1
|
Das P, Bose R, Paul M, Nandy D, Basak T, Ain R. IL1β-NFκβ-Myocardin signaling axis governs trophoblast-directed plasticity of vascular smooth muscle cells. FASEB J 2024; 38:e23637. [PMID: 38720403 DOI: 10.1096/fj.202302403r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/27/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024]
Abstract
Vascular smooth muscle cell (VSMC) plasticity is fundamental in uterine spiral artery remodeling during placentation in Eutherian mammals. Our previous work showed that the invasion of trophoblast cells into uterine myometrium coincides with a phenotypic change of VSMCs. Here, we elucidate the mechanism by which trophoblast cells confer VSMC plasticity. Analysis of genetic markers on E13.5, E16.5, and E19.5 in the rat metrial gland, the entry point of uterine arteries, revealed that trophoblast invasion is associated with downregulation of MYOCARDIN, α-smooth muscle actin, and calponin1, and concomitant upregulation of Smemb in VSMCs. Myocardin overexpression or knockdown in VSMCs led to upregulation or downregulation of contractile markers, respectively. Co-culture of trophoblast cells with VSMCs decreased MYOCARDIN expression along with compromised expression of contractile markers in VSMCs. However, co-culture of trophoblast cells with VSMCs overexpressing MYOCARDIN inhibited their change in phenotype, whereas, overexpression of transactivation domain deleted MYOCARDIN failed to elicit this response. Furthermore, the co-culture of trophoblast cells with VSMCs led to the activation of NFκβ signaling. Interestingly, despite producing IL-1β, trophoblast cells possess only the decoy receptor, whereas, VSMCs possess the IL-1β signaling receptor. Treatment of VSMCs with exogenous IL-1β led to a decrease in MYOCARDIN and an increase in phosphorylation of NFκβ. The effect of trophoblast cells in the downregulation of MYOCARDIN in VSMCs was reversed by blocking NFκβ translocation to the nucleus. Together, these data highlight that trophoblast cells direct VSMC plasticity, and trophoblast-derived IL-1β is a key player in downregulating MYOCARDIN via the NFκβ signaling pathway.
Collapse
Affiliation(s)
- Priyanka Das
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rumela Bose
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Madhurima Paul
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Debdyuti Nandy
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Trishita Basak
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
2
|
Shi L, Hao M, Qu G, Xu Y, Cui Z, Geng L, Kuang H. The Key Role of Liraglutide in Preventing Autophagy of Vascular Smooth Muscle Cells in High Glucose Conditions. Balkan Med J 2024; 41:54-63. [PMID: 37953594 PMCID: PMC10767783 DOI: 10.4274/balkanmedj.galenos.2023.2023-8-44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Background The glucagon-like peptide-1 (GLP-1) receptor agonist liraglutide (LIRA) is a potential hypoglycemic drug with anti-atherosclerosis (AS) effects. Autophagy in the vascular smooth muscle cells (VSMCs) facilitates AS. However, the role of autophagy in the anti-AS mechanism of LIRA remains unclear. Aims To examine the role and mechanisms of autophagy in LIRA’s improvement of the biological characteristics of VSMCs in high glucose conditions. Study Design Experimental animal study. Methods VSMCs isolated from the thoracic aorta of male SD rats were subjected to a high glucose (HG) condition (25 mM) in Dulbecco’s Modified Eagle’s Medium with or without LIRA, the GLP-1 receptor antagonist exendin9-39 (Exe9-39), a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), and autophagy inhibitors (3-methyladenine [3-MA] and bafilomycin A1 [Baf A1]). Acridine orange staining, western blotting, transmission electron microscopy, and mCherry-GFP-LC3 transfection were performed to evaluate the autophagy flux. Additionally, VSMC migration, calcification, proliferation, and apoptosis in HG conditions were observed. Results Addition of LIRA alone or in combination with autophagy inhibitors significantly downregulated Beclin, increased the LC3-II/LC3-I ratio, and upregulated p62 in VSMCs in HG conditions. Furthermore, autophagolysosome formation was markedly curbed after treatment with LIRA and/or autophagy inhibitors. Inhibition of autophagy by LIRA and/or the autophagy inhibitors attenuated VSMC phenotype conversion, proliferation, migration, and calcification and promoted VSMC apoptosis in HG conditions. This protective role of LIRA was augmented by LY294002, but inhibited by Exe9-39. Conclusion LIRA plays a significant role in the improvement of the biological features of VSMCs in HG conditions.
Collapse
Affiliation(s)
- Lili Shi
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- These authors contributed equally
| | - Ming Hao
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- These authors contributed equally
| | - Guangjing Qu
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yingying Xu
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhe Cui
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Lin Geng
- Department of Cadre Ward, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongyu Kuang
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Momeni Z, Danesh S, Ahmadpour M, Eshraghi R, Farkhondeh T, Pourhanifeh MH, Samarghandian S. Protective Roles and Therapeutic Effects of Gallic Acid in the Treatment of Cardiovascular Diseases: Current Trends and Future Directions. Curr Med Chem 2024; 31:3733-3751. [PMID: 37815180 DOI: 10.2174/0109298673259299230921150030] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/19/2023] [Accepted: 08/18/2023] [Indexed: 10/11/2023]
Abstract
Cardiovascular diseases (CVDs) are serious life-threatening illnesses and significant problematic issues for public health having a heavy economic burden on all society worldwide. The high incidence of these diseases as well as high mortality rates make them the leading causes of death and disability. Therefore, finding novel and more effective therapeutic methods is urgently required. Gallic acid, an herbal medicine with numerous biological properties, has been utilized in the treatment of various diseases for thousands of years. It has been demonstrated that gallic acid possesses pharmacological potential in regulating several molecular and cellular processes such as apoptosis and autophagy. Moreover, gallic acid has been investigated in the treatment of CVDs both in vivo and in vitro. Herein, we aimed to review the available evidence on the therapeutic application of gallic acid for CVDs including myocardial ischemia-reperfusion injury and infarction, drug-induced cardiotoxicity, hypertension, cardiac fibrosis, and heart failure, with a focus on underlying mechanisms.
Collapse
Affiliation(s)
- Zahra Momeni
- Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sepideh Danesh
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Ahmadpour
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Eshraghi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Tahereh Farkhondeh
- Department of Toxicology and Pharmacology, School of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossein Pourhanifeh
- Research Hub Institute, Tehran University of Medical Sciences, Tehran, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Saeed Samarghandian
- University of Neyshabur Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| |
Collapse
|
4
|
Millet shell polyphenols ameliorate atherosclerosis development by suppressing foam cell formation. J Nutr Biochem 2023; 115:109271. [PMID: 36657531 DOI: 10.1016/j.jnutbio.2023.109271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/19/2023]
Abstract
Polyphenols are bioactive compounds that occur naturally in plants, and they are widely used for disease prevention and health maintenance. In present study, the effects of millet shell polyphenols (MSPs) in thwarting atherosclerosis were explored. The results found that MSPs effectively inhibited the ability of macrophages to phagocytose lipids, and reduced the secretion of inflammatory factors IL-1β and TNF-α by obstructing the expression of STAT3 and NF-κB in macrophages. Eventually, MSPs hindered the formation of macrophage-derived foam cells. On the other hand, MSPs promoted the transformation of HASMCs from synthesis to contraction by regulating the gene expression levels of smooth muscle myosin heavy chain (SMMHC), desmin (DES), smoothelin (SMTN) and elastin (ELN). Lipid phagocytosis inhibited along with this process, thereby reducing the formation of smooth muscle cell-derived foam cells. In addition, experiments in ApoE-/- mice also showed that MSPs increased high-density lipoprotein cholesterol (HDL-C). Collectively, MSPs play a role in preventing atherosclerosis by impeding foam cell production. This study offers an integrative strategy for thwarting plaque formation in the early stages of atherosclerosis in cardiovascular disease.
Collapse
|
5
|
Suresh S, Larson J, Jenrow KA. Chronic neuroinflammation impairs waste clearance in the rat brain. Front Neuroanat 2022; 16:1013808. [PMID: 36569282 PMCID: PMC9768431 DOI: 10.3389/fnana.2022.1013808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Background Previous reports have established an association between impaired clearance of macromolecular waste from the brain parenchyma and a variety of brain insults for which chronic neuroinflammation is a common pathological feature. Here we investigate whether chronic neuroinflammation is sufficient to impair macromolecular waste clearance from the rat brain. Methods Using a rodent model of chronic neuroinflammation induced by a single high-dose injection of lipopolysaccharide, the clearance kinetics of two fluorophore-conjugated dextran tracers were assayed at 8-weeks post-induction. The expression and distribution of amyloid β and aquaporin-4 proteins within selected brain regions were assayed at 36-weeks post-induction, following open-field, novel object recognition, and contextual fear conditioning assays. Results Chronic neuroinflammation significantly impaired the clearance kinetics of both dextran tracers and resulted in significantly elevated levels of amyloid β within the hippocampus. Aquaporin-4 density on astrocytic endfeet processes was also reduced within multiple brain regions. These pathologies were associated with significantly enhanced contextual fear memory. Conclusion Our results suggest that chronic neuroinflammation is sufficient to compromise the clearance of macromolecular waste from the brain parenchyma and may be the root cause of impaired waste clearance associated with a variety of brain pathologies.
Collapse
Affiliation(s)
- Swathi Suresh
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States
| | - Jacob Larson
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States,Department of Physics, Central Michigan University, Mount Pleasant, MI, United States
| | - Kenneth Allen Jenrow
- Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, United States,Department of Psychology, Central Michigan University, Mount Pleasant, MI, United States,*Correspondence: Kenneth Allen Jenrow,
| |
Collapse
|
6
|
De Munck DG, Leloup AJA, De Moudt S, De Meyer GRY, Martinet W, Fransen P. Mouse aortic biomechanics are affected by short-term defective autophagy in vascular smooth muscle cells. J Physiol Sci 2022; 72:7. [PMID: 35277137 PMCID: PMC10717727 DOI: 10.1186/s12576-022-00829-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
Abstract
The physiology of vascular smooth muscle (VSMC) cells is affected by autophagy, a catabolic cellular mechanism responsible for nutrient recycling. Autophagy-inducing compounds may reverse arterial stiffening, whereas congenital VSMC-specific autophagy deficiency promotes arterial stiffening. The elevated aortic stiffness in 3.5-month-old C57Bl/6 mice, in which the essential autophagy-related gene Atg7 was specifically deleted in the VSMCs (Atg7F/F SM22α-Cre+ mice) was mainly due to passive aortic wall remodeling. The present study investigated whether aortic stiffness was also modulated by a shorter duration of autophagy deficiency. Therefore, aortic segments of 2-month-old Atg7F/F SM22α-Cre+ mice were studied. Similarly to the older mice, autophagy deficiency in VSMCs promoted aortic stiffening by elastin degradation and elastin breaks, and increased the expression of the calcium binding protein S100A4 (+ 157%), the aortic wall thickness (+ 27%), the sensitivity of the VSMCs to depolarization and the contribution of VGCC mediated Ca2+ influx to α1 adrenergic contractions. Hence, all these phenomena occurred before the age of 2 months. When compared to autophagy deficiency in VSMCs at 3.5 months, shorter term autophagy deficiency led to higher segment diameter at 80 mmHg (+ 7% versus - 2%), normal baseline tonus (versus increased), unchanged IP3-mediated phasic contractions (versus enhanced), and enhanced endothelial cell function (versus normal). Overall, and because in vivo cardiac parameters or aortic pulse wave velocity were not affected, these observations indicate that congenital autophagy deficiency in VSMCs of Atg7F/F SM22α-Cre+ mice initiates compensatory mechanisms to maintain circulatory homeostasis.
Collapse
Affiliation(s)
- Dorien G De Munck
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Arthur J A Leloup
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sofie De Moudt
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Guido R Y De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Paul Fransen
- Laboratory of Physiopharmacology, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
7
|
Mondaca-Ruff D, Quiroga C, Norambuena-Soto I, Riquelme JA, San Martin A, Bustamante M, Lavandero S, Chiong M. Regulation of total LC3 levels by angiotensin II in vascular smooth muscle cells. J Cell Mol Med 2022; 26:1710-1713. [PMID: 35118791 PMCID: PMC8899170 DOI: 10.1111/jcmm.17215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 11/30/2021] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Hypertension is associated with high circulating angiotensin II (Ang II). We have reported that autophagy regulates Ang II‐induced vascular smooth muscle cell (VSMC) hypertrophy, but the mechanism mediating this effect is still unknown. Therefore, we studied how Ang II regulates LC3 levels in VSMCs and whether Bag3, a co‐chaperone known to regulate LC3 total levels, may be involved in the effects elicited by Ang II. A7r5 cell line or rat aortic smooth muscle cell (RASMC) primary culture were stimulated with Ang II 100 nM for 24 h and LC3 I, LC3 II and Bag3 protein levels were determined by Western blot. MAP1LC3B mRNA levels were assessed by RT‐qPCR. Ang II increased MAP1LC3B mRNA levels and protein levels of LC3 I, LC3 II and total LC3 (LC3 I + LC3 II). Cycloheximide, but not actinomycin D, abolished LC3 II and total LC3 increase elicited by Ang II in RASMCs. In A7r5 cells, cycloheximide prevented the Ang II‐mediated increase of LC3 I and total LC3, but not LC3 II. Moreover, Ang II increased Bag3 levels, but this increase was not observed upon co‐administration with either losartan 1 μM (AT1R antagonist) or Y‐27632 10 μM (ROCK inhibitor). These results suggest that Ang II may regulate total LC3 content through transcriptional and translational mechanisms. Moreover, Bag3 is increased in response to Ang II by a AT1R/ROCK signalling pathway. These data provide preliminary evidence suggesting that Ang II may stimulate autophagy in VSMCs by increasing total LC3 content and LC3 processing.
Collapse
Affiliation(s)
- David Mondaca-Ruff
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Jaime A Riquelme
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| | - Alejandra San Martin
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, Georgia, USA
| | - Mario Bustamante
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Facultad Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile.,Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Corporacion Centro de Estudios Cientificos de las Enfermedades Cronicas (CECEC), Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Facultad Ciencias Químicas y Farmacéuticas & Facultad Medicina, Universidad de Chile, Santiago, Chile
| |
Collapse
|
8
|
Shi D, Ding J, Xie S, Huang L, Zhang H, Chen X, Ren X, Zhou S, He H, Ma W, Zhang T, Wang N. Myocardin/microRNA-30a/Beclin1 signaling controls the phenotypic modulation of vascular smooth muscle cells by regulating autophagy. Cell Death Dis 2022; 13:121. [PMID: 35136037 PMCID: PMC8827084 DOI: 10.1038/s41419-022-04588-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/04/2022] [Accepted: 01/27/2022] [Indexed: 01/06/2023]
Abstract
Upon vascular injury, vascular smooth muscle cells (VSMCs) change from a contractile phenotype to a synthetic phenotype, thereby leading to atherogenesis and arterial restenosis. Myocardin (MYOCD) is essential for maintaining the contractile phenotype of VSMCs. Deletion of MYOCD in VSMCs triggers autophagy. However, the molecular mechanism underlying the effect of MYOCD on autophagy is not clear. In this study, knockdown of MYOCD in human aortic VSMCs (HA-VSMCs) triggered autophagy and diminished the expression of SMC contractile proteins. Inhibition of autophagy in MYOCD-knockdown cells restored the expression of contractile proteins. MYOCD activated the transcription of miR-30a by binding to the CArG box present in its promoter, as confirmed by luciferase reporter and chromatin immune coprecipitation assays, while miR-30a decreased the expression of autophagy protein-6 (ATG6, also known as beclin1) by targeting its 3′UTR. Restoring the expression of miR-30a in MYOCD-knockdown cells upregulated the levels of contractile proteins. Treatment of VSMCs with platelet-derived growth factor type BB (PDGF-BB) resulted in the transformation of VSMCs to a proliferative phenotype. A low level of miR-30a was observed in PDGF-BB-treated HA-VSMCs, and re-expression of miR-30a led to a decrease in proliferative marker expression. Furthermore, using a wire injury mouse model, we found that miR-30a expression was significantly downregulated in the arterial tissues of mice and that restoration of miR-30a expression at the injured site abolished neointimal formation. Herein, MYOCD could inhibit autophagy by activating the transcription of miR-30a and that miR-30a-mediated autophagy defects could inhibit intimal hyperplasia in a carotid arterial injury model.
Collapse
|
9
|
Martín Giménez VM, Chuffa LGA, Simão VA, Reiter RJ, Manucha W. Protective actions of vitamin D, anandamide and melatonin during vascular inflammation: Epigenetic mechanisms involved. Life Sci 2022; 288:120191. [PMID: 34856208 DOI: 10.1016/j.lfs.2021.120191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/13/2021] [Accepted: 11/26/2021] [Indexed: 12/11/2022]
Abstract
Vascular inflammation is one of the main activating stimuli of cardiovascular disease and its uncontrolled development may worsen the progression and prognosis of these pathologies. Therefore, the search for new therapeutic options to treat this condition is undoubtedly needed. In this regard, it may be better to repurpose endogenous anti-inflammatory compounds already known, in addition to synthesizing new compounds for therapeutic purposes. It is well known that vitamin D, anandamide, and melatonin are promising endogenous substances with powerful and wide-spread anti-inflammatory properties. Currently, the epigenetic mechanisms underlying these effects are often unknown. This review summarizes the potential epigenetic mechanisms by which vitamin D, anandamide, and melatonin attenuate vascular inflammation. This information could contribute to the improvement in the therapeutic management of multiple pathologies associated with blood vessel inflammation, through the pharmacological manipulation of new target sites that until now have not been addressed.
Collapse
Affiliation(s)
- Virna Margarita Martín Giménez
- Instituto de Investigaciones en Ciencias Químicas, Facultad de Ciencias Químicas y Tecnológicas, Universidad Católica de Cuyo, Sede San Juan, Argentina
| | - Luiz Gustavo A Chuffa
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Vinícius Augusto Simão
- Department of Structural and Functional Biology, UNESP-São Paulo State University, Institute of Biosciences, Botucatu 18618-689, São Paulo, Brazil
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health, San Antonio, TX, USA
| | - Walter Manucha
- Laboratorio de Farmacología Experimental Básica y Traslacional. Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina; Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Argentina.
| |
Collapse
|
10
|
Zhou J, Shao L, Yu J, Huang J, Feng Q. PDGF-BB promotes vascular smooth muscle cell migration by enhancing Pim-1 expression via inhibiting miR-214. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1728. [PMID: 35071422 PMCID: PMC8743727 DOI: 10.21037/atm-21-5638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022]
Abstract
Background Several studies have indicated that the platelet-derived growth factor/platelet-derived growth factor receptor (PDGF/PDGFR) pathway is involved in the process of atherosclerosis. However, its underlying mechanism remains to be further elucidated. Serine/threonine-protein kinase pim-1 (Pim-1), a member of serine/threonine-specific kinases, is a pro-oncogene published to be related to cell proliferation, apoptosis, and metastasis of cancer cells. Whether Pim-1 is involved in PDGF/PDGFR pathway-mediated coronary atherosclerotic heart disease remains to be elucidated. Methods We established a cell model of PDGF-BB-stimulated smooth muscle cells using A7r5 cells. Transwell assay was used to detect the potential of cell migration and invasion. The targeted regulation of Pim-1 by miR-214 was confirmed by luciferase assay. Rescue experiments were performed to determine the role of the PDGF-BB/miR-214/Pim-1 axis on the cell migration of smooth muscle cells by including PDGF-BB treatment, and the overexpression of miR-214 and Pim-1. Quantitative polymerase chain reaction (qPCR) was used to examine the gene expression and western blot was performed to detect the protein expression. Results Our data indicated that PDGF-BB could effectively enhance smooth muscle cell migration. We also showed Pim-1 was a target of miR-214 in A7r5 cells. The expression of Pim-1 was shown to be upregulated by PDGF-BB via suppression of the expression of miR-214. Moreover, overexpression miR-214 inhibited PDGF-BB-stimulated Pim-1 expression and smooth muscle cell migration via modulating epithelial-mesenchymal transition (EMT), but no change on cell cycle. However, overexpression of Pim-1 reversed miR-214-blocked cell migration by promoting the activation of the STAT3, AKT, and ERK signaling pathways. Conclusions Our data suggested that the PDGF/miR-214/Pim-1 axis could be a potential target for coronary atherosclerotic heart disease.
Collapse
Affiliation(s)
- Jinshan Zhou
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Lifang Shao
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Jianghao Yu
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Junchao Huang
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Qiang Feng
- Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| |
Collapse
|
11
|
Villar-Fincheira P, Paredes AJ, Hernández-Díaz T, Norambuena-Soto I, Cancino-Arenas N, Sanhueza-Olivares F, Contreras-Briceño F, Mandiola J, Bruneau N, García L, Ocaranza MP, Troncoso R, Gabrielli L, Chiong M. Soluble Interleukin-6 Receptor Regulates Interleukin-6-Dependent Vascular Remodeling in Long-Distance Runners. Front Physiol 2021; 12:722528. [PMID: 34707507 PMCID: PMC8542859 DOI: 10.3389/fphys.2021.722528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/17/2021] [Indexed: 12/21/2022] Open
Abstract
Little is known about the effects of training load on exercise-induced plasma increase of interleukin-6 (IL-6) and soluble IL-6 receptor (sIL-6R) and their relationship with vascular remodeling. We sought to evaluate the role of sIL 6R as a regulator of IL-6-induced vascular remodeling. Forty-four male marathon runners were recruited and allocated into two groups: low-training (LT, <100 km/week) and high-training (HT, ≥100 km/week), 22 athletes per group. Twenty-one sedentary participants were used as reference. IL-6, sIL-6R and sgp130 levels were measured in plasma samples obtained before and immediately after finishing a marathon (42.2-km). Aortic diameter was measured by echocardiography. The inhibitory effect of sIL-6R on IL-6-induced VSMC migration was assessed using cultured A7r5 VSMCs. Basal plasma IL-6 and sIL-6R levels were similar among sedentary and athlete groups. Plasma IL-6 and sIL-6R levels were elevated after the marathon, and HT athletes had higher post-race plasma sIL-6R, but not IL-6, level than LT athletes. No changes in sgp130 plasma levels were found in LT and HT groups before and after running the marathon. Athletes had a more dilated ascending aorta and aortic root than sedentary participants with no differences between HT and LT athletes. However, a positive correlation between ascending aorta diameter and plasma IL-6 levels corrected by training load and years of training was observed. IL-6 could be responsible for aorta dilation because IL-6 stimulated VSMC migration in vitro, an effect that is inhibited by sIL-6R. However, IL-6 did not modify cell proliferation, collagen type I and contractile protein of VSMC. Our results suggest that exercise induces vascular remodeling. A possible association with IL-6 is proposed. Because sIL-6R inhibits IL-6-induced VSMC migration, a possible mechanism to regulate IL-6-dependent VSMC migration is also proposed.
Collapse
Affiliation(s)
- Paulina Villar-Fincheira
- Advanced Center for Chronic Diseases (ACCDiS) & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Aaron J Paredes
- Advanced Center for Chronic Diseases (ACCDiS) & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Tomás Hernández-Díaz
- Advanced Center for Chronic Diseases (ACCDiS) & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS) & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Nicole Cancino-Arenas
- Advanced Center for Chronic Diseases (ACCDiS) & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS) & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Contreras-Briceño
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Laboratory of Exercise Physiology, Department Health of Science, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Mandiola
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Bruneau
- Advanced Center for Chronic Diseases (ACCDiS) & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Lorena García
- Advanced Center for Chronic Diseases (ACCDiS) & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - María Paz Ocaranza
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Center of New Drugs for Hypertension, Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS) & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
12
|
Role of Vascular Smooth Muscle Cell Phenotype Switching in Arteriogenesis. Int J Mol Sci 2021; 22:ijms221910585. [PMID: 34638923 PMCID: PMC8508942 DOI: 10.3390/ijms221910585] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Arteriogenesis is one of the primary physiological means by which the circulatory collateral system restores blood flow after significant arterial occlusion in peripheral arterial disease patients. Vascular smooth muscle cells (VSMCs) are the predominant cell type in collateral arteries and respond to altered blood flow and inflammatory conditions after an arterial occlusion by switching their phenotype between quiescent contractile and proliferative synthetic states. Maintaining the contractile state of VSMC is required for collateral vascular function to regulate blood vessel tone and blood flow during arteriogenesis, whereas synthetic SMCs are crucial in the growth and remodeling of the collateral media layer to establish more stable conduit arteries. Timely VSMC phenotype switching requires a set of coordinated actions of molecular and cellular mediators to result in an expansive remodeling of collaterals that restores the blood flow effectively into downstream ischemic tissues. This review overviews the role of VSMC phenotypic switching in the physiological arteriogenesis process and how the VSMC phenotype is affected by the primary triggers of arteriogenesis such as blood flow hemodynamic forces and inflammation. Better understanding the role of VSMC phenotype switching during arteriogenesis can identify novel therapeutic strategies to enhance revascularization in peripheral arterial disease.
Collapse
|
13
|
A differentiated Ca 2+ signalling phenotype has minimal impact on myocardin expression in an automated differentiation assay using A7r5 cells. Cell Calcium 2021; 96:102369. [PMID: 33677175 DOI: 10.1016/j.ceca.2021.102369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/12/2023]
Abstract
Vascular smooth muscle cells are unusual in that differentiated, contractile cells possess the capacity to "de-differentiate" into a synthetic phenotype that is characterized by being replicative, secretory, and migratory. One aspect of this phenotypic modulation is a shift from voltage-gated Ca2+ signalling in electrically coupled, differentiated cells to increased dependence on store-operated Ca2+ entry and sarcoplasmic reticulum Ca2+ release in synthetic cells. Conversely, an increased voltage-gated Ca2+ entry is seen when proliferating A7r5 smooth muscle cells quiesce. We asked whether this change in Ca2+ signalling was linked to changes in the expression of the phenotype-regulating transcriptional co-activator myocardin or α-smooth muscle actin, using correlative epifluorescence Ca2+ imaging and immunocytochemistry. Cells were cultured in growth media (DMEM, 10% serum, 25 mM glucose) or differentiation media (DMEM, 1% serum, 5 mM glucose). Coinciding with growth arrest, A7r5 cells became electrically coupled, and spontaneous Ca2+ signalling showed increasing dependence on L-type voltage-gated Ca2+ channels that were blocked with nifedipine (5 μM). These synchronized oscillations were modulated by ryanodine receptors, based on their sensitivity to dantrolene (5 μM). Actively growing cultures had spontaneous Ca2+ transients that were insensitive to nifedipine and dantrolene but were blocked by inhibition of the sarco-endoplasmic reticulum ATPase with cyclopiazonic acid (10 μM). In cells treated with differentiation media, myocardin and αSMA immunoreactivity increased prior to changes in the Ca2+ signalling phenotype, while chronic inhibition of voltage-gated Ca2+ entry modestly increased immunoreactivity of myocardin. Stepwise regression analyses suggested that changes in myocardin expression had a weak relationship with Ca2+ signalling synchronicity, but not frequency or amplitude. In conclusion, we report a 96-well assay and analytical pipeline to study the link between Ca2+ signalling and smooth muscle differentiation. This assay showed that changes in the expression of two molecular differentiation markers (myocardin and αSMA) tended to precede changes in the Ca2+ signalling phenotype.
Collapse
|
14
|
Palacios J, Benites J, Owen GI, Morales P, Chiong M, Nwokocha CR, Paredes A, Cifuentes F. Impact of the Potential Antitumor Agent 2-(4-Hydroxyphenyl) Amino-1,4-Naphthoquinone (Q7) on Vasomotion Is Mediated by the Vascular Endothelium, But Not Vascular Smooth Muscle Cell Metabolism. J Cardiovasc Pharmacol 2021; 77:245-252. [PMID: 33105322 DOI: 10.1097/fjc.0000000000000940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022]
Abstract
ABSTRACT Vasomotion is defined as rhythmic oscillations in arterial diameter that regulate the blood flow and blood pressure. Because antitumor treatment may impair vascular functions and increase the blood pressure, we sought to evaluate whether a new naphthoquinone derivative, postulated as an antitumor agent, manifests adverse effects on vascular function. In this article, we evaluated the toxicity of 2-(4-hydroxyphenyl) amino-1,4-naphthoquinone (Q7) and its effects on vascular vasomotion in 3 models of vascular structure: endothelial cells, aortic ring, and smooth muscle cells. Although showing nontoxic effects, Q7 inhibited the formation of capillary-like structures of the EA.hy926 endothelial cell line grown on Matrigel. In exvivo experiments with aortic rings precontracted with phenylephrine (PE, 10-6 M), Q7 (10-5 M) significantly (P < 0.05) reduced vascular rhythmic contractions induced by the acetylcholine (ACh; 10-7-10-5 M), whereas sodium nitroprusside (a nitric oxide donor; 10-8 M) recovered the vasomotion. Furthermore, Q7 (10-5 M) did not decrease KCl-induced vascular rhythmic contractions in the aortic rings precontracted with BaCl2 (a nonselective K+ channel blocker; 10-3 M). Vascular smooth muscle cells (A7r5) preincubated with Q7 (10-5 M) for 3 hours also demonstrated a reduced glucose uptake. However, the Adenosine Triphosphate content was unaffected, suggesting that the rapid reduction in vasomotion observed in vascular reactivity experiments did not involve cellular metabolism but may be due to faster mechanisms involving endothelial nitric oxide and K+ channels leading to oscillations in intracellular Ca2+. In summary, the naphthoquinone derivative Q7 presents low cytotoxicity yet may alter the endothelial cell response and vasomotion in the absence of changes in smooth muscle cell metabolism.
Collapse
Affiliation(s)
- Javier Palacios
- Departamento de Química y Farmacia, Facultad Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Julio Benites
- Departamento de Química y Farmacia, Facultad Ciencias de la Salud, Universidad Arturo Prat, Iquique, Chile
| | - Gareth I Owen
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases, ACCDiS, CEMC, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Pablo Morales
- Advanced Center for Chronic Diseases, ACCDiS, CEMC, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Mario Chiong
- Advanced Center for Chronic Diseases, ACCDiS, CEMC, Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile
| | - Chukwuemeka R Nwokocha
- Department of Basic Medical Sciences Physiology Section, Faculty of Medical Sciences, The University of the West Indies, Mona, Kingston, Jamaica
| | - Adrián Paredes
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile; and
| | - Fredi Cifuentes
- Laboratorio de Fisiología Experimental, Instituto Antofagasta, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
15
|
Role of Uremic Toxins in Early Vascular Ageing and Calcification. Toxins (Basel) 2021; 13:toxins13010026. [PMID: 33401534 PMCID: PMC7824162 DOI: 10.3390/toxins13010026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
In patients with advanced chronic kidney disease (CKD), the accumulation of uremic toxins, caused by a combination of decreased excretion secondary to reduced kidney function and increased generation secondary to aberrant expression of metabolite genes, interferes with different biological functions of cells and organs, contributing to a state of chronic inflammation and other adverse biologic effects that may cause tissue damage. Several uremic toxins have been implicated in severe vascular smooth muscle cells (VSMCs) changes and other alterations leading to vascular calcification (VC) and early vascular ageing (EVA). The above mentioned are predominant clinical features of patients with CKD, contributing to their exceptionally high cardiovascular mortality. Herein, we present an update on pathophysiological processes and mediators underlying VC and EVA induced by uremic toxins. Moreover, we discuss their clinical impact, and possible therapeutic targets aiming at preventing or ameliorating the harmful effects of uremic toxins on the vasculature.
Collapse
|
16
|
Villar-Fincheira P, Sanhueza-Olivares F, Norambuena-Soto I, Cancino-Arenas N, Hernandez-Vargas F, Troncoso R, Gabrielli L, Chiong M. Role of Interleukin-6 in Vascular Health and Disease. Front Mol Biosci 2021; 8:641734. [PMID: 33786327 PMCID: PMC8004548 DOI: 10.3389/fmolb.2021.641734] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/01/2021] [Indexed: 01/08/2023] Open
Abstract
IL-6 is usually described as a pleiotropic cytokine produced in response to tissue injury or infection. As a pro-inflammatory cytokine, IL-6 activates innate and adaptative immune responses. IL-6 is released in the innate immune response by leukocytes as well as stromal cells upon pattern recognition receptor activation. IL-6 then recruits immune cells and triggers B and T cell response. Dysregulated IL-6 activity is associated with pathologies involving chronic inflammation and autoimmunity, including atherosclerosis. However, IL-6 is also produced and released under beneficial conditions, such as exercise, where IL-6 is associated with the anti-inflammatory and metabolic effects coupled with physical adaptation to intense training. Exercise-associated IL-6 acts on adipose tissue to induce lipogenesis and on arteries to induce adaptative vascular remodeling. These divergent actions could be explained by complex signaling networks. Classical IL-6 signaling involves a membrane-bound IL-6 receptor and glycoprotein 130 (gp130), while trans-signaling relies on a soluble version of IL-6R (sIL-6R) and membrane-bound gp130. Trans-signaling, but not the classical pathway, is regulated by soluble gp130. In this review, we discuss the similarities and differences in IL-6 cytokine and myokine signaling to explain the differential and opposite effects of this protein during inflammation and exercise, with a special focus on the vascular system.
Collapse
Affiliation(s)
- Paulina Villar-Fincheira
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Nicole Cancino-Arenas
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Felipe Hernandez-Vargas
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Rodrigo Troncoso
- Laboratorio de Investigación en Nutrición y Actividad Física (LABINAF), Instituto de Nutrición y Tecnología de los Alimentos, Universidad de Chile, Santiago, Chile
| | - Luigi Gabrielli
- Advanced Center for Chronic Diseases, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- *Correspondence: Luigi Gabrielli, ; Mario Chiong,
| | - Mario Chiong
- Advanced Center for Chronic Diseases & CEMC, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- *Correspondence: Luigi Gabrielli, ; Mario Chiong,
| |
Collapse
|
17
|
Lamb FS, Choi H, Miller MR, Stark RJ. TNFα and Reactive Oxygen Signaling in Vascular Smooth Muscle Cells in Hypertension and Atherosclerosis. Am J Hypertens 2020; 33:902-913. [PMID: 32498083 DOI: 10.1093/ajh/hpaa089] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/16/2022] Open
Abstract
Hypertension and atherosclerosis, the predecessors of stroke and myocardial infarction, are chronic vascular inflammatory reactions. Tumor necrosis factor alpha (TNFα), the "master" proinflammatory cytokine, contributes to both the initiation and maintenance of vascular inflammation. TNFα induces reactive oxygen species (ROS) production which drives the redox reactions that constitute "ROS signaling." However, these ROS may also cause oxidative stress which contributes to vascular dysfunction. Mice lacking TNFα or its receptors are protected against both acute and chronic cardiovascular injury. Humans suffering from TNFα-driven inflammatory conditions such as rheumatoid arthritis and psoriasis are at increased cardiovascular risk. When treated with highly specific biologic agents that target TNFα signaling (Etanercept, etc.) they display marked reductions in that risk. The ability of TNFα to induce endothelial dysfunction, often the first step in a progression toward serious vasculopathy, is well recognized and has been reviewed elsewhere. However, TNFα also has profound effects on vascular smooth muscle cells (VSMCs) including a fundamental change from a contractile to a secretory phenotype. This "phenotypic switching" promotes proliferation and production of extracellular matrix proteins which are associated with medial hypertrophy. Additionally, it promotes lipid storage and enhanced motility, changes that support the contribution of VSMCs to neointima and atherosclerotic plaque formation. This review focuses on the role of TNFα in driving the inflammatory changes in VSMC biology that contribute to cardiovascular disease. Special attention is given to the mechanisms by which TNFα promotes ROS production at specific subcellular locations, and the contribution of these ROS to TNFα signaling.
Collapse
Affiliation(s)
- Fred S Lamb
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hyehun Choi
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael R Miller
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ryan J Stark
- Division of Pediatric Critical Care, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
18
|
Chung DJ, Wu YL, Yang MY, Chan KC, Lee HJ, Wang CJ. Nelumbo nucifera leaf polyphenol extract and gallic acid inhibit TNF-α-induced vascular smooth muscle cell proliferation and migration involving the regulation of miR-21, miR-143 and miR-145. Food Funct 2020; 11:8602-8611. [PMID: 33084700 DOI: 10.1039/d0fo02135k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nelumbo nucifera leaf water extract (NLE) attenuates high-fat diet (HFD)-induced rabbit atherosclerosis, but its mechanism of action and the relevant compounds remain unclear. Modulating the proliferation and migration of vascular smooth muscle cells (VSMCs) may be an enforceable strategy for atherosclerosis prevention. Therefore, we investigated the potential mechanisms of N. nucifera leaf polyphenol extract (NLPE) and its active ingredient gallic acid (GA) in VSMC proliferation and migration. A7r5 rat aortic VSMCs were provoked using 50 ng mL-1 tumor necrosis factor (TNF)-α; the NLPE or GA reduced the TNF-α-induced migration by inhibiting the transforming protein RhoA/cell division cycle protein 42 pathway. The NLPE or GA suppressed the TNF-α-induced VSMC proliferation by inhibiting the Ras pathway and increasing the expression of phosphatase and tensin homolog (PTEN), kinase suppressor of Ras 2, and inducible nitric oxide synthase. The NLPE or GA increased PTEN expression by downregulating microRNA (miR)-21 expression and reduced Ras and RhoA expression by upregulating miR-143 and miR-145 expression. The NLPE and GA use potentially prevents atherosclerosis by inhibiting the VSMC migration and proliferation. The mechanisms involve the regulation of the miRNA in PTEN, the Ras/extracellular-signal-regulated kinase pathway, and Rho family proteins.
Collapse
Affiliation(s)
- Dai-Jung Chung
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Yi-Liang Wu
- Division of Cardiovascular Surgery, Surgical Department, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan and Department of Surgery, School of Medicine, Chung-Shan Medical University, No. 110, Section, Jianguo N. Road, Taichung 40201, Taiwan
| | - Mon-Yuan Yang
- Institute of Biochemistry, Microbiology, and Immunology, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| | - Kuei-Chuan Chan
- Department of Internal Medicine, Chung-Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan and Department of Internal Medicine, School of Medicine, Chung-Shan Medical University, No. 110, Section, Jianguo N. Road, Taichung 40201, Taiwan
| | - Huei-Jane Lee
- Department of Biochemistry, School of Medicine, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan. and Department of Clinical Biochemistry, Chung Shan Medical University Hospital, No. 110, Sec. 1, Jianguo N Road, Taichung 40201, South District, Taiwan
| | - Chau-Jong Wang
- Department of Medical Research, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan. and Department of Health Diet and Industry Management, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung 40201, Taiwan
| |
Collapse
|
19
|
Rapp N, Evenepoel P, Stenvinkel P, Schurgers L. Uremic Toxins and Vascular Calcification-Missing the Forest for All the Trees. Toxins (Basel) 2020; 12:E624. [PMID: 33003628 PMCID: PMC7599869 DOI: 10.3390/toxins12100624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/23/2022] Open
Abstract
The cardiorenal syndrome relates to the detrimental interplay between the vascular system and the kidney. The uremic milieu induced by reduced kidney function alters the phenotype of vascular smooth muscle cells (VSMC) and promotes vascular calcification, a condition which is strongly linked to cardiovascular morbidity and mortality. Biological mechanisms involved include generation of reactive oxygen species, inflammation and accelerated senescence. A better understanding of the vasotoxic effects of uremic retention molecules may reveal novel avenues to reduce vascular calcification in CKD. The present review aims to present a state of the art on the role of uremic toxins in pathogenesis of vascular calcification. Evidence, so far, is fragmentary and limited with only a few uremic toxins being investigated, often by a single group of investigators. Experimental heterogeneity furthermore hampers comparison. There is a clear need for a concerted action harmonizing and standardizing experimental protocols and combining efforts of basic and clinical researchers to solve the complex puzzle of uremic vascular calcification.
Collapse
MESH Headings
- Animals
- Cardio-Renal Syndrome/metabolism
- Cardio-Renal Syndrome/pathology
- Cardio-Renal Syndrome/physiopathology
- Cardio-Renal Syndrome/therapy
- Humans
- Kidney/metabolism
- Kidney/pathology
- Kidney/physiopathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Prognosis
- Renal Insufficiency, Chronic/metabolism
- Renal Insufficiency, Chronic/pathology
- Renal Insufficiency, Chronic/physiopathology
- Renal Insufficiency, Chronic/therapy
- Toxins, Biological/metabolism
- Uremia/metabolism
- Uremia/pathology
- Uremia/physiopathology
- Uremia/therapy
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/physiopathology
- Vascular Calcification/therapy
Collapse
Affiliation(s)
- Nikolas Rapp
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| | - Pieter Evenepoel
- Laboratory of Nephrology, KU Leuven Department of Microbiology and Immunology, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Peter Stenvinkel
- Karolinska Institute, Department of Clinical Science, Intervention and Technology, Division of Renal Medicine, 141 86 Stockholm, Sweden;
| | - Leon Schurgers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands;
| |
Collapse
|
20
|
Endogenous hydrogen sulfide improves vascular remodeling through PPARδ/SOCS3 signaling. J Adv Res 2020; 27:115-125. [PMID: 33318871 PMCID: PMC7728593 DOI: 10.1016/j.jare.2020.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction Mounting evidences demonstrated the deficiency of hydrogen sulfide (H2S) facilitated the progression of cardiovascular diseases. However, the exact effects of H2S on vascular remodeling are not consistent. Objectives This study aimed to investigate the beneficial role of endogenous H2S on vascular remodeling. Methods CSE inhibitor, DL-propargylglycine (PPG) was used to treat mice and vascular smooth muscle cells (VSMCs). Sodium hydrosulfide (NaHS) was given to provide hydrogen sulfide. Vascular tension, H&E staining, masson trichrome staining, western blot and CCK8 were used to determine the vascular remodeling, expressions of inflammatory molecules and proliferation of VSMCs. Results The deficiency of endogenous H2S generated vascular remodeling with aggravated active and passive contraction, thicken aortic walls, collagen deposition, increased phosphorylation of STAT3, decreased production of PPARδ and SOCS3 in aortas, which were reversed by NaHS. PPG inhibited expression of PPARδ and SOCS3, stimulated the phosphorylation of STAT3, increased inflammatory molecules production and proliferation rate of VSMCs which could all be corrected by NaHS supply. PPARδ agonist GW501516 offered protections similar to NaHS in PPG treated VSMCs. Aggravated active and passive contraction in PPG mice aortas, upregulated p-STAT3 and inflammatory molecules, downregulated SOCS3 and phenotype transformation in PPG treated VSMCs could be corrected by PPARδ agonist GW501516 treatment. On the contrary, PPARδ antagonist GSK0660 exhibited opposite effects on vascular contraction in aortas, expressions of p-STAT3 and SOCS3 in VSMCs compared with GW501516. Conclusion In a word, endogenous H2S protected against vascular remodeling through preserving PPARδ/SOCS3 anti-inflammatory signaling pathway. Deficiency of endogenous H2S should be considered as a risk factor for VSMCs dysfunction.
Collapse
|
21
|
Nandy D, Das S, Islam S, Ain R. Molecular regulation of vascular smooth muscle cell phenotype switching by trophoblast cells at the maternal-fetal interface. Placenta 2020; 93:64-73. [PMID: 32250741 DOI: 10.1016/j.placenta.2020.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Establishment of hemochorial placenta is associated with development and remodelling of uterine vasculature at the maternal fetal interface. This results in calibration of high resistance uterine arteries to flaccid low resistance vessels resulting in increased blood flow to the placenta and fetus in humans and rodents. Mechanisms underlying these remodelling events are poorly understood. In this report, we examine regulation of vascular remodelling using vascular smooth muscle cell (VSMC) phenotype switching as a primary parameter. METHODS Cellular dynamics was assessed by Immunofluorescence, qRT-PCR, western blotting in timed pregnant rat tissue. In vitro co-culture of trophoblast cells with vascular smooth muscle cells was used to understand regulation mechanism. RESULTS Analysis of cellular dynamics on days 13.5, 16.5 and 19.5 of gestation in the rat metrial gland, the entry point of uterine arteries, revealed that invasion of trophoblast cells preceded disappearance of VSMC α-SMA, a contractile state marker. Co-culture of VSMCs with trophoblast cells in vitro recapitulated trophoblast-induced de-differentiation of VSMCs in vivo. Interestingly, co-culturing with trophoblast cells activated PDGFRβ signalling in VSMCs, an effect mediated by secreted PDGF-BB from trophoblast cells. Trophoblast cells failed to elicit its effect on VSMC de-differentiation upon inhibition of PDGFRβ signalling using a selective inhibitor. Moreover, co-culturing with trophoblast cells also led to substantial increase in Akt activation and a modest increase in Erk phosphorylation in VSMCs and this effect was abolished by PDGFRβ inhibition. DISCUSSION Our results highlight that trophoblast cells direct VSMC phenotype switching and trophoblast derived PDGF-BB is one of the modulator.
Collapse
Affiliation(s)
- Debdyuti Nandy
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Shreya Das
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Safirul Islam
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India
| | - Rupasri Ain
- Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Kolkata, 700032, West Bengal, India; Division of Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India.
| |
Collapse
|
22
|
Zhang YY, Shi YN, Zhu N, Wang W, Deng CF, Xie XJ, Liao DF, Qin L. Autophagy: a killer or guardian of vascular smooth muscle cells. J Drug Target 2020; 28:449-455. [DOI: 10.1080/1061186x.2019.1705312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yin-Yu Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Ya-Ning Shi
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- The First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, China
| | - Wei Wang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Chang-Feng Deng
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Xue-Jiao Xie
- College of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Division of Stem Cell Regulation and Application, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
23
|
Liu F, Shan S, Li H, Li Z. Treatment of Peroxidase Derived from Foxtail Millet Bran Attenuates Atherosclerosis by Inhibition of CD36 and STAT3 in Vitro and in Vivo. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1276-1285. [PMID: 31965794 DOI: 10.1021/acs.jafc.9b06963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Atherosclerosis is one of the main causes of cardiovascular diseases. Our previous study indicated that a type of peroxidase derived from foxtail millet bran (FMBP) had prominent antitumor activities. In the present study, we found that FMBP had potential antiatherosclerosis effects. The results showed that FMBP treatment strongly suppressed lipid phagocytosis in both HASMCs and THP-1 cells by 52% and 49%, respectively. Further, FMBP significantly inhibited HASMCs migration by promoting transformation of HASMCs from synthetic to contractile, leading to the decrease of lipid phagocytosis. Simultaneously, FMBP repressed lipid uptake by reducing the expression of CD36 in THP-1 cells. In addition, FMBP reduced the secretion of inflammatory factor IL-1β by inhibiting the expression of STAT3 in THP-1 cells. Interestingly, FMBP also had the same effects in models of atherosclerosis constructed with ApoE-/- mice, including decreased aortic lesion area, repressed aortic sinus CD36 and STAT3 expression, and elevated serum HDL-C concentration. Collectively, these results indicate that FMBP has great potential in preventing the development of atherosclerosis.
Collapse
|
24
|
De Munck DG, De Meyer GR, Martinet W. Autophagy as an emerging therapeutic target for age-related vascular pathologies. Expert Opin Ther Targets 2020; 24:131-145. [PMID: 31985292 DOI: 10.1080/14728222.2020.1723079] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: The incidence of age-related vascular diseases such as arterial stiffness, hypertension and atherosclerosis, is rising dramatically and is substantially impacting healthcare systems. Mounting evidence suggests that there is an important role for autophagy in maintaining (cardio)vascular health. Impaired vascular autophagy has been linked to arterial aging and the initiation of vascular disease.Areas covered: The function and implications of autophagy in vascular smooth muscle cells and endothelial cells are discussed in healthy blood vessels and arterial disease. Furthermore, we discuss current treatment options for vascular disease and their links with autophagy. A literature search was conducted in PubMed up to October 2019.Expert opinion: Although the therapeutic potential of inducing autophagy in age-related vascular pathologies is considerable, several issues should be addressed before autophagy induction can be clinically used to treat vascular disease. These issues include uncertainty regarding the most effective drug target as well as the lack of potency and selectivity of autophagy inducing drugs. Moreover, drug tolerance or autophagy mediated cell death have been reported as possible adverse effects. Special attention is required for determining the cause of autophagy deficiency to optimize the treatment strategy.
Collapse
Affiliation(s)
- Dorien G De Munck
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Guido Ry De Meyer
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| | - Wim Martinet
- Laboratory of Physiopharmacology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
25
|
Wang YT, Li X, Chen J, McConnell BK, Chen L, Li PL, Chen Y, Zhang Y. Activation of TFEB ameliorates dedifferentiation of arterial smooth muscle cells and neointima formation in mice with high-fat diet. Cell Death Dis 2019; 10:676. [PMID: 31515484 PMCID: PMC6742653 DOI: 10.1038/s41419-019-1931-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/09/2019] [Accepted: 08/26/2019] [Indexed: 12/30/2022]
Abstract
Autophagy is recently implicated in regulating vascular smooth muscle cell (SMC) homeostasis and in the pathogenesis of vascular remodeling. Transcription factor EB (TFEB) is a master regulator of autophagy signaling pathways. However, the molecular mechanisms and functional roles of TFEB in SMC homeostasis have not been elucidated. Here, we surveyed the ability of TFEB to regulate autophagy pathway in SMCs, and whether pharmacological activation of TFEB favors SMC homeostasis preventing dedifferentiation and pathogenic vascular remodeling. In primary cultured SMCs, TFEB activator trehalose induced nuclear translocation of TFEB and upregulation of TFEB-controlled autophagy genes leading to enhanced autophagy signaling. Moreover, trehalose suppressed serum-induced SMC dedifferentiation to synthetic phenotypes as characterized by inhibited proliferation and migration. These effects of trehalose were mimicked by ectopic upregulation of TFEB and inhibited by TFEB gene silencing. In animal experiments, partial ligation of carotid arteries induced downregulation of TFEB pathway in the media layer of these arteries. Such TFEB suppression was correlated with increased SMC dedifferentiation and aggravated high-fat diet (HFD)-induced neointima formation. Treatment of mice with trehalose reversed this TFEB pathway suppression, and prevented SMC dedifferentiation and HFD-induced neointima formation. In conclusion, our findings have identified TFEB as a novel positive regulator for autophagy pathway and cellular homeostasis in SMCs. Our data suggest that suppression of TFEB may be an initiating mechanism that promotes SMC dedifferentiation leading to accelerated neointima formation in vascular disorders associated with metabolic stress, whereas trehalose reverses these changes. These findings warrant further evaluation of trehalose in the clinical settings.
Collapse
Affiliation(s)
- Yun-Ting Wang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Xiang Li
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Jiajie Chen
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Bradley K McConnell
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Li Chen
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Yang Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China.
| | - Yang Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA.
| |
Collapse
|
26
|
ZHANG J, JIN J, YANG W. [Autophagy regulates the function of vascular smooth muscle cells in the formation and rupture of intracranial aneurysms]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:552-559. [PMID: 31901031 PMCID: PMC8800671 DOI: 10.3785/j.issn.1008-9292.2019.10.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
Vascular smooth muscle cells (VSMC) are the main cellular component of vessel wall. The changes of VSMC functions including phenotypic transformation and apoptosis play a critical role in the pathogenesis of intracranial aneurysm (IA). Autophagy can participate in the regulation of vascular function by regulating cell function. In the initial stage of IA, the activation of autophagy can accelerate the phenotypic transformation of VSMC and inhibit VSMC apoptosis. With the progress of IA, the relationship between autophagy and apoptosis changes from antagonism to synergy or promotion, and a large number of apoptotic VSMC lead to the rupture of IA. In this review, we describe the role of autophagy regulating the function of VSMC in the occurrence, development and rupture of IA, for further understanding the pathogenesis of IA and finding molecular targets to prevent the formation and rupture of IA.
Collapse
Affiliation(s)
| | | | - Wei YANG
- 杨巍(1976-), 男, 博士, 教授, 博士生导师, 主要从事神经生物学及药理学研究; E-mail:
;
https://orcid.org/0000-0003-3065-1843
| |
Collapse
|
27
|
NPS2390, a Selective Calcium-sensing Receptor Antagonist Controls the Phenotypic Modulation of Hypoxic Human Pulmonary Arterial Smooth Muscle Cells by Regulating Autophagy. J Transl Int Med 2019; 7:59-68. [PMID: 31380238 PMCID: PMC6661874 DOI: 10.2478/jtim-2019-0013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background and Objectives Calcium-sensing receptor (CaSR) is known to regulate hypoxia-induced pulmonary hypertension (HPH) and vascular remodeling via the phenotypic modulation of pulmonary arterial smooth muscle cells (PASMCs) in small pulmonary arteries. Moreover, autophagy is an essential modulator of VSMC phenotype. But it is not clear whether CaSR can regulate autophagy involving the phenotypic modulation under hypoxia. Methods The viability of human PASMCs was detected by cell cycle and BrdU. The expressions of proliferation protein, phenotypic marker protein, and autophagy protein in human PASMCs were determined by western blot. Results Our results showed that hypoxia-induced autophagy was considerable at 24 h. The addition of NPS2390 decreased the expression of autophagy protein and synthetic phenotype marker protein osteopontin and increased the expression of contractile phenotype marker protein SMA-ɑ and calponin via suppressing downstream PI3K/Akt/mTOR signal pathways. Conclusions Our study demonstrates that treatment of NPS2390 was conducive to inhibit the proliferation and reverse phenotypic modulation of PASMCs by regulating autophagy levels.
Collapse
|
28
|
Is there a role for autophagy in ascending aortopathy associated with tricuspid or bicuspid aortic valve? Clin Sci (Lond) 2019; 133:805-819. [PMID: 30991346 DOI: 10.1042/cs20181092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/27/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Autophagy is a conserved process by which cytoplasmatic elements are sequestered in vesicles and degraded after their fusion with lysosomes, thus recycling the precursor molecules. The autophagy-mediated removal of redundant/harmful/damaged organelles and biomolecules plays not only a replenishing function, but protects against stressful conditions through an adaptive mechanism. Autophagy, known to play a role in several pathological conditions, is now gaining increasing attention also in the perspective of the identification of the pathogenetic mechanisms at the basis of ascending thoracic aortic aneurysm (TAA), a localized or diffused dilatation of the aorta with an abnormal widening greater than 50 percent of the vessel's normal diameter. TAA is less frequent than abdominal aortic aneurysm (AAA), but is encountered with a higher percentage in patients with congenital heart disease or known genetic syndromes. Several biological aspects of TAA pathophysiology remain to be elucitated and therapeutic needs are still widely unmet. One of the most controversial and epidemiologically important forms of TAA is that associated with the congenital bicuspid malformation of the aortic valve (BAV). Dysregulated autophagy in response, for example, to wall shear stress alterations, has been demonstrated to affect the phenotype of vascular cells relevant to aortopathy, with potential consequences on signaling, remodeling, and angiogenesis. The most recent findings and hypotheses concerning the multiple aspects of autophagy and of its dysregulation are summarized, both in general and in the context of the different vascular cell types and of TAA progression, with particular reference to BAV-related aortopathy.
Collapse
|
29
|
Schaaf MB, Houbaert D, Meçe O, To SK, Ganne M, Maes H, Agostinis P. Lysosomal Pathways and Autophagy Distinctively Control Endothelial Cell Behavior to Affect Tumor Vasculature. Front Oncol 2019; 9:171. [PMID: 30949450 PMCID: PMC6435524 DOI: 10.3389/fonc.2019.00171] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/27/2019] [Indexed: 01/24/2023] Open
Abstract
Cancer cell-stromal cell crosstalk is orchestrated by a plethora of ligand-receptor interactions generating a tumor microenvironment (TME) which favors tumor growth. The high pro-angiogenic nature of the TME perpetuates the chaotic network of structurally immature, low pericyte-covered vessels characteristic of the tumor vasculature. We previously demonstrated that chloroquine (CQ) -a lysosomotropic agent used as first-generation autophagy blocker in clinical trials- induced tumor vessel normalization and reduced tumor hypoxia. CQ improved both vessel structure and maturation, whereas the conditional knockout of the crucial autophagy gene Atg5 in endothelial cells (ECs) did not, thus highlighting a potential differential role for EC-associated autophagy and the lysosomes in pathological tumor angiogenesis. However, how CQ or ATG5-deficiency in ECs affect angiogenic signals regulating EC-pericyte interface and therefore vessel maturation, remains unknown. Here, we show that in ECs CQ constrained VEGF-A-mediated VEGF receptor (VEGFR)2 phosphorylation, a driver of angiogenic signaling. In the presence of CQ we observed increased expression of the decoy receptor VEGFR1 and of a lower molecular weight form of VEGFR2, suggesting receptor cleavage. Consequently, VEGF-A-driven EC spheroid sprouting was reduced by CQ treatment. Furthermore, CQ significantly affected the transcription and secretion of platelet-derived growth factor (PDGF)-AB/BB (upregulated) and Endothelin-1 (EDN1, downregulated), both modulators of perivascular cell (PC) behavior. In contrast, silencing of ATG5 in ECs had no effect on VEGFR2 to VEGFR1 ratio nor on PDGFB and EDN1 expression. Accordingly, mice harboring B16F10 melanoma tumors treated with CQ, displayed both an increased number of αSMA+ PCs covering tumor vessels and co-expressed PDGF receptor-β, enabling PDGF ligand dependent recruitment. Moreover, upon CQ treatment the tumoral expression of angiopoietin-1 (Angpt1), which retains mural cells, and induces vessel stabilization by binding to the EC-localized cognate receptor (TIE2), was increased thus supporting the vessel normalization function of CQ. These features associated with improved tumor vasculature were not phenocopied by the specific deletion of Atg5 in ECs. In conclusion, this study further unravels endothelial cell autonomous and non-autonomous mechanisms by which CQ “normalizes” the intercellular communication in the tumor vasculature independent of autophagy.
Collapse
Affiliation(s)
- Marco B Schaaf
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Diede Houbaert
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Odeta Meçe
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - San Kit To
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Maarten Ganne
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Hannelore Maes
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research and Therapy Laboratory, Department for Cellular and Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Yu Q, Li W, Xie D, Zheng X, Huang T, Xue P, Guo B, Gao Y, Zhang C, Sun P, Li M, Wang G, Cheng X, Zheng Q, Song Z. PI3Kγ promotes vascular smooth muscle cell phenotypic modulation and transplant arteriosclerosis via a SOX9-dependent mechanism. EBioMedicine 2018; 36:39-53. [PMID: 30241919 PMCID: PMC6197754 DOI: 10.1016/j.ebiom.2018.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/31/2018] [Accepted: 09/10/2018] [Indexed: 12/11/2022] Open
Abstract
Background Transplant arteriosclerosis (TA) remains the major cause of chronic graft failure in solid organ transplantation. The phenotypic modulation of vascular smooth muscle cells (VSMCs) is a key event for the initiation and progression of neointimal formation and TA. This study aims to explore the role and underlying mechanism of phosphoinositide 3-kinases γ (PI3Kγ) in VSMC phenotypic modulation and TA. Methods The rat model of aortic transplantation was established to detect PI3Kγ expression and its role in neointimal formation and vascular remodeling in vivo. PI3Kγ shRNA transfection was employed to knockdown PI3Kγ gene. Aortic VSMCs was cultured and treated with TNF-α to explore the role and molecular mechanism of PI3Kγ in VSMC phenotypic modulation. Findings Activated PI3Kγ/p-Akt signaling was observed in aortic allografts and in TNF-α-treated VSMCs. Lentivirus-mediated shRNA transfection effectively inhibited PI3Kγ expression in medial VSMCs while restoring the expression of VSMC contractile genes, associated with impaired neointimal formation in aortic allografts. In cultured VSMCs, PI3Kγ blockade with pharmacological inhibitor or genetic knockdown markedly abrogated TNF-α-induced downregulation of VSMC contractile genes and increase in cellular proliferation and migration. Moreover, SOX9 located in nucleus competitively inhibited the interaction of Myocardin and SRF, while PI3Kγ inhibition robustly reduced SOX9 expression and its nuclear translocation and repaired the Myocardin/SRF association. Interpretation These results suggest that PI3Kγ plays a critical role in VSMC phenotypic modulation via a SOX9-dependent mechanism. Therefore, PI3Kγ in VSMCs may represent a promising therapeutic target for the treatment of TA. Fund National Natural Science Foundation of China.
Collapse
Affiliation(s)
- Qihong Yu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Li
- Departments of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dawei Xie
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xichuan Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tong Huang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Xue
- Departments of Gerontology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Guo
- Department of Hepatology and Oncology, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Yang Gao
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ping Sun
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Wang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Cheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qichang Zheng
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zifang Song
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|