1
|
Jyakhwo S, Dmitrenko A, Vinogradov VV. Computer-Aided Discovery of Synergistic Drug-Nanoparticle Combinations for Enhanced Antimicrobial Activity. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 39957463 DOI: 10.1021/acsami.4c21133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2025]
Abstract
Antibiotic resistance is a critical global public health challenge driven by the limited discovery of antibiotics, the rapid evolution of resistance mechanisms, and persistent infections that compromise treatment efficacy. Combination therapies using antibiotics and nanoparticles (NPs) offer a promising solution, particularly against multidrug-resistant (MDR) bacteria. This study introduces an innovative approach to identifying synergistic drug-NP combinations with enhanced antimicrobial activity. To carry this out, we compiled two groups of data sets to predict the minimal concentration (MC) and zone of inhibition (ZOI) of various drug-NP combinations. CatBoost regression models achieved the best 10-fold cross-validation R2 scores of 0.86 and 0.77, respectively. We then adopted a machine learning (ML)-reinforced genetic algorithm (GA) to identify synergistic antimicrobial NPs. The proposed approach was first validated by reproducing the previous experimental results. As a proof of concept for discovering drug-NP combinations, Au NPs were identified as highly synergistic NPs when paired with chloramphenicol, achieving a minimum bactericidal concentration (MBC) of 71.74 ng/mL against Salmonella typhimurium with a fractional inhibitory concentration index of 6.23 × 10-3. These findings present an effective strategy for identifying synergistic drug-NP combinations, providing a promising approach to combating drug-resistant pathogens and advancing targeted antimicrobial therapies.
Collapse
Affiliation(s)
- Susan Jyakhwo
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Andrei Dmitrenko
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| | - Vladimir V Vinogradov
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, 191002 Saint Petersburg, Russia
| |
Collapse
|
2
|
Musciacchio L, Mardirossian M, Marussi G, Crosera M, Turco G, Porrelli D. Core-shell electrospun polycaprolactone nanofibers, loaded with rifampicin and coated with silver nanoparticles, for tissue engineering applications. BIOMATERIALS ADVANCES 2025; 166:214036. [PMID: 39276661 DOI: 10.1016/j.bioadv.2024.214036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/09/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
In the field of tissue engineering, the use of core-shell fibers represents an advantageous approach to protect and finely tune the release of bioactive compounds with the aim to regulate their efficacy. In this work, core-shell electrospun polycaprolactone nanofiber-based membranes, loaded with rifampicin and coated with silver nanoparticles, were developed and characterized. The membranes are composed by randomly oriented nanofibers with a homogeneous diameter, as demonstrated by scanning electron microscopy (SEM). An air-plasma treatment was applied to increase the hydrophilicity of the membranes as confirmed by contact angle measurements. The rifampicin release from untreated and air-plasma treated membranes, evaluated by UV spectrophotometry, displayed a similar and constant over-time release profile, demonstrating that the air-plasma treatment does not degrade the rifampicin, loaded in the core region of the nanofibers. The presence and the distribution of silver nanoparticles on the nanofiber surface were investigated by SEM and Energy Dispersive Spectroscopy. Moreover, SEM imaging demonstrated that the produced membranes possess a good stability over time, in terms of structure maintenance. The developed membranes showed a good biocompatibility towards murine fibroblasts, human osteosarcoma cells and urotheliocytes, reveling the absence of cytotoxic effects. Moreover, doble-functionalized membranes inhibit the growth of E. coli and S. aureus. Thanks to the possibilities offered by the coaxial electrospinning, the membranes here proposed are promising for several tissue engineering applications.
Collapse
Affiliation(s)
- Luigi Musciacchio
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Giovanna Marussi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Matteo Crosera
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgieri 1, 34127 Trieste, Italy
| | - Gianluca Turco
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy
| | - Davide Porrelli
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Piazza dell'Ospitale 1, 34125 Trieste, Italy.
| |
Collapse
|
3
|
Tilokani A, Pradhan PK, Tripathy R, Patri G, Saraf P, Sinha Y. Antibacterial efficacy of nitrofurantoin impregnated with silver nanoparticles as an intracanal medicament. JOURNAL OF CONSERVATIVE DENTISTRY AND ENDODONTICS 2025; 28:10-15. [PMID: 39974672 PMCID: PMC11835348 DOI: 10.4103/jcde.jcde_770_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 02/21/2025]
Abstract
Aim This study aimed to evaluate and compare the antibacterial efficacy of nitrofurantoin (Nit) and calcium hydroxide (CH) coated with silver nanoparticle (AgNP) against Enterococcus faecalis-infected root canals using flow cytometry. Materials and Methods Seventy-eight extracted noncarious human single-rooted teeth were decoronated and chemomechanical preparation was done. The decoronated roots were inoculated with E. Faecalis for 21 days. The roots were then grouped depending on the types of intracanal medicaments used, namely, Group 1: Nit paste; Group 2: Nit with 0.02% AgNP suspension; Group 3: CH paste (Ultracal); Group 4: CH paste with 0.02% AgNP suspension; Group 5: 0.02% AgNP suspension; and Group 6: normal saline (0.9%) was taken as control. After 14 days of incubation, dentin chips from root canals were retrieved and transferred into Eppendorf tubes containing distilled water, and flow cytometry analysis was done. The statistical analysis was done using ANOVA. Results Flow cytometry analysis revealed that antibacterial activity of intracanal medicament was highest for Nit + AgNp. The least activity was observed for AgNP. Conclusion Both Nit and Nit with 0.02% AgNP can be used as potential intracanal medicaments against E. faecalis.
Collapse
Affiliation(s)
- Akansha Tilokani
- Department of Conservative Dentistry and Endodontics, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Prasanti Kumari Pradhan
- Department of Conservative Dentistry and Endodontics, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Ratikanta Tripathy
- Department of Pharmacology, Kalinga Institute of Medical Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Gaurav Patri
- Department of Conservative Dentistry and Endodontics, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Prahlad Saraf
- Department of Conservative Dentistry and Endodontics, PMNM Dental College, Bagalkot, Karnataka, India
| | - Yash Sinha
- Department of Conservative Dentistry and Endodontics, Kalinga Institute of Dental Sciences, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
4
|
Gaddam SA, Kotakadi VS, Allagadda R, T V, Velakanti SG, Samanchi S, Thangellamudi D, Masarapu H, Maheswari P U, Ch AR, Zereffa EA. Bioinspired multifunctional silver nanoparticles by Smilax Chenensis and their enhanced biomedical and catalytic applications. Sci Rep 2024; 14:29909. [PMID: 39622871 PMCID: PMC11612181 DOI: 10.1038/s41598-024-77071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/18/2024] [Indexed: 12/06/2024] Open
Abstract
Currently, Nano-materials have been explored for their abundant biomedical applications. In the present study the green synthesized (SC-AgNPs) by root extract of Smilax Chenensis have been characterized by UV-visible spectroscopy revealed SPR peak at 432 nm and FT-IR data reveals that the bioactive components of root extract have been actively involved in the reduction and stabilization of SC-AgNPs. TEM and AFM results revealed that SC-AgNPs were roughly spherical in shape. Further, the particle size of SC-AgNPs was also carried out by Dynamic Light Scattering method by aqueous colloidal solution and the results reveals that the SC-AgNPs are poly-dispersed in nature with an average size 45.6 nm with a Z average of 39.5 nm. The stability of colloidal SC-AgNPs was further confirmed by negative zeta potential value of - 21.0 mV. The SC-AgNPs showed good antibacterial activity against both gram -ve and gram + ve bacteria, whereas, SC-AgNPs coupled with antibiotic reveals excellent and enhanced antibacterial activity. The gram -ve E.coli and gram + ve S.aureus revealed highest zone of inhibition when compared to other two bacterial species. So, SC-AgNPs coupled with antibiotics can be excellent alternative to treat antibiotic resistant bacteria. The SC-AgNPs also reveals excellent antioxidant activity among them DPPH method revealed superior activity with an IC50 value76.22. The SC-AgNPs also reveals superior anticancer activity against MDA-MB-231 with IC50 value of 33.98 µg/mL and photo-catalytic activity the optical density of reduced from 1.861 to 0.135 OD within 30 min. The green SC-AgNPs detected to have multiple therapeutic applications.
Collapse
Affiliation(s)
- Susmila Aparna Gaddam
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | | | - Rajasekar Allagadda
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | - Vasavi T
- Department of Applied Microbiology, SPMVV(Women's University), Tirupati, Andhra Pradesh, 517502, India
| | - Siva Gayathri Velakanti
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | - Srilakshmi Samanchi
- Department of Biotechnology, SPMVV(Women's University), Tirupati, Andhra Pradesh, 517502, India
| | | | - Hema Masarapu
- Department of Virology, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | - Uma Maheswari P
- Department of Applied Microbiology, SPMVV(Women's University), Tirupati, Andhra Pradesh, 517502, India
| | - Appa Rao Ch
- Department of Biochemistry, Sri Venkateswara University, Tirupati, Andhra Pradesh, 517502, India
| | - Enyew Amare Zereffa
- Department of Applied Chemistry, School of Applied Natural Sciences, Adama Science and Technology University, Adama, Ethiopia.
| |
Collapse
|
5
|
Chandraker SK, Kumar R. Biogenic biocompatible silver nanoparticles: a promising antibacterial agent. Biotechnol Genet Eng Rev 2024; 40:3113-3147. [PMID: 35915981 DOI: 10.1080/02648725.2022.2106084] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/02/2022]
Abstract
The biogenic synthesis of silver nanoparticles (AgNPs) are gaining attention because they are eco-friendly, non-hazardous, economical and devoid of the drawbacks of physicochemical processes. Biogenic approaches for synthesizing nanoparticles (NPs) using plant leaves, seeds, bark, stems, fruits, roots and flowers are highly cost-effective compared to other methods. Silver (Ag) has been used since ancient times, but biogenic AgNPs have only been made in the last few decades. They have been employed primarily in the food and pharmaceutical industries as antimicrobials and antioxidants. Recent studies have confirmed that many molecules present in different bacteria, including Escherichia coli, Staphylococcus aureus, Citrobacter koseri, Bacillus cereus, Salmonella typhi, Klebsipneumoniaoniae, Vibrio parahaemolyticus, Pseudomonas Aeruginosa, are bound to the AgNPs and can be inhibited using multifaceted mechanisms like AgNPs inter inside the cells, free radicals, ROS generation and modulate transduction pathways. Recent breakthroughs in nanobiotechnology-based therapeutics have opened up new possibilities for fighting microorganisms. Thus, in particular, biogenic AgNPs as powerful antibacterial agents have gained much interest. Surface charge, colloidal state, shape, concentration and size are the most critical physicochemical characteristics that determine the antibacterial potential of AgNPs. Based on this review, it can be stated that AgNPs could be made better in terms of their potency, durability, accuracy, biosecurity and compatibility.
Collapse
Affiliation(s)
| | - Ravindra Kumar
- ICMR-National Institute of Research in Tribal Health, Jabalpur, Madhya Pradesh, India
| |
Collapse
|
6
|
Gomes-da-Silva NC, França ÁRS, Dos Santos CC, Alencar LMR, Rosas EC, Corrêa LB, Lorentino CMA, Santos ALS, Ricci-Junior E, Santos-Oliveira R. Nano-enhanced benzylpenicillin: Bridging antibacterial action with anti-inflammatory potential against antibiotic-resistant bacteria. Microbes Infect 2024:105436. [PMID: 39542238 DOI: 10.1016/j.micinf.2024.105436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024]
Abstract
This study investigates the enhancement of benzylpenicillin's antibacterial properties using nanomedicine, specifically by developing benzylpenicillin nanoemulsions. To address the escalating issue of bacterial resistance, we employed the advanced techniques Raman spectroscopy and atomic force microscopy to analyze the nanoemulsions' molecular structure and characteristics. We then evaluated the impact of these nanoemulsions on nitric oxide production by macrophages to deternine their potential to modulate inflammatory responses. We further assessed the antibacterial effectiveness of the nanoparticles against the pathogens Streptococcus pyogenes (Group A Streptococcus) and Streptococcus agalactiae (Group B Streptococcus). The results of antibiograms showed significant efficacy against Gram-positive bacteria, with minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values, confirming their bactericidal potential. The investigation into the mechanism of action suggested substantial disruption to bacterial membrane integrity, underscoring a possible mode of antibacterial activity. Overall, the study provides valuable insights into the synergistic relationship between antibiotics and nanoparticles. In particular, it demonstrates the potential of benzylpenicillin nanoparticles to enhance the antimicrobial efficacy and influence inflammatory responses obtained by evaluating nitrite, IL-6 and TNF-α, offering promising avenues for future clinical applications and strategies to combat bacterial resistance.
Collapse
Affiliation(s)
- Natália Cristina Gomes-da-Silva
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, 21941906, RJ, Brazil
| | - Álefe Roger Silva França
- Biophysics and Nanosystems Laboratory, Federal University of Maranhão, Department of Physics, São Luis, 65065690, MA, Brazil
| | - Clenilton Costa Dos Santos
- Biophysics and Nanosystems Laboratory, Federal University of Maranhão, Department of Physics, São Luis, 65065690, MA, Brazil
| | | | - Elaine Cruz Rosas
- Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Luana Barbosa Corrêa
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, 21941906, RJ, Brazil; Laboratory of Applied Pharmacology, Farmanguinhos, Oswaldo Cruz Foundation, Rio de Janeiro, 21040-360, Brazil
| | - Carolline M A Lorentino
- Laboratory of Advanced Studies on Emerging and Resistant Microorganisms (LEAMER), Brazil; Department of General Microbiology, Paulo de Góes Institute of Microbiology (IMPG), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - André L S Santos
- Laboratory of Advanced Studies on Emerging and Resistant Microorganisms (LEAMER), Brazil; Department of General Microbiology, Paulo de Góes Institute of Microbiology (IMPG), Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Eduardo Ricci-Junior
- Federal University of Rio de Janeiro, School of Pharmacy, Rio de Janeiro, 21941900, RJ, Brazil
| | - Ralph Santos-Oliveira
- Brazilian Nuclear Energy Commission, Nuclear Engineering Institute, Laboratory of Nanoradiopharmacy and Synthesis of New Radiopharmaceuticals, Rio de Janeiro, 21941906, RJ, Brazil; Rio de Janeiro State University, Laboratory of Radiopharmacy and Nanoradiopharmaceuticals, Rio de Janeiro, 23070200, RJ, Brazil.
| |
Collapse
|
7
|
Lieu MD, Dang TKT, Nguyen TH. Green synthesized silver nanoparticles, a sustainable approach for fruit and vegetable preservation: An overview. Food Chem X 2024; 23:101664. [PMID: 39148528 PMCID: PMC11324848 DOI: 10.1016/j.fochx.2024.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/12/2024] [Accepted: 07/14/2024] [Indexed: 08/17/2024] Open
Abstract
Nanotechnology in which silver nanoparticles (AgNPs) have received more interest in fruits and vegetables (FaV) preservation due to their anti-microorganism properties. There are various approaches to synthesizing AgNPs, in which biological reduction, especially plant extraction containing bioactive compounds, is considered non-toxic, eco-friendly, and economically viable. AgNPs can be applied for FaV preservation by immersing or incorporating AgNPs into the edible coating or wrapper film. Depending on the type of coating and the kind of FaV, choosing the coating components is necessary to ensure the anti-microorganism ability and improve preservation efficiency. This review highlights green-synthesized AgNPs for preserving FaV. The study covered the materials employed in the green synthesis of AgNPs, their effectiveness against microorganisms, the influence of AgNPs on film structure, safety properties, and various preservation strategies. Using plant or bacterial-synthesized AgNPs in edible coatings offers a sustainable approach to enhance safety, edibility, environmental friendliness, and FaV quality during storage.
Collapse
Affiliation(s)
- My Dong Lieu
- Faculty of Food Science and Technology, Ho Chi Minh City University of Industry and Trade, 140 Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Viet Nam
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University-Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc, Ho Chi Minh City, Viet Nam
| | - Thi Kim Thuy Dang
- Department of Plant Cell Technology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 9/621 Xa lo Ha Noi Street, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Viet Nam
| | - Thuy Huong Nguyen
- Department of Biotechnology, Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
- Vietnam National University-Ho Chi Minh City (VNU-HCM), Linh Trung Ward, Thu Duc, Ho Chi Minh City, Viet Nam
| |
Collapse
|
8
|
Fytory M, Khalid SA, Zaki AH, Fritzsche W, Azzazy HME. Photocatalytic Nanocomposite Based on Titanate Nanotubes Decorated with Plasmonic Nanoparticles for Enhanced Broad-Spectrum Antibacterial Activity. ACS APPLIED BIO MATERIALS 2024; 7:6720-6729. [PMID: 39352856 DOI: 10.1021/acsabm.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Infections resulting from microorganisms pose an ongoing global public health challenge, necessitating the constant development of novel antimicrobial approaches. Utilizing photocatalytic materials to generate reactive oxygen species (ROS) presents an appealing strategy for combating microbial threats. In alignment with this perspective, sodium titanate nanotubes were prepared by scalable hydrothermal method using TiO2 and NaOH. Ag, Au, and Ag/Au-modified titanate nanotubes (TNTs) were prepared by a cost-effective and simple ion-exchange method. All samples were characterized by XRD, FT-IR, HRTEM, and DLS techniques. HRTEM images indicated that the tubular structure was preserved in all TNTs even after the replacement of Na+ with Ag+ and/or Au3+ ions. The antibacterial activity in dark and sunlight conditions was evaluated using different bacterial strains, Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The results showed that while a low bacterial count (∼log 5 cells per well) was used for inoculation, the TNTs exhibited no antibacterial activity against the three bacterial strains, regardless of whether they were tested under light or dark conditions. However, the plasmonic nanoparticle-decorated TNTs showed remarkable activity in the dark. Additionally, Ag/Au-TNTs demonstrated significantly higher activity in the dark compared with either Ag-TNTs or Au-TNTs alone. Notably, under dark conditions, the Au/Ag-TNTs achieved log reductions of up to 4.5 for P. aeruginosa, 5 for S. aureus, and 3.7 for E. coli. However, when exposed to sunlight, Au/Ag-TNTs resulted in a complete reduction (log reduction ∼9) for P. aeruginosa and E. coli. The combination of two plasmonic nanoparticles (Ag/Au) decorated on the surface of TNTs showed synergetic bactericidal activity under both dark and light conditions. Ag/Au-TNTs could be explored to design surfaces that are responsive to visible light and exhibit antimicrobial properties.
Collapse
Affiliation(s)
- Mostafa Fytory
- Department of Chemistry School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Shaimaa A Khalid
- Department of Chemistry School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Food Hygiene Department Agricultural Research Center, Animal Health Research Institute (AHRI), Giza, Dokki 12311, Egypt
| | - Ayman H Zaki
- Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef 62511, Egypt
| | - Wolfgang Fritzsche
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| | - Hassan M E Azzazy
- Department of Chemistry School of Sciences & Engineering, The American University in Cairo, AUC Avenue, New Cairo 11835, Egypt
- Department of Nanobiophotonics, Leibniz Institute of Photonic Technology, Albert Einstein Str. 9, Jena 07745, Germany
| |
Collapse
|
9
|
Elghazaly EM, Torky HA, Tawfik RG. Effect of silver nanoparticles and REP-PCR typing of Staphylococcus aureus isolated from various sources. Sci Rep 2024; 14:21997. [PMID: 39313528 PMCID: PMC11420343 DOI: 10.1038/s41598-024-71781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
This is the primary study at Matrouh Governorate to unveil antibiotic resistance, biofilm formation, silver nanoparticles (Ag-NPs) effect using electron microscopy, and REP-PCR analysis of Staphylococcus aureus strains isolated from COVID-19 patients, contaminated food, and Morel's diseased sheep and goats. A total of 15 S. aureus strains were isolated; five from each of the COVID-19 patients, Morel's diseased sheep and goats, and contaminated food. All strains were considered multidrug-resistant (MDR). All strains showed the presence of biofilm. Morphological changes in the cell surface of the bacterium were evidenced, and penetration with the rupture of some bacterial cells. Based on REP-PCR analysis, 4 clusters (C1-C4) with dissimilarity between clusters C1 and C2 8% and between C3 and C4 15%. Cluster I included 3 strains from contaminated food with a similarity of 97%, and Cluster II included 2 strains from contaminated food and 2 from COVID-19-infected patients with a similarity of 96% (confirming the zoonotic nature of this pathogen). Cluster III contained 4 strains isolated from Morel's diseased sheep & goats with a similarity ratio of 99% in comparison the 4th cluster contained 3 strains isolated from COVID-patients and one from Morel's diseased sheep & goats with a similarity ratio of 92%.
Collapse
Affiliation(s)
- Eman M Elghazaly
- Microbiology Department, Faculty of Veterinary Medicine, Matrouh University, Matrouh, Egypt.
| | - Helmy A Torky
- Microbiology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha Gomaa Tawfik
- Microbiology Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
10
|
Paseban K, Noroozi S, Gharehcheloo R, Haddadian A, Falahi Robattorki F, Dibah H, Amani R, Sabouri F, Ghanbarzadeh E, Hajrasouiha S, Azari A, Rashidian T, Mirzaie A, Pirdolat Z, Salarkia M, Shahrava DS, Safaeinikjoo F, Seifi A, Sadat Hosseini N, Saeinia N, Bagheri Kashtali A, Ahmadiyan A, Mazid Abadi R, Sadat Kermani F, Andalibi R, Chitgarzadeh A, Tavana AA, Piri Gharaghie T. Preparation and optimization of niosome encapsulated meropenem for significant antibacterial and anti-biofilm activity against methicillin-resistant Staphylococcus aureus isolates. Heliyon 2024; 10:e35651. [PMID: 39211930 PMCID: PMC11357772 DOI: 10.1016/j.heliyon.2024.e35651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background One of the targeted drug delivery systems is the use of nanocarriers, and one of these drug delivery systems is niosome. Niosome have a nano-vesicular structure and are composed of non-ionic surfactants. Objective: In this study, various niosome-encapsulated meropenem formulations were prepared. Subsequently, their antibacterial and anti-biofilm activities were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) strains. Methods The physicochemical properties of niosomal formulations were characterized using a field scanning electron microscope, X-Ray diffraction, Zeta potential, and dynamic light scattering. Antibacterial and anti-biofilm activities were evaluated using broth microdilution and minimum biofilm inhibitory concentration, respectively. In addition, biofilm gene expression analysis was performed using quantitative Real-Time PCR. To evaluate biocompatibility, the cytotoxicity of niosome-encapsulated meropenem in a normal human diploid fibroblast (HDF) cell line was investigated using an MTT assay. Results An F1 formulation of niosome-encapsulated meropenem with a size of 51.3 ± 5.84 nm and an encapsulation efficiency of 84.86 ± 3.14 % was achieved. The synthesized niosomes prevented biofilm capacity with a biofilm growth inhibition index of 69 % and significantly downregulated icaD, FnbA, Ebps, and Bap gene expression in MRSA strains (p < 0.05). In addition, the F1 formulation increased antibacterial activity by 4-6 times compared with free meropenem. Interestingly, the F1 formulation of niosome-encapsulated meropenem indicated cell viability >90 % at all tested concentrations against normal HDF cells. The results of the present study indicate that niosome-encapsulated meropenem increased antibacterial and anti-biofilm activities without profound cytotoxicity in normal human cells, which could prove useful as a good drug delivery system.
Collapse
Affiliation(s)
- Kamal Paseban
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Sama Noroozi
- Department of Neurology, University of Utah, Utah, USA
| | - Rokhshad Gharehcheloo
- Department of Pharmacology, Pharmaceutical Branch, Islamic Azad Universty, Tehran, Iran
| | - Abbas Haddadian
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnoush Falahi Robattorki
- Biomedical Engineering Group, Chemical Engineering Department, Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Hedieh Dibah
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Reza Amani
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Erfan Ghanbarzadeh
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shadi Hajrasouiha
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Arezou Azari
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Tina Rashidian
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Zahra Pirdolat
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Massoumeh Salarkia
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | | | | | - Atena Seifi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Niusha Sadat Hosseini
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Niloofar Saeinia
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ali Ahmadiyan
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Roza Mazid Abadi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | | | - Romina Andalibi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Arman Chitgarzadeh
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Aryan Aryan Tavana
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | | |
Collapse
|
11
|
Abdullah, Jamil T, Atif M, Khalid S, Metwally K, Yahya G, Moisa M, Cavalu DS. Recent Advances in the Development of Metal/Metal Oxide Nanoparticle and Antibiotic Conjugates (MNP-Antibiotics) to Address Antibiotic Resistance: Review and Perspective. Int J Mol Sci 2024; 25:8915. [PMID: 39201601 PMCID: PMC11354832 DOI: 10.3390/ijms25168915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
As per the World Health Organization (WHO), antimicrobial resistance (AMR) is a natural phenomenon whereby microbes develop or acquire genes that render them resistant. The rapid emergence and spread of this phenomenon can be attributed to human activity specifically, the improper and excessive use of antimicrobials for the treatment, prevention, or control of infections in humans, animals, and plants. As a result of this factor, many antibiotics have reduced effectiveness against microbes or may not work fully. Thus, there is a pressing need for the development of new antimicrobial agents in order to counteract antimicrobial resistance. Metallic nanoparticles (MNPs) are well known for their broad antimicrobial properties. Consequently, the use of MNPs with current antibiotics holds significant implications. MNPs, including silver nanoparticles (AgNPS), zinc oxide nanoparticles (ZnONPs), copper nanoparticles (CuNPs), and gold nanoparticles (AuNPs), have been extensively studied in conjunction with antibiotics. However, their mechanism of action is still not completely understood. The interaction between these MNPs and antibiotics can be either synergistic, additive, or antagonistic. The synergistic effect is crucial as it represents the desired outcome that researchers aim for and can be advantageous for the advancement of new antimicrobial agents. This article provides a concise and academic description of the recent advancements in MNP and antibiotic conjugates, including their mechanism of action. It also highlights their possible use in the biomedical field and major challenges associated with the use of MNP-antibiotic conjugates in clinical practice.
Collapse
Affiliation(s)
- Abdullah
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Tayyaba Jamil
- Joint Doctoral School, Silesian University of Technology, 44-100 Gliwice, Poland;
- Department of Management Sciences, Silesian University of Technology, 41-800 Zabrze, Poland
| | - Muhammad Atif
- Department of Microbiology, Abdul Wali Khan University, Mardan 23000, Pakistan;
| | - Shumaila Khalid
- Department of Physics, Government Postgraduate, Charsadda 24460, Pakistan;
| | - Kamel Metwally
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Galal Yahya
- Department of Microbiology and Immunology, Faculty of Pharmacy, Zagazig University, Al Sharqia 44519, Egypt;
| | - Mihaela Moisa
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410073 Oradea, Romania;
| | - Daniela Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410073 Oradea, Romania;
| |
Collapse
|
12
|
Malik MA, Wani AH, Bhat MY, Siddiqui S, Alamri SAM, Alrumman SA. Fungal-mediated synthesis of silver nanoparticles: a novel strategy for plant disease management. Front Microbiol 2024; 15:1399331. [PMID: 39006753 PMCID: PMC11239364 DOI: 10.3389/fmicb.2024.1399331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
Various traditional management techniques are employed to control plant diseases caused by bacteria and fungi. However, due to their drawbacks and adverse environmental effects, there is a shift toward employing more eco-friendly methods that are less harmful to the environment and human health. The main aim of the study was to biosynthesize silver Nanoparticles (AgNPs) from Rhizoctonia solani and Cladosporium cladosporioides using a green approach and to test the antimycotic activity of these biosynthesized AgNPs against a variety of pathogenic fungi. The characterization of samples was done by using UV-visible spectroscopy, SEM (scanning electron microscopy), FTIR (fourier transmission infrared spectroscopy), and XRD (X-ray diffractometry). During the study, the presence of strong plasmon absorbance bands at 420 and 450 nm confirmed the AgNPs biosynthesis by the fungi Rhizoctonia solani and Cladosporium cladosporioides. The biosynthesized AgNPs were 80-100 nm in size, asymmetrical in shape and became spherical to sub-spherical when aggregated. Assessment of the antifungal activity of the silver nanoparticles against various plant pathogenic fungi was carried out by agar well diffusion assay. Different concentration of AgNPs, 5 mg/mL 10 mg/mL and 15 mg/mL were tested to know the inhibitory effect of fungal plant pathogens viz. Aspergillus flavus, Penicillium citrinum, Fusarium oxysporum, Fusarium metavorans, and Aspergillus aflatoxiformans. However, 15 mg/mL concentration of the AgNPs showed excellent inhibitory activity against all tested fungal pathogens. Thus, the obtained results clearly suggest that silver nanoparticles may have important applications in controlling various plant diseases caused by fungi.
Collapse
Affiliation(s)
- Mansoor Ahmad Malik
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Abdul Hamid Wani
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Mohd Yaqub Bhat
- Section of Plant Pathology and Mycology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Sazada Siddiqui
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Saad A M Alamri
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Sulaiman A Alrumman
- Department of Biology, College of Science, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
13
|
Nkosi NC, Basson AK, Ntombela ZG, Dlamini NG, Pullabhotla RVSR. Green Synthesis, Characterization and Application of Silver Nanoparticles Using Bioflocculant: A Review. Bioengineering (Basel) 2024; 11:492. [PMID: 38790359 PMCID: PMC11117625 DOI: 10.3390/bioengineering11050492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/08/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024] Open
Abstract
Nanotechnology has emerged as an effective means of removing contaminants from water. Traditional techniques for producing nanoparticles, such as physical methods (condensation and evaporation) and chemical methods (oxidation and reduction), have demonstrated high efficiency. However, these methods come with certain drawbacks, including the significant energy requirement and the use of costly and hazardous chemicals that may cause nanoparticles to adhere to surfaces. To address these limitations, researchers are actively developing alternative procedures that are cost-effective, environmentally safe, and user-friendly. One promising approach involves biological synthesis, which utilizes plants or microorganisms as reducing and capping agents. This review discusses various methods of nanoparticle synthesis, with a focus on biological synthesis using naturally occurring bioflocculants from microorganisms. Bioflocculants offer several advantages, including harmlessness, biodegradability, and minimal secondary pollution. Furthermore, the review covers the characterization of synthesized nanoparticles, their antimicrobial activity, and cytotoxicity. Additionally, it explores the utilization of these NPs in water purification and dye removal processes.
Collapse
Affiliation(s)
- Nkanyiso C. Nkosi
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Albertus K. Basson
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Zuzingcebo G. Ntombela
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Nkosinathi G. Dlamini
- Biochemistry and Microbiology Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa; (A.K.B.); (Z.G.N.); (N.G.D.)
| | - Rajasekhar V. S. R. Pullabhotla
- Chemistry Department, Faculty of Science, Agriculture, and Engineering, P/Bag X1001, University of Zululand, KwaDlangezwa 3886, South Africa
| |
Collapse
|
14
|
El-Sayed H, Abdelsalam A, Morad MY, Sonbol H, Ibrahim AM, Tawfik E. Phyto-synthesized silver nanoparticles from Sargassum subrepandum: anticancer, antimicrobial, and molluscicidal activities. FRONTIERS IN PLANT SCIENCE 2024; 15:1403753. [PMID: 38779072 PMCID: PMC11110841 DOI: 10.3389/fpls.2024.1403753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/18/2024] [Indexed: 05/25/2024]
Abstract
In the realm of nanotechnology, the use of algae to produce nanoparticles is an environmentally friendly, sustainable, and economically viable strategy. In the present study, the brown macroalgae Sargassum subrepandum was utilized to effectively produce silver nanoparticles (AgNPs). Through various characterization techniques, the AgNPs' structural integrity was confirmed. AgNPs exhibited significant antimicrobial activity against Pseudomonas aeruginosa and Fusarium equiseti. AgNPs showed cytotoxic effects on the MCF-7 breast adenocarcinoma cell line with an IC50 of 12.5 µg/ml. Treatment with AgNPs resulted in a marked reduction in cell viability, alongside evident apoptotic and necrotic morphological changes in the cancer cells. Through molecular docking studies, a deeper understanding of the interaction between AgNPs and crucial proteins related to cancer has been achieved, AgNPs showed a promising molluscicidal action on Biomphalaria alexandrina snails, a Schistosoma mansoni intermediate host. The half-lethal dose (LC50) of AgNPs was determined to be 0.84 mg/L. The potential consequences of its administration include potential disruptions to the glycolysis profile, as well as potential impacts on the steroidal hormone's estrogen and testosterone and certain kidney function tests. This study highlights the diverse uses of algae-synthesized AgNPs, ranging from healthcare to environmental management, demonstrating their importance in advancing nano-biotechnological solutions.
Collapse
Affiliation(s)
- Heba El-Sayed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Asmaa Abdelsalam
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Mostafa Y. Morad
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
| | - Hana Sonbol
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amina M. Ibrahim
- Medical Malacology Department, Theodor Bilharz Research Institute, Giza, Egypt
| | - Eman Tawfik
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Egypt
| |
Collapse
|
15
|
Aslam J, Ali HM, Hussain S, Ahmad MZ, Siddique AB, Shahid M, Shahzad MI, Fatima H, Tariq S, Sadiq F, Aslam M, Farooq U, Zia S, Aljaluod RS, Alarjani KM. Effectiveness of cephalosporins in hydrolysis and inhibition of Staphylococcus aureus and Escherichia coli biofilms. J Vet Sci 2024; 25:e47. [PMID: 38834515 PMCID: PMC11156599 DOI: 10.4142/jvs.23258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 06/06/2024] Open
Abstract
IMPORTANCE Staphylococcus aureus and Escherichia coli contribute to global health challenges by forming biofilms, a key virulence element implicated in the pathogenesis of several infections. OBJECTIVE The study examined the efficacy of various generations of cephalosporins against biofilms developed by pathogenic S. aureus and E. coli. METHODS The development of biofilms by both bacteria was assessed using petri-plate and microplate methods. Biofilm hydrolysis and inhibition were tested using first to fourth generations of cephalosporins, and the effects were analyzed by crystal violet staining and phase contrast microscopy. RESULTS Both bacterial strains exhibited well-developed biofilms in petri-plate and microplate assays. Cefradine (first generation) showed 76.78% hydrolysis of S. aureus biofilm, while significant hydrolysis (59.86%) of E. coli biofilm was observed by cefipime (fourth generation). Similarly, cefuroxime, cefadroxil, cefepime, and cefradine caused 78.8%, 71.63%, 70.63%, and 70.51% inhibition of the S. aureus biofilms, respectively. In the case of E. coli, maximum biofilm inhibition (66.47%) was again shown by cefepime. All generations of cephalosporins were more effective against S. aureus than E. coli, which was confirmed by phase contrast microscopy. CONCLUSIONS AND RELEVANCE Cephalosporins exhibit dual capabilities of hydrolyzing and inhibiting S. aureus and E. coli biofilms. First-generation cephalosporins exhibited the highest inhibitory activity against S. aureus, while the third and fourth generations significantly inhibited E. coli biofilms. This study highlights the importance of tailored antibiotic strategies based on the biofilm characteristics of specific bacterial strains.
Collapse
Affiliation(s)
- Jawaria Aslam
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Hafiz Muhammad Ali
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Shujaat Hussain
- PMAS Arid Agriculture University, Rawalpindi 46300, Pakistan
| | | | - Abu Baker Siddique
- Institute of Microbiology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan.
| | - Mirza Imran Shahzad
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA
| | - Hina Fatima
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sarah Tariq
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Fatima Sadiq
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Maria Aslam
- Department of Computer Science, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Umar Farooq
- Department of Physiology and Biochemistry, Cholistan University of Veterinary and Animal Sciences, Bahawalpur 63100, Pakistan
| | - Saadiya Zia
- Department of Biochemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Rawa Saad Aljaluod
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Rahman S, Sadaf S, Hoque ME, Mishra A, Mubarak NM, Malafaia G, Singh J. Unleashing the promise of emerging nanomaterials as a sustainable platform to mitigate antimicrobial resistance. RSC Adv 2024; 14:13862-13899. [PMID: 38694553 PMCID: PMC11062400 DOI: 10.1039/d3ra05816f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 04/02/2024] [Indexed: 05/04/2024] Open
Abstract
The emergence and spread of antibiotic-resistant (AR) bacterial strains and biofilm-associated diseases have heightened concerns about exploring alternative bactericidal methods. The WHO estimates that at least 700 000 deaths yearly are attributable to antimicrobial resistance, and that number could increase to 10 million annual deaths by 2050 if appropriate measures are not taken. Therefore, the increasing threat of AR bacteria and biofilm-related infections has created an urgent demand for scientific research to identify novel antimicrobial therapies. Nanomaterials (NMs) have emerged as a promising alternative due to their unique physicochemical properties, and ongoing research holds great promise for developing effective NMs-based treatments for bacterial and viral infections. This review aims to provide an in-depth analysis of NMs based mechanisms combat bacterial infections, particularly those caused by acquired antibiotic resistance. Furthermore, this review examines NMs design features and attributes that can be optimized to enhance their efficacy as antimicrobial agents. In addition, plant-based NMs have emerged as promising alternatives to traditional antibiotics for treating multidrug-resistant bacterial infections due to their reduced toxicity compared to other NMs. The potential of plant mediated NMs for preventing AR is also discussed. Overall, this review emphasizes the importance of understanding the properties and mechanisms of NMs for the development of effective strategies against antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Sazedur Rahman
- Department of Mechanical and Production Engineering, Ahsanullah University of Science and Technology Dhaka Bangladesh
| | - Somya Sadaf
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Md Enamul Hoque
- Department of Biomedical Engineering, Military Institute of Science and Technology Dhaka Bangladesh
| | - Akash Mishra
- Department of Civil and Environmental Engineering, Birla Institute of Technology Mesra Ranchi 835215 Jharkhand India
| | - Nabisab Mujawar Mubarak
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei Bandar Seri Begawan BE1410 Brunei Darussalam
- Department of Chemistry, School of Chemical Engineering and Physical Sciences, Lovely Professional University Jalandhar Punjab India
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute Urutaí GO Brazil
| | - Jagpreet Singh
- Department of Chemistry, University Centre for Research and Development, Chandigarh University Mohali-140413 India
| |
Collapse
|
17
|
Saravanakumar K, Li Z, Kim Y, Park S, Keon K, Lee CM, Ahn G, Cho N. Fucoidan-coated cotton dressing functionalized with biomolecules capped silver nanoparticles (LB-Ag NPs-FN-OCG) for rapid healing therapy of infected wounds. ENVIRONMENTAL RESEARCH 2024; 246:118004. [PMID: 38145732 DOI: 10.1016/j.envres.2023.118004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/08/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The colonization of pathogenic microbes poses a significant clinical barrier that hinders the physiological wound-healing process. Addressing this challenge, we developed a novel wound dressing using a modified cotton gauze dressing coated with fucoidan and functionalized with silver nanoparticles (LB-Ag NPs-FN-OCG) for the rapid treatment of infected wounds. Firstly, phytochemical-capped LB-Ag NPs were synthesized and characterized using high performance liquid chromatography (HPLC), transmission electron microscopy (TEM), and zeta potential analysis. Secondly, different concentrations of LB-Ag NPs (0.1%-1%) were functionalized into FN-OCG to identify appropriate concentrations that were non-toxic with superior antibacterial activities. Screening assays, including antibacterial, hemolysis, chick chorioallantoic membrane (CAM) assay, and cytotoxicity assay, revealed that LB-Ag NPs (0.5%)-FN-OCG were non-toxic and demonstrated greater efficiency in inhibiting bacterial pathogens (Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Listeria monocytogenes) and promoting fibroblast cell (NIH3T3) migration. In vivo assays revealed that LB-Ag NPs (0.5%)-FN-OCG treatment exhibited excellent wound healing activity (99.73 ± 0.01%) compared to other treatments by inhibiting bacterial colonization, maintaining the blood parameters, developing granulation tissue, new blood vessels, and collagen deposition. Overall, this study highlights that LB-Ag NPs (0.5%)-FN-OCG serve as a antibacterial wound dressing for infected wound healing applications.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| | - Zijun Li
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| | - Yebon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| | - SeonJu Park
- Seoul Metropolitan Center, Korea Basic Science Institute (KBSI), Seoul, 03759, South Korea.
| | - Kim Keon
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| | - Chang-Min Lee
- Department of Veterinary Internal Medicine, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, 61186, South Korea.
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu, 59626, South Korea.
| | - Namki Cho
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea.
| |
Collapse
|
18
|
Islam R, Bilal H, Wang X, Zhang L. Tripeptides Ghk and GhkCu-modified silver nanoparticles for enhanced antibacterial and wound healing activities. Colloids Surf B Biointerfaces 2024; 236:113785. [PMID: 38387323 DOI: 10.1016/j.colsurfb.2024.113785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/21/2024] [Accepted: 02/02/2024] [Indexed: 02/24/2024]
Abstract
Bacterial skin infections represent a major healthcare concern that can delay healing and threaten human health. Silver nanoparticles (AgNPs) have been widely used for antimicrobial purposes; however, their high toxicity limits their applications. Therefore, there is an urgent need to develop simple and efficient therapeutic approaches for treating bacterial infections and promoting wound healing. Here, novel tripeptide (Ghk and GhkCu)-modified AgNPs were developed and subsequently evaluated their antibacterial efficacy against four pathogenic bacterial isolates, cytotoxic properties, and therapeutic effects as a topical treatment for infected wounds. Spherical GhkAgNPs and GhkCuAgNPs with average sizes of 45.92 nm and 56.82 nm exhibited potential antibacterial activity, with a MIC concentration of 8 μg/ml against S. aureus and E. coli. Both AgNPs showed superior bactericidal effects against S. aureus, with complete inhibition after 7 days of treatment. Cytotoxicity assays revealed IC50 (half maximal inhibitory concentrations) values ranging from 6.75 to 6.99 µg/ml in L929 cells. GhkAgNPs displayed accelerated cell migration and facilitated healing up to 92% after 12 h. Furthermore, topical applications of GhkAgNPs and GhkCuAgNPs to S. aureus-infected wounds demonstrated enhanced in vivo wound healing efficacy compared to control groups, as evidenced by increased regenerated epidermal thickness, improved collagen deposition, and downregulation of TNF-α expression. Hence concluded that these novel tripeptides Ghk and GhkCu-modified AgNPs exhibited potent antibacterial effects and significantly promoted wound healing properties.
Collapse
Affiliation(s)
- Rehmat Islam
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China
| | - Hazrat Bilal
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| | - Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, China.
| | - Lianbing Zhang
- Department of Dermatology, Second Affiliated Hospital of Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
19
|
Malik AK, Singh C, Tiwari P, Verma D, Mehata AK, Vikas, Setia A, Mukherjee A, Muthu MS. Nanofibers of N,N,N-trimethyl chitosan capped bimetallic nanoparticles: Preparation, characterization, wound dressing and in vivo treatment of MDR microbial infection and tracking by optical and photoacoustic imaging. Int J Biol Macromol 2024; 263:130154. [PMID: 38354928 DOI: 10.1016/j.ijbiomac.2024.130154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/26/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Recent advancements in wound care have led to the development of interactive wound dressings utilizing nanotechnology, aimed at enhancing healing and combating bacterial infections while adhering to established protocols. Our novel wound dressings consist of N,N,N-trimethyl chitosan capped gold‑silver nanoparticles (Au-Ag-TMC-NPs), with a mean size of 108.3 ± 8.4 nm and a zeta potential of +54.4 ± 1.8 mV. These optimized nanoparticles exhibit potent antibacterial and antifungal properties, with minimum inhibitory concentrations ranging from 0.390 μg ml-1 to 3.125 μg ml-1 and also exhibited promising zones of inhibition against multi-drug resistant strains of S. aureus, E. coli, P. aeruginosa, and C. albicans. Microbial transmission electron microscopy reveals substantial damage to cell walls and DNA condensation post-treatment. Furthermore, the nanoparticles demonstrate remarkable inhibition of microbial efflux pumps and are non-hemolytic in human blood. Incorporated into polyvinyl alcohol/chitosan nanofibers, they form Au-Ag-TMC-NPs-NFs with diameters of 100-350 nm, facilitating efficient antimicrobial wound dressing. In vivo studies on MDR microbial-infected wounds in mice showed 99.34 % wound healing rate within 12 days, corroborated by analyses of wound marker protein expression levels and advanced imaging techniques such as ultrasound/photoacoustic imaging, providing real-time visualization and blood flow assessment for a comprehensive understanding of the dynamic wound healing processes.
Collapse
Affiliation(s)
- Ankit Kumar Malik
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Chandrashekhar Singh
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Punit Tiwari
- Department of Microbiology, Institute of Medical Sciences, BHU, Varanasi 221005, UP, India
| | - Dipti Verma
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Abhishesh Kumar Mehata
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Vikas
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Aseem Setia
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India
| | - Ashim Mukherjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India
| | - Madaswamy S Muthu
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi 221005, UP, India.
| |
Collapse
|
20
|
Anyaegbunam NJ, Mba IE, Ige AO, Ogunrinola TE, Emenike OK, Uwazie CK, Ujah PN, Oni AJ, Anyaegbunam ZKG, Olawade DB. Revisiting the smart metallic nanomaterials: advances in nanotechnology-based antimicrobials. World J Microbiol Biotechnol 2024; 40:102. [PMID: 38366174 DOI: 10.1007/s11274-024-03925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/08/2024] [Indexed: 02/18/2024]
Abstract
Despite significant advancements in diagnostics and treatments over the years, the problem of antimicrobial drug resistance remains a pressing issue in public health. The reduced effectiveness of existing antimicrobial drugs has prompted efforts to seek alternative treatments for microbial pathogens or develop new drug candidates. Interestingly, nanomaterials are currently gaining global attention as a possible next-generation antibiotics. Nanotechnology holds significant importance, particularly when addressing infections caused by multi-drug-resistant organisms. Alternatively, these biomaterials can also be combined with antibiotics and other potent biomaterials, providing excellent synergistic effects. Over the past two decades, nanoparticles have gained significant attention among research communities. Despite the complexity of some of their synthesis strategies and chemistry, unrelenting efforts have been recorded in synthesizing potent and highly effective nanomaterials using different approaches. With the ongoing advancements in nanotechnology, integrating it into medical procedures presents novel approaches for improving the standard of patient healthcare. Although the field of nanotechnology offers promises, much remains to be learned to overcome the several inherent issues limiting their full translation to clinics. Here, we comprehensively discussed nanotechnology-based materials, focusing exclusively on metallic nanomaterials and highlighting the advances in their synthesis, chemistry, and mechanisms of action against bacterial pathogens. Importantly, we delve into the current challenges and prospects associated with the technology.
Collapse
Affiliation(s)
- Ngozi J Anyaegbunam
- Measurement and Evaluation unit, Science Education Department, University of Nigeria, Nsukka, Nigeria
| | - Ifeanyi Elibe Mba
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria Nsukka, Nsukka, Nigeria.
| | - Abimbola Olufunke Ige
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, University of Ibadan, Ibadan, Nigeria
| | | | | | | | - Patrick Ndum Ujah
- 7Department of Education Foundations, University of Nigeria Nsukka, Nsukka, Nigeria
| | - Ayodele John Oni
- Department of Industrial chemistry, Federal University of Technology, Akure, Nigeria
| | | | - David B Olawade
- Department of Allied and Public Health, School of Health, Sport and Bioscience, University of East London, London, UK
| |
Collapse
|
21
|
Zhang Z, Miao G, Lu L, Yin H, Wang Y, Wang B, Pan R, Zheng C, Jin X. Crucial physicochemical factors mediating mitochondrial toxicity of nanoparticles at noncytotoxic concentration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168211. [PMID: 37918742 DOI: 10.1016/j.scitotenv.2023.168211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/04/2023]
Abstract
Nanomaterials have been extensively applied in multiple industries, among which silver nanoparticles (AgNPs), silicon dioxide nanoparticles (SiNPs), and gold nanoparticles (AuNPs) have become representative of widely consumed NPs. Limited knowledge is available regarding the subcellular responses of NPs with different physicochemical properties, i.e. material type and size, under the noncytotoxic concentrations. Macrophages are important sensitive cells exposed to NPs, and mitochondria are sensitive organelles that respond at the subcellular level. Herein, we found that sublethal concentrations of AgNPs and SiNPs, not AuNPs, decreased the mitochondrial membrane potential (MMP) and tubular mitochondria, and further resulted in an increase of ROS level and a decrease of ATP generation. AgNPs and SiNPs can also disturb mitochondrial dynamics manifested as increasing Mfn2 expression and decreasing Drp1 expression. Further assessments for mitochondrial function showed that AgNPs and SiNPs exposure led to a decrease in the gene expressions related to complex I (Ndufa8 and Ndufs2), complex III (Uqcrc2 and Uqcrfs1), complex IV (Cox6b1), and activity of complex I, suggesting their potential roles in impairing cellular respiration. In terms of the effects of NPs with different sizes, stronger toxicity was observed in smaller-sized nanoparticles. Among the above mitochondrial changes, we identified that ROS, ATP, MMP, tubular mitochondria, and expression of Drp1 were relatively sensitive indicators in subcellular response to NPs. With the above sensitive indicators, the comparison of heterogeneity between material type and size of the NPs showed that material type occupied a main influence on subcellular mitochondrial effects. Our finding provided important data on the potential subcellular risks of NPs, and indicated the vital role of material type for a better understanding of the nanomaterial biological safety.
Collapse
Affiliation(s)
- Ze Zhang
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Gan Miao
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Lin Lu
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Hao Yin
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Yingzhu Wang
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Baoqiang Wang
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Ruonan Pan
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Chuer Zheng
- School of Public Health, Qingdao University, Qingdao 266071, PR China
| | - Xiaoting Jin
- School of Public Health, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
22
|
Tasnim NT, Ferdous N, Rumon MMH, Shakil MS. The Promise of Metal-Doped Iron Oxide Nanoparticles as Antimicrobial Agent. ACS OMEGA 2024; 9:16-32. [PMID: 38222657 PMCID: PMC10785672 DOI: 10.1021/acsomega.3c06323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 01/16/2024]
Abstract
Antibiotic resistance (AMR) is one of the pressing global public health concerns and projections indicate a potential 10 million fatalities by the year 2050. The decreasing effectiveness of commercially available antibiotics due to the drug resistance phenomenon has spurred research efforts to develop potent and safe antimicrobial agents. Iron oxide nanoparticles (IONPs), especially when doped with metals, have emerged as a promising avenue for combating microbial infections. Like IONPs, the antimicrobial activities of doped-IONPs are also linked to their surface charge, size, and shape. Doping metals on nanoparticles can alter the size and magnetic properties by reducing the energy band gap and combining electronic charges with spins. Furthermore, smaller metal-doped nanoparticles tend to exhibit enhanced antimicrobial activity due to their higher surface-to-volume ratio, facilitating greater interaction with bacterial cells. Moreover, metal doping can also lead to increased charge density in magnetic nanoparticles and thereby elevate reactive oxygen species (ROS) generation. These ROS play a vital role to disrupt bacterial cell membrane, proteins, or nucleic acids. In this review, we compared the antimicrobial activities of different doped-IONPs, elucidated their mechanism(s), and put forth opinions for improved biocompatibility.
Collapse
Affiliation(s)
- Nazifa Tabassum Tasnim
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Nushrat Ferdous
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Mahamudul Hasan Rumon
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| | - Md Salman Shakil
- Department of Mathematics and Natural Sciences, Brac University, 66 Mohakhali, Dhaka 1212, Bangladesh
| |
Collapse
|
23
|
Masadeh MM, Al-Tal Z, Khanfar MS, Alzoubi KH, Sabi SH, Masadeh MM. Synergistic Effect of Silver Nanoparticles with Antibiotics for Eradication of Pathogenic Biofilms. Curr Pharm Biotechnol 2024; 25:1884-1903. [PMID: 38231054 DOI: 10.2174/0113892010279217240102100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND The increase in nosocomial multidrug resistance and biofilm-forming bacterial infections led to the search for new alternative antimicrobial strategies other than traditional antibiotics. Silver nanoparticles (AgNP) could be a viable treatment due to their wide range of functions, rapid lethality, and minimal resistance potential. The primary aim of this study is to prepare silver nanoparticles and explore their antibacterial activity against biofilms. METHODS AgNPs with specific physicochemical properties such as size, shape, and surface chemistry were prepared using a chemical reduction technique, and then characterized by DLS, SEM, and FTIR. The activity of AgNPs was tested alone and in combination with some antibiotics against MDR Gram-negative and Gram-positive planktonic bacterial cells and their biofilms. Finally, mammalian cell cytotoxicity and hemolytic activity were tested using VERO and human erythrocytes. RESULTS The findings of this study illustrate the success of the chemical reduction method in preparing AgNPs. Results showed that AgNPs have MIC values against planktonic organisms ranging from 0.0625 to 0.125 mg/mL, with the greatest potency against gram-negative bacteria. It also effectively destroyed biofilm-forming cells, with minimal biofilm eradication concentrations (MBEC) ranging from 0.125 to 0.25 mg/ml. AgNPs also had lower toxicity profiles for the MTT test when compared to hemolysis to erythrocytes. Synergistic effect was found between AgNPs and certain antibiotics, where the MIC was dramatically reduced, down to less than 0.00195 mg/ml in some cases. CONCLUSION The present findings encourage the development of alternative therapies with high efficacy and low toxicity.
Collapse
Affiliation(s)
- Majed M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Zeinab Al-Tal
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Mai S Khanfar
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, UAE
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| | - Salsabeel H Sabi
- Department of Biological Sciences, Faculty of Science, The Hashemite University, Zarqa 13110, Jordan
| | - Majd M Masadeh
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, 22110, Jordan
| |
Collapse
|
24
|
Yahya R, Alharbi NM. Biosynthesized silver nanoparticles-capped chondroitin sulfate nanogel targeting microbial infections and biofilms for biomedical applications. Int J Biol Macromol 2023; 253:127080. [PMID: 37802438 DOI: 10.1016/j.ijbiomac.2023.127080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/17/2023] [Accepted: 09/23/2023] [Indexed: 10/10/2023]
Abstract
Medical devices are essential for patient care, but they can also serve as havens for dangerous microbes and the development of biofilm, which can lead to serious infections and higher death rates. To meet these issues, it is crucial to develop novel and effective antimicrobial coatings for medical devices. In this context, we have developed a new biofunctionalized nanosilver (ICS-Ag), employing itaconyl-chondroitin sulfate nanogel (ICSNG) as a synergistic reducing and stabilizing agent, to effectively eradicate microbial infections and biofilm formation. The antibacterial investigations showed that ICS-Ag nanocomposite is an intriguing antibiotic with excellent antibacterial indices (MIC/MBC (μg/mL): 2.29/4.58, 1.25/2.50, and 1.36/1.36 against S. aureus, E. coli, and P. aeruginosa, respectively), as well as antifungal capacity. Furthermore, ICS-Ag demonstrated efficacy superior to that of the antibiotic (ciprofloxacin, Cipro) against both Gram-positive and Gram-negative bacterial biofilms. TEM images of untreated and treated bacterial strains demonstrate synergistic actions that harm the bacterial cytomembrane, leading to the release of intracellular contents and bacterial death. Interestingly, ICS-Ag shows excellent biocompatibility, with an IC50 value (71.25 μg/mL) higher than MICs against tested microbes. Overall, the ICS-Ag film may provide multifunctional antimicrobial coatings for medical equipment to reduce microbial contamination and biofilm development.
Collapse
Affiliation(s)
- Reham Yahya
- Medical Microbiology, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia; King Abduallah International Medical Research Center, Riyadh, Saudi Arabia.
| | - Najwa M Alharbi
- Molecular Microbiology, Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Dang Z, Ma X, Yang Z, Wen X, Zhao P. Electrospun Nanofiber Scaffolds Loaded with Metal-Based Nanoparticles for Wound Healing. Polymers (Basel) 2023; 16:24. [PMID: 38201687 PMCID: PMC10780332 DOI: 10.3390/polym16010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024] Open
Abstract
Failures of wound healing have been a focus of research worldwide. With the continuous development of materials science, electrospun nanofiber scaffolds loaded with metal-based nanoparticles provide new ideas and methods for research into new tissue engineering materials due to their excellent antibacterial, anti-inflammatory, and wound healing abilities. In this review, the stages of extracellular matrix and wound healing, electrospun nanofiber scaffolds, metal-based nanoparticles, and metal-based nanoparticles supported by electrospun nanofiber scaffolds are reviewed, and their characteristics and applications are introduced. We discuss in detail the current research on wound healing of metal-based nanoparticles and electrospun nanofiber scaffolds loaded with metal-based nanoparticles, and we highlight the potential mechanisms and promising applications of these scaffolds for promoting wound healing.
Collapse
Affiliation(s)
| | | | | | | | - Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China; (Z.D.); (X.M.); (Z.Y.); (X.W.)
| |
Collapse
|
26
|
Garza-Cervantes JA, Mendiola-Garza G, León-Buitimea A, Morones-Ramírez JR. Synergistic antibacterial effects of exopolysaccharides/nickel-nanoparticles composites against multidrug-resistant bacteria. Sci Rep 2023; 13:21519. [PMID: 38057583 PMCID: PMC10700344 DOI: 10.1038/s41598-023-48821-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/30/2023] [Indexed: 12/08/2023] Open
Abstract
The need for an alternative treatment to fight infectious diseases caused by antibiotic-resistant bacteria is increasing. A possible way to overcome bacterial resistance to antibiotics is by reintroducing commonly used antibiotics with a sensitizer capable of enhancing their antimicrobial effect in resistant bacteria. Here, we use a composite composed of exopolysaccharide capped-NiO NPs, with antimicrobial effects against antibiotic-resistant Gram-positive and Gram-negative bacteria. It potentiated the antimicrobial effects of four different antibiotics (ampicillin, kanamycin, chloramphenicol, and ciprofloxacin) at lower concentrations than their minimal inhibitory concentrations. We observed that the Ni-composite synergistically enhanced, fourfold, the antibacterial effect of kanamycin and chloramphenicol against multidrug-resistant Staphylococcus aureus and Pseudomonas aeruginosa, as well as ampicillin against multidrug-resistant Staphylococcus aureus, and ciprofloxacin against multidrug-resistant Pseudomonas aeruginosa by eightfold. We also found that Ni-composite could not inhibit biofilm synthesis on the tested bacterial strains. Our results demonstrated the possibility of using metal nanoparticles, like NiO, as a sensitizer to overcome bacterial antibiotic resistance.
Collapse
Affiliation(s)
- Javier A Garza-Cervantes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, NL, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, 66629, Apodaca, Nuevo León, Mexico
| | - Gricelda Mendiola-Garza
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, NL, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, 66629, Apodaca, Nuevo León, Mexico
| | - Angel León-Buitimea
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, NL, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, 66629, Apodaca, Nuevo León, Mexico
| | - José Rubén Morones-Ramírez
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, UANL, 66455, San Nicolás de los Garza, NL, Mexico.
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, 66629, Apodaca, Nuevo León, Mexico.
| |
Collapse
|
27
|
da Cunha KF, Oliveira Garcia M, Allend SO, de Albernaz DFT, Panagio LA, Neto ACPS, Larré Oliveira T, Hartwig DD. Biogenic silver nanoparticles: in vitro activity against Staphylococcus aureus methicillin-resistant (MRSA) and multidrug-resistant coagulase-negative Staphylococcus (CoNS). Braz J Microbiol 2023; 54:2641-2650. [PMID: 37676406 PMCID: PMC10689704 DOI: 10.1007/s42770-023-01102-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Multidrug-resistant (MDR) bacteria are one problem in health since the therapeutic alternative are reduced. For this, the application of nanotechnology through functionalized nanoparticles, like a biogenic silver nanoparticle (Bio-AgNP), obtained by biological synthesis, emerges as a possible alternative against the MDR bacteria. This study aimed to evaluate the antibacterial and antibiofilm activity of Bio-AgNP obtained for biological synthesis by Fusarium oxysporum strain 551 against methicillin-resistant Staphylococcus aureus (MRSA) and MDR coagulase-negative Staphylococcus (CoNS) isolates. Bio-AgNP has activity against S. aureus ATCC 25904, Staphylococcus epidermidis ATCC 35984, and MDR isolates, with minimal inhibitory concentration (MIC) ranging from 3.75 to 15 μg.mL-1 and minimal bactericidal concentration (MBC) from 7.5 to 30 μg.mL-1. In the membrane leakage assay, it was observed that all concentrations tested led to proteins release from the cellular content dose-dependently, where the highest concentrations led to higher protein in the supernatant. The 2×MIC of Bio-AgNP killed ATCC 35984 after 6h of treatment, and ATCC 25904 and S. aureus (SA3) strains after 24h of treatment. The 4×MIC was bactericidal in 6h of treatment for all strains in the study. The biofilm of MDR isolates was inhibited in 80.94 to 100% and eradicated in 60 to 94%. The confocal laser scanning microscopy (CLSM) analysis demonstrated similar results to the antibiofilm assays. The Bio-AgNP has antibacterial and antibiofilm activity and can be a promising therapeutic alternative against MDR bacteria.
Collapse
Affiliation(s)
- Kamila Furtado da Cunha
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil
| | - Marcelle Oliveira Garcia
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil
| | - Suzane Olachea Allend
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil
| | - Déborah Farias Trota de Albernaz
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil
| | | | - Amilton Clair Pinto Seixas Neto
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil
| | - Thaís Larré Oliveira
- Biotechnology Unit, Technology Development Center, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil
| | - Daiane Drawanz Hartwig
- Department of Microbiology and Parasitology, Institute of Biology, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil.
- Biotechnology Unit, Technology Development Center, Federal University of Pelotas, University Campus, CEP 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
28
|
Lethongkam S, Glaser J, Ammanath AV, Voravuthikunchai SP, Götz F. In vitro and in vivo comparative analysis of antibacterial activity of green-synthesized silver nanoparticles. Biotechnol J 2023; 18:e2300186. [PMID: 37555361 DOI: 10.1002/biot.202300186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/14/2023] [Accepted: 08/07/2023] [Indexed: 08/10/2023]
Abstract
This study aims to compare antibacterial effects of green-synthesized silver nanoparticles (AgNPs) with silver nitrate (AgNO3 ). AgNPs were successfully synthesized using Eucalyptus camaldulensis leaf extract as a reducing and stabilizing agent. Minimum inhibitory concentrations (MIC) of AgNPs and AgNO3 against Staphylococcus aureus and Pseudomonas aeruginosa ranged between 4.8 and 6.75 µg mL-1 . Growth curves demonstrated that inhibition of P. aeruginosa occurred right after AgNPs were added and throughout the period of the study (72 h). Antibacterial effects of both AgNPs and AgNO3 could be abrogated by cysteine and 2-mercaptoethanol, thiol-containing compounds. Galleria mellonella model revealed relatively low toxic effects of both AgNPs and AgNO3 . At 20MIC of AgNPs (≈137.8 mg kg-1 ), more than 80% survival of G. mellonella was observed. Unexpectedly, silver-containing agents could not rescue larvae after S. aureus infection. Further ex vivo experiments in the presence of coelomic larval fluid demonstrated the reduction of antibacterial activity of both AgNPs and AgNO3 . It was speculated that anionic molecules present in the coelomic fluid might neutralize the action of Ag ions. Binding of AgNPs or AgNO3 to albumin, a major protein in human blood which transport several endogenous compounds was not detected, indicating that the silver-containing agents could be applied as an antimicrobial agent.
Collapse
Affiliation(s)
- Sakkarin Lethongkam
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Microbial Genetics, Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Jochen Glaser
- Institut für Anorganische Chemie, University of Tübingen, Tübingen, Germany
| | - Aparna Viswanathan Ammanath
- Microbial Genetics, Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| | - Supayang P Voravuthikunchai
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Friedrich Götz
- Microbial Genetics, Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany
| |
Collapse
|
29
|
Pernas-Pleite C, Conejo-Martínez AM, Fernández Freire P, Hazen MJ, Marín I, Abad JP. Microalga Broths Synthesize Antibacterial and Non-Cytotoxic Silver Nanoparticles Showing Synergy with Antibiotics and Bacterial ROS Induction and Can Be Reused for Successive AgNP Batches. Int J Mol Sci 2023; 24:16183. [PMID: 38003373 PMCID: PMC10670984 DOI: 10.3390/ijms242216183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The era of increasing bacterial antibiotic resistance requires new approaches to fight infections. With this purpose, silver-based nanomaterials are a reality in some fields and promise new developments. We report the green synthesis of silver nanoparticles (AgNPs) using culture broths from a microalga. Broths from two media, with different compositions and pHs and sampled at two growth phases, produced eight AgNP types. Nanoparticles harvested after several synthesis periods showed differences in antibacterial activity and stability. Moreover, an evaluation of the broths for several consecutive syntheses did not find relevant kinetics or activity differences until the third round. Physicochemical characteristics of the AgNPs (core and hydrodynamic sizes, Z-potential, crystallinity, and corona composition) were determined, observing differences depending on the broths used. AgNPs showed good antibacterial activity at concentrations producing no or low cytotoxicity on cultured eukaryotic cells. All the AgNPs had high levels of synergy against Escherichia coli and Staphylococcus aureus with the classic antibiotics streptomycin and kanamycin, but with ampicillin only against S. aureus and tetracycline against E. coli. Differences in the synergy levels were also dependent on the types of AgNPs. We also found that, for some AgNPs, the killing of bacteria started before the massive accumulation of ROS.
Collapse
Affiliation(s)
- Carlos Pernas-Pleite
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Amparo M. Conejo-Martínez
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Paloma Fernández Freire
- Department of Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 29049 Madrid, Spain
| | - María José Hazen
- Department of Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 29049 Madrid, Spain
| | - Irma Marín
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - José P. Abad
- Department of Molecular Biology, Faculty of Sciences, Biology Building, Autonomous University of Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
30
|
Kumar S, Khan HM, Husain FM, Ahmad R, Qais FA, Khan MA, Jalal M, Tayyaba U, Ali SG, Singh A, Shahid M, Lee BI. Antibacterial and antibiofilm activity of Abroma augusta stabilized silver (Ag) nanoparticles against drug-resistant clinical pathogens. Front Mol Biosci 2023; 10:1292509. [PMID: 37965379 PMCID: PMC10642314 DOI: 10.3389/fmolb.2023.1292509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Infectious diseases remain among the most pressing concerns for human health. This issue has grown even more complex with the emergence of multidrug-resistant (MDR) bacteria. To address bacterial infections, nanoparticles have emerged as a promising avenue, offering the potential to target bacteria at multiple levels and effectively eliminate them. In this study, silver nanoparticles (AA-AgNPs) were synthesized using the leaf extract of a medicinal plant, Abroma augusta. The synthesis method is straightforward, safe, cost-effective, and environment friendly, utilizing the leaf extract of this Ayurvedic herb. The UV-vis absorbance peak at 424 nm indicated the formation of AA-AgNPs, with the involvement of numerous functional groups in the synthesis and stabilization of the particles. AA-AgNPs exhibited robust antibacterial and antibiofilm activities against methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococci (VRE). The MIC values of AA-AgNPs ranged from 8 to 32 μg/mL. Electron microscopic examination of the interaction of AA-AgNPs with the test bacterial pathogens showed a deleterious impact on bacterial morphology, resulting from membrane rupture and leakage of intracellular components. AA-AgNPs also demonstrated a dose-dependent effect in curtailing biofilm formation below inhibitory doses. Overall, this study highlights the potential of AA-AgNPs in the successful inhibition of both the growth and biofilms of MRSA and VRE bacteria. Following studies on toxicity and dose optimization, such AgNPs could be developed into effective medical remedies against infections.
Collapse
Affiliation(s)
- Sachin Kumar
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Haris M. Khan
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Rafiq Ahmad
- ‘New-senior’ Oriented Smart Health Care Education Center, Pukyong National University, Busan, Republic of Korea
| | - Faizan Abul Qais
- Department of Ag. Microbiology, Faculty of Agriculture Sciences, Aligarh Muslim University, Aligarh, India
| | - Mo Ahamad Khan
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohammad Jalal
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Uzma Tayyaba
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Syed Ghazanfar Ali
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Amardeep Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, Uttar Pradesh, India
| | - Mohammad Shahid
- Department of Microbiology, J. N. Medical College and Hospital, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
- Department of Microbiology, Immunology and Infectious Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Bahrain
| | - Byeong-Il Lee
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, Republic of Korea
- Digital Healthcare Research Center, Institute of Information Technology and Convergence, Pukyong National University, Busan, Republic of Korea
- Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
31
|
Adil M, Alam S, Amin U, Ullah I, Muhammad M, Ullah M, Rehman A, Khan T. Efficient green silver nanoparticles-antibiotic combinations against antibiotic-resistant bacteria. AMB Express 2023; 13:115. [PMID: 37848594 PMCID: PMC10581974 DOI: 10.1186/s13568-023-01619-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Antibiotic-resistant bacterial strains and the consequent surge in infections caused by them have become major public health concerns. Silver nanoparticles (AgNPs) exhibit antibacterial properties and have wide applications in biomedical sciences. In this study, AgNPs were synthesized in the presence of antibiotics: Ceftazidime (Cft), Cefotaxime (Cef), Ceftriaxone (Cfx), and Cefepime (Cpm), along with the extract of Mentha longifolia. Mentha longifolia-based AgNPs were kept as the control for all experiments. The associated metabolites, structural properties, surface charges, and antibacterial activity of the AgNPs were also evaluated. Overall, a blue-shift of SPR peaks was observed for control AgNPs (λmax = 421 nm, 422 nm, 426 nm, and 406 nm for Cft-AgNPs, Cef-AgNPs, Cfx-AgNPs, and Cpm-AgNPs, respectively), compared to the control (λmax = 438 nm). Fourier-transform infrared spectroscopy showed that antibiotic-based AgNPs had distinct peaks that corresponded to the respective antibiotics, which were not observed in the control. XRD analysis showed that there were observed changes in crystallinity in antibiotic-based AgNPs compared to the control. TEM images revealed that all samples had spherical nanoparticles with different sizes and distributions compared to the control. The Zeta potential for extract-based AgNPs was - 33.6 mV, compared to -19.6 mV for Cft-AgNPs, -2 mV for Cef-AgNPs, -21.1 mV for Cfx-AgNPs, and - 24.2 mV for Cpm-AgNPs. The increase in the PDI value for antibiotic-based AgNPs also showed a highly polydisperse distribution. However, the antibiotic-AgNPs conjugates showed significantly higher activity against pathogenic bacteria. The addition of antibiotics to AgNPs brought significant changes in structural properties and antibacterial activities.
Collapse
Affiliation(s)
- Muhammad Adil
- Department of Biotechnology, University of Malakand, Chakdara, 18800, Dir Lower, Pakistan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Siyab Alam
- Department of Biotechnology, University of Malakand, Chakdara, 18800, Dir Lower, Pakistan
| | - Urooj Amin
- Department of Biotechnology, University of Malakand, Chakdara, 18800, Dir Lower, Pakistan
| | - Irfan Ullah
- Department of Biotechnology, University of Malakand, Chakdara, 18800, Dir Lower, Pakistan
| | - Mian Muhammad
- Department of Chemistry, University of Malakand, Chakdara, 18800, Dir Lower, Pakistan
| | - Muti Ullah
- Institute of Pathology and Diagnostic Medicine, Khyber Medical University, Peshawar, Pakistan
| | - Asma Rehman
- Nanobiotechnology Group, Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Punjab, Pakistan
| | - Tariq Khan
- Department of Biotechnology, University of Malakand, Chakdara, 18800, Dir Lower, Pakistan.
| |
Collapse
|
32
|
Kosaristanova L, Rihacek M, Sucha F, Milosavljevic V, Svec P, Dorazilova J, Vojtova L, Antal P, Kopel P, Patocka Z, Adam V, Zurek L, Dolezelikova K. Synergistic antibacterial action of the iron complex and ampicillin against Staphylococcus aureus. BMC Microbiol 2023; 23:288. [PMID: 37803300 PMCID: PMC10559456 DOI: 10.1186/s12866-023-03034-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023] Open
Abstract
OBJECTIVES Resistance to antibiotics among bacteria of clinical importance, including Staphylococcus aureus, is a serious problem worldwide and the search for alternatives is needed. Some metal complexes have antibacterial properties and when combined with antibiotics, they may increase bacterial sensitivity to antimicrobials. In this study, we synthesized the iron complex and tested it in combination with ampicillin (Fe16 + AMP) against S. aureus. METHODS An iron complex (Fe16) was synthesized and characterized using spectroscopy methods. Confirmation of the synergistic effect between the iron complex (Fe16) and ampicillin (AMP) was performed using ζ-potential, infrared spectra and FICI index calculated from the minimum inhibitory concentration (MIC) from the checkerboard assay. Cytotoxic properties of combination Fe16 + AMP was evaluated on eukaryotic cell line. Impact of combination Fe16 + AMP on chosen genes of S. aureus were performed by Quantitative Real-Time PCR. RESULTS The MIC of Fe16 + AMP was significantly lower than that of AMP and Fe16 alone. Furthermore, the infrared spectroscopy revealed the change in the ζ-potential of Fe16 + AMP. We demonstrated the ability of Fe16 + AMP to disrupt the bacterial membrane of S. aureus and that likely allowed for better absorption of AMP. In addition, the change in gene expression of bacterial efflux pumps at the sub-inhibitory concentration of AMP suggests an insufficient import of iron into the bacterial cell. At the same time, Fe16 + AMP did not have any cytotoxic effects on keratinocytes. CONCLUSIONS Combined Fe16 + AMP therapy demonstrated significant synergistic and antimicrobial effects against S. aureus. This study supports the potential of combination therapy and further research.
Collapse
Affiliation(s)
- Ludmila Kosaristanova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Martin Rihacek
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Frantiska Sucha
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Jana Dorazilova
- Central European Institute of Technology, University of Technology, Brno, Czech Republic
| | - Lucy Vojtova
- Central European Institute of Technology, University of Technology, Brno, Czech Republic
| | - Peter Antal
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Pavel Kopel
- Department of Inorganic Chemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Zdenek Patocka
- Department of Forest Management and Applied Geoinformatics, Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Ludek Zurek
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic
| | - Kristyna Dolezelikova
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, Czech Republic.
| |
Collapse
|
33
|
Alhajj M, Salim A, Ghoshal S, Huyop F, Safwan Abd Aziz M, Sharma S. Physicochemical robustness of pulse laser ablated silver-copper nanocomposoites against varied bacterial strains. OPTICS & LASER TECHNOLOGY 2023; 165:109610. [DOI: 10.1016/j.optlastec.2023.109610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
34
|
Subramani RM, Lotha R, Shamprasad BR, Sridharan S, Natesan R, Nagarajan S, Sivasubramanian A. BBD optimized antioxidants of Crotalaria candicans and its nanoconjugates, exert potent in vivo anti-biofilm effects against MRSA. Sci Rep 2023; 13:16407. [PMID: 37775527 PMCID: PMC10541877 DOI: 10.1038/s41598-023-43574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023] Open
Abstract
Crotalaria genus is extensively dispersed in tropical and subtropical provinces, and it is found to harbor antioxidant flavonoids. Response surface methodology-based optimization was carried out for the purpose of efficient extraction involving a suitable solvent which can maximize the yield along with higher total phenolic content and total flavonoid content (TFC). Optimization conditions for extraction of C.candicans flavonoids (CCF) based on variables such as solvent, solid-solvent ratio and extraction temperature were evaluated. The optimized conditions were found as Solvent i.e., Aqueous-ethanol (53.42%), Solid-solvent ratio (1:15.83 w/v) and temperature (44.42 °C) and resulted to obtain the TFC as 176.23 mg QRET/g C. candicans extract with the yield 27.42 mg CCF/g (C. candicans dry weight). LC-MS analysis of CCF, revealed the presence of seven major flavonoids. The antioxidant flavonoids were further used to functionalize the zero-valent silver (ZVAgF) and copper (ZVCuF) nanoparticles. The ZVAgF and ZVCuF were investigated using UV-Vis spectrophotometry, FT-IR spectroscopy and X-ray diffractometry to confirm the presence of the zero valent metals and possible functional groups which capped the elemental metal. Further transmission electron microscopy, dynamic light scattering method and zeta-potential studies were done to understand their respective structural and morphological properties. The efficacy of the as-prepared ZVAgF/ZVCuF as antibiofilm agents on Methicillin-resistant Staphylococcus aureus (MRSA) with the mechanism studies have been explored. The MRSA-colony count from the infection zebrafish (in vivo) model, portrayed a reduction of > 1.9 fold for ZVCuF and > twofold for ZVAgF, with no alteration in liver morphology when treated with ZVAgF, implying that the nanoparticles were safe and biocompatible.
Collapse
Affiliation(s)
- Ramya M Subramani
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Robert Lotha
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Bhanuvalli R Shamprasad
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Sriram Sridharan
- Centre for Advanced Research in Indian System of Medicine, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Ravichandran Natesan
- Centre for Advanced Research in Indian System of Medicine, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India
| | - Saisubramanian Nagarajan
- Centre for Research on Infectious Diseases, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India.
| | - Arvind Sivasubramanian
- Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, Tamil Nadu, India.
| |
Collapse
|
35
|
Aflakian F, Mirzavi F, Aiyelabegan HT, Soleimani A, Gholizadeh Navashenaq J, Karimi-Sani I, Rafati Zomorodi A, Vakili-Ghartavol R. Nanoparticles-based therapeutics for the management of bacterial infections: A special emphasis on FDA approved products and clinical trials. Eur J Pharm Sci 2023; 188:106515. [PMID: 37402428 DOI: 10.1016/j.ejps.2023.106515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/06/2023]
Abstract
Microbial resistance has increased in recent decades as a result of the extensive and indiscriminate use of antibiotics. The World Health Organization listed antimicrobial resistance as one of ten major global public health threats in 2021. In particular, six major bacterial pathogens, including third-generation cephalosporin-resistant Escherichia coli, methicillin-resistant Staphylococcus aureus, carbapenem-resistant Acinetobacter baumannii, Klebsiella pneumoniae, Streptococcus pneumoniae, and Pseudomonas aeruginosa, were found to have the highest resistance-related death rates in 2019. To respond to this urgent call, the creation of new pharmaceutical technologies based on nanoscience and drug delivery systems appears to be the promising strategy against microbial resistance in light of recent advancements, particularly the new knowledge of medicinal biology. Nanomaterials are often defined as substances having sizes between 1 and 100 nm. If the material is used on a small scale; its properties significantly change. They come in a variety of sizes and forms to help provide distinguishing characteristics for a wide range of functions. The field of health sciences has demonstrated a strong interest in numerous nanotechnology applications. Therefore, in this review, prospective nanotechnology-based therapeutics for the management of bacterial infections with multiple medication resistance are critically examined. Recent developments in these innovative treatment techniques are described, with an emphasis on preclinical, clinical, and combinatorial approaches.
Collapse
Affiliation(s)
- Fatemeh Aflakian
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | | | - Anvar Soleimani
- Department of Medical Microbiology, College of Health Sciences, Cihan University-Sulaimaniya, Sulaimaniya, 46001, Kurdistan Region, Iraq
| | | | - Iman Karimi-Sani
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abolfazl Rafati Zomorodi
- Department of Bacteriology and Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roghayyeh Vakili-Ghartavol
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran; Nanomedicine and Nanobiology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
36
|
Ravindran DR, Kannan S, Jeyakumar D, Marudhamuthu M. Characterization of phenyl propiolic acid from Proteus mirabilis DMTMMR-11 and Evaluation of its mode of action against Yersinia enterocolitica (MTCC-840) an in-Vitro and in-Vivo based approach. Microb Pathog 2023; 182:106258. [PMID: 37482115 DOI: 10.1016/j.micpath.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Foodborne illnesses are pervasive in raising public health concerns in both developed and developing nations. Yersinia enterocolitica a zoonotic bacterial species that causes food-transmitted infections, and gastroenteritis, is its most prevalent clinical manifestation. This study aims to investigate the differences, dependencies, and inhibitory mechanisms between the host and the microbiome. Proteus mirabilis DMTMMR-11, the bacterium found in the human gastrointestinal tract was used for the extraction of intracellular metabolite, because of its beneficial effects on the normal flora of the human gut. Phenyl propiolic acid was identified as the dominant compound in the metabolite after characterization using FT-IR, NMR, and LC-MS-MS. To assess its inhibitory mechanism against Yersinia enterocolitica, the pathogen was subjected to biological characterization by MBC and MIC, resulting in the rate of inhibition at 50 μg/ml. Anti-bacterial curve supports the inhibited growth of Y. enterocolitica. Mechanism of inhibition at its cellular level was indicated by the increase in alkaline phosphate content, which drastically reduced the cell membrane and cell wall potential expanding its permeability by intruding the membrane proteins, which was observed in SEM Imaging. Phenyl propiolic acid efficiently disrupts the biofilm formation by reducing the adherence and increasing the eradication property of the pathogen by exhibiting 65% of inhibition at the minimal duration of 12h. In-vivo study was carried out through host-pathogen interaction in C. elegans, an efficient model organism assessed for its life-span, physiological, and behavioral assays.
Collapse
Affiliation(s)
- Deepthi Ramya Ravindran
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu, 625021, India
| | - Suganya Kannan
- Central Research Laboratory for Biomedical Research, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be university), Karaikal, Puducherry, 609609, India
| | - Deepika Jeyakumar
- Laboratory of Microbiology, Serology, and Molecular Biology, Vadamalayan Hospitals Private Limited, Madurai, TamilNadu, 625002, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu, 625021, India.
| |
Collapse
|
37
|
Pormohammad A, Firrincieli A, Salazar-Alemán DA, Mohammadi M, Hansen D, Cappelletti M, Zannoni D, Zarei M, Turner RJ. Insights into the Synergistic Antibacterial Activity of Silver Nitrate with Potassium Tellurite against Pseudomonas aeruginosa. Microbiol Spectr 2023; 11:e0062823. [PMID: 37409940 PMCID: PMC10433965 DOI: 10.1128/spectrum.00628-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/05/2023] [Indexed: 07/07/2023] Open
Abstract
The constant, ever-increasing antibiotic resistance crisis leads to the announcement of "urgent, novel antibiotics needed" by the World Health Organization. Our previous works showed a promising synergistic antibacterial activity of silver nitrate with potassium tellurite out of thousands of other metal/metalloid-based antibacterial combinations. The silver-tellurite combined treatment not only is more effective than common antibiotics but also prevents bacterial recovery, decreases the risk of future resistance chance, and decreases the effective concentrations. We demonstrate that the silver-tellurite combination is effective against clinical isolates. Further, this study was conducted to address knowledge gaps in the available data on the antibacterial mechanism of both silver and tellurite, as well as to give insight into how the mixture provides synergism as a combination. Here, we defined the differentially expressed gene profile of Pseudomonas aeruginosa under silver, tellurite, and silver-tellurite combination stress using an RNA sequencing approach to examine the global transcriptional changes in the challenged cultures grown in simulated wound fluid. The study was complemented with metabolomics and biochemistry assays. Both metal ions mainly affected four cellular processes, including sulfur homeostasis, reactive oxygen species response, energy pathways, and the bacterial cell membrane (for silver). Using a Caenorhabditis elegans animal model we showed silver-tellurite has reduced toxicity over individual metal/metalloid salts and provides increased antioxidant properties to the host. This work demonstrates that the addition of tellurite would improve the efficacy of silver in biomedical applications. IMPORTANCE Metals and/or metalloids could represent antimicrobial alternatives for industrial and clinical applications (e.g., surface coatings, livestock, and topical infection control) because of their great properties, such as good stability and long half-life. Silver is the most common antimicrobial metal, but resistance prevalence is high, and it can be toxic to the host above a certain concentration. We found that a silver-tellurite composition has antibacterial synergistic effect and that the combination is beneficial to the host. So, the efficacy and application of silver could increase by adding tellurite in the recommended concentration(s). We used different methods to evaluate the mechanism for how this combination can be so incredibly synergistic, leading to efficacy against antibiotic- and silver-resistant isolates. Our two main findings are that (i) both silver and tellurite mostly target the same pathways and (ii) the coapplication of silver with tellurite tends not to target new pathways but targets the same pathways with an amplified change.
Collapse
Affiliation(s)
- Ali Pormohammad
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
- CCrest Laboratories, Inc., Montreal, Quebec, Canada
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest systems, University of Tuscia, Viterbo, Italy
| | - Daniel A. Salazar-Alemán
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Mehdi Mohammadi
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Dave Hansen
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Davide Zannoni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Mohammad Zarei
- Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- John B. Little Center for Radiation Sciences, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Raymond J. Turner
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
38
|
Rabiee N, Sharma R, Foorginezhad S, Jouyandeh M, Asadnia M, Rabiee M, Akhavan O, Lima EC, Formela K, Ashrafizadeh M, Fallah Z, Hassanpour M, Mohammadi A, Saeb MR. Green and Sustainable Membranes: A review. ENVIRONMENTAL RESEARCH 2023; 231:116133. [PMID: 37209981 DOI: 10.1016/j.envres.2023.116133] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/21/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Membranes are ubiquitous tools for modern water treatment technology that critically eliminate hazardous materials such as organic, inorganic, heavy metals, and biomedical pollutants. Nowadays, nano-membranes are of particular interest for myriad applications such as water treatment, desalination, ion exchange, ion concentration control, and several kinds of biomedical applications. However, this state-of-the-art technology suffers from some drawbacks, e.g., toxicity and fouling of contaminants, which makes the synthesis of green and sustainable membranes indeed safety-threatening. Typically, sustainability, non-toxicity, performance optimization, and commercialization are concerns centered on manufacturing green synthesized membranes. Thus, critical issues related to toxicity, biosafety, and mechanistic aspects of green-synthesized nano-membranes have to be systematically and comprehensively reviewed and discussed. Herein we evaluate various aspects of green nano-membranes in terms of their synthesis, characterization, recycling, and commercialization aspects. Nanomaterials intended for nano-membrane development are classified in view of their chemistry/synthesis, advantages, and limitations. Indeed, attaining prominent adsorption capacity and selectivity in green-synthesized nano-membranes requires multi-objective optimization of a number of materials and manufacturing parameters. In addition, the efficacy and removal performance of green nano-membranes are analyzed theoretically and experimentally to provide researchers and manufacturers with a comprehensive image of green nano-membrane efficiency under real environmental conditions.
Collapse
Affiliation(s)
- Navid Rabiee
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA, 6150, Australia; Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran.
| | - Rajni Sharma
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sahar Foorginezhad
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia; Lulea University of Technology, Department of Energy Science and Mathematics, Energy Science, 97187, Lulea, Sweden
| | - Maryam Jouyandeh
- Center of Excellence in Electrochemistry, University of Tehran, Tehran, Iran
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia.
| | - Mohammad Rabiee
- Biomaterial Group, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Omid Akhavan
- Department of Physics, Sharif University of Technology, Tehran, P.O. Box 11155-9161, Iran
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande Do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Krzysztof Formela
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zari Fallah
- Faculty of Chemistry, University of Mazandaran, P. O. Box 47416, 95447, Babolsar, Iran
| | - Mahnaz Hassanpour
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran
| | - Abbas Mohammadi
- Department of Chemistry, University of Isfahan, Isfahan, 81746-73441, Iran
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdánsk University of Technology, G. Narutowicza 11/12, 80-233, Gdánsk, Poland
| |
Collapse
|
39
|
Ahmed HA, Elsohaby I, Elamin AM, El-Ghafar AEA, Elsaid GA, Elbarbary M, Mohsen RA, El Feky TM, El Bayomi RM. Extended-spectrum β-lactamase-producing E. coli from retail meat and workers: genetic diversity, virulotyping, pathotyping and the antimicrobial effect of silver nanoparticles. BMC Microbiol 2023; 23:212. [PMID: 37550643 PMCID: PMC10405496 DOI: 10.1186/s12866-023-02948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023] Open
Abstract
BACKGROUND The spread of extended-spectrum β-lactamases (ESBL) producing E. coli from food animals and the environment to humans has become a significant public health concern. The objectives of this study were to determine the occurrence, pathotypes, virulotypes, genotypes, and antimicrobial resistance patterns of ESBL-producing E. coli in retail meat samples and workers in retail meat shops in Egypt and to evaluate the bactericidal efficacy of silver nanoparticles (AgNPs-H2O2) against multidrug resistant (MDR) ESBL-producing E. coli. RESULTS A total of 250 retail meat samples and 100 human worker samples (hand swabs and stool) were examined for the presence of ESBL- producing E. coli. Duck meat and workers' hand swabs were the highest proportion of ESBL- producing E. coli isolates (81.1%), followed by camel meat (61.5%). Pathotyping revealed that the isolates belonged to groups A and B1. Virulotyping showed that the most prevalent virulence gene was Shiga toxin 2 (stx2) associated gene (36.9%), while none of the isolates harbored stx1 gene. Genotyping of the identified isolates from human and meat sources by REP-PCR showed 100% similarity within the same cluster between human and meat isolates. All isolates were classified as MDR with an average multiple antibiotic resistance (MAR) index of 0.7. AgNPs-H2O2 at concentrations of 0.625, 1.25, 2.5 and 5 μg/mL showed complete bacterial growth inhibition. CONCLUSIONS Virulent MDR ESBL-producing E. coli were identified in retail meat products in Egypt, posing significant public health threats. Regular monitoring of ESBL-producing E. coli frequency and antimicrobial resistance profile in retail meat products is crucial to enhance their safety. AgNPs-H2O2 is a promising alternative for treating MDR ESBL-producing E. coli infections and reducing antimicrobial resistance risks.
Collapse
Affiliation(s)
- Heba A Ahmed
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, 44511, Sharkia Governorate, Egypt.
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, 44511, Sharkia Governorate, Egypt
| | - Amina M Elamin
- Department of Food Hygiene, Zagazig Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig City, Egypt
| | - Abeer E Abd El-Ghafar
- Department of Bacteriology, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Mansoura City, Egypt
| | - Gamilat A Elsaid
- Department of Food Hygiene, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Mansoura City, Egypt
| | - Mervat Elbarbary
- Department of Food Hygiene, Zagazig Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Zagazig City, Egypt
| | - Rasha A Mohsen
- Department of Bacteriology, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Mansoura City, Egypt
| | - Tamer M El Feky
- Department of Bacteriology, Mansoura Branch, Agriculture Research Center (ARC), Animal Health Research Institute (AHRI), Mansoura City, Egypt
| | - Rasha M El Bayomi
- Department of Food Control, Faculty of Veterinary Medicine, Zagazig University, Zagazig City, 44511, Sharkia Governorate, Egypt
| |
Collapse
|
40
|
Kaiser KG, Delattre V, Frost VJ, Buck GW, Phu JV, Fernandez TG, Pavel IE. Nanosilver: An Old Antibacterial Agent with Great Promise in the Fight against Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1264. [PMID: 37627684 PMCID: PMC10451389 DOI: 10.3390/antibiotics12081264] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Antibiotic resistance in bacteria is a major problem worldwide that costs 55 billion USD annually for extended hospitalization, resource utilization, and additional treatment expenditures in the United States. This review examines the roles and forms of silver (e.g., bulk Ag, silver salts (AgNO3), and colloidal Ag) from antiquity to the present, and its eventual incorporation as silver nanoparticles (AgNPs) in numerous antibacterial consumer products and biomedical applications. The AgNP fabrication methods, physicochemical properties, and antibacterial mechanisms in Gram-positive and Gram-negative bacterial models are covered. The emphasis is on the problematic ESKAPE pathogens and the antibiotic-resistant pathogens of the greatest human health concern according to the World Health Organization. This review delineates the differences between each bacterial model, the role of the physicochemical properties of AgNPs in the interaction with pathogens, and the subsequent damage of AgNPs and Ag+ released by AgNPs on structural cellular components. In closing, the processes of antibiotic resistance attainment and how novel AgNP-antibiotic conjugates may synergistically reduce the growth of antibiotic-resistant pathogens are presented in light of promising examples, where antibiotic efficacy alone is decreased.
Collapse
Affiliation(s)
- Kyra G. Kaiser
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoire Delattre
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Victoria J. Frost
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Gregory W. Buck
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| | - Julianne V. Phu
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Timea G. Fernandez
- Department of Chemistry, Physics, Geology and the Environment, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA; (V.J.F.); (J.V.P.)
- Department of Biology, Winthrop University, 701 Oakland Avenue, Rock Hill, SC 29733, USA
| | - Ioana E. Pavel
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA; (K.G.K.); (V.D.); (G.W.B.)
- Department of Life Sciences, Texas A&M University Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA
| |
Collapse
|
41
|
Mahdizade Ari M, Dashtbin S, Ghasemi F, Shahroodian S, kiani P, Bafandeh E, Darbandi T, Ghanavati R, Darbandi A. Nitrofurantoin: properties and potential in treatment of urinary tract infection: a narrative review. Front Cell Infect Microbiol 2023; 13:1148603. [PMID: 37577377 PMCID: PMC10414118 DOI: 10.3389/fcimb.2023.1148603] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/23/2023] [Indexed: 08/15/2023] Open
Abstract
Nitrofurantoin (NF), a wide-spectrum antibiotic accessible since 1953, is utilized widely to treat urinary tract infections as it usually stays active against drug-resistant uropathogen. The use of Nitrofurantoin has increased exponentially since new guidelines have repositioned it as first-line therapy for uncomplicated lower urinary tract infection (UTI). To, although fluoroquinolones are usually used to re-evaluate the first- and second-line therapies for treating uncomplicated UTI, their level of utilization is thought to be inappropriately excessive and will eventually have a detrimental impact; thus, we hypothesize that NF might be the best choice for this condition, because of its low frequency of utilization and its high susceptibility in common UTI pathogens. It can be concluded from this review that NF can be considered as the most effective drug in the treatment of acute urinary infection, but due to the long-term side effects of this drug, especially in elderly patients, it is essential to introduce some criteria for prescribing NF in cases of chronic UTI.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Dashtbin
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghasemi
- Department of Pathobiology, Division of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheila Shahroodian
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parisa kiani
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elnaz Bafandeh
- Department of Medical Biotechnology, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Talieh Darbandi
- Department of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Roya Ghanavati
- School of Medicine, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Molecular Microbiology Research Center, Shahed University, Tehran, Iran
| |
Collapse
|
42
|
Zhang P, Gong J, Jiang Y, Long Y, Lei W, Gao X, Guo D. Application of Silver Nanoparticles in Parasite Treatment. Pharmaceutics 2023; 15:1783. [PMID: 37513969 PMCID: PMC10384186 DOI: 10.3390/pharmaceutics15071783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/02/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Silver nanoparticles (AgNPs) are ultra-small silver particles with a size from 1 to 100 nanometers. Unlike bulk silver, they have unique physical and chemical properties. Numerous studies have shown that AgNPs have beneficial biological effects on various diseases, including antibacterial, anti-inflammatory, antioxidant, antiparasitic, and antiviruses. One of the most well-known applications is in the field of antibacterial applications, where AgNPs have strong abilities to kill multi-drug resistant bacteria, making them a potential candidate as an antibacterial drug. Recently, AgNPs synthesized from plant extracts have exhibited outstanding antiparasitic effects, with a shorter duration of use and enhanced ability to inhibit parasite multiplication compared to traditional antiparasitic drugs. This review summarizes the types, characteristics, and the mechanism of action of AgNPs in anti-parasitism, mainly focusing on their effects in leishmaniasis, flukes, cryptosporidiosis, toxoplasmosis, Haemonchus, Blastocystis hominis, and Strongylides. The aim is to provide a reference for the application of AgNPs in the prevention and control of parasitic diseases.
Collapse
Affiliation(s)
- Ping Zhang
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 99 Hongjing Road, Nanjing 211169, China
| | - Jiahao Gong
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Yan Jiang
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Yunfeng Long
- Animal, Plant and Food Inspection Center of Nanjing Customs District, 39 Chuangzhi Road, Nanjing 210000, China
| | - Weiqiang Lei
- College of Animal Science and Food Engineering, Jinling Institute of Technology, 99 Hongjing Road, Nanjing 211169, China
| | - Xiuge Gao
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Dawei Guo
- Engineering Center of Innovative Veterinary Drugs, MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
43
|
Blake MJ, Castillo HB, Curtis AE, Calhoun TR. Facilitating flip-flop: Structural tuning of molecule-membrane interactions in living bacteria. Biophys J 2023; 122:1735-1747. [PMID: 37041744 PMCID: PMC10209030 DOI: 10.1016/j.bpj.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
The first barrier that a small molecule must overcome before trespassing into a living cell is the lipid bilayer surrounding the intracellular content. It is imperative, therefore, to understand how the structure of a small molecule influences its fate in this region. Through the use of second harmonic generation, we show how the differing degrees of ionic headgroups, conjugated system, and branched hydrocarbon tail disparities of a series of four styryl dye molecules influence the propensity to "flip-flop" or to be further organized in the outer leaflet by the membrane. We show here that initial adsorption experiments match previous studies on model systems; however, more complex dynamics are observed over time. Aside from probe molecule structure, these dynamics also vary between cell species and can deviate from trends reported based on model membranes. Specifically, we show here that the membrane composition is an important factor to consider for headgroup-mediated small-molecule dynamics. Overall, the findings presented here on how structural variability of small molecules impacts their initial adsorption and eventual destinations within membranes in the context of living cells could have practical applications in antibiotic and drug adjuvant design.
Collapse
Affiliation(s)
- Marea J Blake
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Hannah B Castillo
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Anna E Curtis
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee
| | - Tessa R Calhoun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee.
| |
Collapse
|
44
|
Cacaci M, Biagiotti G, Toniolo G, Albino M, Sangregorio C, Severi M, Di Vito M, Squitieri D, Contiero L, Paggi M, Marelli M, Cicchi S, Bugli F, Richichi B. Shaping Silver Nanoparticles' Size through the Carrier Composition: Synthesis and Antimicrobial Activity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101585. [PMID: 37242002 DOI: 10.3390/nano13101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
The increasing resistance of bacteria to conventional antibiotics represents a severe global emergency for human health. The broad-spectrum antibacterial activity of silver has been known for a long time, and silver at the nanoscale shows enhanced antibacterial activity. This has prompted research into the development of silver-based nanomaterials for applications in clinical settings. In this work, the synthesis of three different silver nanoparticles (AgNPs) hybrids using both organic and inorganic supports with intrinsic antibacterial properties is described. The tuning of the AgNPs' shape and size according to the type of bioactive support was also investigated. Specifically, the commercially available sulfated cellulose nanocrystal (CNC), the salicylic acid functionalized reduced graphene oxide (rGO-SA), and the commercially available titanium dioxide (TiO2) were chosen as organic (CNC, rGO-SA) and inorganic (TiO2) supports. Then, the antimicrobial activity of the AgNP composites was assessed on clinically relevant multi-drug-resistant bacteria and the fungus Candida albicans. The results show how the formation of Ag nanoparticles on the selected supports provides the resulting composite materials with an effective antibacterial activity.
Collapse
Affiliation(s)
- Margherita Cacaci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Giacomo Biagiotti
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Gianluca Toniolo
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Martin Albino
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- ICCOM CNR, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | | | - Mirko Severi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Damiano Squitieri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Contiero
- Cromology Italia S.p.A., Z.I. Porcari, 55016 Lucca, Italy
| | - Marco Paggi
- IMT School for Advanced Studies Lucca, Piazza San Francesco 19, 55100 Lucca, Italy
| | - Marcello Marelli
- CNR SCITEC-Istituto di Scienze e Tecnologie Chimiche "Giulio Natta", Via Fantoli 16/15, 20138 Milano, Italy
| | - Stefano Cicchi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Barbara Richichi
- Department of Chemistry "Ugo Schiff", University of Firenze, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| |
Collapse
|
45
|
Scandorieiro S, Teixeira FMMB, Nogueira MCL, Panagio LA, de Oliveira AG, Durán N, Nakazato G, Kobayashi RKT. Antibiofilm Effect of Biogenic Silver Nanoparticles Combined with Oregano Derivatives against Carbapenem-Resistant Klebsiella pneumoniae. Antibiotics (Basel) 2023; 12:antibiotics12040756. [PMID: 37107119 PMCID: PMC10135348 DOI: 10.3390/antibiotics12040756] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Resistant bacteria may kill more people than COVID-19, so the development of new antibacterials is essential, especially against microbial biofilms that are reservoirs of resistant cells. Silver nanoparticles (bioAgNP), biogenically synthesized using Fusarium oxysporum, combined with oregano derivatives, present a strategic antibacterial mechanism and prevent the emergence of resistance against planktonic microorganisms. Antibiofilm activity of four binary combinations was tested against enteroaggregative Escherichia coli (EAEC) and Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC): oregano essential oil (OEO) plus bioAgNP, carvacrol (Car) plus bioAgNP, thymol (Thy) plus bioAgNP, and Car plus Thy. The antibiofilm effect was accessed using crystal violet, MTT, scanning electron microscopy, and Chromobacterium violaceum anti-quorum-sensing assays. All binary combinations acted against preformed biofilm and prevented its formation; they showed improved antibiofilm activity compared to antimicrobials individually by reducing sessile minimal inhibitory concentration up to 87.5% or further decreasing biofilm metabolic activity and total biomass. Thy plus bioAgNP extensively inhibited the growth of biofilm in polystyrene and glass surfaces, disrupted three-dimensional biofilm structure, and quorum-sensing inhibition may be involved in its antibiofilm activity. For the first time, it is shown that bioAgNP combined with oregano has antibiofilm effect against bacteria for which antimicrobials are urgently needed, such as KPC.
Collapse
Affiliation(s)
- Sara Scandorieiro
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
- Laboratory of Innovation and Cosmeceutical Technology, Department of Pharmaceutical Sciences, Center of Health Sciences, Hospital Universitário de Londrina, Londrina 86038-350, Brazil
| | - Franciele Maira M B Teixeira
- Department of Dermatological, Infectious and Parasitic Diseases, Faculdade de Medicina de Sao Jose do Rio Preto, São José do Rio Preto 15090-000, Brazil
| | - Mara C L Nogueira
- Department of Dermatological, Infectious and Parasitic Diseases, Faculdade de Medicina de Sao Jose do Rio Preto, São José do Rio Preto 15090-000, Brazil
| | - Luciano A Panagio
- Laboratory of Medical Mycology and Oral Microbiology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Admilton G de Oliveira
- Laboratory of Microbial Biotechnology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
- Laboratory of Electron Microscopy and Microanalysis, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Nelson Durán
- Institute of Biology, Universidade Estadual de Campinas, Campinas 13083-862, Brazil
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| | - Renata K T Kobayashi
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Center of Biological Sciences, Universidade Estadual de Londrina, Londrina 86057-970, Brazil
| |
Collapse
|
46
|
Hawsawi NM, Hamad AM, Rashid SN, Alshehri F, Sharaf M, Zakai SA, Al Yousef SA, Ali AM, Abou-Elnour A, Alkhudhayri A, Elrefaei NG, Elkelish A. Biogenic silver nanoparticles eradicate of Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) isolated from the sputum of COVID-19 patients. Front Microbiol 2023; 14:1142646. [PMID: 37143540 PMCID: PMC10153441 DOI: 10.3389/fmicb.2023.1142646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023] Open
Abstract
In recent investigations, secondary bacterial infections were found to be strongly related to mortality in COVID-19 patients. In addition, Pseudomonas aeruginosa and Methicillin-resistant Staphylococcus aureus (MRSA) bacteria played an important role in the series of bacterial infections that accompany infection in COVID-19. The objective of the present study was to investigate the ability of biosynthesized silver nanoparticles from strawberries (Fragaria ananassa L.) leaf extract without a chemical catalyst to inhibit Gram-negative P. aeruginosa and Gram-positive Staph aureus isolated from COVID-19 patient’s sputum. A wide range of measurements was performed on the synthesized AgNPs, including UV–vis, SEM, TEM, EDX, DLS, ζ -potential, XRD, and FTIR. UV-Visible spectral showed the absorbance at the wavelength 398 nm with an increase in the color intensity of the mixture after 8 h passed at the time of preparation confirming the high stability of the FA-AgNPs in the dark at room temperature. SEM and TEM measurements confirmed AgNPs with size ranges of ∼40-∼50 nm, whereas the DLS study confirmed their average hydrodynamic size as ∼53 nm. Furthermore, Ag NPs. EDX analysis showed the presence of the following elements: oxygen (40.46%), and silver (59.54%). Biosynthesized FA-AgNPs (ζ = −17.5 ± 3.1 mV) showed concentration-dependent antimicrobial activity for 48 h in both pathogenic strains. MTT tests showed concentration-dependent and line-specific effects of FA-AgNPs on cancer MCF-7 and normal liver WRL-68 cell cultures. According to the results, synthetic FA-AgNPs obtained through an environmentally friendly biological process are inexpensive and may inhibit the growth of bacteria isolated from COVID-19 patients.
Collapse
|
47
|
Mohammed AM, Hassan KT, Hassan OM. Assessment of antimicrobial activity of chitosan/silver nanoparticles hydrogel and cryogel microspheres. Int J Biol Macromol 2023; 233:123580. [PMID: 36764343 DOI: 10.1016/j.ijbiomac.2023.123580] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/26/2022] [Accepted: 02/04/2023] [Indexed: 02/11/2023]
Abstract
This research investigates the synthesis and characterization of hydrogel and cryogel microspheres that are doped with green synthesised silver nanoparticles (CS-AgNPs). Also, the study assesses the antibacterial activity of hydrogel and cryogel microspheres by comparing them with commercial antibiotics. The porous structure of CS and the adequate dispersion of AgNPs were confirmed by SEM and EDX techniques, respectively. The disk diffusion method and the optical density measurement (OD600) confirm the outstanding antimicrobial activity of CS-AgNPs hydrogel and cryogel microspheres in comparison to antibiotics for both Gram-positive and Gram-negative bacteria. The CS-AgNPs microspheres demonstrate promising antimicrobial and biocompatible agents for medical field applications.
Collapse
Affiliation(s)
- Asmaa M Mohammed
- Department of Biology, College of Science, University of Anbar, Ramadi 30001, Iraq
| | - Khalil T Hassan
- Department of Physics, College of Science, University of Anbar, Ramadi 30001, Iraq.
| | - Omar M Hassan
- Department of Biology, College of Science, University of Anbar, Ramadi 30001, Iraq
| |
Collapse
|
48
|
Lu Y, Guan T, Wang S, Zhou C, Wang M, Wang X, Zhang K, Han X, Lin J, Tang Q, Wang C, Zhou W. Novel xanthone antibacterials: Semi-synthesis, biological evaluation, and the action mechanisms. Bioorg Med Chem 2023; 83:117232. [PMID: 36940608 DOI: 10.1016/j.bmc.2023.117232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
α-Mangostin (α-MG) has demonstrated to display potent activities against Gram-positive bacterial. However, the contribution of phenolic hydroxyl groups of α-MG to the antibacterial activity remains obscure, severely hampering selection of structure modification to develop more potential α-MG-based anti-bacterial derivatives. Herein, twenty-one α-MG derivatives are designed, synthesized and evaluated for the antibacterial activities. The structure activity relationships (SARs) reveal that the contribution of the phenolic groups ranks as C3 > C6 > C1, and the phenolic hydroxyl group at C3 is essential to the antibacterial activity. Of note, compared to the parent compound α-MG, 10a with one acetyl at C1 exhibits the higher safety profiles due to its higher selectivity and no hemolysis, and the more potent antibacterial efficacy in an animal skin abscess model. Our evidences further present that, in comparison with α-MG, 10a has a stronger ability in depolarizing membrane potentials and leads to more leakage of bacterial proteins, consistent with the results observed by transmission electron microscopy (TEM). Transcriptomics analysis demonstrates those observations possibly relate to disturbed synthesis of proteins participating in the biological process of membrane permeability and integrity. Collectively, our findings provide a valuable insight for developing α-MG-based antibacterial agents with little hemolysis and new action mechanism via structural modifications at C1.
Collapse
Affiliation(s)
- Yan Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074 Wuhan, China
| | - Ting Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China
| | - Shaobing Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074 Wuhan, China
| | - Cui Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Meizhu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Jinchao Lin
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd., 201315 Shanghai, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
49
|
In vitro and in vivo synergistic wound healing and anti-methicillin-resistant Staphylococcus aureus (MRSA) evaluation of liquorice-decorated silver nanoparticles. J Antibiot (Tokyo) 2023; 76:291-300. [PMID: 36854977 DOI: 10.1038/s41429-023-00603-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/28/2023] [Accepted: 02/10/2023] [Indexed: 03/03/2023]
Abstract
The multi-drug resistant Staph. aureus strain, Methicillin-resistant Staphylococcus aureus (MRSA), is an emerging pathogen that could penetrate skin cuts and wounds, causing a life-threatening condition. The green biosynthesis of silver nanoparticles with liquorice extract has been demonstrated over several years for anticancer and antioxidant effects, as well as antibacterial effect against both Gram-positive and Gram-negative bacteria. The study was designed to evaluate the synergistic in vivo and in vitro wound healing and anti-MRSA activity of decorated liquorice silver nanoparticles (LD-AgNPs). The LD-AgNPs were prepared by thoroughly mixing diluted liquorice extract with AgNO3 at room temperature. The prepared nanoparticles were characterized by size measurement, IR spectroscopy, TEM imaging, and X-ray diffraction. The in vitro and in vivo antibacterial and wound healing testing were also performed. The obtained LD-AgNPs were spherical in shape and had a hydrodynamic size of about 50.16 ± 5.37 nm. Moreover, they showed potent antibacterial activity against Gram-positive and Gram-negative resistant bacteria, produced a significantly higher level of procollagen type I compared to either liquorice extract or standard silver sulfadiazine, and promoted the wound healing process in rabbits. The formulation of silver nanoparticles with liquorice extract showed synergetic effects in enhancing the treatment of wounds, with significant antibacterial activity against E. coli and MRSA.
Collapse
|
50
|
Shabatina TI, Vernaya OI, Melnikov MY. Hybrid Nanosystems of Antibiotics with Metal Nanoparticles-Novel Antibacterial Agents. Molecules 2023; 28:molecules28041603. [PMID: 36838591 PMCID: PMC9959110 DOI: 10.3390/molecules28041603] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023] Open
Abstract
The appearance and increasing number of microorganisms resistant to the action of antibiotics is one of the global problems of the 21st century. Already, the duration of therapeutic treatment and mortality from infectious diseases caused by pathogenic microorganisms have increased significantly over the last few decades. Nanoscale inorganic materials (metals and metal oxides) with antimicrobial potential are a promising solution to this problem. Here we discuss possible mechanisms of pathogenic microorganisms' resistance to antibiotics, proposed mechanisms of action of inorganic nanoparticles on bacterial cells, and the possibilities and benefits of their combined use with antibacterial drugs. The prospects of using metal and metal oxide nanoparticles as carriers in targeted delivery systems for antibacterial compositions are also discussed.
Collapse
Affiliation(s)
- Tatyana I. Shabatina
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Fundamental Sciences, N.E. Bauman Moscow Technical University, 105005 Moscow, Russia
- Correspondence:
| | - Olga I. Vernaya
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
- Department of Fundamental Sciences, N.E. Bauman Moscow Technical University, 105005 Moscow, Russia
| | - Mikhail Y. Melnikov
- Department of Chemistry, M.V. Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|