1
|
Hook SE, Smith RA, Waltham N, Warne MSJ. Pesticides in the Great Barrier Reef catchment area: Plausible risks to fish populations. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2024; 20:1256-1279. [PMID: 37994614 DOI: 10.1002/ieam.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023]
Abstract
Waterways that drain the Great Barrier Reef catchment area (GBRCA) transport pollutants to marine habitats, provide a critical corridor between freshwater and marine habitats for migratory fish species, and are of high socioecological value. Some of these waterways contain concentrations of pesticide active ingredients (PAIs) that exceed Australian ecotoxicity threshold values (ETVs) for ecosystem protection. In this article, we use a "pathway to harm" model with five key criteria to assess whether the available information supports the hypothesis that PAIs are or could have harmful effects on fish and arthropod populations. Strong evidence of the first three criteria and circumstantial weaker evidence of the fourth and fifth criteria are presented. Specifically, we demonstrate that exceedances of Australian and New Zealand ETVs for ecosystem protection are widespread in the GBRCA, that the PAI contaminated water occurs (spatially and temporally) in important habitats for fisheries, and that there are clear direct and indirect mechanisms by which PAIs could cause harmful effects. The evidence of individuals and populations of fish and arthropods being adversely affected species is more circumstantial but consistent with PAIs causing harmful effects in the freshwater ecosystems of Great Barrier Reef waterways. We advocate strengthening the links between PAI concentrations and fish health because of the cultural values placed on the freshwater ecosystems by relevant stakeholders and Traditional Owners, with the aim that stronger links between elevated PAI concentrations and changes in recreationally and culturally important fish species will inspire improvements in water quality. Integr Environ Assess Manag 2024;20:1256-1279. © 2023 Commonwealth of Australia and The Commonwealth Scientific and Industrial Research Organisation. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Rachael A Smith
- Office of the Great Barrier Reef, Queensland, Department of Environment and Science, Brisbane, Queensland, Australia
| | - Nathan Waltham
- Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Michael St J Warne
- Reef Catchments Science Partnership, School of Earth and Environmental Sciences, University of Queensland, St. Lucia, Brisbane, Queensland, Australia
- Water Quality and Investigations, Department of Environment and Science, Brisbane, Queensland, Australia
- Centre for Agroecology, Water and Resilience, Coventry University, West Midlands, UK
| |
Collapse
|
2
|
Halama JJ, McKane RB, Barnhart BL, Pettus PP, Brookes AF, Adams AK, Gockel CK, Djang KS, Phan V, Chokshi SM, Graham JJ, Tian Z, Peter KT, Kolodziej EP. Watershed analysis of urban stormwater contaminant 6PPD-Quinone hotspots and stream concentrations using a process-based ecohydrological model. FRONTIERS IN ENVIRONMENTAL SCIENCE 2024; 12:1-12. [PMID: 38845698 PMCID: PMC11151736 DOI: 10.3389/fenvs.2024.1364673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Coho salmon (Oncorhynchus kisutch) are highly sensitive to 6PPD-Quinone (6PPD-Q). Details of the hydrological and biogeochemical processes controlling spatial and temporal dynamics of 6PPD-Q fate and transport from points of deposition to receiving waters (e.g., streams, estuaries) are poorly understood. To understand the fate and transport of 6PPD and mechanisms leading to salmon mortality Visualizing Ecosystem Land Management Assessments (VELMA), an ecohydrological model developed by US Environmental Protection Agency (EPA), was enhanced to better understand and inform stormwater management planning by municipal, state, and federal partners seeking to reduce stormwater contaminant loads in urban streams draining to the Puget Sound National Estuary. This work focuses on the 5.5 km2 Longfellow Creek upper watershed (Seattle, Washington, United States), which has long exhibited high rates of acute urban runoff mortality syndrome in coho salmon. We present VELMA model results to elucidate these processes for the Longfellow Creek watershed across multiple scales-from 5-m grid cells to the entire watershed. Our results highlight hydrological and biogeochemical controls on 6PPD-Q flow paths, and hotspots within the watershed and its stormwater infrastructure, that ultimately impact contaminant transport to Longfellow Creek and Puget Sound. Simulated daily average 6PPD-Q and available observed 6PPD-Q peak in-stream grab sample concentrations (ng/L) corresponds within plus or minus 10 ng/L. Most importantly, VELMA's high-resolution spatial and temporal analysis of 6PPD-Q hotspots provides a tool for prioritizing the locations, amounts, and types of green infrastructure that can most effectively reduce 6PPD-Q stream concentrations to levels protective of coho salmon and other aquatic species.
Collapse
Affiliation(s)
| | - Robert B. McKane
- U.S. Environmental Protection Agency, Corvallis, OR, United States
| | | | - Paul P. Pettus
- U.S. Environmental Protection Agency, Corvallis, OR, United States
| | - Allen F. Brookes
- U.S. Environmental Protection Agency, Corvallis, OR, United States
| | - Angela K. Adams
- U.S. Environmental Protection Agency, Seattle, WA, United States
| | | | | | - Vivian Phan
- U.S. Environmental Protection Agency, Corvallis, OR, United States
| | | | | | - Zhenyu Tian
- Northeastern University, Boston, MA, United States
- Center for Urban Waters, Tacoma, WA, United States
| | - Katherine T. Peter
- Center for Urban Waters, Tacoma, WA, United States
- University of Washington Tacoma, Tacoma, WA, United States
| | - Edward P. Kolodziej
- Center for Urban Waters, Tacoma, WA, United States
- University of Washington Tacoma, Tacoma, WA, United States
- University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Laetz CA, Zarada K, Lundin JI, Kern J, Sol S, Veggerby K, Chittaro P, Gates J, Hayes KRR, Arthur C, Steinhoff M, Baker M. Growth of Pacific staghorn sculpin (Leptocottus armatus) is reduced at contaminated sites in the Lower Duwamish River, Washington. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168365. [PMID: 37939955 DOI: 10.1016/j.scitotenv.2023.168365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/25/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
The Lower Duwamish River is a highly industrialized waterway flowing into the densely urbanized Puget Sound waterfront of Seattle, Washington, USA. The river has been profoundly altered from its natural state following more than a century of channelization, recurrent dredging, shoreline armoring, and pollution discharges. As part of a Natural Resource Damage Assessment addressing historical pollution at three designated Superfund sites (i.e., the assessment area), juvenile Pacific staghorn sculpin (Leptocottus armatus) were sampled throughout the lower river in order to evaluate injury from exposure to polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), dichlorodiphenyltrichloroethane (DDTs), and butyltins (BTs). Sculpin live in close association with the river sediments within and upriver of the assessment area. Fish were collected for analysis of contaminant concentrations in composited whole bodies and stomach contents, as well as individual fish health metrics including daily somatic growth rates measured from otoliths. Sediment contaminant concentrations were also measured at sites near to fishing locations. Fish growth rates varied from 0.65 to 1.05 mm/day, and were significantly lower at unremediated downriver sites compared to upriver and remediated locations. Sculpin growth rates were negatively correlated with concentrations of PCBs in fish bodies, PAHs in stomach contents, as well as PCBs, DDTs and PAHs in sediment. Mixed effects models for whole-body and stomach content contaminants showed positive correlations between growth rate and water temperature. Temperature was not a significant confounding variable for the relationship between growth rate and sediment contaminants. Overall, these results show that juvenile sculpin are harmed by contaminant exposure in the Lower Duwamish River. Furthermore, this study demonstrates the utility of using paired biological and chemical indicators of pollutant-induced injury in a resident fish to inform a complex Natural Resource Damage Assessment and associated restoration efforts.
Collapse
Affiliation(s)
- Cathy A Laetz
- National Oceanic and Atmospheric Administration, NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. E, Seattle, WA 98112, United States of America.
| | - Katherine Zarada
- Industrial Economics Incorporated, 2076 Massachusetts Ave, Cambridge, MA 02140
| | - Jessica I Lundin
- National Research Council Research Associateship Program, under contract to the Northwest Fisheries Science Center, NOAA Fisheries, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, United States of America
| | - John Kern
- Kern Statistical Services Inc., P.O. Box 503, Houghton, MI 49931, United States of America
| | - Sean Sol
- National Oceanic and Atmospheric Administration, NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. E, Seattle, WA 98112, United States of America
| | - Karl Veggerby
- Ocean Associates, Inc., under contract to the Northwest Fisheries Science Center, NOAA Fisheries, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, United States of America; School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St., Seattle, WA 98195., United States of America
| | - Paul Chittaro
- National Oceanic and Atmospheric Administration, NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. E, Seattle, WA 98112, United States of America
| | - Jonelle Gates
- National Oceanic and Atmospheric Administration, NOAA Fisheries, Northwest Fisheries Science Center, 2725 Montlake Blvd. E, Seattle, WA 98112, United States of America
| | - Kia R R Hayes
- Ocean Associates, Inc., under contract to the Northwest Fisheries Science Center, NOAA Fisheries, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, United States of America
| | - Courtney Arthur
- Industrial Economics Incorporated, 2076 Massachusetts Ave, Cambridge, MA 02140
| | - Marla Steinhoff
- National Oceanic and Atmospheric Administration, National Ocean Service, Office of Response and Restoration, Assessment and Restoration Division, 7600 Sand Point Way NE, Seattle, WA 98115, United States of America
| | - Mary Baker
- National Oceanic and Atmospheric Administration, National Ocean Service, Office of Response and Restoration, Assessment and Restoration Division, 7600 Sand Point Way NE, Seattle, WA 98115, United States of America
| |
Collapse
|
4
|
McIntyre JK, Spromberg J, Cameron J, Incardona JP, Davis JW, Scholz NL. Bioretention filtration prevents acute mortality and reduces chronic toxicity for early life stage coho salmon (Oncorhynchus kisutch) episodically exposed to urban stormwater runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165759. [PMID: 37495136 DOI: 10.1016/j.scitotenv.2023.165759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
As the human population of western North America continues to expand, widespread patterns of urban growth pose increasingly existential threats to certain wild stocks of Pacific salmon and steelhead (Oncorhynchus sp.). Rainfall previously absorbed into the soils of forests and grasslands falls instead on pavement and other hardened surfaces. This creates stormwater runoff that carries toxic metals, oil, and many other contaminants into salmon-bearing habitats. These include freshwater streams where coho salmon (O. kisutch) spawn in gravel beds. Coho salmon embryos develop within a thick eggshell (chorion) for weeks to months before hatching as alevins and ultimately emerging from the gravel as fry. Untreated urban runoff is highly toxic to older coho salmon (freshwater-resident juveniles and adult spawners), but the vulnerability of the earliest life stages remains poorly understood. To address this uncertainty, we fertilized eggs and raised them under an episodic stormwater exposure regimen, using runoff collected from a high-traffic arterial roadway from 15 discrete storm events. We monitored survival and morphological development, as well as molecular markers for contaminant exposure and cardiovascular stress. We also evaluated the benefit of treating runoff with green infrastructure (bioretention filtration) on coho salmon health and survival. Untreated runoff caused subtle sublethal toxicity in pre-hatch embryos with no mortality, followed by high rates of mortality from exposure at hatch. Bioretention filtration removed most measured contaminants (bacteria, dissolved metals, and polycyclic aromatic hydrocarbons), and the treated effluent was considerably less toxic - notably preventing mortality at the alevin stage. Our findings indicate that untreated urban runoff poses an important threat to early life stage coho salmon, in terms of both acute and delayed-in-time mortality. Moreover, while inexpensive management strategies involving bioinfiltration are promising, future green infrastructure effectiveness research should emphasize sublethal metrics for contaminant exposure and adverse health outcomes in salmonids.
Collapse
Affiliation(s)
- Jenifer K McIntyre
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W Pioneer Ave, Puyallup, WA 98371, USA.
| | - Julann Spromberg
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - James Cameron
- Saltwater Inc, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - John P Incardona
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Jay W Davis
- United States Fish and Wildlife Service, Environmental Contaminants Program, 510 Desmond Dr. SE, Lacey, WA 98503, USA
| | - Nathaniel L Scholz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
5
|
D'Agnese E, Chase D, Andruszkiewicz-Allan E. ISOTHERMAL RECOMBINANT POLYMERASE AMPLIFICATION AND CRIPSR(CAS12A) ASSAY DETECTION OF RENIBACTERIUM SALMONINARUM AS AN EXAMPLE FOR WILDLIFE PATHOGEN DETECTION IN ENVIRONMENTAL DNA SAMPLES. J Wildl Dis 2023; 59:545-556. [PMID: 37791744 DOI: 10.7589/jwd-d-22-00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/01/2023] [Indexed: 10/05/2023]
Abstract
Improving rapid detection methods for pathogens is important for research as we collectively aim to improve the health of ecosystems globally. In the northern hemisphere, the success of salmon (Oncorhynchus spp.) populations is vitally important to the larger marine, aquatic, and terrestrial ecosystems they inhabit. This has led to managers cultivating salmon in hatcheries and aquaculture to bolster their populations, but young salmon face many challenges, including diseases such as bacterial kidney disease (BKD). Early detection of the BKD causative agent, Renibacterium salmoninarum, is useful for managers to avoid outbreaks in hatcheries and aquaculture stocks to enable rapid treatment with targeted antibiotics. Isothermal amplification and CRIPSR-Cas12a systems may enable sensitive, relatively rapid, detection of target DNA molecules from environmental samples compared to quantitative PCR (qPCR) and culture methods. We used these technologies to develop a sensitive and specific rapid assay to detect R. salmoninarum from water samples using isothermal recombinase polymerase amplification (RPA) and an AsCas12a RNA-guided nuclease detection. The assay was specific to R. salmoninarum (0/10 co-occurring or closely related bacteria detected) and sensitive to 0.0128 pg/µL of DNA (approximately 20-40 copies/µL) within 10 min of Cas activity. This assay successfully detected R. salmoninarum environmental DNA in 14/20 water samples from hatcheries with known quantification for the pathogen via previous qPCR (70% of qPCR-positive samples). The RPA-CRISPR/AsCas12a assay had a limit of detection (LOD) of >10 copies/µL in the hatchery water samples and stochastic detection below 10 copies/µL, similar to but slightly higher than the qPCR assay. This LOD enables 37 C isothermal detection, potentially in the field, of biologically relevant levels of R. salmoninarum in water. Further research is needed to develop easy-to-use, cost-effective, sensitive RPA/CRISPR-AsCas12a assays for rapidly detecting low concentrations of wildlife pathogens in environmental samples.
Collapse
Affiliation(s)
- Erin D'Agnese
- University of Washington, School of Marine and Environmental Affairs, 3737 Brooklyn Ave. NE, Seattle, Washington 98105, USA
- Wild EcoHealth LLC, Tacoma, Washington 98465, USA
| | - Dorothy Chase
- U.S. Geological Survey, Western Fisheries Research Center, 6505 Northeast 65th St., Seattle, Washington 98115, USA
| | - Elizabeth Andruszkiewicz-Allan
- University of Washington, School of Marine and Environmental Affairs, 3737 Brooklyn Ave. NE, Seattle, Washington 98105, USA
| |
Collapse
|
6
|
McIntyre JK, Prat J, Cameron J, Wetzel J, Mudrock E, Peter KT, Tian Z, Mackenzie C, Lundin J, Stark JD, King K, Davis JW, Kolodziej EP, Scholz NL. Treading Water: Tire Wear Particle Leachate Recreates an Urban Runoff Mortality Syndrome in Coho but Not Chum Salmon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11767-11774. [PMID: 34410108 DOI: 10.1021/acs.est.1c03569] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Tire tread wear particles (TWP) are increasingly recognized as a global pollutant of surface waters, but their impact on biota in receiving waters is rarely addressed. In the developed U.S. Pacific Northwest, acute mortality of adult coho salmon (Oncorhynchus kisutch) follows rain events and is correlated with roadway density. Roadway runoff experimentally triggers behavioral symptoms and associated changes in blood indicative of cardiorespiratory distress prior to death. Closely related chum salmon (O. keta) lack an equivalent response. Acute mortality of juvenile coho was recently experimentally linked to a transformation product of a tire-derived chemical. We evaluated whether TWP leachate is sufficient to trigger the acute mortality syndrome in adult coho salmon. We characterized the acute response of adult coho and chum salmon to TWP leachate (survival, behavior, blood physiology) and compared it with that caused by roadway runoff. TWP leachate was acutely lethal to coho at concentrations similar to roadway runoff, with the same behaviors and blood parameters impacted. As with runoff, chum salmon appeared insensitive to TWP leachate at concentrations lethal to coho. Our results confirm that environmentally relevant TWP exposures cause acute mortalities of a keystone aquatic species.
Collapse
Affiliation(s)
- Jenifer K McIntyre
- Washington State University, School of the Environment, Puyallup Research and Extension Center, Puyallup, Washington 98371, United States
| | - Jasmine Prat
- Washington State University, School of the Environment, Puyallup Research and Extension Center, Puyallup, Washington 98371, United States
| | - James Cameron
- Ocean Associates, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, United States
| | - Jillian Wetzel
- Washington State University, School of the Environment, Puyallup Research and Extension Center, Puyallup, Washington 98371, United States
| | - Emma Mudrock
- Washington State University, School of the Environment, Puyallup Research and Extension Center, Puyallup, Washington 98371, United States
| | - Katherine T Peter
- Center for Urban Waters, Tacoma, Washington 98421 United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421 United States
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, Washington 98421 United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421 United States
| | - Cailin Mackenzie
- Washington State University, School of the Environment, Puyallup Research and Extension Center, Puyallup, Washington 98371, United States
| | - Jessica Lundin
- National Research Council Research Associateship Program, Under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112 United States
| | - John D Stark
- Washington State University, Washington Stormwater Center, Puyallup Research and Extension Center, Puyallup, Washington 98371, United States
| | - Kennith King
- United States Fish and Wildlife Service, Environmental Contaminants Program, Lacey, Washington 98503 United States
| | - Jay W Davis
- United States Fish and Wildlife Service, Environmental Contaminants Program, Lacey, Washington 98503 United States
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, Washington 98421 United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421 United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195 United States
| | - Nathaniel L Scholz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, Washington 98112, United States
| |
Collapse
|
7
|
Segner H, Bailey C, Tafalla C, Bo J. Immunotoxicity of Xenobiotics in Fish: A Role for the Aryl Hydrocarbon Receptor (AhR)? Int J Mol Sci 2021; 22:ijms22179460. [PMID: 34502366 PMCID: PMC8430475 DOI: 10.3390/ijms22179460] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/27/2021] [Indexed: 02/07/2023] Open
Abstract
The impact of anthropogenic contaminants on the immune system of fishes is an issue of growing concern. An important xenobiotic receptor that mediates effects of chemicals, such as halogenated aromatic hydrocarbons (HAHs) and polyaromatic hydrocarbons (PAHs), is the aryl hydrocarbon receptor (AhR). Fish toxicological research has focused on the role of this receptor in xenobiotic biotransformation as well as in causing developmental, cardiac, and reproductive toxicity. However, biomedical research has unraveled an important physiological role of the AhR in the immune system, what suggests that this receptor could be involved in immunotoxic effects of environmental contaminants. The aims of the present review are to critically discuss the available knowledge on (i) the expression and possible function of the AhR in the immune systems of teleost fishes; and (ii) the impact of AhR-activating xenobiotics on the immune systems of fish at the levels of immune gene expression, immune cell proliferation and immune cell function, immune pathology, and resistance to infectious disease. The existing information indicates that the AhR is expressed in the fish immune system, but currently, we have little understanding of its physiological role. Exposure to AhR-activating contaminants results in the modulation of numerous immune structural and functional parameters of fish. Despite the diversity of fish species studied and the experimental conditions investigated, the published findings rather uniformly point to immunosuppressive actions of xenobiotic AhR ligands in fish. These effects are often associated with increased disease susceptibility. The fact that fish populations from HAH- and PAH-contaminated environments suffer immune disturbances and elevated disease susceptibility highlights that the immunotoxic effects of AhR-activating xenobiotics bear environmental relevance.
Collapse
Affiliation(s)
- Helmut Segner
- Centre for Fish and Wildlife Health, Department of Pathobiology and Infectious Diseases, Vetsuisse Faculty, University of Bern, 3012 Bern, Switzerland
| | | | | | - Jun Bo
- Laboratory of Marine Biology and Ecology, Third Institute of Oceanography, Xiamen 361005, China
| |
Collapse
|
8
|
Lundin JI, Chittaro PM, Ylitalo GM, Kern JW, Kuligowski DR, Sol SY, Baugh KA, Boyd DT, Baker MC, Neely RM, King KG, Scholz NL. Decreased Growth Rate Associated with Tissue Contaminants in Juvenile Chinook Salmon Out-Migrating through an Industrial Waterway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:9968-9978. [PMID: 34252275 DOI: 10.1021/acs.est.1c01526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The industrial waterway in Portland Harbor, Oregon, is a migration corridor for a distinct population segment of Chinook Salmon (Upper Willamette River) currently protected by the U.S. Endangered Species Act. Juveniles are exposed to a suite of contaminants during outmigration including polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and dichlorodiphenyltrichloroethanes. We collected natural origin subyearling Chinook salmon from sites in and around the industrial harbor to evaluate growth (otolith microstructural analysis) in relation to measured chemical concentrations in tissue. A reduced growth rate was associated with higher tissue contaminant concentrations, particularly mixtures represented by PAHs and certain PCBs, which were elevated in juvenile Chinook collected throughout sites within Portland Harbor relative to those captured upstream. First-year growth is an established predictor of individual survival and eventual reproductive success in Chinook salmon. Therefore, our results indicate that legacy pollution may be limiting the population abundance of threatened Willamette River Chinook salmon, and future habitat remediation or restoration actions may benefit ongoing species recovery efforts.
Collapse
Affiliation(s)
- Jessica I Lundin
- National Research Council Research Associateship Program, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, Washington 98112, United States
| | - Paul M Chittaro
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, Washington 98112, United States
| | - Gina M Ylitalo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, Washington 98112, United States
| | - John W Kern
- Kern Statistical Services, Inc., 13680 Bete Grise RD, Mohawk, Michigan 49950, United States
| | - David R Kuligowski
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, Washington 98112, United States
| | - Sean Y Sol
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, Washington 98112, United States
| | - Keri A Baugh
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, Washington 98112, United States
| | - Daryle T Boyd
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, Washington 98112, United States
| | - Mary C Baker
- Assessment and Restoration Division, Office of Response and Restoration, National Ocean Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Seattle, Washington 98115-0070, United States
| | - Robert M Neely
- Assessment and Restoration Division, Office of Response and Restoration, National Ocean Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Seattle, Washington 98115-0070, United States
| | - Kennith G King
- US Fish and Wildlife Service, 510 Desmond Dr SE #102, Lacey, Washington 98503, United States
| | - Nathaniel L Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, Washington 98112, United States
| |
Collapse
|
9
|
O'Neill SM, Carey AJ, Harding LB, West JE, Ylitalo GM, Chamberlin JW. Chemical tracers guide identification of the location and source of persistent organic pollutants in juvenile Chinook salmon (Oncorhynchus tshawytscha), migrating seaward through an estuary with multiple contaminant inputs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 712:135516. [PMID: 31806347 DOI: 10.1016/j.scitotenv.2019.135516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 11/04/2019] [Accepted: 11/12/2019] [Indexed: 06/10/2023]
Abstract
Understanding the spatial extent, magnitude, and source of contaminant exposure in biota is necessary to formulate appropriate conservation measures to reduce or remediate contaminant exposure. However, obtaining such information for migratory animals is challenging. Juvenile Chinook salmon (Oncorhynchus tshawytscha), a threatened species throughout the US Pacific Northwest, are exposed to persistent organic pollutants (POPs), including polybrominated diphenyl ether (PBDE) flame retardants and polychlorinated biphenyls (PCBs), in many developed rivers and estuaries. This study used three types of complementary chemical tracer data (contaminant concentrations, POP fingerprints, and stable isotopes), to determine the location and source of contaminant exposure for natural- and hatchery-origin Chinook salmon migrating seaward through a developed watershed with multiple contaminant sources. Concentration data revealed that salmon were exposed to and accumulated predominantly PBDEs and PCBs in the lower mainstem region of the river, with higher PBDEs in natural- than hatchery-origin fish but similar PCBs in both groups, associated with differences in contaminant inputs and/or habitat use. The POP fingerprints of the natural-origin-fish captured from this region were also distinct from other region and origin sample groups, with much higher proportions of PBDEs in the total POP concentration, indicating a different contaminant source or habitat use than the hatchery-origin fish. Stable isotopes, independent tracers of food sources and habitat use, revealed that natural-origin fish from this region also had depleted δ15N signatures compared to other sample groups, associated with exposure to nutrient-rich wastewater. The PBDE-enhanced POP fingerprints in these salmon were correlated with the degree of depletion in nitrogen stable isotopes of the fish, suggesting a common wastewater source for both the PBDEs and the nitrogen. Identification of the location and source of contaminant exposure allows environmental managers to establish conservation measures to control contaminant inputs, necessary steps to improve the health of Chinook salmon and enhance their marine survival.
Collapse
Affiliation(s)
- Sandra M O'Neill
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA 98504-3200, USA.
| | - Andrea J Carey
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA 98504-3200, USA
| | - Louisa B Harding
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA 98504-3200, USA
| | - James E West
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA 98504-3200, USA
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112-2097, USA
| | - Joshua W Chamberlin
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112-2097, USA
| |
Collapse
|
10
|
Laetz CA, Baldwin DH, Scholz NL. Sublethal neurotoxicity of organophosphate insecticides to juvenile coho salmon. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 221:105424. [PMID: 32058876 DOI: 10.1016/j.aquatox.2020.105424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 01/08/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
For decades, organophosphate (OP) insecticides have been used as chemical control agents in watersheds that support at-risk populations of Pacific salmon throughout western North America. Spray drift, runoff, and other processes transport OPs to critical surface water habitats for migratory salmonids. While most OPs share a common mechanism of action (i.e., inhibition of neuronal acetylcholinesterase, or AChE), they typically vary in toxic potency. Moreover, dose-response relationships for exposure and sublethal neurotoxicity (e.g., brain AChE inhibition) in salmonids have not been defined for many OPs. Here we exposed juvenile coho salmon (Oncorhynchus kisutch) to five common anticholinesterase insecticides (dimethoate, ethoprop, naled, phorate and phosmet) that are widely used on agricultural, commercial, residential, and public lands. Each of the five pesticides produced a concentration-dependent inhibition of AChE enzyme activity. The effective concentration for 50 % AChE inhibition (96-hr EC50) indicated the highest toxicity for phorate (EC50 = 0.57 μg/L) followed by phosmet (3.3 μg/L), naled (7.8 μg/L), ethoprop (90.6 μg/L) and dimethoate (273 μg/L). These findings can inform 1) relative hazard analyses for OP use near sensitive aquatic habitats, 2) predictions of sublethal OP mixture toxicity, and 3) ecological risk assessments for threatened or endangered species of Pacific salmon.
Collapse
Affiliation(s)
- Cathy A Laetz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.
| | - David H Baldwin
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|