1
|
Xiong Y, Li W, Jin S, Wan S, Wu S. Inflammation in glomerular diseases. Front Immunol 2025; 16:1526285. [PMID: 40103820 PMCID: PMC11913671 DOI: 10.3389/fimmu.2025.1526285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 02/12/2025] [Indexed: 03/20/2025] Open
Abstract
The structural and functional integrity of glomerular cells is critical for maintaining normal kidney function. Glomerular diseases, which involve chronic histological damage to the kidney, are related to injury to glomerular cells such as endothelial cells, mesangial cells (MCs), and podocytes. When faced with pathogenic conditions, these cells release pro-inflammatory cytokines such as chemokines, inflammatory factors, and adhesion factors. These substances interact with glomerular cells through specific inflammatory pathways, resulting in damage to the structure and function of the glomeruli, ultimately causing glomerular disease. Although the role of inflammation in chronic kidney diseases is well known, the specific molecular pathways that result in glomerular diseases remain largely unclear. For a long time, it has been believed that only immune cells can secrete inflammatory factors. Therefore, targeted therapies against immune cells were considered the first choice for treating inflammation in glomerular disease. However, emerging research indicates that non-immune cells such as glomerular endothelial cells, MCs, and podocytes can also play a role in renal inflammation by releasing inflammatory factors. Similarly, targeted therapies against glomerular cells should be considered. This review aims to uncover glomerular diseases related to inflammation and pathways in glomerular inflammation, and for the first time summarized that non-immune cells in the glomerulus can participate in glomerular inflammatory damage by secreting inflammatory factors, providing valuable references for future strategies to prevent and treat glomerular diseases. More importantly, we emphasized targeted glomerular cell therapy, which may be a key direction for the future treatment of glomerular diseases.
Collapse
Affiliation(s)
- Yongqing Xiong
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Wei Li
- School of Rehabilitation Medicine, Gannan Medical University, Ganzhou, China
| | - Songzhi Jin
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Shujing Wan
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
| | - Suzhen Wu
- School of Basic Medicine, Gannan Medical University, Ganzhou, China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
2
|
Zununi Vahed S, Hosseiniyan Khatibi SM, Ardalan M. Canonical effects of cytokines on glomerulonephritis: A new outlook in nephrology. Med Res Rev 2025; 45:144-163. [PMID: 39164945 DOI: 10.1002/med.22074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/28/2022] [Accepted: 08/04/2024] [Indexed: 08/22/2024]
Abstract
Glomerulonephritis (GN) is an important cause of renal inflammation resulting from kidney-targeted adaptive and innate immune responses and consequent glomerular damage. Given the lack of autoantibodies, immune complexes, or the infiltrating immune cells in some forms of GN, for example, focal segmental glomerulosclerosis and minimal change disease, along with paraneoplastic syndrome and a special form of renal involvement in some viral infections, the likeliest causative scenario would be secreted factors, mainly cytokine(s). Since cytokines can modulate the inflammatory mechanisms, severity, and clinical outcomes of GN, it is rational to consider the umbrella term of cytokine GN as a new outlook to reclassify a group of previously known GN. We focus here, particularly, on cytokines that have the central "canonical effect" in the development of GN.
Collapse
|
3
|
Gowtham BC, Dawman L, Tiewsoh K, Kushwah S, Rawat A, Singh T, Gupta A. Serum tumour necrosis factor-alpha as a marker of disease activity in children with nephrotic syndrome. J Trop Pediatr 2024; 70:fmae025. [PMID: 39142803 DOI: 10.1093/tropej/fmae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Idiopathic nephrotic syndrome (NS) is a common glomerular disease in children throughout the world; however, the exact pathogenesis of the disease remains unknown. Several studies have shown that tumour necrosis factor-alpha (TNF-α), a proinflammatory cytokine, plays a significant role in the pathogenesis of NS. The literature lacks sufficient data to establish the relationship between TNF-α and NS. This prospective study was conducted on children aged 1-14 years diagnosed with idiopathic NS. All enrolled individuals were followed up from disease onset or relapse of NS until remission or at least 42 days with steroid therapy if remission was not achieved. Serum TNF-α levels were measured at presentation and remission or after 42 days of steroid therapy if remission was not achieved. The role of TNF-α levels in response to steroid therapy in NS was also assessed. One hundred and twelve children (68% boys) with idiopathic NS were enrolled. The median age (interquartile range) at enrolment was 58.5 (37-84.7) months, while the median age at symptom onset was 47.5 (24-60.7) months. The median TNF-α level at presentation was 7.5 (3.5-12.1) pg/ml, and that at remission was 5.25 (1.62-8.8) pg/ml. The median TNF-α levels among first-episode NS at presentation were 3.98 pg/ml and 1.88 pg/ml (P = .04) at remission, whereas in steroid-resistant NS, it was 6.59 pg/ml at presentation and 9.02 pg/ml at 42 days (P = .45). There was a significant negative correlation between the duration of steroid therapy and TNF-α levels, with a correlation factor of -0.021 and R2 of 0.154 (P≤.001). Serum TNF-α levels decrease with steroid therapy in children with steroid-sensitive NS, which correlates clinically with the achievement of remission.
Collapse
Affiliation(s)
- B C Gowtham
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Lesa Dawman
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Karalanglin Tiewsoh
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Sunil Kushwah
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Amit Rawat
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Thakurvir Singh
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Aarchie Gupta
- Department of Pediatrics, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education and Research, Chandigarh 160012, India
| |
Collapse
|
4
|
Burke GW, Mitrofanova A, Fontanella AM, Vendrame F, Ciancio G, Vianna RM, Roth D, Ruiz P, Abitbol CL, Chandar J, Merscher S, Pugliese A, Fornoni A. Transplantation: platform to study recurrence of disease. Front Immunol 2024; 15:1354101. [PMID: 38495894 PMCID: PMC10940352 DOI: 10.3389/fimmu.2024.1354101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 03/19/2024] Open
Abstract
Beyond the direct benefit that a transplanted organ provides to an individual recipient, the study of the transplant process has the potential to create a better understanding of the pathogenesis, etiology, progression and possible therapy for recurrence of disease after transplantation while at the same time providing insight into the original disease. Specific examples of this include: 1) recurrence of focal segmental glomerulosclerosis (FSGS) after kidney transplantation, 2) recurrent autoimmunity after pancreas transplantation, and 3) recurrence of disease after orthotopic liver transplantation (OLT) for cirrhosis related to progressive steatosis secondary to jejuno-ileal bypass (JIB) surgery. Our team has been studying these phenomena and their immunologic underpinnings, and we suggest that expanding the concept to other pathologic processes and/or transplanted organs that harbor the risk for recurrent disease may provide novel insight into the pathogenesis of a host of other disease processes that lead to organ failure.
Collapse
Affiliation(s)
- George William Burke
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | | | - Francesco Vendrame
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gaetano Ciancio
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Rodrigo M. Vianna
- Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - David Roth
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Phillip Ruiz
- Transplant Pathology, Immunology and Histocompatibility Laboratory University of Miami Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Carolyn L. Abitbol
- Pediatric Nephrology & Hypertension, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jayanthi Chandar
- Pediatric Kidney Transplant, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami - Miller School of Medicine, Miami, FL, United States
| | - Alberto Pugliese
- Department of Diabetes Immunology, Arthur Riggs Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, United States
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Peggy and Harold Katz Family Drug Discovery Center, Department of Medicine, University of Miami - Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
5
|
Jiang H, Shen Z, Zhuang J, Lu C, Qu Y, Xu C, Yang S, Tian X. Understanding the podocyte immune responses in proteinuric kidney diseases: from pathogenesis to therapy. Front Immunol 2024; 14:1335936. [PMID: 38288116 PMCID: PMC10822972 DOI: 10.3389/fimmu.2023.1335936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
The glomerular filtration barrier, comprising the inner layer of capillary fenestrated endothelial cells, outermost podocytes, and the glomerular basement membrane between them, plays a pivotal role in kidney function. Podocytes, terminally differentiated epithelial cells, are challenging to regenerate once injured. They are essential for maintaining the integrity of the glomerular filtration barrier. Damage to podocytes, resulting from intrinsic or extrinsic factors, leads to proteinuria in the early stages and eventually progresses to chronic kidney disease (CKD). Immune-mediated podocyte injury is a primary pathogenic mechanism in proteinuric glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, and lupus nephritis with podocyte involvement. An extensive body of evidence indicates that podocytes not only contribute significantly to the maintenance of the glomerular filtration barrier and serve as targets of immune responses but also exhibit immune cell-like characteristics, participating in both innate and adaptive immunity. They play a pivotal role in mediating glomerular injury and represent potential therapeutic targets for CKD. This review aims to systematically elucidate the mechanisms of podocyte immune injury in various podocyte lesions and provide an overview of recent advances in podocyte immunotherapy. It offers valuable insights for a deeper understanding of the role of podocytes in proteinuric glomerular diseases, and the identification of new therapeutic targets, and has significant implications for the future clinical diagnosis and treatment of podocyte-related disorders.
Collapse
Affiliation(s)
- Hong Jiang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhirang Shen
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jing Zhuang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chen Lu
- Division of Nephrology, Department of Internal Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yue Qu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Chengren Xu
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Shufen Yang
- Division of Nephrology, Department of Internal Medicine, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xuefei Tian
- Section of Nephrology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| |
Collapse
|
6
|
Gipson DS, Wang CS, Salmon E, Gbadegesin R, Naik A, Sanna-Cherchi S, Fornoni A, Kretzler M, Merscher S, Hoover P, Kidwell K, Saleem M, Riella L, Holzman L, Jackson A, Olabisi O, Cravedi P, Freedman BS, Himmelfarb J, Vivarelli M, Harder J, Klein J, Burke G, Rheault M, Spino C, Desmond HE, Trachtman H. FSGS Recurrence Collaboration: Report of a Symposium. GLOMERULAR DISEASES 2024; 4:1-10. [PMID: 38348154 PMCID: PMC10859699 DOI: 10.1159/000535138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/30/2023] [Indexed: 02/15/2024]
Affiliation(s)
- Debbie S. Gipson
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Chia-Shi Wang
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Eloise Salmon
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Rasheed Gbadegesin
- Department of Medicine, Duke University, Durham, NC, USA
- Department of Pediatrics, Duke University, Durham, NC, USA
| | - Abhijit Naik
- Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Matthias Kretzler
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | | | - Paul Hoover
- Department of Medicine, Harvard University, Cambridge, MA, USA
| | - Kelley Kidwell
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Moin Saleem
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Leonardo Riella
- Department of Medicine, Harvard University, Cambridge, MA, USA
| | - Lawrence Holzman
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Paolo Cravedi
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Marina Vivarelli
- Department of Pediatric Subspecialties, Bambino Gesù Children’s Hospital, Rome, Italy
| | - Jennifer Harder
- Department of Internal Medicine, University of Louisville, Louisville, KY, USA
| | - Jon Klein
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - George Burke
- Department of Surgery, University of Miami, Miami, FL, USA
| | - Michelle Rheault
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Cathie Spino
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Hailey E. Desmond
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Howard Trachtman
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
7
|
Pajoumshariati R, Ewart L, Kujala V, Luc R, Peel S, Corrigan A, Weber H, Nugraha B, Hansen PBL, Williams J. Physiological Replication of the Human Glomerulus Using a Triple Culture Microphysiological System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303131. [PMID: 37867234 PMCID: PMC10667800 DOI: 10.1002/advs.202303131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/12/2023] [Indexed: 10/24/2023]
Abstract
The function of the glomerulus depends on the complex cell-cell/matrix interactions and replication of this in vitro would aid biological understanding in both health and disease. Previous models do not fully reflect all cell types and interactions present as they overlook mesangial cells within their 3D matrix. Herein, the development of a microphysiological system that contains all resident renal cell types in an anatomically relevant manner is presented. A detailed transcriptomic analysis of the contributing biology of each cell type, as well as functionally appropriate albumin retention in the system, is demonstrated. The important role of mesangial cells is shown in promoting the health and maturity of the other cell types. Additionally, a comparison of the incremental advances that each individual cell type brings to the phenotype of the others demonstrates that glomerular cells in simple 2D culture exhibit a state more reflective of the dysfunction observed in human disease than previously recognized. This in vitro model will expand the capability to investigate glomerular biology in a more translatable manner by the inclusion of the important mesangial cell compartment.
Collapse
Affiliation(s)
- Ramin Pajoumshariati
- Bioscience RenalResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZenecaGothenburg431 83Sweden
| | | | | | | | - Samantha Peel
- Functional Genomics, Research and Early DevelopmentDiscovery SciencesBioPharmaceuticals R&DAstraZenecaCambridgeCB21 6GHUK
| | - Adam Corrigan
- Functional Genomics, Research and Early DevelopmentDiscovery SciencesBioPharmaceuticals R&DAstraZenecaCambridgeCB21 6GHUK
| | | | - Bramasta Nugraha
- Bioscience RenalResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZenecaGothenburg431 83Sweden
| | - Pernille B. L. Hansen
- Bioscience RenalResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZenecaGothenburg431 83Sweden
| | - Julie Williams
- Bioscience RenalResearch and Early DevelopmentCardiovascularRenal and Metabolism (CVRM)BioPharmaceuticals R&DAstraZenecaGothenburg431 83Sweden
| |
Collapse
|
8
|
Salfi G, Casiraghi F, Remuzzi G. Current understanding of the molecular mechanisms of circulating permeability factor in focal segmental glomerulosclerosis. Front Immunol 2023; 14:1247606. [PMID: 37795085 PMCID: PMC10546017 DOI: 10.3389/fimmu.2023.1247606] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
The pathogenetic mechanisms underlying the onset and the post-transplant recurrence of primary focal segmental glomerulosclerosis (FSGS) are complex and remain yet to be fully elucidated. However, a growing body of evidence emphasizes the pivotal role of the immune system in both initiating and perpetuating the disease. Extensive investigations, encompassing both experimental models and patient studies, have implicated T cells, B cells, and complement as crucial actors in the pathogenesis of primary FSGS, with various molecules being proposed as potential "circulating factors" contributing to the disease and its recurrence post kidney-transplantation. In this review, we critically assessed the existing literature to identify essential pathways for a comprehensive characterization of the pathogenesis of FSGS. Recent discoveries have shed further light on the intricate interplay between these mechanisms. We present an overview of the current understanding of the engagement of distinct molecules and immune cells in FSGS pathogenesis while highlighting critical knowledge gaps that require attention. A thorough characterization of these intricate immune mechanisms holds the potential to identify noninvasive biomarkers that can accurately identify patients at high risk of post-transplant recurrence. Such knowledge can pave the way for the development of targeted and personalized therapeutic approaches in the management of FSGS.
Collapse
Affiliation(s)
| | - Federica Casiraghi
- Istituto di Ricerche Farmacologiche Mario Negri Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Bergamo, Italy
| | | |
Collapse
|
9
|
Rashmi P, Sigdel TK, Rychkov D, Damm I, Da Silva AA, Vincenti F, Lourenco AL, Craik CS, Reiser J, Sarwal MM. Perturbations in podocyte transcriptome and biological pathways induced by FSGS associated circulating factors. ANNALS OF TRANSLATIONAL MEDICINE 2023; 11:315. [PMID: 37404982 PMCID: PMC10316099 DOI: 10.21037/atm-22-3670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 12/03/2022] [Indexed: 07/06/2023]
Abstract
Background Focal segmental glomerulosclerosis (FSGS) is frequently associated with heavy proteinuria and progressive renal failure requiring dialysis or kidney transplantation. However, primary FSGS also has a ~40% risk of recurrence of disease in the transplanted kidney (rFSGS). Multiple circulating factors have been identified to contribute to the pathogenesis of primary and rFSGS including soluble urokinase-type plasminogen activator receptor (suPAR) and patient-derived CD40 autoantibody (CD40autoAb). However, the downstream effector pathways specific to individual factors require further study. The tumor necrosis factor, TNF pathway activation by one or more circulating factors present in the sera of patients with FSGS has been supported by multiple studies. Methods A human in vitro model was used to study podocyte injury measured as the loss of actin stress fibers. Anti-CD40 autoantibody was isolated from FSGS patients (recurrent and non-recurrent) and control patients with ESRD due to non-FSGS related causes. Two novel human antibodies-anti-uPAR (2G10) and anti-CD40 antibody (Bristol Meyer Squibb, 986090) were tested for their ability to rescue podocyte injury. Podocytes treated with patient derived antibody were transcriptionally profiled using whole human genome microarray. Results Here we show that podocyte injury caused by sera from FSGS patients is mediated by CD40 and suPAR and can be blocked by human anti-uPAR and anti-CD40 antibodies. Transcriptomic studies to compare the molecules and pathways activated in response to CD40 autoantibody from rFSGS patients (rFSGS/CD40autoAb) and suPAR, identified unique inflammatory pathways associated with FSGS injury. Conclusions We identified several novel and previously described genes associated with FSGS progression. Targeted blockade of suPAR and CD40 pathways with novel human antibodies showed inhibition of podocyte injury in FSGS.
Collapse
Affiliation(s)
- Priyanka Rashmi
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Tara K. Sigdel
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Dmitry Rychkov
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Izabella Damm
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Andrea Alice Da Silva
- Department of Immunology, Laboratory of Autoimmunity and Immunoregulation, Fluminense Federal University, Niteroi, Brazil
| | - Flavio Vincenti
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Andre L. Lourenco
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Charles S. Craik
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
| | - Jochen Reiser
- Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Minnie M. Sarwal
- Department of Surgery, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Hu C, Priceputu E, Cool M, Chrobak P, Bouchard N, Forestier C, Lowell CA, Bénichou S, Hanna Z, Royal V, Jolicoeur P. NEF-Induced HIV-Associated Nephropathy Through HCK/LYN Tyrosine Kinases. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:702-724. [PMID: 36868467 PMCID: PMC10284032 DOI: 10.1016/j.ajpath.2023.02.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 02/09/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023]
Abstract
HIV-1-associated nephropathy (HIVAN) is a severe complication of HIV-1 infection. To gain insight into the pathogenesis of kidney disease in the setting of HIV, a transgenic (Tg) mouse model [CD4C/HIV-negative regulator factor (Nef)] was used in which HIV-1 nef expression is under control of regulatory sequences (CD4C) of the human CD4 gene, thus allowing expression in target cells of the virus. These Tg mice develop a collapsing focal segmental glomerulosclerosis associated with microcystic dilatation, similar to human HIVAN. To identify kidney cells permissive to the CD4C promoter, CD4C reporter Tg lines were used. They showed preferential expression in glomeruli, mainly in mesangial cells. Breeding CD4C/HIV Tg mice on 10 different mouse backgrounds showed that HIVAN was modulated by host genetic factors. Studies of gene-deficient Tg mice revealed that the presence of B and T cells and that of several genes was dispensable for the development of HIVAN: those involved in apoptosis (Trp53, Tnfsf10, Tnf, Tnfrsf1b, and Bax), in immune cell recruitment (Ccl3, Ccl2, Ccr2, Ccr5, and Cx3cr1), in nitric oxide (NO) formation (Nos3 and Nos2), or in cell signaling (Fyn, Lck, and Hck/Fgr). However, deletion of Src partially and that of Hck/Lyn largely abrogated its development. These data suggest that Nef expression in mesangial cells through hematopoietic cell kinase (Hck)/Lck/Yes novel tyrosine kinase (Lyn) represents important cellular and molecular events for the development of HIVAN in these Tg mice.
Collapse
Affiliation(s)
- Chunyan Hu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Elena Priceputu
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Marc Cool
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Pavel Chrobak
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Nathalie Bouchard
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clara Forestier
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada
| | - Clifford A Lowell
- Department of Laboratory Medicine, University of California, San Francisco, California
| | - Serge Bénichou
- Insitut Cochin, Centre National de la Recherche Scientifique UMR8104, Université Paris Descartes and INSERM U1016, Paris, France
| | - Zaher Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, Quebec, Canada; Department of Medicine, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Virginie Royal
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, Quebec, Canada
| | - Paul Jolicoeur
- Department of Microbiology/Immunology, University of Montreal, Montreal, Quebec, Canada; Division of Experimental Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Mariani LH, Eddy S, AlAkwaa FM, McCown PJ, Harder JL, Nair V, Eichinger F, Martini S, Ademola AD, Boima V, Reich HN, El Saghir J, Godfrey B, Ju W, Tanner EC, Vega-Warner V, Wys NL, Adler SG, Appel GB, Athavale A, Atkinson MA, Bagnasco SM, Barisoni L, Brown E, Cattran DC, Coppock GM, Dell KM, Derebail VK, Fervenza FC, Fornoni A, Gadegbeku CA, Gibson KL, Greenbaum LA, Hingorani SR, Hladunewich MA, Hodgin JB, Hogan MC, Holzman LB, Jefferson JA, Kaskel FJ, Kopp JB, Lafayette RA, Lemley KV, Lieske JC, Lin JJ, Menon R, Meyers KE, Nachman PH, Nast CC, O'Shaughnessy MM, Otto EA, Reidy KJ, Sambandam KK, Sedor JR, Sethna CB, Singer P, Srivastava T, Tran CL, Tuttle KR, Vento SM, Wang CS, Ojo AO, Adu D, Gipson DS, Trachtman H, Kretzler M. Precision nephrology identified tumor necrosis factor activation variability in minimal change disease and focal segmental glomerulosclerosis. Kidney Int 2023; 103:565-579. [PMID: 36442540 DOI: 10.1016/j.kint.2022.10.023] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/27/2022]
Abstract
The diagnosis of nephrotic syndrome relies on clinical presentation and descriptive patterns of injury on kidney biopsies, but not specific to underlying pathobiology. Consequently, there are variable rates of progression and response to therapy within diagnoses. Here, an unbiased transcriptomic-driven approach was used to identify molecular pathways which are shared by subgroups of patients with either minimal change disease (MCD) or focal segmental glomerulosclerosis (FSGS). Kidney tissue transcriptomic profile-based clustering identified three patient subgroups with shared molecular signatures across independent, North American, European, and African cohorts. One subgroup had significantly greater disease progression (Hazard Ratio 5.2) which persisted after adjusting for diagnosis and clinical measures (Hazard Ratio 3.8). Inclusion in this subgroup was retained even when clustering was limited to those with less than 25% interstitial fibrosis. The molecular profile of this subgroup was largely consistent with tumor necrosis factor (TNF) pathway activation. Two TNF pathway urine markers were identified, tissue inhibitor of metalloproteinases-1 (TIMP-1) and monocyte chemoattractant protein-1 (MCP-1), that could be used to predict an individual's TNF pathway activation score. Kidney organoids and single-nucleus RNA-sequencing of participant kidney biopsies, validated TNF-dependent increases in pathway activation score, transcript and protein levels of TIMP-1 and MCP-1, in resident kidney cells. Thus, molecular profiling identified a subgroup of patients with either MCD or FSGS who shared kidney TNF pathway activation and poor outcomes. A clinical trial testing targeted therapies in patients selected using urinary markers of TNF pathway activation is ongoing.
Collapse
Affiliation(s)
- Laura H Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA.
| | - Sean Eddy
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Fadhl M AlAkwaa
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Phillip J McCown
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jennifer L Harder
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Viji Nair
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Felix Eichinger
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sebastian Martini
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Adebowale D Ademola
- Department of Paediatrics, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Heather N Reich
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jamal El Saghir
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bradley Godfrey
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Wenjun Ju
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily C Tanner
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Virginia Vega-Warner
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Noel L Wys
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Sharon G Adler
- Division of Nephrology and Hypertension at Harbor-UCLA Medical Center and The Lundquist Institute for Biomedical Innovation, Torrance, California, USA
| | - Gerald B Appel
- Division of Nephrology, Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
| | - Ambarish Athavale
- Division of Nephrology-Hypertension, University of San Diego, California, San Diego, California, USA
| | - Meredith A Atkinson
- Division of Pediatric Nephrology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Serena M Bagnasco
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura Barisoni
- Department of Pathology and Medicine, Division of Nephrology, Duke University School of Medicine, Durham, North Carolina, USA
| | - Elizabeth Brown
- Division of Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel C Cattran
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Gaia M Coppock
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Katherine M Dell
- Center for Pediatric Nephrology, Cleveland Clinic, Case Western Reserve University, Cleveland, Ohio, USA
| | - Vimal K Derebail
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Fernando C Fervenza
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Crystal A Gadegbeku
- Department of Kidney Medicine, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Keisha L Gibson
- Pediatric Nephrology Division, School of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Laurence A Greenbaum
- Division of Nephrology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Sangeeta R Hingorani
- Division of Nephrology, Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Michelle A Hladunewich
- Division of Nephrology, Department of Medicine, University Health Network and University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey B Hodgin
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Marie C Hogan
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Lawrence B Holzman
- Renal-Electrolyte and Hypertension Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J Ashley Jefferson
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Frederick J Kaskel
- Division of Pediatric Nephrology, Montefiore Medical Center, Bronx, New York, USA
| | - Jeffrey B Kopp
- National Institute of Diabetes and Digestive Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Richard A Lafayette
- Department of Medicine, Division of Nephrology, Stanford University, Stanford, California, USA
| | - Kevin V Lemley
- Department of Pediatrics, Keck School of Medicine of the University of Southern California, Los Angeles, California, USA
| | - John C Lieske
- Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jen-Jar Lin
- Department of Pediatrics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Rajarasee Menon
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin E Meyers
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Patrick H Nachman
- Division of Nephrology and Hypertension, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Cynthia C Nast
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Edgar A Otto
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kimberly J Reidy
- Division of Pediatric Nephrology, Montefiore Medical Center, Bronx, New York, USA
| | - Kamalanathan K Sambandam
- Division of Nephrology, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Division of Nephrology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John R Sedor
- Lerner Research Institutes, Cleveland Clinic, Cleveland, Ohio, USA; Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA; Department of Physiology, Case Western Reserve University, Cleveland, Ohio, USA; Department of Biophysics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christine B Sethna
- Division of Pediatric Nephrology, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Pamela Singer
- Division of Pediatric Nephrology, Cohen Children's Medical Center, New Hyde Park, New York, USA
| | - Tarak Srivastava
- Section of Nephrology, Children's Mercy Hospital, Kansas City, Missouri, USA
| | - Cheryl L Tran
- Pediatric Nephrology, Mayo Clinic, Rochester, Minnesota, USA
| | - Katherine R Tuttle
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington, USA; Providence Medical Research Center, Providence Health Care, University of Washington, Spokane, Washington, USA
| | - Suzanne M Vento
- Division of Nephrology, Department of Pediatrics, New York University School of Medicine, New York, New York, USA
| | - Chia-Shi Wang
- Division of Nephrology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Akinlolu O Ojo
- Department of Population Health, School of Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Dwomoa Adu
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Debbie S Gipson
- Division of Nephrology, Department of Pediatrics, University of Michigan, Ann Arbor, Michigan, USA
| | - Howard Trachtman
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
12
|
Burke GW, Chandar J, Sageshima J, Ortigosa-Goggins M, Amarapurkar P, Mitrofanova A, Defreitas MJ, Katsoufis CP, Seeherunvong W, Centeno A, Pagan J, Mendez-Castaner LA, Mattiazzi AD, Kupin WL, Guerra G, Chen LJ, Morsi M, Figueiro JMG, Vianna R, Abitbol CL, Roth D, Fornoni A, Ruiz P, Ciancio G, Garin EH. Benefit of B7-1 staining and abatacept for treatment-resistant post-transplant focal segmental glomerulosclerosis in a predominantly pediatric cohort: time for a reappraisal. Pediatr Nephrol 2023; 38:145-159. [PMID: 35507150 PMCID: PMC9747833 DOI: 10.1007/s00467-022-05549-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 01/10/2023]
Abstract
BACKGROUND Primary FSGS manifests with nephrotic syndrome and may recur following KT. Failure to respond to conventional therapy after recurrence results in poor outcomes. Evaluation of podocyte B7-1 expression and treatment with abatacept (a B7-1 antagonist) has shown promise but remains controversial. METHODS From 2012 to 2020, twelve patients developed post-KT FSGS with nephrotic range proteinuria, failed conventional therapy, and were treated with abatacept. Nine/twelve (< 21 years old) experienced recurrent FSGS; three adults developed de novo FSGS, occurring from immediately, up to 8 years after KT. KT biopsies were stained for B7-1. RESULTS Nine KTRs (75%) responded to abatacept. Seven of nine KTRs were B7-1 positive and responded with improvement/resolution of proteinuria. Two patients with rFSGS without biopsies resolved proteinuria after abatacept. Pre-treatment UPCR was 27.0 ± 20.4 (median 13, range 8-56); follow-up UPCR was 0.8 ± 1.3 (median 0.2, range 0.07-3.9, p < 0.004). Two patients who were B7-1 negative on multiple KT biopsies did not respond to abatacept and lost graft function. One patient developed proteinuria while receiving belatacept, stained B7-1 positive, but did not respond to abatacept. CONCLUSIONS Podocyte B7-1 staining in biopsies of KTRs with post-transplant FSGS identifies a subset of patients who may benefit from abatacept. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- George W. Burke
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, 1801 NW 9th Ave, Highland Professional Building, Miami, FL 33136 USA
| | - Jayanthi Chandar
- Division of Pediatric Kidney Transplantation, Department of Pediatrics, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Junichiro Sageshima
- Division of Transplant Surgery, Department of Surgery, University of California Davis School of Medicine, Sacramento, CA 95817 USA
| | - Mariella Ortigosa-Goggins
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Pooja Amarapurkar
- Division of Nephrology, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30309 USA
| | - Alla Mitrofanova
- Research, Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Marissa J. Defreitas
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Chryso P. Katsoufis
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Wacharee Seeherunvong
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Alexandra Centeno
- Transplant Clinical Pharmacy Services, Miami Transplant Institute, Jackson Memorial Hospital, Miami, FL 33136 USA
| | - Javier Pagan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Lumen A. Mendez-Castaner
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Adela D. Mattiazzi
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Warren L. Kupin
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Giselle Guerra
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Linda J. Chen
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, 1801 NW 9th Ave, Highland Professional Building, Miami, FL 33136 USA
| | - Mahmoud Morsi
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, 1801 NW 9th Ave, Highland Professional Building, Miami, FL 33136 USA
| | - Jose M. G. Figueiro
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, 1801 NW 9th Ave, Highland Professional Building, Miami, FL 33136 USA
| | - Rodrigo Vianna
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, 1801 NW 9th Ave, Highland Professional Building, Miami, FL 33136 USA ,Division of Liver and GI Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Carolyn L. Abitbol
- Division of Pediatric Nephrology, Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - David Roth
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, and the Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Phillip Ruiz
- Transplant Pathology, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, Miami, FL 33136 USA
| | - Gaetano Ciancio
- Division of Kidney-Pancreas Transplantation, Department of Surgery, Miami Transplant Institute, University of Miami Miller School of Medicine, 1801 NW 9th Ave, Highland Professional Building, Miami, FL 33136 USA
| | - Eduardo H. Garin
- Division of Nephrology, Department of Pediatrics, University of Florida School of Medicine, Gainesville, FL 32610 USA
| |
Collapse
|
13
|
Abstract
Idiopathic nephrotic syndrome often responds to immunosuppressive treatment. Nevertheless, this syndrome-and the drugs used to treat it-remain important causes of patient morbidity. Idiopathic nephrotic syndrome is usually caused by minimal change disease or FSGS, diseases that primarily affect the podocytes. In spite of decades of research, the underlying causes of both diseases remain incompletely understood. There is, however, a large body of observational and experimental data linking the immune system with both minimal change disease and FSGS, including associations with systemic infections and hematologic malignancies. Perhaps most compellingly, many different immunomodulatory drugs are effective for treating idiopathic nephrotic syndrome, including biologic agents that have well-defined immune targets. In fact, the unexpected efficacy of targeted therapeutic agents has provided important new insights into the pathogenesis of these diseases. Given the large number of drugs that are available to deplete or block specific cells and molecules within the immune system, a better understanding of the immunologic causes of idiopathic nephrotic syndrome may lead to better diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Ruth E. Campbell
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado
| | - Joshua M. Thurman
- Division of Renal Diseases and Hypertension, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
14
|
Mitrofanova A, Fontanella A, Tolerico M, Mallela S, Molina David J, Zuo Y, Boulina M, Kim JJ, Santos J, Ge M, Sloan A, Issa W, Gurumani M, Pressly J, Ito M, Kretzler M, Eddy S, Nelson R, Merscher S, Burke G, Fornoni A. Activation of Stimulator of IFN Genes (STING) Causes Proteinuria and Contributes to Glomerular Diseases. J Am Soc Nephrol 2022; 33:2153-2173. [PMID: 36198430 PMCID: PMC9731637 DOI: 10.1681/asn.2021101286] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 09/06/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The signaling molecule stimulator of IFN genes (STING) was identified as a crucial regulator of the DNA-sensing cyclic GMP-AMP synthase (cGAS)-STING pathway, and this signaling pathway regulates inflammation and energy homeostasis under conditions of obesity, kidney fibrosis, and AKI. However, the role of STING in causing CKD, including diabetic kidney disease (DKD) and Alport syndrome, is unknown. METHODS To investigate whether STING activation contributes to the development and progression of glomerular diseases such as DKD and Alport syndrome, immortalized human and murine podocytes were differentiated for 14 days and treated with a STING-specific agonist. We used diabetic db/db mice, mice with experimental Alport syndrome, C57BL/6 mice, and STING knockout mice to assess the role of the STING signaling pathway in kidney failure. RESULTS In vitro, murine and human podocytes express all of the components of the cGAS-STING pathway. In vivo, activation of STING renders C57BL/6 mice susceptible to albuminuria and podocyte loss. STING is activated at baseline in mice with experimental DKD and Alport syndrome. STING activation occurs in the glomerular but not the tubulointerstitial compartment in association with autophagic podocyte death in Alport syndrome mice and with apoptotic podocyte death in DKD mouse models. Genetic or pharmacologic inhibition of STING protects from progression of kidney disease in mice with DKD and Alport syndrome and increases lifespan in Alport syndrome mice. CONCLUSION The activation of the STING pathway acts as a mediator of disease progression in DKD and Alport syndrome. Targeting STING may offer a therapeutic option to treat glomerular diseases of metabolic and nonmetabolic origin or prevent their development, progression, or both.
Collapse
Affiliation(s)
- Alla Mitrofanova
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
| | - Antonio Fontanella
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Matthew Tolerico
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Shamroop Mallela
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Judith Molina David
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Yiqin Zuo
- Department of Pathology, University of Miami Medical Group, Miller School of Medicine, Miami, Florida
| | - Marcia Boulina
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jin-Ju Kim
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Javier Santos
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Mengyuan Ge
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alexis Sloan
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Wadih Issa
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Margaret Gurumani
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Jeffrey Pressly
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Marie Ito
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - Matthias Kretzler
- Division of Nephrology, Departments of Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Sean Eddy
- Division of Nephrology, Departments of Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan School of Medicine, Ann Arbor, Michigan
| | - Robert Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Sandra Merscher
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| | - George Burke
- Department of Surgery, University of Miami, Miller School of Medicine, Miami, Florida
- Diabetes Research Institute, University of Miami, Miller School of Medicine, Miami, Florida
| | - Alessia Fornoni
- Katz Family Division of Nephrology and Hypertension, Department of Medicine, University of Miami, Miller School of Medicine, Miami, Florida
- Peggy and Harold Katz Family Drug Discovery Center, University of Miami, Miller School of Medicine, Miami, Florida
| |
Collapse
|
15
|
Lausecker F, Koehler S, Fresquet M, Naylor RW, Tian P, Wanner N, Braun F, Butt L, Huber TB, Lennon R. Integrating basic science with translational research: the 13th International Podocyte Conference 2021. Kidney Int 2022; 102:708-719. [PMID: 35964799 PMCID: PMC9386279 DOI: 10.1016/j.kint.2022.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 11/30/2022]
Abstract
The 13th International Podocyte Conference was held in Manchester, UK, and online from July 28 to 30, 2021. Originally planned for 2020, this biannual meeting was postponed by a year because of the coronavirus disease 2019 (COVID-19) pandemic and proceeded as an innovative hybrid meeting. In addition to in-person attendance, online registration was offered, and this attracted 490 conference registrations in total. As a Podocyte Conference first, a day for early-career researchers was introduced. This premeeting included talks from graduate students and postdoctoral researchers. It gave early career researchers the opportunity to ask a panel, comprising academic leaders and journal editors, about career pathways and the future for podocyte research. The main meeting over 3 days included a keynote talk and 4 focused sessions each day incorporating invited talks, followed by selected abstract presentations, and an open panel discussion. The conference concluded with a Patient Day, which brought together patients, clinicians, researchers, and industry representatives. The Patient Day was an interactive and diverse day. As well as updates on improving diagnosis and potential new therapies, the Patient Day included a PodoArt competition, exercise and cooking classes with practical nutrition advice, and inspirational stories from patients and family members. This review summarizes the exciting science presented during the 13th International Podocyte Conference and demonstrates the resilience of researchers during a global pandemic.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Sybille Koehler
- Biomedical Sciences, University of Edinburgh, Edinburgh, UK; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Richard W Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Nicola Wanner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Braun
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linus Butt
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
16
|
Potential Molecular Mechanisms of Ephedra Herb in the Treatment of Nephrotic Syndrome Based on Network Pharmacology and Molecular Docking. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9214589. [PMID: 35837376 PMCID: PMC9276517 DOI: 10.1155/2022/9214589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/30/2022] [Accepted: 06/11/2022] [Indexed: 01/17/2023]
Abstract
Objective To explore the possible mechanisms of Ephedra herb (EH) in the treatment of nephrotic syndrome (NS) by using network pharmacology and molecular docking in this study. Methods Active ingredients and related targets of EH were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the gene names corresponding to the proteins were found through the UniProt database. Then, target genes related to NS were screened out from GeneCards, PharmGKB, and OMIM databases. Next, the intersection targets were obtained successfully through Venn diagram, which were also seen as key target genes of EH and NS. Cytoscape 3.9.0 software was used to construct the effective “active ingredient-target” network diagram, and “drug-ingredient-target-disease (D-I-T-D)” network diagram. After that, the STRING database was used to construct a protein-protein interaction (PPI) network. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment involved in the targets were performed by the DAVID database and ClueGO plugin in Cytoscape. Finally, AutoDockTools software was used for molecular docking to verify the binding strength between main active ingredients and key target proteins. Results A total of 22 main active ingredients such as quercetin, kaempferol, luteolin, and naringenin were obtained, which could act on 105 targets related to NS. Through PPI network, 53 core targets such as AKT1, TNF, IL6, VEGFA, and IL1B were found, which might play a crucial role in the treatment of NS. Meanwhile, these targets were significantly involved in PI3K-Akt signaling pathway, TNF signaling pathway, AGE-RAGE signaling pathway, hepatitis B, and pathways in cancer through GO and KEGG enrichment analysis. The docking results indicated that active ingredients such as kaempferol, luteolin, quercetin, and naringenin all had good binding to the target protein AKT1 or TNF. Among them, luteolin and naringenin binding with AKT1 showed the best binding energy (-6.2 kcal/mol). Conclusion This study indicated that the potential mechanism of EH in treating NS may be related to PI3K-Akt signaling pathway, TNF signaling pathway, and AGE-RAGE signaling pathway, which provided better approaches for exploring the mechanism in treating NS and new ideas for further in vivo and in vitro experimental verifications.
Collapse
|
17
|
Kitsou K, Askiti V, Mitsioni A, Spoulou V. The immunopathogenesis of idiopathic nephrotic syndrome: a narrative review of the literature. Eur J Pediatr 2022; 181:1395-1404. [PMID: 35098401 DOI: 10.1007/s00431-021-04357-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/21/2021] [Accepted: 12/19/2021] [Indexed: 12/18/2022]
Abstract
UNLABELLED Idiopathic nephrotic syndrome (INS) is a common glomerular disease in childhood, and the immunological involvement in the pathogenesis of non-genetic INS, although not fully elucidated, is evident. This narrative review aims to offer a concise and in-depth view of the current knowledge on the immunological mechanisms of the development of INS as well as the role of the immunological components of the disease in the responsiveness to treatment. T cell immunity appears to play a major role in the INS immunopathogenesis and has been the first to be linked to the disease. Various T cell immunophenotypes are implicated in INS, including T-helper-1, T-helper-2, T-helper-17, and T regulatory cells, and various cytokines have been proposed as surrogate biomarkers of the disease; however, no distinct T helper or cytokine profile has been conclusively linked to the disease. More recently, the recognition of the role of B cell mediated immunity and the various B cell subsets that are dysregulated in patients with INS have led to new hypotheses on the underlying immunological causes of INS. Finally, the disambiguation of the exact mechanisms of the INS development in the future may be the key to the development of more targeted personalized approaches in managing INS. CONCLUSIONS INS demonstrates particularly interesting immunopathogenetic pathways, in which multiple interactions between T cell and B cell immunity and the podocyte are involved. The disambiguation of these pathways will provide promising novel therapeutic targets in INS. WHAT IS KNOWN • INS is the most common glomerular disease in the paediatric population, and its onset and relapses have been linked to various immunological triggers. • Multiple immunological mechanisms have been implicated in the pathogenesis of INS; however, no single distinct immunological profile has been recognized. WHAT IS NEW • Th17 cells and Treg cells play an important role in the immune dysregulation in INS. • Transitional B cell levels as well as the transitional/memory B cell ratio have been correlated to nephrotic relapses and have been proposed as biomarkers of INS relapses in SSNS patients.
Collapse
Affiliation(s)
- Konstantina Kitsou
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Varvara Askiti
- Department of Nephrology, "P. and A. Kyriakou" Children's Hospital, Athens, Greece
| | - Andromachi Mitsioni
- Department of Nephrology, "P. and A. Kyriakou" Children's Hospital, Athens, Greece
| | - Vana Spoulou
- Immunobiology and Vaccinology Research Laboratory, First Department of Paediatrics, School of Medicine, "Aghia Sophia" Children's Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Purohit S, Piani F, Ordoñez FA, de Lucas-Collantes C, Bauer C, Cara-Fuentes G. Molecular Mechanisms of Proteinuria in Minimal Change Disease. Front Med (Lausanne) 2022; 8:761600. [PMID: 35004732 PMCID: PMC8733331 DOI: 10.3389/fmed.2021.761600] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/15/2021] [Indexed: 11/13/2022] Open
Abstract
Minimal change disease (MCD) is the most common type of idiopathic nephrotic syndrome in childhood and represents about 15% cases in adults. It is characterized by massive proteinuria, edema, hypoalbuminemia, and podocyte foot process effacement on electron microscopy. Clinical and experimental studies have shown an association between MCD and immune dysregulation. Given the lack of inflammatory changes or immunocomplex deposits in the kidney tissue, MCD has been traditionally thought to be mediated by an unknown circulating factor(s), probably released by T cells that directly target podocytes leading to podocyte ultrastructural changes and proteinuria. Not surprisingly, research efforts have focused on the role of T cells and podocytes in the disease process. Nevertheless, the pathogenesis of the disease remains a mystery. More recently, B cells have been postulated as an important player in the disease either by activating T cells or by releasing circulating autoantibodies against podocyte targets. There are also few reports of endothelial injury in MCD, but whether glomerular endothelial cells play a role in the disease remains unexplored. Genome-wide association studies are providing insights into the genetic susceptibility to develop the disease and found a link between MCD and certain human haplotype antigen variants. Altogether, these findings emphasize the complex interplay between the immune system, glomerular cells, and the genome, raising the possibility of distinct underlying triggers and/or mechanisms of proteinuria among patients with MCD. The heterogeneity of the disease and the lack of good animal models of MCD remain major obstacles in the understanding of MCD. In this study, we will review the most relevant candidate mediators and mechanisms of proteinuria involved in MCD and the current models of MCD-like injury.
Collapse
Affiliation(s)
- Shrey Purohit
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Federica Piani
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Medicine and Surgery Sciences, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Flor A Ordoñez
- Division of Pediatric Nephrology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | | | - Colin Bauer
- Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| | - Gabriel Cara-Fuentes
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, Section of Pediatric Nephrology, Children's Hospital Colorado, Aurora, CO, United States
| |
Collapse
|
19
|
Panigrahi S, Pardeshi VC, Chandrasekaran K, Neelakandan K, Ps H, Vasudevan A. Expression profiling of cultured podocytes exposed to nephrotic plasma reveals intrinsic molecular signatures of nephrotic syndrome. Clin Exp Pediatr 2021; 64:355-363. [PMID: 33147911 PMCID: PMC8255511 DOI: 10.3345/cep.2020.00619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/30/2020] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Nephrotic syndrome (NS) is a common renal disorder in children attributed to podocyte injury. However, children with the same diagnosis have markedly variable treatment responses, clinical courses, and outcomes, suggesting molecular heterogeneity. PURPOSE This study aimed to explore the molecular responses of podocytes to nephrotic plasma to identify specific genes and signaling pathways differentiating various clinical NS groups as well as biological processes that drive injury in normal podocytes. METHODS Transcriptome profiles from immortalized human podocyte cell line exposed to the plasma of 8 subjects (steroidsensitive nephrotic syndrome [SSNS], n=4; steroid-resistant nephrotic syndrome [SRNS], n=2; and healthy adult individuals [control], n=2) were generated using microarray analysis. RESULTS Unsupervised hierarchical clustering of global gene expression data was broadly correlated with the clinical classification of NS. Differential gene expression (DGE) analysis of diseased groups (SSNS or SRNS) versus healthy controls identified 105 genes (58 up-regulated, 47 down-regulated) in SSNS and 139 genes (78 up-regulated, 61 down-regulated) in SRNS with 55 common to SSNS and SRNS, while the rest were unique (50 in SSNS, 84 genes in SRNS). Pathway analysis of the significant (P≤0.05, -1≤ log2 FC ≥1) differentially expressed genes identified the transforming growth factor-β and Janus kinase-signal transducer and activator of transcription pathways to be involved in both SSNS and SRNS. DGE analysis of SSNS versus SRNS identified 2,350 genes with values of P≤0.05, and a heatmap of corresponding expression values of these genes in each subject showed clear differences in SSNS and SRNS. CONCLUSION Our study observations indicate that, although podocyte injury follows similar pathways in different clinical subgroups, the pathways are modulated differently as evidenced by the heatmap. Such transcriptome profiling with a larger cohort can stratify patients into intrinsic subtypes and provide insight into the molecular mechanisms of podocyte injury.
Collapse
Affiliation(s)
- Stuti Panigrahi
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Varsha Chhotusing Pardeshi
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Karthikeyan Chandrasekaran
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Karthik Neelakandan
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Hari Ps
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Anil Vasudevan
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India.,Department of Paediatric Nephology, Institute of Allied Health Sciences, St. John's Medical College, Bengaluru, India
| |
Collapse
|
20
|
Immune-mediated entities of (primary) focal segmental glomerulosclerosis. Cell Tissue Res 2021; 385:423-434. [PMID: 33907872 PMCID: PMC8523460 DOI: 10.1007/s00441-021-03454-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/19/2021] [Indexed: 12/21/2022]
Abstract
Focal segmental glomerulosclerosis (FSGS) represents a glomerular scar formation downstream of various different mechanisms leading to podocytopathy and podocyte loss. Recently, significant advances were made in understanding genetic factors, podocyte intrinsic mechanisms, and adaptive mechanisms causing FSGS. However, while most cases of nephrotic FSGS are being treated with immunosuppressants, the underlying immune dysregulation, involved immune cells, and soluble factors are only incompletely understood. Thus, we here summarize the current knowledge of proposed immune effector cells, secreted soluble factors, and podocyte response in immune-mediated (primary) FSGS.
Collapse
|
21
|
Podestà MA, Ponticelli C. Autoimmunity in Focal Segmental Glomerulosclerosis: A Long-Standing Yet Elusive Association. Front Med (Lausanne) 2020; 7:604961. [PMID: 33330569 PMCID: PMC7715033 DOI: 10.3389/fmed.2020.604961] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/26/2020] [Indexed: 01/17/2023] Open
Abstract
Focal segmental glomerulosclerosis (FSGS) is a histological term that describes a pathologic renal entity affecting both adults and children, with a wide array of possible underlying etiologies. Podocyte damage with scarring, the hallmark of this condition, leads to altered permeability of the glomerular barrier, which may result in massive proteinuria and relentless renal function deterioration. A definite cause of focal segmental glomerulosclerosis can be confirmed in a minority of cases, while most forms have been traditionally labeled as primary or idiopathic. Despite this definition, increasing evidence indicates that primary forms are a heterogenous group rather than a single disease entity: several circulating factors that may affect glomerular permeability have been proposed as potential culprits, and both humoral and cellular immunity have been implicated in the pathogenesis of the disease. Consistently, immunosuppressive drugs are considered as the cornerstone of treatment for primary focal segmental glomerulosclerosis, but response to these agents and long-term outcomes are highly variable. In this review we provide a summary of historical and recent advances on the pathogenesis of primary focal segmental glomerulosclerosis, focusing on implications for its differential diagnosis and treatment.
Collapse
|