1
|
Welton T, Chew G, Mai AS, Ng JH, Chan LL, Tan EK. Association of Gene Expression and Tremor Network Structure. Mov Disord 2024; 39:1119-1130. [PMID: 38769620 DOI: 10.1002/mds.29831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Transcriptomic changes in the essential tremor (ET)-associated cerebello-thalamo-cortical "tremor network" and their association to brain structure have not been investigated. OBJECTIVE The aim was to characterize molecular changes associated with network-level imaging-derived phenotypes (IDP) found in ET. METHODS We performed an imaging-transcriptomic study in British adults using imaging-genome-wide association study summary statistics (UK Biobank "BIG40" cohort; n = 33,224, aged 40-69 years). We imputed imaging-transcriptomic associations for 184 IDPs and analyzed functional enrichment of gene modules and aggregate network-level phenotypes. Validation was performed in cerebellar-tissue RNA-sequencing data from ET patients and controls (n = 55). RESULTS Among 237,896 individual predicted gene expression levels for 6063 unique genes/transcripts, we detected 2269 genome-wide significant associations (Bonferroni P < 2.102e-7, 0.95%). These were concentrated in intracellular volume fraction measures of white matter pathways and in genes with putative links to tremor (MAPT, ARL17A, KANSL1, SPPL2C, LRRC37A4P, PLEKHM1, and FMNL1). Whole-tremor-network cortical thickness was associated with a gene module linked to mitochondrial organization and protein quality control (r = 0.91, P = 2e-70), whereas white-gray T1-weighted magnetic resonance imaging (MRI) contrast in the tremor network was associated with a gene module linked to sphingolipid synthesis and ethanolamine metabolism (r = -0.90, P = 2e-68). Imputed association effect sizes and RNA-sequencing log-fold change in the validation dataset were significantly correlated for cerebellar peduncular diffusion MRI phenotypes, and there was a close overlap of significant associations between both datasets for gray matter phenotypes (χ2 = 6.40, P = 0.006). CONCLUSIONS The identified genes and processes are potential treatment targets for ET, and our results help characterize molecular changes that could in future be used for patient treatment selection or prognosis prediction. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Thomas Welton
- Department of Research, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Gabriel Chew
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Aaron Shengting Mai
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jing Han Ng
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
| | - Ling Ling Chan
- Department of Research, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
- Department of Diagnostic Radiology, Singapore General Hospital, Singapore, Singapore
| | - Eng-King Tan
- Department of Research, National Neuroscience Institute, Singapore, Singapore
- Neuroscience and Behavioural Disorders, Duke-NUS Medical School, Singapore, Singapore
- Department of Neurology, Singapore General Hospital, Singapore, Singapore
| |
Collapse
|
2
|
Orsucci D, Tessa A, Caldarazzo Ienco E, Trovato R, Natale G, Bilancieri G, Giuntini M, Napolitano A, Salvetti S, Vista M, Santorelli FM. Clinical and genetic features of dominant Essential Tremor in Tuscany, Italy: FUS, CAMTA1, ATXN1 and beyond. J Neurol Sci 2024; 460:123012. [PMID: 38626532 DOI: 10.1016/j.jns.2024.123012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/18/2024]
Abstract
OBJECTIVE Essential Tremor (ET) is one of the most common neurological disorders. In most instances ET is inherited as an autosomal dominant trait with age-related penetrance (virtually complete in advanced age); however, ET genetics remains elusive. The current study aims to identify possibly pathogenic genetic variants in a group of well-characterized ET families. METHODS 34 individuals from 14 families with dominant ET were clinically evaluated and studied by whole exome sequencing studies (after excluding trinucleotide expansion disorders). RESULTS Most patients had pure ET. In 4 families, exome studies could identify a genetic variant potentially able to significantly alter the protein structure (CADD >20, REVEL score > 0.25), shared by all the affected individuals (in CAMTA1, FUS, MYH14, SGCE genes). In another family there were two variants in dominant genes (PCDH9 and SQSTM1). Moreover, an interrupted "intermediate" trinucleotide expansion in ATXN1 ("SCA1") was identified in a further family with pure ET. CONCLUSION Combining our observations together with earlier reports, we can conclude that ET genes confirmed in at least two families to date include CAMTA1 and FUS (reported here), as well as CACNA1G, NOTCH2NLC and TENM4. Most cases of familial ET, inherited with an autosomal dominant inheritance, may result from "mild" variants of many different genes that, when affected by more harmful genetic variants, lead to more severe neurological syndromes (still autosomal dominant). Thus, ET phenotype may be the "mild", incomplete manifestation of many other dominant neurogenetic diseases. These findings further support evidence of genetic heterogeneity for such disease(s). Author's keywords: cerebellar ataxias, movement disorders, neurogenetics, rare neurological disorders, tremor.
Collapse
Affiliation(s)
- D Orsucci
- Unit of Neurology, San Luca Hospital, Lucca, Italy.
| | - A Tessa
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | | | - R Trovato
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - G Natale
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - G Bilancieri
- IRCCS Stella Maris Foundation, Calambrone, Pisa, Italy
| | - M Giuntini
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | - A Napolitano
- Unit of Neurology, Apuane Hospital, Massa Carrara, Italy
| | - S Salvetti
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | - M Vista
- Unit of Neurology, San Luca Hospital, Lucca, Italy
| | | |
Collapse
|
3
|
Martuscello RT, Sivaprakasam K, Hartstone W, Kuo SH, Konopka G, Louis ED, Faust PL. Gene Expression Analysis of Laser-Captured Purkinje Cells in the Essential Tremor Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2023; 22:1166-1181. [PMID: 36242761 PMCID: PMC10359949 DOI: 10.1007/s12311-022-01483-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/28/2022] [Indexed: 12/13/2022]
Abstract
Essential tremor (ET) is a common, progressive neurological disease characterized by an 8-12-Hz kinetic tremor. Despite its high prevalence, the patho-mechanisms of tremor in ET are not fully known. Through comprehensive studies in postmortem brains, we identified major morphological changes in the ET cerebellum that reflect cellular damage in Purkinje cells (PCs), suggesting that PC damage is central to ET pathogenesis. We previously performed a transcriptome analysis in ET cerebellar cortex, identifying candidate genes and several dysregulated pathways. To directly target PCs, we purified RNA from PCs isolated by laser capture microdissection and performed the first ever PC-specific RNA-sequencing analysis in ET versus controls. Frozen postmortem cerebellar cortex from 24 ETs and 16 controls underwent laser capture microdissection, obtaining ≥2000 PCs per sample. RNA transcriptome was analyzed via differential gene expression, principal component analysis (PCA), and gene set enrichment analyses (GSEA). We identified 36 differentially expressed genes, encompassing multiple cellular processes. Some ET (13/24) had greater dysregulation of these genes and segregated from most controls and remaining ETs in PCA. Characterization of genes/pathways enriched in this PCA and GSEA identified multiple pathway dysregulations in ET, including RNA processing/splicing, synapse organization/ion transport, and oxidative stress/inflammation. Furthermore, a different set of pathways characterized marked heterogeneity among ET patients. Our data indicate a range of possible mechanisms for the pathogenesis of ET. Significant heterogeneity among ET combined with dysregulation of multiple cellular processes supports the notion that ET is a family of disorders rather than one disease entity.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA
| | - Karthigayini Sivaprakasam
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Whitney Hartstone
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA
| | - Sheng-Han Kuo
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, 650 W 168th Street, BB302, New York, NY, USA
| | - Genevieve Konopka
- Peter O'Donnell Jr. Brain Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Suite NL9.114, Dallas, TX, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Blake B, Brady LI, Rouse NA, Nagy P, Tarnopolsky MA. The Efficacy of Whole Genome Sequencing and RNA-Seq in the Diagnosis of Whole Exome Sequencing Negative Patients with Complex Neurological Phenotypes. J Pediatr Genet 2023; 12:206-212. [PMID: 37575640 PMCID: PMC10421693 DOI: 10.1055/s-0041-1736610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/20/2021] [Indexed: 10/19/2022]
Abstract
Whole-genome sequencing (WGS) is being increasingly utilized for the diagnosis of neurological disease by sequencing both the exome and the remaining 98 to 99% of the genetic code. In addition to more complete coverage, WGS can detect structural variants (SVs) and intronic variants (SNVs) that cannot be identified by whole exome sequencing (WES) or chromosome microarray (CMA). Other multi-omics tools, such as RNA sequencing (RNA-Seq), can be used in conjunction with WGS to functionally validate certain variants by detecting changes in gene expression and splicing. The objective of this retrospective study was to measure the diagnostic yield of duo/trio-based WGS and RNA-Seq in a cohort of 22 patients (20 families) with pediatric onset neurological phenotypes and negative or inconclusive WES results in lieu of reanalysis. WGS with RNA-Seq resulted in a definite diagnosis of an additional 25% of cases. Sixty percent of these solved cases arose from the identification of variants that were missed by WES. Variants that could not be unequivocally proven to be causative of the patients' condition were identified in an additional 5% of cases.
Collapse
Affiliation(s)
- Bianca Blake
- Department of Pediatrics, John R. Oishei Children's Hospital, New York, United States
| | - Lauren I. Brady
- Department of Pediatrics, McMaster University Medical Centre, Ontario, Canada
| | | | - Peter Nagy
- Praxis Genomics, Atlanta, Georgia, United States
| | - Mark A. Tarnopolsky
- Department of Pediatrics, McMaster University Medical Centre, Ontario, Canada
| |
Collapse
|
5
|
Martuscello RT, Chen ML, Reiken S, Sittenfeld LR, Ruff DS, Ni CL, Lin CC, Pan MK, Louis ED, Marks AR, Kuo SH, Faust PL. Defective cerebellar ryanodine receptor type 1 and endoplasmic reticulum calcium 'leak' in tremor pathophysiology. Acta Neuropathol 2023; 146:301-318. [PMID: 37335342 PMCID: PMC10350926 DOI: 10.1007/s00401-023-02602-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/06/2023] [Accepted: 06/14/2023] [Indexed: 06/21/2023]
Abstract
Essential Tremor (ET) is a prevalent neurological disease characterized by an 8-10 Hz action tremor. Molecular mechanisms of ET remain poorly understood. Clinical data suggest the importance of the cerebellum in disease pathophysiology, and pathological studies indicate Purkinje Cells (PCs) incur damage. Our recent cerebellar cortex and PC-specific transcriptome studies identified alterations in calcium (Ca2+) signaling pathways that included ryanodine receptor type 1 (RyR1) in ET. RyR1 is an intracellular Ca2+ release channel located on the Endoplasmic Reticulum (ER), and in cerebellum is predominantly expressed in PCs. Under stress conditions, RyR1 undergoes several post-translational modifications (protein kinase A [PKA] phosphorylation, oxidation, nitrosylation), coupled with depletion of the channel-stabilizing binding partner calstabin1, which collectively characterize a "leaky channel" biochemical signature. In this study, we found markedly increased PKA phosphorylation at the RyR1-S2844 site, increased RyR1 oxidation and nitrosylation, and calstabin1 depletion from the RyR1 complex in postmortem ET cerebellum. Decreased calstabin1-RyR1-binding affinity correlated with loss of PCs and climbing fiber-PC synapses in ET. This 'leaky' RyR1 signature was not seen in control or Parkinson's disease cerebellum. Microsomes from postmortem cerebellum demonstrated excessive ER Ca2+ leak in ET vs. controls, attenuated by channel stabilization. We further studied the role of RyR1 in tremor using a mouse model harboring a RyR1 point mutation that mimics constitutive site-specific PKA phosphorylation (RyR1-S2844D). RyR1-S2844D homozygous mice develop a 10 Hz action tremor and robust abnormal oscillatory activity in cerebellar physiological recordings. Intra-cerebellar microinfusion of RyR1 agonist or antagonist, respectively, increased or decreased tremor amplitude in RyR1-S2844D mice, supporting a direct role of cerebellar RyR1 leakiness for tremor generation. Treating RyR1-S2844D mice with a novel RyR1 channel-stabilizing compound, Rycal, effectively dampened cerebellar oscillatory activity, suppressed tremor, and normalized cerebellar RyR1-calstabin1 binding. These data collectively support that stress-associated ER Ca2+ leak via RyR1 may contribute to tremor pathophysiology.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Meng-Ling Chen
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Leah R Sittenfeld
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - David S Ruff
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chun-Lun Ni
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Chih-Chun Lin
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Ming-Kai Pan
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX, USA
| | - Andrew R Marks
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, 1150 St Nicholas Ave, New York, NY, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Vagelos College of Physicians and Surgeons, 650 W 168th Street, BB305, New York, NY, USA
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center Vagelos College of Physicians and Surgeons and the New York Presbyterian Hospital, 630 W 168th Street, PH Stem 15-124, New York, NY, 10032, USA.
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
d’Apolito M, Ceccarini C, Savino R, Adipietro I, di Bari I, Santacroce R, Curcetti M, D’Andrea G, Croce AI, Cesarano C, Polito AN, Margaglione M. A Novel KCNN2 Variant in a Family with Essential Tremor Plus: Clinical Characteristics and In Silico Analysis. Genes (Basel) 2023; 14:1380. [PMID: 37510285 PMCID: PMC10379157 DOI: 10.3390/genes14071380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Essential tremor (ET) is one of the more common movement disorders. Current diagnosis is solely based on clinical findings. ET appears to be inherited in an autosomal dominant pattern. Several loci on specific chromosomes have been studied by linkage analysis, but the causes of essential tremor are still unknown in many patients. Genetic studies described the association of several genes with familial ET. However, they were found only in distinct families, suggesting that some can be private pathogenic variants. AIM OF THE STUDY to characterize the phenotype of an Italian family with ET and identify the genetic variant associated. METHODS Clinical and genetic examinations were performed. Genetic testing was done with whole-exome sequencing (WES) using the Illumina platform. Bidirectional capillary Sanger sequencing was used to investigate the presence of variant in all affected members of the family. In silico prediction of pathogenicity was used to study the effect of gene variants on protein structure. RESULTS The proband was a 15-year-old boy. The patient was the first of two children of a non-consanguineous couple. Family history was remarkable for tremor in the mother line. His mother suffered from bilateral upper extremity kinetic tremors (since she was 20 years old), anxiety, and depression. Other relatives referred bilateral upper extremity tremors. In the index case, WES analysis performed supposing a dominant mode of inheritance, identified a novel heterozygous missense variant in potassium calcium-activated channel subfamily N member 2 (KCNN2) (NM_021614.3: c.1145G>A, p.Gly382Asp). In the pedigree investigation, all carriers of the gene variant had ET and showed variable expressivity, the elder symptomatic relative showing cognitive impairment and hallucinations in the last decade, in addition to tremor since a young age. The amino acid residue #382 is located in a transmembrane region and in silico analysis suggested a causative role for the variant. Modelling of the mutant protein structure showed that the variant causes a clash in the protein structure. Therefore, the variant could cause a conformational change that alters the ability of the protein in the modulation of ion channels Conclusions: The KCNN2 gene variant identified could be associated with ET. The variant could modify a voltage-independent potassium channel activated by intracellular calcium.
Collapse
Affiliation(s)
- Maria d’Apolito
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Caterina Ceccarini
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Rosa Savino
- Neuropsychiatry for Child and Adolescent Unit, Department of Woman and Child, Policlinico Riuniti, 70122 Foggia, Italy; (R.S.); (A.N.P.)
| | - Iolanda Adipietro
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Ighli di Bari
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Rosa Santacroce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Maria Curcetti
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Giovanna D’Andrea
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Anna-Irma Croce
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Carla Cesarano
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| | - Anna Nunzia Polito
- Neuropsychiatry for Child and Adolescent Unit, Department of Woman and Child, Policlinico Riuniti, 70122 Foggia, Italy; (R.S.); (A.N.P.)
| | - Maurizio Margaglione
- Medical Genetics, Department of Clinical and Experimental Medicine, University of Foggia, 70122 Foggia, Italy; (M.d.); (C.C.); (I.A.); (I.d.B.); (R.S.); (M.C.); (G.D.); (A.-I.C.); (C.C.)
| |
Collapse
|
7
|
Ye B, Tang X, Liao S, Ding K. A comparison of algorithms for identifying copy number variants in family-based whole-exome sequencing data and its implications in inheritance pattern analysis. Gene 2023; 861:147237. [PMID: 36731620 DOI: 10.1016/j.gene.2023.147237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/27/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
There remain challenges in accurately identifying constitutional or germline copy number variants (gCNVs) based on whole-exome sequencing data that have implications for genetic diagnosis for 'rare undiagnosed disease' in the clinical setting. Although multiple algorithms have been proposed, a systematic comparison of these algorithms for calling gCNVs and analyzing inherited pattern have yet to be fully conducted. Therefore, we empirically compared seven exome-based algorithms, including XHMM, CLAMMS, CODEX2, ExomeDepth, DECoN, CN.MOPS, and GATK gCNV, for calling gCNVs in 151 individuals from 44 pedigrees, together with the gold standard of genotyping-derived gCNVs in the same cohort for the performance assessment. These algorithms demonstrated varied powers in identifying gCNVs, although the distribution of gCNVs size was similar. The number of shared gCNVs across these algorithms was limited (e.g., only four gCNVs shared among seven algorithms); however, several algorithms showed varying degrees of consistency (e.g., 1,843 gCNVs shared between DECoN and ExomeDepth). CLAMMS and CODEX2 outperformed the remaining algorithms according to a relatively higher F-score (i.e., 0.145 and 0.152, respectively). In addition, these algorithms exhibited different Mendelian inconsistencies of gCNVs and significant challenges remained in inheritance pattern analysis. In conclusion, selecting good algorithms may have important implications in gCNVs-based inheritance pattern analysis for family-based studies.
Collapse
Affiliation(s)
- Bo Ye
- Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing 400016, PR China
| | - Xia Tang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, PR China
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, PR China.
| | - Keyue Ding
- Medical Genetic Institute of Henan Province, Henan Provincial People's Hospital, Henan Key Laboratory of Genetic Diseases and Functional Genomics, Henan Provincial People's Hospital of Henan University, People's Hospital of Zhengzhou University, Zhengzhou, Henan Province 450003, PR China; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
8
|
Parker E, Judge MA, Pastor L, Fuente-Soro L, Jairoce C, Carter KW, Anderson D, Mandomando I, Clifford HD, Naniche D, Le Souëf PN. Gene dysregulation in acute HIV-1 infection – early transcriptomic analysis reveals the crucial biological functions affected. Front Cell Infect Microbiol 2023; 13:1074847. [PMID: 37077524 PMCID: PMC10106835 DOI: 10.3389/fcimb.2023.1074847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
IntroductionTranscriptomic analyses from early human immunodeficiency virus (HIV) infection have the potential to reveal how HIV causes widespread and lasting damage to biological functions, especially in the immune system. Previous studies have been limited by difficulties in obtaining early specimens.MethodsA hospital symptom-based screening approach was applied in a rural Mozambican setting to enrol patients with suspected acute HIV infection (Fiebig stage I-IV). Blood samples were collected from all those recruited, so that acute cases and contemporaneously recruited, uninfected controls were included. PBMC were isolated and sequenced using RNA-seq. Sample cellular composition was estimated from gene expression data. Differential gene expression analysis was completed, and correlations were determined between viral load and differential gene expression. Biological implications were examined using Cytoscape, gene set enrichment analysis, and enrichment mapping.ResultsTwenty-nine HIV infected subjects one month from presentation and 46 uninfected controls were included in this study. Subjects with acute HIV infection demonstrated profound gene dysregulation, with 6131 (almost 13% of the genome mapped in this study) significantly differentially expressed. Viral load was correlated with 1.6% of dysregulated genes, in particular, highly upregulated genes involved in key cell cycle functions, were correlated with viremia. The most profoundly upregulated biological functions related to cell cycle regulation, in particular, CDCA7 may drive aberrant cell division, promoted by overexpressed E2F family proteins. Also upregulated were DNA repair and replication, microtubule and spindle organization, and immune activation and response. The interferome of acute HIV was characterized by broad activation of interferon-stimulated genes with antiviral functions, most notably IFI27 and OTOF. BCL2 downregulation alongside upregulation of several apoptotic trigger genes and downstream effectors may contribute to cycle arrest and apoptosis. Transmembrane protein 155 (TMEM155) was consistently highly overexpressed during acute infection, with roles hitherto unknown.DiscussionOur study contributes to a better understanding of the mechanisms of early HIV-induced immune damage. These findings have the potential to lead to new earlier interventions that improve outcomes.
Collapse
Affiliation(s)
- Erica Parker
- School of Medicine, University of Western Australia, Crawley, WA, Australia
| | - Melinda A. Judge
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- *Correspondence: Melinda A. Judge,
| | - Lucia Pastor
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
- AIDS Research Institute-IrsiCaixa, Institut Germans Trias i Pujol (IGTP), Hospital Germans Trias i Pujol, Universitat Autonoma de Barcelona, Badalona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Laura Fuente-Soro
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
| | - Chenjerai Jairoce
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | | | | | - Inácio Mandomando
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | | | - Denise Naniche
- ISGlobal, Barcelona Institute for Global Health, Hospital Clinic–Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde da Manhiça (CISM), Maputo, Mozambique
| | - Peter Neils Le Souëf
- School of Medicine, University of Western Australia, Crawley, WA, Australia
- Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
9
|
Li LX, Liu Y, Huang JH, Yang Y, Pan YG, Zhang XL, Pan LZ, Jin LJ. Genetic spectrum and clinical features in a cohort of Chinese patients with isolated dystonia. Clin Genet 2023; 103:459-465. [PMID: 36648081 DOI: 10.1111/cge.14298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Dystonia is a genetically and phenotypically heterogeneous disorder that occurs in isolation (isolated dystonia) or in combination with other movement disorders. To determine the genetic spectrum in isolated dystonia, we enrolled 88 patients with isolated dystonia for whole-exome sequencing (WES). Seventeen mutations, including nine novel ones, were identified in 19 of the 88 patients, providing a 21.59% positive molecular diagnostic rate. Eleven distinct genes were involved, of which TOR1A and THAP1 accounted for 47.37% (9/19) of the positive cases. A novel missense variant, p.S225R in TOR1A, was found in a patient with adolescence-onset generalized dystonia. Cellular experiments revealed that p.S255R results in the abnormal aggregation of Torsin-1A encoding by TOR1A. In addition, we reviewed the clinical and genetic features of the isolated dystonia patients carrying TOR1A, THAP1, ANO3, and GNAL mutations in the Chinese population. Our results expand the genetic spectrum and clinical profiles of patients with isolated dystonia and demonstrate WES as an effective strategy for the molecular diagnosis of isolated dystonia.
Collapse
Affiliation(s)
- Li-Xi Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie-Hong Huang
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| | - You-Gui Pan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Long Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Zhen Pan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling-Jing Jin
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
10
|
Matthews LG, Puryear CB, Correia SS, Srinivasan S, Belfort GM, Pan MK, Kuo SH. T-type calcium channels as therapeutic targets in essential tremor and Parkinson's disease. Ann Clin Transl Neurol 2023; 10:462-483. [PMID: 36738196 PMCID: PMC10109288 DOI: 10.1002/acn3.51735] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 02/05/2023] Open
Abstract
Neuronal action potential firing patterns are key components of healthy brain function. Importantly, restoring dysregulated neuronal firing patterns has the potential to be a promising strategy in the development of novel therapeutics for disorders of the central nervous system. Here, we review the pathophysiology of essential tremor and Parkinson's disease, the two most common movement disorders, with a focus on mechanisms underlying the genesis of abnormal firing patterns in the implicated neural circuits. Aberrant burst firing of neurons in the cerebello-thalamo-cortical and basal ganglia-thalamo-cortical circuits contribute to the clinical symptoms of essential tremor and Parkinson's disease, respectively, and T-type calcium channels play a key role in regulating this activity in both the disorders. Accordingly, modulating T-type calcium channel activity has received attention as a potentially promising therapeutic approach to normalize abnormal burst firing in these diseases. In this review, we explore the evidence supporting the theory that T-type calcium channel blockers can ameliorate the pathophysiologic mechanisms underlying essential tremor and Parkinson's disease, furthering the case for clinical investigation of these compounds. We conclude with key considerations for future investigational efforts, providing a critical framework for the development of much needed agents capable of targeting the dysfunctional circuitry underlying movement disorders such as essential tremor, Parkinson's disease, and beyond.
Collapse
Affiliation(s)
| | - Corey B Puryear
- Praxis Precision Medicines, Boston, Massachusetts, 02110, USA
| | | | - Sharan Srinivasan
- Praxis Precision Medicines, Boston, Massachusetts, 02110, USA.,Department of Neurology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | | | - Ming-Kai Pan
- Department and Graduate Institute of Pharmacology, National Taiwan University College of Medicine, Taipei, 10051, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, 10617, Taiwan.,Department of Medical Research, National Taiwan University Hospital, Taipei, 10002, Taiwan.,Cerebellar Research Center, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, 64041, Taiwan
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University, New York, New York, 10032, USA.,Initiative for Columbia Ataxia and Tremor, Columbia University, New York, New York, 10032, USA
| |
Collapse
|
11
|
Clark LN, Gao Y, Wang GT, Hernandez N, Ashley-Koch A, Jankovic J, Ottman R, Leal SM, Rodriguez SMB, Louis ED. Whole genome sequencing identifies candidate genes for familial essential tremor and reveals biological pathways implicated in essential tremor aetiology. EBioMedicine 2022; 85:104290. [PMID: 36183486 PMCID: PMC9525816 DOI: 10.1016/j.ebiom.2022.104290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 08/25/2022] [Accepted: 09/13/2022] [Indexed: 12/13/2022] Open
Abstract
Background Essential tremor (ET), one of the most common neurological disorders, has a phenotypically heterogeneous presentation characterized by bilateral kinetic tremor of the arms and, in some patients, tremor involving other body regions (e.g., head, voice). Genetic studies suggest that ET is genetically heterogeneous. Methods We analyzed whole genome sequence data (WGS) generated on 104 multi-generational white families with European ancestry affected by ET. Genome-wide parametric linkage and association scans were analyzed using adjusted logistic regression models through the application of the Pseudomarker software. To investigate the additional contribution of rare variants in familial ET, we also performed an aggregate variant non-parametric linkage (NPL) analysis using the collapsed haplotype method implemented in CHP-NPL software. Findings Parametric linkage analysis of common variants identified several loci with significant evidence of linkage (HLOD ≥3.6). Among the gene regions within the strongest ET linkage peaks were BTC (4q13.3, HLOD=4.53), N6AMT1 (21q21.3, HLOD=4.31), PCDH9 (13q21.32, HLOD=4.21), EYA1 (8q13.3, HLOD=4.04), RBFOX1 (16p13.3, HLOD=4.02), MAPT (17q21.31, HLOD=3.99) and SCARB2 (4q21.1, HLOD=3.65). CHP-NPL analysis identified fifteen additional genes with evidence of significant linkage (LOD ≥3.8). These genes include TUBB2A, VPS33B, STEAP1B, SPINK5, ZRANB1, TBC1D3C, PDPR, NPY4R, ETS2, ZNF736, SPATA21, ARL17A, PZP, BLK and CCDC94. In one ET family contributing to the linkage peak on chromosome 16p13.3, we identified a likely pathogenic heterozygous canonical splice acceptor variant in exon 2 of RBFOX1 (ENST00000547372; c.4-2A>G), that co-segregated with the ET phenotype in the family. Interpretation Linkage and association analyses of WGS identified several novel ET candidate genes, which are implicated in four major pathways that include 1) the epidermal growth factor receptor-phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha-AKT serine/threonine kinase 1 (EGFR-PI3K-AKT) and Mitogen-activated protein Kinase 1 (ERK) pathways, 2) Reactive oxygen species (ROS) and DNA repair, 3) gamma-aminobutyric acid-ergic (GABAergic) system and 4) RNA binding and regulation of RNA processes. Our study provides evidence for a possible overlap in the genetic architecture of ET, neurological disease, cancer and aging. The genes and pathways identified can be prioritized in future genetic and functional studies. Funding National Institutes of Health, NINDS, NS073872 (USA) and NIA AG058131(USA).
Collapse
Affiliation(s)
- Lorraine N Clark
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA.
| | - Yizhe Gao
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Gao T Wang
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Nora Hernandez
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX, USA
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Joseph Jankovic
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston TX, USA
| | - Ruth Ottman
- The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Epidemiology, Mailman School of Public Health, Columbia University Irving Medical Center, New York, NY, USA; Division of Translational Epidemiology, New York State Psychiatric Institute, New York, NY, USA
| | - Suzanne M Leal
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; The Center for Statistical Genetics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sandra M Barral Rodriguez
- The Taub Institute for Research on Alzheimer's Disease and The Aging Brain, Columbia University Irving Medical Center, New York, NY, USA; The G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| | - Elan D Louis
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas TX, USA.
| |
Collapse
|
12
|
Wagle Shukla A. Diagnosis and Treatment of Essential Tremor. Continuum (Minneap Minn) 2022; 28:1333-1349. [DOI: 10.1212/con.0000000000001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Sarnowski C, Ghanbari M, Bis JC, Logue M, Fornage M, Mishra A, Ahmad S, Beiser AS, Boerwinkle E, Bouteloup V, Chouraki V, Cupples LA, Damotte V, DeCarli CS, DeStefano AL, Djoussé L, Fohner AE, Franz CE, Kautz TF, Lambert JC, Lyons MJ, Mosley TH, Mukamal KJ, Pase MP, Portilla Fernandez EC, Rissman RA, Satizabal CL, Vasan RS, Yaqub A, Debette S, Dufouil C, Launer LJ, Kremen WS, Longstreth WT, Ikram MA, Seshadri S. Meta-analysis of genome-wide association studies identifies ancestry-specific associations underlying circulating total tau levels. Commun Biol 2022; 5:336. [PMID: 35396452 PMCID: PMC8993877 DOI: 10.1038/s42003-022-03287-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Circulating total-tau levels can be used as an endophenotype to identify genetic risk factors for tauopathies and related neurological disorders. Here, we confirmed and better characterized the association of the 17q21 MAPT locus with circulating total-tau in 14,721 European participants and identified three novel loci in 953 African American participants (4q31, 5p13, and 6q25) at P < 5 × 10-8. We additionally detected 14 novel loci at P < 5 × 10-7, specific to either Europeans or African Americans. Using whole-exome sequence data in 2,279 European participants, we identified ten genes associated with circulating total-tau when aggregating rare variants. Our genetic study sheds light on genes reported to be associated with neurological diseases including stroke, Alzheimer's, and Parkinson's (F5, MAP1B, and BCAS3), with Alzheimer's pathological hallmarks (ADAMTS12, IL15, and FHIT), or with an important function in the brain (PARD3, ELFN2, UBASH3B, SLIT3, and NSD3), and suggests that the genetic architecture of circulating total-tau may differ according to ancestry.
Collapse
Affiliation(s)
- Chloé Sarnowski
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Joshua C Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Mark Logue
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry and Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| | - Myriam Fornage
- University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Aniket Mishra
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000, Bordeaux, France
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
- Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Alexa S Beiser
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Eric Boerwinkle
- University of Texas Health Sciences Center at Houston, Houston, TX, USA
| | - Vincent Bouteloup
- Centre Inserm U1219 Bordeaux Population Health, CIC1401-EC, Institut de Santé Publique, d'Epidémiologie et de Développement, Université de Bordeaux, CHU de Bordeaux, Pôle Santé Publique, Bordeaux, France
| | - Vincent Chouraki
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE- LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, F-59000, Lille, France
| | - L Adrienne Cupples
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
| | - Vincent Damotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE- LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, F-59000, Lille, France
| | - Charles S DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Davis, CA, USA
| | - Anita L DeStefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Luc Djoussé
- Department of Medicine, Division of Aging, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Alison E Fohner
- Institute of Public Health Genetics and Department of Epidemiology and Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Carol E Franz
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE- LabEx DISTALZ - Risk factors and molecular determinants of aging diseases, F-59000, Lille, France
| | - Michael J Lyons
- Department of Psychology and Brain Sciences, Boston University, Boston, MA, USA
| | | | - Kenneth J Mukamal
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Matthew P Pase
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | | | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Claudia L Satizabal
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| | - Ramachandran S Vasan
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Preventive Medicine & Epidemiology, Boston University School of Medicine, Boston, MA, USA
| | - Amber Yaqub
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, team VINTAGE, UMR 1219, F-33000, Bordeaux, France
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux, France
| | - Carole Dufouil
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, Bordeaux, France
| | | | - William S Kremen
- Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
| | - William T Longstreth
- Departments of Neurology and Epidemiology, University of Washington, Seattle, WA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sudha Seshadri
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Sciences Center, San Antonio, TX, USA
| |
Collapse
|
14
|
Scott L, Puryear CB, Belfort GM, Raines S, Hughes ZA, Matthews LG, Ravina B, Wittmann M. Translational Pharmacology of PRAX-944, a Novel T-Type Calcium Channel Blocker in Development for the Treatment of Essential Tremor. Mov Disord 2022; 37:1193-1201. [PMID: 35257414 PMCID: PMC9310641 DOI: 10.1002/mds.28969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 12/15/2022] Open
Abstract
Background Essential tremor is the most common movement disorder with clear unmet need. Mounting evidence indicates tremor is caused by increased neuronal burst firing and oscillations in cerebello‐thalamo‐cortical circuitry and may be dependent on T‐type calcium channel activity. T‐type calcium channels regulate sigma band electroencephalogram (EEG) power during non‐rapid eye movement sleep, representing a potential biomarker of channel activity. PRAX‐944 is a novel T‐type calcium channel blocker in development for essential tremor. Objectives Using a rat tremor model and sigma‐band EEG power, we assessed pharmacodynamically‐active doses of PRAX‐944 and their translation into clinically tolerated doses in healthy participants, informing dose selection for future efficacy trials. Methods Harmaline‐induced tremor and spontaneous locomotor activity were used to assess PRAX‐944 efficacy and tolerability, respectively, in rats. Sigma‐power was used as a translational biomarker of T‐type calcium channel blockade in rats and, subsequently, in a phase 1 trial assessing pharmacologic activity and tolerability in healthy participants. Results In rats, PRAX‐944 dose‐dependently reduced tremor by 50% and 72% at 1 and 3 mg/kg doses, respectively, without locomotor side effects. These doses also reduced sigma‐power by ~30% to 50% in rats. In healthy participants, sigma‐power was similarly reduced by 34% to 50% at 10 to 100 mg, with no further reduction at 120 mg. All doses were well tolerated. Conclusions In rats, PRAX‐944 reduced sigma‐power at concentrations that reduced tremor without locomotor side effects. In healthy participants, comparable reductions in sigma‐power indicate that robust T‐type calcium channel blockade was achieved at well‐tolerated doses that may hold promise for reducing tremor in patients with essential tremor. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Liam Scott
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | | | | | - Shane Raines
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | - Zoë A Hughes
- Praxis Precision Medicines, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
15
|
Pan MK, Kuo SH. Essential tremor: Clinical perspectives and pathophysiology. J Neurol Sci 2022; 435:120198. [PMID: 35299120 PMCID: PMC10363990 DOI: 10.1016/j.jns.2022.120198] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/01/2021] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Essential tremor (ET) is one of the most common neurological disorders and can be highly disabling. In recent years, studies on the clinical perspectives and pathophysiology have advanced our understanding of ET. Specifically, clinical heterogeneity of ET, with co-existence of tremor and other neurological features such as dystonia, ataxia, and cognitive dysfunction, has been identified. The cerebellum has been found to be the key brain region for tremor generation, and structural alterations of the cerebellum have been extensively studied in ET. Finally, four main ET pathophysiologies have been proposed: 1) environmental exposures to β-carboline alkaloids and the consequent olivocerebellar hyper-excitation, 2) cerebellar GABA deficiency, 3) climbing fiber synaptic pathology with related cerebellar oscillatory activity, 4) extra-cerebellar oscillatory activity. While these four theories are not mutually exclusive, they can represent distinctive ET subtypes, indicating multiple types of abnormal brain circuitry can lead to action tremor. This article is part of the Special Issue "Tremor" edited by Daniel D. Truong, Mark Hallett, and Aasef Shaikh.
Collapse
|
16
|
Novak G, Kyriakis D, Grzyb K, Bernini M, Rodius S, Dittmar G, Finkbeiner S, Skupin A. Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson's disease. Commun Biol 2022; 5:49. [PMID: 35027645 PMCID: PMC8758783 DOI: 10.1038/s42003-021-02973-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/14/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disorder, characterized by the loss of dopaminergic neurons (mDA) in the midbrain. The underlying mechanisms are only partly understood and there is no treatment to reverse PD progression. Here, we investigated the disease mechanism using mDA neurons differentiated from human induced pluripotent stem cells (hiPSCs) carrying the ILE368ASN mutation within the PINK1 gene, which is strongly associated with PD. Single-cell RNA sequencing (RNAseq) and gene expression analysis of a PINK1-ILE368ASN and a control cell line identified genes differentially expressed during mDA neuron differentiation. Network analysis revealed that these genes form a core network, members of which interact with all known 19 protein-coding Parkinson's disease-associated genes. This core network encompasses key PD-associated pathways, including ubiquitination, mitochondrial function, protein processing, RNA metabolism, and vesicular transport. Proteomics analysis showed a consistent alteration in proteins of dopamine metabolism, indicating a defect of dopaminergic metabolism in PINK1-ILE368ASN neurons. Our findings suggest the existence of a network onto which pathways associated with PD pathology converge, and offers an inclusive interpretation of the phenotypic heterogeneity of PD.
Collapse
Affiliation(s)
- Gabriela Novak
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Dimitrios Kyriakis
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michela Bernini
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sophie Rodius
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Skupin
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
17
|
Abstract
Essential tremor (ET) is one of the most common movement disorders, with a reported >60 million affected individuals worldwide. The definition and underlying pathophysiology of ET are contentious. Patients present primarily with motor features such as postural and action tremors, but may also have other non-motor features, including cognitive impairment and neuropsychiatric symptoms. Genetics account for most of the ET risk but environmental factors may also be involved. However, the variable penetrance and challenges in validating data make gene-environment analysis difficult. Structural changes in cerebellar Purkinje cells and neighbouring neuronal populations have been observed in post-mortem studies, and other studies have found GABAergic dysfunction and dysregulation of the cerebellar-thalamic-cortical circuitry. Commonly prescribed medications include propranolol and primidone. Deep brain stimulation and ultrasound thalamotomy are surgical options in patients with medically intractable ET. Further research in post-mortem studies, and animal and cell-based models may help identify new pathophysiological clues and therapeutic targets and, together with advances in omics and machine learning, may facilitate the development of precision medicine for patients with ET.
Collapse
|
18
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Álvarez I, Pastor P, Agúndez JAG. Genomic Markers for Essential Tremor. Pharmaceuticals (Basel) 2021; 14:ph14060516. [PMID: 34072005 PMCID: PMC8226734 DOI: 10.3390/ph14060516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/23/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022] Open
Abstract
There are many reports suggesting an important role of genetic factors in the etiopathogenesis of essential tremor (ET), encouraging continuing the research for possible genetic markers. Linkage studies in families with ET have identified 4 genes/loci for familial ET, although the responsible gene(s) have not been identified. Genome-wide association studies (GWAS) described several variants in LINGO1, SLC1A2, STK32B, PPARGC1A, and CTNNA3, related with ET, but none of them have been confirmed in replication studies. In addition, the case-control association studies performed for candidate variants have not convincingly linked any gene with the risk for ET. Exome studies described the association of several genes with familial ET (FUS, HTRA2, TENM4, SORT1, SCN11A, NOTCH2NLC, NOS3, KCNS2, HAPLN4, USP46, CACNA1G, SLIT3, CCDC183, MMP10, and GPR151), but they were found only in singular families and, again, not found in other families or other populations, suggesting that some can be private polymorphisms. The search for responsible genes for ET is still ongoing.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, E28500 Arganda del Rey, Spain;
- Correspondence: ; Tel.: +34-636-96-83-95; Fax: +34-913-28-07-04
| | | | - Elena García-Martín
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, University of Extremadura, E10071 Caceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - Ignacio Álvarez
- Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Fundació Docencia i Recerça Mútua de Terrassa, E08221 Terrassa, Spain; (I.Á.); (P.P.)
| | - Pau Pastor
- Movement Disorders Unit, Department of Neurology, University Hospital Mútua de Terrassa, Fundació Docencia i Recerça Mútua de Terrassa, E08221 Terrassa, Spain; (I.Á.); (P.P.)
| | - José A. G. Agúndez
- ARADyAL Instituto de Salud Carlos III, University Institute of Molecular Pathology Biomarkers, University of Extremadura, E10071 Caceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|
19
|
Louis ED. The Essential Tremors: Evolving Concepts of a Family of Diseases. Front Neurol 2021; 12:650601. [PMID: 33841316 PMCID: PMC8032967 DOI: 10.3389/fneur.2021.650601] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/12/2021] [Indexed: 12/31/2022] Open
Abstract
The past 10 years has seen a remarkable advance in our understanding of the disease traditionally referred to as “essential tremor” (ET). First, the clinical phenotype of ET has been expanded from that of a bland, unidimensional, and monosymptomatic entity to one with a host of heterogeneous features. These features include a broader and more nuanced collection of tremors, non-tremor motor features (e.g., gait abnormalities) and a range of non-motor features, including cognitive, psychiatric, sleep, and other abnormalities. The natural history of these features, as well as their relationships with one another and with disease duration and severity, are better appreciated than they were previously. Studies of disease etiology have identified a number of candidate genes as well as explored several environmental determinants of disease. In addition, the decade has seen the beginnings and expansion of rigorous postmortem studies that have identified and described the postmortem changes in the brains of patients with ET. This emerging science has given rise to a new notion that the disease, in many cases, is one of cerebellar system degeneration. Across all of these studies (clinical, etiological, and pathophysiological) is the observation that there is heterogeneity across patients and that “essential tremor” is likely not a single disease but, rather, a family of diseases. The time has come to use the more appropriate terminology, “the essential tremors,” to fully describe and encapsulate what is now apparent. In this paper, the author will review the clinical, etiological, and pathophysiological findings, referred to above, and make the argument that the terminology should evolve to reflect advances in science and that “the essential tremors” is a more scientifically appropriate term.
Collapse
Affiliation(s)
- Elan D Louis
- Department of Neurology, University of Texas Southwestern, Dallas, TX, United States
| |
Collapse
|
20
|
Diez-Fairen M, Houle G, Ortega-Cubero S, Bandres-Ciga S, Alvarez I, Carcel M, Ibañez L, Fernandez MV, Budde JP, Trotta JR, Tonda R, Chong JX, Bamshad MJ, Nickerson DA, Aguilar M, Tartari JP, Gironell A, García-Martín E, Agundez JA, Alonso-Navarro H, Jimenez-Jimenez FJ, Fernandez M, Valldeoriola F, Marti MJ, Tolosa E, Coria F, Pastor MA, Vilariño-Güell C, Rajput A, Dion PA, Cruchaga C, Rouleau GA, Pastor P. Exome-wide rare variant analysis in familial essential tremor. Parkinsonism Relat Disord 2020; 82:109-116. [PMID: 33279834 DOI: 10.1016/j.parkreldis.2020.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 10/08/2020] [Accepted: 11/21/2020] [Indexed: 01/10/2023]
Abstract
INTRODUCTION Essential tremor (ET) is one of the most common movement disorders. Despite its high prevalence and heritability, its genetic etiology remains elusive with only a few susceptibility genes identified and poorly replicated. Our aim was to find novel candidate genes involved in ET predisposition through whole exome sequencing. METHODS We studied eight multigenerational families (N = 40 individuals) with an autosomal-dominant inheritance using a comprehensive strategy combining whole exome sequencing followed by case-control association testing of prioritized variants in a separate cohort comprising 521 ET cases and 596 controls. We further performed gene-based burden analyses in an additional dataset comprising 789 ET patients and 770 healthy individuals to investigate whether there was an enrichment of rare deleterious variants within our candidate genes. RESULTS Fifteen variants co-segregated with disease status in at least one of the families, among which rs749875462 in CCDC183, rs535864157 in MMP10 and rs114285050 in GPR151 showed a nominal association with ET. However, we found no significant enrichment of rare variants within these genes in cases compared with controls. Interestingly, MMP10 protein is involved in the inflammatory response to neuronal damage and has been previously associated with other neurological disorders. CONCLUSIONS We prioritized a set of promising genes, especially MMP10, for further genetic and functional studies in ET. Our study suggests that rare deleterious coding variants that markedly increase susceptibility to ET are likely to be found in many genes. Future studies are needed to replicate and further infer biological mechanisms and potential disease causality for our identified genes.
Collapse
Affiliation(s)
- Monica Diez-Fairen
- Fundació Docència i Recerca MútuaTerrassa, Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Gabrielle Houle
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Sara Ortega-Cubero
- Department of Neurology and Neurosurgery, Hospital Universitario de Burgos, Burgos, Spain
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Instituto de Investigación Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Ignacio Alvarez
- Fundació Docència i Recerca MútuaTerrassa, Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Maria Carcel
- Fundació Docència i Recerca MútuaTerrassa, Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Laura Ibañez
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - John P Budde
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jean-Rémi Trotta
- Centre Nacional d'Anàlisis Genòmic (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain & Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Raúl Tonda
- Centre Nacional d'Anàlisis Genòmic (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Spain & Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jessica X Chong
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Michael J Bamshad
- Division of Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA; Seattle Children's Hospital, Seattle, WA, 98105, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | | | | | - Miquel Aguilar
- Fundació Docència i Recerca MútuaTerrassa, Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Juan P Tartari
- Fundació Docència i Recerca MútuaTerrassa, Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa, Barcelona, Spain
| | - Alexandre Gironell
- Movement Disorders Unit, Neurology Department, Hospital de Sant Pau and Sant Pau Biomedical Research Institute, Barcelona, 08026, Spain
| | - Elena García-Martín
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | - Jose Ag Agundez
- University Institute of Molecular Pathology Biomarkers, UNEx. ARADyAL Instituto de Salud Carlos III, Cáceres, Spain
| | | | | | - Manel Fernandez
- María de Maeztu Unit of Excellence, Institute of Neurosciences, University of Barcelona, MDM-2017-0729, Ministry of Science, Innovation and Universities, Spain; Parkinson's Disease & Movement Disorders Unit, Department of Neurology, Hospital Clínic, IDIBAPS, Barcelona, Spain
| | - Francesc Valldeoriola
- Parkinson's Disease & Movement Disorders Unit, Department of Neurology, Hospital Clínic, IDIBAPS, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Maria Jose Marti
- Parkinson's Disease & Movement Disorders Unit, Department of Neurology, Hospital Clínic, IDIBAPS, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Eduard Tolosa
- Parkinson's Disease & Movement Disorders Unit, Department of Neurology, Hospital Clínic, IDIBAPS, Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Hospital Clínic de Barcelona, Barcelona, Spain
| | - Francisco Coria
- Clinic for Nervous Disorders, Service of Neurology, Son Espases University Hospital, Palma de Mallorca, Spain
| | - Maria A Pastor
- Department of Neurology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Carles Vilariño-Güell
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Alex Rajput
- Saskatchewan Movement Disorders Program, University of Saskatchewan/Saskatchewan Health Authority, Saskatoon, Saskatchewan, Canada
| | - Patrick A Dion
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, H3A 2B4, Quebec, Canada
| | - Carlos Cruchaga
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy A Rouleau
- Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, H3A 2B4, Quebec, Canada
| | - Pau Pastor
- Fundació Docència i Recerca MútuaTerrassa, Movement Disorders Unit, Department of Neurology, University Hospital Mútua Terrassa, Terrassa, Barcelona, Spain.
| |
Collapse
|
21
|
Liang D, Zhao Y, Pan H, Zhou X, He R, Zhou X, Yang J, Wang Y, Zhou X, Zhou Z, Xu Q, Yan X, Li J, Guo J, Tang B, Sun Q. Rare variant analysis of essential tremor-associated genes in early-onset Parkinson's disease. Ann Clin Transl Neurol 2020; 8:119-125. [PMID: 33185019 PMCID: PMC7818165 DOI: 10.1002/acn3.51248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 11/16/2022] Open
Abstract
Objective Parkinson’s disease (PD) and essential tremor (ET) are the two most common movement disorders. A significant overlap in clinical features, epidemiology, imaging, and pathology suggests that PD and ET may also share common genetic risk factors. Previous studies have only assessed a limited number of ET‐associated genes in PD patients and vice versa. Consequently, the genetic association between PD and ET remains incompletely characterized. In this study, we systematically investigated a potential association between rare coding variants in ET‐associated genes and PD, in a relatively large Chinese population cohort. Methods To investigate the genetic association between ET and PD, we performed the sequence kernel association testing (SKAT‐O) to explore the variant burden of 33 ET‐associated genes, using whole‐exome sequencing (WES) data from 1494 early‐onset PD (EOPD) patients and 1357 control subjects from mainland China. Results We report that rare loss‐of‐function and damaging missense variants of TNEM4 are suggestively associated with EOPD (P = 0.026), damaging missense variants of TNEM4 alone are also suggestively associated with EOPD (P = 0.032). No other rare damaging variants in ET‐related genes were significantly associated with EOPD. Interpretation This is the first systematic analysis of ET‐associated genes in EOPD. The suggestive association between TNEM4 and EOPD provides new evidence for a genetic link between ET and PD.
Collapse
Affiliation(s)
- Dongxiao Liang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuwen Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xun Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Runcheng He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoxia Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jinxia Yang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yige Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoting Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Zhou Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Qian Xu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 41008, China
| | - Xinxiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 41008, China
| | - Jinchen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 41008, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 41008, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 41008, China.,Centre for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, 410008, China
| | - Qiying Sun
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.,National Clinical Research Center for Geriatric Disorders, Changsha, Hunan, 41008, China
| |
Collapse
|
22
|
Nietz A, Krook-Magnuson C, Gutierrez H, Klein J, Sauve C, Hoff I, Christenson Wick Z, Krook-Magnuson E. Selective loss of the GABA Aα1 subunit from Purkinje cells is sufficient to induce a tremor phenotype. J Neurophysiol 2020; 124:1183-1197. [PMID: 32902350 DOI: 10.1152/jn.00100.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Previously, an essential tremor-like phenotype has been noted in animals with a global knockout of the GABAAα1 subunit. Given the hypothesized role of the cerebellum in tremor, including essential tremor, we used transgenic mice to selectively knock out the GABAAα1 subunit from cerebellar Purkinje cells. We examined the resulting phenotype regarding impacts on inhibitory postsynaptic currents, survival rates, gross motor abilities, and expression of tremor. Purkinje cell specific knockout of the GABAAα1 subunit abolished all GABAA-mediated inhibition in Purkinje cells, while leaving GABAA-mediated inhibition to cerebellar molecular layer interneurons intact. Selective loss of GABAAα1 from Purkinje cells did not produce deficits on the accelerating rotarod, nor did it result in decreased survival rates. However, a tremor phenotype was apparent, regardless of sex or background strain. This tremor mimicked the tremor seen in animals with a global knockout of the GABAAα1 subunit, and, like essential tremor in patients, was responsive to ethanol. These findings indicate that reduced inhibition to Purkinje cells is sufficient to induce a tremor phenotype, highlighting the importance of the cerebellum, inhibition, and Purkinje cells in tremor.NEW & NOTEWORTHY Animals with a global knockout of the GABAAα1 subunit show a tremor phenotype reminiscent of essential tremor. Here we show that selective knockout of GABAAα1 from Purkinje cells is sufficient to produce a tremor phenotype, although this tremor is less severe than seen in animals with a global knockout. These findings illustrate that the cerebellum can play a key role in the genesis of the observed tremor phenotype.
Collapse
Affiliation(s)
- Angela Nietz
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | | | - Haruna Gutierrez
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Julia Klein
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Clarke Sauve
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | - Isaac Hoff
- University of Minnesota, Department of Neuroscience, Minneapolis, Minnesota
| | | | | |
Collapse
|
23
|
Magrinelli F, Latorre A, Balint B, Mackenzie M, Mulroy E, Stamelou M, Tinazzi M, Bhatia KP. Isolated and combined genetic tremor syndromes: a critical appraisal based on the 2018 MDS criteria. Parkinsonism Relat Disord 2020; 77:121-140. [PMID: 32818815 DOI: 10.1016/j.parkreldis.2020.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
The 2018 consensus statement on the classification of tremors proposes a two-axis categorization scheme based on clinical features and etiology. It also defines "isolated" and "combined" tremor syndromes depending on whether tremor is the sole clinical manifestation or is associated with other neurological or systemic signs. This syndromic approach provides a guide to investigate the underlying etiology of tremors, either genetic or acquired. Several genetic defects have been proven to cause tremor disorders, including autosomal dominant and recessive, X-linked, and mitochondrial diseases, as well as chromosomal abnormalities. Furthermore, some tremor syndromes are recognized in individuals with a positive family history, but their genetic confirmation is pending. Although most genetic tremor disorders show a combined clinical picture, there are some distinctive conditions in which tremor may precede the appearance of other neurological signs by years or remain the prominent manifestation throughout the disease course, previously leading to misdiagnosis as essential tremor (ET). Advances in the knowledge of genetically determined tremors may have been hampered by the inclusion of heterogeneous entities in previous studies on ET. The recent classification of tremors therefore aims to provide more consistent clinical data for deconstructing the genetic basis of tremor syndromes in the next-generation and long-read sequencing era. This review outlines the wide spectrum of tremor disorders with defined or presumed genetic etiology, both isolated and combined, unraveling diagnostic clues of these conditions and focusing mainly on ET-like phenotypes. Furthermore, we suggest a phenotype-to-genotype algorithm to support clinicians in identifying tremor syndromes and guiding genetic investigations.
Collapse
Affiliation(s)
- Francesca Magrinelli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Bettina Balint
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany.
| | - Melissa Mackenzie
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Eoin Mulroy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| | - Maria Stamelou
- Department of Neurology, Attikon University Hospital, Athens, Greece.
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Kailash P Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
24
|
Lory P, Nicole S, Monteil A. Neuronal Cav3 channelopathies: recent progress and perspectives. Pflugers Arch 2020; 472:831-844. [PMID: 32638069 PMCID: PMC7351805 DOI: 10.1007/s00424-020-02429-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 12/22/2022]
Abstract
T-type, low-voltage activated, calcium channels, now designated Cav3 channels, are involved in a wide variety of physiological functions, especially in nervous systems. Their unique electrophysiological properties allow them to finely regulate neuronal excitability and to contribute to sensory processing, sleep, and hormone and neurotransmitter release. In the last two decades, genetic studies, including exploration of knock-out mouse models, have greatly contributed to elucidate the role of Cav3 channels in normal physiology, their regulation, and their implication in diseases. Mutations in genes encoding Cav3 channels (CACNA1G, CACNA1H, and CACNA1I) have been linked to a variety of neurodevelopmental, neurological, and psychiatric diseases designated here as neuronal Cav3 channelopathies. In this review, we describe and discuss the clinical findings and supporting in vitro and in vivo studies of the mutant channels, with a focus on de novo, gain-of-function missense mutations recently discovered in CACNA1G and CACNA1H. Overall, the studies of the Cav3 channelopathies help deciphering the pathogenic mechanisms of corresponding diseases and better delineate the properties and physiological roles Cav3 channels.
Collapse
Affiliation(s)
- Philippe Lory
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France. .,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France.
| | - Sophie Nicole
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France
| | - Arnaud Monteil
- Institut de Génomique Fonctionnelle, CNRS, INSERM, University Montpellier, 141, rue de la Cardonille, 34094, Montpellier, France.,LabEx 'Ion Channel Science and Therapeutics' (ICST), Montpellier, France
| |
Collapse
|
25
|
Essential tremor pathology: neurodegeneration and reorganization of neuronal connections. Nat Rev Neurol 2020; 16:69-83. [PMID: 31959938 DOI: 10.1038/s41582-019-0302-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 01/26/2023]
Abstract
Essential tremor (ET) is the most common tremor disorder globally and is characterized by kinetic tremor of the upper limbs, although other clinical features can also occur. Postmortem studies are a particularly important avenue for advancing our understanding of the pathogenesis of ET; however, until recently, the number of such studies has been limited. Several recent postmortem studies have made important contributions to our understanding of the pathological changes that take place in ET. These studies identified abnormalities in the cerebellum, which primarily affected Purkinje cells (PCs), basket cells and climbing fibres, in individuals with ET. We suggest that some of these pathological changes (for example, focal PC axonal swellings, swellings in and regression of the PC dendritic arbor and PC death) are likely to be primary and degenerative. By contrast, other changes, such as an increase in PC recurrent axonal collateral formation and hypertrophy of GABAergic basket cell axonal processes, could be compensatory responses to restore cerebellar GABAergic tone and cerebellar cortical inhibitory efficacy. Such compensatory responses are likely to be insufficient, enabling the disease to progress. Here, we review the results of recent postmortem studies of ET and attempt to place these findings into an anatomical-physiological disease model.
Collapse
|
26
|
Martuscello RT, Kerridge CA, Chatterjee D, Hartstone WG, Kuo SH, Sims PA, Louis ED, Faust PL. Gene expression analysis of the cerebellar cortex in essential tremor. Neurosci Lett 2019; 721:134540. [PMID: 31707044 DOI: 10.1016/j.neulet.2019.134540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Essential tremor (ET) is one of the most common neurological diseases, with a central feature of an 8-12 Hz kinetic tremor. While previous postmortem studies have identified a cluster of morphological changes in the ET cerebellum centered in/around the Purkinje cell (PC) population, including a loss of PCs in some studies, the underlying molecular mechanisms for these changes are not clear. As genomic studies of ET patients have yet to identify major genetic contributors and animal models that fully recapitulate the human disease do not yet exist, the study of human tissue is currently the most applicable method to gain a mechanistic insight into ET disease pathogenesis. To begin exploration of an underlying molecular source of ET disease pathogenesis, we have performed the first transcriptomic analysis by direct sequencing of RNA from frozen cerebellar cortex tissue in 33 ET patients compared to 21 normal controls. Principal component analysis showed a heterogenous distribution of the expression data in ET patients that only partially overlapped with control patients. Differential expression analysis identified 231 differentially expressed gene transcripts ('top gene hits'), a subset of which has defined expression profiles in the cerebellum across neuronal and glial cell types but a largely unknown relationship to cerebellar function and/or ET pathogenesis. Gene set enrichment analysis (GSEA) identified dysregulated pathways of interest and stratified dysregulation among ET cases. By GSEA and mining curated databases, we compiled major categories of dysregulated processes and clustered string networks of known interacting proteins. Here we demonstrate that these 'top gene hits' contribute to regulation of four main biological processes, which are 1) axon guidance, 2) microtubule motor activity, 3) endoplasmic reticulum (ER) to Golgi transport and 4) calcium signaling/synaptic transmission. The results of our transcriptomic analysis suggest there is a range of different processes involved among ET cases, and draws attention to a particular set of genes and regulatory pathways that provide an initial platform to further explore the underlying biology of ET.
Collapse
Affiliation(s)
- Regina T Martuscello
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| | - Chloë A Kerridge
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| | - Debotri Chatterjee
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| | - Whitney G Hartstone
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| | - Sheng-Han Kuo
- College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA; Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 W 168th Street, BB302, New York, NY, USA.
| | - Peter A Sims
- Department of Neurology, College of Physicians and Surgeons, Columbia University, 630 W 168th Street, BB302, New York, NY, USA; Department of Systems Biology, Columbia University Medical Center, 3960 Broadway, RM208, New York, NY, USA; Sulzberger Columbia Genome Center, Columbia University Medical Center, 1150 St. Nicholas Ave., New York, NY, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Medical Center, 701 W 168th Street, New York, NY, USA.
| | - Elan D Louis
- Department of Neurology, Yale School of Medicine, Yale University, 15 York Street, New Haven, CT, USA; Department of Chronic Disease Epidemiology, Yale School of Public Health, 15 York Street, Yale University, New Haven, CT, USA; Center for Neuroepidemiology and Clinical Neurological Research, Yale School of Medicine, Yale University, 15 York Street, New Haven, CT, USA.
| | - Phyllis L Faust
- Department of Pathology and Cell Biology, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, P&S 15-405, New York, NY, USA; College of Physicians and Surgeons, Columbia University Medical Center and the New York Presbyterian Hospital, 630 W 168th Street, New York, NY, USA.
| |
Collapse
|