1
|
Long DA, Gibbons KS, Horton SB, Johnson K, Buckley DHF, Erickson S, Festa M, d’Udekem Y, Alphonso N, Le Marsney R, Winlaw DS, Masterson K, van Loon K, Young PJ, Schibler A, Schlapbach LJ, Butt W. Neurodevelopmental Outcomes After Nitric Oxide During Cardiopulmonary Bypass for Open Heart Surgery: A Randomized Clinical Trial. JAMA Netw Open 2025; 8:e2458040. [PMID: 39908019 PMCID: PMC11800016 DOI: 10.1001/jamanetworkopen.2024.58040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/27/2024] [Indexed: 02/06/2025] Open
Abstract
Importance Children with congenital heart defects who undergo cardiopulmonary bypass (CPB) surgery are at risk for delayed or impaired neurodevelopmental outcomes. Nitric oxide (NO) added to the CPB oxygenator may reduce systemic inflammation due to CPB and improve recovery from surgery, including improved neurodevelopmental outcomes. Objective To investigate neurodevelopment, health-related quality of life (HRQOL), and factors associated with impaired neurodevelopment at 12 months post surgery in infants who received CPB with NO or standard CPB. Design, Setting, and Participants This double-masked randomized clinical trial was conducted in 6 centers in Australia, New Zealand, and the Netherlands between July 19, 2017, and April 28, 2021, with a preplanned prospective follow-up 12 months postrandomization completed on August 5, 2022. The cohort included 1364 infants younger than 2 years who underwent open heart surgery with CPB for congenital heart disease. Interventions The intervention group received NO 20 ppm into the CPB oxygenator. The control group received standard CPB. Main Outcomes and Measures The primary outcome was neurodevelopment, defined as the Ages and Stages Questionnaire, Third Edition (ASQ-3) total score. Secondary outcomes were HRQOL and functional status as measured by Pediatric Quality of Life Inventory and modified Pediatric Overall Performance Category scores, respectively. Sensitivity analyses modeled the outcome for patients lost to follow-up. Results Of 1318 infants alive 12 months after randomization, follow-up was performed in 927, with 462 patients in the NO group and 465 in the standard care group (median [IQR] age at follow-up, 16.6 [13.7-19.8] months; median [IQR] time since randomization, 12.7 [12.1-13.9] months; 516 male [55.7%]). There were no differences between the NO and standard care groups in ASQ-3 total score (mean [SD], 196.6 [75.4] vs 198.7 [73.8], respectively; adjusted mean difference, -2.24; 95% CI, -11.84 to 7.36). There were no differences in secondary outcomes. Prematurity (gestational age <37 weeks), univentricular lesions, congenital syndromes, and longer intensive care unit length of stay were associated with lower ASQ-3 total scores in adjusted multivariable analyses. Conclusions and Relevance In this randomized clinical trial of infants with congenital heart disease, NO administered via the CPB oxygenator did not improve neurodevelopmental outcomes or HRQOL 12 months after open heart surgery. Further research should explore homogenous cohorts with higher surgical risk and higher-dose or alternative therapies. Trial Registration ANZCTR Identifier: ACTRN12617000821392.
Collapse
Affiliation(s)
- Debbie A. Long
- School of Nursing, Centre for Healthcare Transformation, Queensland University of Technology, Brisbane, Australia
- Paediatric Intensive Care Unit, Queensland Children’s Hospital, Children’s Health Queensland, Brisbane, Australia
- Children’s Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Kristen S. Gibbons
- Children’s Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - Stephen B. Horton
- Cardiac Surgical Unit, Royal Children’s Hospital, Melbourne, Victoria, Australia
- Faculty of Medicine, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Clinical Sciences Theme, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
| | - Kerry Johnson
- Children’s Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - David H. F. Buckley
- Paediatric Intensive Care Unit, Starship Children’s Hospital, Auckland, New Zealand
| | - Simon Erickson
- Paediatric Critical Care, Perth Children’s Hospital, Western Australia and The University of Western Australia, Crawley, Australia
| | - Marino Festa
- Kids Critical Care Research, Paediatric Intensive Care Unit, Children’s Hospital at Westmead, Westmead, New South Wales, Australia
- Sydney Children’s Hospital Network, Sydney, New South Wales, Australia
| | - Yves d’Udekem
- Faculty of Medicine, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Children’s National Hospital and The George Washington University School of Medicine and Health Sciences, Washington, District of Columbia
| | - Nelson Alphonso
- Cardiac Surgery, Queensland Children’s Hospital, Brisbane, Australia
- School of Medicine, Children’s Health Clinical Unit, The University of Queensland, Brisbane, Australia
| | - Renate Le Marsney
- Children’s Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
| | - David S. Winlaw
- Heart Centre for Children, The Children’s Hospital at Westmead, Westmead, New South Wales, Australia
- Sydney Children’s Hospital Network and Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Kate Masterson
- Clinical Sciences Theme, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Paediatric Intensive Care Unit, Royal Children’s Hospital Melbourne, Melbourne, Victoria, Australia
| | - Kim van Loon
- Department of Anaesthesiology, University Medical Center Utrecht, Wilhelmina Children’s Hospital, Utrecht, the Netherlands
| | - Paul J. Young
- Intensive Care Unit, Wellington Hospital, Wellington, New Zealand
- Medical Research Institute of New Zealand, Wellington, New Zealand
- Australian and New Zealand Intensive Care Research Centre, Monash University, Melbourne, Victoria, Australia
- Department of Critical Care, University of Melbourne, Melbourne, Victoria, Australia
| | - Andreas Schibler
- James Cook University, Townsville, Queensland, Australia
- Critical Care Research Group, Wesley Medical Research, St Andrew’s War Memorial Hospital, Brisbane, Queensland, Australia
| | - Luregn J. Schlapbach
- Paediatric Intensive Care Unit, Queensland Children’s Hospital, Children’s Health Queensland, Brisbane, Australia
- Children’s Intensive Care Research Program, Child Health Research Centre, The University of Queensland, Brisbane, Australia
- Department of Intensive Care and Neonatology, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
- Children’s Research Center, University Children’s Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Warwick Butt
- Faculty of Medicine, Department of Paediatrics, University of Melbourne, Melbourne, Victoria, Australia
- Clinical Sciences Theme, Murdoch Children’s Research Institute, Melbourne, Victoria, Australia
- Department of Anaesthesiology, University Medical Center Utrecht, Wilhelmina Children’s Hospital, Utrecht, the Netherlands
- Department of Critical Care, University of Melbourne, Melbourne, Victoria, Australia
- Central Clinical School, Faculty of Medicine, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Morais I, Rodrigues S, Mas A, Escalon S, Borrego A, Nogueira F, Antunes ML. Severe Malaria in Angola: The Clinical Profile and Disease Outcome Among Adults from a Low-Endemic Area. Biomedicines 2024; 12:2639. [PMID: 39595203 PMCID: PMC11592004 DOI: 10.3390/biomedicines12112639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Severe malaria poses a significant public health concern in Angola, particularly among adults. This study assessed the clinical manifestations and outcomes of severe Plasmodium falciparum malaria in adult patients admitted to Hospital Central Dr. António Agostinho Neto of Lubango (HCL), Angola. METHODS The study retrospectively reviewed medical records of patients over 14 years old admitted with severe malaria during the first quarter of 2021 and 2022, coinciding with the peak transmission season. The World Health Organization (WHO) criteria were used to clarify the disease severity. The cohort included 640 patients-167 in 2021 and 473 in 2022-distributed across the following departments: the Intensive Care Unit (ICU; n = 81), Medicine (MED; n = 458) and Infectiology (INF; n = 101). RESULTS The median age was 26 years and 59.4% were males. Renal impairment was the most frequent severe manifestation, affecting 37.4% of cases. The mortality rate across the study period was 7%, showing a notable decrease from 10.2% in 2021 to 5.9% in 2022. The higher mortality rate in 2021 may reflect the impact of the COVID-19 pandemic, which limited hospital access and delayed care, resulting in more critical cases being admitted at a later stage. In 2022, with reduced COVID-19 pressures, earlier access to treatment may have improved outcomes, contributing to the lower mortality rate. CONCLUSIONS This study emphasizes the need to assess the clinical burden of severe malaria in low-endemic regions, where shifting patterns may signal emerging threats such as antimalarial drug resistance. Further research is essential to optimize control strategies and strengthen surveillance systems, reducing morbidity and mortality.
Collapse
Affiliation(s)
- Inês Morais
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Soraia Rodrigues
- Instituto de Higiene e Medicina Tropical, Universidade NOVA de Lisboa, Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Aida Mas
- Faculdade de Medicina da Universidade Agostinho Neto (FMUAN), Rua Principal da Camama, Distrito Urbano da Cidade Universitária, Talatona CP 815, Luanda, Angola
| | - Serguei Escalon
- Faculdade de Medicina da Universidade Agostinho Neto (FMUAN), Rua Principal da Camama, Distrito Urbano da Cidade Universitária, Talatona CP 815, Luanda, Angola
| | - Adalzira Borrego
- Faculdade de Medicina da Universidade Agostinho Neto (FMUAN), Rua Principal da Camama, Distrito Urbano da Cidade Universitária, Talatona CP 815, Luanda, Angola
| | - Fatima Nogueira
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade NOVA de Lisboa (UNL), Rua da Junqueira 100, 1349-008 Lisboa, Portugal
| | - Maria Lina Antunes
- Faculdade de Medicina da Universidade Agostinho Neto (FMUAN), Rua Principal da Camama, Distrito Urbano da Cidade Universitária, Talatona CP 815, Luanda, Angola
- Hospital Central de Lubango Dr. António Agostinho Neto (HCL), Rua Dr. António Agostinho Neto, Bairro Arco Íris, Lubango CEP 244, Huíla, Angola
| |
Collapse
|
3
|
Walker IS, Rogerson SJ. Pathogenicity and virulence of malaria: Sticky problems and tricky solutions. Virulence 2023; 14:2150456. [PMID: 36419237 PMCID: PMC9815252 DOI: 10.1080/21505594.2022.2150456] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/25/2022] Open
Abstract
Infections with Plasmodium falciparum and Plasmodium vivax cause over 600,000 deaths each year, concentrated in Africa and in young children, but much of the world's population remain at risk of infection. In this article, we review the latest developments in the immunogenicity and pathogenesis of malaria, with a particular focus on P. falciparum, the leading malaria killer. Pathogenic factors include parasite-derived toxins and variant surface antigens on infected erythrocytes that mediate sequestration in the deep vasculature. Host response to parasite toxins and to variant antigens is an important determinant of disease severity. Understanding how parasites sequester, and how antibody to variant antigens could prevent sequestration, may lead to new approaches to treat and prevent disease. Difficulties in malaria diagnosis, drug resistance, and specific challenges of treating P. vivax pose challenges to malaria elimination, but vaccines and other preventive strategies may offer improved disease control.
Collapse
Affiliation(s)
- Isobel S Walker
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| | - Stephen J Rogerson
- Department of Infectious Diseases, The University of Melbourne, The Doherty Institute, Melbourne, Australia
| |
Collapse
|
4
|
Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 2023; 19:688-709. [PMID: 37857843 DOI: 10.1038/s41582-023-00881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.
Collapse
Affiliation(s)
- Alexandros Hadjilaou
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany.
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Brandi
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Mathias Riehn
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| |
Collapse
|
5
|
Conroy AL, Datta D, Opoka RO, Batte A, Bangirana P, Gopinadhan A, Mellencamp KA, Akcan-Arikan A, Idro R, John CC. Cerebrospinal fluid biomarkers provide evidence for kidney-brain axis involvement in cerebral malaria pathogenesis. Front Hum Neurosci 2023; 17:1177242. [PMID: 37200952 PMCID: PMC10185839 DOI: 10.3389/fnhum.2023.1177242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 04/14/2023] [Indexed: 05/20/2023] Open
Abstract
Introduction Cerebral malaria is one of the most severe manifestations of malaria and is a leading cause of acquired neurodisability in African children. Recent studies suggest acute kidney injury (AKI) is a risk factor for brain injury in cerebral malaria. The present study evaluates potential mechanisms of brain injury in cerebral malaria by evaluating changes in cerebrospinal fluid measures of brain injury with respect to severe malaria complications. Specifically, we attempt to delineate mechanisms of injury focusing on blood-brain-barrier integrity and acute metabolic changes that may underlie kidney-brain crosstalk in severe malaria. Methods We evaluated 30 cerebrospinal fluid (CSF) markers of inflammation, oxidative stress, and brain injury in 168 Ugandan children aged 18 months to 12 years hospitalized with cerebral malaria. Eligible children were infected with Plasmodium falciparum and had unexplained coma. Acute kidney injury (AKI) on admission was defined using the Kidney Disease: Improving Global Outcomes criteria. We further evaluated blood-brain-barrier integrity and malaria retinopathy, and electrolyte and metabolic complications in serum. Results The mean age of children was 3.8 years (SD, 1.9) and 40.5% were female. The prevalence of AKI was 46.3% and multi-organ dysfunction was common with 76.2% of children having at least one organ system affected in addition to coma. AKI and elevated blood urea nitrogen, but not other measures of disease severity (severe coma, seizures, jaundice, acidosis), were associated with increases in CSF markers of impaired blood-brain-barrier function, neuronal injury (neuron-specific enolase, tau), excitatory neurotransmission (kynurenine), as well as altered nitric oxide bioavailability and oxidative stress (p < 0.05 after adjustment for multiple testing). Further evaluation of potential mechanisms suggested that AKI may mediate or be associated with CSF changes through blood-brain-barrier disruption (p = 0.0014), ischemic injury seen by indirect ophthalmoscopy (p < 0.05), altered osmolality (p = 0.0006) and through alterations in the amino acids transported into the brain. Conclusion In children with cerebral malaria, there is evidence of kidney-brain injury with multiple potential pathways identified. These changes were specific to the kidney and not observed in the context of other clinical complications.
Collapse
Affiliation(s)
- Andrea L. Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert O. Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
- Undergraduate Medical Education, The Aga Khan University, Nairobi, Kenya
| | - Anthony Batte
- Global Health Uganda, Kampala, Uganda
- Child Health and Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Paul Bangirana
- Global Health Uganda, Kampala, Uganda
- Department of Psychiatry, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Adnan Gopinadhan
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kagan A. Mellencamp
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ayse Akcan-Arikan
- Division of Critical Care Medicine, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, United States
- Division of Nephrology, Department of Pediatrics, Baylor College of Medicine, Texas Children’s Hospital, Houston, TX, United States
| | - Richard Idro
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Global Health Uganda, Kampala, Uganda
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Chandy C. John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
6
|
Conroy AL, Datta D, Hoffmann A, Wassmer SC. The kidney-brain pathogenic axis in severe falciparum malaria. Trends Parasitol 2023; 39:191-199. [PMID: 36737313 PMCID: PMC11071448 DOI: 10.1016/j.pt.2023.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/05/2023]
Abstract
Severe falciparum malaria is a medical emergency and a leading cause of death and neurodisability in endemic areas. Common complications include acute kidney injury (AKI) and cerebral malaria, and recent studies have suggested links between kidney and brain dysfunction in Plasmodium falciparum infection. Here, we review these new findings and present the hypothesis of a pivotal pathogenic crosstalk between the kidneys and the brain in severe falciparum malaria. We highlight the evidence of a role for distant organ involvement in the development of cerebral malaria and subsequent neurocognitive impairment post-recovery, describe the challenges associated with current diagnostic shortcomings for both AKI and brain involvement in severe falciparum malaria, and explore novel potential therapeutic strategies.
Collapse
Affiliation(s)
- Andrea L Conroy
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Dibyadyuti Datta
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Angelika Hoffmann
- University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, University of Bern, Bern, Switzerland
| | - Samuel C Wassmer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
7
|
Omar M, Abdelal HO. Nitric oxide in parasitic infections: a friend or foe? J Parasit Dis 2022; 46:1147-1163. [PMID: 36457767 PMCID: PMC9606182 DOI: 10.1007/s12639-022-01518-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/20/2022] [Indexed: 11/28/2022] Open
Abstract
The complex interaction between the host and the parasite remains a puzzling question. Control of parasitic infections requires an efficient immune response that must be balanced against destructive pathological consequences. Nitric oxide is a nitrogenous free radical which has many molecular targets and serves diverse functions. Apart from being a signaling messenger, nitric oxide is critical for controlling numerous infections. There is still controversy surrounding the exact role of nitric oxide in the immune response against different parasitic species. It proved protective against intracellular protozoa, as well as extracellular helminths. At the same time, it plays a pivotal role in stimulating detrimental pathological changes in the infected hosts. Several reports have discussed the anti-parasitic and immunoregulatory functions of nitric oxide, which could directly influence the control of the infection. Nevertheless, there is scarce literature addressing the harmful cytotoxic impacts of this mediator. Thus, this review provides insights into the most updated concepts and controversies regarding the dual nature and opposing sides of nitric oxide during the course of different parasitic infections.
Collapse
Affiliation(s)
- Marwa Omar
- Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Gameyet Almohafza St. 1, Menya Al-Kamh, City of Zagazig, 44511 Sharkia Governorate Egypt
| | - Heba O. Abdelal
- LIS: Cross-National Data Center, Maison des Sciences Humaines - 5e étage, 11- porte des Sciences, L-4366 Esch-Belval, Luxembourg
| |
Collapse
|
8
|
Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202944. [PMID: 36300890 PMCID: PMC9798991 DOI: 10.1002/advs.202202944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.
Collapse
Affiliation(s)
- Oscar Bate Akide Ndunge
- Department of Internal MedicineSection of Infectious DiseasesYale University School of Medicine300 Cedar StreetNew HavenCT06510USA
| | - Nicole Kilian
- Centre for Infectious Diseases, ParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Mootaz M. Salman
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
9
|
Gomes ARQ, Cunha N, Varela ELP, Brígido HPC, Vale VV, Dolabela MF, de Carvalho EP, Percário S. Oxidative Stress in Malaria: Potential Benefits of Antioxidant Therapy. Int J Mol Sci 2022; 23:ijms23115949. [PMID: 35682626 PMCID: PMC9180384 DOI: 10.3390/ijms23115949] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/07/2023] Open
Abstract
Malaria is an infectious disease and a serious public health problem in the world, with 3.3 billion people in endemic areas in 100 countries and about 200 million new cases each year, resulting in almost 1 million deaths in 2018. Although studies look for strategies to eradicate malaria, it is necessary to know more about its pathophysiology to understand the underlying mechanisms involved, particularly the redox balance, to guarantee success in combating this disease. In this review, we addressed the involvement of oxidative stress in malaria and the potential benefits of antioxidant supplementation as an adjuvant antimalarial therapy.
Collapse
Affiliation(s)
- Antonio Rafael Quadros Gomes
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
| | - Natasha Cunha
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
| | - Everton Luiz Pompeu Varela
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Heliton Patrick Cordovil Brígido
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
| | - Valdicley Vieira Vale
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
| | - Maria Fâni Dolabela
- Post-Graduate Program in Pharmaceutica Innovation, Institute of Health Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (A.R.Q.G.); (H.P.C.B.); (V.V.V.); (M.F.D.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Eliete Pereira de Carvalho
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
| | - Sandro Percário
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil; (N.C.); (E.L.P.V.); (E.P.d.C.)
- Post-graduate Program in Biodiversity and Biotechnology (BIONORTE), Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, PA, Brazil
- Correspondence:
| |
Collapse
|
10
|
Redaelli S, Magliocca A, Malhotra R, Ristagno G, Citerio G, Bellani G, Berra L, Rezoagli E. Nitric oxide: Clinical applications in critically ill patients. Nitric Oxide 2022; 121:20-33. [PMID: 35123061 PMCID: PMC10189363 DOI: 10.1016/j.niox.2022.01.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/19/2022] [Accepted: 01/31/2022] [Indexed: 12/19/2022]
Abstract
Inhaled nitric oxide (iNO) acts as a selective pulmonary vasodilator and it is currently approved by the FDA for the treatment of persistent pulmonary hypertension of the newborn. iNO has been demonstrated to effectively decrease pulmonary artery pressure and improve oxygenation, while decreasing extracorporeal life support use in hypoxic newborns affected by persistent pulmonary hypertension. Also, iNO seems a safe treatment with limited side effects. Despite the promising beneficial effects of NO in the preclinical literature, there is still a lack of high quality evidence for the use of iNO in clinical settings. A variety of clinical applications have been suggested in and out of the critical care environment, aiming to use iNO in respiratory failure and pulmonary hypertension of adults or as a preventative measure of hemolysis-induced vasoconstriction, ischemia/reperfusion injury and as a potential treatment of renal failure associated with cardiopulmonary bypass. In this narrative review we aim to present a comprehensive summary of the potential use of iNO in several clinical conditions with its suggested benefits, including its recent application in the scenario of the COVID-19 pandemic. Randomized controlled trials, meta-analyses, guidelines, observational studies and case-series were reported and the main findings summarized. Furthermore, we will describe the toxicity profile of NO and discuss an innovative proposed strategy to produce iNO. Overall, iNO exhibits a wide range of potential clinical benefits, that certainly warrants further efforts with randomized clinical trials to determine specific therapeutic roles of iNO.
Collapse
Affiliation(s)
- Simone Redaelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Aurora Magliocca
- Department of Medical Physiopathology and Transplants, University of Milan, Milano, Italy
| | - Rajeev Malhotra
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Giuseppe Ristagno
- Department of Medical Physiopathology and Transplants, University of Milan, Milano, Italy; Department of Anesthesiology, Intensive Care and Emergency, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Neuroscience Department, NeuroIntensive Care Unit, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Giacomo Bellani
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Emergency and Intensive Care, ECMO Center, San Gerardo University Hospital, Monza, Italy
| | - Lorenzo Berra
- Harvard Medical School, Boston, MA, USA; Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA; Respiratory Care Department, Massachusetts General Hospital, Boston, MA, USA
| | - Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy; Department of Emergency and Intensive Care, ECMO Center, San Gerardo University Hospital, Monza, Italy.
| |
Collapse
|
11
|
Heme oxygenase-1, carbon monoxide, and malaria – The interplay of chemistry and biology. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Zheng Z, Liu H, Wang X, Zhang Y, Qu S, Yang Y, Deng S, Chen L, Zhu X, Li Y. Artesunate and Tetramethylpyrazine Exert Effects on Experimental Cerebral Malaria in a Mechanism of Protein S-Nitrosylation. ACS Infect Dis 2021; 7:2836-2849. [PMID: 34254783 DOI: 10.1021/acsinfecdis.1c00085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cerebral malaria (CM) is caused by Plasmodium falciparum, resulting in severe sequelae; one of its pathogenic factors is the low bioavailability of nitric oxide (NO). Our previous study suggested that the combination of artesunate (AS) and tetramethylpyrazine (TMP) exerts an adjuvant therapeutic effect on the symptoms of experimental CM (ECM) and that NO regulation plays an important role. In the present study, we further verified the effects of AS+TMP on cerebral blood flow (CBF) and detected NO-related indicators. We focused on the role of NO through S-nitrosoproteome based on previous proteomics data and explored the mechanism of AS+TMP for improving pathological ECM symptoms. We observed that AS+TMP reduces adhesion, increases CBF, and regulates NO synthase (NOS) activity, thereby regulating the level of S-nitrosothiols, such as metabolism-related or neuro-associated receptors, for improving ECM symptoms. These results demonstrated that AS+TMP could be an effective strategy in adjuvant therapy of CM.
Collapse
Affiliation(s)
- Zhongyuan Zheng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hui Liu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xi Wang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yu Zhang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuiqing Qu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanmin Yang
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shuoqiu Deng
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Lina Chen
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoxin Zhu
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yujie Li
- Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| |
Collapse
|
13
|
Affiliation(s)
- Geoffrey Guenther
- Department of Pediatrics, Children's National Hospital, Washington, DC, USA
| | - Daniel Muller
- The George Washington University School of Medicine and Health Sciences, Washington, DC, USA
| | - Dominic Moyo
- Department of Paediatric and Child Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Douglas Postels
- Department of Pediatric Neurology, George Washington University/ Children's National Medical Center; Washington DC, USA; Blantyre Malaria Project; Blantyre, Malawi, Street Address: Department of Neurology; 111 Michigan Avenue NW; Washington DC; 20010; USA
| |
Collapse
|
14
|
Zou Y, Tuo F, Zhang Z, Guo J, Yuan Y, Zhang H, Xu Z, Pan Z, Tang Y, Deng C, Julie N, Wu W, Guo W, Li C, Huang X, Xu Q, Song J, Wang Q. Safety and Efficacy of Adjunctive Therapy With Artesunate in the Treatment of Severe Malaria: A Systematic Review and Meta-Analysis. Front Pharmacol 2020; 11:596697. [PMID: 33343367 PMCID: PMC7748123 DOI: 10.3389/fphar.2020.596697] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 10/02/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: The purpose of this meta-analysis of longitudinal studies is to determine the safety and efficacy of artesunate combined with other forms of adjunctive therapies for severe malaria. Methods: Following the PRISMA guidelines, we searched multiple databases with the search terms "artesunate" and "adjunctive therapy" and "severe malaria" in July 2020. If the search showed a randomized controlled trial, the study was included in this meta-analysis. The random-effects model was used to calculate the combined incidence rate and relative risk or risk difference. Results: This meta-analysis included nine longitudinal studies with 724 participants. We found that the mortality rates in the artesunate monotherapy group and the artesunate + adjuvant therapy group are similar (RD = -0.02, 95% confidence interval: -0.06-0.02). The incidence of adverse reactions in the artesunate monotherapy group and the artesunate + adjuvant therapy group was also similar. Conclusion: No significant differences in safety and efficacy were observed between the artesunate monotherapy group and the artesunate + adjuvant therapy group. Higher quality and rigorously designed randomized controlled studies are needed to validate our findings.
Collapse
Affiliation(s)
- Yuanyuan Zou
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fei Tuo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiqi Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiawen Guo
- Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueming Yuan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongying Zhang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhiyong Xu
- Institute of Science and Technology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ziyi Pan
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yexiao Tang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changsheng Deng
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Nadia Julie
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanting Wu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenfeng Guo
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Changqing Li
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinan Huang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qin Xu
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jianping Song
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Malaria threatens the lives of over 200 million individuals with the disease each year. Plasmodium falciparum is the predominant cause of severe malaria which may be lethal and result in neurocognitive sequelae despite appropriate treatment. We review recent advances regarding the pathophysiology of severe malaria and treatment recommendations for severe disease in the United States. RECENT FINDINGS Infected red blood cell (iRBC) sequestration in microvascular beds is a critical factor in the development of severe malaria syndromes. Interactions between iRBC variant adhesive peptides and the endothelial protein C receptor (EPCR) result in perturbations of coagulation and cytopreservation pathways. Alterations in the protein C/EPCR axis are implicated in cerebral malaria, respiratory distress, and anemia. Brain MRIs reveal the posterior reversible encephalopathy syndrome in cerebral malaria patients. Transcriptomic analysis reveals commonalities in disease pathogenesis in children and adults despite differences in clinical presentation. US guidelines for severe malaria treatment currently recommend intravenous artesunate including in pregnant women and children. SUMMARY Despite advances in our understanding of malarial pathogenesis much remains unknown. Antimalarial agents eradicate parasites but no treatments are available to prevent or ameliorate severe malaria or prevent disease sequelae. Further study is needed to develop effective adjunctive therapies.
Collapse
|
16
|
Varo R, Erice C, Johnson S, Bassat Q, Kain KC. Clinical trials to assess adjuvant therapeutics for severe malaria. Malar J 2020; 19:268. [PMID: 32709257 PMCID: PMC7382078 DOI: 10.1186/s12936-020-03340-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/17/2020] [Indexed: 01/07/2023] Open
Abstract
Despite potent anti-malarial treatment, mortality rates associated with severe falciparum malaria remain high. To attempt to improve outcome, several trials have assessed a variety of potential adjunctive therapeutics, however none to date has been shown to be beneficial. This may be due, at least partly, to the therapeutics chosen and clinical trial design used. Here, we highlight three themes that could facilitate the choice and evaluation of putative adjuvant interventions for severe malaria, paving the way for their assessment in randomized controlled trials. Most clinical trials of adjunctive therapeutics to date have been underpowered due to the large number of participants required to reach mortality endpoints, rendering these study designs challenging and expensive to conduct. These limitations may be mitigated by the use of risk-stratification of participants and application of surrogate endpoints. Appropriate surrogate endpoints include direct measures of pathways causally involved in the pathobiology of severe and fatal malaria, including markers of host immune and endothelial activation and microcirculatory dysfunction. We propose using circulating markers of these pathways to identify high-risk participants that would be most likely to benefit from adjunctive therapy, and further by adopting these biomarkers as surrogate endpoints; moreover, choosing interventions that target deleterious host immune responses that directly contribute to microcirculatory dysfunction, multi-organ dysfunction and death; and, finally, prioritizing where possible, drugs that act on these pathways that are already approved by the FDA, or other regulators, for other indications, and are known to be safe in target populations, including children. An emerging understanding of the critical role of the host response in severe malaria pathogenesis may facilitate both clinical trial design and the search of effective adjunctive therapeutics.
Collapse
Affiliation(s)
- Rosauro Varo
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique
| | - Clara Erice
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | | | - Quique Bassat
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kevin C Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, ON, Canada. .,Department of Medicine, Division of Infectious Diseases, Tropical Disease Unit, University of Toronto, Toronto, Canada.
| |
Collapse
|
17
|
Pereira DMS, Carvalho Júnior AR, Lacerda EMDCB, da Silva LCN, Marinho CRF, André E, Fernandes ES. Oxidative and nitrosative stresses in cerebral malaria: can we target them to avoid a bad prognosis? J Antimicrob Chemother 2020; 75:1363-1373. [PMID: 32105324 DOI: 10.1093/jac/dkaa032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
There is currently a global effort to reduce malaria morbidity and mortality. However, malaria still results in the deaths of thousands of people every year. Malaria is caused by Plasmodium spp., parasites transmitted through the bite of an infected female Anopheles mosquito. Treatment timing plays a decisive role in reducing mortality and sequelae associated with the severe forms of the disease such as cerebral malaria (CM). The available antimalarial therapy is considered effective but parasite resistance to these drugs has been observed in some countries. Antimalarial drugs act by increasing parasite lysis, especially through targeting oxidative stress pathways. Here we discuss the roles of reactive oxygen species and reactive nitrogen intermediates in CM as a result of host-parasite interactions. We also present evidence of the potential contribution of oxidative and nitrosative stress-based antimalarial drugs to disease treatment and control.
Collapse
Affiliation(s)
| | | | | | | | | | - Eunice André
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Elizabeth Soares Fernandes
- Programa de Pós-graduação, Universidade CEUMA, São Luís, MA, Brazil.,Instituto de Pesquisa Pelé Pequeno Príncipe, Curitiba, PR, Brazil.,Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| |
Collapse
|
18
|
Erice C, Kain KC. New insights into microvascular injury to inform enhanced diagnostics and therapeutics for severe malaria. Virulence 2019; 10:1034-1046. [PMID: 31775570 PMCID: PMC6930010 DOI: 10.1080/21505594.2019.1696621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Severe malaria (SM) has high mortality and morbidity rates despite treatment with potent antimalarials. Disease onset and outcome is dependent upon both parasite and host factors. Infected erythrocytes bind to host endothelium contributing to microvascular occlusion and dysregulated inflammatory and immune host responses, resulting in endothelial activation and microvascular damage. This review focuses on the mechanisms of host endothelial and microvascular injury. Only a small percentage of malaria infections (≤1%) progress to SM. Early recognition and treatment of SM can improve outcome, but we lack triage tools to identify SM early in the course of infection. Current point-of-care pathogen-based rapid diagnostic tests do not address this critical barrier. Immune and endothelial activation have been implicated in the pathobiology of SM. We hypothesize that measuring circulating mediators of these pathways at first clinical presentation will enable early triage and treatment of SM. Moreover, that host-based interventions that modulate these pathways will stabilize the microvasculature and improve clinical outcome over that of antimalarial therapy alone.
Collapse
Affiliation(s)
- Clara Erice
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Kevin C Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
19
|
Evaluating Immunopathogenic Biomarkers During Severe Malaria Illness as Modifiers of the Neuropsychologic Benefits of Computer Cognitive Games Rehabilitation in Ugandan Children. Pediatr Infect Dis J 2019; 38:840-848. [PMID: 31232898 PMCID: PMC6629482 DOI: 10.1097/inf.0000000000002367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND We explored 3 immunopathogenic biomarkers collected during acute malaria illness as potential moderators of gains from a computerized cognitive rehabilitation training (CCRT) intervention. METHOD Von Willebrand Factor (vWF), tumor necrosis factor (TNF) and Regulated on Activation, Normal T Expressed and Secreted (RANTES) were assayed from plasma and cerebral spinal fluid (CSF) of children during acute severe malaria anemia or cerebral malaria. Two years after acute malaria illness, 150 surviving children and 150 nonmalaria community controls (CCs) from their households 6-12 years old entered a 3-arm randomized controlled trial of titrating and nontitrating CCRT against no CCRT. Tests of cognition [Kaufman Assessment Battery for Children (KABC)], Tests of Variables of Attention and Achenbach Child Behavior Checklist (CBCL) were administered before and after 24 CCRT sessions over a 3-month period, and at 1-year follow-up. Differences in outcomes by trial arms and biomarker levels were evaluated using linear mixed effects models. RESULTS Severe malaria survivors with lower levels of vWF, lower CSF levels of TNF and higher levels of plasma and CSF RANTES had better KABC cognitive performance after both titrating and nontitrating CCRT compared with no CCRT. For the CBCL, high plasma RANTES was associated with no benefit from either the titrating and nontitrating CCRT, whereas high TNF plasma was predictive of the benefit for both interventions. These biomarker moderating effects were not evident for CC children. CONCLUSIONS Severe malaria immunopathogenic biomarkers may be related to poorer long-term brain/behavior function as evidenced by diminished benefit from a computerized cognitive rehabilitation intervention.
Collapse
|
20
|
Datta D, Namazzi R, Conroy AL, Cusick SE, Hume HA, Tagoola A, Ware RE, Opoka RO, John CC. Zinc for Infection Prevention in Sickle Cell Anemia (ZIPS): study protocol for a randomized placebo-controlled trial in Ugandan children with sickle cell anemia. Trials 2019; 20:460. [PMID: 31349866 PMCID: PMC6660664 DOI: 10.1186/s13063-019-3569-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 07/10/2019] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Sickle cell anemia (SCA) is the most common inherited hemoglobinopathy worldwide. Infection is a major cause of illness and death in children with SCA, especially in sub-Saharan Africa where an estimated 50-90% of affected children die before their fifth birthday. Interventions to reduce the incidence and severity of infections are needed urgently. A high proportion of adults and children with SCA are zinc-deficient, and zinc deficiency leads to impaired immunity and an increased risk of infection. Zinc supplementation has been shown to decrease the risk of infection in adolescents and adults, but there are no data on the effectiveness of zinc for prevention of infection in children < 5 years of age with SCA. METHODS/DESIGN The study will be a randomized, placebo-controlled, double-blind clinical trial in which 250 Ugandan children 1.00-4.99 years of age with SCA will receive daily zinc supplementation (10 mg oral dispersible tablet) or identical placebo for 12 months. DISCUSSION If this trial shows a reduction in severe or invasive infection incidence, it would be the basis for a multi-site, multi-country clinical trial to assess real-world safety and efficacy of zinc in African children with SCA. Since zinc is safe, inexpensive, and easy to administer, this trial has the potential to improve the health of hundreds of thousands of African children with SCA through reduction of infection-related morbidity and mortality. TRIAL REGISTRATION Clinicaltrials.gov, NCT03528434. Registered on May 17, 2018 Protocol Version: 1.0. Date: Dec 11, 2017 Sponsor: Indiana University. Sponsor's protocol identifier, 1712339562.
Collapse
Affiliation(s)
- Dibyadyuti Datta
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St, R4 402D, Indianapolis, IN, 46202, USA
| | - Ruth Namazzi
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Andrea L Conroy
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St, R4 402D, Indianapolis, IN, 46202, USA
| | - Sarah E Cusick
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | | | | | | | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Chandy C John
- Ryan White Center for Pediatric Infectious Disease and Global Health, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St, R4 402D, Indianapolis, IN, 46202, USA.
| |
Collapse
|
21
|
Glennon EKK, Dankwa S, Smith JD, Kaushansky A. Opportunities for Host-targeted Therapies for Malaria. Trends Parasitol 2018; 34:843-860. [PMID: 30122551 PMCID: PMC6168423 DOI: 10.1016/j.pt.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Despite the recent successes of artemisinin-based antimalarial drugs, many still die from severe malaria, and eradication efforts are hindered by the limited drugs currently available to target transmissible gametocyte parasites and liver-resident dormant Plasmodium vivax hypnozoites. Host-targeted therapy is a new direction for infectious disease drug development and aims to interfere with host molecules, pathways, or networks that are required for infection or that contribute to disease. Recent advances in our understanding of host pathways involved in parasite development and pathogenic mechanisms in severe malaria could facilitate the development of host-targeted interventions against Plasmodium infection and malaria disease. This review discusses new opportunities for host-targeted therapeutics for malaria and the potential to harness drug polypharmacology to simultaneously target multiple host pathways using a single drug intervention.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA; These authors made an equal contribution
| | - Selasi Dankwa
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; These authors made an equal contribution
| | - Joseph D Smith
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA.
| |
Collapse
|
22
|
Conroy AL, Hawkes MT, Elphinstone R, Opoka RO, Namasopo S, Miller C, John CC, Kain KC. Chitinase-3-like 1 is a biomarker of acute kidney injury and mortality in paediatric severe malaria. Malar J 2018; 17:82. [PMID: 29448936 PMCID: PMC5815237 DOI: 10.1186/s12936-018-2225-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/07/2018] [Indexed: 12/16/2022] Open
Abstract
Background Chitinase-3-like 1 (CHI3L1) is a glycoprotein elevated in paediatric severe malaria, and an emerging urinary biomarker of acute kidney injury (AKI). Based on the hypothesis that elevated CHI3L1 levels in malaria are associated with disease severity, the relationship between plasma CHI3L1 levels, AKI and mortality was investigated in Ugandan children enrolled in a clinical trial evaluating inhaled nitric oxide (iNO) as an adjunctive therapy for severe malaria. Methods Plasma CHI3L1 levels were measured daily for 4 days in children admitted to hospital with severe malaria and at day 14 follow up. AKI was defined using the Kidney Disease: Improving Global Outcomes consensus criteria. This is a secondary analysis of a randomized double-blind placebo-controlled trial of iNO versus placebo as an adjunctive therapy for severe malaria. Inclusion criteria were: age 1–10 years, and selected criteria for severe malaria. Exclusion criteria included suspected bacterial meningitis, known chronic illness including renal disease, haemoglobinopathy, or severe malnutrition. iNO was administered by non-rebreather mask for up to 72 h at 80 ppm. Results CHI3L1 was elevated in patients with AKI and remained higher over hospitalization (p < 0.0001). Admission CHI3L1 levels were elevated in children who died. By multivariable analysis logCHI3L1 levels were associated with increased risk of in-hospital death (relative risk, 95% CI 4.10, 1.32–12.75, p = 0.015) and all-cause 6 month mortality (3.21, 1.47–6.98, p = 0.003) following correction for iNO and AKI. Treatment with iNO was associated with delayed CHI3L1 recovery with a daily decline of 34% in the placebo group versus 29% in the iNO group (p = 0.012). CHI3L1 levels correlated with markers of inflammation (CRP, sTREM-1, CXCL10), endothelial activation (Ang-2, sICAM-1) and intravascular haemolysis (LDH, haem, haemopexin). Conclusions CHI3L1 is a novel biomarker of malaria-associated AKI and an independent risk factor for mortality that is associated with well-established pathways of severe malaria pathogenesis including inflammation, endothelial activation, and haemolysis. Trial registration Clinicaltrials.gov, NCT01255215. Registered December 7th 2010 Electronic supplementary material The online version of this article (10.1186/s12936-018-2225-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrea L Conroy
- Department of Pediatrics, Indiana University School of Medicine, 1044 West Walnut St., Building 4, Indianapolis, IN, 46202, USA. .,Sandra Rotman Centre for Global Health, Toronto General Hospital, University Health Network, MaRS Centre, 101 College St. TMDT 10-360A, Toronto, ON, M5G 1L7, Canada. .,Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada.
| | - Michael T Hawkes
- Division of Pediatric Infectious Diseases, 3-593 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, T6G1C9, Canada
| | - Robyn Elphinstone
- Sandra Rotman Centre for Global Health, Toronto General Hospital, University Health Network, MaRS Centre, 101 College St. TMDT 10-360A, Toronto, ON, M5G 1L7, Canada
| | - Robert O Opoka
- Department of Pediatrics and Child Health, Makerere University, Kampala, Uganda
| | - Sophie Namasopo
- Department of Pediatrics, Jinja Regional Referral Hospital, P.O. Box 43, Jinja, Uganda
| | | | - Chandy C John
- Department of Pediatrics, Indiana University School of Medicine, 1044 West Walnut St., Building 4, Indianapolis, IN, 46202, USA
| | - Kevin C Kain
- Sandra Rotman Centre for Global Health, Toronto General Hospital, University Health Network, MaRS Centre, 101 College St. TMDT 10-360A, Toronto, ON, M5G 1L7, Canada.,Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|