cytokine production.
Collapse
Affiliation(s)
- Mamdooh Ghoneum
- Department of Surgery, Charles R. Drew University of Medicine and Science, 1621 E. 120th Street, Los Angeles, CA, 90059, USA.
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| | | |
Collapse
|
42
|
Protective effects of melatonin and L-carnitine against methotrexate-induced toxicity in isolated rat hepatocytes. Naunyn Schmiedebergs Arch Pharmacol 2021; 395:87-97. [PMID: 34821957 DOI: 10.1007/s00210-021-02176-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
The present study was designed to evaluate the possible protective effects of melatonin (MEL) and/or L-carnitine (L-CAR) against methotrexate (MTX)-induced toxicity in isolated rat hepatocytes. Hepatocytes were prepared using collagenase techniques of perfusion and digestion of rat liver. Trypan blue uptake, as well as, glutathione (GSH), lipid peroxidation (LPO), nitric oxide (NO), and tumor necrosis factor-alpha (TNF-α) levels were measured. Caspase-3 activity was also assessed. Pre-incubation of hepatocytes with MEL (1 mM) and/or L-CAR (10 mM) 30 min prior to intoxication with MTX, significantly protected hepatocytes against toxicity. In addition, LPO, NO, TNF-α levels, and caspase-3 activity were decreased in comparison to the MTX-intoxicated group. Furthermore, the two drugs increased the MTX-depleted GSH level. MEL and L-CAR prevented MTX-induced hepatocytotoxicity, at least partly, by their antioxidative, antiinflammatory, and antiapoptotic effects. Further studies are recommended on the clinical pharmacologic and toxicologic effects of MEL and L-CAR in patients receiving MTX.
Collapse
|
43
|
An Experimental Study: Benefits of Digoxin on Hepatotoxicity Induced by Methotrexate Treatment. Gastroenterol Res Pract 2021; 2021:6619844. [PMID: 34804155 PMCID: PMC8598353 DOI: 10.1155/2021/6619844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 08/02/2021] [Accepted: 10/19/2021] [Indexed: 12/02/2022] Open
Abstract
Purpose The aim of the study is to examine the possible therapeutic effects of a known cardiac glycoside, digoxin, on a rat model of MTX-induced hepatotoxicity. Methods The study was conducted on twenty-four male rats. While eighteen rats received a single dose of 20 mg/kg MTX to obtain an injured liver model, six rats constituted the control group. Also, the eighteen liver toxicity model created rats were equally divided into two groups, one of which received digoxin 0.1 mg/kg/day digoxin (Group 1) and the other group (Group 2) was given saline (% 0.9NaCl) with a dose of 1 ml/kg/day for ten days. Following the trial, the rats were sacrificed to harvest blood and liver tissue samples to determine blood and tissue MDA, serum ALT, plasma TNF-α, TGF-β, IL-6, IL-1-Beta, and PTX3 levels. Results MTX's structural and functional hepatotoxicity was observable and evidenced by relatively worse histopathological scores and increased biochemical marker levels. Digoxin treatment significantly reduced the liver enzyme ALT, plasma TNF-α, TGF-β, PTX3, and MDA levels and decreased histological changes in the liver tissue with MTX-induced hepatotoxicity in the rat model. Conclusion We suggest that digoxin has an anti-inflammatory and antihepatotoxic effect on the MTX-induced liver injury model.
Collapse
|
44
|
Özgöçmen M, Aşcı H, Doğan HK, İlhan İ, Pekgöz Ş, Mustafaoğlu A. A study on Wistar Albino rats: investigating protective role of ramelteon on liver damage caused by methotrexate. Drug Chem Toxicol 2021; 45:2678-2685. [PMID: 34632892 DOI: 10.1080/01480545.2021.1982623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Methotrexate is an important immunosuppressive and antineoplastic drug and is widely used for treatment. However, hepatotoxicity is one of the major adverse effects of methotrexate. In this study, it was aimed to investigate whether ramelteon has a possible protective effect on hepatotoxicity induced by methotrexate. Thirty-two Wistar albino rats were equally divided into four groups: control, methotrexate, methotrexate + ramelteon, and ramelteon. Following a single dose of 20 mg/kg, methotrexate (i.p.), either saline or ramelteon 10 mg/kg (orally) was administered for 7 days. After treatment, animals were sacrificed, and histopathological analyses were evaluated with Hematoxylin-eosin (H-E), immunohistological analyses were evaluated with Interleukın-1 Beta (IL-1β) and Caspase 3 (CAS-3), biochemical analyzes were evaluated with Total Oxidant Status (TOS), Total antioxidants status (TAS), Oxidative Stress Index (OSI), aspartate aminotransferase (AST), alanine aminotransferase (ALT) activities, at last genetical analyses were evaluated with Sirtuin-1 (SIRT-1) - P53 gene expressions. In the control and ramelteon groups, normal histological structures were observed, while histopathological findings were observed in the methotrexate group. Increasing levels of IL-1β staining, CAS-3 staining, p53 gene expression, TOS, OSI, AST and ALT were observed in methotrexate group while were observed decreasing levels of TAS and SIRT-1 gene expression (p < 0.05). However, ramelteon reduced the increased findings in methotrexate-induced hepatotoxicity (p < 0.05). The results of the present study showed that ramelteon protects against methotrexate induced hepatotoxicity in rats via SIRT-1 signaling by histological, immunohistological, biochemical and genetical analyses.
Collapse
Affiliation(s)
- Meltem Özgöçmen
- Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Halil Aşcı
- Department of Pharmacology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Hatice Kübra Doğan
- Department of Bioengineering, Institute of Science, Suleyman Demirel University, Isparta, Turkey
| | - İlter İlhan
- Department of Medical Biochemistry, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Şakir Pekgöz
- Department of Pathology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| | - Ali Mustafaoğlu
- Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
45
|
Elazab ST, Samir O, Abass ME. Synergistic effects of sitagliptin and losartan against fipronil-induced hepatotoxicity in rats. Vet World 2021; 14:1901-1907. [PMID: 34475715 PMCID: PMC8404120 DOI: 10.14202/vetworld.2021.1901-1907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 06/10/2021] [Indexed: 01/24/2023] Open
Abstract
Background and Aim Fipronil (FPN) is a potent pesticide that is heavily used around the world in agriculture. However, its irrational use could potentially have deleterious effects on animals and humans. The present study aimed to investigate the ability of sitagliptin (Sit) and losartan (LOS), when used both individually or concurrently, to guard rat liver against the acute hepatotoxicity caused by FPN. Materials and Methods Forty-two adult male Wistar rats were equally divided into seven groups (6/group). Group I (control) received normal saline (0.5 mL/rat, vehicle for all treatments) by gavage once daily for 10 days. Group II received oral Sit (10 mg/kg body weight [BW]) daily for 10 days and Group III received oral LOS (5 mg/kg BW) daily for 10 days. Group IV received oral FPN (19.4 mg/kg BW; 1/5 of the oral LD50) for the past 5 days of the study. Groups V and VI received oral Sit (10 mg/kg BW) and LOS (5 mg/kg BW) daily, respectively, 5 days prior and 5 days during FPN administration (19.4 mg/kg BW). Group VII received oral Sit (10 mg/kg BW) and LOS (5 mg/kg BW) for 10 days with daily FPN during the past 5 days. After the end of the treatment period, the rats were humanely sacrificed and blood and liver tissue samples were collected for biochemical analysis and histopathological and immunohistochemical investigations. Results FPN administration resulted in elevated alanine aminotransferase, aspartate aminotransferase, and alkaline phosphatase serum concentrations as well as increased malondialdehyde levels and reduced catalase, superoxide dismutase, glutathione peroxidase, and glutathione activity. The histopathological investigation showed disorganization of the hepatic cords and focal necrosis of the hepatocytes in FPN-intoxicated rats. Furthermore, the immunohistochemical examination showed that hepatic caspase-3 was overexpressed in the FPN-treated rats. The administration of Sit and LOS before and alongside FPN markedly mitigated the alterations caused by FPN and the hepatoprotective effects were more prominent in the combination group. Conclusion Sit and LOS, both individually or in combination, confers considerable hepatoprotection against FPN-induced hepatotoxicity.
Collapse
Affiliation(s)
- Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, Mansoura,35516, Egypt
| | - Omar Samir
- Laboratory Animal Resource Center in Transborder Medical Research Center, Faculty of Medicine, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Marwa E Abass
- Department of Surgery, Anesthesiology and Radiology Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
46
|
Arab HH, Ashour AM, Gad AM, Mahmoud AM, Kabel AM. Activation of AMPK/mTOR-driven autophagy and inhibition of NLRP3 inflammasome by saxagliptin ameliorate ethanol-induced gastric mucosal damage. Life Sci 2021; 280:119743. [PMID: 34166711 DOI: 10.1016/j.lfs.2021.119743] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/03/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023]
Abstract
AIMS Saxagliptin, a selective/potent dipeptidyl peptidase-4 inhibitor, has revealed remarkable anti-inflammatory features in murine models of nephrotoxicity, hepatic injury, and neuroinflammation. However, its potential effect on ethanol-induced gastric mucosal injury has not been examined. Hence, the present work investigated the prospect of saxagliptin to attenuate ethanol-evoked gastric injury, with emphasis on the AMPK/mTOR-driven autophagy and NLRP3/ASC/caspase-1 pathway. MATERIALS AND METHODS In ethanol-induced gastropathy, the gastric tissues were examined by immunohistochemistry, immunoblotting, histopathology, and ELISA. KEY FINDINGS The results demonstrated that saxagliptin (10 mg/kg; by gavage) suppressed the gastric pathological signs (area of gastric ulcer and ulcer index scores), histopathologic aberrations/damage scores, without provoking hypoglycemia in rats. These protective features were attributed to the enhancement of gastric mucosal autophagy flux, as proven with increased expression of LC3-II and Beclin 1, decreased accumulation of p62 SQSTM1, and activation of the autophagy-linked AMPK/mTOR pathway by increasing the expression of p-AMPK/AMPK and decreasing the expression of the autophagy suppressor p-mTOR/mTOR signal. In tandem, saxagliptin counteracted the ethanol-induced pro-apoptotic events by downregulating Bax, upregulating Bcl2 protein, and lowering the Bax/Bcl2 ratio. Equally important, saxagliptin suppressed the NLRP3 inflammasome in the gastric tissue by lowering the expression of NLRP3, ASC, and nuclear NF-κBp65, decreasing the activity of caspase-1, and diminishing the IL-1β levels. In the same regard, saxagliptin suppressed the mucosal oxidative stress by lowering lipid peroxide levels, increasing GSH and GPx antioxidants, and activating Nrf2/HO-1 pathway. SIGNIFICANCE Saxagliptin may be a promising intervention against ethanol-evoked gastropathy by activating AMPK/mTOR-driven autophagy and inhibiting NLRP3 inflammasome.
Collapse
Affiliation(s)
- Hany H Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Amany M Gad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, El Ismailia, Egypt; Department of Pharmacology, Egyptian Drug Authority (EDA), formerly NODCAR, Giza, Egypt
| | - Ayman M Mahmoud
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt; Biotechnology Department, Research Institute of Medicinal and Aromatic Plants, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
47
|
Anti-fibrotic activity of sitagliptin against concanavalin A-induced hepatic fibrosis. Role of Nrf2 activation/NF-κB inhibition. Int Immunopharmacol 2021; 100:108088. [PMID: 34454288 DOI: 10.1016/j.intimp.2021.108088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022]
Abstract
Sitagliptin is known for its anti-diabetic activity though it has other pleiotropic pharmacological actions. Its effect against concanavalin A (Con A)-induced hepatic fibrosis has not been investigated yet. Our target was to test whether sitagliptin can suppress the development of Con A-induced hepatic fibrosis and if so, what are the mechanisms involved? Con A (6 mg/kg) was injected once weekly to male Swiss albino mice for four weeks. Sitagliptin was daily administered concurrently with Con A. Results have shown the potent hepatoprotective activity of sitagliptin against Con A-induced hepatitis and fibrosis. That was evident through the amelioration of hepatotoxicity serum parameters (ALT, AST, ALP, and LDH) and the increase in the level of serum albumin in sitagliptin treated mice. Simultaneously, there was amendment of the Con A-induced hepatic lesions and repression of fibrosis in sitagliptin-treated animals. Hydroxyproline, collagen content and the immuno-expression of the fibrotic markers, TGF-β and α-SMA were depressed upon sitagliptin treatment. Sitagliptin suppressed Con A-induced oxidative stress and increased antioxidants. RT-PCR analysis showed enhancement of mRNA expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and its target genes (GCLc, GCLm, NQO-1, HO-1) by sitagliptin. Furthermore, sitagliptin ameliorated the level and immuno-expression of nuclear factor kappa-B (NF-κB) alongside the immuno-expression of the inflammatory cytokine, TNF-α. Taken together, this study demonstrates the hepatoprotective activity of sitagliptin which may be in part related to enhancement of Nrf2 signaling pathway and inhibition of NF-κB which interact inflammatory response in liver. Sitagliptin might be a new candidate to suppress hepatitis-associated fibrosis.
Collapse
|
48
|
Delen O, Uz YH. Protective effect of pyrrolidine dithiocarbamate against methotrexate-induced testicular damage. Hum Exp Toxicol 2021; 40:S164-S177. [PMID: 34340576 DOI: 10.1177/09603271211035674] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The aim of the study was to investigate the protective effect of pyrrolidine dithiocarbamate (PDTC) against methotrexate (MTX)-induced testicular damage in rats. Forty Wistar albino male rats were divided into equally four groups: Control group (saline solution, IP), PDTC group (100 mg/kg PDTC,IP, 10 days), MTX group (20 mg/kg MTX, IP, single dose, on the 6th day) and MTX + PDTC group (100 mg/kg PDTC, IP, 10 days and 20 mg/kg MTX, IP, single dose, on the 6th day). After 10 days, testicular tissues were excised for morphometric, histological and immunohistochemical evaluations. Serum testosterone, follicle stimulating hormone (FSH), luteinizing hormone (LH) and prokineticin 2 (PK2) levels were determined. Body and testicular weights were measured. Testicular damage was assessed by histological evaluation. Nuclear factor kappa B (NFkB), nuclear factor erythroid 2 related factor 2 (Nrf2) and PK2 immunoreactivities were evaluated by HSCORE. Body and testicular weights, serum FSH, LH, testosterone levels, seminiferous tubule diameter and germinal epithelial thickness were significantly decreased in the MTX group. However, serum PK2 level, histologically damaged seminiferous tubules and interstitial field width were significantly increased. Additionally, there was an increase in NFkB and PK2 immunoreactivity, whereas there was a significant decrease in Nrf2 immunoreactivity. PDTC significantly improved hormonal, morphometric, histological and immunohistochemical findings. Taken together, we conclude that PDTC may reduce MTX-induced testicular damage via NFkB, Nrf2 and PK2 signaling pathways.
Collapse
Affiliation(s)
- Ozlem Delen
- Department of Histology and Embryology, Faculty of Medicine, 64058Trakya University, Edirne, Turkey
| | - Yesim H Uz
- Department of Histology and Embryology, Faculty of Medicine, 64058Trakya University, Edirne, Turkey
| |
Collapse
|
49
|
Bakdemir M, Çetin E. Hepatoprotective effects of ethyl pyruvate against carbon tetrachloride-induced oxidative stress, biochemical and histological alterations in rats. Arch Physiol Biochem 2021; 127:359-366. [PMID: 31314597 DOI: 10.1080/13813455.2019.1640254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
This study investigated the protective effects of ethyl pyruvate (EP) against carbon tetrachloride (CCl4)-induced acute hepatic injury in rats. The administration of a single dose of CCl4 (1.6 g/kg body weight) significantly elevated the levels of malondialdehyde, nitric oxide, alanine transaminase, aspartate transaminase, and alkaline phosphatase, cholesterol, low-density lipoprotein cholesterol, and triglycerides. In addition, CCl4 was found to significantly suppress the activity of superoxide dismutase, catalase, and glutathione peroxidase. All of these parameters were restored to their normal levels by the administration of EP before and after the CCl4 injection. Moreover, the number of positive apoptotic hepatocytes had significantly increased in the CCl4 group but decreased in rats treated with EP along with CCl4. Histopathological changes induced by CCl4 were also ameliorated by EP treatment. These findings provided evidence that EP, because of its antioxidant and anti-apoptotic action, could protect rat liver against CCl4-induced acute liver injury.
Collapse
Affiliation(s)
- Miraç Bakdemir
- Department of Veterinary Physiology, Institute of Health Sciences, Erciyes University, Kayseri, Turkey
| | - Ebru Çetin
- Department of Physiology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
50
|
Trocha M, Fleszar MG, Fortuna P, Lewandowski Ł, Gostomska-Pampuch K, Sozański T, Merwid-Ląd A, Krzystek-Korpacka M. Sitagliptin Modulates Oxidative, Nitrative and Halogenative Stress and Inflammatory Response in Rat Model of Hepatic Ischemia-Reperfusion. Antioxidants (Basel) 2021; 10:antiox10081168. [PMID: 34439416 PMCID: PMC8388898 DOI: 10.3390/antiox10081168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/23/2022] Open
Abstract
A possibility of repurposing sitagliptin, a well-established antidiabetic drug, for alleviating injury caused by ischemia-reperfusion (IR) is being researched. The aim of this study was to shed some light on the molecular background of the protective activity of sitagliptin during hepatic IR. The expression and/or concentration of inflammation and oxidative stress-involved factors have been determined in rat liver homogenates using quantitative RT-PCR and Luminex® xMAP® technology and markers of nitrative and halogenative stress were quantified using targeted metabolomics (LC-MS/MS). Animals (n = 36) divided into four groups were treated with sitagliptin (5 mg/kg) (S and SIR) or saline solution (C and IR), and the livers from IR and SIR were subjected to ischemia (60 min) and reperfusion (24 h). The midkine expression (by 2.2-fold) and the free 3-nitrotyrosine (by 2.5-fold) and IL-10 (by 2-fold) concentration were significantly higher and the Nox4 expression was lower (by 9.4-fold) in the IR than the C animals. As compared to IR, the SIR animals had a lower expression of interleukin-6 (by 4.2-fold) and midkine (by 2-fold), a lower concentration of 3-nitrotyrosine (by 2.5-fold) and a higher Nox4 (by 2.9-fold) and 3-bromotyrosine (by 1.4-fold). In conclusion, IR disturbs the oxidative, nitrative and halogenative balance and aggravates the inflammatory response in the liver, which can be attenuated by low doses of sitagliptin.
Collapse
Affiliation(s)
- Małgorzata Trocha
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (T.S.); (A.M.-L.)
- Correspondence: (M.T.); (M.K.-K.)
| | - Mariusz G. Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Paulina Fortuna
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Łukasz Lewandowski
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Kinga Gostomska-Pampuch
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
| | - Tomasz Sozański
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (T.S.); (A.M.-L.)
| | - Anna Merwid-Ląd
- Department of Pharmacology, Wroclaw Medical University, 50-345 Wroclaw, Poland; (T.S.); (A.M.-L.)
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.G.F.); (P.F.); (Ł.L.); (K.G.-P.)
- Correspondence: (M.T.); (M.K.-K.)
| |
Collapse
|