1
|
Vaez M, Montalbano S, Waples R, Krebs MD, Hellberg KLG, Gådin J, Bybjerg-Grauholm J, Mortensen PB, Børglum AD, Nordentoft M, Geschwind DH, Helenius D, Werge T, Schork AJ, Ingason A. Evaluating the Joint Effects of Recurrent Copy Number Variants and Polygenic Scores on the Risk of Psychiatric Disorders in the iPSYCH2015 Case-Cohort Sample. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.23.24314234. [PMID: 39398991 PMCID: PMC11469389 DOI: 10.1101/2024.09.23.24314234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The impact of rare recurrent copy number variants (rCNVs) and polygenic background attributed to common variants, on the risk of psychiatric disorders is well-established in separate studies. However, it remains unclear how polygenic background modulates the effect of rCNVs. Using the population-representative iPSYCH2015 case-cohort sample (N=96,599), we investigated the association between absolute risk of psychiatric disorders and carriage of rCNVs and polygenic scores (PGS), as well as the interaction effect between the two on disease risk. Carriers of rCNVs with higher gene constraint scores had an increased absolute risk for autism, ADHD, and schizophrenia, but not depression, whereas an increase in PGS for each respective disorder was associated with higher absolute risk across all four disorders. Similarly, elevated absolute risks were observed with the increase of both PGS and gene constraints of rCNVs except in the case of depression. In contrast to some previous case-control studies, our joint analysis of rCNV groups and PGS revealed no indication of significant interactive effect between these two factors on disease risk. Also, we found no significant interactions of PGS with any of the most common individual rCNVs, except in the case of 16p13.11 duplication, which was found to attenuate the effect of ADHD-PGS on the absolute risk of ADHD. This study advances our understanding of the interplay between rare and common important genetic risk factors for major psychiatric disorders and sheds light on the importance of population-based samples in implementing precision medicine.
Collapse
|
2
|
Kontou PI, Bagos PG. The goldmine of GWAS summary statistics: a systematic review of methods and tools. BioData Min 2024; 17:31. [PMID: 39238044 PMCID: PMC11375927 DOI: 10.1186/s13040-024-00385-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024] Open
Abstract
Genome-wide association studies (GWAS) have revolutionized our understanding of the genetic architecture of complex traits and diseases. GWAS summary statistics have become essential tools for various genetic analyses, including meta-analysis, fine-mapping, and risk prediction. However, the increasing number of GWAS summary statistics and the diversity of software tools available for their analysis can make it challenging for researchers to select the most appropriate tools for their specific needs. This systematic review aims to provide a comprehensive overview of the currently available software tools and databases for GWAS summary statistics analysis. We conducted a comprehensive literature search to identify relevant software tools and databases. We categorized the tools and databases by their functionality, including data management, quality control, single-trait analysis, and multiple-trait analysis. We also compared the tools and databases based on their features, limitations, and user-friendliness. Our review identified a total of 305 functioning software tools and databases dedicated to GWAS summary statistics, each with unique strengths and limitations. We provide descriptions of the key features of each tool and database, including their input/output formats, data types, and computational requirements. We also discuss the overall usability and applicability of each tool for different research scenarios. This comprehensive review will serve as a valuable resource for researchers who are interested in using GWAS summary statistics to investigate the genetic basis of complex traits and diseases. By providing a detailed overview of the available tools and databases, we aim to facilitate informed tool selection and maximize the effectiveness of GWAS summary statistics analysis.
Collapse
Affiliation(s)
| | - Pantelis G Bagos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 35131, Lamia, Greece.
| |
Collapse
|
3
|
Svyatova G, Berezina G, Bazarbayeva A, Omarova K, Kussainov A. Genetic Markers of Acute Childhood B-Lineage Lymphoblastic Leukemia in the Kazakh Population. Fetal Pediatr Pathol 2024:1-15. [PMID: 38989811 DOI: 10.1080/15513815.2024.2375523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/27/2024] [Indexed: 07/12/2024]
Abstract
INTRODUCTION To investigate the genetic contribution of 24 GWAS-associated polymorphic gene variants on the development of children's B-lineage acute lymphoblastic leukemia (B-ALL) in an ethnically homogeneous population of Kazakhs. METHODS A study of 205 children with B-ALL and 204 healthy children was conducted. Genotyping of polymorphic loci was carried out using the TaqMan method. RESULTS Significant associations (p < 0.05) with the risk of childhood B-ALL were found for twelve variants, including rs6457327 of the HLA gene, rs4251961 of the IL1RN gene, and rs1800630 of the TNF gene. Carriage of the minor allele A of the protective rs1801157 polymorphism A of the CXCL12 gene reduces the risk of B-ALL in the Kazakh population by 40%. DISCUSSION The results reveal significant associations of polymorphic genetic variants, which can serve as a basis for the development of effective methods for predicting the risk of B-ALL, early diagnosis, and timely treatment.
Collapse
Affiliation(s)
- Gulnara Svyatova
- Department of the Republican Medical Genetic Consultation, Scientific Center for Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Galina Berezina
- Department of the Republican Medical Genetic Consultation, Scientific Center for Obstetrics, Gynecology and Perinatology, Almaty, Republic of Kazakhstan
| | - Aigul Bazarbayeva
- Department of Science and Education, Scientific Center of Pediatric and Children's Surgery, Almaty, Republic of Kazakhstan
| | - Kulyan Omarova
- Department of Science and Education, Scientific Center of Pediatric and Children's Surgery, Almaty, Republic of Kazakhstan
| | - Abay Kussainov
- Scientific Center of Pediatric and Children's Surgery, Almaty, Republic of Kazakhstan
| |
Collapse
|
4
|
Harris A, Verticchio Vercellin A, Weinreb RN, Khawaja A, MacGregor S, Pasquale LR. Lessons From The Glaucoma Foundation Think Tank 2023: A Patient-Centric Approach to Glaucoma. J Glaucoma 2024; 33:e1-e14. [PMID: 38129952 DOI: 10.1097/ijg.0000000000002353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
PRCIS The main takeaways also included that BIG DATA repositories and AI are important combinatory tools to foster novel strategies to prevent and stabilize glaucoma and, in the future, recover vision loss from the disease. PURPOSE To summarize the main topics discussed during the 28th Annual Glaucoma Foundation Think Tank Meeting "A Patient-Centric Approach to Glaucoma" held in New York on June 9 and 10, 2023. METHODS The highlights of the sessions on BIG DATA, genetics, modifiable lifestyle risk factors, female sex hormones, and neuroprotection in the field of primary open angle glaucoma (POAG) were summarized. RESULTS The researchers discussed the importance of BIG DATA repositories available at national and international levels for POAG research, including the United Kingdom Biobank. Combining genotyped large cohorts worldwide, facilitated by artificial intelligence (AI) and machine-learning approaches, led to the milestone discovery of 312 genome-wide significant disease loci for POAG. While these loci could be combined into a polygenic risk score with clinical utility, Think Tank meeting participants also provided analytical epidemiological evidence that behavioral risk factors modify POAG polygenetic risk, citing specific examples related to caffeine and alcohol use. The impact of female sex hormones on POAG pathophysiology was discussed, as was neuroprotection and the potential use of AI to help mitigate specific challenges faced in clinical trials and speed approval of neuroprotective agents. CONCLUSIONS The experts agreed on the importance of genetics in defining individual POAG risk and highlighted the additional crucial role of lifestyle, gender, blood pressure, and vascular risk factors. The main takeaways also included that BIG DATA repositories and AI are important combinatory tools to foster novel strategies to prevent and stabilize glaucoma and, in the future, recover vision loss from the disease.
Collapse
Affiliation(s)
- Alon Harris
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| | | | - Robert N Weinreb
- Viterbi Family Department of Ophthalmology, Hamilton Glaucoma Center, Shiley Eye Institute, UC San Diego, La Jolla, CA
| | - Anthony Khawaja
- NIHR Biomedical Research Centre, Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, London, UK
| | - Stuart MacGregor
- Statistical Genetics Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Louis R Pasquale
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai Hospital, New York, NY
| |
Collapse
|
5
|
Laplana M, Lopez-Ortega R, Fibla J. Polygenic risk score comparator (PRScomp): Test population vs. worldwide populations. Int J Med Inform 2024; 183:105333. [PMID: 38184939 DOI: 10.1016/j.ijmedinf.2023.105333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Polygenic risk scores (PRS) are a powerful tool for predicting an individual's genetic risk for complex diseases. METHODS We have developed a web service (PRScomp) as a user-friendly tool to evaluate PRS of the user own population and compare it with worldwide populations. RESULTS A disease/trait database has been constructed from GWAS Catalog summary statistics. Genotype data of test population is uploaded and merged with the reference dataset (1000 Genome Project and Human Genome Diversity Project) to obtain a file including the common SNPs. The user can select a disease/trait from the database and a curated set of risk markers is used to calculate summatory PRS. Distribution of z-scored PRS values is presented in publication-ready plots and text files that can be downloaded. DISCUSSION PRScomp can be useful for public health decision-making by identifying population-specific genetic risk factors and informing the development of targeted interventions for at-risk populations.
Collapse
Affiliation(s)
- Marina Laplana
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain.
| | - Ricard Lopez-Ortega
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain; Unitat de Citogenètica i Genètica Mèdica, Hospital Universitari Arnau de Vilanova, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain
| | - Joan Fibla
- Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida, IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain.
| |
Collapse
|
6
|
Kulshreshtha A, Bhatnagar S. Structural effect of the H992D/H418D mutation of angiotensin-converting enzyme in the Indian population: implications for health and disease. J Biomol Struct Dyn 2024:1-18. [PMID: 38411559 DOI: 10.1080/07391102.2024.2321246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
The Non synonymous SNPs (nsSNPs) of the renin-angiotensin-system (RAS) pathway, unique to the Indian population were investigated in view of its importance as an endocrine system. nsSNPs of the RAS pathway genes were mined from the IndiGenome database. Damaging nsSNPs were predicted using SIFT, PredictSNP, SNP and GO, Snap2 and Protein Variation Effect Analyzer. Loss of function was predicted based on protein stability change using I mutant, PremPS and CONSURF. The structural impact of the nsSNPs was predicted using HOPE and Missense3d followed by modeling, refinement, and energy minimization. Molecular Dynamics studies were carried out using Gromacsv2021.1. 23 Indian nsSNPs of the RAS pathway genes were selected for structural analysis and 8 were predicted to be damaging. Further sequence analysis showed that HEMGH zinc binding motif changes to HEMGD in somatic ACE-C domain (sACE-C) H992D and Testis ACE (tACE) H418D resulted in loss of zinc coordination, which is essential for enzymatic activity in this metalloprotease. There was a loss of internal interactions around the zinc coordination residues in the protein structural network. This was also confirmed by Principal Component Analysis, Free Energy Landscape and residue contact maps. Both mutations lead to broadening of the AngI binding cavity. The H992D mutation in sACE-C is likely to be favorable for cardiovascular health, but may lead to renal abnormalities with secondary impact on the heart. H418D in tACE is potentially associated with male infertility.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akanksha Kulshreshtha
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| | - Sonika Bhatnagar
- Computational and Structural Biology Laboratory, Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, India
| |
Collapse
|
7
|
Brown JE, Pham T, Burden H, Braakhuis AJ. Specific Genotypes Associated with Differences in Fasting Insulin Levels and Body Mass Index in Healthy Young Males: Implications for Gene-Nutrient Interactions-an Exploratory Study. Curr Dev Nutr 2023; 7:102018. [PMID: 38026570 PMCID: PMC10663744 DOI: 10.1016/j.cdnut.2023.102018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Genetic variation may significantly impact an individual's susceptibility to diseases, particularly when combined with specific nutrients. Additionally, genetic variations can lead to interindividual differences in metabolic responses. Objective The present study explores the association between gene variants and observed interindividual differences in metabolic responses. Methods The study included 30 healthy males (aged 20-34) who underwent a fasting period and subsequently consumed a standardized meal. Blood samples were collected both before and after the meal to assess metabolic changes. BMI served as an indirect measure for assessing physiological responses associated with body composition. Appetite changes were assessed using an online Visual Analog 100-point Scale. Buccal swabs were collected to analyze genetic variants in single nucleotide polymorphisms (SNPs). Results The data underwent multiple regression analysis, revealing significant associations with 3 SNPs and their metabolic status: the insulin-receptor substrate 1 (IRS1) gene variant rs2943641, genotypes CT and CC, with elevated fasting insulin levels (R2 = 0.639, P = < 0.0001); the mitochondrial uncoupling protein 1 (UCP1) gene variant rs1800592, genotypes GG and GA, with increased BMI (R2 = 0.261, P = 0.007); and the peroxisome proliferator-activated receptor γ2 (PPARγ2) gene variant rs1801282, genotypes GG and GC, with increased BMI (R2 = 0.200, P = 0.024). Conclusions Therefore, our study established significant associations between these 3 SNPs and differences in fasting insulin levels and BMI within our cohort.
Collapse
Affiliation(s)
- Julie E. Brown
- The Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Toan Pham
- The Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Hannah Burden
- The Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Andrea J. Braakhuis
- The Discipline of Nutrition, School of Medical Sciences, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Sailaja AN, Nanda N, Suryanarayana BS, Pal GK. Association of rs2073618 polymorphism and osteoprotegerin levels with hypertension and cardiovascular risks in patients with type 2 diabetes mellitus. Sci Rep 2023; 13:17451. [PMID: 37838749 PMCID: PMC10576806 DOI: 10.1038/s41598-023-44554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 10/10/2023] [Indexed: 10/16/2023] Open
Abstract
There are reports of link of osteoprotegerin (OPG) gene polymorphism to type-2 diabetes (T2D) and hypertension (HTN). The objective of the study was to assess the allele frequency of OPG (rs2073618) gene polymorphism and its association with heart rate variability (HRV) and blood pressure variability profile as CVD risks in diabetes mellitus patients with hypertension undergoing treatment. T2D patients on treatment without hypertension (n = 172), with hypertension (n = 177) and 191 healthy volunteers were recruited for the study. Their blood pressure variability including baroreflex sensitivity (BRS), heart rate variability (HRV), OPG, insulin, lipid profile, receptor-activator for NFkB (RANK), receptor-activator for NFkB-Ligand (RANKL), and tumor necrosis factor-α (TNF-α) were estimated. Allele frequency of OPG (rs2073618) gene polymorphism was assessed from the DNA samples. BRS and HRV indices were decreased, and RANKL/OPG and TNF-α were increased in T2D and T2D + HTN groups, respectively compared to healthy control group. The reduction in BRS was contributed by increased inflammation and reduced SDNN of HRV in GG genotype in T2D + HTN. In GG + GC subgroup, it was additionally contributed by rise in RANKL/OPG level (β - 0.219; p 0.008). Presence of mutant GG genotype contributed to the risk of hypertension among T2D patients (OR 3.004) as well as in general population (OR 2.79). It was concluded that CV risks are more in T2D patients with HTN expressing OPG rs2073618 gene polymorphism.
Collapse
Affiliation(s)
- A Naga Sailaja
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605 006, India
| | - Nivedita Nanda
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605 006, India.
| | - B S Suryanarayana
- Department of Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - G K Pal
- Department of Physiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
- AIIMS, Patna, India
| |
Collapse
|
9
|
Momen M, Brauer K, Patterson MM, Sample SJ, Binversie EE, Davis BW, Cothran EG, Rosa GJM, Brounts SH, Muir P. Genetic architecture and polygenic risk score prediction of degenerative suspensory ligament desmitis (DSLD) in the Peruvian Horse. Front Genet 2023; 14:1201628. [PMID: 37645058 PMCID: PMC10460910 DOI: 10.3389/fgene.2023.1201628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 07/07/2023] [Indexed: 08/31/2023] Open
Abstract
Introduction: Spontaneous rupture of tendons and ligaments is common in several species including humans. In horses, degenerative suspensory ligament desmitis (DSLD) is an important acquired idiopathic disease of a major energy-storing tendon-like structure. DSLD risk is increased in several breeds, including the Peruvian Horse. Affected horses have often been used for breeding before the disease is apparent. Breed predisposition suggests a substantial genetic contribution, but heritability and genetic architecture of DSLD have not been determined. Methods: To identify genomic regions associated with DSLD, we recruited a reference population of 183 Peruvian Horses, phenotyped as DSLD cases or controls, and undertook a genome-wide association study (GWAS), a regional window variance analysis using local genomic partitioning, a signatures of selection (SOS) analysis, and polygenic risk score (PRS) prediction of DSLD risk. We also estimated trait heritability from pedigrees. Results: Heritability was estimated in a population of 1,927 Peruvian horses at 0.22 ± 0.08. After establishing a permutation-based threshold for genome-wide significance, 151 DSLD risk single nucleotide polymorphisms (SNPs) were identified by GWAS. Multiple regions of enriched local heritability were identified across the genome, with strong enrichment signals on chromosomes 1, 2, 6, 10, 13, 16, 18, 22, and the X chromosome. With SOS analysis, there were 66 genes with a selection signature in DSLD cases that was not present in the control group that included the TGFB3 gene. Pathways enriched in DSLD cases included proteoglycan metabolism, extracellular matrix homeostasis, and signal transduction pathways that included the hedgehog signaling pathway. The best PRS predictive performance was obtained when we fitted 1% of top SNPs using a Bayesian Ridge Regression model which achieved the highest mean of R2 on both the probit and logit liability scales, indicating a strong predictive performance. Discussion: We conclude that within-breed GWAS of DSLD in the Peruvian Horse has further confirmed that moderate heritability and a polygenic architecture underlies the trait and identified multiple DSLD SNP associations in novel tendinopathy candidate genes influencing disease risk. Pathways enriched with DSLD risk variants include ones that influence glycosaminoglycan metabolism, extracellular matrix homeostasis, signal transduction pathways.
Collapse
Affiliation(s)
- Mehdi Momen
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Kiley Brauer
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Margaret M. Patterson
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Susannah J. Sample
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Emily E. Binversie
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - E. Gus Cothran
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Guilherme J. M. Rosa
- Department of Animal and Dairy Sciences, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Sabrina H. Brounts
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Peter Muir
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
10
|
Bernasconi A, Canakoglu A, Comolli F. Processing genome-wide association studies within a repository of heterogeneous genomic datasets. BMC Genom Data 2023; 24:13. [PMID: 36869294 PMCID: PMC9985298 DOI: 10.1186/s12863-023-01111-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 02/02/2023] [Indexed: 03/05/2023] Open
Abstract
BACKGROUND Genome Wide Association Studies (GWAS) are based on the observation of genome-wide sets of genetic variants - typically single-nucleotide polymorphisms (SNPs) - in different individuals that are associated with phenotypic traits. Research efforts have so far been directed to improving GWAS techniques rather than on making the results of GWAS interoperable with other genomic signals; this is currently hindered by the use of heterogeneous formats and uncoordinated experiment descriptions. RESULTS To practically facilitate integrative use, we propose to include GWAS datasets within the META-BASE repository, exploiting an integration pipeline previously studied for other genomic datasets that includes several heterogeneous data types in the same format, queryable from the same systems. We represent GWAS SNPs and metadata by means of the Genomic Data Model and include metadata within a relational representation by extending the Genomic Conceptual Model with a dedicated view. To further reduce the gap with the descriptions of other signals in the repository of genomic datasets, we perform a semantic annotation of phenotypic traits. Our pipeline is demonstrated using two important data sources, initially organized according to different data models: the NHGRI-EBI GWAS Catalog and FinnGen (University of Helsinki). The integration effort finally allows us to use these datasets within multi-sample processing queries that respond to important biological questions. These are then made usable for multi-omic studies together with, e.g., somatic and reference mutation data, genomic annotations, epigenetic signals. CONCLUSIONS As a result of the our work on GWAS datasets, we enable 1) their interoperable use with several other homogenized and processed genomic datasets in the context of the META-BASE repository; 2) their big data processing by means of the GenoMetric Query Language and associated system. Future large-scale tertiary data analysis may extensively benefit from the addition of GWAS results to inform several different downstream analysis workflows.
Collapse
Affiliation(s)
- Anna Bernasconi
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| | - Arif Canakoglu
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| | - Federico Comolli
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
| |
Collapse
|
11
|
Bodaghi A, Fattahi N, Ramazani A. Biomarkers: Promising and valuable tools towards diagnosis, prognosis and treatment of Covid-19 and other diseases. Heliyon 2023; 9:e13323. [PMID: 36744065 PMCID: PMC9884646 DOI: 10.1016/j.heliyon.2023.e13323] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The use of biomarkers as early warning systems in the evaluation of disease risk has increased markedly in the last decade. Biomarkers are indicators of typical biological processes, pathogenic processes, or pharmacological reactions to therapy. The application and identification of biomarkers in the medical and clinical fields have an enormous impact on society. In this review, we discuss the history, various definitions, classifications, characteristics, and discovery of biomarkers. Furthermore, the potential application of biomarkers in the diagnosis, prognosis, and treatment of various diseases over the last decade are reviewed. The present review aims to inspire readers to explore new avenues in biomarker research and development.
Collapse
Affiliation(s)
- Ali Bodaghi
- Department of Chemistry, Tuyserkan Branch, Islamic Azad University, Tuyserkan, Iran
| | - Nadia Fattahi
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran,Trita Nanomedicine Research and Technology Development Center (TNRTC), Zanjan Health Technology Park, 45156-13191, Zanjan, Iran
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran,Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, Zanjan, 45371-38791, Iran,Corresponding author. Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.;
| |
Collapse
|
12
|
Scharf A, Bezerra FF, Zembrzuski VM, Fonseca ACPDA, Gusmão L, Faerstein E. Investigation of associations of European, African, Amerindian genomic ancestries and MC4R, FTO, FAIM2, BDNF loci with obesity-related traits in Rio de Janeiro, Brazil. AN ACAD BRAS CIENC 2023; 95:e20220052. [PMID: 36921152 DOI: 10.1590/0001-3765202320220052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 08/02/2022] [Indexed: 03/12/2023] Open
Abstract
A complex web of causation is involved in adiposity, including environmental, social and genetic factors. We aimed to investigate associations between genetic factors such as ancestry and single nucleotide polymorphisms, and obesity-related traits in a sampled Brazilian population. A sample of 501 unrelated adults participating in 2013 at the longitudinal Pró-Saúde Study (EPS) in Rio de Janeiro, Brazil was selected. We analysed 46 AIM-InDels (insertion/deletion) as genetic ancestry markers and four single nucleotide polymorphisms located in the genes MC4R (rs17782313), FTO (rs9939609), FAIM2 (rs7138803) and BDNF (rs4074134), previously described as associated with obesity. The selected obesity-related markers were anthropometric parameters such as body mass index, waist circumference and waist-to-hip ratio, and body composition measurements namely body fat percentage, android fat mass and gynoid fat mass. The sample showed greater European ancestry (57.20%), followed by African (28.80%) and lastly Amerindian (14%). Our results suggest that the rs4074134 (BDNF) CC genotype was directly associated with gynoid fat mass, whereas body fat percentage, android fat mass and the anthropometric parameters seem not to be associated with neither ancestry nor the four polymorphisms in this population sample, most likely due to a stronger role of social, behavioural and environmental determinants.
Collapse
Affiliation(s)
- Allan Scharf
- State University of Rio de Janeiro (UERJ), DNA Diagnostic Laboratory, São Francisco Xavier Street, 524, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Flávia F Bezerra
- State University of Rio de Janeiro (UERJ), Institute of Nutrition, São Francisco Xavier Street, 524, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Verônica M Zembrzuski
- Oswaldo Cruz Foundation (FIOCRUZ), Human Genetics Laboratory, Oswaldo Cruz Institute, Brasil Avenue, 4365, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Ana Carolina P DA Fonseca
- Oswaldo Cruz Foundation (FIOCRUZ), Human Genetics Laboratory, Oswaldo Cruz Institute, Brasil Avenue, 4365, 21040-360 Rio de Janeiro, RJ, Brazil.,Oswaldo Cruz Foundation (FIOCRUZ), Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Brasil Avenue, 4365, 21040-360 Rio de Janeiro, RJ, Brazil
| | - Leonor Gusmão
- State University of Rio de Janeiro (UERJ), DNA Diagnostic Laboratory, São Francisco Xavier Street, 524, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Eduardo Faerstein
- State University of Rio de Janeiro (UERJ), Institute of Social Medicine, São Francisco Xavier Street, 524, 20550-900 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Abd El Hamid MM, Omar YM, Shaheen M, Mabrouk MS. Discovering epistasis interactions in Alzheimer's disease using deep learning model. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
Escher J, Yan W, Rissman EF, Wang HLV, Hernandez A, Corces VG. Beyond Genes: Germline Disruption in the Etiology of Autism Spectrum Disorders. J Autism Dev Disord 2022; 52:4608-4624. [PMID: 34596807 PMCID: PMC9035896 DOI: 10.1007/s10803-021-05304-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/31/2023]
Abstract
Investigations into the etiology of autism spectrum disorders have been largely confined to two realms: variations in DNA sequence and somatic developmental exposures. Here we suggest a third route-disruption of the germline epigenome induced by exogenous toxicants during a parent's gamete development. Similar to cases of germline mutation, these molecular perturbations may produce dysregulated transcription of brain-related genes during fetal and early development, resulting in abnormal neurobehavioral phenotypes in offspring. Many types of exposures may have these impacts, and here we discuss examples of anesthetic gases, tobacco components, synthetic steroids, and valproic acid. Alterations in parental germline could help explain some unsolved phenomena of autism, including increased prevalence, missing heritability, skewed sex ratio, and heterogeneity of neurobiology and behavior.
Collapse
Affiliation(s)
- Jill Escher
- Escher Fund for Autism, 1590 Calaveras Avenue, San Jose, CA, USA.
| | - Wei Yan
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emilie F Rissman
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Hsiao-Lin V Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Arturo Hernandez
- Maine Medical Center Research Institute, MaineHealth, Scarborough, ME, USA
- Tufts University School of Medicine, Boston, MA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
15
|
Momen M, Brounts SH, Binversie EE, Sample SJ, Rosa GJM, Davis BW, Muir P. Selection signature analyses and genome-wide association reveal genomic hotspot regions that reflect differences between breeds of horse with contrasting risk of degenerative suspensory ligament desmitis. G3 (BETHESDA, MD.) 2022; 12:6648349. [PMID: 35866615 PMCID: PMC9526059 DOI: 10.1093/g3journal/jkac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/08/2022] [Indexed: 01/07/2023]
Abstract
Degenerative suspensory ligament desmitis is a progressive idiopathic condition that leads to scarring and rupture of suspensory ligament fibers in multiple limbs in horses. The prevalence of degenerative suspensory ligament desmitis is breed related. Risk is high in the Peruvian Horse, whereas pony and draft breeds have low breed risk. Degenerative suspensory ligament desmitis occurs in families of Peruvian Horses, but its genetic architecture has not been definitively determined. We investigated contrasts between breeds with differing risk of degenerative suspensory ligament desmitis and identified associated risk variants and candidate genes. We analyzed 670k single nucleotide polymorphisms from 10 breeds, each of which was assigned one of the four breed degenerative suspensory ligament desmitis risk categories: control (Belgian, Icelandic Horse, Shetland Pony, and Welsh Pony), low risk (Lusitano, Arabian), medium risk (Standardbred, Thoroughbred, Quarter Horse), and high risk (Peruvian Horse). Single nucleotide polymorphisms were used for genome-wide association and selection signature analysis using breed-assigned risk levels. We found that the Peruvian Horse is a population with low effective population size and our breed contrasts suggest that degenerative suspensory ligament desmitis is a polygenic disease. Variant frequency exhibited signatures of positive selection across degenerative suspensory ligament desmitis breed risk groups on chromosomes 7, 18, and 23. Our results suggest degenerative suspensory ligament desmitis breed risk is associated with disturbances to suspensory ligament homeostasis where matrix responses to mechanical loading are perturbed through disturbances to aging in tendon (PIN1), mechanotransduction (KANK1, KANK2, JUNB, SEMA7A), collagen synthesis (COL4A1, COL5A2, COL5A3, COL6A5), matrix responses to hypoxia (PRDX2), lipid metabolism (LDLR, VLDLR), and BMP signaling (GREM2). Our results do not suggest that suspensory ligament proteoglycan turnover is a primary factor in disease pathogenesis.
Collapse
Affiliation(s)
- Mehdi Momen
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sabrina H Brounts
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily E Binversie
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Susannah J Sample
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Guilherme J M Rosa
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Peter Muir
- Corresponding author: Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
16
|
Li W, Liu J, Zhang H, Liu Z, Wang Y, Xing L, He Q, Du H. Plant pan-genomics: recent advances, new challenges, and roads ahead. J Genet Genomics 2022; 49:833-846. [PMID: 35750315 DOI: 10.1016/j.jgg.2022.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 10/18/2022]
Abstract
Pan-genomics can encompass most of the genetic diversity of a species or population and has proved to be a powerful tool for studying genomic evolution and the origin and domestication of species, and for providing information for plant improvement. Plant genomics has greatly progressed because of improvements in sequencing technologies and the rapid reduction of sequencing costs. Nevertheless, pan-genomics still presents many challenges, including computationally intensive assembly methods, high costs with large numbers of samples, ineffective integration of big data, and difficulty in applying it to downstream multi-omics analysis and breeding research. In this review, we summarize the definition and recent achievements of plant pan-genomics, computational technologies used for pan-genome construction, and the applications of pan-genomes in plant genomics and molecular breeding. We also discuss challenges and perspectives for future pan-genomics studies and provide a detailed pipeline for sample selection, genome assembly and annotation, structural variation identification, and construction and application of graph-based pan-genomes. The aim is to provide important guidance for plant pan-genome research and a better understanding of the genetic basis of genome evolution, crop domestication, and phenotypic diversity for future studies.
Collapse
Affiliation(s)
- Wei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Jianan Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Hongyu Zhang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Ze Liu
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Yu Wang
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Longsheng Xing
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Qiang He
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China
| | - Huilong Du
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071000, China.
| |
Collapse
|
17
|
Zhalbinova MR, Rakhimova SE, Kozhamkulov UA, Akilzhanova GA, Kaussova GK, Akilzhanov KR, Pya YV, Lee JH, Bekbossynova MS, Akilzhanova AR. Association of Genetic Polymorphisms with Complications of Implanted LVAD Devices in Patients with Congestive Heart Failure: A Kazakhstani Study. J Pers Med 2022; 12:jpm12050744. [PMID: 35629166 PMCID: PMC9143784 DOI: 10.3390/jpm12050744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
The left ventricular assist device (LVAD) is one of the alternative treatments for heart failure (HF) patients. However, LVAD support is followed by thrombosis, and bleeding complications which are caused by high non-physiologic shear stress and antithrombotic/anticoagulant therapy. A high risk of complications occurs in the presence of the genotype polymorphisms which are involved in the coagulation system, hemostasis function and in the metabolism of the therapy. The aim of the study was to investigate the influence of single-nucleotide polymorphisms (SNP) in HF patients with LVAD complications. We analyzed 21 SNPs in HF patients (n = 98) with/without complications, and healthy controls (n = 95). SNPs rs9934438; rs9923231 in VKORC1, rs5918 in ITGB3 and rs2070959 in UGT1A6 demonstrated significant association with HF patients’ complications (OR (95% CI): 3.96 (1.42–11.02), p = 0.0057), (OR (95% CI): 3.55 (1.28–9.86), p = 0.011), (OR (95% CI): 5.37 (1.79–16.16), p = 0.0056) and OR (95% CI): 4.40 (1.06–18.20), p = 0.044]. Genotype polymorphisms could help to predict complications at pre- and post-LVAD implantation period, which will reduce mortality rate. Our research showed that patients can receive treatment with warfarin and aspirin with a personalized dosage and LVAD complications can be predicted by reference to their genotype polymorphisms in VKORC1, ITGB3 and UGT1A6 genes.
Collapse
Affiliation(s)
- Madina R. Zhalbinova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.R.Z.); (S.E.R.); (U.A.K.)
- Department of General Biology and Genomics, L. N. Gumilyov Eurasian National University, Nur-Sultan 010000, Kazakhstan
| | - Saule E. Rakhimova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.R.Z.); (S.E.R.); (U.A.K.)
| | - Ulan A. Kozhamkulov
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.R.Z.); (S.E.R.); (U.A.K.)
| | - Gulbanu A. Akilzhanova
- Semey Medical University, Pavlodar Branch, Pavlodar 140000, Kazakhstan; (G.A.A.); (K.R.A.)
| | | | - Kenes R. Akilzhanov
- Semey Medical University, Pavlodar Branch, Pavlodar 140000, Kazakhstan; (G.A.A.); (K.R.A.)
| | - Yuriy V. Pya
- National Research Cardiac Surgery Center, Nur-Sultan 010000, Kazakhstan; (Y.V.P.); (M.S.B.)
| | - Joseph H. Lee
- Sergievsky Center, Taub Institute, Columbia University Irving Medical Centerx, 630 W, New York, NY 10032, USA;
| | | | - Ainur R. Akilzhanova
- National Laboratory Astana, Nazarbayev University, Nur-Sultan 010000, Kazakhstan; (M.R.Z.); (S.E.R.); (U.A.K.)
- Department of General Biology and Genomics, L. N. Gumilyov Eurasian National University, Nur-Sultan 010000, Kazakhstan
- Correspondence: ; Tel.: +7-7172-706501
| |
Collapse
|
18
|
Haleem A, Klees S, Schmitt AO, Gültas M. Deciphering Pleiotropic Signatures of Regulatory SNPs in Zea mays L. Using Multi-Omics Data and Machine Learning Algorithms. Int J Mol Sci 2022; 23:5121. [PMID: 35563516 PMCID: PMC9100765 DOI: 10.3390/ijms23095121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 01/25/2023] Open
Abstract
Maize is one of the most widely grown cereals in the world. However, to address the challenges in maize breeding arising from climatic anomalies, there is a need for developing novel strategies to harness the power of multi-omics technologies. In this regard, pleiotropy is an important genetic phenomenon that can be utilized to simultaneously enhance multiple agronomic phenotypes in maize. In addition to pleiotropy, another aspect is the consideration of the regulatory SNPs (rSNPs) that are likely to have causal effects in phenotypic development. By incorporating both aspects in our study, we performed a systematic analysis based on multi-omics data to reveal the novel pleiotropic signatures of rSNPs in a global maize population. For this purpose, we first applied Random Forests and then Markov clustering algorithms to decipher the pleiotropic signatures of rSNPs, based on which hierarchical network models are constructed to elucidate the complex interplay among transcription factors, rSNPs, and phenotypes. The results obtained in our study could help to understand the genetic programs orchestrating multiple phenotypes and thus could provide novel breeding targets for the simultaneous improvement of several agronomic traits.
Collapse
Affiliation(s)
- Ataul Haleem
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.H.); (S.K.); (A.O.S.)
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany
| | - Selina Klees
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.H.); (S.K.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Armin Otto Schmitt
- Breeding Informatics Group, Department of Animal Sciences, Georg-August University, Margarethe von Wrangell-Weg 7, 37075 Göttingen, Germany; (A.H.); (S.K.); (A.O.S.)
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| | - Mehmet Gültas
- Faculty of Agriculture, South Westphalia University of Applied Sciences, Lübecker Ring 2, 59494 Soest, Germany
- Center for Integrated Breeding Research (CiBreed), Georg-August University, Carl-Sprengel-Weg 1, 37075 Göttingen, Germany
| |
Collapse
|
19
|
Duggan MR, Lu A, Foster TC, Wimmer M, Parikh V. Exosomes in Age-Related Cognitive Decline: Mechanistic Insights and Improving Outcomes. Front Aging Neurosci 2022; 14:834775. [PMID: 35299946 PMCID: PMC8921862 DOI: 10.3389/fnagi.2022.834775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
Aging is the most prominent risk factor for cognitive decline, yet behavioral symptomology and underlying neurobiology can vary between individuals. Certain individuals exhibit significant age-related cognitive impairments, while others maintain intact cognitive functioning with only minimal decline. Recent developments in genomic, proteomic, and functional imaging approaches have provided insights into the molecular and cellular substrates of cognitive decline in age-related neuropathologies. Despite the emergence of novel tools, accurately and reliably predicting longitudinal cognitive trajectories and improving functional outcomes for the elderly remains a major challenge. One promising approach has been the use of exosomes, a subgroup of extracellular vesicles that regulate intercellular communication and are easily accessible compared to other approaches. In the current review, we highlight recent findings which illustrate how the analysis of exosomes can improve our understanding of the underlying neurobiological mechanisms that contribute to cognitive variation in aging. Specifically, we focus on exosome-mediated regulation of miRNAs, neuroinflammation, and aggregate-prone proteins. In addition, we discuss how exosomes might be used to enhance individual patient outcomes by serving as reliable biomarkers of cognitive decline and as nanocarriers to deliver therapeutic agents to the brain in neurodegenerative conditions.
Collapse
Affiliation(s)
- Michael R. Duggan
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Anne Lu
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Thomas C. Foster
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States
| | - Mathieu Wimmer
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| | - Vinay Parikh
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, United States
| |
Collapse
|
20
|
Pain O, Gillett AC, Austin JC, Folkersen L, Lewis CM. A tool for translating polygenic scores onto the absolute scale using summary statistics. Eur J Hum Genet 2022; 30:339-348. [PMID: 34983942 PMCID: PMC8904577 DOI: 10.1038/s41431-021-01028-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/16/2021] [Accepted: 12/09/2021] [Indexed: 12/21/2022] Open
Abstract
There is growing interest in the clinical application of polygenic scores as their predictive utility increases for a range of health-related phenotypes. However, providing polygenic score predictions on the absolute scale is an important step for their safe interpretation. We have developed a method to convert polygenic scores to the absolute scale for binary and normally distributed phenotypes. This method uses summary statistics, requiring only the area-under-the-ROC curve (AUC) or variance explained (R2) by the polygenic score, and the prevalence of binary phenotypes, or mean and standard deviation of normally distributed phenotypes. Polygenic scores are converted using normal distribution theory. We also evaluate methods for estimating polygenic score AUC/R2 from genome-wide association study (GWAS) summary statistics alone. We validate the absolute risk conversion and AUC/R2 estimation using data for eight binary and three continuous phenotypes in the UK Biobank sample. When the AUC/R2 of the polygenic score is known, the observed and estimated absolute values were highly concordant. Estimates of AUC/R2 from the lassosum pseudovalidation method were most similar to the observed AUC/R2 values, though estimated values deviated substantially from the observed for autoimmune disorders. This study enables accurate interpretation of polygenic scores using only summary statistics, providing a useful tool for educational and clinical purposes. Furthermore, we have created interactive webtools implementing the conversion to the absolute ( https://opain.github.io/GenoPred/PRS_to_Abs_tool.html ). Several further barriers must be addressed before clinical implementation of polygenic scores, such as ensuring target individuals are well represented by the GWAS sample.
Collapse
Affiliation(s)
- Oliver Pain
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, SE5 8AF, UK.
| | - Alexandra C Gillett
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Jehannine C Austin
- Department of Psychiatry and Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | | | - Cathryn M Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, South London and Maudsley NHS Trust, London, SE5 8AF, UK
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
21
|
Ray A. Machine learning in postgenomic biology and personalized medicine. WILEY INTERDISCIPLINARY REVIEWS. DATA MINING AND KNOWLEDGE DISCOVERY 2022; 12:e1451. [PMID: 35966173 PMCID: PMC9371441 DOI: 10.1002/widm.1451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 12/22/2021] [Indexed: 06/15/2023]
Abstract
In recent years Artificial Intelligence in the form of machine learning has been revolutionizing biology, biomedical sciences, and gene-based agricultural technology capabilities. Massive data generated in biological sciences by rapid and deep gene sequencing and protein or other molecular structure determination, on the one hand, requires data analysis capabilities using machine learning that are distinctly different from classical statistical methods; on the other, these large datasets are enabling the adoption of novel data-intensive machine learning algorithms for the solution of biological problems that until recently had relied on mechanistic model-based approaches that are computationally expensive. This review provides a bird's eye view of the applications of machine learning in post-genomic biology. Attempt is also made to indicate as far as possible the areas of research that are poised to make further impacts in these areas, including the importance of explainable artificial intelligence (XAI) in human health. Further contributions of machine learning are expected to transform medicine, public health, agricultural technology, as well as to provide invaluable gene-based guidance for the management of complex environments in this age of global warming.
Collapse
Affiliation(s)
- Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, 535 Watson Drive, Claremont, CA91711, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
22
|
Metabolomics and the Multi-Omics View of Cancer. Metabolites 2022; 12:metabo12020154. [PMID: 35208228 PMCID: PMC8880085 DOI: 10.3390/metabo12020154] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Cancer is widely regarded to be a genetic disease. Indeed, over the past five decades, the genomic perspective on cancer has come to almost completely dominate the field. However, this genome-only view is incomplete and tends to portray cancer as a disease that is highly heritable, driven by hundreds of complex genetic interactions and, consequently, difficult to prevent or treat. New evidence suggests that cancer is not as heritable or purely genetic as once thought and that it really is a multi-omics disease. As highlighted in this review, the genome, the exposome, and the metabolome all play roles in cancer’s development and manifestation. The data presented here show that >90% of cancers are initiated by environmental exposures (the exposome) which lead to cancer-inducing genetic changes. The resulting genetic changes are, then, propagated through the altered DNA of the proliferating cancer cells (the genome). Finally, the dividing cancer cells are nourished and sustained by genetically reprogrammed, cancer-specific metabolism (the metabolome). As shown in this review, all three “omes” play roles in initiating cancer. Likewise, all three “omes” interact closely, often providing feedback to each other to sustain or enhance tumor development. Thanks to metabolomics, these multi-omics feedback loops are now much more evident and their roles in explaining the hallmarks of cancer are much better understood. Importantly, this more holistic, multi-omics view portrays cancer as a disease that is much more preventable, easier to understand, and potentially, far more treatable.
Collapse
|
23
|
Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review. Pathogens 2021; 10:pathogens10121604. [PMID: 34959558 PMCID: PMC8707706 DOI: 10.3390/pathogens10121604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 12/22/2022] Open
Abstract
Understanding the biological mechanisms underlying tick resistance in cattle holds the potential to facilitate genetic improvement through selective breeding. Genome wide association studies (GWAS) are popular in research on unraveling genetic determinants underlying complex traits such as tick resistance. To date, various studies have been published on single nucleotide polymorphisms (SNPs) associated with tick resistance in cattle. The discovery of SNPs related to tick resistance has led to the mapping of associated candidate genes. Despite the success of these studies, information on genetic determinants associated with tick resistance in cattle is still limited. This warrants the need for more studies to be conducted. In Africa, the cost of genotyping is still relatively expensive; thus, conducting GWAS is a challenge, as the minimum number of animals recommended cannot be genotyped. These population size and genotype cost challenges may be overcome through the establishment of collaborations. Thus, the current review discusses GWAS as a tool to uncover SNPs associated with tick resistance, by focusing on the study design, association analysis, factors influencing the success of GWAS, and the progress on cattle tick resistance studies.
Collapse
|
24
|
Abstract
Long-read sequencing technologies have now reached a level of accuracy and yield that allows their application to variant detection at a scale of tens to thousands of samples. Concomitant with the development of new computational tools, the first population-scale studies involving long-read sequencing have emerged over the past 2 years and, given the continuous advancement of the field, many more are likely to follow. In this Review, we survey recent developments in population-scale long-read sequencing, highlight potential challenges of a scaled-up approach and provide guidance regarding experimental design. We provide an overview of current long-read sequencing platforms, variant calling methodologies and approaches for de novo assemblies and reference-based mapping approaches. Furthermore, we summarize strategies for variant validation, genotyping and predicting functional impact and emphasize challenges remaining in achieving long-read sequencing at a population scale.
Collapse
Affiliation(s)
- Wouter De Coster
- Applied and Translational Neurogenomics Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Applied and Translational Neurogenomics Group, Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Fritz J Sedlazeck
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
25
|
Behl T, Kaur I, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Zengin G, Babes EE, Brisc C, Stoicescu M, Toma MM, Sava C, Bungau SG. Bioinformatics Accelerates the Major Tetrad: A Real Boost for the Pharmaceutical Industry. Int J Mol Sci 2021; 22:6184. [PMID: 34201152 PMCID: PMC8227524 DOI: 10.3390/ijms22126184] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 02/01/2023] Open
Abstract
With advanced technology and its development, bioinformatics is one of the avant-garde fields that has managed to make amazing progress in the pharmaceutical-medical field by modeling the infrastructural dimensions of healthcare and integrating computing tools in drug innovation, facilitating prevention, detection/more accurate diagnosis, and treatment of disorders, while saving time and money. By association, bioinformatics and pharmacovigilance promoted both sample analyzes and interpretation of drug side effects, also focusing on drug discovery and development (DDD), in which systems biology, a personalized approach, and drug repositioning were considered together with translational medicine. The role of bioinformatics has been highlighted in DDD, proteomics, genetics, modeling, miRNA discovery and assessment, and clinical genome sequencing. The authors have collated significant data from the most known online databases and publishers, also narrowing the diversified applications, in order to target four major areas (tetrad): DDD, anti-microbial research, genomic sequencing, and miRNA research and its significance in the management of current pandemic context. Our analysis aims to provide optimal data in the field by stratification of the information related to the published data in key sectors and to capture the attention of researchers interested in bioinformatics, a field that has succeeded in advancing the healthcare paradigm by introducing developing techniques and multiple database platforms, addressed in the manuscript.
Collapse
Affiliation(s)
- Tapan Behl
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Ishnoor Kaur
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Aayush Sehgal
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Sukhbir Singh
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (I.K.); (A.S.); (S.S.)
| | - Saurabh Bhatia
- Amity Institute of Pharmacy, Amity University, Gurugram 122413, India;
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa 616, Oman;
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk University Campus, 42130 Konya, Turkey;
| | - Elena Emilia Babes
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Ciprian Brisc
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Manuela Stoicescu
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Mirela Marioara Toma
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| | - Cristian Sava
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (E.E.B.); (C.B.); (M.S.); (C.S.)
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania;
- Doctoral School of Biomedical Sciences, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
26
|
Rohde PD, Kristensen TN, Sarup P, Muñoz J, Malmendal A. Prediction of complex phenotypes using the Drosophila melanogaster metabolome. Heredity (Edinb) 2021; 126:717-732. [PMID: 33510469 PMCID: PMC8102504 DOI: 10.1038/s41437-021-00404-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Understanding the genotype-phenotype map and how variation at different levels of biological organization is associated are central topics in modern biology. Fast developments in sequencing technologies and other molecular omic tools enable researchers to obtain detailed information on variation at DNA level and on intermediate endophenotypes, such as RNA, proteins and metabolites. This can facilitate our understanding of the link between genotypes and molecular and functional organismal phenotypes. Here, we use the Drosophila melanogaster Genetic Reference Panel and nuclear magnetic resonance (NMR) metabolomics to investigate the ability of the metabolome to predict organismal phenotypes. We performed NMR metabolomics on four replicate pools of male flies from each of 170 different isogenic lines. Our results show that metabolite profiles are variable among the investigated lines and that this variation is highly heritable. Second, we identify genes associated with metabolome variation. Third, using the metabolome gave better prediction accuracies than genomic information for four of five quantitative traits analyzed. Our comprehensive characterization of population-scale diversity of metabolomes and its genetic basis illustrates that metabolites have large potential as predictors of organismal phenotypes. This finding is of great importance, e.g., in human medicine, evolutionary biology and animal and plant breeding.
Collapse
Affiliation(s)
- Palle Duun Rohde
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark.
| | - Torsten Nygaard Kristensen
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
- Department of Animal Science, Aarhus University, Tjele, Denmark
| | - Pernille Sarup
- Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
- Nordic Seed A/S, Odder, Denmark
| | - Joaquin Muñoz
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Anders Malmendal
- Department of Science and Environment, Roskilde University, Roskilde, Denmark.
| |
Collapse
|
27
|
Wishart DS, Bartok B, Oler E, Liang KYH, Budinski Z, Berjanskii M, Guo A, Cao X, Wilson M. MarkerDB: an online database of molecular biomarkers. Nucleic Acids Res 2021; 49:D1259-D1267. [PMID: 33245771 PMCID: PMC7778954 DOI: 10.1093/nar/gkaa1067] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023] Open
Abstract
MarkerDB is a freely available electronic database that attempts to consolidate information on all known clinical and a selected set of pre-clinical molecular biomarkers into a single resource. The database includes four major types of molecular biomarkers (chemical, protein, DNA [genetic] and karyotypic) and four biomarker categories (diagnostic, predictive, prognostic and exposure). MarkerDB provides information such as: biomarker names and synonyms, associated conditions or pathologies, detailed disease descriptions, detailed biomarker descriptions, biomarker specificity, sensitivity and ROC curves, standard reference values (for protein and chemical markers), variants (for SNP or genetic markers), sequence information (for genetic and protein markers), molecular structures (for protein and chemical markers), tissue or biofluid sources (for protein and chemical markers), chromosomal location and structure (for genetic and karyotype markers), clinical approval status and relevant literature references. Users can browse the data by conditions, condition categories, biomarker types, biomarker categories or search by sequence similarity through the advanced search function. Currently, the database contains 142 protein biomarkers, 1089 chemical biomarkers, 154 karyotype biomarkers and 26 374 genetic markers. These are categorized into 25 560 diagnostic biomarkers, 102 prognostic biomarkers, 265 exposure biomarkers and 6746 predictive biomarkers or biomarker panels. Collectively, these markers can be used to detect, monitor or predict 670 specific human conditions which are grouped into 27 broad condition categories. MarkerDB is available at https://markerdb.ca.
Collapse
Affiliation(s)
- David S Wishart
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.,Department of Computing Science, University of Alberta, Edmonton, AB T6G 2E8, Canada.,Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada.,Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Brendan Bartok
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Eponine Oler
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Kevin Y H Liang
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Zachary Budinski
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Mark Berjanskii
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - AnChi Guo
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Xuan Cao
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Michael Wilson
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada.,OMx Personal Health Analytics, Inc., 406-10158 103 St NW, Edmonton, AB T5J 0X6, Canada
| |
Collapse
|
28
|
Abd Elrahman MM, El Makawy AI, Hassanane MS, Alam SS, Hassan NHA, Amer MK. Assessment of correlation between asthenozoospermia and mitochondrial DNA mutations in Egyptian infertile men. J Genet Eng Biotechnol 2021; 19:11. [PMID: 33459881 PMCID: PMC7813956 DOI: 10.1186/s43141-020-00111-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/25/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Asthenozoospermia is a chief reason for male seminal pathologies with an impression of around 19% of infertile patients. Spermatozoa mitochondrial DNA variations seem to link with low sperm motility. The objective of the study was to assess the relation between mitochondrial mutations and male sterility, especially in asthenozoospermia. The patient semen samples were investigated by studying the sperm physical characters; motility, viability, and morphological parameters were then classified into normozoospermia and asthenozoospermia. In addition, the level of malondialdehyde (MDA) as a bio-indicator of lipid peroxidation, seminal fructose, and total antioxidant capacity (TAC) were estimated. For molecular analysis, DNA from the semen samples was extracted using a DNA extraction kit. ND1, ND2, and ATPase6 genes were amplified by using a specific primer. After the purification procedure, each PCR product was sequenced to identify the single nucleotide polymorphisms (SNPs) in selected genes. RESULTS A significant negative correlation between seminal plasma malondialdehyde levels and sperm motility was detected. Meanwhile, TAC analysis revealed significantly lower activity (p ≤ 0.05) in the sample of asthenozoospermic than in normozoospermic men. As regards the seminal plasma fructose, there was no significant difference in the fructose level of normozoospermia and asthenozoospermia cases. At the molecular level, 31 diverse nucleotide substitutions were recognized in mitochondrial DNA. Only ten (10) mutations led to amino acid transformation: four have deleterious effects, four are benign, and the other two have conflicting effectiveness. CONCLUSIONS This study is the first in Egypt that is concerned with studying the relationship between the mitochondrial DNA mutations in human spermatozoa of asthenozoospermic patients and fertility. The results displayed scientific indications evidenced that there is an association between mitochondrial mutations and male infertility.
Collapse
Affiliation(s)
- Mohamed M Abd Elrahman
- Cell Biology Dept. , Division of Genetic Engineering and Biotechnology Research, National Research Centre, 33 El Bohouth St., Dokki, P.O.12622, Giza, Egypt
| | - Aida I El Makawy
- Cell Biology Dept. , Division of Genetic Engineering and Biotechnology Research, National Research Centre, 33 El Bohouth St., Dokki, P.O.12622, Giza, Egypt.
| | - Mohamed S Hassanane
- Cell Biology Dept. , Division of Genetic Engineering and Biotechnology Research, National Research Centre, 33 El Bohouth St., Dokki, P.O.12622, Giza, Egypt
| | - Sally S Alam
- Cell Biology Dept. , Division of Genetic Engineering and Biotechnology Research, National Research Centre, 33 El Bohouth St., Dokki, P.O.12622, Giza, Egypt
| | - Nagwa H A Hassan
- Zoology Dept., Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Medhat K Amer
- Surgery Andrology and infertility Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
29
|
Ray M, Sable MN, Sarkar S, Hallur V. Essential interpretations of bioinformatics in COVID-19 pandemic. Meta Gene 2020; 27:100844. [PMID: 33349792 PMCID: PMC7744275 DOI: 10.1016/j.mgene.2020.100844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023] Open
Abstract
The currently emerging pathogen SARS-CoV-2 has produced the global pandemic crisis by causing COVID-19. The unique and novel genetic makeup of SARS-CoV-2 has created hurdles in biological research, due to which the potential drug/vaccine candidates have not yet been discovered by the scientific community. Meanwhile, the advantages of bioinformatics in viral research had created a milestone since last few decades. The exploitation of bioinformatics tools and techniques has successfully interpreted this viral genomics architecture. Some major in silico studies involving next-generation sequencing, genome-wide association studies, computer-aided drug design etc. have been effectively applied in COVID-19 research methodologies and discovered novel information on SARS-CoV-2 in several ways. Nowadays the implementation of in silico studies in COVID-19 research has not only sequenced the SARS-CoV-2 genome but also properly analyzed the sequencing errors, evolutionary relationship, genetic variations, putative drug candidates against SARS-CoV-2 viral genes etc. within a very short time period. These would be very needful towards further research on COVID-19 pandemic and essential for vaccine development against SARS-CoV-2 which will save public health.
Collapse
Affiliation(s)
- Manisha Ray
- Department of Pathology & Lab Medicine, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Mukund Namdev Sable
- Department of ENT, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Saurav Sarkar
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| | - Vinaykumar Hallur
- Department of Microbiology, All India Institute of Medical Sciences, Bhubaneswar, Odisha 751019, India
| |
Collapse
|
30
|
Maciak S, Sawicka D, Sadowska A, Prokopiuk S, Buczyńska S, Bartoszewicz M, Niklińska G, Konarzewski M, Car H. Low basal metabolic rate as a risk factor for development of insulin resistance and type 2 diabetes. BMJ Open Diabetes Res Care 2020; 8:8/1/e001381. [PMID: 32690630 PMCID: PMC7373309 DOI: 10.1136/bmjdrc-2020-001381] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/01/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Identification of physiological factors influencing susceptibility to insulin resistance and type 2 diabetes (T2D) remains an important challenge for biology and medicine. Numerous studies reported energy expenditures as one of those components directly linked to T2D, with noticeable increase of basal metabolic rate (BMR) associated with the progression of insulin resistance. Conversely, the putative link between genetic, rather than phenotypic, determination of BMR and predisposition to development of T2D remains little studied. In particular, low BMR may constitute a considerable risk factor predisposing to development of T2D. RESEARCH DESIGN AND METHODS We analyzed the development of insulin resistance and T2D in 20-week-old male laboratory mice originating from three independent genetic line types. Two of those lines were subjected to divergent, non-replicated selection towards high or low body mass-corrected BMR. The third line type was non-selected and consisted of randomly bred animals serving as an outgroup (reference) to the selected line types. To induce insulin resistance, mice were fed for 8 weeks with a high fat diet; the T2D was induced by injection with a single dose of streptozotocin and further promotion with high fat diet. As markers for insulin resistance and T2D advancement, we followed the changes in body mass, fasting blood glucose, insulin level, lipid profile and mTOR expression. RESULTS We found BMR-associated differentiation in standard diabetic indexes between studied metabolic lines. In particular, mice with low BMR were characterized by faster body mass gain, blood glucose gain and deterioration in lipid profile. In contrast, high BMR mice were characterized by markedly higher expression of the mTOR, which may be associated with much slower development of T2D. CONCLUSIONS Our study suggests that genetically determined low BMR makeup involves metabolism-specific pathways increasing the risk of development of insulin resistance and T2D.
Collapse
Affiliation(s)
| | - Diana Sawicka
- Faculty of Health Sciences, Medical University of Bialystok, Bialystok, Poland
| | - Anna Sadowska
- Faculty of Health Sciences, Medical University of Bialystok, Bialystok, Poland
| | - Sławomir Prokopiuk
- Faculty of Health Sciences, Medical University of Bialystok, Bialystok, Poland
- Faculty of Health Sciences, Lomza State University of Applied Sciences, Lomza, Poland
| | | | | | - Gabriela Niklińska
- Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Warsaw, Poland
| | | | - Halina Car
- Faculty of Health Sciences, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
31
|
Folkersen L, Pain O, Ingason A, Werge T, Lewis CM, Austin J. Impute.me: An Open-Source, Non-profit Tool for Using Data From Direct-to-Consumer Genetic Testing to Calculate and Interpret Polygenic Risk Scores. Front Genet 2020; 11:578. [PMID: 32714365 PMCID: PMC7340159 DOI: 10.3389/fgene.2020.00578] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/11/2020] [Indexed: 01/07/2023] Open
Abstract
To date, interpretation of genomic information has focused on single variants conferring disease risk, but most disorders of major public concern have a polygenic architecture. Polygenic risk scores (PRSs) give a single measure of disease liability by summarizing disease risk across hundreds of thousands of genetic variants. They can be calculated in any genome-wide genotype data-source, using a prediction model based on genome-wide summary statistics from external studies. As genome-wide association studies increase in power, the predictive ability for disease risk will also increase. Although PRSs are unlikely ever to be fully diagnostic, they may give valuable medical information for risk stratification, prognosis, or treatment response prediction. Public engagement is therefore becoming important on the potential use and acceptability of PRSs. However, the current public perception of genetics is that it provides "yes/no" answers about the presence/absence of a condition, or the potential for developing a condition, which in not the case for common, complex disorders with polygenic architecture. Meanwhile, unregulated third-party applications are being developed to satisfy consumer demand for information on the impact of lower-risk variants on common diseases that are highly polygenic. Often, applications report results from single-nucleotide polymorphisms (SNPs) and disregard effect size, which is highly inappropriate for common, complex disorders where everybody carries risk variants. Tools are therefore needed to communicate our understanding of genetic vulnerability as a continuous trait, where a genetic liability confers risk for disease. Impute.me is one such tool, whose focus is on education and information on common, complex disorders with polygenetic architecture. Its research-focused open-source website allows users to upload consumer genetics data to obtain PRSs, with results reported on a population-level normal distribution. Diseases can only be browsed by International Classification of Diseases, 10th Revision (ICD-10) chapter-location or alphabetically, thus prompting the user to consider genetic risk scores in a medical context of relevance to the individual. Here, we present an overview of the implementation of the impute.me site, along with analysis of typical usage patterns, which may advance public perception of genomic risk and precision medicine.
Collapse
Affiliation(s)
- Lasse Folkersen
- Institute of Biological Psychiatry, Mental Health Centre Sankt Hans, Copenhagen, Denmark
| | - Oliver Pain
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
| | - Andrés Ingason
- Institute of Biological Psychiatry, Mental Health Centre Sankt Hans, Copenhagen, Denmark
| | - Thomas Werge
- Institute of Biological Psychiatry, Mental Health Centre Sankt Hans, Copenhagen, Denmark
| | - Cathryn M. Lewis
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, United Kingdom
- Department of Medical & Molecular Genetics, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Jehannine Austin
- Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
32
|
Sturmberg JP. Approaching complexity-Start with awareness. J Eval Clin Pract 2020; 26:1030-1033. [PMID: 31922325 DOI: 10.1111/jep.13355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Joachim P Sturmberg
- School of Medicine and Public Health, University of Newcastle, Callaghan, New South Wales, Australia.,International Society for Systems and Complexity Sciences for Health
| |
Collapse
|
33
|
Escher J, Ford LD. General anesthesia, germ cells and the missing heritability of autism: an urgent need for research. ENVIRONMENTAL EPIGENETICS 2020; 6:dvaa007. [PMID: 32704384 PMCID: PMC7368377 DOI: 10.1093/eep/dvaa007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 05/08/2023]
Abstract
Agents of general anesthesia (GA) are commonly employed in surgical, dental and diagnostic procedures to effectuate global suppression of the nervous system, but in addition to somatic targets, the subject's germ cells-from the embryonic primordial stage to the mature gametes-may likewise be exposed. Although GA is generally considered safe for most patients, evidence has accumulated that various compounds, in particular the synthetic volatile anesthetic gases (SVAGs) such as sevoflurane, can exert neurotoxic, genotoxic and epigenotoxic effects, with adverse consequences for cellular and genomic function in both somatic and germline cells. The purpose of this paper is to review the evidence demonstrating that GA, and in particular, SVAGs, may in some circumstances adversely impact the molecular program of germ cells, resulting in brain and behavioral pathology in the progeny born of the exposed cells. Further, we exhort the medical and scientific communities to undertake comprehensive experimental and epidemiological research programs to address this critical gap in risk assessment.
Collapse
Affiliation(s)
- Jill Escher
- Correspondence address. Escher Fund for Autism, 1590 Calaveras Avenue, San Jose, CA 95126, USA. E-mail:
| | | |
Collapse
|