1
|
Damoiseaux D, Beijnen JH, Huitema ADR, Dorlo TPC. Early Prediction and Impact Assessment of CYP3A4-Related Drug-Drug Interactions for Small-Molecule Anticancer Drugs Using Human-CYP3A4-Transgenic Mouse Models. Drug Metab Dispos 2024; 52:1217-1223. [PMID: 39362699 DOI: 10.1124/dmd.123.001530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 07/06/2024] [Accepted: 07/30/2024] [Indexed: 10/05/2024] Open
Abstract
Early detection of drug-drug interactions (DDIs) can facilitate timely drug development decisions, prevent unnecessary restrictions on patient enrollment, resulting in clinical study populations that are not representative of the indicated study population, and allow for appropriate dose adjustments to ensure safety in clinical trials. All of these factors contribute to a streamlined drug approval process and enhanced patient safety. Here we describe a new approach for early prediction of the magnitude of change in exposure for cytochrome P450 (P450) CYP3A4-related DDIs of small-molecule anticancer drugs based on the model-based extrapolation of human-CYP3A4-transgenic mice pharmacokinetics to humans. Victim drugs brigatinib and lorlatinib were evaluated with the new approach in combination with the perpetrator drugs itraconazole and rifampicin. Predictions of the magnitude of change in exposure deviated at most 0.99- to 1.31-fold from clinical trial results for inhibition with itraconazole, whereas exposure predictions for the induction with rifampicin were less accurate, with deviations of 0.22- to 0.48-fold. Results for the early prediction of DDIs and their clinical impact appear promising for CYP3A4 inhibition, but validation with more victim and perpetrator drugs is essential to evaluate the performance of the new method. SIGNIFICANCE STATEMENT: The described method offers an alternative for the early detection and assessment of potential clinical impact of CYP3A4-related drug-drug interactions. The model was able to adequately describe the inhibition of CYP3A4 metabolism and the subsequent magnitude of change in exposure. However, it was unable to accurately predict the magnitude of change in exposure of victim drugs in combination with an inducer.
Collapse
Affiliation(s)
- David Damoiseaux
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands (D.D., J.H.B., A.D.R.H., T.P.C.D.); Utrecht Institute of Pharmaceutical Sciences (J.H.B.) and Department of Clinical Pharmacy, University Medical Center Utrecht (A.D.R.H.), Utrecht University, Utrecht, The Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (A.D.R.H.); and Department of Pharmacy, Uppsala University, Uppsala, Sweden (T.P.C.D.)
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands (D.D., J.H.B., A.D.R.H., T.P.C.D.); Utrecht Institute of Pharmaceutical Sciences (J.H.B.) and Department of Clinical Pharmacy, University Medical Center Utrecht (A.D.R.H.), Utrecht University, Utrecht, The Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (A.D.R.H.); and Department of Pharmacy, Uppsala University, Uppsala, Sweden (T.P.C.D.)
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands (D.D., J.H.B., A.D.R.H., T.P.C.D.); Utrecht Institute of Pharmaceutical Sciences (J.H.B.) and Department of Clinical Pharmacy, University Medical Center Utrecht (A.D.R.H.), Utrecht University, Utrecht, The Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (A.D.R.H.); and Department of Pharmacy, Uppsala University, Uppsala, Sweden (T.P.C.D.)
| | - Thomas P C Dorlo
- Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands (D.D., J.H.B., A.D.R.H., T.P.C.D.); Utrecht Institute of Pharmaceutical Sciences (J.H.B.) and Department of Clinical Pharmacy, University Medical Center Utrecht (A.D.R.H.), Utrecht University, Utrecht, The Netherlands; Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands (A.D.R.H.); and Department of Pharmacy, Uppsala University, Uppsala, Sweden (T.P.C.D.)
| |
Collapse
|
2
|
Williams LA, Hamilton MC, Edin ML, Lih FB, Eccles-Miller JA, Tharayil N, Leonard E, Baldwin WS. Increased Perfluorooctanesulfonate (PFOS) Toxicity and Accumulation Is Associated with Perturbed Prostaglandin Metabolism and Increased Organic Anion Transport Protein (OATP) Expression. TOXICS 2024; 12:106. [PMID: 38393201 PMCID: PMC10893382 DOI: 10.3390/toxics12020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/12/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024]
Abstract
Perfluorooctanesulfonate (PFOS) is a widespread environmental pollutant with a long half-life and clearly negative outcomes on metabolic diseases such as fatty liver disease and diabetes. Male and female Cyp2b-null and humanized CYP2B6-transgenic (hCYP2B6-Tg) mice were treated with 0, 1, or 10 mg/kg/day PFOS for 21 days, and surprisingly it was found that PFOS was retained at greater concentrations in the serum and liver of hCYP2B6-Tg mice than those of Cyp2b-null mice, with greater differences in the females. Thus, Cyp2b-null and hCYP2B6-Tg mice provide new models for investigating individual mechanisms for PFOS bioaccumulation and toxicity. Overt toxicity was greater in hCYP2B6-Tg mice (especially females) as measured by mortality; however, steatosis occurred more readily in Cyp2b-null mice despite the lower PFOS liver concentrations. Targeted lipidomics and transcriptomics from PFOS-treated Cyp2b-null and hCYP2B6-Tg mouse livers were performed and compared to PFOS retention and serum markers of toxicity using PCA. Several oxylipins, including prostaglandins, thromboxanes, and docosahexaenoic acid metabolites, are associated or inversely associated with PFOS toxicity. Both lipidomics and transcriptomics indicate PFOS toxicity is associated with PPAR activity in all models. GO terms associated with reduced steatosis were sexually dimorphic with lipid metabolism and transport increased in females and circadian rhythm associated genes increased in males. However, we cannot rule out that steatosis was initially protective from PFOS toxicity. Moreover, several transporters are associated with increased retention, probably due to increased uptake. The strongest associations are the organic anion transport proteins (Oatp1a4-6) genes and a long-chain fatty acid transport protein (fatp1), enriched in female hCYP2B6-Tg mice. PFOS uptake was also reduced in cultured murine hepatocytes by OATP inhibitors. The role of OATP1A6 and FATP1 in PFOS transport has not been tested. In summary, Cyp2b-null and hCYP2B6-Tg mice provided unique models for estimating the importance of novel mechanisms in PFOS retention and toxicity.
Collapse
Affiliation(s)
- Lanie A. Williams
- Biological Sciences, Clemson University, Clemson, SC 29634, USA; (L.A.W.); (M.C.H.); (J.A.E.-M.)
| | - Matthew C. Hamilton
- Biological Sciences, Clemson University, Clemson, SC 29634, USA; (L.A.W.); (M.C.H.); (J.A.E.-M.)
| | - Matthew L. Edin
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Washington, NC 27709, USA; (M.L.E.); (F.B.L.)
| | - Fred B. Lih
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, Washington, NC 27709, USA; (M.L.E.); (F.B.L.)
| | - Jazmine A. Eccles-Miller
- Biological Sciences, Clemson University, Clemson, SC 29634, USA; (L.A.W.); (M.C.H.); (J.A.E.-M.)
| | - Nishanth Tharayil
- Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (N.T.); (E.L.)
| | - Elizabeth Leonard
- Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (N.T.); (E.L.)
| | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29634, USA; (L.A.W.); (M.C.H.); (J.A.E.-M.)
| |
Collapse
|
3
|
Damoiseaux D, Schinkel AH, Beijnen JH, Huitema ADR, Dorlo TPC. Predictability of human exposure by human-CYP3A4-transgenic mouse models: A meta-analysis. Clin Transl Sci 2024; 17:e13668. [PMID: 38037826 PMCID: PMC10766057 DOI: 10.1111/cts.13668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/02/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
First-in-human dose predictions are primarily based on no-observed-adverse-effect levels in animal studies. Predictions from these animal models are only as effective as their ability to predict human results. To narrow the gap between human and animals, researchers have, among other things, focused on the replacement of animal cytochrome P450 (CYP) enzymes with their human counterparts (called humanization), especially in mice. Whereas research in humanized mice is extensive, the emphasis has been particularly on qualitative rather than quantitative predictions. Because the CYP3A4 enzyme is most involved in the metabolism of clinically used drugs, most benefit was expected from CYP3A4 models. There are several applications of these mouse models regarding in vivo CYP3A4 functionality, one of which might be their capacity to help improve first-in-human (FIH) dose predictions for CYP3A4-metabolized drugs. To evaluate whether human-CYP3A4-transgenic mouse models are better predictors of human exposure compared to the wild-type mouse model, we performed a meta-analysis comparing both mouse models in their ability to accurately predict human exposure of small-molecule drugs metabolized by CYP3A4. Results showed that, in general, the human-CYP3A4-transgenic mouse model had similar accuracy in the prediction of human exposure compared to the wild-type mouse model, suggesting that there is limited added value in humanization of the mouse Cyp3a enzymes if the primary aim is to acquire more accurate FIH dose predictions. Despite the results of this meta-analysis, corrections for interspecies differences through extension of human-CYP3A4-transgenic mouse models with pharmacokinetic modeling approaches seems a promising contribution to more accurate quantitative predictions of human pharmacokinetics.
Collapse
Affiliation(s)
- David Damoiseaux
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Alfred H. Schinkel
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Jos H. Beijnen
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Utrecht Institute of Pharmaceutical Sciences, Utrecht UniversityUtrechtThe Netherlands
| | - Alwin D. R. Huitema
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacologyPrincess Máxima Center for Pediatric OncologyUtrechtThe Netherlands
- Department of Clinical PharmacyUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Thomas P. C. Dorlo
- Department of Pharmacy & PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of PharmacyUppsala UniversityUppsalaSweden
| |
Collapse
|
4
|
Oliviero F, Klement W, Mary L, Dauwe Y, Lippi Y, Naylies C, Gayrard V, Marchi N, Mselli-Lakhal L. CAR Protects Females from Diet-Induced Steatosis and Associated Metabolic Disorders. Cells 2023; 12:2218. [PMID: 37759441 PMCID: PMC10527310 DOI: 10.3390/cells12182218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) is the most common cause of chronic liver disease worldwide, affecting 70-90% of obese individuals. In humans, a lower NAFLD incidence is reported in pre-menopausal women, although the mechanisms affording this protection remain under-investigated. Here, we tested the hypothesis that the constitutive androstane nuclear receptor (CAR) plays a role in the pathogenesis of experimental NAFLD. Male and female wild-type (WT) and CAR knock-out (CAR-/-) mice were subjected to a high-fat diet (HFD) for 16 weeks. We examined the metabolic phenotype of mice through body weight follow-up, glucose tolerance tests, analysis of plasmatic metabolic markers, hepatic lipid accumulation, and hepatic transcriptome. Finally, we examined the potential impact of HFD and CAR deletion on specific brain regions, focusing on glial cells. HFD-induced weight gain and hepatic steatosis are more pronounced in WT males than females. CAR-/- females present a NASH-like hepatic transcriptomic signature suggesting a potential NAFLD to NASH transition. Transcriptomic correlation analysis highlighted a possible cross-talk between CAR and ERα receptors. The peripheral effects of CAR deletion in female mice were associated with astrogliosis in the hypothalamus. These findings prove that nuclear receptor CAR may be a potential mechanism entry-point and a therapeutic target for treating NAFLD/NASH.
Collapse
Affiliation(s)
- Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Wendy Klement
- Institute of Functional Genomics, University of Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Lucile Mary
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Yannick Dauwe
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Yannick Lippi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Claire Naylies
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Véronique Gayrard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Nicola Marchi
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France
| |
Collapse
|
5
|
Heintz MM, Eccles JA, Olack EM, Maner-Smith KM, Ortlund EA, Baldwin WS. Human CYP2B6 produces oxylipins from polyunsaturated fatty acids and reduces diet-induced obesity. PLoS One 2022; 17:e0277053. [PMID: 36520866 PMCID: PMC9754190 DOI: 10.1371/journal.pone.0277053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/18/2022] [Indexed: 12/23/2022] Open
Abstract
Multiple factors in addition to over consumption lead to obesity and non-alcoholic fatty liver disease (NAFLD) in the United States and worldwide. CYP2B6 is the only human detoxification CYP whose loss is associated with obesity, and Cyp2b-null mice show greater diet-induced obesity with increased steatosis than wildtype mice. However, a putative mechanism has not been determined. LC-MS/MS revealed that CYP2B6 metabolizes PUFAs, with a preference for metabolism of ALA to 9-HOTrE and to a lesser extent 13-HOTrE with a preference for metabolism of PUFAs at the 9- and 13-positions. To further study the role of CYP2B6 in vivo, humanized-CYP2B6-transgenic (hCYP2B6-Tg) and Cyp2b-null mice were fed a 60% high-fat diet for 16 weeks. Compared to Cyp2b-null mice, hCYP2B6-Tg mice showed reduced weight gain and metabolic disease as measured by glucose tolerance tests, however hCYP2B6-Tg male mice showed increased liver triglycerides. Serum and liver oxylipin metabolite concentrations increased in male hCYP2B6-Tg mice, while only serum oxylipins increased in female hCYP2B6-Tg mice with the greatest increases in LA oxylipins metabolized at the 9 and 13-positions. Several of these oxylipins, specifically 9-HODE, 9-HOTrE, and 13-oxoODE, are PPAR agonists. RNA-seq data also demonstrated sexually dimorphic changes in gene expression related to nuclear receptor signaling, especially CAR > PPAR with qPCR suggesting PPARγ signaling is more likely than PPARα signaling in male mice. Overall, our data indicates that CYP2B6 is an anti-obesity enzyme, but probably to a lesser extent than murine Cyp2b's. Therefore, the inhibition of CYP2B6 by xenobiotics or dietary fats can exacerbate obesity and metabolic disease potentially through disrupted PUFA metabolism and the production of key lipid metabolites.
Collapse
Affiliation(s)
- Melissa M. Heintz
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Jazmine A. Eccles
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Emily M. Olack
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
| | - Kristal M. Maner-Smith
- Emory Integrated Metabolomics and Lipodomics Core, Emory University, Atlanta, Georgia, United States of America
| | - Eric A. Ortlund
- Department of Biochemistry, Emory University School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - William S. Baldwin
- Biological Sciences, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
6
|
Knockdown of the Halloween Genes spook, shadow and shade Influences Oocyte Development, Egg Shape, Oviposition and Hatching in the Desert Locust. Int J Mol Sci 2022; 23:ijms23169232. [PMID: 36012497 PMCID: PMC9408901 DOI: 10.3390/ijms23169232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/04/2022] [Accepted: 08/11/2022] [Indexed: 12/02/2022] Open
Abstract
Ecdysteroids are widely investigated for their role during the molting cascade in insects; however, they are also involved in the development of the female reproductive system. Ecdysteroids are synthesized from cholesterol, which is further converted via a series of enzymatic steps into the main molting hormone, 20-hydoxyecdysone. Most of these biosynthetic conversion steps involve the activity of cytochrome P450 (CYP) hydroxylases, which are encoded by the Halloween genes. Three of these genes, spook (spo), phantom (phm) and shade (shd), were previously characterized in the desert locust, Schistocerca gregaria. Based on recent sequencing data, we have now identified the sequences of disembodied (dib) and shadow (sad), for which we also analyzed spatiotemporal expression profiles using qRT-PCR. Furthermore, we investigated the possible role(s) of five different Halloween genes in the oogenesis process by means of RNA interference mediated knockdown experiments. Our results showed that depleting the expression of SchgrSpo, SchgrSad and SchgrShd had a significant impact on oocyte development, oviposition and hatching of the eggs. Moreover, the shape of the growing oocytes, as well as the deposited eggs, was very drastically altered by the experimental treatments. Consequently, it can be proposed that these three enzymes play an important role in oogenesis.
Collapse
|
7
|
Hannon SL, Ding X. Assessing cytochrome P450 function using genetically engineered mouse models. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:253-284. [PMID: 35953157 PMCID: PMC10544722 DOI: 10.1016/bs.apha.2022.05.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The ability to knock out and/or humanize different genes in experimental animals, globally or in cell- and tissue-specific patterns, has revolutionized scientific research in many areas. Genetically engineered mouse models, including knockout models, transgenic models, and humanized models, have played important roles in revealing the in vivo functions of various cytochrome P450 (CYP) enzymes. These functions are very diverse, ranging from the biotransformation of drugs and other xenobiotics, events that often dictate their pharmacokinetic or toxicokinetic properties and the associated therapeutic or adverse actions, to the metabolism of endogenous compounds, such as steroid hormones and other bioactive substances, that may determine susceptibility to many diseases, such as cancer and metabolic diseases. In this review, we provide a comprehensive list of Cyp-knockout, human CYP-transgenic, and CYP-humanized mouse models that target genes in the CYP1-4 gene families, and highlight their utility in assessing the in vivo metabolism, bioactivation, and toxicity of various xenobiotic compounds, including therapeutic agents and chemical carcinogens. We aim to showcase the advantages of utilizing these mouse models for in vivo drug metabolism and toxicology studies, and to encourage and facilitate greater utility of engineered mouse models to further improve our knowledge of the in vivo functions of various P450 enzymes, which is integral to our ability to develop safer and more effective therapeutics and to identify individuals predisposed to adverse drug reactions or environmental diseases.
Collapse
Affiliation(s)
- Sarrah L Hannon
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, Ken R. Coit College of Pharmacy, The University of Arizona, Tucson, AZ, United States.
| |
Collapse
|
8
|
Peng T, Liu X, Tian F, Xu H, Yang F, Chen X, Gao X, Lv Y, Li J, Pan Y, Shang Q. Functional investigation of lncRNAs and target cytochrome P450 genes related to spirotetramat resistance in Aphis gossypii Glover. PEST MANAGEMENT SCIENCE 2022; 78:1982-1991. [PMID: 35092151 DOI: 10.1002/ps.6818] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Spirotetramat is a tetramic acid derivative insecticide with novel modes of action for controlling Aphis gossypii Glover in the field. Previous studies have shown that long noncoding RNAs (lncRNAs) and cytochrome P450 monooxygenases (P450s) are involved in the detoxification process. However, the functions of lncRNAs in regulating P450 gene expression in spirotetramat resistance in A. gossypii are unknown. RESULTS In this study, we found CYP4CJ1, CYP6CY7 and CYP6CY21 expression levels to be significantly upregulated in a spirotetramat-resistant (SR) strain compared with a susceptible (SS) strain. Furthermore, knockdown of CYP4CJ1, CYP6CY7 and CYP6CY21 increased nymph and adult mortality in the SR strain following exposure to spirotetramat. Drosophila ectopically expressing CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 showed significantly decreased mortality after spirotetramat exposure, and CYP380C6, CYP4CJ1 and CYP6CY21 are putative targets of six lncRNAs. Silencing of lncRNAs MSTRG.36649.2/5 and MSTRG.71880.1 changed CYP6CY21 and CYP380C6 expression, altering the sensitivity of the SR strain to spirotetramat. Moreover, MSTRG.36649.2/5 did not compete for microRNA (miRNA) binding to regulate CYP6CY21 expression. CONCLUSION Our results confirm that CYP380C6, CYP4CJ1, CYP6DA2, CYP6CY7 and CYP6CY21 are potentially involved in the development of spirotetramat resistance in A. gossypii, and MSTRG.36649.2/5 and MSTRG.71880.1 probably regulate CYP6CY21 and CYP380C6 expression other than through the "sponge effect" of competing for miRNA binding. Our results provide a favorable molecular basis for studying cotton aphid P450 genes and lncRNA functions in spirotetramat resistance development.
Collapse
Affiliation(s)
- Tianfei Peng
- College of Plant Science, Jilin University, Changchun, China
| | - Xuemei Liu
- College of Plant Science, Jilin University, Changchun, China
| | - Fayi Tian
- College of Plant Science, Jilin University, Changchun, China
| | - Hongfei Xu
- College of Plant Science, Jilin University, Changchun, China
| | - Fengting Yang
- College of Plant Science, Jilin University, Changchun, China
| | - Xuewei Chen
- School of Agricultural Science, Zhengzhou University, Zhengzhou, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yuntong Lv
- College of Plant Science, Jilin University, Changchun, China
| | - Jianyi Li
- College of Plant Science, Jilin University, Changchun, China
| | - Yiou Pan
- College of Plant Science, Jilin University, Changchun, China
| | - Qingli Shang
- College of Plant Science, Jilin University, Changchun, China
| |
Collapse
|
9
|
Age- and Diet-Dependent Changes in Hepatic Lipidomic Profiles of Phospholipids in Male Mice: Age Acceleration in Cyp2b-Null Mice. J Lipids 2022; 2022:7122738. [PMID: 35391786 PMCID: PMC8983274 DOI: 10.1155/2022/7122738] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/03/2022] [Indexed: 11/17/2022] Open
Abstract
Increases in traditional serum lipid profiles are associated with obesity, cancer, and cardiovascular disease. Recent lipidomic analysis has indicated changes in serum lipidome profiles, especially in regard to specific phosphatidylcholines, associated with obesity. However, little work has evaluated murine hepatic liver lipidomic profiles nor compared these profiles across age, high-fat diet, or specific genotypes, in this case the lack of hepatic Cyp2b enzymes. In this study, the effects of age (9 months old), high-fat diet (4.5 months old), and the loss of three primarily hepatic xeno- and endobiotic metabolizing cytochrome P450 (Cyp) enzymes, Cyp2b9, Cyp2b10, and Cyp2b13 (Cyp2b-null mice), on the male murine hepatic lipidome were compared. Hierarchical clustering and principal component analysis show that age perturbs hepatic phospholipid profiles and serum lipid markers the most compared to young mice, followed by a high-fat diet and then loss of Cyp2b. Several lipid biomarkers such as PC/PE ratios, PE 38 : 6, and LPC concentrations indicate greater potential for NAFLD and hypertension with mixed effects in Cyp2b-null mice(less NAFLD and greater hypertension-associated markers). Lipid profiles from older mice contain greater total and n-6 fatty acids than normal diet (ND)-fed young mice; however, surprisingly, young Cyp2b-null mice contain high n-6 : n-3 ratios. Overall, the lack of Cyp2b typically enhanced adverse physiological parameters observed in the older (9 mo) mice with increased weight gain combined with a deteriorating cholesterol profile, but not necessarily all phospholipid profiles were adversely perturbed.
Collapse
|
10
|
Koga T, Peters JM. Targeting Peroxisome Proliferator-Activated Receptor-β/δ (PPARβ/δ) for the Treatment or Prevention of Alcoholic Liver Disease. Biol Pharm Bull 2021; 44:1598-1606. [PMID: 34719638 DOI: 10.1248/bpb.b21-00486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Excessive, chronic alcohol consumption can lead to alcoholic liver disease. The etiology of alcoholic liver disease is multifactorial and is influenced by alterations in gene expression and changes in fatty acid metabolism, oxidative stress, and insulin resistance. These events can lead to steatosis, fibrosis, and eventually to cirrhosis and liver cancer. Many of these functions are regulated by peroxisome proliferator-activated receptors (PPARs). Thus, it is not surprising that PPARs can modulate the mechanisms that cause alcoholic liver disease. While the roles of PPARα and PPARγ are clearer, the role of PPARβ/δ in alcoholic liver disease requires further clarification. This review summarizes the current understanding based on recent studies that indicate that PPARβ/δ can likely be targeted for the treatment and/or the prevention of alcoholic liver disease.
Collapse
Affiliation(s)
- Takayuki Koga
- Laboratory of Hygienic Chemistry, Department of Health Science and Hygiene, Daiichi University of Pharmacy
| | - Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and the Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University
| |
Collapse
|
11
|
Hamilton MC, Heintz MM, Pfohl M, Marques E, Ford L, Slitt AL, Baldwin WS. Increased toxicity and retention of perflourooctane sulfonate (PFOS) in humanized CYP2B6-Transgenic mice compared to Cyp2b-null mice is relieved by a high-fat diet (HFD). Food Chem Toxicol 2021; 152:112175. [PMID: 33838175 PMCID: PMC8154739 DOI: 10.1016/j.fct.2021.112175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 01/11/2023]
Abstract
PFOS is a persistent, fluorosurfactant used in multiple products. Murine Cyp2b's are induced by PFOS and high-fat diets (HFD) and therefore we hypothesized that human CYP2B6 may alleviate PFOS-induced steatosis. Cyp2b-null and hCYP2B6-Tg mice were treated with 0, 1, or 10 mg/kg/day PFOS by oral gavage for 21-days while provided a chow diet (ND) or HFD. Similar to murine Cyp2b10, CYP2B6 is inducible by PFOS. Furthermore, three ND-fed hCYP2B6-Tg females treated with 10 mg/kg/day PFOS died during the exposure period; neither Cyp2b-null nor HFD-fed mice died. hCYP2B6-Tg mice retained more PFOS in serum and liver than Cyp2b-null mice presumably causing the observed toxicity. In contrast, serum PFOS retention was reduced in the HFD-fed hCYP2B6-Tg mice; the opposite trend observed in HFD-fed Cyp2b-null mice. Hepatotoxicity biomarkers, ALT and ALP, were higher in PFOS-treated mice and repressed by a HFD. However, PFOS combined with a HFD exacerbated steatosis in all mice, especially in the hCYP2B6-Tg mice with significant disruption of key lipid metabolism genes such as Srebp1, Pparg, and Hmgcr. In conclusion, CYP2B6 is induced by PFOS but does not alleviate PFOS toxicity presumably due to increased retention. CYP2B6 protects from PFOS-mediated steatosis in ND-fed mice, but increases steatosis when co-treated with a HFD.
Collapse
Affiliation(s)
- Matthew C Hamilton
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA
| | - Melissa M Heintz
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA
| | - Marisa Pfohl
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Emily Marques
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Lucie Ford
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - Angela L Slitt
- College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA
| | - William S Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
12
|
Russell LE, Zhou Y, Almousa AA, Sodhi JK, Nwabufo CK, Lauschke VM. Pharmacogenomics in the era of next generation sequencing - from byte to bedside. Drug Metab Rev 2021; 53:253-278. [PMID: 33820459 DOI: 10.1080/03602532.2021.1909613] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pharmacogenetic research has resulted in the identification of a multitude of genetic variants that impact drug response or toxicity. These polymorphisms are mostly common and have been included as actionable information in the labels of numerous drugs. In addition to common variants, recent advances in Next Generation Sequencing (NGS) technologies have resulted in the identification of a plethora of rare and population-specific pharmacogenetic variations with unclear functional consequences that are not accessible by conventional forward genetics strategies. In this review, we discuss how comprehensive sequencing information can be translated into personalized pharmacogenomic advice in the age of NGS. Specifically, we provide an update of the functional impacts of rare pharmacogenetic variability and how this information can be leveraged to improve pharmacogenetic guidance. Furthermore, we critically discuss the current status of implementation of pharmacogenetic testing across drug development and layers of care. We identify major gaps and provide perspectives on how these can be minimized to optimize the utilization of NGS data for personalized clinical decision-support.
Collapse
Affiliation(s)
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Ahmed A Almousa
- Department of Pharmacy, London Health Sciences Center, Victoria Hospital, London, ON, Canada
| | - Jasleen K Sodhi
- Department of Bioengineering and Therapeutic Sciences, Schools of Pharmacy and Medicine, University of California San Francisco, San Francisco, CA, USA.,Department of Drug Metabolism and Pharmacokinetics, Plexxikon, Inc., Berkeley, CA, USA
| | | | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
Greene MA, Klotz JL, Goodman JP, May JB, Harlow BE, Baldwin WS, Strickland JR, Britt JL, Schrick FN, Duckett SK. Evaluation of oral citrulline administration as a mitigation strategy for fescue toxicosis in sheep. Transl Anim Sci 2020; 4:txaa197. [PMID: 33269340 PMCID: PMC7684870 DOI: 10.1093/tas/txaa197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/23/2020] [Indexed: 01/13/2023] Open
Abstract
Gestating ewes consuming ergot alkaloids, from endophyte-infected (E+) tall fescue seed, suffer from intrauterine growth restriction and produce smaller lambs. Arginine (Arg) supplementation has been shown to increase birth weight and oral citrulline (Cit) administration is reported to increase arginine concentrations. Two experiments were conducted to: 1) evaluate if oral supplementation with Cit or water, to ewes consuming E+ fescue seed, increases lamb birth weight and 2) determine the effectiveness of Cit and citrulline:malate as an oral drench and elevating circulating levels of Cit to determine levels and dose frequency. In experiment 1, gestating Suffolk ewes (n = 10) were assigned to one of two treatments [oral drench of citrulline-malate 2:1 (CITM; 81 mg/kg/d of citrulline) or water (TOX)] to start on d 86 of gestation and continued until parturition. Ewes on CITM treatment had decreased (P < 0.05) plasma Arg and Cit concentrations during gestation. At birth, lambs from CITM ewes had reduced (P < 0.05) crude fat and total fat but did not differ (P > 0.05) in birth weight from lambs born to TOX ewes. In experiment 2, nonpregnant Suffolk ewes (n = 3) were assigned to either oral citrulline (CIT; 81 mg/kg/d), citrulline-malate 2:1 (CITM; 81 mg/kg/d of citrulline), or water (CON) drench in a Latin Square design for a treatment period of 4 d with a washout period of 3 d. On d 4, blood samples were collected at 0, 0.5, 1, 2, 3, 4, 6, 8, 10, 12, and 18 h post drench. Oral drenching of CIT and CITM increased (P < 0.0001) Cit concentrations within 2 h and levels remained elevated for 6 h. Apparent half-life of elimination for CIT and CITM were 8.484 and 10.392 h, respectively. Our results show that lamb birth weight was not altered with a single oral drench of citrulline-malate; however, lamb body composition was altered. The level and frequency of citrulline dosing may need to be greater in order to observe consistent elevation of Cit/Arg concentrations to determine its effectiveness in mitigating fescue toxicosis.
Collapse
Affiliation(s)
- Maslyn A Greene
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - James L Klotz
- USDA-ARS, Forage Production Research Unit, Lexington, KY
| | - Jack P Goodman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY
| | - John B May
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY
| | | | | | - James R Strickland
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - Jessica L Britt
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| | - F Neal Schrick
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Susan K Duckett
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC
| |
Collapse
|
14
|
Dietary Erythrodiol Modifies Hepatic Transcriptome in Mice in a Sex and Dose-Dependent Way. Int J Mol Sci 2020; 21:ijms21197331. [PMID: 33020388 PMCID: PMC7582860 DOI: 10.3390/ijms21197331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 01/15/2023] Open
Abstract
Erythrodiol is a terpenic compound found in a large number of plants. To test the hypotheses that its long-term administration may influence hepatic transcriptome and this could be influenced by the presence of APOA1-containing high-density lipoproteins (HDL), Western diets containing 0.01% of erythrodiol (10 mg/kg dose) were provided to Apoe- and Apoa1-deficient mice. Hepatic RNA-sequencing was carried out in male Apoe-deficient mice fed purified Western diets differing in the erythrodiol content. The administration of this compound significantly up- regulated 68 and down-regulated 124 genes at the level of 2-fold change. These genes belonged to detoxification processes, protein metabolism and nucleic acid related metabolites. Gene expression changes of 21 selected transcripts were verified by RT-qPCR. Ccl19-ps2, Cyp2b10, Rbm14-rbm4, Sec61g, Tmem81, Prtn3, Amy2a5, Cyp2b9 and Mup1 showed significant changes by erythrodiol administration. When Cyp2b10, Dmbt1, Cyp2b13, Prtn3 and Cyp2b9 were analyzed in female Apoe-deficient mice, no change was observed. Likewise, no significant variation was observed in Apoa1- or in Apoe-deficient mice receiving doses ranging from 0.5 to 5 mg/kg erythrodiol. Our results give evidence that erythrodiol exerts a hepatic transcriptional role, but this is selective in terms of sex and requires a threshold dose. Furthermore, it requires an APOA1-containing HDL.
Collapse
|
15
|
Li F, MacKenzie KR, Jain P, Santini C, Young DW, Matzuk MM. Metabolism of JQ1, an inhibitor of bromodomain and extra terminal bromodomain proteins, in human and mouse liver microsomes†. Biol Reprod 2020; 103:427-436. [PMID: 32285106 PMCID: PMC7401416 DOI: 10.1093/biolre/ioaa043] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/30/2020] [Accepted: 04/09/2020] [Indexed: 12/14/2022] Open
Abstract
JQ1 is a small-molecule inhibitor of the bromodomain and extra terminal (BET) protein family that potently inhibits the bromodomain testis-specific protein (BRDT), which is essential for spermatogenesis. JQ1 treatment produces a reversible contraceptive effect by targeting the activity of BRDT in mouse male germ cells, validating BRDT as a male contraceptive target. Although JQ1 possesses favourable physical properties, it exhibits a short half-life. Because the details of xenobiotic metabolism play important roles in the optimization of drug candidates and in determining the role of metabolism in drug efficacy, we investigated the metabolism of JQ1 in human and mouse liver microsomes. We present the first comprehensive view of JQ1 metabolism in liver microsomes, distinguishing nine JQ1 metabolites, including three monohydroxylated, one de-tert-butylated, two dihydroxylated, one monohydroxylated/dehydrogenated, one monohydroxylated-de-tert-butylated and one dihydroxylated/dehydrogenated variant of JQ1. The dominant metabolite (M1) in both human and mouse liver microsomes is monohydroxylated on the fused three-ring core. Using recombinant cytochrome P450 (CYP) enzymes, chemical inhibitors and the liver S9 fraction of Cyp3a-null mice, we identify enzymes that contribute to the formation of these metabolites. Cytochrome P450 family 3 subfamily A member 4 (CYP3A4) is the main contributor to the production of JQ1 metabolites in vitro, and the CYP3A4/5 inhibitor ketoconazole strongly inhibits JQ1 metabolism in both human and mouse liver microsomes. Our findings suggest that JQ1 half-life and efficacy might be improved in vivo by co-administration of a selective CYP inhibitor, thereby impacting the use of JQ1 as a probe for BRDT activity in spermatogenesis and as a probe or therapeutic in other systems.
Collapse
Affiliation(s)
- Feng Li
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.,NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine Houston, TX, USA
| | - Kevin R MacKenzie
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA.,NMR and Drug Metabolism Core, Advanced Technology Cores, Baylor College of Medicine Houston, TX, USA
| | - Prashi Jain
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Conrad Santini
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Damian W Young
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Martin M Matzuk
- Center for Drug Discovery, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Heintz MM, McRee R, Kumar R, Baldwin WS. Gender differences in diet-induced steatotic disease in Cyp2b-null mice. PLoS One 2020; 15:e0229896. [PMID: 32155178 PMCID: PMC7064244 DOI: 10.1371/journal.pone.0229896] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/16/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease; however, progression to nonalcoholic steatohepatitis (NASH) is associated with most adverse outcomes. CYP2B metabolizes multiple xeno- and endobiotics, and male Cyp2b-null mice are diet-induced obese (DIO) with increased NAFLD. However, the DIO study was not performed long enough to assess progression to NASH. Therefore, to assess the role of Cyp2b in fatty liver disease progression from NAFLD to NASH, we treated wildtype (WT) and Cyp2b-null mice with a normal diet (ND) or choline-deficient, L-amino acid-defined high fat diet (CDAHFD) for 8 weeks and determined metabolic and molecular changes. CDAHFD-fed WT female mice gained more weight and had greater liver and white adipose tissue mass than their Cyp2b-null counterparts; males experienced diet-induced weight loss regardless of genotype. Serum biomarkers of liver injury increased in both CDAHFD-fed female and male mice; however CDAHFD-fed Cyp2b-null females exhibited significantly lower serum ALT, AST, and ASP concentrations compared to WT mice, indicating Cyp2b-null females were protected from liver injury. In both genders, hierarchical clustering of RNA-seq data demonstrates several gene ontologies responded differently in CDAHFD-fed Cyp2b-null mice compared to WT mice (lipid metabolism > fibrosis > inflammation). Oil Red O staining and direct triglycerides measurements confirmed that CDAHFD-fed Cyp2b-null females were protected from NAFLD. CDAHFD-fed Cyp2b-null mice showed equivocal changes in fibrosis with transcriptomic and serum markers suggesting less inflammation due to glucocorticoid-mediated repression of immune responses. In contrast to females, CDAHFD-fed Cyp2b-null males had higher triglyceride levels. Results indicate that female Cyp2b-null mice are protected from NAFLD while male Cyp2b-null mice are more susceptible to NAFLD, with few significant changes in NASH development. This study confirms that increased NAFLD development does not necessarily lead to progressive NASH. Furthermore, it indicates a role for Cyp2b in fatty liver disease that differs based on gender.
Collapse
Affiliation(s)
- Melissa M. Heintz
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States of America
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - Rebecca McRee
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - Ramiya Kumar
- Biological Sciences, Clemson University, Clemson, SC, United States of America
| | - William S. Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, United States of America
- Biological Sciences, Clemson University, Clemson, SC, United States of America
- * E-mail:
| |
Collapse
|
17
|
Morales-Prieto N, Huertas-Abril PV, López de Lerma N, Pacheco IL, Pérez J, Peinado R, Abril N. Pedro Ximenez sun-dried grape must: a dietary supplement for a healthy longevity. Food Funct 2020; 11:4387-4402. [DOI: 10.1039/d0fo00204f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Sun-dried Pedro Ximénez white grapes must (PXM) is a potent antioxidant that regularizes apoptosis, proliferation, and regeneration of the structure and the function of aged mice liver. PXM consumption contributes to a healthy aging process.
Collapse
Affiliation(s)
- Noelia Morales-Prieto
- Departamento de Bioquímica y Biología Molecular
- Campus de Excelencia Internacional Agroalimentario CeiA3
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - Paula V. Huertas-Abril
- Departamento de Bioquímica y Biología Molecular
- Campus de Excelencia Internacional Agroalimentario CeiA3
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| | | | - Isabel. L. Pacheco
- Departamento de Anatomía y Anatomía Patológica Comparadas. Facultad de Veterinaria. Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - José Pérez
- Departamento de Anatomía y Anatomía Patológica Comparadas. Facultad de Veterinaria. Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - Rafael Peinado
- Departamento de Química Agrícola
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| | - Nieves Abril
- Departamento de Bioquímica y Biología Molecular
- Campus de Excelencia Internacional Agroalimentario CeiA3
- Universidad de Córdoba
- 14071 Córdoba
- Spain
| |
Collapse
|
18
|
Rooney JP, Oshida K, Kumar R, Baldwin WS, Corton JC. Chemical Activation of the Constitutive Androstane Receptor Leads to Activation of Oxidant-Induced Nrf2. Toxicol Sci 2019; 167:172-189. [PMID: 30203046 DOI: 10.1093/toxsci/kfy231] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Exposure to environmentally relevant chemicals that activate the xenobiotic receptors aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and peroxisome proliferator-activated receptor alpha (PPARα) in rodent test systems often leads to increases in oxidative stress (OS) that contributes to liver cancer induction. We hypothesized that activation of the oxidant-induced transcription factor Nrf2 could be used as a surrogate endpoint for increases in OS. We examined the relationships between activation of xenobiotic receptors and Nrf2 using previously characterized gene expression biomarkers that accurately predict modulation. Using a correlation approach (Running Fisher Test), the biomarkers were compared with microarray profiles in a mouse liver gene expression compendium. Out of the 163 chemicals examined, 47% from 53 studies activated Nrf2. We found consistent coupling between CAR and Nrf2 activation. Out of the 41 chemicals from 32 studies that activated CAR, 90% also activated Nrf2. CAR was activated earlier and at lower doses than Nrf2, indicating CAR activation preceded Nrf2 activation. Nrf2 activation by 2 CAR activators was abolished in CAR-null mice. We hypothesized that Nrf2 is activated by reactive oxygen species from the increased activity of enzymes encoded by Cyp2b family members. However, Nrf2 was similarly activated in the livers of both TCPOBOP-treated wild-type and Cyp2b9/10/13-null mice. This study provides evidence that Nrf2 activation (1) often occurs after exposure to xenobiotic chemicals, (2) is tightly linked to activation of CAR, and (3) does not require induction of 3 Cyp2b genes secondary to CAR activation.
Collapse
Affiliation(s)
- John P Rooney
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711.,Oak Ridge Institute for Science and Education (ORISE) participant at the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina
| | - Keiyu Oshida
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711.,Toray Industries, Inc, Kanagawa, Japan
| | - Ramiya Kumar
- Environmental Toxicology Program and Biological Sciences Department, Clemson University, Clemson, South Carolina 29634
| | - William S Baldwin
- Environmental Toxicology Program and Biological Sciences Department, Clemson University, Clemson, South Carolina 29634
| | - J Christopher Corton
- National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina 27711
| |
Collapse
|
19
|
Baldwin WS. Phase 0 of the Xenobiotic Response: Nuclear Receptors and Other Transcription Factors as a First Step in Protection from Xenobiotics. NUCLEAR RECEPTOR RESEARCH 2019; 6:101447. [PMID: 31815118 PMCID: PMC6897393 DOI: 10.32527/2019/101447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This mini-review examines the crucial importance of transcription factors as a first line of defense in the detoxication of xenobiotics. Key transcription factors that recognize xenobiotics or xenobiotic-induced stress such as reactive oxygen species (ROS), include AhR, PXR, CAR, MTF, Nrf2, NF-κB, and AP-1. These transcription factors constitute a significant portion of the pathways induced by toxicants as they regulate phase I-III detoxication enzymes and transporters as well as other protective proteins such as heat shock proteins, chaperones, and anti-oxidants. Because they are often the first line of defense and induce phase I-III metabolism, could these transcription factors be considered the phase 0 of xenobiotic response?
Collapse
Affiliation(s)
- William S Baldwin
- Clemson University, Biological Sciences/Environmental Toxicology, 132 Long Hall, Clemson, SC 29634
| |
Collapse
|
20
|
Li Y, Meng Q, Yang M, Liu D, Hou X, Tang L, Wang X, Lyu Y, Chen X, Liu K, Yu AM, Zuo Z, Bi H. Current trends in drug metabolism and pharmacokinetics. Acta Pharm Sin B 2019; 9:1113-1144. [PMID: 31867160 PMCID: PMC6900561 DOI: 10.1016/j.apsb.2019.10.001] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022] Open
Abstract
Pharmacokinetics (PK) is the study of the absorption, distribution, metabolism, and excretion (ADME) processes of a drug. Understanding PK properties is essential for drug development and precision medication. In this review we provided an overview of recent research on PK with focus on the following aspects: (1) an update on drug-metabolizing enzymes and transporters in the determination of PK, as well as advances in xenobiotic receptors and noncoding RNAs (ncRNAs) in the modulation of PK, providing new understanding of the transcriptional and posttranscriptional regulatory mechanisms that result in inter-individual variations in pharmacotherapy; (2) current status and trends in assessing drug-drug interactions, especially interactions between drugs and herbs, between drugs and therapeutic biologics, and microbiota-mediated interactions; (3) advances in understanding the effects of diseases on PK, particularly changes in metabolizing enzymes and transporters with disease progression; (4) trends in mathematical modeling including physiologically-based PK modeling and novel animal models such as CRISPR/Cas9-based animal models for DMPK studies; (5) emerging non-classical xenobiotic metabolic pathways and the involvement of novel metabolic enzymes, especially non-P450s. Existing challenges and perspectives on future directions are discussed, and may stimulate the development of new research models, technologies, and strategies towards the development of better drugs and improved clinical practice.
Collapse
Affiliation(s)
- Yuhua Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
- The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Mengbi Yang
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Dongyang Liu
- Drug Clinical Trial Center, Peking University Third Hospital, Beijing 100191, China
| | - Xiangyu Hou
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Tang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xin Wang
- School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanfeng Lyu
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoyan Chen
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kexin Liu
- College of Pharmacy, Dalian Medical University, Dalian 116044, China
| | - Ai-Ming Yu
- UC Davis School of Medicine, Sacramento, CA 95817, USA
| | - Zhong Zuo
- School of Pharmacy, the Chinese University of Hong Kong, Hong Kong, China
| | - Huichang Bi
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
21
|
Abu-Toamih Atamni HJ, Kontogianni G, Binenbaum I, Mott R, Himmelbauer H, Lehrach H, Chatziioannou A, Iraqi FA. Hepatic gene expression variations in response to high-fat diet-induced impaired glucose tolerance using RNAseq analysis in collaborative cross mouse population. Mamm Genome 2019; 30:260-275. [PMID: 31650267 DOI: 10.1007/s00335-019-09816-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
Hepatic gene expression is known to differ between healthy and type 2 diabetes conditions. Identifying these variations will provide better knowledge to the development of gene-targeted therapies. The aim of this study is to assess diet-induced hepatic gene expression of susceptible versus resistant CC lines to T2D development. Next-generation RNA-sequencing was performed for 84 livers of diabetic and non-diabetic mice of 41 different CC lines (both sexes) following 12 weeks on high-fat diet (42% fat). Data analysis revealed significant variations of hepatic gene expression in diabetic versus non-diabetic mice with significant sex effect, where 601 genes were differentially expressed (DE) in overall population (males and females), 718 genes in female mice, and 599 genes in male mice. Top prioritized DE candidate genes were Lepr, Ins2, Mb, Ckm, Mrap2, and Ckmt2 for the overall population; for females-only group were Hdc, Serpina12, Socs1, Socs2, and Mb, while for males-only group were Serpine1, Mb, Ren1, Slc4a1, and Atp2a1. Data analysis for sex differences revealed 193 DE genes in health (Top: Lepr, Cav1, Socs2, Abcg2, and Col5a3), and 389 genes DE between diabetic females versus males (Top: Lepr, Clps, Ins2, Cav1, and Mrap2). Furthermore, integrating gene expression results with previously published QTL, we identified significant variants mapped at chromosomes at positions 36-49 Mb, 62-71 Mb, and 79-99 Mb, on chromosomes 9, 11, and 12, respectively. Our findings emphasize the complexity of T2D development and that significantly controlled by host complex genetic factors. As well, we demonstrate the significant sex differences between males and females during health and increasing to extent levels during disease/diabetes. Altogether, opening the venue for further studies targets the discovery of effective sex-specific and personalized preventions and therapies.
Collapse
Affiliation(s)
- H J Abu-Toamih Atamni
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel
| | - G Kontogianni
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece
| | - I Binenbaum
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece.,Department of Biology, University of Patras, Patras, Greece
| | - R Mott
- Department of Genetics, University College of London, London, UK
| | - H Himmelbauer
- Centre for Genomic Regulation (CRG), Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain.,University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - H Lehrach
- Department of Vertebrate Genomics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - A Chatziioannou
- Institute of Biology, Medicinal Chemistry & Biotechnology, National Hellenic Research Foundation, Athens, Greece.,e-NIOS Applications PC, 17671, Kallithea, Greece
| | - Fuad A Iraqi
- Department of Clinical Microbiology and Immunology, Sackler Faculty of Medicine, Tel-Aviv University, Ramat Aviv, 69978, Tel Aviv, Israel.
| |
Collapse
|
22
|
Heintz MM, Kumar R, Rutledge MM, Baldwin WS. Cyp2b-null male mice are susceptible to diet-induced obesity and perturbations in lipid homeostasis. J Nutr Biochem 2019; 70:125-137. [PMID: 31202118 DOI: 10.1016/j.jnutbio.2019.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/26/2019] [Accepted: 05/08/2019] [Indexed: 12/12/2022]
Abstract
Obesity is an endemic problem in the United States and elsewhere, and data indicate that in addition to overconsumption, exposure to specific chemicals enhances obesity. CYP2B metabolizes multiple endo- and xenobiotics, and recent data suggests that repression of Cyp2b activity increases dyslipidemia and age-onset obesity, especially in males. To investigate the role played by Cyp2b in lipid homeostasis and obesity, we treated wildtype and Cyp2b-null mice with a normal (ND) or 60% high-fat diet (HFD) for 10 weeks and determined metabolic and molecular changes. Male HFD-fed Cyp2b-null mice weigh 15% more than HFD-fed wildtype mice, primarily due to an increase in white adipose tissue (WAT); however, Cyp2b-null female mice did not demonstrate greater body mass or WAT. Serum parameters indicate increased ketosis, leptin and cholesterol in HFD-fed Cyp2b-null male mice compared to HFD-fed wildtype mice. Liver triglycerides and liver:serum triglyceride ratios were higher than their similarly treated wildtype counterparts in Cyp2b-null male mice, indicating a role for Cyp2b in fatty acid metabolism regardless of diet. Furthermore, RNAseq demonstrates that hepatic gene expression in ND-fed Cyp2b-null male mice is similar to HFD-fed WT male mice, suggestive of fatty liver disease progression and a role for Cyp2b in lipid homeostasis. Females did not show as demonstrative changes in liver health, and significantly fewer changes in gene expression, as well as gene expression associated with liver disease. Overall our data indicates that the repression or inhibition of CYP2B may exacerbate metabolic disorders and cause obesity by perturbing fatty acid metabolism, especially in males.
Collapse
Affiliation(s)
- Melissa M Heintz
- Environmental Toxicology Program, Clemson University, Clemson, SC 29634
| | - Ramiya Kumar
- Biological Sciences, Clemson University, Clemson, SC 29634
| | | | - William S Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC 29634; Biological Sciences, Clemson University, Clemson, SC 29634.
| |
Collapse
|
23
|
Zhang X, Dong J, Wu H, Zhang H, Zhang J, Ma E. Knockdown of cytochrome P450 CYP6 family genes increases susceptibility to carbamates and pyrethroids in the migratory locust, Locusta migratoria. CHEMOSPHERE 2019; 223:48-57. [PMID: 30763915 DOI: 10.1016/j.chemosphere.2019.02.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/02/2019] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Insect cytochrome P450 monooxygenase (CYP) plays a key role in the detoxification of insecticides. In this study, four cDNA sequences of CYP6 genes were identified and characterized. Transcription levels of LmCYP6HC1 and LmCYP6HCL1 were high in first- and fourth-instar nymph stages, respectively. LmCYP6HN1 was primarily expressed in the egg to third-instar nymph stages, while LmCYP6HQ1 was predominantly expressed in the stages from fourth-instar nymph to the adult. The four CYP6 genes were predominantly distributed in the antenna, brain, fat body, integument, and hemolymph. Piperonyl butoxide exposure inhibited total CYP activity and synergized the toxicity of carbamates and pyrethroids. Knockdown of LmCYP6HL1, LmCYP6HN1, and LmCYP6HQ1 increased nymph mortality following exposure to carbaryl, and silencing of LmCYP6HC1, LmCYP6HL1, LmCYP6HN1, and LmCYP6HQ1 comprehensively raised nymph mortality following exposure to fluvalinate. Knockdown of LmCYP6HL1 or LmCYP6HN1 significantly increased nymph mortality following exposure to cypermethrin or fenvalerate, respectively. These results suggest that the CYP6 family plays a key role in determining the susceptibility of Locusta migratoria to both carbamates and pyrethroids.
Collapse
Affiliation(s)
- Xueyao Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Jie Dong
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Haihua Wu
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China
| | - Haihan Zhang
- Key Laboratory of Northwest Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Jianzhen Zhang
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China.
| | - Enbo Ma
- Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi, China.
| |
Collapse
|
24
|
Han S, Ray JW, Pathak P, Sweet DR, Zhang R, Gao H, Jain N, Koritzinsky EH, Matoba K, Xu W, Chan ER, Simon DI, Jain MK. KLF15 regulates endobiotic and xenobiotic metabolism. Nat Metab 2019; 1:422-430. [PMID: 32694878 DOI: 10.1038/s42255-019-0054-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 03/08/2019] [Indexed: 01/06/2023]
Abstract
Hepatic metabolism and elimination of endobiotics (for example, steroids, bile acids) and xenobiotics (for example, drugs, toxins) is essential for health. While the enzymatic (termed phase I-II) and transport machinery (termed phase III) controlling endobiotic and xenobiotic metabolism (EXM) is known, understanding of molecular nodal points that coordinate EXM function in physiology and disease remains incomplete. Here we show that the transcription factor Kruppel-like factor 15 (KLF15) regulates all three phases of the EXM system by direct and indirect pathways. Unbiased transcriptomic analyses coupled with validation studies in cells, human tissues, and animals, support direct transcriptional control of the EXM machinery by KLF15. Liver-specific deficiency of KLF15 (Li-KO) results in altered expression of numerous phase I-III targets, and renders animals resistant to the pathologic effects of bile acid and acetaminophen toxicity. Furthermore, Li-KO mice demonstrate enhanced degradation and elimination of endogenous steroid hormones, such as testosterone and glucocorticoid, resulting in reduced male fertility and blood glucose levels, respectively. Viral reconstitution of hepatic KLF15 expression in Li-KO mice reverses these phenotypes. Our observations identify a previously unappreciated transcriptional pathway regulating metabolism and elimination of endobiotics and xenobiotics.
Collapse
Affiliation(s)
- Shuxin Han
- Case Cardiovascular Research Institute Case Western Reserve University, Harrington Heart and Vascular Institute University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| | - Jonathan W Ray
- Department of Physiology, Case Western Reserve University, Cleveland, OH, USA
- Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Preeti Pathak
- Case Cardiovascular Research Institute Case Western Reserve University, Harrington Heart and Vascular Institute University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - David R Sweet
- Case Cardiovascular Research Institute Case Western Reserve University, Harrington Heart and Vascular Institute University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Rongli Zhang
- Case Cardiovascular Research Institute Case Western Reserve University, Harrington Heart and Vascular Institute University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Institute for Transformative Molecular Medicine Case Western Reserve University, Harrington Heart and Vascular Institute University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Huiyun Gao
- Case Cardiovascular Research Institute Case Western Reserve University, Harrington Heart and Vascular Institute University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Nisha Jain
- Case Cardiovascular Research Institute Case Western Reserve University, Harrington Heart and Vascular Institute University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Erik H Koritzinsky
- Case Cardiovascular Research Institute Case Western Reserve University, Harrington Heart and Vascular Institute University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Keiichiro Matoba
- Case Cardiovascular Research Institute Case Western Reserve University, Harrington Heart and Vascular Institute University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Weixiong Xu
- Cleveland School of Science and Medicine at John Hay Campus, Cleveland, OH, USA
- College of Arts and Sciences, Ohio State University, Columbus, OH, USA
| | - E Ricky Chan
- Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel I Simon
- Case Cardiovascular Research Institute Case Western Reserve University, Harrington Heart and Vascular Institute University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mukesh K Jain
- Case Cardiovascular Research Institute Case Western Reserve University, Harrington Heart and Vascular Institute University Hospitals Cleveland Medical Center, Cleveland, OH, USA.
| |
Collapse
|
25
|
Damiri B, Baldwin WS. Cyp2b-Knockdown Mice Poorly Metabolize Corn Oil and Are Age-Dependent Obese. Lipids 2018; 53:871-884. [PMID: 30421529 DOI: 10.1002/lipd.12095] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 09/23/2018] [Accepted: 09/24/2018] [Indexed: 01/04/2023]
Abstract
We previously made a RNAi-based cytochrome P450 2b (Cyp2b)-knockdown (Cyp2b-KD) mouse to determine the in vivo role of the Cyp2b subfamily in xenobiotic detoxification. Further studies reported here indicate a role for Cyp2b in unsaturated fatty-acid (UFA) metabolism and in turn obesity. Mice were treated intraperitoneally (i.p.) with 100 μL corn oil as a carrier or the potent Cyp2b-inducer 3,3',5,5'-Tetrachloro-1,4-bis(pyridyloxy)benzene (TCPOBOP (TC)) dissolved in corn oil. Surprisingly, female Cyp2b-KD mice but not male mice showed increased liver lipid accumulation. Male Cyp2b-KD mice had higher serum triacylglycerols, cholesterol, very low-density lipoprotein (VLDL), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) than wildtype (WT) mice; females had higher cholesterol, LDL, and HDL. Thus, Cyp2b-KD mice are unable to clear a high bolus dose of corn oil, potentially because the Cyp2b-KD mice were unable to metabolize the UFA in the corn oil. Therefore, WT and Cyp2b-KD mice were housed for 35 weeks and necropsies performed to test whether Cyp2b-KD mice develop age onset obesity. Cyp2b-KD mice exhibited a significant increase in body weight caused by an increase in white adipose tissue deposition relative to WT mice. Serum cholesterol, triacylglycerol, LDL, and VLDL were significantly greater in 35-week-old Cyp2b-KD males compared to WT males; only serum triacylglycerol and LDL were higher in females. In conclusion, changes in Cyp2b expression led to perturbation in lipid metabolism and depuration in Cyp2b-KD mice. This suggests that Cyp2b is more than a detoxification enzyme, but also involved in the metabolism of UFA, as Cyp2b-KD mice have increased the body weight, fat deposition, and serum lipids.
Collapse
Affiliation(s)
- Basma Damiri
- Medicine and Health Sciences Faculty, Drugs and Toxicology Division, An-Najah National University, Omar Ibn Al-Khattab St., PO Box 7, Nablus, West Bank, Palestinian Territories
| | - William S Baldwin
- Biological Sciences, Clemson University, 132 Long Hall St., Clemson, SC 29634, USA.,Environmental Toxicology Program, 132 Long Hall St., Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
26
|
Karlgren M, Simoff I, Keiser M, Oswald S, Artursson P. CRISPR-Cas9: A New Addition to the Drug Metabolism and Disposition Tool Box. Drug Metab Dispos 2018; 46:1776-1786. [PMID: 30126863 DOI: 10.1124/dmd.118.082842] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 (Cas9), i.e., CRISPR-Cas9, has been extensively used as a gene-editing technology during recent years. Unlike earlier technologies for gene editing or gene knockdown, such as zinc finger nucleases and RNA interference, CRISPR-Cas9 is comparably easy to use, affordable, and versatile. Recently, CRISPR-Cas9 has been applied in studies of drug absorption, distribution, metabolism, and excretion (ADME) and for ADME model generation. To date, about 50 papers have been published describing in vitro or in vivo CRISPR-Cas9 gene editing of ADME and ADME-related genes. Twenty of these papers describe gene editing of clinically relevant genes, such as ATP-binding cassette drug transporters and cytochrome P450 drug-metabolizing enzymes. With CRISPR-Cas9, the ADME tool box has been substantially expanded. This new technology allows us to develop better and more predictive in vitro and in vivo ADME models and map previously underexplored ADME genes and gene families. In this mini-review, we give an overview of the CRISPR-Cas9 technology and summarize recent applications of CRISPR-Cas9 within the ADME field. We also speculate about future applications of CRISPR-Cas9 in ADME research.
Collapse
Affiliation(s)
- M Karlgren
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - I Simoff
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - M Keiser
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - S Oswald
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| | - P Artursson
- Department of Pharmacy (M.Ka., P.A.), Uppsala University Drug Optimization and Pharmaceutical Profiling Platform, Department of Pharmacy (I.S.), and Science for Life Laboratory (P.A.), Uppsala University, Uppsala, Sweden; and Department of Clinical Pharmacology, Center of Drug Absorption and Transport, University Medicine of Greifswald, Germany (M.Ke., S.O.)
| |
Collapse
|
27
|
Feng P, Zhao L, Guo F, Zhang B, Fang L, Zhan G, Xu X, Fang Q, Liang Z, Li B. The enhancement of cardiotoxicity that results from inhibiton of CYP 3A4 activity and hERG channel by berberine in combination with statins. Chem Biol Interact 2018; 293:115-123. [PMID: 30086269 DOI: 10.1016/j.cbi.2018.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/25/2018] [Accepted: 07/23/2018] [Indexed: 11/24/2022]
Abstract
Metabolism of most endogenous and exogenous compounds is usually produced by the oxidation of cytochrome P450. Due to drug-drug interactions caused by the inhibition or induction of cytochrome P450 enzymes, changes in drug metabolism are the major causes of drug toxicity, CYP3A4 is one of the key isozymes, and involved in the metabolism of over 60% of clinical drugs. Human ether-a-go-go related genes (hERG) potassium channel is the most important target of many drugs and plays an important role in cardiac repolarization. Blockade of this channel may lead to long QT syndrome (LQTS), leading to sudden cardiac death. Therefore, it is necessary to evaluate the inhibitory properties of drugs on cytochrome P450 enzymes and hERG channel. We primarily evaluate the safety of berberine in combination with statins. Based on these findings, berberine in combination with statins has a greater inhibitory effect on CYP3A4 activity and CYP3A4 protein and mRNA expression than berberine alone. Simvastatin and atorvastatin reduce hERG current by accelerating channel inactivation. At the same time, the inhibitory effect of berberine and statin combination increased on hERG current by reducing the time constant of inactivation than the single drug alone. These results indicate that berberine in combination with statins can increase cardiotoxicity by inhibiting CYP3A4 and hERG channel.
Collapse
Affiliation(s)
- Panfeng Feng
- Department of Pharmacology, Harbin Medical University, Harbin, 150086, China
| | - Lei Zhao
- Department of Pharmacology, Harbin Medical University, Harbin, 150086, China
| | - Fengfeng Guo
- Department of Pharmacology, Harbin Medical University, Harbin, 150086, China
| | - Bo Zhang
- Department of Pharmacology, Harbin Medical University, Harbin, 150086, China
| | - Li Fang
- Department of Pharmacology, Harbin Medical University, Harbin, 150086, China
| | - Ge Zhan
- Department of Pharmacology, Harbin Medical University, Harbin, 150086, China
| | - Xueqi Xu
- Department of Pharmacology, Harbin Medical University, Harbin, 150086, China
| | - Qing Fang
- Department of Pharmacology, Harbin Medical University, Harbin, 150086, China
| | - Zhaoguang Liang
- First Affiliated Hospital of Harbin Medical University, Harbin, 150086, China.
| | - Baoxin Li
- Department of Pharmacology, Harbin Medical University, Harbin, 150086, China.
| |
Collapse
|
28
|
Kumar R, Litoff EJ, Boswell WT, Baldwin WS. High fat diet induced obesity is mitigated in Cyp3a-null female mice. Chem Biol Interact 2018; 289:129-140. [PMID: 29738703 PMCID: PMC6717702 DOI: 10.1016/j.cbi.2018.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 04/16/2018] [Accepted: 05/01/2018] [Indexed: 12/30/2022]
Abstract
Recent studies indicate a role for the constitutive androstane receptor (CAR), pregnane X-receptor (PXR), and hepatic xenobiotic detoxifying CYPs in fatty liver disease or obesity. Therefore, we examined whether Cyp3a-null mice show increased obesity and fatty liver disease following 8-weeks of exposure to a 60% high-fat diet (HFD). Surprisingly, HFD-fed Cyp3a-null females fed a HFD gained 50% less weight than wild-type (WT; B6) females fed a HFD. In contrast, Cyp3a-null males gained more weight than WT males, primarily during the first few weeks of HFD-treatment. Cyp3a-null females also recovered faster than WT females from a glucose tolerance test; males showed no difference in glucose tolerance between the groups. Serum concentrations of the anti-obesity hormone, adiponectin are 60% higher and β-hydroxybutyrate levels are nearly 50% lower in Cyp3a-null females than WT females, in agreement with reduced weight gain, faster glucose response, and reduced ketogenesis. In contrast, Cyp3a-null males have higher liver triglyceride concentrations and lipidomic analysis indicates an increase in phosphatidylinositol, phosphatidylserine and sphingomyelin. None of these changes were observed in females. Last, Pxr, Cyp2b, and IL-6 expression increased in Cyp3a-null females following HFD-treatment. Cyp2b and Fatp1 increased, while Pxr, Cpt1a, Srebp1 and Fasn decreased in Cyp3a-null males following a HFD, indicating compensatory biochemical responses in male (and to a lesser extent) female mice fed a HFD. In conclusion, lack of Cyp3a has a positive effect on acclimation to a HFD in females as it improves weight gain, glucose response and ketosis.
Collapse
Affiliation(s)
- Ramiya Kumar
- Biological Sciences, Clemson University, Clemson, SC 29634, United States
| | - Elizabeth J Litoff
- Biological Sciences, Clemson University, Clemson, SC 29634, United States
| | - W Tyler Boswell
- Biological Sciences, Clemson University, Clemson, SC 29634, United States
| | - William S Baldwin
- Biological Sciences, Clemson University, Clemson, SC 29634, United States; Environmental Toxicology Program, Clemson University, Clemson, SC 29634, United States.
| |
Collapse
|
29
|
Su Y, Chen Z, Yan L, Lian F, You J, Wang X, Tang N. Optimizing combination of liver-enriched transcription factors and nuclear receptors simultaneously favors ammonia and drug metabolism in liver cells. Exp Cell Res 2018; 362:504-514. [PMID: 29253535 DOI: 10.1016/j.yexcr.2017.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/12/2017] [Accepted: 12/14/2017] [Indexed: 12/14/2022]
Abstract
The HepG2 cell line is widely used in studying liver diseases because of its immortalization, but its clinical application is limited by its low expression of the urea synthesis key enzymes and cytochromes P450 (CYPs). On the basis of our previous work, we investigated the transcriptional regulation of arginase 1 (Arg1) and ornithine transcarbamylase (OTC) in HepG2 cells. We also screened for the optimal combination of liver enrichment transcription factors (LETFs) and xenobiotic nuclear receptors that can promote the expression of key urea synthases and five major CYPs in HepG2 cells. Thus, recombinant HepG2 cells were established. Results showed that C/EBPβ, not C/EBPα, could upregulate expression of Arg1 and PGC1α and HNF4α cooperatively regulate the expression of OTC. The two optimal combinations C/EBPβ+HNF4α+HNF6+PXR and C/EBPβ+HNF4α+HNF6+CAR were selected. Compared with the control cells, the recombinant HepG2 cells modified by the two optimal combinations exhibited enhanced ammonia metabolism and CYP enzyme activity. Moreover, the HepG2/(C/EBPβ+HNF4α+HNF6+PXR) cells more strongly reduced ammonia than any other combination tested in this study. The present work indicated that optimizing the combination of transcription factors will simultaneously promote hepatocyte ammonia metabolism and drug metabolism. The recombinant HepG2 liver cell line constructed by the optimal combination provided an improved alternative means for bioartificial liver applications and drug toxicity testing.
Collapse
Affiliation(s)
- Yongfa Su
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhanfei Chen
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Linlin Yan
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Fen Lian
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jianhua You
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaoqian Wang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Nanhong Tang
- Fujian Institute of Hepatobiliary Surgery, Fujian Medical University Union Hospital, Fuzhou, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Research Center for Molecular Medicine, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
30
|
Li L, Zhang QY, Ding X. A CYP2B6-humanized mouse model and its potential applications. Drug Metab Pharmacokinet 2018; 33:2-8. [PMID: 29402634 DOI: 10.1016/j.dmpk.2018.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Accepted: 12/12/2017] [Indexed: 01/03/2023]
Abstract
CYP2B6 is a human microsomal cytochrome P450 enzyme with broad substrate selectivity. CYP2B6 is the only functional member of the human CYP2B gene subfamily, which differs from the situation in rodents, such as mouse, where multiple functional Cyp2b genes are expressed. Recent studies with Cyp2b knockout or knockdown mouse models have yielded insights into the in vivo roles of mouse CYP2B enzymes in drug disposition and xenobiotic toxicity. A CYP2B6-humanized mouse model (CYP2A13/2B6/2F1-transgenic/Cyp2abfgs-null), which expresses human CYP2B6 in the liver, and human CYP2A13 and CYP2F1 in the respiratory tract, but not any of the mouse Cyp2b genes, has also been established. In the CYP2B6-humanized mouse, the CYP2B6 transgene is expressed primarily in the liver, where it was found to be active toward prototype CYP2B6 substrate drugs. The regulatory elements of the CYP2B6 transgene appear to be compatible with mouse nuclear receptors that mediate CYP2B induction. Therefore, the CYP2B6-humanized mouse is a valuable animal model for studying the impact of CYP2B6 expression or induction on drug metabolism, drug efficacy, drug-drug interaction, and drug/xenobiotic toxicity. In this mini-review, we provide a brief background on CYP2B6 and the Cyp2b-knockout and CYP2B6-humanized mice, and discuss the potential applications and limitations of the current models.
Collapse
Affiliation(s)
- Lei Li
- Wadsworth Center, New York State Department of Health, School of Public Health, State University of New York at Albany, NY, 12201, USA
| | - Qing-Yu Zhang
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|