1
|
Rehman NU, Rafiq K, Avula SK, Gibbons S, Csuk R, Al-Harrasi A. Triterpenoids from Frankincense and Boswellia: A focus on their pharmacology and 13C-NMR assignments. PHYTOCHEMISTRY 2025; 229:114297. [PMID: 39401649 DOI: 10.1016/j.phytochem.2024.114297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/04/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
Here we report for the first time the entire 13C-NMR spectral assignments of 119 (out of 127) triterpenoids from the oleo-gum resins of the medicinally important genus Boswellia, which includes the culturally highly valuable Frankincense species. The complete 13C-NMR resonances of these triterpenoids isolated between 1998 and 2024 and their biological activities are presented. 13C-NMR spectroscopy is a highly powerful tool for the characterization of these bioactive natural products. The compounds are arranged according to their skeletons, i.e., ursane, oleanane, lupane, dammarane, and tirucallane triterpenes. This review will be a future reference for the identification of these compounds, which have key medicinal properties in the areas of cytotoxicity and inflammation.
Collapse
Affiliation(s)
- Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Kashif Rafiq
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Satya K Avula
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Simon Gibbons
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - René Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
2
|
Castellaneta A, Losito I, Cometa S, Busto F, De Giglio E, Cataldi TRI. Integrating Epoxidation, High-Resolution Mass Spectrometry and Ultraviolet Spectroscopy to Unravel the Complex Profile of Boswellic Acids and Related Compounds in the Boswellia serrata Gum Resin Extract. Molecules 2024; 29:4967. [PMID: 39459335 PMCID: PMC11510512 DOI: 10.3390/molecules29204967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
The chemical characterization of natural products is often a complex task that demands powerful analytical techniques. Liquid chromatography with high-resolution tandem mass spectrometry (HRMS/MS) is often employed, yet it can face hard challenges when isomeric species are present, and reference standards are lacking. In such cases, the confidence level in compound identification can be significantly improved by the collection of orthogonal information on target analytes. In this work, 23 key compounds in Boswellia serrata extract (BSE), 12 of which correspond to boswellic acids (BAs) and 11 to triterpenoidic acid isomers, were identified by combining RPLC followed by serial UV and ESI(-)-FTMS and FTMS/MS detections with the evaluation of the reactivity towards C=C bond epoxidation with meta-chloroperoxybenzoic acid (m-CPBA), proposed as a fast chemical tool to gather information about C=C bond steric hindrance, a key structural feature of BAs and related compounds. The interpretation of UV spectra acquired after chromatographic separation corroborated the identification of the substitution patterns of enonic and dienic residues in ketoboswellic and dehydroboswellic acids. Moreover, MS/MS based on higher-energy collision-induced dissociation (HCD) unveiled new fragmentation pathways, providing important structural details on target analytes. The integrated approach developed during this study might pave the way for a deeper understanding of the BSE bioactive properties. Moreover, it can be considered an example of a more general strategy for the analysis of complex mixtures of natural compounds including also isomeric species.
Collapse
Affiliation(s)
- Andrea Castellaneta
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70126 Bari, Italy; (A.C.); (F.B.); (T.R.I.C.)
| | - Ilario Losito
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70126 Bari, Italy; (A.C.); (F.B.); (T.R.I.C.)
- Centro Interdipartimentale SMART, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70126 Bari, Italy
| | | | - Francesco Busto
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70126 Bari, Italy; (A.C.); (F.B.); (T.R.I.C.)
| | - Elvira De Giglio
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70126 Bari, Italy; (A.C.); (F.B.); (T.R.I.C.)
- Centro Interdipartimentale SMART, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70126 Bari, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, Via Giuseppe Giusti, 9, 50121 Florence, Italy
| | - Tommaso R. I. Cataldi
- Dipartimento di Chimica, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70126 Bari, Italy; (A.C.); (F.B.); (T.R.I.C.)
- Centro Interdipartimentale SMART, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70126 Bari, Italy
| |
Collapse
|
3
|
Obiștioiu D, Hulea A, Cocan I, Alexa E, Negrea M, Popescu I, Herman V, Imbrea IM, Heghedus-Mindru G, Suleiman MA, Radulov I, Imbrea F. Boswellia Essential Oil: Natural Antioxidant as an Effective Antimicrobial and Anti-Inflammatory Agent. Antioxidants (Basel) 2023; 12:1807. [PMID: 37891886 PMCID: PMC10603989 DOI: 10.3390/antiox12101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The research aimed to determine the chemical composition, the antioxidant and anti-inflammatory activity as well as the antimicrobial activity against Gram-positive, Gram-negative and two fungal Candida ATCC strains of a commercial Boswellia essential oil (BEO) containing Boswellia carteri, Boswellia sacra, Boswellia papryfera, and Boswellia frereana. Additionally, molecular docking was carried out to show the molecular dynamics of the compounds identified from the essential oil against three bacterial protein targets and one fungal protein target. The major components identified by GC-MS (Gas Chromatography-Mass Spectrometry) were represented by α-pinene, followed by limonene. Evaluation of antioxidant activity using the DPPH (2,2-Diphenyl-1-Picrylhydrazyl) method showed high inhibition comparable to the synthetic antioxidant used as a control. Oxidative stability evaluation showed that BEO has the potential to inhibit primary and secondary oxidation products with almost the same efficacy as butylated hydroxyanisole (BHA). The use of BEO at a concentration of 500 ppm provided the best protection against secondary oxidation during 30 days of storage at room temperature, which was also evident in the peroxide value. Regarding the in vitro anti-inflammatory activity, the membrane lysis assay and the protein denaturation test revealed that even if the value of protection was lower than the value registered in the case of dexamethasone, the recommendation of using BEO as a protective agent stands, considering the lower side effects. Gram-positive bacteria proved more sensitive, while Pseudomonas aeruginosa presented different sensitivity, with higher MICs (minimal inhibitory concentration). Haemophilus influenzae demonstrated a MIC at 2% but with consecutive inhibitory values in a negative correlation with the increase in concentration, in contrast to E. coli, which demonstrated low inhibitory rates at high concentrations of BEO. The computational tools employed revealed interesting binding energies with compounds having low abundance. The interaction of these compounds and the proteins (tyrosyl-tRNA synthetase, DNA gyrase, peptide deformylase, 1,3-β-glucan synthase) predicts hydrogen bonds with amino acid residues, which are reported in the active sites of the proteins. Even so, compounds with low abundance in BEO could render the desired bioactive properties to the overall function of the oil sustained by physical factors such as storage and temperature. Interestingly, the findings from this study demonstrated the antioxidant and antimicrobial potential of Boswellia essential oil against food-related pathogens, thus making the oil a good candidate for usage in food, feed or food-safety-related products.
Collapse
Affiliation(s)
- Diana Obiștioiu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Anca Hulea
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Ileana Cocan
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Ersilia Alexa
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Monica Negrea
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Iuliana Popescu
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Viorel Herman
- Faculty of Veterinary Medicine, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Ilinca Merima Imbrea
- Faculty of Engineering and Applied Technologies, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania;
| | - Gabriel Heghedus-Mindru
- Faculty of Food Engineering, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (E.A.); (M.N.); (G.H.-M.)
| | - Mukhtar Adeiza Suleiman
- Faculty of Life Science, Department of Biochemistry, Ahmadu Bello University, Zaria 810107, Kaduna State, Nigeria;
| | - Isidora Radulov
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| | - Florin Imbrea
- Faculty of Agriculture, University of Life Sciences “King Michael I” from Timisoara, Calea Aradului 119, 300645 Timisoara, Romania; (D.O.); (I.P.); (I.R.); (F.I.)
| |
Collapse
|
4
|
Meyiah A, Shawkat MY, Ur Rehman N, Al-Harrasi A, Elkord E. Effect of Boswellic acids on T cell proliferation and activation. Int Immunopharmacol 2023; 122:110668. [PMID: 37487264 DOI: 10.1016/j.intimp.2023.110668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/01/2023] [Accepted: 07/16/2023] [Indexed: 07/26/2023]
Abstract
Boswellic acids have been recognized as anti-inflammatory and immunomodulatory agents with potentials to control autoimmune and inflammatory diseases. However, their effects on T cell proliferation and activation are not fully elucidated. In this study, we investigated effects of individual compounds including β-Boswellic acids (β-BA), 11-keto-β-Boswellic acid (β-KBA), 3-O-acetyl β-Boswellic acids (β-ABA), and 3-O-acetyl-11-keto-β-Boswellic acid (β-AKBA) on human peripheral blood mononuclear cells (PBMCs) and their potential role in modulating immune responses. We showed that β-BA, KBA, and AKBA at a 0.025 µM concentration significantly reduced T cell proliferation without inducing cytotoxicity, however, ABA showed cytotoxic effects at this concentration. β-BA and KBA showed significantly reduced T cell proliferation at 0.05 µM concentration without cytotoxic effects. Interestingly, we found that AKBA at 0.025 µM concentration significantly reduced CD25 expression on both CD4+ and CD8+ T cells without cytotoxic effects. Additionally, β-BA reduced CD25 expression on both CD4+ and CD8+ T cells at 0.05 µM concentration with no cytotoxicity. In this study, we determined the optimum concentration of each of these compounds that have the potential to reduce T cell activation without cytotoxic effects. Our findings show that both β-BA and AKBA have the ability to inhibit T cell proliferation and activation without inducing cytotoxicity. Further investigations are required to fully understand the mechanisms underlying these effects and the potential therapeutic benefits of these compounds in different autoimmune and inflammatory settings.
Collapse
Affiliation(s)
- Abdo Meyiah
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Murtada Y Shawkat
- Department of Biological Sciences and Chemistry, Faculty of Arts and Sciences, University of Nizwa, Nizwa 616, Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - Eyad Elkord
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman; Department of Biological Sciences and Chemistry, Faculty of Arts and Sciences, University of Nizwa, Nizwa 616, Oman; Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester, UK.
| |
Collapse
|
5
|
Massei K, Michel T, Obersat GI, Al-Harrasi A, Baldovini N. Phytochemical study of Boswellia dalzielii oleo-gum resin and evaluation of its biological properties. PHYTOCHEMISTRY 2023; 213:113751. [PMID: 37307887 DOI: 10.1016/j.phytochem.2023.113751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Boswellia dalzielii is a resin-producing tree endemic to West and Central Africa, used by local populations for various medicinal purposes. In this study, B. dalzielii gum resin was analyzed by GC-MS and UHPLC-MS to identify and quantify volatile and non-volatile compounds. Its main volatile constituents were α-pinene (54.9%), followed by α-thujene (4.4%) and α-phellandren-8-ol (4.0%). Pentacyclic triterpenoids such as β-boswellic acids and their derivatives were quantified by UHPLC-MS and their content was shown to reach around 22% of the gum resin. Since some of the volatile and non-volatile compounds identified in this work are known to possess biological effects, the bioactivities of B. dalzielii ethanolic extract, essential oil, as well as fractions of the oil and extract were evaluated. Some of these samples exhibited interesting anti-inflammatory properties, and their antioxidant, anti-ageing and skin-bleaching activities were also tested.
Collapse
Affiliation(s)
- Kimberley Massei
- Institut de Chimie de Nice, Université Côte D'azur, 28 Avenue Valrose, 06108, Nice, France
| | - Thomas Michel
- Institut de Chimie de Nice, Université Côte D'azur, 28 Avenue Valrose, 06108, Nice, France
| | - Girma Ilayas Obersat
- Nature Is Unique, Girma-Ilayas Obersat, Koepenicker Str. 16 10997, Berlin, Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Oman
| | - Nicolas Baldovini
- Institut de Chimie de Nice, Université Côte D'azur, 28 Avenue Valrose, 06108, Nice, France.
| |
Collapse
|
6
|
Trivedi VL, Soni R, Dhyani P, Sati P, Tejada S, Sureda A, Setzer WN, Faizal Abdull Razis A, Modu B, Butnariu M, Sharifi-Rad J. Anti-cancer properties of boswellic acids: mechanism of action as anti-cancerous agent. Front Pharmacol 2023; 14:1187181. [PMID: 37601048 PMCID: PMC10434769 DOI: 10.3389/fphar.2023.1187181] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
With the advent of highly effective plant-based medications with few or no side effects, the use of phytomedicines against complex diseases such as cancer is becoming more widespread. The broadly recognized pentacyclic triterpenes known as boswellic acids (BAs) are derived from the oleogum resin, or frankincense, extracted from the plant species of the genus Boswellia. The frankincense mixture contains various BA types, each having a different potential and helping treat certain cancers. This review focuses on details regarding the traits of the BAs, their roles as anti-cancer agents, the mechanism underlying their activities, and the function of their semi-synthetic derivatives in managing and treating certain cancers. The review also explores the biological sources of BAs, how they are conserved, and how biotechnology might help preserve and improve in vitro BA production. The review concludes that the BAs and their semi-synthetic derivatives are effective against a broad spectrum of cancer cell lines. The detailed information in the review can be helpful for researchers to gain more information about BAs and BA-based medications for efficient and cost-effective cancer treatments.
Collapse
Affiliation(s)
- Vijay Laxmi Trivedi
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB. Garhwal University (A Central University), Srinagar Garhwal, Uttarakhand, India
| | - Ruchi Soni
- Regional Centre for Organic and Natural Farming, Ghaziabad, Uttar Pradesh, India
| | - Praveen Dhyani
- Institute for Integrated Natural Sciences, University of Koblenz, Koblenz, Germany
| | - Priyanka Sati
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Silvia Tejada
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antoni Sureda
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), Palma de Mallorca, Spain
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, Palma de Mallorca, Spain
| | - William N. Setzer
- Aromatic Plant Research Center, Lehi, UT, United States
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL, United States
| | - Ahmad Faizal Abdull Razis
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Selangor, Malaysia
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
| | - Babagana Modu
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Selangor, Malaysia
- Department of Biochemistry, Faculty of Science, University of Maiduguri, Maiduguri, Nigeria
| | - Monica Butnariu
- University of Life Sciences “King Mihai I” From Timisoara, Timis, Romania
| | | |
Collapse
|
7
|
Seepe HA, Raphoko L, Amoo SO, Nxumalo W. Lantadene A and boswellic acid isolated from the leaves of Lantana camara L. have the potential to control phytopathogenic Fusarium species. Heliyon 2022; 8:e12216. [PMID: 36582687 PMCID: PMC9792760 DOI: 10.1016/j.heliyon.2022.e12216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 09/04/2022] [Accepted: 11/30/2022] [Indexed: 12/16/2022] Open
Abstract
Phytopathogenic Fusarium species are restricting factors causing diseases and yield loss in crop production. As part of exploration for pesticides from medicinal plants, this study aimed to isolate and characterize bioactive compounds from Lantana camara L. and evaluate their efficiency against Fusarium phytopathogens. Phytochemical investigation of ethyl acetate leaf extract led to separation of lantadene A (22-angeloyloxy-9-hydroxy-3-oxo-olean-12-en-28-oic acid) and boswellic acid (11-keto-β-boswellic acid). The chemical structures of the aforementioned compounds were confirmed using physical properties, spectroscopic analysis, and published data. Lantadene A exhibited significant antifungal activity against F. subglutinans, F. proliferatum, F. solani, F. graminearum, and F. semitectum with minimum inhibitory concentration (MIC) less than or equal to 0.63 mg/mL. Boswellic acid exhibited strong activity (MIC = 0.63 mg/mL) against F. subglutinans and F. semitectum. In terms of their toxicity towards Raw 264.7 cells, lantadene A and boswellic acid recorded half-maximal inhibitory concentration values of 84.2 μg/mL and 186.6 μg/mL, respectively. Both lantadene A and boswellic acid had no phytotoxic effect against seed germination and seedling root length. Lantadene A and boswellic acid have strong potential to be further investigated as lead natural fungicides (biopesticides) to control Fusarium crop diseases.
Collapse
Affiliation(s)
- Hlabana Alfred Seepe
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Roodeplaat, Private Bag X293, Pretoria 0001, South Africa,Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa,Döhne Agricultural Development Institute, Plant and Crops Production Research, Private Bag X 15, Stutterheim, 4930, South Africa,Corresponding author.
| | - Lerato Raphoko
- Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| | - Stephen O. Amoo
- Agricultural Research Council—Vegetables, Industrial and Medicinal Plants, Roodeplaat, Private Bag X293, Pretoria 0001, South Africa,Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho 2735, South Africa,Department of Botany and Plant Biotechnology, Faculty of Science, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Winston Nxumalo
- Department of Chemistry, University of Limpopo, Private Bag X1106, Sovenga, 0727, Polokwane, South Africa
| |
Collapse
|
8
|
Khan T, Bilal S, Asaf S, Alamri SS, Imran M, Khan AL, Al-Rawahi A, Lee IJ, Al-Harrasi A. Silicon-Induced Tolerance against Arsenic Toxicity by Activating Physiological, Anatomical and Biochemical Regulation in Phoenix dactylifera (Date Palm). PLANTS 2022; 11:plants11172263. [PMID: 36079645 PMCID: PMC9459973 DOI: 10.3390/plants11172263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022]
Abstract
Arsenic is a toxic metal abundantly present in agricultural, industrial, and pesticide effluents. To overcome arsenic toxicity and ensure safety for plant growth, silicon (Si) can play a significant role in its mitigation. Here, we aim to investigate the influence of silicon on date palm under arsenic toxicity by screening antioxidants accumulation, hormonal modulation, and the expression profile of abiotic stress-related genes. The results showed that arsenic exposure (As: 1.0 mM) significantly retarded growth attributes (shoot length, root length, fresh weight), reduced photosynthetic pigments, and raised reactive species levels. Contrarily, exogenous application of Si (Na2SiO3) to date palm roots strongly influenced stress mitigation by limiting the translocation of arsenic into roots and shoots as compared with the arsenic sole application. Furthermore, an enhanced accumulation of polyphenols (48%) and increased antioxidant activities (POD: 50%, PPO: 75%, GSH: 26.1%, CAT: 51%) resulted in a significant decrease in superoxide anion (O2•−: 58%) and lipid peroxidation (MDA: 1.7-fold), in silicon-treated plants, compared with control and arsenic-treated plants. The Si application also reduced the endogenous abscisic acid (ABA: 38%) under normal conditions, and salicylic acid (SA: 52%) and jasmonic acid levels (JA: 62%) under stress conditions as compared with control and arsenic. Interestingly, the genes; zeaxanthin epoxidase (ZEP) and 9-cis-epoxycarotenoid dioxygenase (NCED-1) involved in ABA biosynthesis were upregulated by silicon under arsenic stress. Likewise, Si application also upregulated gene expression of plant plasma membrane ATPase (PMMA-4), aluminum-activated malate transporter (ALMT) responsible for maintaining cellular physiology, stomatal conductance, and short-chain dehydrogenases/reductases (SDR) involved in nutrients translocation. Hence, the study demonstrates the remarkable role of silicon in supporting growth and inducing arsenic tolerance by increasing antioxidant activities and endogenous hormones in date palm. The outcomes of our study can be employed in further studies to better understand arsenic tolerance and decode mechanism.
Collapse
Affiliation(s)
- Taimoor Khan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Correspondence: (S.B.); (A.L.K.); (A.A.-H.)
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Safiya Salim Alamri
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Imran
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea
| | - Abdul Latif Khan
- Department of Engineering Technology, University of Houston, Sugar Land, TX 77479, USA
- Correspondence: (S.B.); (A.L.K.); (A.A.-H.)
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National University, 80 Dahak-ro, Buk-gu, Daegu 41566, Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Correspondence: (S.B.); (A.L.K.); (A.A.-H.)
| |
Collapse
|
9
|
Mariano A, Bigioni I, Misiti F, Fattorini L, d’Abusco AS, Rodio A. The Nutraceuticals as Modern Key to Achieve Erythrocyte Oxidative Stress Fighting in Osteoarthritis. Curr Issues Mol Biol 2022; 44:3481-3495. [PMID: 36005136 PMCID: PMC9406754 DOI: 10.3390/cimb44080240] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA), the most common joint disease, shows an increasing prevalence in the aging population in industrialized countries. OA is characterized by low-grade chronic inflammation, which causes degeneration of all joint tissues, such as articular cartilage, subchondral bone, and synovial membrane, leading to pain and loss of functionality. Erythrocytes, the most abundant blood cells, have as their primary function oxygen transport, which induces reactive oxygen species (ROS) production. For this reason, the erythrocytes have several mechanisms to counteract ROS injuries, which cause damage to lipids and proteins of the cell membrane. Oxidative stress and inflammation are highly correlated and are both causes of joint disorders. In the synovial fluid and blood of osteoarthritis patients, erythrocyte antioxidant enzyme expression is decreased. To date, OA is a non-curable disease, treated mainly with non-steroidal anti-inflammatory drugs and corticosteroids for a prolonged period of time, which cause several side effects; thus, the search for natural remedies with anti-inflammatory and antioxidant activities is always ongoing. In this review, we analyze several manuscripts describing the effect of traditional remedies, such as Harpagophytum procumbens, Curcumin longa, and Boswellia serrata extracts, in the treatments of OA for their anti-inflammatory, analgesic, and antioxidant activity. The effects of such remedies have been studied both in in vitro and in vivo models, considering both joint cells and erythrocytes.
Collapse
Affiliation(s)
- Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Irene Bigioni
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Francesco Misiti
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy
- Correspondence:
| | - Luigi Fattorini
- Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Scotto d’Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino and Southern Lazio, 03043 Cassino, Italy
| |
Collapse
|
10
|
Upadhayay S, Mehan S, Prajapati A, Sethi P, Suri M, Zawawi A, Almashjary MN, Tabrez S. Nrf2/HO-1 Signaling Stimulation through Acetyl-11-Keto-Beta-Boswellic Acid (AKBA) Provides Neuroprotection in Ethidium Bromide-Induced Experimental Model of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13081324. [PMID: 35893061 PMCID: PMC9331916 DOI: 10.3390/genes13081324] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a severe immune-mediated neurological disease characterized by neuroinflammation, demyelination, and axonal degeneration in the central nervous system (CNS). This is frequently linked to motor abnormalities and cognitive impairments. The pathophysiological hallmarks of MS include inflammatory demyelination, axonal injury, white matter degeneration, and the development of CNS lesions that result in severe neuronal degeneration. Several studies suggested downregulation of nuclear factor erythroid-2-related factor-2 (Nrf2)/Heme oxygenase-1 (HO-1) signaling is a causative factor for MS pathogenesis. Acetyl-11-keto-β-boswellic acid (AKBA) is an active pentacyclictriterpenoid obtained from Boswellia serrata, possessing antioxidant and anti-inflammatory properties. The present study explores the protective potential of AKBA on behavioral, molecular, neurochemical, and gross pathological abnormalitiesandhistopathological alterations by H&E and LFB staining techniques in an experimental model of multiple sclerosis, emphasizing the increase inNrf2/HO-1 levels in the brain. Moreover, we also examine the effect of AKBA on the intensity of myelin basic protein (MBP) in CSF and rat brain homogenate. Specific apoptotic markers (Bcl-2, Bax, andcaspase-3) were also estimated in rat brain homogenate. Neuro behavioralabnormalities in rats were examined using an actophotometer, rotarod test, beam crossing task (BCT),and Morris water maze (MWM). AKBA 50 mg/kg and 100 mg/kg were given orally from day 8 to 35 to alleviate MS symptoms in the EB-injected rats. Furthermore, cellular, molecular, neurotransmitter, neuroinflammatory cytokine, and oxidative stress markers in rat whole brain homogenate, blood plasma, and cerebral spinal fluid were investigated. This study shows that AKBA upregulates the level of antioxidant proteins such as Nrf2 and HO-1 in the rat brain. AKBA restores altered neurochemical levels, potentially preventing gross pathological abnormalities during MS progression.
Collapse
Affiliation(s)
- Shubham Upadhayay
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
- Correspondence: (S.M.); (S.T.)
| | - Aradhana Prajapati
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Pranshul Sethi
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Manisha Suri
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India; (S.U.); (A.P.); (P.S.); (M.S.)
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majed N. Almashjary
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- Hematology Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Animal House Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shams Tabrez
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.Z.); (M.N.A.)
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Correspondence: (S.M.); (S.T.)
| |
Collapse
|
11
|
Khan AL, Al-Harrasi A, Wang JP, Asaf S, Riethoven JJM, Shehzad T, Liew CS, Song XM, Schachtman DP, Liu C, Yu JG, Zhang ZK, Meng FB, Yuan JQ, Wei CD, Guo H, Wang X, Al-Rawahi A, Lee IJ, Bennetzen JL, Wang XY. Genome structure and evolutionary history of frankincense producing Boswellia sacra. iScience 2022; 25:104574. [PMID: 35789857 PMCID: PMC9249616 DOI: 10.1016/j.isci.2022.104574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/01/2022] [Accepted: 06/07/2022] [Indexed: 12/20/2022] Open
Abstract
Boswellia sacra Flueck (family Burseraceae) tree is wounded to produce frankincense. We report its de novo assembled genome (667.8 Mb) comprising 18,564 high-confidence protein-encoding genes. Comparing conserved single-copy genes across eudicots suggest >97% gene space assembly of B. sacra genome. Evolutionary history shows B. sacra gene-duplications derived from recent paralogous events and retained from ancient hexaploidy shared with other eudicots. The genome indicated a major expansion of Gypsy retroelements in last 2 million years. The B. sacra genetic diversity showed four clades intermixed with a primary genotype—dominating most resin-productive trees. Further, the stem transcriptome revealed that wounding concurrently activates phytohormones signaling, cell wall fortification, and resin terpenoid biosynthesis pathways leading to the synthesis of boswellic acid—a key chemotaxonomic marker of Boswellia. The sequence datasets reported here will serve as a foundation to investigate the genetic determinants of frankincense and other resin-producing species in Burseraceae. Assembly and architecture of frankincense producing Boswellia sacra Flueck Comparative genomics and evolutionary history of frankincense tree within orders Transcriptome of stem part and gene expression patterns of wounding to the tree Resin biosynthesis pathway and related CYP450 enzymes and gene families
Collapse
|
12
|
Mostafa S, El-Bolok AHM, Fahmi AN, Alaaeldin E. An Ex vivo Apoptotic and Cytotoxic Effects of Frankincense on Oral Squamous Cell Carcinoma Cell Line. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Oral squamous cell carcinoma is accounting for almost 90% of oropharyngeal cancer diagnoses. Natural herbal medicine can use as an alternative, or complementary, or adjunctive for cancer treatment. Frankincense and its combination with myrrh have anticancer effects on different cancer types.
METHODS: In this research, aqueous and methanolic extracts of frankincense and the combination of aqueous extract of frankincense and myrrh were applied on tongue squamous cell carcinoma cell line to study their cytotoxic and apoptotic effect by the assessment of cell viability and cytotoxicity, caspase 3 and 8 activation, reactive oxygen species activity, mitochondrial membrane potential, morphological changes, and nuclear area factor measurements.
RESULTS: The result showed that aqueous and methanolic extracts of frankincense have cytotoxic and apoptotic effects in a concentration-dependent manner with an IC50 value of 21.05 ± 1.27 μM for aqueous extract, 36.72 ± 2.07 μM for methanolic extract, and IC50 value of 1.31 ± 0.04 μM for combination of aqueous extract of frankincense and myrrh extract after 24 h.
CONCLUSION: Different extracts of frankincense and the combination of aqueous extract of frankincense and myrrh extract exhibited cytotoxic and apoptotic effects by reducing the cell viability and activating caspases 3 and 8 causing intrinsic- and extrinsic-mediated apoptosis pathways activation with the involvement of oxidative stress that was conceivable with cytonuclear morphological alterations results.
Collapse
|
13
|
Alasbahi RH, Groot MJ. Ethnoveterinary Uses of Certain Yemeni Plants: A Review of the Scientific Evidence. PLANTA MEDICA 2022; 88:237-253. [PMID: 34598289 DOI: 10.1055/a-1612-4556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Livestock is an important and integral component of agriculture production in Yemen and contributes 28% of the total agricultural production income. Research in the field of Yemeni ethnoveterinary medicine is limited to a few studies. Therefore, our work aims to substantiate scientifically the ethnoveterinary use of some documented plant species based on a literature review of their bioactivities and toxicological properties. Searching the scientific literature has revealed various pharmacological activities that may support the claimed healing activities of 11 out of 14 plant species for some of their ethnoveterinary utilization. This comprises the use of Aloe spp. latex for constipation, worms, boils, and wounds; Boswellia sacra underbark for wounds and its oleo-gum resin for mastitis; Soqotraen Boswellia species as an insect repellent; Cissus rotundifolia for stomach pain; Cyphostemma digitatum as an appetite stimulant; Psiadia punctulate for bone fracture; Pulicaria undulata as an insect repellent; combinations of Aristolochia bracteolate with Sorghum bicolor grains for bloating; Rumex nervosus and salt for eye pimples; and Trigonella foenum-graecum seeds with Hordeum vulgare grains for constipation. Some plants were found to demonstrate various toxic effects in in vivo and in vitro experimental studies. The local administration of Calotropis procera latex was also reported to induce an intense inflammatory response. It can be concluded that our work has provided valuable scientific information on the biological and toxic activities of some Yemeni ethnoveterinary remedies that could be utilized for the benefit of farmers to ration the use of these remedies and avoiding their toxicity.
Collapse
Affiliation(s)
- Rawiya H Alasbahi
- Department of Pharmacognosy, Faculty of Pharmacy, Aden University, Khormaksar, Aden, Yemen
| | - Maria J Groot
- Wageningen Food Safety Research, part of Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
14
|
Taxonomical Investigation, Chemical Composition, Traditional Use in Medicine, and Pharmacological Activities of Boswellia sacra Flueck. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8779676. [PMID: 35222678 PMCID: PMC8881160 DOI: 10.1155/2022/8779676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 11/17/2022]
Abstract
Aromatic oleo-gum-resin secreted from B. sacra, reputed as frankincense, is widely used in traditional medicine to treat Alzheimer’s disease, gastric disorders, hepatic disorders, etc. Frankincense is also used in the cosmetic, perfume, and beverage and food industries. Frankincense is a rich resource for bioactive compounds, especially boswellic acids and derivatives. Although several reports have described frankincense’s constituents and pharmacological activities, there is no comprehensive study that covers the valuable information on this species. Therefore, the current review will focus on the phytochemistry, traditional uses, and pharmacological activities of B. sacra.
Collapse
|
15
|
Khan AL, Asaf S, Numan M, AbdulKareem NM, Imran M, Riethoven JJM, Kim HY, Al-Harrasi A, Schachtman DP, Al-Rawahi A, Lee IJ. Transcriptomics of tapping and healing process in frankincense tree during resin production. Genomics 2021; 113:4337-4351. [PMID: 34798281 DOI: 10.1016/j.ygeno.2021.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 10/29/2021] [Accepted: 11/12/2021] [Indexed: 11/28/2022]
Abstract
Frankincense tree (Boswellia sacra Fluek) has been poorly known on how it responds to tapping and wound-recovery process at molecular levels. Here, we used RNA-sequencing analysis to profile transcriptome of B. sacra after 30 min, 3 h and 6 h of post-tapping. Results showed 5525 differentially expressed genes (DEGs) that were related to terpenoid biosynthesis, phytohormonal regulation, cellular transport, and cell-wall synthesis. Plant-growth-regulators were applied exogenously which showed regulation of endogenous jasmonates and resulted in rapid recovery of cell-wall integrity by significantly up-regulated gene expression of terpenoid biosynthesis (germacrene-D synthase, B-amyrin synthase, and squalene epioxidase-1) and cell-wall synthesis (xyloglucan endotransglucosylase, cellulose synthase-A, and cell-wall hydrolase) compared to control. These findings suggest that tapping immediately activated several cell-developmental and regeneration processes, alongwith defense-induced terpenoid metabolism, to improve the healing process in epidermis. Exogenous growth regulators, especially jasmonic acid, can drastically help tree recovery from tissue degeneration and might help in tree conservation purposes.
Collapse
Affiliation(s)
- Abdul Latif Khan
- Department of Engineering Technology, College of Technology, University of Houston, Houston 77479, TX, United States of America; Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Muhammad Numan
- Department of Biology, University of North Carolina at Greensboro, 363 Sullivan Science Building, Greensboro, NC 27402-6170, United States of America
| | | | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Jean-Jack M Riethoven
- Nebraska Center for Integrated Biomolecular communication, University of Nebraska-Lincoln, Lincoln, NE 68588, United States of America
| | - Ho-Youn Kim
- Smart Farm Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman.
| | - Daniel P Schachtman
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, United States of America.
| | - Ahmed Al-Rawahi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
16
|
Kumar A, Srivastava P, Srivastava G, Sandeep, Kumar N, Chanotiya CS, Ghosh S. BAHD acetyltransferase contributes to wound-induced biosynthesis of oleo-gum resin triterpenes in Boswellia. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1403-1419. [PMID: 34165841 DOI: 10.1111/tpj.15388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/13/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Triterpenes (30-carbon isoprene compounds) represent a large and highly diverse class of natural products that play various physiological functions in plants. The triterpene biosynthetic enzymes, particularly those catalyzing the late-stage regio-selective modifications are not well characterized. The bark of select Boswellia trees, e.g., B. serrata exudes specialized oleo-gum resin in response to wounding, which is enriched with boswellic acids (BAs), a unique class of C3α-epimeric pentacyclic triterpenes with medicinal properties. The bark possesses a network of resin secretory structures comprised of vertical and horizontal resin canals, and amount of BAs in bark increases considerably in response to wounding. To investigate BA biosynthetic enzymes, we conducted tissue-specific transcriptome profiling and identified a wound-responsive BAHD acetyltransferase (BsAT1) of B. serrata catalyzing the late-stage C3α-O-acetylation reactions in the BA biosynthetic pathway. BsAT1 catalyzed C3α-O-acetylation of αBA, βBA, and 11-keto-βBA in vitro and in planta assays to produce all the major C3α-O-acetyl-BAs (3-acetyl-αBA, 3-acetyl-βBA, and 3-acetyl-11-keto-βBA) found in B. serrata bark and oleo-gum resin. BsAT1 showed strict specificity for BA scaffold, whereas it did not acetylate the more common C3β-epimeric pentacyclic triterpenes. The analysis of steady-state kinetics using various BAs revealed distinct substrate affinity and catalytic efficiency. BsAT1 transcript expression coincides with increased levels of C3α-O-acetyl-BAs in bark in response to wounding, suggesting a role of BsAT1 in wound-induced biosynthesis of C3α-O-acetyl-BAs. Overall, the results provide new insights into the biosynthesis of principal chemical constituents of Boswellia oleo-gum resin.
Collapse
Affiliation(s)
- Aashish Kumar
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Payal Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav Srivastava
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sandeep
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Narendra Kumar
- Plant Breeding and Genetic Resource Conservation Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Chandan S Chanotiya
- Phytochemistry Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
| | - Sumit Ghosh
- Plant Biotechnology Division, Council of Scientific and Industrial Research-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
17
|
Khafaga AF, El-Kazaz SE, Noreldin AE. Boswellia serrata suppress fipronil-induced neuronal necrosis and neurobehavioral alterations via promoted inhibition of oxidative/inflammatory/apoptotic pathways. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147384. [PMID: 33933775 DOI: 10.1016/j.scitotenv.2021.147384] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 05/21/2023]
Abstract
Boswellic acid (BA) is a pentacyclic terpenoid derived from the gum-resin of Boswellia serrate. It is known for its strong antioxidant, anti-inflammatory, and anticancer properties. It has improved spatial learning and provides neuroprotection against trimethyltin-induced memory impairment. The aim of this study is to evaluate the possible neuroprotective activity of B. serrata extract (BSE) containing BA against fipronil (FPN)-induced neurobehavioral toxicity in Wister male albino rats. Sixty male rats were allocated equally into six groups. The first group served as control; the second and third groups received BSE at two different oral doses (250 or 500 mg/kg body weight [BW], respectively). The fourth group was orally intoxicated with FPN (20 mg/kg BW), whereas the fifth and sixth groups served as preventive groups and co-treated with FPN (20 mg/kg BW) and BSE (250 or 500 mg/kg BW, respectively). The experiment was conducted over 8 weeks period. Results revealed that co-treatment with BSE led to significant (p > 0.05) dose-dependent reduction in malondialdehyde (MDA), nitric oxide (NO), interleukin-6 (IL6), tumor necrosis factors-alpha (TNF-α), nuclear factor Kappa-B (NF-κB), Cyclooxegenase-2 (COX-2), prostaglandin E2 (PGE2), serotonin, and acetylcholine (ACh). Conversely, significant (p > 0.05) up regulation of catalase (CAT), glutathione peroxidase (GSH-Px), gamma-aminobutyric acid (GABA), and acetylcholine esterase (AChE) has reported in BSE-co-treated groups. In addition, significant (p > 0.05) promotion in neurobehaviours, histopathologic imaging of the cerebral, cerebellar, and hippocampal regions, and immunohistochemical expression of caspase-3 and glial fibrillary acidic protein (GFAP) were also reported in the BSE-treated groups in a dose-dependent manner. In conclusion, BSE (500 mg/kg BW) is a natural, promising neuroprotective agent that can mitigate FPN-induced neurobehavioral toxicity via the suppression of oxidative, inflammatory, and apoptotic pathways and relieve neuronal necrosis and astrogliosis.
Collapse
Affiliation(s)
- Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt.
| | - Sara E El-Kazaz
- Animals and Poultry Behavior and Management, Department of Animal Husbandry and Animal Wealth development, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Ahmed E Noreldin
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22516, Egypt.
| |
Collapse
|
18
|
Azmi SNH, Al-Jassasi BMH, Al-Sawafi HMS, Al-Shukaili SHG, Rahman N, Nasir M. Optimization for synthesis of silver nanoparticles through response surface methodology using leaf extract of Boswellia sacra and its application in antimicrobial activity. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:497. [PMID: 34286386 DOI: 10.1007/s10661-021-09301-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
In the present work, leaf extract of Boswellia sacra was used as reductant for synthesis of silver nanoparticles (AgNPs). The variables such as volume of Boswellia sacra leaf extract (1%), volume of silver nitrate (1 mM), and temperature were optimized by response surface methodology via Box-Behnken design for the synthesis of AgNPs. Design-Expert software generated the optimum conditions for the highest yield of silver nanoparticles as 8 mL of 1 mM AgNO3, 8 mL of 1% Boswellia sacra leaf extract, and temperature = 55 °C. The formed AgNPs were isolated and purified by centrifugation process using ethanol/ distilled water. AgNPs were characterized using FTIR, SEM, TEM, EDX, and XRD. AgNPs showed surface plasmon resonance absorption band at 422 nm. XRD pattern indicated the crystalline nature of the particles (diameter 11.17 to 37.50 nm) with face-centered cubic structure. SEM and TEM images highlighted the formation of spherical AgNPs. The energy dispersive spectroscopic spectrum confirmed the presence of elemental silver. The microbial activity of AgNPs was evaluated against bacteria and fungi. Synthesized AgNPs were very effective against Gram-positive E. coli bacterial strains and fungal strains (Penicillium chrysogenum).
Collapse
Affiliation(s)
- Syed Najmul Hejaz Azmi
- University of Technology and Applied Sciences, Applied Sciences Department (Chemistry Section), Higher College of Technology Muscat, P. O. Box 74, Al-Khuwair, 133, Sultanate of Oman.
| | - Bushra Mohammed Hamed Al-Jassasi
- University of Technology and Applied Sciences, Applied Sciences Department (Chemistry Section), Higher College of Technology Muscat, P. O. Box 74, Al-Khuwair, 133, Sultanate of Oman
| | - Hiba Mohammed Saif Al-Sawafi
- University of Technology and Applied Sciences, Applied Sciences Department (Chemistry Section), Higher College of Technology Muscat, P. O. Box 74, Al-Khuwair, 133, Sultanate of Oman
| | - Sahar Harib Gharib Al-Shukaili
- University of Technology and Applied Sciences, Applied Sciences Department (Chemistry Section), Higher College of Technology Muscat, P. O. Box 74, Al-Khuwair, 133, Sultanate of Oman
| | - Nafisur Rahman
- Department of Chemistry, Aligarh Muslim University, Uttar Pradesh, Aligarh, 202002, India
| | - Mohd Nasir
- Department of Chemistry, Aligarh Muslim University, Uttar Pradesh, Aligarh, 202002, India
| |
Collapse
|
19
|
Yu Q, Sura MB, Wang D, Huang D, Yan Y, Jiao Y, Lu Q, Cheng Y. Isolation of Boswelliains A—E,
Cembrane‐Type
Diterpenoids from
Boswellia papyifera,
and an Evaluation of Their Wound Healing Properties. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100290] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qi‐Hua Yu
- Guangdong Pharmaceutical University Guangzhou Guangdong 510006 China
- Institute for Inheritance‐Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences Shenzhen University Health Science Center Shenzhen Guangdong 518060 China
| | - Madhu Babu Sura
- Institute for Inheritance‐Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences Shenzhen University Health Science Center Shenzhen Guangdong 518060 China
| | - Dai‐Wei Wang
- Institute for Inheritance‐Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences Shenzhen University Health Science Center Shenzhen Guangdong 518060 China
| | - Danling Huang
- Institute for Inheritance‐Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences Shenzhen University Health Science Center Shenzhen Guangdong 518060 China
| | - Yong‐Ming Yan
- Institute for Inheritance‐Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences Shenzhen University Health Science Center Shenzhen Guangdong 518060 China
| | - Ya‐Bin Jiao
- Institute for Inheritance‐Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences Shenzhen University Health Science Center Shenzhen Guangdong 518060 China
| | - Qing Lu
- Institute for Inheritance‐Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences Shenzhen University Health Science Center Shenzhen Guangdong 518060 China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering Hanshan Normal University Chaozhou Guangdong 521041 China
| | - Yong‐Xian Cheng
- Guangdong Pharmaceutical University Guangzhou Guangdong 510006 China
- Institute for Inheritance‐Based Innovation of Chinese Medicine, School of Pharmaceutical Sciences Shenzhen University Health Science Center Shenzhen Guangdong 518060 China
- Guangdong Key Laboratory for Functional Substances in Medicinal Edible Resources and Healthcare Products, School of Life Sciences and Food Engineering Hanshan Normal University Chaozhou Guangdong 521041 China
| |
Collapse
|
20
|
Boswellia sacra resin as a phytogenic feed supplement to enhance ruminal fermentation, milk yield, and metabolic energy status of early lactating goats. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.114963] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Al-Harrasi A, Khan AL, Rehman NU, Csuk R. Biosynthetic diversity in triterpene cyclization within the Boswellia genus. PHYTOCHEMISTRY 2021; 184:112660. [PMID: 33524859 DOI: 10.1016/j.phytochem.2021.112660] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
This review is not intended to describe the triterpenes isolated from the Boswellia genus, since this information has been covered elsewhere. Instead, the aim is to provide insights into the biosynthesis of triterpenes in Boswellia. This genus, which has 24 species, displays fascinating structural diversity and produces a number of medicinally important triterpenes, particularly boswellic acids. Over 300 volatile components have been reported in the essential oil of Boswellia, and more than 100 diterpenes and triterpenes have been isolated from this genus. Given that no triterpene biosynthetic enzymes have yet been isolated from any members of the Boswellia genus, this review will cover the likely biosynthetic pathways as inferred from structures in nature and the probable types of biosynthetic enzymes based on knowledge of triterpene biosynthesis in other plant species. It highlights the importance of frankincense and the factors and threats affecting its production. It covers triterpene biosynthesis in the genus Boswellia, including dammaranes, tirucallic acids, lupanes, oleananes, ursanes and boswellic acids. Strategies for elucidating triterpene biosynthetic pathways in Boswellia are considered. Furthermore, the possible mechanisms behind wound-induced resin synthesis by the tree and related gene expression profiling are covered. In addition, the influence of the environment and the genotype on the biosynthesis of resin and on variations in the compositions and types of resins will also be reviewed.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman.
| | - Abdul Latif Khan
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, P.O. Box 33, 616 Birkat Al Mauz, Nizwa, Oman
| | - René Csuk
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str. 2, D-06120 Halle (Saale), Germany
| |
Collapse
|
22
|
Schmiech M, Ulrich J, Lang SJ, Büchele B, Paetz C, St-Gelais A, Syrovets T, Simmet T. 11-Keto-α-Boswellic Acid, a Novel Triterpenoid from Boswellia spp. with Chemotaxonomic Potential and Antitumor Activity against Triple-Negative Breast Cancer Cells. Molecules 2021; 26:molecules26020366. [PMID: 33445710 PMCID: PMC7828217 DOI: 10.3390/molecules26020366] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/16/2022] Open
Abstract
Boswellic acids, and particularly 11-keto-boswellic acids, triterpenoids derived from the genus Boswellia (Burseraceae), are known for their anti-inflammatory and potential antitumor efficacy. Although boswellic acids generally occur as α-isomers (oleanane type) and β-isomers (ursane type), 11-keto-boswellic acid (KBA) was found only as the β-isomer, β-KBA. Here, the existence and natural occurrence of the respective α-isomer, 11-keto-α-boswellic acid (α-KBA), is demonstrated for the first time. Initially, α-KBA was synthesized and characterized by high-resolution mass spectrometry (HR-MS) and nuclear magnetic resonance (NMR) spectroscopy, and a highly selective, sensitive, and accurate high-performance liquid chromatography coupled with tandem mass spectrometry (HPLC-MS/MS) method was developed by Design of Experiments (DoE) using a pentafluorophenyl stationary phase. This method allowed the selective quantification of individual 11-keto-boswellic acids and provided evidence for α-KBA in Boswellia spp. oleogum resins. The contents of α-KBA as well as further boswellic acids and the composition of essential oils were used to chemotaxonomically classify 41 Boswellia oleogum resins from 9 different species. Moreover, α-KBA exhibited cytotoxicity against three treatment-resistant triple-negative breast cancer (TNBC) cell lines in vitro and also induced apoptosis in MDA-MB-231 xenografts in vivo. The respective β-isomer and the acetylated form demonstrate higher cytotoxic efficacies against TNBC cells. This provides further insights into the structure-activity relationship of boswellic acids and could support future developments of potential anti-inflammatory and antitumor drugs.
Collapse
Affiliation(s)
- Michael Schmiech
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (M.S.); (J.U.); (S.J.L.); (B.B.)
| | - Judith Ulrich
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (M.S.); (J.U.); (S.J.L.); (B.B.)
| | - Sophia Johanna Lang
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (M.S.); (J.U.); (S.J.L.); (B.B.)
| | - Berthold Büchele
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (M.S.); (J.U.); (S.J.L.); (B.B.)
| | - Christian Paetz
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany;
| | | | - Tatiana Syrovets
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (M.S.); (J.U.); (S.J.L.); (B.B.)
- Correspondence: (T.S.); (T.S.); Tel.: +49-731-500-65604 (T.S.); +49-731-500-65600 (T.S.)
| | - Thomas Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, 89081 Ulm, Germany; (M.S.); (J.U.); (S.J.L.); (B.B.)
- Correspondence: (T.S.); (T.S.); Tel.: +49-731-500-65604 (T.S.); +49-731-500-65600 (T.S.)
| |
Collapse
|
23
|
Halim SA, Khan A, Csuk R, Al-Rawahi A, Al-Harrasi A. Diterpenoids and Triterpenoids From Frankincense Are Excellent Anti-psoriatic Agents: An in silico Approach. Front Chem 2020; 8:486. [PMID: 32671018 PMCID: PMC7330179 DOI: 10.3389/fchem.2020.00486] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
Psoriasis is a chronic autoimmune disease that affects 2–3% of the global population and requires an effective treatment. Frankincense has been long known for its potent anti-inflammatory activities. In this study, a structural bioinformatics approach was used to evaluate the efficacy of individual active components of frankincense, macrocyclic diterpenoid derivatives (1-27), and boswellic acids (28-46) in the treatment of psoriasis. Initially, major druggable targets of psoriasis were identified. Subsequently, structure-based screening was employed by using three different docking algorithms and scoring functions (MOE, AutoDock Vina, and MVD) for the target fishing of compounds against 18 possible targets of psoriasis. Janus Kinase 1, 2, 3 (JAK 1/2/3), eNOS, iNOS, interleukin-17 (IL-17), and Tumor necrosis factor-α (TNF-α) were identified as the preferred molecular targets for these compounds. This computational analysis reflects that frankincense diterpenoids and triterpenoids can serve as excellent anti-psoriatic agents by targeting major cytokines (TNF-α, IL-17, IL-13, IL-23, and IL-36γ,) exacerbated in psoriasis, and inflammatory pathways particularly JAK1/2/3, eNOS, iNOS, MAPK2, and IFNγ. The results were compared with the reported experimental findings which correlates well with our in-silico verdicts.
Collapse
Affiliation(s)
- Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Rene Csuk
- Organic Chemistry, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| |
Collapse
|
24
|
|
25
|
Haghaei H, Soltani S, Aref Hosseini S, Rashidi MR, Karima S. Boswellic Acids as Promising Leads in Drug Development against Alzheimer’s Disease. PHARMACEUTICAL SCIENCES 2020. [DOI: 10.34172/ps.2020.25] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Biological activity of Boswellia extract (BE) has been attributed to its main active ingredients; i.e. Boswellic acids (BAs). BE/BAs possess a promising therapeutic potential in neurodegenerative disorders; including Alzheimer's disease (AD). The multifactorial nature of AD pathophysiology necessitates the development of the disease-modifying agents (DMA). Recent multi-targeting approaches for the DMAs development have brought more attention to the plant-derived compounds regarding their better human compatibility because of their biologic origin. This review addresses the current knowledge on the anti-AD activity of BE/BAs based on the available in silico, in vitro, in vivo studies and clinical trials. The contribution of BE/BAs in inflammatory pathways, Tau and β-amyloid proteins, microtubule functions, oxidative stress, cholinesterase and diabetes/insulin pathways involved in AD have been discussed. BAs efficacy in different AD-related pathways has been confirmed in vitro and in vivo. They can be considered as valuable scaffold/lead compounds for multi-targeted DMAs in anti-AD drug discovery and development.
Collapse
Affiliation(s)
- Hossein Haghaei
- Nutrition and food Sciences Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mohammad Reza Rashidi
- Drug Applied Research Center and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology and Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saeed Karima
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences (SBMU), Tehran, Iran
| |
Collapse
|
26
|
Khan A, Kamran M, Imran M, Al-Harrasi A, Al-Rawahi A, Al-Amri I, Lee IJ, Khan AL. Silicon and salicylic acid confer high-pH stress tolerance in tomato seedlings. Sci Rep 2019; 9:19788. [PMID: 31874969 PMCID: PMC6930214 DOI: 10.1038/s41598-019-55651-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 11/28/2019] [Indexed: 12/17/2022] Open
Abstract
Alkalinity is a known threat to crop plant growth and production, yet the role of exogenous silicon (Si) and salicylic acid (SA) application has been largely unexplored. Here, we sought to understand the beneficial impacts of Si and SA on tomato seedlings during high-pH (9.0) stress. Results showed that Si- and SA-treated plants displayed higher biomass, chlorophyll contents, relative leaf water and better root system than none-treated plants under alkaline conditions. Both Si and SA counteracted the alkaline stress-induced oxidative damage by lowering the accumulation of reactive oxygen species and lipid peroxidation. The major antioxidant defence enzyme activities were largely stimulated by Si and SA, and these treatments caused significantly increased K+ and lowered Na+ concentrations in shoot and root under stress. Moreover, Si and SA treatments modulated endogenous SA levels and dramatically decreased abscisic acid levels in both shoot and root. Additionally, key genes involved in Si uptake, SA biosynthesis, the antioxidant defence system and rhizosphere acidification were up-regulated in Si and SA treatments under alkaline conditions. These results demonstrate that Si and SA play critical roles in improving alkaline stress tolerance in tomato seedlings, by modifying the endogenous Na+ and K+ contents, regulating oxidative damage and key genes and modulating endogenous hormone levels. These findings will help to broaden our understanding regarding the physiological and molecular mechanisms associated with the alkaline soil tolerance in plants.
Collapse
Affiliation(s)
- Adil Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Muhammad Kamran
- Plant Transport and Signalling Lab, School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, 5064, Australia
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - Muhammad Imran
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| | - Ahmed Al-Rawahi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Issa Al-Amri
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - In-Jung Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Republic of Korea.
| | - Abdul Latif Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman.
| |
Collapse
|
27
|
Alotaibi S. Biophysical properties and finger print of Boswellia Sp. Burseraceae. Saudi J Biol Sci 2019; 26:1450-1457. [PMID: 31762608 PMCID: PMC6864145 DOI: 10.1016/j.sjbs.2019.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 11/30/2022] Open
Abstract
For the first time a finger print analysis via high-performance thin layer chromatography (HPTLC) of Boswellia Sp. Burseraceae was accomplished. A preliminary investigation of the Boswellia Sp. Burseraceae displayed the presence of chemical constituents that could be involved in the production of innovative pharmaceuticals for an array of antiviral, anticancer, and antibacterial uses. Moreover, the finger print analysis would deem useful for establishing HPTLC standardization for natural and herbal photochemical constituents.
Collapse
Affiliation(s)
- S.H. Alotaibi
- Department of Chemistry, Turabah University College, Taif University, 21995, Saudi Arabia
| |
Collapse
|
28
|
Al-Harrasi A, Csuk R, Khan A, Hussain J. Distribution of the anti-inflammatory and anti-depressant compounds: Incensole and incensole acetate in genus Boswellia. PHYTOCHEMISTRY 2019; 161:28-40. [PMID: 30802641 DOI: 10.1016/j.phytochem.2019.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 01/05/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Incensole and its acetate have shown anti-inflammatory and anti-depression activities due to their ability to activate ion channels in the brain to alleviate anxiety or depression. The natural occurrence of these two structurally and medicinally fascinating 14-membered diterpenoids was reported mainly from the genus Boswellia. Incensole and incensole acetate were detected in and isolated from both essential oils and resins of frankincense. One total synthesis was reported for incensole. Both incensole and its acetate served as precursors for several synthetic transformations. Given the fact that no specific enzymes were isolated from Boswellia trees, the major sources for incensole and incensole acetate, the biosynthetic pathway of these two compounds was only speculated. Recent studies on incensole and incensole acetate including ours have revealed another secret of the ancient drug. Understanding their mode of action will open a door in modern neurobiology and provides new insights on the mysterious diseases of the nervous system. This review interpretatively discusses the natural existence of incensole and incensole acetate, the variation of their percentages in different Boswellia species and other sources, their synthetic modifications, their biosynthesis and their therapeutic potential.
Collapse
Affiliation(s)
- Ahmed Al-Harrasi
- Natural and Medical Sciences Center, University of Nizwa, P. O. Box 33, Birkat Al Mauz, Nizwa 616, Oman.
| | - Rene Csuk
- Martin-Luther-University Halle-Wittenberg, Organic Chemistry, Kurt-Mothes-Str. 2, D-06120 Halle (Saale) Germany
| | - Ajmal Khan
- Natural and Medical Sciences Center, University of Nizwa, P. O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| | - Javid Hussain
- Natural and Medical Sciences Center, University of Nizwa, P. O. Box 33, Birkat Al Mauz, Nizwa 616, Oman
| |
Collapse
|
29
|
Bini Araba A, Ur Rehman N, Al-Araimi A, Al-Hashmi S, Al-Shidhani S, Csuk R, Hussain H, Al-Harrasi A, Zadjali F. New derivatives of 11-keto-β-boswellic acid (KBA) induce apoptosis in breast and prostate cancers cells. Nat Prod Res 2019; 35:707-716. [PMID: 30931626 DOI: 10.1080/14786419.2019.1593165] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
A series of new 11-keto-β-boswellic acid were partially-synthesized by modifying the hydroxyl and carboxylic acid functional groups of ring A. The structures of the new analogs were confirmed by detailed spectral data analysis. Compounds 4, 5 and 9 exhibited potent anti-cancer results against two human tumor cancer cell lines having IC50 value of MCF-7 (breast) and LNCaP (prostate): 123.6, 9.6 and 88.94 μM and 9.6, 44.12 and 12.03 μM, respectively. Additionally, a maximum nuclear fragmentation was observed for 4 (78.44%) in AKBA treated cells after 24 hr followed by 5 and 9 with (74.25 and 66.9% respectively). This study suggests that the presence of hydrazone functionality (4 and 9) has effectively improved the potency of AKBA. Interestingly, compound 5 with a lost carboxylic acid group of ring A showed comparable potent activity. Highly selective AKBA requires further modification to improve its bioavailability and solubility inside the cancer cells.
Collapse
Affiliation(s)
- Asma Bini Araba
- Biochemistry Department, College of Medicine and Health Science, Sultan Qaboos University, Muscat, Oman
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Amna Al-Araimi
- Biochemistry Department, College of Medicine and Health Science, Sultan Qaboos University, Muscat, Oman
| | - Sulaiman Al-Hashmi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Sulaiman Al-Shidhani
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Rene Csuk
- Organic Chemistry, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Hidayat Hussain
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman.,Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle, Germany
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Sultanate of Oman
| | - Fahad Zadjali
- Biochemistry Department, College of Medicine and Health Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|