1
|
Tsadaris SA, Komatsu DE, Grubisic V, Ramos RL, Hadjiargyrou M. A GCaMP reporter mouse with chondrocyte specific expression of a green fluorescent calcium indicator. Bone 2024; 188:117234. [PMID: 39147354 PMCID: PMC11392458 DOI: 10.1016/j.bone.2024.117234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
One of the major processes occurring during the healing of a fractured long bone is chondrogenesis, leading to the formation of the soft callus, which subsequently undergoes endochondral ossification and ultimately bridges the fracture site. Thus, understanding the molecular mechanisms of chondrogenesis can enhance our knowledge of the fracture repair process. One such molecular process is calciun (Ca++) signaling, which is known to play a critical role in the development and regeneration of multiple tissues, including bone, in response to external stimuli. Despite the existence of various mouse models for studying Ca++ signaling, none of them were designed to specifically examine the skeletal system or the various musculoskeletal cell types. As such, we generated a genetically engineered mouse model that is specific to cartilage (crossed with Col2a1 Cre mice) to study chondrocytes. Herein, we report on the characterization of this transgenic mouse line using conditional expression of GCaMP6f, a Ca++-indicator protein. Specifically, this mouse line exhibits increased GCaMP6f fluorescence following Ca++ binding in chondrocytes. Using this model, we show real-time Ca++ signaling in embryos, newborn and adult mice, as well as in fracture calluses. Further, robust expression of GCaMP6f in chondrocytes can be easily detected in embryos, neonates, adults, and fracture callus tissue sections. Finally, we also report on Ca++ signaling pathway gene expression, as well as real-time Ca++ transient measurements in fracture callus chondrocytes. Taken together, these mice provide a new experimental tool to study chondrocyte-specific Ca++ signaling during skeletal development and regeneration, as well as various in vitro perturbations.
Collapse
Affiliation(s)
- Sotirios A Tsadaris
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA
| | - David E Komatsu
- Department of Orthopaedics and Rehabilitation, Stony Brook University, Stony Brook, NY, USA
| | - Vladimir Grubisic
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, USA; Center for Biomedical Innovation, College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Raddy L Ramos
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, USA
| | - Michael Hadjiargyrou
- Department of Biological & Chemical Sciences, New York Institute of Technology, Old Westbury, NY, USA.
| |
Collapse
|
2
|
Lewis CM, Hoffmann A, Helmchen F. Linking brain activity across scales with simultaneous opto- and electrophysiology. NEUROPHOTONICS 2024; 11:033403. [PMID: 37662552 PMCID: PMC10472193 DOI: 10.1117/1.nph.11.3.033403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023]
Abstract
The brain enables adaptive behavior via the dynamic coordination of diverse neuronal signals across spatial and temporal scales: from fast action potential patterns in microcircuits to slower patterns of distributed activity in brain-wide networks. Understanding principles of multiscale dynamics requires simultaneous monitoring of signals in multiple, distributed network nodes. Combining optical and electrical recordings of brain activity is promising for collecting data across multiple scales and can reveal aspects of coordinated dynamics invisible to standard, single-modality approaches. We review recent progress in combining opto- and electrophysiology, focusing on mouse studies that shed new light on the function of single neurons by embedding their activity in the context of brain-wide activity patterns. Optical and electrical readouts can be tailored to desired scales to tackle specific questions. For example, fast dynamics in single cells or local populations recorded with multi-electrode arrays can be related to simultaneously acquired optical signals that report activity in specified subpopulations of neurons, in non-neuronal cells, or in neuromodulatory pathways. Conversely, two-photon imaging can be used to densely monitor activity in local circuits while sampling electrical activity in distant brain areas at the same time. The refinement of combined approaches will continue to reveal previously inaccessible and under-appreciated aspects of coordinated brain activity.
Collapse
Affiliation(s)
| | - Adrian Hoffmann
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
| | - Fritjof Helmchen
- University of Zurich, Brain Research Institute, Zurich, Switzerland
- University of Zurich, Neuroscience Center Zurich, Zurich, Switzerland
- University of Zurich, University Research Priority Program, Adaptive Brain Circuits in Development and Learning, Zurich, Switzerland
| |
Collapse
|
3
|
Gilad A. Wide-field imaging in behaving mice as a tool to study cognitive function. NEUROPHOTONICS 2024; 11:033404. [PMID: 38384657 PMCID: PMC10879934 DOI: 10.1117/1.nph.11.3.033404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/23/2024]
Abstract
Cognitive functions are mediated through coordinated and dynamic neuronal responses that involve many different areas across the brain. Therefore, it is of high interest to simultaneously record neuronal activity from as many brain areas as possible while the subject performs a cognitive behavioral task. One of the emerging tools to achieve a mesoscopic field of view is wide-field imaging of cortex-wide dynamics in mice. Wide-field imaging is cost-effective, user-friendly, and enables obtaining cortex-wide signals from mice performing complex and demanding cognitive tasks. Importantly, wide-field imaging offers an unbiased cortex-wide observation that sheds light on overlooked cortical regions and highlights parallel processing circuits. Recent wide-field imaging studies have shown that multi-area cortex-wide patterns, rather than just a single area, are involved in encoding cognitive functions. The optical properties of wide-field imaging enable imaging of different brain signals, such as layer-specific, inhibitory subtypes, or neuromodulation signals. Here, I review the main advantages of wide-field imaging in mice, review the recent literature, and discuss future directions of the field. It is expected that wide-field imaging in behaving mice will continue to gain popularity and aid in understanding the mesoscale dynamics underlying cognitive function.
Collapse
Affiliation(s)
- Ariel Gilad
- Hebrew University of Jerusalem, Institute for Medical Research Israel-Canada, Department of Medical Neurobiology, Faculty of Medicine, Jerusalem, Israel
| |
Collapse
|
4
|
Shiba N, Yang X, Sato M, Kadota S, Suzuki Y, Agata M, Nagamine K, Izumi M, Honda Y, Koganehira T, Kobayashi H, Ichimura H, Chuma S, Nakai J, Tohyama S, Fukuda K, Miyazaki D, Nakamura A, Shiba Y. Efficacy of exon-skipping therapy for DMD cardiomyopathy with mutations in actin binding domain 1. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102060. [PMID: 38028197 PMCID: PMC10654596 DOI: 10.1016/j.omtn.2023.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Exon-skipping therapy is a promising treatment strategy for Duchenne muscular dystrophy (DMD), which is caused by loss-of-function mutations in the DMD gene encoding dystrophin, leading to progressive cardiomyopathy. In-frame deletion of exons 3-9 (Δ3-9), manifesting a very mild clinical phenotype, is a potential targeted reading frame for exon-skipping by targeting actin-binding domain 1 (ABD1); however, the efficacy of this approach for DMD cardiomyopathy remains uncertain. In this study, we compared three isogenic human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) expressing Δ3-9, frameshifting Δ3-7, or intact DMD. RNA sequencing revealed a resemblance in the expression patterns of mechano-transduction-related genes between Δ3-9 and wild-type samples. Furthermore, we observed similar electrophysiological properties between Δ3-9 and wild-type hiPSC-CMs; Δ3-7 hiPSC-CMs showed electrophysiological alterations with accelerated CaMKII activation. Consistently, Δ3-9 hiPSC-CMs expressed substantial internally truncated dystrophin protein, resulting in maintaining F-actin binding and desmin retention. Antisense oligonucleotides targeting exon 8 efficiently induced skipping exons 8-9 to restore functional dystrophin and electrophysiological parameters in Δ3-7 hiPSC-CMs, bringing the cell characteristics closer to those of Δ3-9 hiPSC-CMs. Collectively, exon-skipping targeting ABD1 to convert the reading frame to Δ3-9 may become a promising therapy for DMD cardiomyopathy.
Collapse
Affiliation(s)
- Naoko Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
- Department of Pediatrics, Shinshu University, Matsumoto 390-8621, Japan
| | - Xiao Yang
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Mitsuto Sato
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Shin Kadota
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
- Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| | - Yota Suzuki
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Masahiro Agata
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Kohei Nagamine
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Masaki Izumi
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Yusuke Honda
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Tomoya Koganehira
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Hideki Kobayashi
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Hajime Ichimura
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
| | - Shinichiro Chuma
- Department of Regeneration Science and Engineering, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Junichi Nakai
- Graduate Schools of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Shugo Tohyama
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daigo Miyazaki
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto 390-8621, Japan
| | - Akinori Nakamura
- Department of Clinical Research, National Hospital Organization Matsumoto Medical Center, Matsumoto 399-8701, Japan
| | - Yuji Shiba
- Department of Regenerative Science and Medicine, Shinshu University, Matsumoto 390-8621, Japan
- Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
5
|
Ferris HR, Stine NC, Hill-Eubanks DC, Nelson MT, Wellman GC, Koide M. Epidermal Growth Factor Receptors in Vascular Endothelial Cells Contribute to Functional Hyperemia in the Brain. Int J Mol Sci 2023; 24:16284. [PMID: 38003472 PMCID: PMC10671586 DOI: 10.3390/ijms242216284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/06/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Functional hyperemia-activity-dependent increases in local blood perfusion-underlies the on-demand delivery of blood to regions of enhanced neuronal activity, a process that is crucial for brain health. Importantly, functional hyperemia deficits have been linked to multiple dementia risk factors, including aging, chronic hypertension, and cerebral small vessel disease (cSVD). We previously reported crippled functional hyperemia in a mouse model of genetic cSVD that was likely caused by depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) in capillary endothelial cells (EC) downstream of impaired epidermal growth factor receptor (EGFR) signaling. Here, using EC-specific EGFR-knockout (KO) mice, we directly examined the role of endothelial EGFR signaling in functional hyperemia, assessed by measuring increases in cerebral blood flow in response to contralateral whisker stimulation using laser Doppler flowmetry. Molecular characterizations showed that EGFR expression was dramatically decreased in freshly isolated capillaries from EC-EGFR-KO mice, as expected. Notably, whisker stimulation-induced functional hyperemia was significantly impaired in these mice, an effect that was rescued by administration of PIP2, but not by the EGFR ligand, HB-EGF. These data suggest that the deletion of the EGFR specifically in ECs attenuates functional hyperemia, likely via depleting PIP2 and subsequently incapacitating Kir2.1 channel functionality in capillary ECs. Thus, our study underscores the role of endothelial EGFR signaling in functional hyperemia of the brain.
Collapse
Affiliation(s)
- Hannah R. Ferris
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA; (H.R.F.); (N.C.S.)
| | - Nathan C. Stine
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA; (H.R.F.); (N.C.S.)
| | - David C. Hill-Eubanks
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA; (H.R.F.); (N.C.S.)
| | - Mark T. Nelson
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA; (H.R.F.); (N.C.S.)
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester M13 9PL, UK
| | - George C. Wellman
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA; (H.R.F.); (N.C.S.)
| | - Masayo Koide
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA; (H.R.F.); (N.C.S.)
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine University of Vermont, Burlington, VT 05405, USA
| |
Collapse
|
6
|
Ferris HR, Hill-Eubanks DC, Nelson MT, Wellman GC, Koide M. Epidermal growth factor receptors in vascular endothelial cells contribute to functional hyperemia in the brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557981. [PMID: 37745396 PMCID: PMC10516026 DOI: 10.1101/2023.09.15.557981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Functional hyperemia - activity-dependent increases in local blood perfusion - underlies the on-demand delivery of blood to regions of enhanced neuronal activity, a process that is crucial for brain health. Importantly, functional hyperemia deficits have been linked to multiple dementia risk factors, including aging, chronic hypertension, and cerebral small vessel disease (cSVD). We previously reported crippled functional hyperemia in a mouse model of genetic cSVD that was likely caused by depletion of phosphatidylinositol 4,5-bisphosphate (PIP2) in capillary endothelial cells (EC) downstream of impaired epidermal growth factor receptor (EGFR) signaling. Here, using EC-specific EGFR-knockout (KO) mice, we directly examined the role of endothelial EGFR signaling in functional hyperemia, assessed by measuring increases in cerebral blood flow in response to contralateral whisker stimulation using laser Doppler flowmetry. Molecular characterizations showed that EGFR expression was dramatically decreased in freshly isolated capillaries from EC-EGFR-KO mice, as expected. Notably, whisker stimulation-induced functional hyperemia was significantly impaired in these mice, an effect that was rescued by exogenous administration of PIP2, but not by the EGFR ligand, HB-EGF. These data suggest that the deletion of the EGFR specifically in ECs depletes PIP2 and attenuates functional hyperemia, underscoring the central role of the endothelial EGFR signaling in cerebral blood flow regulation.
Collapse
Affiliation(s)
- Hannah R. Ferris
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT, USA
| | - David C. Hill-Eubanks
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT, USA
| | - Mark T. Nelson
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine University of Vermont, Burlington, VT, USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - George C. Wellman
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT, USA
| | - Masayo Koide
- Department of Pharmacology, Larner College of Medicine University of Vermont, Burlington, VT, USA
- Vermont Center for Cardiovascular and Brain Health, Larner College of Medicine University of Vermont, Burlington, VT, USA
| |
Collapse
|
7
|
Zhou Z, Yip HM, Tsimring K, Sur M, Ip JPK, Tin C. Effective and efficient neural networks for spike inference from in vivo calcium imaging. CELL REPORTS METHODS 2023; 3:100462. [PMID: 37323579 PMCID: PMC10261900 DOI: 10.1016/j.crmeth.2023.100462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/21/2023] [Accepted: 03/31/2023] [Indexed: 06/17/2023]
Abstract
Calcium imaging provides advantages in monitoring large populations of neuronal activities simultaneously. However, it lacks the signal quality provided by neural spike recording in traditional electrophysiology. To address this issue, we developed a supervised data-driven approach to extract spike information from calcium signals. We propose the ENS2 (effective and efficient neural networks for spike inference from calcium signals) system for spike-rate and spike-event predictions using ΔF/F0 calcium inputs based on a U-Net deep neural network. When testing on a large, ground-truth public database, it consistently outperformed state-of-the-art algorithms in both spike-rate and spike-event predictions with reduced computational load. We further demonstrated that ENS2 can be applied to analyses of orientation selectivity in primary visual cortex neurons. We conclude that it would be a versatile inference system that may benefit diverse neuroscience studies.
Collapse
Affiliation(s)
- Zhanhong Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Hei Matthew Yip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Katya Tsimring
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Gupta D, Młynarski W, Sumser A, Symonova O, Svatoň J, Joesch M. Panoramic visual statistics shape retina-wide organization of receptive fields. Nat Neurosci 2023; 26:606-614. [PMID: 36959418 PMCID: PMC10076217 DOI: 10.1038/s41593-023-01280-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/14/2023] [Indexed: 03/25/2023]
Abstract
Statistics of natural scenes are not uniform-their structure varies dramatically from ground to sky. It remains unknown whether these nonuniformities are reflected in the large-scale organization of the early visual system and what benefits such adaptations would confer. Here, by relying on the efficient coding hypothesis, we predict that changes in the structure of receptive fields across visual space increase the efficiency of sensory coding. Using the mouse (Mus musculus) as a model species, we show that receptive fields of retinal ganglion cells change their shape along the dorsoventral retinal axis, with a marked surround asymmetry at the visual horizon, in agreement with our predictions. Our work demonstrates that, according to principles of efficient coding, the panoramic structure of natural scenes is exploited by the retina across space and cell types.
Collapse
Affiliation(s)
- Divyansh Gupta
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Wiktor Młynarski
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Anton Sumser
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Division of Neuroscience, Faculty of Biology, LMU, Munich, Germany
| | - Olga Symonova
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Jan Svatoň
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Maximilian Joesch
- Institute of Science and Technology Austria, Klosterneuburg, Austria.
| |
Collapse
|
9
|
Nietz AK, Popa LS, Streng ML, Carter RE, Kodandaramaiah SB, Ebner TJ. Wide-Field Calcium Imaging of Neuronal Network Dynamics In Vivo. BIOLOGY 2022; 11:1601. [PMID: 36358302 PMCID: PMC9687960 DOI: 10.3390/biology11111601] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
A central tenet of neuroscience is that sensory, motor, and cognitive behaviors are generated by the communications and interactions among neurons, distributed within and across anatomically and functionally distinct brain regions. Therefore, to decipher how the brain plans, learns, and executes behaviors requires characterizing neuronal activity at multiple spatial and temporal scales. This includes simultaneously recording neuronal dynamics at the mesoscale level to understand the interactions among brain regions during different behavioral and brain states. Wide-field Ca2+ imaging, which uses single photon excitation and improved genetically encoded Ca2+ indicators, allows for simultaneous recordings of large brain areas and is proving to be a powerful tool to study neuronal activity at the mesoscopic scale in behaving animals. This review details the techniques used for wide-field Ca2+ imaging and the various approaches employed for the analyses of the rich neuronal-behavioral data sets obtained. Also discussed is how wide-field Ca2+ imaging is providing novel insights into both normal and altered neural processing in disease. Finally, we examine the limitations of the approach and new developments in wide-field Ca2+ imaging that are bringing new capabilities to this important technique for investigating large-scale neuronal dynamics.
Collapse
Affiliation(s)
- Angela K. Nietz
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Laurentiu S. Popa
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Martha L. Streng
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Russell E. Carter
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
10
|
Transition of distinct context-dependent ensembles from secondary to primary motor cortex in skilled motor performance. Cell Rep 2022; 41:111494. [DOI: 10.1016/j.celrep.2022.111494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/27/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
|
11
|
Márta K, Booth D, Csordás G, Hajnóczky G. Fluorescent protein transgenic mice for the study of Ca 2+ and redox signaling. Free Radic Biol Med 2022; 181:241-250. [PMID: 35158029 PMCID: PMC8988923 DOI: 10.1016/j.freeradbiomed.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/10/2022] [Indexed: 01/29/2023]
Abstract
Many unanswered questions of physiology and medicine require in vivo studies of cellular processes in murine models. These processes commonly depend on intracellular Ca2+ and redox alterations. Fluorescent dyes have succeeded in real-time intracellular monitoring of Ca2+, redox and the different Reactive Oxygen Species (ROS) in single cells, but have seldomly been applied in vivo. The advance in Fluorescent Protein (FP) technology has created alternative tools for the same task, which can be delivered with viruses or genomic integration strategies into mice. With the availability of several color options for both Ca2+ and redox reporting FP, multiparameter measurements have also become feasible: measuring different species, and the same parameter at different locations using organelle-specific targeting sequences at the same time. We, here, focus on mice with genomic integration of Ca2+ and redox reporters, provide a list of the available models and summarize the strategies of their generation and utilization. We also describe a novel Calcium DoubleSpy mouse model that conditionally expresses both RCaMP in the cytoplasm and GEM-GECO1 in the mitochondrial matrix, allowing the study of mitochondrial Ca2+ related physiology and pathogenesis simultaneously in two distinct intracellular compartments.
Collapse
Affiliation(s)
- Katalin Márta
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - David Booth
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - György Csordás
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
12
|
Sakamoto M, Inoue M, Takeuchi A, Kobari S, Yokoyama T, Horigane SI, Takemoto-Kimura S, Abe M, Sakimura K, Kano M, Kitamura K, Fujii H, Bito H. A Flp-dependent G-CaMP9a transgenic mouse for neuronal imaging in vivo. CELL REPORTS METHODS 2022; 2:100168. [PMID: 35474964 PMCID: PMC9017135 DOI: 10.1016/j.crmeth.2022.100168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 01/21/2022] [Indexed: 12/16/2022]
Abstract
Genetically encoded calcium indicators (GECIs) are widely used to measure calcium transients in neuronal somata and processes, and their use enables the determination of action potential temporal series in a large population of neurons. Here, we generate a transgenic mouse line expressing a highly sensitive green GECI, G-CaMP9a, in a Flp-dependent manner in excitatory and inhibitory neuronal subpopulations downstream of a strong CAG promoter. Combining this reporter mouse with viral or mouse genetic Flp delivery methods produces a robust and stable G-CaMP9a expression in defined neuronal populations without detectable detrimental effects. In vivo two-photon imaging reveals spontaneous and sensory-evoked calcium transients in excitatory and inhibitory ensembles with cellular resolution. Our results show that this reporter line allows long-term, cell-type-specific investigation of neuronal activity with enhanced resolution in defined populations and facilitates dissecting complex dynamics of neural networks in vivo.
Collapse
Affiliation(s)
- Masayuki Sakamoto
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Optical Neural and Molecular Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kyoto 606-8507, Japan
| | - Masatoshi Inoue
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Atsuya Takeuchi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Neurophysiology, School of Dentistry, Tokyo Medical and Dental University, Tokyo, Japan
| | - Shigetaka Kobari
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsushi Yokoyama
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Optical Neural and Molecular Physiology, Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | - Shin-ichiro Horigane
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Department of Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Sayaka Takemoto-Kimura
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Kyoto 606-8507, Japan
- Department of Neuroscience I, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Department of Molecular/Cellular Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | - Manabu Abe
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kenji Sakimura
- Department of Animal Model Development, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuo Kitamura
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- Department of Neurophysiology, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi 409-3898, Japan
| | - Hajime Fujii
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Hongo7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Lee FK, Lee JC, Shui B, Reining S, Jibilian M, Small DM, Jones JS, Allan-Rahill NH, Lamont MR, Rizzo MA, Tajada S, Navedo MF, Santana LF, Nishimura N, Kotlikoff MI. Genetically engineered mice for combinatorial cardiovascular optobiology. eLife 2021; 10:67858. [PMID: 34711305 PMCID: PMC8555989 DOI: 10.7554/elife.67858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/13/2021] [Indexed: 01/21/2023] Open
Abstract
Optogenetic effectors and sensors provide a novel real-time window into complex physiological processes, enabling determination of molecular signaling processes within functioning cellular networks. However, the combination of these optical tools in mice is made practical by construction of genetic lines that are optically compatible and genetically tractable. We present a new toolbox of 21 mouse lines with lineage-specific expression of optogenetic effectors and sensors for direct biallelic combination, avoiding the multiallelic requirement of Cre recombinase -mediated DNA recombination, focusing on models relevant for cardiovascular biology. Optogenetic effectors (11 lines) or Ca2+ sensors (10 lines) were selectively expressed in cardiac pacemaker cells, cardiomyocytes, vascular endothelial and smooth muscle cells, alveolar epithelial cells, lymphocytes, glia, and other cell types. Optogenetic effector and sensor function was demonstrated in numerous tissues. Arterial/arteriolar tone was modulated by optical activation of the second messengers InsP3 (optoα1AR) and cAMP (optoß2AR), or Ca2+-permeant membrane channels (CatCh2) in smooth muscle (Acta2) and endothelium (Cdh5). Cardiac activation was separately controlled through activation of nodal/conducting cells or cardiac myocytes. We demonstrate combined effector and sensor function in biallelic mouse crosses: optical cardiac pacing and simultaneous cardiomyocyte Ca2+ imaging in Hcn4BAC-CatCh2/Myh6-GCaMP8 crosses. These experiments highlight the potential of these mice to explore cellular signaling in vivo, in complex tissue networks.
Collapse
Affiliation(s)
- Frank K Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Jane C Lee
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Bo Shui
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Shaun Reining
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - Megan Jibilian
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| | - David M Small
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Jason S Jones
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | | | - Michael Re Lamont
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Megan A Rizzo
- Department of Physiology, University of Maryland School of Medicine, Baltimore, United States
| | - Sendoa Tajada
- Departments of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, United States
| | - Manuel F Navedo
- Department of Pharmacology, University of California, Davis, Davis, United States
| | - Luis Fernando Santana
- Departments of Physiology and Membrane Biology, University of California, Davis School of Medicine, Davis, United States
| | - Nozomi Nishimura
- Department of Biomedical Engineering, Cornell University, Ithaca, United States
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, Cornell University, Ithaca, United States
| |
Collapse
|
14
|
Rupprecht P, Carta S, Hoffmann A, Echizen M, Blot A, Kwan AC, Dan Y, Hofer SB, Kitamura K, Helmchen F, Friedrich RW. A database and deep learning toolbox for noise-optimized, generalized spike inference from calcium imaging. Nat Neurosci 2021; 24:1324-1337. [PMID: 34341584 PMCID: PMC7611618 DOI: 10.1038/s41593-021-00895-5] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 06/23/2021] [Indexed: 02/06/2023]
Abstract
Inference of action potentials ('spikes') from neuronal calcium signals is complicated by the scarcity of simultaneous measurements of action potentials and calcium signals ('ground truth'). In this study, we compiled a large, diverse ground truth database from publicly available and newly performed recordings in zebrafish and mice covering a broad range of calcium indicators, cell types and signal-to-noise ratios, comprising a total of more than 35 recording hours from 298 neurons. We developed an algorithm for spike inference (termed CASCADE) that is based on supervised deep networks, takes advantage of the ground truth database, infers absolute spike rates and outperforms existing model-based algorithms. To optimize performance for unseen imaging data, CASCADE retrains itself by resampling ground truth data to match the respective sampling rate and noise level; therefore, no parameters need to be adjusted by the user. In addition, we developed systematic performance assessments for unseen data, openly released a resource toolbox and provide a user-friendly cloud-based implementation.
Collapse
Affiliation(s)
- Peter Rupprecht
- Brain Research Institute, University of Zürich, Zurich, Switzerland.
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| | - Stefano Carta
- Brain Research Institute, University of Zürich, Zurich, Switzerland
| | - Adrian Hoffmann
- Brain Research Institute, University of Zürich, Zurich, Switzerland
| | - Mayumi Echizen
- Department of Neurophysiology, University of Tokyo, Tokyo, Japan
- Department of Anesthesiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Antonin Blot
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
- Biozentrum, University of Basel, Basel, Switzerland
| | - Alex C Kwan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Yang Dan
- Division of Neurobiology, Department of Molecular and Cell Biology, Helen Wills Neuroscience Institute, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley CA, USA
| | - Sonja B Hofer
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
- Biozentrum, University of Basel, Basel, Switzerland
| | - Kazuo Kitamura
- Department of Neurophysiology, University of Tokyo, Tokyo, Japan
- Department of Neurophysiology, University of Yamanashi, Yamanashi, Japan
| | - Fritjof Helmchen
- Brain Research Institute, University of Zürich, Zurich, Switzerland.
| | - Rainer W Friedrich
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
15
|
In Vivo Calcium Imaging of CA3 Pyramidal Neuron Populations in Adult Mouse Hippocampus. eNeuro 2021; 8:ENEURO.0023-21.2021. [PMID: 34330817 PMCID: PMC8387150 DOI: 10.1523/eneuro.0023-21.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 11/21/2022] Open
Abstract
Neuronal population activity in the hippocampal CA3 subfield is implicated in cognitive brain functions such as memory processing and spatial navigation. However, because of its deep location in the brain, the CA3 area has been difficult to target with modern calcium imaging approaches. Here, we achieved chronic two-photon calcium imaging of CA3 pyramidal neurons with the red fluorescent calcium indicator R-CaMP1.07 in anesthetized and awake mice. We characterize CA3 neuronal activity at both the single-cell and population level and assess its stability across multiple imaging days. During both anesthesia and wakefulness, nearly all CA3 pyramidal neurons displayed calcium transients. Most of the calcium transients were consistent with a high incidence of bursts of action potentials (APs), based on calibration measurements using simultaneous juxtacellular recordings and calcium imaging. In awake mice, we found state-dependent differences with striking large and prolonged calcium transients during locomotion. We estimate that trains of >30 APs over 3 s underlie these salient events. Their abundance in particular subsets of neurons was relatively stable across days. At the population level, we found that co-activity within the CA3 network was above chance level and that co-active neuron pairs maintained their correlated activity over days. Our results corroborate the notion of state-dependent spatiotemporal activity patterns in the recurrent network of CA3 and demonstrate that at least some features of population activity, namely co-activity of cell pairs and likelihood to engage in prolonged high activity, are maintained over days.
Collapse
|
16
|
Esmaeili V, Tamura K, Muscinelli SP, Modirshanechi A, Boscaglia M, Lee AB, Oryshchuk A, Foustoukos G, Liu Y, Crochet S, Gerstner W, Petersen CCH. Rapid suppression and sustained activation of distinct cortical regions for a delayed sensory-triggered motor response. Neuron 2021; 109:2183-2201.e9. [PMID: 34077741 PMCID: PMC8285666 DOI: 10.1016/j.neuron.2021.05.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/24/2021] [Accepted: 05/06/2021] [Indexed: 01/16/2023]
Abstract
The neuronal mechanisms generating a delayed motor response initiated by a sensory cue remain elusive. Here, we tracked the precise sequence of cortical activity in mice transforming a brief whisker stimulus into delayed licking using wide-field calcium imaging, multiregion high-density electrophysiology, and time-resolved optogenetic manipulation. Rapid activity evoked by whisker deflection acquired two prominent features for task performance: (1) an enhanced excitation of secondary whisker motor cortex, suggesting its important role connecting whisker sensory processing to lick motor planning; and (2) a transient reduction of activity in orofacial sensorimotor cortex, which contributed to suppressing premature licking. Subsequent widespread cortical activity during the delay period largely correlated with anticipatory movements, but when these were accounted for, a focal sustained activity remained in frontal cortex, which was causally essential for licking in the response period. Our results demonstrate key cortical nodes for motor plan generation and timely execution in delayed goal-directed licking.
Collapse
Affiliation(s)
- Vahid Esmaeili
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Keita Tamura
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Samuel P Muscinelli
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Alireza Modirshanechi
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Marta Boscaglia
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ashley B Lee
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anastasiia Oryshchuk
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Georgios Foustoukos
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Yanqi Liu
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sylvain Crochet
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Wulfram Gerstner
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- Brain Mind Institute, Faculty of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
17
|
Lohr C, Beiersdorfer A, Fischer T, Hirnet D, Rotermund N, Sauer J, Schulz K, Gee CE. Using Genetically Encoded Calcium Indicators to Study Astrocyte Physiology: A Field Guide. Front Cell Neurosci 2021; 15:690147. [PMID: 34177468 PMCID: PMC8226001 DOI: 10.3389/fncel.2021.690147] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 01/14/2023] Open
Abstract
Ca2+ imaging is the most frequently used technique to study glial cell physiology. While chemical Ca2+ indicators served to visualize and measure changes in glial cell cytosolic Ca2+ concentration for several decades, genetically encoded Ca2+ indicators (GECIs) have become state of the art in recent years. Great improvements have been made since the development of the first GECI and a large number of GECIs with different physical properties exist, rendering it difficult to select the optimal Ca2+ indicator. This review discusses some of the most frequently used GECIs and their suitability for glial cell research.
Collapse
Affiliation(s)
- Christian Lohr
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | | | - Timo Fischer
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Daniela Hirnet
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Natalie Rotermund
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Jessica Sauer
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Kristina Schulz
- Division of Neurophysiology, University of Hamburg, Hamburg, Germany
| | - Christine E Gee
- Institute of Synaptic Physiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
18
|
Kondo M, Matsuzaki M. Neuronal representations of reward-predicting cues and outcome history with movement in the frontal cortex. Cell Rep 2021; 34:108704. [PMID: 33535051 DOI: 10.1016/j.celrep.2021.108704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022] Open
Abstract
Transformation of sensory inputs to goal-directed actions requires estimation of sensory-cue values based on outcome history. We conduct wide-field and two-photon calcium imaging of the mouse neocortex during classical conditioning with two cues with different water-reward probabilities. Although licking movement dominates the area-averaged activity over the whole dorsal neocortex, the dorsomedial frontal cortex (dmFrC) affects other dorsal frontal cortical activities, and its inhibition extinguishes differences in anticipatory licking between the cues. Many dorsal frontal and medial prefrontal cortical neurons are task related. Subsets of these neurons are more excited by the low-reward-predicting cue or unrewarded outcomes than by the high-reward-predicting cue or rewarded outcomes, respectively. Task-related activities of these neurons and the others are counterbalanced, so that population activity appears dominated by licking. The reward-predicting cue and outcome history are most strongly represented in dmFrC. Our results suggest that dmFrC is crucial for initiating cortical processes to select or inhibit action.
Collapse
Affiliation(s)
- Masashi Kondo
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; JSPS Research Fellow, Japan Society for the Promotion of Science, Tokyo 102-0083, Japan
| | - Masanori Matsuzaki
- Department of Physiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, Tokyo 113-0033, Japan; Brain Functional Dynamics Collaboration Laboratory, RIKEN Center for Brain Science, Saitama 351-0198, Japan.
| |
Collapse
|
19
|
Schmidt E, Oheim M. Infrared Excitation Induces Heating and Calcium Microdomain Hyperactivity in Cortical Astrocytes. Biophys J 2020; 119:2153-2165. [PMID: 33130118 DOI: 10.1016/j.bpj.2020.10.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 11/16/2022] Open
Abstract
Unraveling how neural networks process and represent sensory information and how these cellular signals instruct behavioral output is a main goal in neuroscience. Two-photon activation of optogenetic actuators and calcium (Ca2+) imaging with genetically encoded indicators allow, respectively, the all-optical stimulation and readout of activity from genetically identified cell populations. However, these techniques locally expose the brain to high near-infrared light doses, raising the concern of light-induced adverse effects on the biology under study. Combining 2P imaging of Ca2+ transients in GCaMP6f-expressing cortical astrocytes and unbiased machine-based event detection, we demonstrate the subtle build-up of aberrant microdomain Ca2+ transients in the fine astroglial processes that depended on the average rather than peak laser power. Illumination conditions routinely being used in biological 2P microscopy (920-nm excitation, ∼100-fs, and ∼10 mW average power) increased the frequency of microdomain Ca2+ events but left their amplitude, area, and duration largely unchanged. Ca2+ transients in the otherwise silent soma were secondary to this peripheral hyperactivity that occurred without overt morphological damage. Continuous-wave (nonpulsed) 920-nm illumination at the same average power was as damaging as femtosecond pulses, unraveling the dominance of a heating-mediated damage mechanism. In an astrocyte-specific inositol 3-phosphate receptor type-2 knockout mouse, near-infrared light-induced Ca2+ microdomains persisted in the small processes, underpinning their resemblance to physiological inositol 3-phosphate receptor type-2-independent Ca2+ signals, whereas somatic hyperactivity was abolished. We conclude that, contrary to what has generally been believed in the field, shorter pulses and lower average power can help to alleviate damage and allow for longer recording windows at 920 nm.
Collapse
Affiliation(s)
- Elke Schmidt
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Paris, France
| | - Martin Oheim
- Université de Paris, SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Paris, France.
| |
Collapse
|
20
|
Condylis C, Lowet E, Ni J, Bistrong K, Ouellette T, Josephs N, Chen JL. Context-Dependent Sensory Processing across Primary and Secondary Somatosensory Cortex. Neuron 2020; 106:515-525.e5. [PMID: 32164873 DOI: 10.1016/j.neuron.2020.02.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/11/2019] [Accepted: 02/06/2020] [Indexed: 12/16/2022]
Abstract
To interpret the environment, our brain must evaluate external stimuli against internal representations from past experiences. How primary (S1) and secondary (S2) somatosensory cortices process stimuli depending on recent experiences is unclear. Using simultaneous multi-area population imaging of projection neurons and focal optogenetic inactivation, we studied mice performing a whisker-based working memory task. We find that activity reflecting a current stimulus, the recollection of a previous stimulus (cued recall), and the stimulus category are distributed across S1 and S2. Despite this overlapping representation, S2 is important for processing cued recall responses and transmitting these responses to S1. S2 network properties differ from S1, wherein S2 persistently encodes cued recall and the stimulus category under passive conditions. Although both areas encode the stimulus category, only information in S1 is important for task performance through pathways that do not necessarily include S2. These findings reveal both distributed and segregated roles for S1 and S2 in context-dependent sensory processing.
Collapse
Affiliation(s)
- Cameron Condylis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Eric Lowet
- Department of Biology, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Jianguang Ni
- Department of Biology, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA
| | - Karina Bistrong
- Department of Biology, Boston University, Boston, MA 02215, USA
| | | | - Nathaniel Josephs
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
| | - Jerry L Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Biology, Boston University, Boston, MA 02215, USA; Center for Systems Neuroscience, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
21
|
Valley MT, Moore MG, Zhuang J, Mesa N, Castelli D, Sullivan D, Reimers M, Waters J. Separation of hemodynamic signals from GCaMP fluorescence measured with wide-field imaging. J Neurophysiol 2020; 123:356-366. [DOI: 10.1152/jn.00304.2019] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wide-field calcium imaging is often used to measure brain dynamics in behaving mice. With a large field of view and a high sampling rate, wide-field imaging can monitor activity from several distant cortical areas simultaneously, revealing cortical interactions. Interpretation of wide-field images is complicated, however, by the absorption of light by hemoglobin, which can substantially affect the measured fluorescence. One approach to separating hemodynamics and calcium signals is to use multiwavelength backscatter recordings to measure light absorption by hemoglobin. Following this approach, we develop a spatially detailed regression-based method to estimate hemodynamics. This Spatial Model is based on a linear form of the Beer–Lambert relationship but is fit at every pixel in the image and does not rely on the estimation of physical parameters. In awake mice of three transgenic lines, the Spatial Model offers improved separation of hemodynamics and changes in GCaMP fluorescence. The improvement is pronounced near blood vessels and, in contrast with the Beer–Lambert equations, can remove vascular artifacts along the sagittal midline and in general permits more accurate fluorescence-based determination of neuronal activity across the cortex. NEW & NOTEWORTHY This paper addresses a well-known and strong source of contamination in wide-field calcium-imaging data: hemodynamics. To guide researchers toward the best method to separate calcium signals from hemodynamics, we compare the performance of several methods in three commonly used mouse lines and present a novel regression model that outperforms the other techniques we consider.
Collapse
Affiliation(s)
- M. T. Valley
- Allen Institute for Brain Science, Seattle, Washington
| | - M. G. Moore
- Neuroscience Program and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
| | - J. Zhuang
- Allen Institute for Brain Science, Seattle, Washington
| | - N. Mesa
- Allen Institute for Brain Science, Seattle, Washington
| | - D. Castelli
- Allen Institute for Brain Science, Seattle, Washington
| | - D. Sullivan
- Allen Institute for Brain Science, Seattle, Washington
| | - M. Reimers
- Neuroscience Program and Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, Michigan
| | - J. Waters
- Allen Institute for Brain Science, Seattle, Washington
| |
Collapse
|
22
|
Lecoq J, Orlova N, Grewe BF. Wide. Fast. Deep: Recent Advances in Multiphoton Microscopy of In Vivo Neuronal Activity. J Neurosci 2019; 39:9042-9052. [PMID: 31578235 PMCID: PMC6855689 DOI: 10.1523/jneurosci.1527-18.2019] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 01/04/2023] Open
Abstract
Multiphoton microscopy (MPM) has emerged as one of the most powerful and widespread technologies to monitor the activity of neuronal networks in awake, behaving animals over long periods of time. MPM development spanned across decades and crucially depended on the concurrent improvement of calcium indicators that report neuronal activity as well as surgical protocols, head fixation approaches, and innovations in optics and microscopy technology. Here we review the last decade of MPM development and highlight how in vivo imaging has matured and diversified, making it now possible to concurrently monitor thousands of neurons across connected brain areas or, alternatively, small local networks with sampling rates in the kilohertz range. This review includes different laser scanning approaches, such as multibeam technologies as well as recent developments to image deeper into neuronal tissues using new, long-wavelength laser sources. As future development will critically depend on our ability to resolve and discriminate individual neuronal spikes, we will also describe a simple framework that allows performing quantitative comparisons between the reviewed MPM instruments. Finally, we provide our own opinion on how the most recent MPM developments can be leveraged at scale to enable the next generation of discoveries in brain function.
Collapse
Affiliation(s)
- Jérôme Lecoq
- Allen Institute for Brain Science, Seattle 98109, Washington,
| | - Natalia Orlova
- Allen Institute for Brain Science, Seattle 98109, Washington
| | - Benjamin F Grewe
- Institute of Neuroinformatics, UZH and ETH Zurich, Zurich 8057, Switzerland
- Department of Electrical Engineering and Information Technology, ETH Zurich, Zurich 8092, Switzerland, and
- Faculty of Sciences, University of Zurich, Zurich 8057, Switzerland
| |
Collapse
|
23
|
Layer-specific integration of locomotion and sensory information in mouse barrel cortex. Nat Commun 2019; 10:2585. [PMID: 31197148 PMCID: PMC6565743 DOI: 10.1038/s41467-019-10564-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 05/17/2019] [Indexed: 11/23/2022] Open
Abstract
During navigation, rodents continually sample the environment with their whiskers. How locomotion modulates neuronal activity in somatosensory cortex, and how it is integrated with whisker-touch remains unclear. Here, we compared neuronal activity in layer 2/3 (L2/3) and L5 of barrel cortex using calcium imaging in mice running in a tactile virtual reality. Both layers increase their activity during running and concomitant whisking, in the absence of touch. Fewer neurons are modulated by whisking alone. Whereas L5 neurons respond transiently to wall-touch during running, L2/3 neurons show sustained activity. Consistently, neurons encoding running-with-touch are more abundant in L2/3 and they encode the run-speed better during touch. Few neurons across layers were also sensitive to abrupt perturbations of tactile flow during running. In summary, locomotion significantly enhances barrel cortex activity across layers with L5 neurons mainly reporting changes in touch conditions and L2/3 neurons continually integrating tactile stimuli with running. The influence of locomotion on somatosensory processing in barrel cortex is not well understood. Here the authors report distinct layer-specific responses, with L5 primarily reporting changes in touch condition while L2/3 neurons integrating touch and locomotion continuously.
Collapse
|
24
|
Abstract
The global population is ageing at an accelerating speed. The ability to perform working memory tasks together with rapid processing becomes increasingly difficult with increases in age. With increasing national average life spans and a rise in the prevalence of age-related disease, it is pertinent to discuss the unique perspectives that can be gained from imaging the aged brain. Differences in structure, function, blood flow, and neurovascular coupling are present in both healthy aged brains and in diseased brains and have not yet been explored to their full depth in contemporary imaging studies. Imaging methods ranging from optical imaging to magnetic resonance imaging (MRI) to newer technologies such as photoacoustic tomography each offer unique advantages and challenges in imaging the aged brain. This paper will summarize first the importance and challenges of imaging the aged brain and then offer analysis of potential imaging modalities and their representative applications. The potential breakthroughs in brain imaging are also envisioned.
Collapse
Affiliation(s)
- Hannah Humayun
- Photoacoustic Imaging Laboratory, Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Junjie Yao
- Photoacoustic Imaging Laboratory, Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
25
|
Daigle TL, Madisen L, Hage TA, Valley MT, Knoblich U, Larsen RS, Takeno MM, Huang L, Gu H, Larsen R, Mills M, Bosma-Moody A, Siverts LA, Walker M, Graybuck LT, Yao Z, Fong O, Nguyen TN, Garren E, Lenz GH, Chavarha M, Pendergraft J, Harrington J, Hirokawa KE, Harris JA, Nicovich PR, McGraw MJ, Ollerenshaw DR, Smith KA, Baker CA, Ting JT, Sunkin SM, Lecoq J, Lin MZ, Boyden ES, Murphy GJ, da Costa NM, Waters J, Li L, Tasic B, Zeng H. A Suite of Transgenic Driver and Reporter Mouse Lines with Enhanced Brain-Cell-Type Targeting and Functionality. Cell 2019; 174:465-480.e22. [PMID: 30007418 DOI: 10.1016/j.cell.2018.06.035] [Citation(s) in RCA: 474] [Impact Index Per Article: 94.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 04/12/2018] [Accepted: 06/13/2018] [Indexed: 01/05/2023]
Abstract
Modern genetic approaches are powerful in providing access to diverse cell types in the brain and facilitating the study of their function. Here, we report a large set of driver and reporter transgenic mouse lines, including 23 new driver lines targeting a variety of cortical and subcortical cell populations and 26 new reporter lines expressing an array of molecular tools. In particular, we describe the TIGRE2.0 transgenic platform and introduce Cre-dependent reporter lines that enable optical physiology, optogenetics, and sparse labeling of genetically defined cell populations. TIGRE2.0 reporters broke the barrier in transgene expression level of single-copy targeted-insertion transgenesis in a wide range of neuronal types, along with additional advantage of a simplified breeding strategy compared to our first-generation TIGRE lines. These novel transgenic lines greatly expand the repertoire of high-precision genetic tools available to effectively identify, monitor, and manipulate distinct cell types in the mouse brain.
Collapse
Affiliation(s)
- Tanya L Daigle
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Linda Madisen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Travis A Hage
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Ulf Knoblich
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rylan S Larsen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Marc M Takeno
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lawrence Huang
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hong Gu
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Rachael Larsen
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Maya Mills
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | - Miranda Walker
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Olivia Fong
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Emma Garren
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Garreck H Lenz
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Mariya Chavarha
- Departments of Neurobiology and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Medea J McGraw
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | | | - Susan M Sunkin
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Jérôme Lecoq
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Michael Z Lin
- Departments of Neurobiology and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Edward S Boyden
- MIT Media Lab and McGovern Institute, Departments of Biological Engineering and Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gabe J Murphy
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Lu Li
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Bosiljka Tasic
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Hongkui Zeng
- Allen Institute for Brain Science, Seattle, WA 98109, USA.
| |
Collapse
|
26
|
Michelson NJ, Vanni MP, Murphy TH. Comparison between transgenic and AAV-PHP.eB-mediated expression of GCaMP6s using in vivo wide-field functional imaging of brain activity. NEUROPHOTONICS 2019; 6:025014. [PMID: 31763351 PMCID: PMC6864505 DOI: 10.1117/1.nph.6.2.025014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/22/2019] [Indexed: 05/13/2023]
Abstract
We employ transcranial wide-field single-photon imaging to compare genetically encoded calcium sensors under transgenic or viral vector expression strategies. Awake, head-fixed animals and brief visual flash stimuli are used to assess function. The use of awake transcranial imaging may reduce confounds attributed to cranial window implantation or anesthesia states. We report differences in wide-field epifluorescence brightness and peak Δ F / F 0 response to visual stimulation between expression strategies. Other metrics for indicator performance include fluctuation analysis (standard deviation) and regional correlation maps made from spontaneous activity. We suggest that multiple measures, such as stimulus-evoked signal-to-noise ratio, brightness, and averaged visual Δ F / F 0 response, may be necessary to characterize indicator sensitivity and methods of expression. Furthermore, we show that strategies using blood brain barrier-permeable viruses, such as PHP.eB, yield comparable expression and function as those derived from transgenic mice. We suggest that testing of new genetically engineered activity sensors could employ a single-photon, wide-field imaging pipeline involving visual stimulation in awake mice that have been intravenously injected with PHP.eB.
Collapse
Affiliation(s)
- Nicholas J. Michelson
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, Vancouver, British Columbia, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
| | - Matthieu P. Vanni
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, Vancouver, British Columbia, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Université de Montréal, School of Optometry, Montréal, Québec, Canada
| | - Timothy H. Murphy
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, Vancouver, British Columbia, Canada
- University of British Columbia, Djavad Mowafaghian Centre for Brain Health, Vancouver, British Columbia, Canada
- Address all correspondence to Timothy H. Murphy E-mail:
| |
Collapse
|
27
|
Abstract
Two-photon calcium imaging became in recent years a very popular method for the functional analysis of neural cell populations on a single-cell level in anesthetized or awake behaving animals. Scientific insights about single-cell processing of sensory information but also analyses of higher cognitive functions in healthy or diseased states became thereby feasible. However, two-photon imaging is generally limited to depths of a few hundred micrometers when recording from densely labeled cell populations. Therefore, such recordings are often restricted to the superficial layers 1-3 of the mouse cortex, whereas the deep cell layers 4-6 are hardly accessible with standard two-photon imaging. Here, we provide a protocol for deep two-photon calcium imaging, which allows imaging of neuronal circuits with single-cell resolution in all cortical layers of the mouse primary cortex. This technique can be readily applied to other species. The method includes a reduction of excitation light scattering by the use of a red-shifted calcium indicator and the minimization of background fluorescence by visually guided local application of the fluorescent dye. The technique is similar to previously published protocols for in vivo two-photon calcium imaging with synthetic calcium dyes (Stosiek et al. Proc Natl Acad Sci U S A 100:7319-7324, 2003). Hence, only minor changes of a generic two-photon setup and some adaptations of the experimental procedures are required.
Collapse
Affiliation(s)
- Antje Birkner
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM), Munich, Germany.
| | - Arthur Konnerth
- Institute of Neuroscience, Technical University of Munich, Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy) and Center for Integrated Protein Sciences (CIPSM), Munich, Germany.
| |
Collapse
|
28
|
Thy1 transgenic mice expressing the red fluorescent calcium indicator jRGECO1a for neuronal population imaging in vivo. PLoS One 2018; 13:e0205444. [PMID: 30308007 PMCID: PMC6181368 DOI: 10.1371/journal.pone.0205444] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/25/2018] [Indexed: 11/19/2022] Open
Abstract
Calcium imaging is commonly used to measure the neural activity of large groups of neurons in mice. Genetically encoded calcium indicators (GECIs) can be delivered for this purpose using non-invasive genetic methods. Compared to viral gene transfer, transgenic targeting of GECIs provides stable long-term expression and obviates the need for invasive viral injections. Transgenic mice expressing the green GECI GCaMP6 are already widely used. Here we present the generation and characterization of transgenic mice expressing the sensitive red GECI jRGECO1a, driven by the Thy1 promoter. Four transgenic lines with different expression patterns showed sufficiently high expression for cellular in vivo imaging. We used two-photon microscopy to characterize visual responses of individual neurons in the visual cortex in vivo. The signal-to-noise ratio in transgenic mice was comparable to, or better than, mice transduced with adeno-associated virus. In addition, we show that Thy1-jRGECO1a transgenic mice are useful for transcranial population imaging and functional mapping using widefield fluorescence microscopy. We also demonstrate imaging of visual responses in retinal ganglion cells in vitro. Thy1-jRGECO1a transgenic mice are therefore a useful addition to the toolbox for imaging activity in intact neural networks.
Collapse
|
29
|
Stobart JL, Ferrari KD, Barrett MJP, Glück C, Stobart MJ, Zuend M, Weber B. Cortical Circuit Activity Evokes Rapid Astrocyte Calcium Signals on a Similar Timescale to Neurons. Neuron 2018; 98:726-735.e4. [PMID: 29706581 DOI: 10.1016/j.neuron.2018.03.050] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/12/2018] [Accepted: 03/30/2018] [Indexed: 12/22/2022]
Abstract
Sensory stimulation evokes intracellular calcium signals in astrocytes; however, the timing of these signals is disputed. Here, we used novel combinations of genetically encoded calcium indicators for concurrent two-photon imaging of cortical astrocytes and neurons in awake mice during whisker deflection. We identified calcium responses in both astrocyte processes and endfeet that rapidly followed neuronal events (∼120 ms after). These fast astrocyte responses were largely independent of IP3R2-mediated signaling and known neuromodulator activity (acetylcholine, serotonin, and norepinephrine), suggesting that they are evoked by local synaptic activity. The existence of such rapid signals implies that astrocytes are fast enough to play a role in synaptic modulation and neurovascular coupling. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Michael J Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Marc Zuend
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
30
|
Bermudez-Contreras E, Chekhov S, Sun J, Tarnowsky J, McNaughton BL, Mohajerani MH. High-performance, inexpensive setup for simultaneous multisite recording of electrophysiological signals and mesoscale voltage imaging in the mouse cortex. NEUROPHOTONICS 2018; 5:025005. [PMID: 29651448 PMCID: PMC5874445 DOI: 10.1117/1.nph.5.2.025005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/05/2018] [Indexed: 05/17/2023]
Abstract
Simultaneous recording of optical and electrophysiological signals from multiple cortical areas may provide crucial information to expand our understanding of cortical function. However, the insertion of multiple electrodes into the brain may compromise optical imaging by both restricting the field of view and interfering with the approaches used to stabilize the specimen. Existing methods that combine electrophysiological recording and optical imaging in vivo implement either multiple surface electrodes, silicon probes, or a single electrode for deeper recordings. To address such limitation, we built a microelectrode array (hyperdrive, patent US5928143 A) compatible with wide-field imaging that allows insertion of up to 12 probes into a large brain area (8 mm diameter). The hyperdrive is comprised of a circle of individual microdrives where probes are positioned at an angle leaving a large brain area unobstructed for wide-field imaging. Multiple tetrodes and voltage-sensitive dye imaging were used for acute simultaneous registration of spontaneous and evoked cortical activity in anesthetized mice. The electrophysiological signals were used to extract local field potential (LFP) traces, multiunit, and single-unit spiking activity. To demonstrate our approach, we compared LFP and VSD signals over multiple regions of the cortex and analyzed the relationship between single-unit and global cortical population activities. The study of the interactions between cortical activity at local and global scales, such as the one presented in this work, can help to expand our knowledge of brain function.
Collapse
Affiliation(s)
- Edgar Bermudez-Contreras
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
| | - Sergey Chekhov
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
| | - Jianjun Sun
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
| | - Jennifer Tarnowsky
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
| | - Bruce L. McNaughton
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
- University of California at Irvine, Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Behavior, Irvine, California, United States
- Address all correspondence to: Bruce L. McNaughton, E-mail: ; Majid H. Mohajerani, E-mail:
| | - Majid H. Mohajerani
- University of Lethbridge, Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, Lethbridge, Alberta, Canada
- Address all correspondence to: Bruce L. McNaughton, E-mail: ; Majid H. Mohajerani, E-mail:
| |
Collapse
|
31
|
Shen Y, Dana H, Abdelfattah AS, Patel R, Shea J, Molina RS, Rawal B, Rancic V, Chang YF, Wu L, Chen Y, Qian Y, Wiens MD, Hambleton N, Ballanyi K, Hughes TE, Drobizhev M, Kim DS, Koyama M, Schreiter ER, Campbell RE. A genetically encoded Ca 2+ indicator based on circularly permutated sea anemone red fluorescent protein eqFP578. BMC Biol 2018; 16:9. [PMID: 29338710 PMCID: PMC5771076 DOI: 10.1186/s12915-018-0480-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetically encoded calcium ion (Ca2+) indicators (GECIs) are indispensable tools for measuring Ca2+ dynamics and neuronal activities in vitro and in vivo. Red fluorescent protein (RFP)-based GECIs have inherent advantages relative to green fluorescent protein-based GECIs due to the longer wavelength light used for excitation. Longer wavelength light is associated with decreased phototoxicity and deeper penetration through tissue. Red GECI can also enable multicolor visualization with blue- or cyan-excitable fluorophores. RESULTS Here we report the development, structure, and validation of a new RFP-based GECI, K-GECO1, based on a circularly permutated RFP derived from the sea anemone Entacmaea quadricolor. We have characterized the performance of K-GECO1 in cultured HeLa cells, dissociated neurons, stem-cell-derived cardiomyocytes, organotypic brain slices, zebrafish spinal cord in vivo, and mouse brain in vivo. CONCLUSION K-GECO1 is the archetype of a new lineage of GECIs based on the RFP eqFP578 scaffold. It offers high sensitivity and fast kinetics, similar or better than those of current state-of-the-art indicators, with diminished lysosomal accumulation and minimal blue-light photoactivation. Further refinements of the K-GECO1 lineage could lead to further improved variants with overall performance that exceeds that of the most highly optimized red GECIs.
Collapse
Affiliation(s)
- Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Hod Dana
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
- Present address: Department of Neurosciences, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, 4195, USA
| | - Ahmed S Abdelfattah
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
- Present address: Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Ronak Patel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Jamien Shea
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Rosana S Molina
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, 59717, USA
| | - Bijal Rawal
- Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Vladimir Rancic
- Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Yu-Fen Chang
- LumiSTAR Biotechnology Incorporation, Nangang District, Taipei City, 115, Taiwan
| | - Lanshi Wu
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Yingche Chen
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Yong Qian
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Matthew D Wiens
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Nathan Hambleton
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada
| | - Klaus Ballanyi
- Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada
| | - Thomas E Hughes
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, 59717, USA
| | - Mikhail Drobizhev
- Department of Cell Biology and Neuroscience, Montana State University, Bozeman, MT, 59717, USA
| | - Douglas S Kim
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Minoru Koyama
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Eric R Schreiter
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Robert E Campbell
- Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2, Canada.
| |
Collapse
|
32
|
Helmchen F, Gilad A, Chen JL. Neocortical dynamics during whisker-based sensory discrimination in head-restrained mice. Neuroscience 2017; 368:57-69. [PMID: 28919043 DOI: 10.1016/j.neuroscience.2017.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 10/18/2022]
Abstract
A fundamental task frequently encountered by brains is to rapidly and reliably discriminate between sensory stimuli of the same modality, be it distinct auditory sounds, odors, visual patterns, or tactile textures. A key mammalian brain structure involved in discrimination behavior is the neocortex. Sensory processing not only involves the respective primary sensory area, which is crucial for perceptual detection, but additionally relies on cortico-cortical communication among several regions including higher-order sensory areas as well as frontal cortical areas. It remains elusive how these regions exchange information to process neural representations of distinct stimuli to bring about a decision and initiate appropriate behavioral responses. Likewise, it is poorly understood how these neural computations are conjured during task learning. In this review, we discuss recent studies investigating cortical dynamics during discrimination behaviors that utilize head-fixed behavioral tasks in combination with in vivo electrophysiology, two-photon calcium imaging, and cell-type-specific targeting. We particularly focus on information flow in distinct cortico-cortical pathways when mice use their whiskers to discriminate between different objects or different locations. Within the primary and secondary somatosensory cortices (S1 and S2, respectively) as well as vibrissae motor cortex (M1), intermingled functional representations of touch, whisking, and licking were found, which partially re-organized during discrimination learning. These findings provide first glimpses of cortico-cortical communication but emphasize that for understanding the complete process of discrimination it will be crucial to elucidate the details of how neural processing is coordinated across brain-wide neuronal networks including the S1-S2-M1 triangle and cortical areas beyond.
Collapse
Affiliation(s)
- Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Switzerland.
| | - Ariel Gilad
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Switzerland
| | - Jerry L Chen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Switzerland
| |
Collapse
|