1
|
Koulenti D, Paramythiotou E, Almyroudi MP, Karvouniaris M, Markou N, Paranos P, Routsi C, Meletiadis J, Blot S. Severe mold fungal infections in critically ill patients with COVID-19. Future Microbiol 2024; 19:825-840. [PMID: 38700287 PMCID: PMC11290760 DOI: 10.2217/fmb-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 05/05/2024] Open
Abstract
The SARS-CoV-2 pandemic put an unprecedented strain on modern societies and healthcare systems. A significantly higher incidence of invasive fungal co-infections was noted compared with the pre-COVID-19 era, adding new diagnostic and therapeutic challenges in the critical care setting. In the current narrative review, we focus on invasive mold infections caused by Aspergillus and Mucor species in critically ill COVID-19 patients. We discuss up-to-date information on the incidence, pathogenesis, diagnosis and treatment of these mold-COVID-19 co-infections, as well as recommendations on preventive and prophylactic interventions. Traditional risk factors were often not recognized in COVID-19-associated aspergillosis and mucormycosis, highlighting the role of other determinant risk factors. The associated patient outcomes were worse compared with COVID-19 patients without mold co-infection.
Collapse
Affiliation(s)
- Despoina Koulenti
- Department of Critical Care Medicine, King's College Hospital NHS Foundation Trust, London, UK
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Maria Panagiota Almyroudi
- Emergency Department, Attikon University Hospital, National & Kapodistrian University of Athens, Greece
| | | | - Nikolaos Markou
- Intensive Care Unit of Latseio Burns Centre, Thriasio General Hospital of Elefsina, Greece
| | - Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University Hospital, National & Kapodistrian Uni-versity of Athens, Greece
| | - Christina Routsi
- First Department of Intensive Care, School of Medicine, National & Kapodistrian University of Athens, Evangelismos General Hospital, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, National & Kapodistrian Uni-versity of Athens, Greece
| | - Stijn Blot
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Internal Medicine & Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Trápaga MR, Poester VR, Basso RP, Blan BDS, Munhoz LS, Pasqualotto AC, Werner TDF, Figurelli ML, Stevens DA, von Groll A, Xavier MO. Aspergillosis in Critically Ill Patients with and Without COVID-19 in a Tertiary Hospital in Southern Brazil. Mycopathologia 2024; 189:48. [PMID: 38847987 DOI: 10.1007/s11046-024-00862-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/18/2024] [Indexed: 06/20/2024]
Abstract
The impact of invasive pulmonary aspergillosis (IPA) on non-neutropenic critically ill patients in intensive care units (ICU) has been demonstrated in recent decades. Furthermore, after the start of the COVID-19 pandemic, COVID-19 associated with pulmonary aspergillosis (CAPA) has become a major concern in ICUs. However, epidemiological data from different regions are scarce. We evaluated the prevalence and clinical-epidemiological data of IPA in patients with COVID-19 requiring mechanical ventilation (MV) in the ICU ("severe COVID-19") and non-COVID ICU patients in MV of a tertiary hospital in the southern region of Brazil. Eighty-seven patients admitted between June 2020 and August 2022 were included; 31 with severe COVID-19. For the diagnosis of IPA or CAPA, algorithms including host factors and mycological criteria (positive culture for Aspergillus spp., immunoassay for galactomannan detection, and/or qPCR) were utilized. The overall incidence of IPA and CAPA in our ICU was 73 cases/1000 ICU hospitalizations. Aspergillosis occurred in 13% (4/31) of the COVID-19 patients, and in 16% (9/56) of the critically ill patients without COVID-19, with mortality rates of 75% (3/4) and 67% (6/9), respectively. Our results highlight the need for physicians enrolled in ICU care to be aware of aspergillosis and for more access of the patients to sensitive and robust diagnostic tests by biomarkers detection.
Collapse
Affiliation(s)
- Mariana Rodrigues Trápaga
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Vanice Rodrigues Poester
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Rossana Patrícia Basso
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Hospital Universitário Dr. Miguel Riet Correa Jr., Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Bianca Dos Santos Blan
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Lívia Silveira Munhoz
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Alessandro C Pasqualotto
- Laboratório de Biologia Molecular, Santa Casa de Misericórdia, Porto Alegre, RS, Brazil
- Programa de Pós-Graduação em Patologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brazil
| | - Talita da Fontoura Werner
- Hospital Universitário Dr. Miguel Riet Correa Jr., Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Maria Letícia Figurelli
- Hospital Universitário Dr. Miguel Riet Correa Jr., Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA, USA
| | - Andrea von Groll
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
- Núcleo de Pesquisa em Microbiologia Médica, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil
| | - Melissa Orzechowski Xavier
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
- Laboratório de Micologia, Faculdade de Medicina, Universidade Federal do Rio Grande, Rio Grande, RS, Brazil.
| |
Collapse
|
3
|
Muthu V, Agarwal R, Rudramurthy SM, Thangaraju D, Shevkani MR, Patel AK, Shastri PS, Tayade A, Bhandari S, Gella V, Savio J, Madan S, Hallur V, Maturu VN, Srinivasan A, Sethuraman N, Sibia RPS, Pujari S, Mehta R, Singhal T, Saxena P, Gupta V, Nagvekar V, Prayag P, Patel D, Xess I, Savaj P, Sehgal IS, Panda N, Rajagopal GD, Parwani RS, Patel K, Deshmukh A, Vyas A, Gandra RR, Sistla SK, Padaki PA, Ramar D, Panigrahi MK, Sarkar S, Rachagulla B, Vallandaramam P, Premachandran KP, Pawar S, Gugale P, Hosamani P, Dutt SN, Nair S, Kalpakkam H, Badhwar S, Kompella KK, Singla N, Navlakhe M, Prayag A, Singh G, Dhakecha P, Chakrabarti A. Prevalence of co-existent COVID-19-associated pulmonary aspergillosis (CAPA) and its impact on early mortality in patients with COVID-19-associated pulmonary mucormycosis (CAPM). Mycoses 2024; 67:e13745. [PMID: 38767273 DOI: 10.1111/myc.13745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024]
Abstract
BACKGROUND Data on mixed mould infection with COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated pulmonary mucormycosis (CAPM) are sparse. OBJECTIVES To ascertain the prevalence of co-existent CAPA in CAPM (mixed mould infection) and whether mixed mould infection is associated with early mortality (≤7 days of diagnosis). METHODS We retrospectively analysed the data collected from 25 centres across India on COVID-19-associated mucormycosis. We included only CAPM and excluded subjects with disseminated or rhino-orbital mucormycosis. We defined co-existent CAPA if a respiratory specimen showed septate hyphae on smear, histopathology or culture grew Aspergillus spp. We also compare the demography, predisposing factors, severity of COVID-19, and management of CAPM patients with and without CAPA. Using a case-control design, we assess whether mixed mould infection (primary exposure) were associated with early mortality in CAPM. RESULTS We included 105 patients with CAPM. The prevalence of mixed mould infection was 20% (21/105). Patients with mixed mould infection experienced early mortality (9/21 [42.9%] vs. 15/84 [17.9%]; p = 0.02) and poorer survival at 6 weeks (7/21 [33.3] vs. 46/77 [59.7%]; p = 0.03) than CAPM alone. On imaging, consolidation was more commonly encountered with mixed mould infections than CAPM. Co-existent CAPA (odds ratio [95% confidence interval], 19.1 [2.62-139.1]) was independently associated with early mortality in CAPM after adjusting for hypoxemia during COVID-19 and other factors. CONCLUSION Coinfection of CAPA and CAPM was not uncommon in our CAPM patients and portends a worse prognosis. Prospective studies from different countries are required to know the impact of mixed mould infection.
Collapse
Affiliation(s)
- Valliappan Muthu
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ritesh Agarwal
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | | | | | | | - Vishwanath Gella
- Asian Institute of Gastroenterology, Hyderabad, Telangana, India
| | - Jayanthi Savio
- St. John's Medical College and Hospital, Bangalore, Karnataka, India
| | - Surabhi Madan
- Care Institute of Medical Sciences, Ahmedabad, Gujarat, India
| | | | | | | | | | | | - Sanjay Pujari
- Poona Hospital and Research Centre, Pune, Maharashtra, India
| | | | - Tanu Singhal
- Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, India
| | - Puneet Saxena
- Army Hospital (Research and Referral), New Delhi, India
| | | | | | | | - Dharmesh Patel
- City Clinic and Bhailal Amin General Hospital, Vadodara, Gujarat, India
| | | | - Pratik Savaj
- Institute of Infectious Disease and Critical Care Hospital, Surat, Gujarat, India
| | | | - Naresh Panda
- Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | | | | | - Aruna Vyas
- Sawai Man Singh Medical College, Jaipur, Rajasthan, India
| | | | | | | | - Dharshni Ramar
- Care Institute of Medical Sciences, Ahmedabad, Gujarat, India
| | | | - Saurav Sarkar
- All India Institute of Medical Science Bhubaneswar, Odisha, India
| | | | | | | | - Sunil Pawar
- Government Medical College, Patiala, Punjab, India
| | - Piyush Gugale
- Poona Hospital and Research Centre, Pune, Maharashtra, India
| | | | | | - Satish Nair
- Apollo Hospitals, Bengaluru, Karnataka, India
| | | | - Sanjiv Badhwar
- Kokilaben Dhirubhai Ambani Hospital and Medical Research Institute, Mumbai, India
| | | | | | | | | | | | - Poorvesh Dhakecha
- Institute of Infectious Disease and Critical Care Hospital, Surat, Gujarat, India
| | | |
Collapse
|
4
|
Iacovelli A, Oliva A, Mirabelli FM, Giannone S, Laguardia M, Morviducci M, Nicolardi ML, Repaci E, Sanzari MT, Leanza C, Raponi G, Mastroianni C, Palange P. Risk factors for COVID-19 associated pulmonary aspergillosis and outcomes in patients with acute respiratory failure in a respiratory sub-intensive care unit. BMC Infect Dis 2024; 24:392. [PMID: 38605300 PMCID: PMC11007928 DOI: 10.1186/s12879-024-09283-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
BACKGROUND COVID-19-associated pulmonary aspergillosis (CAPA) is burdened by high mortality. Data are lacking about non-ICU patients. Aims of this study were to: (i) assess the incidence and prevalence of CAPA in a respiratory sub-intensive care unit, (ii) evaluate its risk factors and (iii) impact on in-hospital mortality. Secondary aims were to: (i) assess factors associated to mortality, and (ii) evaluate significant features in hematological patients. MATERIALS AND METHODS This was a single-center, retrospective study of COVID-19 patients with acute respiratory failure. A cohort of CAPA patients was compared to a non-CAPA cohort. Among patients with CAPA, a cohort of hematological patients was further compared to another of non-hematological patients. RESULTS Three hundred fifty patients were included in the study. Median P/F ratio at the admission to sub-intensive unit was 225 mmHg (IQR 155-314). 55 (15.7%) developed CAPA (incidence of 5.5%). Eighteen had probable CAPA (37.3%), 37 (67.3%) possible CAPA and none proven CAPA. Diagnosis of CAPA occurred at a median of 17 days (IQR 12-31) from SARS-CoV-2 infection. Independent risk factors for CAPA were hematological malignancy [OR 1.74 (95%CI 0.75-4.37), p = 0.0003], lymphocytopenia [OR 2.29 (95%CI 1.12-4.86), p = 0.02], and COPD [OR 2.74 (95%CI 1.19-5.08), p = 0.014]. Mortality rate was higher in CAPA cohort (61.8% vs 22.7%, p < 0.0001). CAPA resulted an independent risk factor for in-hospital mortality [OR 2.92 (95%CI 1.47-5.89), p = 0.0024]. Among CAPA patients, age > 65 years resulted a predictor of mortality [OR 5.09 (95% CI 1.20-26.92), p = 0.035]. No differences were observed in hematological cohort. CONCLUSION CAPA is a life-threatening condition with high mortality rates. It should be promptly suspected, especially in case of hematological malignancy, COPD and lymphocytopenia.
Collapse
Affiliation(s)
- Alessandra Iacovelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy.
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Flavio Marco Mirabelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Silvia Giannone
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Marianna Laguardia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Matteo Morviducci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Maria Luisa Nicolardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Emma Repaci
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Maria Teresa Sanzari
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| | - Cristiana Leanza
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Giammarco Raponi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Claudio Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Paolo Palange
- Department of Public Health and Infectious Diseases, Sapienza University of Rome Italy Pulmonology Respiratory and Critical Care Unit, Policlinico Umberto I Hospital Rome, Rome, Italy
| |
Collapse
|
5
|
Bassetti M, Giacobbe DR, Agvald-Ohman C, Akova M, Alastruey-Izquierdo A, Arikan-Akdagli S, Azoulay E, Blot S, Cornely OA, Cuenca-Estrella M, de Lange DW, De Rosa FG, De Waele JJ, Dimopoulos G, Garnacho-Montero J, Hoenigl M, Kanj SS, Koehler P, Kullberg BJ, Lamoth F, Lass-Flörl C, Maertens J, Martin-Loeches I, Muñoz P, Poulakou G, Rello J, Sanguinetti M, Taccone FS, Timsit JF, Torres A, Vazquez JA, Wauters J, Asperges E, Cortegiani A, Grecchi C, Karaiskos I, Le Bihan C, Mercier T, Mortensen KL, Peghin M, Rebuffi C, Tejada S, Vena A, Zuccaro V, Scudeller L, Calandra T. Invasive Fungal Diseases in Adult Patients in Intensive Care Unit (FUNDICU): 2024 consensus definitions from ESGCIP, EFISG, ESICM, ECMM, MSGERC, ISAC, and ISHAM. Intensive Care Med 2024; 50:502-515. [PMID: 38512399 PMCID: PMC11018656 DOI: 10.1007/s00134-024-07341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/31/2024] [Indexed: 03/23/2024]
Abstract
PURPOSE The aim of this document was to develop standardized research definitions of invasive fungal diseases (IFD) in non-neutropenic, adult patients without classical host factors for IFD, admitted to intensive care units (ICUs). METHODS After a systematic assessment of the diagnostic performance for IFD in the target population of already existing definitions and laboratory tests, consensus definitions were developed by a panel of experts using the RAND/UCLA appropriateness method. RESULTS Standardized research definitions were developed for proven invasive candidiasis, probable deep-seated candidiasis, proven invasive aspergillosis, probable invasive pulmonary aspergillosis, and probable tracheobronchial aspergillosis. The limited evidence on the performance of existing definitions and laboratory tests for the diagnosis of IFD other than candidiasis and aspergillosis precluded the development of dedicated definitions, at least pending further data. The standardized definitions provided in the present document are aimed to speed-up the design, and increase the feasibility, of future comparative research studies.
Collapse
Affiliation(s)
- Matteo Bassetti
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy.
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy.
| | - Daniele R Giacobbe
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | - Christina Agvald-Ohman
- Anaesthesiology and Intensive Care, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Murat Akova
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Infecciosas-CIBERINFEC, Madrid, Spain
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Elie Azoulay
- Université de Paris, Paris, France
- Service de Médecine Intensive Et Réanimation, Hôpital Saint-Louis, AP-HP, Paris, France
| | - Stijn Blot
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Oliver A Cornely
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
- German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany
| | - Manuel Cuenca-Estrella
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Dylan W de Lange
- Department of Intensive Care Medicine, University Medical Center, University Utrecht, Utrecht, The Netherlands
| | - Francesco G De Rosa
- Department of Medical Sciences, Infectious Diseases, University of Turin, Turin, Italy
| | - Jan J De Waele
- Department of Critical Care Medicine, Ghent University Hospital, Ghent, Belgium
| | - George Dimopoulos
- Department of Critical Care, University Hospital Attikon, Attikon Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
- Translational Mycology Working Group, ECMM Excellence Center for Clinical Mycology, Medical University of Graz, Graz, Austria
| | - Souha S Kanj
- Division of Infectious Diseases, and Center for Infectious Diseases Research, American University of Beirut Medical Center, Beirut, Lebanon
| | - Philipp Koehler
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Medical Faculty and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Bart J Kullberg
- Department of Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frédéric Lamoth
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Service of Immunology and Allergy and Center of Human Immunology Lausanne, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Ignacio Martin-Loeches
- Department of Intensive Care Medicine, Multidisciplinary Intensive Care Research Organization (MICRO), St James' Hospital, Dublin, Ireland
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
- Medicine Department, Faculty of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Garyphallia Poulakou
- Third Department of Internal Medicine, School of Medicine, Sotiria General Hospital, National and Kapodistrian University, Athens, Greece
| | - Jordi Rello
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
- Clinical Research in the ICU, CHU Nimes, Universite de Nimes-Montpellier, Nimes, France
- Medicine Department, Universitat Internacional de Catalunya (UIC), Sant Cugat, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio E Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Fabio S Taccone
- Department of Intensive Care, Hôpital Universitaire de Bruxelles (HUB), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Jean-François Timsit
- Medical and Infectious Diseases Intensive Care Unit, AP-HP, Bichat Claude Bernard University Hospital, Paris, France
- IAME UMR 1137, Université Paris-Cité, Paris, France
| | - Antoni Torres
- Department of Pneumology, Hospital Clinic of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain
- Biomedical Research Networking Centres in Respiratory Diseases (CIBERES), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jose A Vazquez
- Department of Medicine/Division of Infectious Disease, Medical College of Georgia/Augusta University, Augusta, GA, USA
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, Louvain, Belgium
| | - Erika Asperges
- Infectious Diseases Unit, IRCCS San Matteo, Pavia, Italy
| | - Andrea Cortegiani
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, Palermo, Italy
- Department of Anesthesia Intensive Care and Emergency, University Hospital Policlinico Paolo Giaccone, Palermo, Italy
| | - Cecilia Grecchi
- Malattie Infettive, Azienda Socio Sanitaria Territoriale (ASST) di Lodi, Lodi, Italy
| | - Ilias Karaiskos
- 1st Department of Internal Medicine-Infectious Diseases, Hygeia General Hospital, Athens, Greece
| | - Clément Le Bihan
- Saint Eloi Department of Anesthesiology and Critical Care Medicine, Montpellier University Health Care Center, Montpellier, France
| | - Toine Mercier
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Louvain, Belgium
- Department of Hematology, University Hospitals Leuven, Louvain, Belgium
| | - Klaus L Mortensen
- Department of Medicine, Regional Hospital West Jutland, Herning, Denmark
| | - Maddalena Peghin
- Infectious and Tropical Diseases Unit, Department of Medicine and Surgery, University of Insubria-ASST-Sette Laghi, Varese, Italy
| | - Chiara Rebuffi
- Scientific Direction, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Sofia Tejada
- Clinical Research/Epidemiology in Pneumonia and Sepsis (CRIPS), Vall d'Hebron Institut of Research (VHIR), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Vena
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Infectious Diseases Unit, IRCCS Ospedale Policlinico San Martino, L.go R. Benzi 10, 16132, Genoa, Italy
| | | | - Luigia Scudeller
- Research and Innovation Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Thierry Calandra
- Service of Immunology and Allergy and Center of Human Immunology Lausanne, Department of Medicine, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Shekhova E, Salazar F, Da Silva Dantas A, Chakraborty T, Wooding EL, White PL, Warris A. Age difference of patients with and without invasive aspergillosis: a systematic review and meta-analysis. BMC Infect Dis 2024; 24:220. [PMID: 38373908 PMCID: PMC10875810 DOI: 10.1186/s12879-024-09109-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND Invasive Aspergillosis (IA) is a life-threatening fungal disease with significant mortality rates. Timely diagnosis and treatment greatly enhance patient outcomes. This study aimed to explore the association between patient age and the development of IA, as well as the potential implications for risk stratification strategies. METHODS We searched National Center for Biotechnology Information (NCBI) databases for publications until October 2023 containing age characteristics of patients with and without IA. A random-effects model with the application of inverse-variance weighting was used to pool reported estimates from each study, and meta-regression and subgroup analyses were utilized to assess sources of heterogeneity. RESULTS A systematic review was conducted, resulting in the inclusion of 55 retrospective observational studies with a total of 13,983 patients. Meta-analysis revealed that, on average, patients with IA were approximately two and a half years older (95% Confidence Interval [CI] 1.84-3.31 years; I2 = 26.1%) than those without the disease (p < 0.0001). No significant moderators could explain the observed heterogeneity in age difference. However, subgroup analysis revealed that age differences were more pronounced within particular patient groups compared to others. For example, patients with and without IA who had primary severe lung infections exhibited a greater difference in mean age than other patient cohorts. CONCLUSIONS Further research, such as individual patient data meta-analysis, is necessary to better understand the potential relationship between increasing age and the likelihood of IA. Improved risk stratification strategies based on patient age could potentially enhance the early detection and treatment of IA, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Elena Shekhova
- Medical Research Council Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.
| | - Fabián Salazar
- Medical Research Council Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | | | - Tanmoy Chakraborty
- Medical Research Council Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Eva L Wooding
- Medical Research Council Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Royal Devon and Exeter Hospital, Exeter, EX2 5DW, UK
| | - P Lewis White
- Public Health Wales Microbiology Cardiff, Cardiff University, UHW, Cardiff, UK
- Centre for Trials Research, Division of Infection and Immunity, Cardiff University, UHW, Cardiff, UK
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
7
|
Khodavaisy S, Sarrafnia H, Abdollahi A. Outcomes of Patients with COVID-19 and Fungal Coinfections: A Systematic Review and Meta-Analysis Study. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:136-147. [PMID: 39118795 PMCID: PMC11304463 DOI: 10.30699/ijp.2024.2010087.3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/16/2023] [Indexed: 08/10/2024]
Abstract
Background & Objective Fungal co-infections increase the incidence and mortality of viral respiratory tract infections. This study systematically reviews and conducts a meta-analysis to evaluate the prevalence of COVID-19 patients with fungal coinfections. The aim is to provide a concise overview of the impact of these infections on patient outcomes especially association with risk of mortality, informing future research and optimizing patient management strategies. Methods To identify relevant studies on COVID-19 patients, we conducted a systematic search of databases from the beginning of the year until July 2023, including fungal co-infections, mortality, and sequelae. Eligibility criteria were developed using the PICO framework, and data extraction was carried out separately by two authors using standard techniques. Statistical analysis was performed using the correlation model and differences between studies were evaluated using the I2 test. R and RStudio were used for statistical analysis and visualization. Results We initially identified 6,764 studies, and after checking for equivalence and consistency, 41 studies were included in the final analysis. The overall COVID-19 odds ratio for people who died from fungal infections was 2.65, indicating that patients infected with both COVID-19 and fungal infections had a higher risk of death compared to patients with COVID-19 alone. Specifically, COVID-19-associated pulmonary aspergillosis (CAPA) has a higher odds ratio of 3.36, while COVID-19-associated candidiasis (CAC) has an odds ratio of 1.84, and both are much more associated with death. However, coinfection of the fungus with other fungal species did not show a significant difference in the risk of mortality. Conclusion This study identified CAPA and CAC as the most common infections acquired in healthcare settings. Fungal coinfections may be associated with an increased risk of death in COVID-19 patients.
Collapse
Affiliation(s)
- Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research center for antibiotic stewardship and antimicrobial resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Sarrafnia
- Faculty of Biological Sciences, Islamic Azad University, Tehran-North Branch, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Gao CA, Markov NS, Pickens C, Pawlowski A, Kang M, Walter JM, Singer BD, Wunderink RG. An observational cohort study of bronchoalveolar lavage fluid galactomannan and Aspergillus culture positivity in patients requiring mechanical ventilation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24302392. [PMID: 38370841 PMCID: PMC10871379 DOI: 10.1101/2024.02.07.24302392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Rationale Critically ill patients who develop invasive pulmonary aspergillosis (IPA) have high mortality rates despite antifungal therapy. Diagnosis is difficult in these patients. Bronchoalveolar lavage (BAL) fluid galactomannan (GM) is a helpful marker of infection, although the optimal cutoff for IPA is unclear. We aimed to evaluate the BAL fluid GM and fungal culture results, demographics, and outcomes among a large cohort of mechanically ventilated patients with suspected pneumonia. Methods A single-center cohort study of patients enrolled in the Successful Clinical Response in Pneumonia Therapy (SCRIPT) study from June 2018 to March 2023. Demographics, BAL results, and outcomes data were extracted from the electronic health record and compared between groups of patients who grew Aspergillus on a BAL fluid culture, those who had elevated BAL fluid GM levels (defined as >0.5 or >0.8) but did not grow Aspergillus on BAL fluid culture, and those with neither. Results Of over 1700 BAL samples from 688 patients, only 18 BAL samples grew Aspergillus. Patients who had a BAL sample grow Aspergillus (n=15) were older (median 71 vs 62 years, p=0.023), had more days intubated (29 vs 11, p=0.002), and more ICU days (34 vs 15, p=0.002) than patients whose BAL fluid culture was negative for Aspergillus (n=672). The BAL fluid galactomannan level was higher from samples that grew Aspergillus on culture than those that did not (median ODI 7.08 vs 0.11, p<0.001), though the elevation of BAL fluid GM varied across BAL samples for patients who had serial sampling. Patients who grew Aspergillus had a similar proportion of underlying immunocompromise compared with the patients who did not, and while no statistically significant difference in overall unfavorable outcome, had longer duration of ventilation and longer ICU stays. Conclusions In this large cohort of critically ill patients with a high number of BAL samples with GM levels, we found a relatively low rate of Aspergillus growth. Patients who eventually grew Aspergillus had inconsistently elevated BAL fluid GM, and many patients with elevated BAL fluid GM did not grow Aspergillus. These data suggest that the pre-test probability of invasive pulmonary aspergillosis should be considered low in a general ICU population undergoing BAL evaluation to define the etiology of pneumonia. Improved scoring systems are needed to enhance pre-test probability for diagnostic test stewardship purposes.
Collapse
Affiliation(s)
- Catherine A. Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nikolay S. Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chiagozie Pickens
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anna Pawlowski
- Northwestern Medicine Enterprise Data Warehouse, Chicago, IL, USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - James M. Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
9
|
Dibos M, Haschka SJ, Abbassi R, Schneider J, Schmid RM, Rasch S, Lahmer T. Influence of a Structured Microbiological Endotracheal Monitoring Program on the Outcome of Critically Ill COVID-19 Patients: An Observational Study. J Clin Med 2023; 12:5622. [PMID: 37685689 PMCID: PMC10488947 DOI: 10.3390/jcm12175622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND In past influenza pandemics and the current COVID-19 pandemic, bacterial endotracheal superinfections are a well-known risk factor for higher morbidity and mortality. The goal of this study was to investigate the influence of a structured, objective, microbiological monitoring program on the prognosis of COVID-19 patients with mechanical ventilation. METHODS A structured microbiological monitoring program (at intubation, then every 3 days) included collection of endotracheal material. Data analysis focused on the spectrum of bacterial pathogens, mortality, as well as intensive care unit (ICU), hospital, and mechanical ventilation duration. RESULTS A total of 29% of the patients showed bacterial coinfection at the time of intubation, and within 48 h, 56% developed ventilator-associated pneumonia (VAP). Even though patients with VAP had significantly longer ICU, hospital, and mechanical ventilation durations, there was no significant difference in mortality between patients with VAP pneumonia and patients without bacterial infection. CONCLUSION VAP is a common complication in COVID-19 patients. In contrast to already published studies, in our study implementing a structured microbiological monitoring program, COVID-19 patients with bacterial coinfection or VAP did not show higher mortality. Thus, a standardized, objective, microbiological screening can help detect coinfection and ventilator-associated infections, refining anti-infective therapy and positively influencing patient outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tobias Lahmer
- Department of Internal Medicine II, School of Medicine, University Hospital Rechts der Isar, Technical University of Munich, Ismaninger Str. 22, 81675 Munich, Germany; (M.D.)
| |
Collapse
|
10
|
Influence of a structured microbiological endotracheal monitoring on the outcome of critically ill COVID-19 patients: an observational study.. [DOI: 10.21203/rs.3.rs-2436406/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Abstract
The full text of this preprint has been withdrawn by the authors due to author disagreement with the posting of the preprint. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.
Collapse
|
11
|
Piantoni A, Houard M, Piga G, Zebian G, Ruffier des Aimes S, Holik B, Wallet F, Rouzé A, Kreitmann L, Loiez C, Labreuche J, Nseir S. Relationship between COVID-19 and ICU-Acquired Bloodstream Infections Related to Multidrug-Resistant Bacteria. Antibiotics (Basel) 2023; 12:1105. [PMID: 37508201 PMCID: PMC10376231 DOI: 10.3390/antibiotics12071105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
A bloodstream infection (BSI) is a severe ICU-acquired infection. A growing proportion is caused by multidrug-resistant bacteria (MDRB). COVID-19 was reported to be associated with a high rate of secondary infections. However, there is a lack of data on the relationship between COVID-19 and the incidence of MDRB ICU-acquired BSI. The aim of this study was to evaluate the relationship between COVID-19 and ICU-acquired BSI related to MDRB. This retrospective study was conducted in a single-center ICU during a one-year period. All adult patients admitted for more than 48 h were included. The cumulative incidence of ICU-acquired BSI related to MDRB was estimated using the Kalbfleisch and Prentice method. The association of COVID-19 status with the risk of ICU-acquired BSI related to MDRB was assessed using cause-specific Cox's proportional hazard model. Among the 1320 patients included in the analysis, 497 (37.65%) had COVID-19. ICU-acquired BSI related to MDRB occurred in 50 patients (36 COVID patients (7%) and 14 non-COVID patients (1.6%)). Extended-spectrum beta-lactamase Enterobacteriacae (46%) and carbapenem-resistant Acinetobacter baumannii (30%) were the most commonly isolated MDRB. COVID-19 was significantly associated with a higher risk of MDRB ICU-acquired BSI (adjusted cHR 2.65 (1.25 to 5.59) for the whole study period). However, this relationship was only significant for the period starting at day 15 after ICU admission. ICU-acquired BSI related to MDRB was significantly associated with ICU mortality (HR (95%CI) 1.73 (1-3)), although COVID-19 had no significant impact on this association (p het 0.94). COVID-19 is significantly associated with an increased risk of ICU-acquired BSI related to MDRB, mainly during the period starting at day 15 after ICU admission.
Collapse
Affiliation(s)
- Antoine Piantoni
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | - Marion Houard
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | - Gaetan Piga
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | - Ghadi Zebian
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | | | - Bérénice Holik
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
| | - Frédéric Wallet
- CHU de Lille, Laboratoire de Bactériologie-Hygiène, Centre de Biologie Pathologie, F-59000 Lille, France
| | - Anahita Rouzé
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, F-59000 Lille, France
- CNRS, UMR 8576-UGSF, F-59000 Lille, France
- Inserm, U1285, F-59000 Lille, France
| | - Louis Kreitmann
- Centre for Antimicrobial Optimisation, Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0HS, UK
- ICU West, The Hammersmith Hospital, Du Cane Road, London W12 0HS, UK
| | - Caroline Loiez
- CHU de Lille, Laboratoire de Bactériologie-Hygiène, Centre de Biologie Pathologie, F-59000 Lille, France
| | - Julien Labreuche
- Department of Biostatistics, CHU de Lille, F-59000 Lille, France
| | - Saad Nseir
- CHU de Lille, Service de Médecine Intensive Réanimation, F-59000 Lille, France
- Inserm U1285, Université de Lille, CNRS, UMR 8576-UGSF, F-59000 Lille, France
- CNRS, UMR 8576-UGSF, F-59000 Lille, France
- Inserm, U1285, F-59000 Lille, France
| |
Collapse
|
12
|
Beltrame A, Stevens DA, Haiduven D. Mortality in ICU Patients with COVID-19-Associated Pulmonary Aspergillosis. J Fungi (Basel) 2023; 9:689. [PMID: 37367625 DOI: 10.3390/jof9060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
A review of 38 studies involving 1437 COVID-19 patients admitted to intensive care units (ICUs) with pulmonary aspergillosis (CAPA) was conducted to investigate whether mortality has improved since the pandemic's onset. The study found that the median ICU mortality was 56.8%, ranging from 30% to 91.8%. These rates were higher for patients admitted during 2020-2021 (61.4%) compared to 2020 (52.3%), and prospective studies found higher ICU mortality (64.7%) than retrospective ones (56.4%). The studies were conducted in various countries and used different criteria to define CAPA. The percentage of patients who received antifungal therapy varied across studies. These results indicate that the mortality rate among CAPA patients is a growing concern, mainly since there has been an overall reduction in mortality among COVID-19 patients. Urgent action is needed to improve prevention and management strategies for CAPA, and additional research is needed to identify optimal treatment strategies to reduce mortality rates among these patients. This study serves as a call to action for healthcare professionals and policymakers to prioritize CAPA, a serious and potentially life-threatening complication of COVID-19.
Collapse
Affiliation(s)
- Anna Beltrame
- College of Public Health, University of South Florida, Tampa, FL 33622, USA
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| | - Donna Haiduven
- College of Public Health, University of South Florida, Tampa, FL 33622, USA
| |
Collapse
|
13
|
Tsotsolis S, Kotoulas SC, Lavrentieva A. Invasive Pulmonary Aspergillosis in Coronavirus Disease 2019 Patients Lights and Shadows in the Current Landscape. Adv Respir Med 2023; 91:185-202. [PMID: 37218799 DOI: 10.3390/arm91030016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/17/2023] [Accepted: 04/30/2023] [Indexed: 05/24/2023]
Abstract
Invasive pulmonary aspergillosis (IPA) presents a known risk to critically ill patients with SARS-CoV-2; quantifying the global burden of IPA in SARS-CoV-2 is extremely challenging. The true incidence of COVID-19-associated pulmonary aspergillosis (CAPA) and the impact on mortality is difficult to define because of indiscriminate clinical signs, low culture sensitivity and specificity and variability in clinical practice between centers. While positive cultures of upper airway samples are considered indicative for the diagnosis of probable CAPA, conventional microscopic examination and qualitative culture of respiratory tract samples have quite low sensitivity and specificity. Thus, the diagnosis should be confirmed with serum and BAL GM test or positive BAL culture to mitigate the risk of overdiagnosis and over-treatment. Bronchoscopy has a limited role in these patients and should only be considered when diagnosis confirmation would significantly change clinical management. Varying diagnostic performance, availability, and time-to-results turnaround time are important limitations of currently approved biomarkers and molecular assays for the diagnosis of IA. The use of CT scans for diagnostic purposes is controversial due to practical concerns and the complex character of lesions presented in SARS-CoV-2 patients. The key objective of management is to improve survival by avoiding misdiagnosis and by initiating early, targeted antifungal treatment. The main factors that should be considered upon selection of treatment options include the severity of the infection, concomitant renal or hepatic injury, possible drug interactions, requirement for therapeutic drug monitoring, and cost of therapy. The optimal duration of antifungal therapy for CAPA is still under debate.
Collapse
Affiliation(s)
- Stavros Tsotsolis
- Medical School, Aristotle University of Thessaloniki, Leoforos Agiou Dimitriou, 54124 Thessaloniki, Greece
| | | | - Athina Lavrentieva
- 1st ICU, General Hospital of Thessaloniki "Georgios Papanikolaou", Leoforos Papanikolaou, 57010 Thessaloniki, Greece
| |
Collapse
|
14
|
Awad MT, Niwinski RM, Beran A, Tidwell C, Soubani AO. Tocilizumab and Corticosteroids Increase Risk of COVID-19-Associated Pulmonary Aspergillosis Development Among Critically Ill Patients. Am J Ther 2023; 30:e268-e274. [PMID: 37278708 DOI: 10.1097/mjt.0000000000001617] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Affiliation(s)
- Mohammed T Awad
- Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit, MI
| | | | - Azizullah Beran
- Division of Gastroenterology and Hepatology, Indiana University, Indianapolis, IN
| | - Chad Tidwell
- Internal Medicine Department, Wayne State University School of Medicine, Detroit, MI
| | - Ayman O Soubani
- Division of Pulmonary, Critical Care and Sleep Medicine, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
15
|
Pavone P, Russello G, Salati G, Corsini R, Salsi P, Vizzini L, Lombardini C, Spaggiari L, Besutti G, Menozzi V, Spadoni A, Facciolongo N, Piro R, Carretto E, Massari M. Active screening of COVID-19-associated pulmonary aspergillosis with serum beta-glucan and endotracheal aspirates galactomannan and fungal culture. Mycoses 2023; 66:219-225. [PMID: 36380646 DOI: 10.1111/myc.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Since February 2021 active screening of COVID-19-associated pulmonary aspergillosis (CAPA) has been implemented in our institution. OBJECTIVES To evaluate CAPA incidence in our centre and evaluate performance of our screening protocol. METHODS We screened once per week, collecting endotracheal aspirates for fungal culture and galactomannan (GM) and serum for 1,3-ß-D-glucan (BG). In case of positivity (GM more than 4.5, platelia assay, and/or BG >7 pg/ml, wako and/or positive fungal culture), second-level investigations were performed to pursue CAPA diagnosis according to ECMM/ISHAM criteria: bronchoalveolar lavage (BAL) fungal culture and GM, chest computed tomography (CT), serum GM. RESULTS A total of 102 patients were screened (median age 64 years, range 39-79; 28 (27.4%) females). Twenty-two patients were diagnosed with CAPA (21%). 12 patients were positive for serum BG, 17 patients were positive for endotracheal aspirates GM and 27 patients were positive for endotracheal aspirates fungal culture. Thirty-two BALs were performed, and 26 patients underwent CT chest. Following the second level investigations 61% of the patients with positive screening tests were diagnosed with CAPA. Serum BG above 20 pg/ml or positive serum GM were always associated with typical CT chest signs of aspergillosis. Compared with 1 single positive test, having 2 positive screening test was significantly more associated with CAPA diagnosis (p = .0004). CONCLUSIONS Active CAPA screening with serum 1,3-ß-D-glucan and endotracheal aspirates galactomannan and fungal cultures and consequent second level investigations led to high number of CAPA diagnosis. Combining more positive fungal biomarkers was more predictive of CAPA diagnosis.
Collapse
Affiliation(s)
- Paolo Pavone
- Infectious Disease, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Giuseppe Russello
- Microbiology, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Giovanni Salati
- Intensive Care, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Romina Corsini
- Infectious Disease, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Pierpaolo Salsi
- Intensive Care, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Loredana Vizzini
- Microbiology, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Cristina Lombardini
- Intensive Care, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Lucia Spaggiari
- Radiology, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Giulia Besutti
- Radiology, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Valentina Menozzi
- Infectious Disease, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Anna Spadoni
- Infectious Disease, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Nicola Facciolongo
- Pulmonology, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Roberto Piro
- Pulmonology, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Edoardo Carretto
- Microbiology, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| | - Marco Massari
- Infectious Disease, Azienda Unità Sanitaria Locale - IRCCS Tecnologie Avanzate e Modelli Assistenziali in Oncologia di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
16
|
Abstract
The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.
Collapse
Affiliation(s)
- Lena J Heung
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darin L Wiesner
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
17
|
Comparison of Multi-locus Genotypes Detected in Aspergillus fumigatus Isolated from COVID Associated Pulmonary Aspergillosis (CAPA) and from Other Clinical and Environmental Sources. J Fungi (Basel) 2023; 9:jof9030298. [PMID: 36983466 PMCID: PMC10056896 DOI: 10.3390/jof9030298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/27/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
Background: Aspergillus fumigatus is a saprophytic fungus, ubiquitous in the environment and responsible for causing infections, some of them severe invasive infections. The high morbidity and mortality, together with the increasing burden of triazole-resistant isolates and the emergence of new risk groups, namely COVID-19 patients, have raised a crescent awareness of the need to better comprehend the dynamics of this fungus. The understanding of the epidemiology of this fungus, especially of CAPA isolates, allows a better understanding of the interactions of the fungus in the environment and the human body. Methods: In the present study, the M3 markers of the STRAf assay were used as a robust typing technique to understand the connection between CAPA isolates and isolates from different sources (environmental and clinical-human and animal). Results: Of 100 viable isolates that were analyzed, 85 genotypes were found, 77 of which were unique. Some isolates from different sources presented the same genotype. Microsatellite genotypes obtained from A. fumigatus isolates from COVID+ patients were all unique, not being found in any other isolates of the present study or even in other isolates deposited in a worldwide database; these same isolates were heterogeneously distributed among the other isolates. Conclusions: Isolates from CAPA patients revealed high heterogeneity of multi-locus genotypes. A genotype more commonly associated with COVID-19 infections does not appear to exist.
Collapse
|
18
|
Martins-Santana L, Rezende CP, Rossi A, Martinez-Rossi NM, Almeida F. Addressing Microbial Resistance Worldwide: Challenges over Controlling Life-Threatening Fungal Infections. Pathogens 2023; 12:pathogens12020293. [PMID: 36839565 PMCID: PMC9961291 DOI: 10.3390/pathogens12020293] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 02/12/2023] Open
Abstract
Fungal infections are a serious global concern because of their ability to spread and colonize host tissues in immunocompromised individuals. Such infections have been frequently reported worldwide and are currently gaining clinical research relevance owing to their resistant character, representing a bottleneck in treating affected people. Resistant fungi are an emergent public health threat. The upsurge of such pathogens has led to new research toward unraveling the destructive potential evoked by these species. Some fungi-grouped into Candida, Aspergillus, and Cryptococcus-are causative agents of severe and systemic infections. They are associated with high mortality rates and have recently been described as sources of coinfection in COVID-hospitalized patients. Despite the efforts to elucidate the challenges of colonization, dissemination, and infection severity, the immunopathogenesis of fungal diseases remains a pivotal characteristic in fungal burden elimination. The struggle between the host immune system and the physiological strategies of the fungi to maintain cellular viability is complex. In this brief review, we highlight the relevance of drug resistance phenotypes in fungi of clinical significance, taking into consideration their physiopathology and how the scientific community could orchestrate their efforts to avoid fungal infection dissemination and deaths.
Collapse
Affiliation(s)
- Leonardo Martins-Santana
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Caroline Patini Rezende
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Nilce Maria Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
| | - Fausto Almeida
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-900, Brazil
- Correspondence:
| |
Collapse
|
19
|
Population Pharmacokinetics of Isavuconazole in Critical Care Patients with COVID-19-Associated Pulmonary Aspergillosis and Monte Carlo Simulations of High Off-Label Doses. J Fungi (Basel) 2023; 9:jof9020211. [PMID: 36836325 PMCID: PMC9960864 DOI: 10.3390/jof9020211] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Isavuconazole is a triazole antifungal agent recently recommended as first-line therapy for invasive pulmonary aspergillosis. With the COVID-19 pandemic, cases of COVID-19-associated pulmonary aspergillosis (CAPA) have been described with a prevalence ranging from 5 to 30%. We developed and validated a population pharmacokinetic (PKpop) model of isavuconazole plasma concentrations in intensive care unit patients with CAPA. Nonlinear mixed-effect modeling Monolix software were used for PK analysis of 65 plasma trough concentrations from 18 patients. PK parameters were best estimated with a one-compartment model. The mean of ISA plasma concentrations was 1.87 [1.29-2.25] mg/L despite prolonged loading dose (72 h for one-third) and a mean maintenance dose of 300 mg per day. Pharmacokinetics (PK) modeling showed that renal replacement therapy (RRT) was significantly associated with under exposure, explaining a part of clearance variability. The Monte Carlo simulations suggested that the recommended dosing regimen did not achieve the trough target of 2 mg/L in a timely manner (72 h). This is the first isavuconazole PKpop model developed for CAPA critical care patients underlying the need of therapeutic drug monitoring, especially for patients under RRT.
Collapse
|
20
|
Dubler S, Turan ÖC, Schmidt KD, rath PM, Verhasselt HL, Maier S, Skarabis A, Brenner T, Herbstreit F. Effect of Dexamethasone on the Incidence and Outcome of COVID-19 Associated Pulmonary Aspergillosis (CAPA) in Critically Ill Patients during First- and Second Pandemic Wave-A Single Center Experience. Diagnostics (Basel) 2022; 12:3049. [PMID: 36553055 PMCID: PMC9777363 DOI: 10.3390/diagnostics12123049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Superinfections with Aspergillus spp. in patients with Coronavirus disease 2019 (CAPA: COVID-19-associated pulmonary aspergillosis) are increasing. Dexamethasone has shown beneficial effects in critically ill COVID-19 patients. Whether dexamethasone increases the risk of CAPA has not been studied exclusively. Moreover, this retrospective study aimed to identify risk factors for a worse outcome in critically ill COVID-19 patients. Data from 231 critically ill COVID-19 patients with or without dexamethasone treatment from March 2020 and March 2021 were retrospectively analysed. Only 4/169 (6.5%) in the DEXA-group and 13/62 (7.7%) in the Non-DEXA group were diagnosed with probable CAPA (p = 0.749). Accordingly, dexamethasone was not identified as a risk factor for CAPA. Moreover, CAPA was not identified as an independent risk factor for death in multivariable analysis (p = 0.361). In contrast, elevated disease severity (as assessed by Sequential Organ Failure Assessment [SOFA]-score) and the need for organ support (kidney replacement therapy and extracorporeal membrane oxygenation [ECMO]) were significantly associated with a worse outcome. Therefore, COVID-19 treatment with dexamethasone did not increase the risk for CAPA. Moreover, adequately treated CAPA did not represent an independent risk factor for mortality. Accordingly, CAPA might reflect patients' severe disease state instead of directly influencing outcome.
Collapse
Affiliation(s)
- Simon Dubler
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Ömer Can Turan
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Karsten Daniel Schmidt
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Peter-michael rath
- Institute of Medical Microbiology, Essen Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Hedda-Luise Verhasselt
- Institute of Medical Microbiology, Essen Centre of Excellence in Clinical and Laboratory Mycology and Clinical Studies, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Sandra Maier
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Annabell Skarabis
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Frank Herbstreit
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| |
Collapse
|
21
|
Castro-Fuentes CA, Reyes-Montes MDR, Frías-De-León MG, Valencia-Ledezma OE, Acosta-Altamirano G, Duarte-Escalante E. Aspergillus-SARS-CoV-2 Coinfection: What Is Known? Pathogens 2022; 11:1227. [PMID: 36364979 PMCID: PMC9694759 DOI: 10.3390/pathogens11111227] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
COVID-19-associated pulmonary aspergillosis (CAPA) has had a high incidence. In addition, it has been associated with prolonged hospital stays, as well as several predisposing risk factors, such as fungal factors (nosocomial organism, the size of the conidia, and the ability of the Aspergillus spp. of colonizing the respiratory tract), environmental factors (remodeling in hospitals, use of air conditioning and negative pressure in intensive care units), comorbidities, and immunosuppressive therapies. In addition to these factors, SARS-CoV-2 per se is associated with significant dysfunction of the patient's immune system, involving both innate and acquired immunity, with reduced CD4+ and CD8+ T cell counts and cytokine storm. Therefore, this review aims to identify the factors influencing the fungus so that coinfection with SARS-CoV-2 can occur. In addition, we analyze the predisposing factors in the fungus, host, and the immune response alteration due to the pathogenicity of SARS-CoV-2 that causes the development of CAPA.
Collapse
Affiliation(s)
- Carlos Alberto Castro-Fuentes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - María del Rocío Reyes-Montes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - María Guadalupe Frías-De-León
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Omar E. Valencia-Ledezma
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Gustavo Acosta-Altamirano
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Esperanza Duarte-Escalante
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
22
|
Deng J, Li F, Zhang N, Zhong Y. Prevention and treatment of ventilator-associated pneumonia in COVID-19. Front Pharmacol 2022; 13:945892. [PMID: 36339583 PMCID: PMC9627032 DOI: 10.3389/fphar.2022.945892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 10/07/2022] [Indexed: 07/10/2024] Open
Abstract
Ventilator-associated pneumonia (VAP) is the most common acquired infection in the intensive care unit. Recent studies showed that the critical COVID-19 patients with invasive mechanical ventilation have a high risk of developing VAP, which result in a worse outcome and an increasing economic burden. With the development of critical care medicine, the morbidity and mortality of VAP remains high. Especially since the outbreak of COVID-19, the healthcare system is facing unprecedented challenges. Therefore, many efforts have been made in effective prevention, early diagnosis, and early treatment of VAP. This review focuses on the treatment and prevention drugs of VAP in COVID-19 patients. In general, prevention is more important than treatment for VAP. Prevention of VAP is based on minimizing exposure to mechanical ventilation and encouraging early release. There is little difference in drug prophylaxis from non-COVID-19. In term of treatment of VAP, empirical antibiotics is the main treatment, special attention should be paid to the antimicrobial spectrum and duration of antibiotics because of the existence of drug-resistant bacteria. Further studies with well-designed and large sample size were needed to demonstrate the prevention and treatment of ventilator-associated pneumonia in COVID-19 based on the specificity of COVID-19.
Collapse
Affiliation(s)
- Jiayi Deng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fanglin Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Hematology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ningjie Zhang
- Department of Blood Transfusion, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Radotra B, Challa S. Pathogenesis and Pathology of COVID-Associated Mucormycosis: What Is New and Why. CURRENT FUNGAL INFECTION REPORTS 2022; 16:206-220. [PMID: 36193101 PMCID: PMC9520103 DOI: 10.1007/s12281-022-00443-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 12/02/2022]
Abstract
Purpose of Review There is global increase in the incidence of mucormycosis. However, a sudden increase in the COVID-associated mucormycosis (CAM) was noted, particularly in India, during the second wave of the COVID-19 pandemic. The interplay of factors involved in the pathogenesis is complex. In this review, the influence of pre-existing disease, exaggerated risk factors, altered milieu due to COVID-19 itself and the consequences of its treatment on the host pathogen interactions leading to the disease and morphology of the fungus will be highlighted. Recent Findings Hyperglycemia, acidosis, available free iron, lowered host defenses, and the fungal virulence factors promote the growth of Mucorales. There is a high background prevalence of diabetes mellitus (DM) in India. Uncontrolled or undiagnosed DM, COVID-19 itself, and inappropriate administration of corticosteroids in high doses and for prolonged periods result in hyperglycemia. Diabetic ketoacidosis (DKA) and metabolic acidosis due to hypoxia or renal failure contribute to acidic pH and dissociate bound iron from serum proteins. The host defenses are lowered due to COVID-19-induced immune dysregulation, hyperglycemia itself, and administration of corticosteroids and immune suppressants for the treatment of COVID-19. The altered metabolic milieu in the local microenvironment of nose and paranasal sinuses (PNS) promotes specific interaction of glucose-regulated protein-78 (GRP-78) on host cells with spore coat protein homologue (CotH 3) on Mucorales resulting in rhino-orbito-cerebral mucormycosis (ROCM) as the predominant clinical form in CAM. The pathology is extensive soft tissue involvement with angioinvasion and perineural invasion. Melanized hyphae and sporangia were seen on histopathology, which is unique to CAM. While many factors favor the growth of Mucorales in CAM, hyperglycemia, hyperferritinemia, and administration of hyperbaric oxygen result in reactive oxygen species (ROS) and inadequate humidification results in dehydration. Melanization is possibly the adaptive and protective mechanism of Mucorales to escape the unfavorable conditions due to the treatment of COVID-19. Summary High background prevalence of DM, inappropriate administration of corticosteroids and immune dysregulation due to COVID-19 favor the growth of Mucorales in CAM. Melanization of Mucorales hyphae and sporangia on histopathology probably represent adaptive and protective mechanism due to the treatment with hyperbaric oxygen with inadequate humidification as well as the metabolic alterations.
Collapse
Affiliation(s)
- Bishan Radotra
- Department of Histopathology, Group “C” Departments, Postgraduate Institute of Medical Education & Research, Chandigarh, 160012 India
| | - Sundaram Challa
- Department of Pathology and Lab Medicine, Basavatarakam Indo-American Cancer Hospital & Research Institute, Hyderabad, Telangana State 50034 India
| |
Collapse
|
24
|
Ding L, Chen Y, Su N, Xu X, Yin J, Qiu J, Wang J, Zheng D. Comparison of acute respiratory distress syndrome in patients with COVID-19 and influenza A (H7N9) virus infection. Int J Infect Dis 2022; 122:593-598. [PMID: 35793755 PMCID: PMC9250702 DOI: 10.1016/j.ijid.2022.06.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVES We aimed to compared the clinical features of acute respiratory distress syndrome (ARDS) induced by COVID-19 and H7N9 virus infections. METHODS Clinical data of 100 patients with COVID-19 and 46 patients with H7N9 were retrospectively analyzed. RESULTS Elevated inflammatory indices and coagulation disorders were more common in COVID-19-ARDS group than in the H7N9-ARDS group. The median interval from illness onset to ARDS development was shorter in H7N9-ARDS. The PaO2/FiO2 level was lower in H7N9-ARDS, whereas the Sepsis-related Organ Failure Assessment score was higher in COVID-19-ARDS. The proportion of patients with disseminated intravascular coagulation and liver injury in COVID-19-ARDS and H7N9-ARDS was 45.5% versus 3.1% and 28.8% versus 50%, respectively (P <0.05). The mean interval from illness onset to death was shorter in H7N9-ARDS. A total of 59.1% patients with H7N9-ARDS died of refractory hypoxemia compared with 28.9% with COVID-19-ARDS (P = 0.014). Patients with COVID-19-ARDS were more likely to die of septic shock and multiple organ dysfunction compared with H7N9-ARDS (71.2% vs 36.4%, P = 0.005). CONCLUSION Patients with H7N9 were more susceptible to develop severe ARDS and showed a more acute disease course. COVID-19-ARDS was associated with severe inflammatory response and coagulation dysfunction, whereas liver injury was more common in H7N9-ARDS. The main causes of death between patients with the two diseases were different.
Collapse
Affiliation(s)
- Ling Ding
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Yikun Chen
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, 212001, China
| | - Nan Su
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xizhen Xu
- Division of Cardiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jingping Yin
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jun Qiu
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jiajia Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China,Corresponding author: Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Address: Pinghai Road No. 899, Suzhou 215000, China, Phone: +86-51267972108; fax: +86-51267972108
| | - Dong Zheng
- Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China,Corresponding author: Center of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Address: Pinghai Road No. 899, Suzhou 215000, China, Phone: +86-51267973327; fax: +86-51267973327
| |
Collapse
|
25
|
Antifungal therapy in the management of fungal secondary infections in COVID-19 patients: A systematic review and meta-analysis. PLoS One 2022; 17:e0271795. [PMID: 35901069 PMCID: PMC9333218 DOI: 10.1371/journal.pone.0271795] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 07/07/2022] [Indexed: 11/19/2022] Open
Abstract
Objectives The prevalence of fungal secondary infections among COVID-19 patients and efficacy of antifungal therapy used in such patients is still unknown. Hence, we conducted this study to find the prevalence of fungal secondary infections among COVID-19 patients and patient outcomes in terms of recovery or all-cause mortality following antifungal therapy (AFT) in such patients. Methods We performed a comprehensive literature search in PubMed®, Scopus®, Web of Sciences™, The Cochrane Library, ClinicalTrial.gov, MedRxiv.org, bioRxiv.org, and Google scholar to identify the literature that used antifungal therapy for the management fungal secondary infections in COVID-19 patients. We included case reports, case series, prospective & retrospective studies, and clinical trials. Mantel Haenszel random-effect model was used for estimating pooled risk ratio for required outcomes. Results A total of 33 case reports, 3 case series, and 21 cohort studies were selected for final data extraction and analysis. The prevalence of fungal secondary infections among COVID-19 patients was 28.2%. Azoles were the most commonly (65.1%) prescribed AFT. Study shows that high survival frequency among patients using AFT, received combination AFT and AFT used for >28 days. The meta-analysis showed, no significant difference in all-cause mortality between patients who received AFT and without AFT (p = 0.17), between types of AFT (p = 0.85) and the duration of AFT (p = 0.67). Conclusion The prevalence of fungal secondary infections among COVID-19 patients was 28.2%. The survival frequency was high among patients who used AFT for fungal secondary infections, received combination AFT and AFT used for >28 days. However, meta-analysis results found that all-cause mortality in COVID-19 patients with fungal secondary infections is not significantly associated with type and duration of AFT, mostly due to presence of confounding factors such as small number of events, delay in diagnosis of fungal secondary infections, presence of other co-infections and multiple comorbidities.
Collapse
|
26
|
Shishido AA, Mathew M, Baddley JW. Overview of COVID-19-Associated Invasive Fungal Infection. CURRENT FUNGAL INFECTION REPORTS 2022; 16:87-97. [PMID: 35846240 PMCID: PMC9274633 DOI: 10.1007/s12281-022-00434-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Purpose of Review Invasive fungal infections are a complication of COVID-19 disease. This article reviews literature characterizing invasive fungal infections associated with COVID-19. Recent Findings Multiple invasive fungal infections including aspergillosis, candidiasis, pneumocystosis, other non-Aspergillus molds, and endemic fungi have been reported in patients with COVID-19. Risk factors for COVID-19-associated fungal disease include underlying lung disease, diabetes, steroid or immunomodulator use, leukopenia, and malignancy. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) are the most common fungal infections described. However, there is variability in the reported incidences related to use of differing diagnostic algorithms. Summary Fungal pathogens are important cause of infection in patients with COVID-19, and the diagnostic strategies continue to evolve. Mortality in these patients is increased, and providers should operate with a high index of suspicion. Further studies will be required to elucidate the associations and pathogenesis of these diseases and best management and prevention strategies.
Collapse
Affiliation(s)
- Akira A. Shishido
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 USA
| | - Minu Mathew
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 USA
| | - John W. Baddley
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 USA
| |
Collapse
|
27
|
Lee R, Cho SY, Lee DG, Ahn H, Choi H, Choi SM, Choi JK, Choi JH, Kim SY, Kim YJ, Lee HJ. Risk factors and clinical impact of COVID-19-associated pulmonary aspergillosis: Multicenter retrospective cohort study. Korean J Intern Med 2022; 37:851-863. [PMID: 35611611 PMCID: PMC9271713 DOI: 10.3904/kjim.2022.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/30/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND/AIMS The risk factors and clinical impacts of coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) remain controversial, and no data have been reported in Korea. This study aimed to investigate the epidemiology and importance of CAPA diagnostic efforts and to identify the predictors of CAPA and the impacts on clinical outcomes. METHODS Between January 2020 and May 2021, data of severely to critically ill COVID-19 patients were extracted from seven hospitals of the Catholic Medical Center through a clinical data warehouse. Corticosteroid use was subcategorized into total cumulative dose, early 7-day dose, mean daily dose, and duration of use. RESULTS A total of 2,427 patients were screened, and 218 patients were included. CAPA was diagnosed in 4.6% (10/218) of all hospitalized and 11.2% (10/89) of intensive care unit patients. Total cumulative dose (over 1,000 mg as methylprednisolone) and daily high-dose corticosteroid use (over 60 mg/day) were independent predictors but not early 7-day high-dose corticosteroid use (over 420 mg/week) (odds ratio [OR], 1.731; 95% confidence interval [CI], 0.350 to 8.571) nor prolonged use (OR, 2.794; 95% CI, 0.635 to 13.928). In-hospital overall mortality was 11.9% (26 of 218). CAPA itself did not affect the outcome; rather, daily high-dose steroid use significantly increased the 30-day mortality (hazard ratio, 5.645; 95% CI, 1.225 to 26.091). CONCLUSION CAPA was not uncommon, especially in critically ill patients. Daily high-dose corticosteroid use was the predictor of CAPA and associated with high mortality rates. High-dose corticosteroids use after early inflammatory phase should be avoided, and active surveillance methods for CAPA are essential for those high-risk patients.
Collapse
Affiliation(s)
- Raeseok Lee
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Sung-Yeon Cho
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Dong-Gun Lee
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Hyojin Ahn
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Hyeah Choi
- Division of Infectious Diseases, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Su-Mi Choi
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul,
Korea
- Division of Infectious Diseases, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Jae-Ki Choi
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul,
Korea
- Division of Infectious Diseases, Department of Internal Medicine, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon,
Korea
| | - Jung-Hyun Choi
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul,
Korea
- Division of Infectious Diseases, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Shin Young Kim
- Division of Pulmonology, Department of Internal Medicine, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon,
Korea
| | - Youn Jeong Kim
- Division of Infectious Diseases, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Incheon,
Korea
| | - Hyo-Jin Lee
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul,
Korea
- Division of Infectious Diseases, Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu,
Korea
| |
Collapse
|
28
|
Avkan-Oğuz V, Çelİk M, Eren-Kutsoylu OÖ, Nazli A, Uğur YL, Taylan A, Ergan B, Irmak Ç, Duğral E, Özkütük AA. Fungal colonization and infections in patients with COVID-19 in intensive care units: A real-life experience at a tertiary-care hospital. Respir Med Res 2022; 82:100937. [PMID: 35792466 PMCID: PMC9249560 DOI: 10.1016/j.resmer.2022.100937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 01/10/2023]
Abstract
PURPOSE To evaluate the management of patients with COVID-19 in the intensive care units (ICUs) with fungal infection/colonization and to highlight diagnostic problems in these patients. METHODS We included all patients with a COVID-19 diagnosis who were aged ≥18 years and followed in the ICU for the first 8 months. Patient data were obtained from medical records. We compared the risk factors, laboratory data, and outcomes of patients with fungal infection/colonization. RESULTS A total of 118 patients (81 men and 37 women) were included. The mean age was 70.3 ± 14.8 (35-94) years. Of the patients, 79 (66.9%) patients were ≥65 years old. Fungal infection/colonization was detected in 39 (33.1%) patients. Fungi were isolated from 34 (28.8%) patients. Ten fungal species were isolated from 51 samples (the most common being Candida albicans). Three patients (2.5%) had proven candidemia. We observed two (1.7%) possible cases of COVID-19-associated pulmonary aspergillosis (CAPA). Eighteen patients (15.3%) underwent antifungal therapy. The risk of fungal infection/colonization increased as the duration of invasive mechanical ventilation increased. The fatality rate was 61.9% and increased with age and the use of mechanical ventilation. The fatality rate was 4.2-times-higher and the use of mechanical ventilation was 35.9-times-higher in the patients aged ≥65 years than in the patients aged <65 years. No relationship was found between fungal colonization/infection, antifungal treatment, and the fatality rate. CONCLUSION During the pandemic, approximately one-third of the patients in ICUs exhibited fungal infection/colonization. Candida albicans was the most common species of fungal infection as in the pre-pandemic area. Because of the cross-contamination risk, we performed diagnostic bronchoscopy and control thorax computed tomography during the ICU stay, and our patients mainly received empirical antifungal therapy.
Collapse
Affiliation(s)
- Vildan Avkan-Oğuz
- Dokuz Eylul University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Turkey.
| | - Muammer Çelİk
- Dokuz Eylul University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Turkey
| | - Oya Özlem Eren-Kutsoylu
- Dokuz Eylul University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Turkey
| | - Arzu Nazli
- Dokuz Eylul University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Turkey
| | - Yasin Levent Uğur
- Dokuz Eylul University Faculty of Medicine, Department of Anesthesiology and Reanimation, Turkey
| | - Abdullah Taylan
- Dokuz Eylul University Faculty of Medicine, Department of Radiology, Turkey
| | - Begüm Ergan
- Dokuz Eylul University Faculty of Medicine, Department of Pulmonary Diseases, Turkey
| | - Çağlar Irmak
- Dokuz Eylul University Faculty of Medicine, Department of Infectious Diseases and Clinical Microbiology, Turkey
| | - Esra Duğral
- Dokuz Eylul University Faculty of Medicine, Health Sciences Institute / Deputy Chief Physician, Turkey
| | - A Aydan Özkütük
- Dokuz Eylul University Faculty of Medicine, Department of Medical Microbiology, Turkey
| |
Collapse
|
29
|
Domán M, Bányai K. COVID-19-Associated Fungal Infections: An Urgent Need for Alternative Therapeutic Approach? Front Microbiol 2022; 13:919501. [PMID: 35756020 PMCID: PMC9218862 DOI: 10.3389/fmicb.2022.919501] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Secondary fungal infections may complicate the clinical course of patients affected by viral respiratory diseases, especially those admitted to intensive care unit. Hospitalized COVID-19 patients are at increased risk of fungal co-infections exacerbating the prognosis of disease due to misdiagnosis that often result in treatment failure and high mortality rate. COVID-19-associated fungal infections caused by predominantly Aspergillus and Candida species, and fungi of the order Mucorales have been reported from several countries to become significant challenge for healthcare system. Early diagnosis and adequate antifungal therapy is essential to improve clinical outcomes, however, drug resistance shows a rising trend highlighting the need for alternative therapeutic agents. The purpose of this review is to summarize the current knowledge on COVID-19-associated mycoses, treatment strategies and the most recent advancements in antifungal drug development focusing on peptides with antifungal activity.
Collapse
Affiliation(s)
- Marianna Domán
- Veterinary Medical Research Institute, Budapest, Hungary
| | - Krisztián Bányai
- Veterinary Medical Research Institute, Budapest, Hungary.,Department of Pharmacology and Toxicology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
30
|
Ullah N, Sepulcri C, Mikulska M. Isavuconazole for COVID-19-Associated Invasive Mold Infections. J Fungi (Basel) 2022; 8:674. [PMID: 35887431 PMCID: PMC9323932 DOI: 10.3390/jof8070674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022] Open
Abstract
Isavuconazole is a broad-spectrum antifungal drug recently approved as a first-line treatment for invasive aspergillosis and as a first or alternative treatment for mucormycosis. The purpose of this review was to report and discuss the use of isavuconazole for the treatment of COVID-19-associated aspergillosis (CAPA), and COVID-19-associated mucormycosis (CAM). Among all studies which reported treatment of CAPA, approximately 10% of patients were reportedly treated with isavuconazole. Considering 14 identified studies that reported the use of isavuconazole for CAPA, isavuconazole was used in 40% of patients (95 of 235 treated patients), being first-line monotherapy in over half of them. We identified six studies that reported isavuconazole use in CAM, either alone or in combination therapy. Overall, isavuconazole was used as therapy in 13% of treated CAM patients, frequently as combination or sequential therapy. The use of isavuconazole in CAPA and CAM is complicated by the challenge of achieving adequate exposure in COVID-19 patients who are frequently obese and hospitalized in the ICU with concomitant renal replacement therapy (RRT) or extracorporeal membrane oxygenation (ECMO). The presence of data on high efficacy in the treatment of aspergillosis, lower potential for drug-drug interactions (DDIs) and for subtherapeutic levels, and no risk of QT prolongation compared to other mold-active azoles, better safety profile than voriconazole, and the possibility of using an intravenous formulation in the case of renal failure are the advantages of using isavuconazole in this setting.
Collapse
Affiliation(s)
- Nadir Ullah
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (N.U.); (C.S.)
| | - Chiara Sepulcri
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (N.U.); (C.S.)
- Division of Infectious Diseases, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Malgorzata Mikulska
- Department of Health Sciences (DISSAL), University of Genova, 16132 Genova, Italy; (N.U.); (C.S.)
- Division of Infectious Diseases, Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
31
|
Hashim Z, Nath A, Khan A, Neyaz Z, Marak RSK, Areekkara P, Tiwari A, Srivastava S, Agarwal V, Saxena S, Tripathy N, Azim A, Gupta M, Mishra DP, Mishra P, Singh RK, Gupta D, Gupta A, Sanjeev OP, Ghatak T, Ghoshal U, Dhiman RK, Tripathy NK. New Insights into Development and Mortality of COVID-19-Associated Pulmonary Aspergillosis in a Homogenous Cohort of 1161 Intensive Care Patients. Mycoses 2022; 65:1010-1023. [PMID: 35716344 PMCID: PMC9349548 DOI: 10.1111/myc.13485] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND COVID-19-associated pulmonary aspergillosis (CAPA) has been widely reported but homogenous large cohort studies are needed to gain real-world insights about the disease. METHODS We collected clinical and laboratory data of 1161 patients hospitalized at our Institute from March 2020 to August 2021, defined their CAPA pathology, and analyzed the data of CAPA/non-CAPA and deceased/survived CAPA patients using univariable and multivariable models. RESULTS The overall prevalence and mortality of CAPA in our homogenous cohort of 1161 patients was 6.4% and 47.3%, respectively. The mortality of CAPA was higher than that of non-CAPA patients (Hazard ratio: 1.8 [95% confidence interval: 1.1-2.8]). Diabetes (odds ratio 1.92 [1.15-3.21]); persistent fever (2.54 [1.17- 5.53]); hemoptysis (7.91[4.45-14.06]); and lung lesions of cavitation (8.78 [2.27-34.03]), consolidation (9.06 [2.03-40.39]), and nodules (8.26 [2.39-28.58]) were associated with development of CAPA by multivariable analysis. Acute respiratory distress syndrome (ARDS) (2.68 [1.09-6.55]), a high computed tomography score index (OR 1.18 [1.08-1.29]; p<0.001), and pulse glucocorticoid treatment (HR 4.0 [1.3-9.2]) were associated with mortality of the disease. Whereas neutrophilic leukocytosis (development: 1.09 [1.03-1.15]; mortality: 1.17 [1.08-1.28]) and lymphopenia (development: 0.68 [0.51-0.91]; mortality: 0.40 [0.20-0.83]) were associated with the development as well as mortality of CAPA. CONCLUSION We observed a low but likely underestimated prevalence of CAPA in our study. CAPA is a disease with highly mortality and diabetes is a significant factor for its development while ARDS and pulse glucocorticoid treatment are significant factors for its mortality. The cellular immune dysregulation may have a central role in CAPA from its development to mortality.
Collapse
Affiliation(s)
- Zia Hashim
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Ajmal Khan
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Zafar Neyaz
- Department of Radiodiagnosis, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Rungmei S K Marak
- Department of Microbiology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Prasant Areekkara
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Atul Tiwari
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Shivani Srivastava
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Swati Saxena
- Department of Molecular Medicine, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Nidhi Tripathy
- Department of Endocrinology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Afzal Azim
- Department of Critical Care Medicine, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Durga Prasanna Mishra
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Prabhakar Mishra
- Department of Biostatistics and Health Informatics, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Ratender Kumar Singh
- Department of Emergency Medicine, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Devender Gupta
- Department of Anesthesiology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Anshul Gupta
- Department of Hematology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Om Prakash Sanjeev
- Department of Emergency Medicine, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Tanmoy Ghatak
- Department of Emergency Medicine, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Ujjala Ghoshal
- Department of Microbiology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | | | | |
Collapse
|
32
|
Schroeder M, Giese M, Wijaya C, Winterland S, Nuechtern A, Grensemann J, Matthews H, Wichmann D, Stamm J, Rohde H, Christner M, Ozga AK, Steurer S, Heinemann A, Simon M, Fischer M, Kluge S. Comparison of four diagnostic criteria for invasive pulmonary aspergillosis - a diagnostic accuracy study in critically ill patients. Mycoses 2022; 65:824-833. [PMID: 35661434 DOI: 10.1111/myc.13478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND In the absence of lung biopsy there are various algorithms for the diagnosis of invasive pulmonary aspergillosis in critically ill patients that rely on clinical signs, underlying conditions, radiological features, and mycology. The aim of the present study was to compare four diagnostic algorithms in their ability to differentiate between probable IPA (i.e. requiring treatment) and colonization. METHODS For this diagnostic accuracy study, we included a mixed ICU population with a positive Aspergillus culture from respiratory secretions and applied four different diagnostic algorithms to them. We compared agreement among the four algorithms. In a subgroup of patients with lung tissue histopathology available we determined the sensitivity and specificity of the single algorithms. RESULTS A total number of 684 critically ill patients (69% medical/31% surgical) were included between 2005 and 2020. Overall, 79% (n=543) of patients fulfilled the criteria for probable IPA according to at least one diagnostic algorithm. Only 4% of patients (n=29) fulfilled the criteria for probable IPA according to all four algorithms. Agreement among the four diagnostic criteria was low (Cohen's kappa 0.07-0.29). From 85 patients with histopathological examination of lung tissue 40% (n=34) had confirmed IPA. The new EORTC/MSGERC ICU working group criteria had high specificity (0.59 [0.41-0.75]) and sensitivity (0.73 [0.59-0.85]). CONCLUSIONS In a cohort of mixed ICU patients, the agreement among four algorithms for the diagnosis of IPA was low. Although improved by the latest diagnostic criteria, the discrimination of invasive fungal infection from Aspergillus colonization in critically ill patients remains challenging and require further optimization.
Collapse
Affiliation(s)
- Maria Schroeder
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Giese
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles Wijaya
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sarah Winterland
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Annika Nuechtern
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Joern Grensemann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Matthews
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominic Wichmann
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johannes Stamm
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Holger Rohde
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Christner
- Department of Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ann-Kathrin Ozga
- Center for Experimental Medicine, Institute of Medical Biometry and Epidemiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Steurer
- Center for Diagnostics, Institute of, Pathology with the Sections Molecular Pathology and Cytopathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Axel Heinemann
- Center for Diagnostics, Institute of Legal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcel Simon
- Department of Respiratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Fischer
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kluge
- Department of Intensive Care Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
33
|
Fakhruddin KS, Samaranayake LP, Buranawat B, Ngo H. Oro-facial mucocutaneous manifestations of Coronavirus Disease-2019 (COVID-19): A systematic review. PLoS One 2022; 17:e0265531. [PMID: 35648785 PMCID: PMC9159624 DOI: 10.1371/journal.pone.0265531] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 03/04/2022] [Indexed: 12/26/2022] Open
Abstract
We reviewed the prevalence, the likely aetiopathogenesis, and the management of oro-facial mucocutaneous manifestations of Coronavirus Disease-2019 (COVID-19), caused by the Severe Acute Respiratory Syndrome Coronavirus -2 (SARS-CoV-2). English language manuscripts searched using standard databases yielded 26 articles that met the inclusion criteria. In total, 169 cases (75 females; 94 males) from 15 countries with a spectrum of COVID-19 severities were reviewed. Gustatory perturbations were prevalent in over 70%. Mucocutaneous manifestations were reported predominantly on the tongue, palate, buccal mucosa, gingivae, and lips and included ulcers, blisters, erosions, papillary hyperplasia, macules, glossitis, and mucositis. Ulcerative lesions, present in over 50 percent, were the most common oral manifestation. Lesions resembling candidal infections, with burning mouth, were prevalent in 19%. Petechiae and angina bullosa were generally seen, subsequent to COVID-19 therapies, in 11%. Ulcerated, necrotic gingivae were documented in severely ill with poor oral hygiene. These manifestations, present across the COVID-19 disease spectrum, were commonly associated with the immunosuppressed state and/ or the concurrent antimicrobial/steroidal therapies. In summary, a wide variety of orofacial mucocutaneous lesions manifest in COVID-19. They are likely to be secondary to the disease-associated immune impairment and/or pharmaco-therapy rather than a direct result of SARS-CoV-2 infection per se.
Collapse
Affiliation(s)
| | | | - Borvornwut Buranawat
- Department of Periodontics and Implant Dentistry, Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
| | - Hien Ngo
- Dental School, University of Western Australia, Nedlands, WA, Australia
| |
Collapse
|
34
|
Vitale RG, Afeltra J, Seyedmousavi S, Giudicessi SL, Romero SM. An overview of COVID-19 related to fungal infections: what do we know after the first year of pandemic? Braz J Microbiol 2022; 53:759-775. [PMID: 35315001 PMCID: PMC8936386 DOI: 10.1007/s42770-022-00704-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 02/01/2022] [Indexed: 02/07/2023] Open
Abstract
In 2019, severe acute respiratory syndrome caused by CoV-2 virus became a pandemic worldwide, being the fast spread of the disease due to the movement of infected people from one country to another, from one continent to another, or within the same country. Associated comorbidities are important factors that predispose to any fungal coinfections. Because of the importance of fungal infections in COVID-19 patients, the aim of this work was to collect data of the more encountered mycoses related to patients undergoing this disease. Aspergillosis was the first COVID-19-related fungal infection reported, being A. fumigatus the most frequent species for CAPA. Other fungal infections related include mainly candidiasis and mucormycosis, being Rhizopus spp. the more prevalent species found. Influenza-associated pulmonary aspergillosis is well documented; thus, similar complications are expected in severe forms of COVID-19 pneumonia. Therefore, in patients with COVID-19, it is important to take special attention to the surveillance and suspicion of fungal coinfections that might worsen the patient's prognosis.
Collapse
Affiliation(s)
- R G Vitale
- Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Buenos Aires, Argentina.
- Unidad de Parasitología. Sector Micología. Hospital J.M. Ramos Mejía, Buenos Aires, Argentina.
| | - J Afeltra
- Unidad de Parasitología. Sector Micología. Hospital J.M. Ramos Mejía, Buenos Aires, Argentina
| | - S Seyedmousavi
- Microbiology Service, Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, MD, USA
| | - S L Giudicessi
- Facultad de Farmacia Y Bioquímica, Cátedra de Biotecnología, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), CONICET-UBA, Buenos Aires, Argentina
| | - S M Romero
- Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Buenos Aires, Argentina
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, FCEFyN, Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
35
|
Er B, Er AG, Gülmez D, Şahin TK, Halaçlı B, Durhan G, Ersoy EO, Alp A, Metan G, Saribas Z, Arikan‐Akdagli S, Hazırolan G, Akıncı SB, Arıyürek M, Topeli A, Uzun Ö. A screening study for
COVID
‐19‐associated pulmonary aspergillosis in critically ill patients during the third wave of the pandemic. Mycoses 2022; 65:724-732. [PMID: 35531631 PMCID: PMC9348343 DOI: 10.1111/myc.13466] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/15/2022]
Abstract
Background COVID‐19‐associated pulmonary aspergillosis (CAPA) has been reported as an important cause of mortality in critically ill patients with an incidence rate ranging from 5% to 35% during the first and second pandemic waves. Objectives We aimed to evaluate the incidence, risk factors for CAPA by a screening protocol and outcome in the critically ill patients during the third wave of the pandemic. Patients/Methods This prospective cohort study was conducted in two intensive care units (ICU) designated for patients with COVID‐19 in a tertiary care university hospital between 18 November 2020 and 24 April 2021. SARS‐CoV‐2 PCR‐positive adult patients admitted to the ICU with respiratory failure were included in the study. Serum and respiratory samples were collected periodically from ICU admission up to CAPA diagnosis, patient discharge or death. ECMM/ISHAM consensus criteria were used to diagnose and classify CAPA cases. Results A total of 302 patients were admitted to the two ICUs during the study period, and 213 were included in the study. CAPA was diagnosed in 43 (20.1%) patients (12.2% probable, 7.9% possible). In regression analysis, male sex, higher SOFA scores at ICU admission, invasive mechanical ventilation and longer ICU stay were significantly associated with CAPA development. Overall ICU mortality rate was higher significantly in CAPA group compared to those with no CAPA (67.4% vs 29.4%, p < .001). Conclusions One fifth of critically ill patients in COVID‐19 ICUs developed CAPA, and this was associated with a high mortality.
Collapse
Affiliation(s)
- Berrin Er
- Division of Intensive Care, Department of Internal Medicine Hacettepe University Faculty of Medicine Ankara Turkey
- Ankara City Hospital, Intensive Care Unit Ankara
| | - Ahmet Görkem Er
- Department of Infectious Diseases and Clinical Microbiology Hacettepe University Faculty of Medicine Ankara Turkey
| | - Dolunay Gülmez
- Department of Medical Microbiology Hacettepe University Faculty of Medicine Ankara Turkey
| | - Taha Koray Şahin
- Department of Internal Medicine Hacettepe University Faculty of Medicine Ankara Turkey
| | - Burçin Halaçlı
- Division of Intensive Care, Department of Internal Medicine Hacettepe University Faculty of Medicine Ankara Turkey
| | - Gamze Durhan
- Department of Radiology Hacettepe University Faculty of Medicine Ankara Turkey
| | - Ebru Ortaç Ersoy
- Division of Intensive Care, Department of Internal Medicine Hacettepe University Faculty of Medicine Ankara Turkey
| | - Alpaslan Alp
- Department of Medical Microbiology Hacettepe University Faculty of Medicine Ankara Turkey
| | - Gökhan Metan
- Department of Infectious Diseases and Clinical Microbiology Hacettepe University Faculty of Medicine Ankara Turkey
| | - Zeynep Saribas
- Department of Medical Microbiology Hacettepe University Faculty of Medicine Ankara Turkey
| | - Sevtap Arikan‐Akdagli
- Department of Medical Microbiology Hacettepe University Faculty of Medicine Ankara Turkey
| | - Gülşen Hazırolan
- Department of Medical Microbiology Hacettepe University Faculty of Medicine Ankara Turkey
| | - Seda Banu Akıncı
- Division of Intensive Care, Department of Anaestesiology and Reanimation Hacettepe University Faculty of Medicine Ankara Turkey
| | - Macit Arıyürek
- Department of Radiology Hacettepe University Faculty of Medicine Ankara Turkey
| | - Arzu Topeli
- Division of Intensive Care, Department of Internal Medicine Hacettepe University Faculty of Medicine Ankara Turkey
| | - Ömrüm Uzun
- Department of Infectious Diseases and Clinical Microbiology Hacettepe University Faculty of Medicine Ankara Turkey
| |
Collapse
|
36
|
Kim SH, Hong JY, Bae S, Lee H, Wi YM, Ko JH, Kim B, Joo EJ, Seok H, Shi HJ, Yoo JR, Hyun M, Kim HA, Jang S, Mun SJ, Kim J, Kim MC, Jung DS, Kim SH, Peck KR. Risk Factors for Coronavirus Disease 2019 (COVID-19)-Associated Pulmonary Aspergillosis in Critically Ill Patients: A Nationwide, Multicenter, Retrospective Cohort Study. J Korean Med Sci 2022; 37:e134. [PMID: 35535369 PMCID: PMC9091428 DOI: 10.3346/jkms.2022.37.e134] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is often accompanied by secondary infections, such as invasive aspergillosis. In this study, risk factors for developing COVID-19-associated pulmonary aspergillosis (CAPA) and their clinical outcomes were evaluated. METHODS This multicenter retrospective cohort study included critically ill COVID-19 patients from July 2020 through March 2021. Critically ill patients were defined as patients requiring high-flow respiratory support or mechanical ventilation. CAPA was defined based on the 2020 European Confederation of Medical Mycology and the International Society for Human and Animal Mycology consensus criteria. Factors associated with CAPA were analyzed, and their clinical outcomes were adjusted by a propensity score-matched model. RESULTS Among 187 eligible patients, 17 (9.1%) developed CAPA, which is equal to 33.10 per 10,000 patient-days. Sixteen patients received voriconazole-based antifungal treatment. In addition, 82.4% and 53.5% of patients with CAPA and without CAPA, respectively, received early high-dose corticosteroids (P = 0.022). In multivariable analysis, initial 10-day cumulative steroid dose > 60 mg of dexamethasone or dexamethasone equivalent dose) (adjusted odds ratio [OR], 3.77; 95% confidence interval [CI], 1.03-13.79) and chronic pulmonary disease (adjusted OR, 4.20; 95% CI, 1.26-14.02) were independently associated with CAPA. Tendencies of higher 90-day overall mortality (54.3% vs. 35.2%, P = 0.346) and lower respiratory support-free rate were observed in patients with CAPA (76.3% vs. 54.9%, P = 0.089). CONCLUSION Our study showed that the dose of corticosteroid use might be a risk factor for CAPA development and the possibility of CAPA contributing to adverse outcomes in critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Si-Ho Kim
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Jin Yeong Hong
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seongman Bae
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hojin Lee
- Division of Infectious Diseases, Department of Internal Medicine, Dong-A University Hospital, Busan, Korea
| | - Yu Mi Wi
- Division of Infectious Diseases, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Jae-Hoon Ko
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Bomi Kim
- Division of Infectious Diseases, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Eun-Jeong Joo
- Division of Infectious Diseases, Department of Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyeri Seok
- Division of Infectious Diseases, Department of Medicine, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Hye Jin Shi
- Division of Infectious Diseases, Department of Internal Medicine, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Jeong Rae Yoo
- Department of Internal Medicine, Jeju National University College of Medicine, Jeju, South Korea
| | - Miri Hyun
- Division of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Hyun Ah Kim
- Division of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Korea
| | - Sukbin Jang
- Division of Infectious Diseases, Department of Medicine, Dankook University Hospital, Dankook University College of Medicine, Cheonan, Korea
| | - Seok Jun Mun
- Division of Infectious Diseases, Department of Internal Medicine, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jungok Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, Korea
| | - Min-Chul Kim
- Division of Infectious Diseases, Department of Internal Medicine, Chung-Ang University Hospital, Seoul, Korea.
| | - Dong-Sik Jung
- Division of Infectious Diseases, Department of Internal Medicine, Dong-A University Hospital, Busan, Korea.
| | - Sung-Han Kim
- Department of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Kyong Ran Peck
- Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
37
|
Calderón‐Parra J, Mills‐Sanchez P, Moreno‐Torres V, Tejado‐Bravo S, Romero‐Sánchez I, Balandin‐Moreno B, Calvo‐Salvador M, Portero‐Azorín F, García‐Masedo S, Muñez‐Rubio E, Ramos‐Martinez A, Fernández‐Cruz A. COVID-19-associated pulmonary aspergillosis (CAPA): Risk factors and development of a predictive score for critically ill COVID-19 patients. Mycoses 2022; 65:541-550. [PMID: 35212030 PMCID: PMC9115267 DOI: 10.1111/myc.13434] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/17/2022] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND COVID-19-associated pulmonary aspergillosis (CAPA) is a major complication of critically ill COVID-19 patients, with a high mortality rate and potentially preventable. Thus, identifying patients at high risk of CAPA would be of great interest. We intended to develop a clinical prediction score capable of stratifying patients according to the risk for CAPA at ICU admission. METHODS Single centre retrospective case-control study. A case was defined as a patient diagnosed with CAPA according to 2020 ECMM/ISHAM consensus criteria. 2 controls were selected for each case among critically ill COVID-19 patients. RESULTS 28 CAPA patients and 56-matched controls were included. Factors associated with CAPA included old age (68 years vs. 62, p = .033), active smoking (17.9% vs. 1.8%, p = .014), chronic respiratory diseases (48.1% vs. 26.3%, p = .043), chronic renal failure (25.0% vs. 3.6%, p = .005), chronic corticosteroid treatment (28.6% vs. 1.8%, p < .001), tocilizumab therapy (92.9% vs. 66.1%, p = .008) and high APACHE II at ICU admission (median 13 vs. 10 points, p = .026). A score was created including these variables, which showed an area under the receiver operator curve of 0.854 (95% CI 0.77-0.92). A punctuation below 6 had a negative predictive value of 99.6%. A punctuation of 10 or higher had a positive predictive value of 27.9%. CONCLUSION We present a clinical prediction score that allowed to stratify critically ill COVID-19 patients according to the risk for developing CAPA. This CAPA score would allow to target preventive measures. Further evaluation of the score, as well as the utility of these targeted preventive measures, is needed.
Collapse
Affiliation(s)
- Jorge Calderón‐Parra
- Infectious Diseases UnitService of Internal MedicineHospital Universitario Puerta de HierroMajadahondaSpain
- Research Institute Puerta de Hierro‐Segovia de Aranda (IDIPHSA)MajadahondaSpain
| | - Patricia Mills‐Sanchez
- Infectious Diseases UnitService of Internal MedicineHospital Universitario Puerta de HierroMajadahondaSpain
| | - Victor Moreno‐Torres
- Infectious Diseases UnitService of Internal MedicineHospital Universitario Puerta de HierroMajadahondaSpain
- Research Institute Puerta de Hierro‐Segovia de Aranda (IDIPHSA)MajadahondaSpain
| | | | | | | | | | | | | | - Elena Muñez‐Rubio
- Infectious Diseases UnitService of Internal MedicineHospital Universitario Puerta de HierroMajadahondaSpain
| | - Antonio Ramos‐Martinez
- Infectious Diseases UnitService of Internal MedicineHospital Universitario Puerta de HierroMajadahondaSpain
| | - Ana Fernández‐Cruz
- Infectious Diseases UnitService of Internal MedicineHospital Universitario Puerta de HierroMajadahondaSpain
- Research Institute Puerta de Hierro‐Segovia de Aranda (IDIPHSA)MajadahondaSpain
| | | |
Collapse
|
38
|
Raffaelli F, Tanzarella ES, De Pascale G, Tumbarello M. Invasive Respiratory Fungal Infections in COVID-19 Critically Ill Patients. J Fungi (Basel) 2022; 8:415. [PMID: 35448646 PMCID: PMC9025868 DOI: 10.3390/jof8040415] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/11/2022] [Accepted: 04/15/2022] [Indexed: 02/04/2023] Open
Abstract
Patients with coronavirus disease 19 (COVID-19) admitted to the intensive care unit (ICU) often develop respiratory fungal infections. The most frequent diseases are the COVID-19 associated pulmonary aspergillosis (CAPA), COVID-19 associated pulmonary mucormycosis (CAPM) and the Pneumocystis jirovecii pneumonia (PCP), the latter mostly found in patients with both COVID-19 and underlying HIV infection. Furthermore, co-infections due to less common mold pathogens have been also described. Respiratory fungal infections in critically ill patients are promoted by multiple risk factors, including epithelial damage caused by COVID-19 infection, mechanical ventilation and immunosuppression, mainly induced by corticosteroids and immunomodulators. In COVID-19 patients, a correct discrimination between fungal colonization and infection is challenging, further hampered by sampling difficulties and by the low reliability of diagnostic approaches, frequently needing an integration of clinical, radiological and microbiological features. Several antifungal drugs are currently available, but the development of new molecules with reduced toxicity, less drug-interactions and potentially active on difficult to treat strains, is highly warranted. Finally, the role of prophylaxis in certain COVID-19 populations is still controversial and must be further investigated.
Collapse
Affiliation(s)
- Francesca Raffaelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy;
| | - Eloisa Sofia Tanzarella
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (E.S.T.); (G.D.P.)
- Dipartimento di Scienze Dell’emergenze, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Gennaro De Pascale
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (E.S.T.); (G.D.P.)
- Dipartimento di Scienze Dell’emergenze, Anestesiologiche e Della Rianimazione, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy
| | - Mario Tumbarello
- Dipartimento di Biotecnologie Mediche, Università degli Studi di Siena, 53100 Siena, Italy
- UOC Malattie Infettive e Tropicali, Azienda Ospedaliero-Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
39
|
Kundu R, Singla N. COVID-19 and Plethora of Fungal Infections. CURRENT FUNGAL INFECTION REPORTS 2022; 16:47-54. [PMID: 35432691 PMCID: PMC8994097 DOI: 10.1007/s12281-022-00432-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2022] [Indexed: 12/15/2022]
Abstract
Purpose of Review Severe-acute respiratory coronavirus 2 (SARS-CoV-2) causing corona virus disease 2019 (COVID-19) has been the single most important pathogen driving health care delivery system for the last one and half years. Now, as the time is passing, many issues related to co-infections/secondary infections/superinfections in COVID-19 patients are emerging. The literature is getting enriched everyday by addition of reports from all over the world for the same. The purpose of this review is to decipher the plethora of fungal infections in COVID-19. Recent Findings COVID-19 infection along with it brought many risk factors namely lung injury, immunosuppression, need for oxygen therapy, monoclonal antibodies, steroid therapy, etc. which are known predisposing factors for fungal infections. Rather the extent and severity of fungal pathogens has been so much that it has led to new terminologies like CAC (COVID-19-associated Candida), CAPA (COVID-19-associated pulmonary aspergillosis) and CAM (COVID-19-associated mucormycosis). There is increase in invasiveness of Candida, prevalence of aspergillosis in COVID-19 damaged lung and outbreak of mucormycosis in COVID-19 patients resulting in “double trouble,” keeping laboratory personnel, clinicians, and intensivists on their toes in managing these patients. Summary Awareness and understanding regarding these possible complications is necessary to decrease the morbidity and mortality among patients. The COVID-19 and fungal coinfections may bring more insight into ways of pathogenesis of fungal infections, need for better antifungal agents, quick diagnostic modalities, and better management policies in the near future.
Collapse
Affiliation(s)
- Reetu Kundu
- Department of Cytology and Gynecological Pathology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Nidhi Singla
- Department of Microbiology, Government Medical College Hospital, Chandigarh, India
| |
Collapse
|
40
|
Giusiano G, Fernández NB, Vitale RG, Alvarez C, Ochiuzzi ME, Santiso G, Cabeza MS, Tracogna F, Farías L, Afeltra J, Noblega LM, Giuliano CV, Garcia-Effron G. Usefulness of Sōna Aspergillus Galactomannan LFA with digital readout as diagnostic and as screening tool of COVID-19 associated pulmonary aspergillosis in critically ill patients. Data from a multicenter prospective study performed in Argentina. Med Mycol 2022; 60:6565285. [PMID: 35394043 PMCID: PMC9051581 DOI: 10.1093/mmy/myac026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/17/2022] [Accepted: 04/06/2022] [Indexed: 11/14/2022] Open
Abstract
COVID-19 associated pulmonary aspergillosis (CAPA) incidence varies depending on the country. Serum galactomannan quantification is a promising diagnostic tool since samples are easy to obtain with low biosafety issues. A multicenter prospective study was performed to evaluate the CAPA incidence in Argentina and to assess the performance of the lateral flow assay with digital readout (Sōna Aspergillus LFA) as a CAPA diagnostic and screening tool. The correlation between the values obtained with Sōna Aspergillus LFA and Platelia® EIA was evaluated. In total, 578 serum samples were obtained from 185 critically ill COVID patients. CAPA screening was done weekly starting from the first week of ICU stay. Probable CAPA incidence in critically ill patients was 10.27% (19/185 patients when LFA was used as mycological criteria) and 9% (9/100 patients when EIA was used as mycological criteria). We found a very good correlation between the two evaluated galactomannan quantification methods (overall agreement of 92.16% with a Kappa statistic value of 0.721). CAPA diagnosis (>0.5 readouts in LFA) were done during the first week of ICU stay in 94.7% of the probable CAPA patients. The overall mortality was 36.21%. CAPA patients' mortality and length of ICU stay were not statistically different from for COVID (non-CAPA) patients (42.11% vs 33.13% and 29 vs 24 days, respectively). These indicators were lower than in other reports. LFA-IMMY with digital readout is a reliable tool for early diagnosis of CAPA using serum samples in critically ill COVID patients. It has a good agreement with Platelia® EIA.
Collapse
Affiliation(s)
- Gustavo Giusiano
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina.,Instituto de Medicina Regional, Universidad Nacional del Nordeste, Resistencia (Chaco). Argentina
| | - Norma B Fernández
- Laboratorio de Micología, División Infectología, Hospital de Clínicas "José de San Martín" Universidad de Buenos Aires, Argentina
| | - Roxana G Vitale
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina.,Unidad de Parasitología, Sector Micología, Hospital JM Ramos Mejía, Buenos Aires, Argentina
| | - Christian Alvarez
- División Micología, - Laboratorio de Salud Pública de Tucumán, San Miguel de Tucumán, Argentina
| | | | - Gabriela Santiso
- Centro de Estudios Micológicos, Ciudad Autónoma de Buenos Aires, Argentina; Unidad Micología del Hospital de Infecciosas F. J. Muñiz, Buenos Aires, Argentina
| | - Matías Sebastián Cabeza
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina.,Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | | | - Luciana Farías
- Laboratorio de Micología, División Infectología, Hospital de Clínicas "José de San Martín" Universidad de Buenos Aires, Argentina
| | - Javier Afeltra
- Unidad de Parasitología, Sector Micología, Hospital JM Ramos Mejía, Buenos Aires, Argentina
| | - Luciana María Noblega
- División Micología, - Laboratorio de Salud Pública de Tucumán, San Miguel de Tucumán, Argentina
| | | | - Guillermo Garcia-Effron
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Argentina.,Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
41
|
Román-Montes CM, Bojorges-Aguilar S, Díaz-Lomelí P, Cervantes-Sánchez A, Rangel-Cordero A, Martínez-Gamboa A, Sifuentes-Osornio J, Ponce-de-León A, González-Lara MF. Tracheal Aspirate Galactomannan Testing in COVID-19-Associated Pulmonary Aspergillosis. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:855914. [PMID: 37746186 PMCID: PMC10512352 DOI: 10.3389/ffunb.2022.855914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/09/2022] [Indexed: 09/26/2023]
Abstract
Among critically ill patients, COVID-19-associated pulmonary aspergillosis (CAPA) is a challenging complication. The recommended diagnostic methods for this disease are bronchoalveolar lavage (BAL) culture and galactomannan (GM) testing, which were not widely available during the pandemic. There is scarce information regarding GM testing in other respiratory specimens. Our objective was to compare the agreement of GM between BAL and tracheal aspirate (TA) samples. We selected patients with COVID-19 and those with suspected CAPA who were admitted in the intensive care unit (ICU). GM was routinely done in BAL. We performed GM in TA samples and compared the results. The agreement was evaluated with Cohen's Kappa coefficient. GM was considered positive when an OD index ≥ 1 in BAL and ≥ 2 in TA were found. Probable CAPA was considered when the ECMM/ISHAM criteria were met. A descriptive analysis of clinical characteristics and mortality was made. We included 20 patients with suspected CAPA from 54 patients with critical COVID-19, of which 5 (9%) met the probable category. Aspergillus fumigatus was the most frequent isolate. We found moderate agreement between BAL and TA GM (Kappa = 0.47, p = 0.01, 95% CI.04-0.9), whereas TA GM had 75% sensitivity (95% CI 19.4-99.4%), 81.2% specificity (95% CI 54.4-95.9%), 50% positive predictive value (95% CI 23.8-76.3%),] and 92.8% negative predictive value (95% CI 70.1-98.6%), and 80% accuracy (95% CI 56.3-94.3%). Lastly, three (60%) patients with CAPA died during hospitalization compared to 40% (6/15) without CAPA (p = 0.4). In conclusion, a moderate agreement between TA GM and BAL was found. Therefore, TA testing may aid in ruling out CAPA due to high negative predictive value when bronchoscopies are unavailable.
Collapse
Affiliation(s)
- Carla M. Román-Montes
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
- Medicine Direction, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Saúl Bojorges-Aguilar
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
- Medicine Direction, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Paulette Díaz-Lomelí
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Axel Cervantes-Sánchez
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Andrea Rangel-Cordero
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Areli Martínez-Gamboa
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - José Sifuentes-Osornio
- Infectious Diseases Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Alfredo Ponce-de-León
- Medicine Direction, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Maria F. González-Lara
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
- Medicine Direction, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW The first studies on COVID-19 patients with acute respiratory distress syndrome (ARDS) described a high rate of secondary bacterial ventilator-associated pneumonia (VAP). The specificity of VAP diagnoses in these patients are reviewed, including their actual rate. RECENT FINDINGS Published studies described high rates of bacterial VAP among COVID-19 patients with ARDS, and these VAP episodes are usually severe and of specifically poor prognosis with high mortality. Indeed, Severe acute respiratory syndrome - coronavirus disease 19 (SARS-CoV2) infection elicits alterations that may explain a high risk of VAP. In addition, breaches in the aseptic management of patients might have occurred when the burden of care was heavy. In addition, VAP in these patients is more frequently suspected, and more often investigated with diagnostic tools based on molecular techniques. SUMMARY VAP is frequented and of particularly poor prognosis in COVID-19 patients with ARDS. It can be explained by SARS-CoV-2 pathophysiology, and also breaches in the aseptic procedures. In addition, tools based on molecular techniques allow an early diagnosis and unmask VAP usually underdiagnosed by traditional culture-based methods. The impact of molecular technique-based diagnostics in improving antibacterial therapy and COVID-19 prognosis remain to be evaluated.
Collapse
|
43
|
Prognostic Impact of Bronchoalveolar Lavage Fluid Galactomannan and Aspergillus Culture Results on Survival in COVID-19 Intensive Care Unit Patients: a Post Hoc Analysis from the European Confederation of Medical Mycology (ECMM) COVID-19-Associated Pulmonary Aspergillosis Study. J Clin Microbiol 2022; 60:e0229821. [PMID: 35321555 PMCID: PMC9020339 DOI: 10.1128/jcm.02298-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Critically ill patients with coronavirus disease 2019 (COVID-19) may develop COVID-19-associated pulmonary aspergillosis (CAPA), which impacts their chances of survival. Whether positive bronchoalveolar lavage fluid (BALF) mycological tests can be used as a survival proxy remains unknown. We conducted a post hoc analysis of a previous multicenter, multinational observational study with the aim of assessing the differential prognostic impact of BALF mycological tests, namely, positive (optical density index of ≥1.0) BALF galactomannan (GM) and positive BALF Aspergillus culture alone or in combination for critically ill patients with COVID-19. Of the 592 critically ill patients with COVID-19 enrolled in the main study, 218 were included in this post hoc analysis, as they had both test results available. CAPA was diagnosed in 56/218 patients (26%). Most cases were probable CAPA (51/56 [91%]) and fewer were proven CAPA (5/56 [9%]). In the final multivariable model adjusted for between-center heterogeneity, an independent association with 90-day mortality was observed for the combination of positive BALF GM and positive BALF Aspergillus culture in comparison with both tests negative (hazard ratio, 2.53; 95% CI confidence interval [CI], 1.28 to 5.02; P = 0.008). The other independent predictors of 90-day mortality were increasing age and active malignant disease. In conclusion, the combination of positive BALF GM and positive BALF Aspergillus culture was associated with increased 90-day mortality in critically ill patients with COVID-19. Additional study is needed to explore the possible prognostic value of other BALF markers.
Collapse
|
44
|
Kurra N, Woodard PI, Gandrakota N, Gandhi H, Polisetty SR, Ang SP, Patel KP, Chitimalla V, Ali Baig MM, Samudrala G. Opportunistic Infections in COVID-19: A Systematic Review and Meta-Analysis. Cureus 2022; 14:e23687. [PMID: 35505698 PMCID: PMC9055976 DOI: 10.7759/cureus.23687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
The prevalence, incidence, and characteristics of bacterial infections in patients infected with severe acute respiratory syndrome coronavirus 2 are not well understood and have been raised as an important knowledge gap. Therefore, our study focused on the most common opportunistic infections/secondary infections/superinfections in coronavirus disease 2019 (COVID-19) patients. This systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Eligible studies were identified using PubMed/Medline since inception to June 25, 2021. Studies meeting the inclusion criteria were selected. Statistical analysis was conducted in Review Manager 5.4.1. A random-effect model was used when heterogeneity was seen to pool the studies, and the result was reported as inverse variance and the corresponding 95% confidence interval. We screened 701 articles comprising 22 cohort studies which were included for analysis. The pooled prevalence of opportunistic infections/secondary infections/superinfections was 16% in COVID-19 patients. The highest prevalence of secondary infections was observed among viruses at 33%, followed by bacteria at 16%, fungi at 6%, and 25% among the miscellaneous group/wrong outcome. Opportunistic infections are more prevalent in critically ill patients. The isolated pathogens included Epstein-Barr virus, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Hemophilus influenza, and invasive pulmonary aspergillosis. Large-scale studies are required to better identify opportunistic/secondary/superinfections in COVID-19 patients.
Collapse
Affiliation(s)
- Nithin Kurra
- Department of Neurology, University of Nebraska Medical Center, Omaha, USA
| | | | | | - Heli Gandhi
- Medicine and Surgery, Manipal Academy of Higher Education, Manipal, IND
| | | | - Song Peng Ang
- Medicine and Surgery, International Medical University, Kuala Lumpur, MYS
| | - Kinjalben P Patel
- Medicine and Surgery, Smt. B. K. Shah Medical Institute & Research Centre, Vadodara, IND
| | - Vishwaj Chitimalla
- Medicine and Surgery, Shri B M Patil Medical College Hospital and Research Centre, Bijapur Lingayat District Educational (BLDE) University, Vijayapura, IND
| | - Mirza M Ali Baig
- Department of Anaesthesiology, Dow University of Health Sciences, Karachi, PAK
| | - Gayathri Samudrala
- Obstetrics and Gynecology, National Board of Examinations, New Delhi, IND.,Medicine and Surgery, Dr. N. T. Ramarao University of Health Sciences, Vijayawada, IND
| |
Collapse
|
45
|
Ciprofloxacin-Resistant Pseudomonas aeruginosa Lung Abscess Complicating COVID-19 Treated with the Novel Oral Fluoroquinolone Delafloxacin. Case Rep Pulmonol 2022; 2022:1008330. [PMID: 35223121 PMCID: PMC8866028 DOI: 10.1155/2022/1008330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose We report the development of a lung abscess caused by a ciprofloxacin-resistant Pseudomonas aeruginosa in a patient with COVID-19 on long-term corticosteroid therapy. Successful antimicrobial treatment included the novel oral fluoroquinolone delafloxacin suggesting an oral administration option for ciprofloxacin-resistant Pseudomonas aeruginosa lung abscess. Case Presentation. An 86-year-old male was admitted to the hospital with fever, dry cough, and fatigue. PCR testing from a nasopharyngeal swab confirmed SARS-CoV-2 infection. An initial CT scan of the chest showed COVID-19 typical peripheral ground-glass opacities of both lungs. The patient required supplemental oxygen, and anti-inflammatory treatment with corticosteroids was initiated. After four weeks of corticosteroid therapy, the follow-up CT scan of the chest suddenly showed a new cavernous formation in the right lower lung lobe. The patient's condition deteriorated requiring high-flow oxygen support. Consequently, the patient was transferred to the intensive care unit. Empiric therapy with intravenous piperacillin/tazobactam was started. Mycobacterial and fungal infections were excluded, while all sputum samples revealed cultural growth of P. aeruginosa. Antimicrobial susceptibility testing showed resistance to meropenem, imipenem, ciprofloxacin, gentamicin, and tobramycin. After two weeks of treatment with intravenous piperacillin/tazobactam, the clinical condition improved significantly, and supplemental oxygen could be stopped. Subsequently antimicrobial treatment was switched to oral delafloxacin facilitating an outpatient management. Conclusion Our case demonstrates that long-term corticosteroid administration in severe COVID-19 can result in severe bacterial coinfections including P. aeruginosa lung abscess. To our knowledge, this is the first reported case of a P. aeruginosa lung abscess whose successful therapy included oral delafloxacin. This is important because real-life data for the novel drug delafloxacin are scarce, and fluoroquinolones are the only reliable oral treatment option for P. aeruginosa infection. Even more importantly, our case suggests an oral therapy option for P. aeruginosa lung abscess in case of resistance to ciprofloxacin, the most widely used fluoroquinolone in P. aeruginosa infection.
Collapse
|
46
|
Defining COVID-19 associated pulmonary aspergillosis: systematic review and meta-analysis. Clin Microbiol Infect 2022; 28:920-927. [PMID: 35150878 PMCID: PMC8828380 DOI: 10.1016/j.cmi.2022.01.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/06/2023]
Abstract
Background Pulmonary aspergillosis may complicate coronavirus disease 2019 (COVID-19) and contribute to excess mortality in intensive care unit (ICU) patients. The disease is poorly understood, in part due to discordant definitions across studies. Objectives We sought to review the prevalence, diagnosis, treatment, and outcomes of COVID-19–associated pulmonary aspergillosis (CAPA) and compare research definitions. Data sources PubMed, Embase, Web of Science, and MedRxiv were searched from inception to October 12, 2021. Study eligibility criteria ICU cohort studies and CAPA case series including ≥3 patients were included. Participants Adult patients in ICUs with COVID-19. Interventions Patients were reclassified according to four research definitions. We assessed risk of bias with an adaptation of the Joanna Briggs Institute cohort checklist tool for systematic reviews. Methods We calculated CAPA prevalence using the Freeman-Tukey random effects method. Correlations between definitions were assessed with Spearman's rank test. Associations between antifungals and outcome were assessed with random effects meta-analysis. Results Fifty-one studies were included. Among 3297 COVID-19 patients in ICU cohort studies, 313 were diagnosed with CAPA (prevalence 10%; 95% CI 8%–13%). Two hundred seventy-seven patients had patient-level data allowing reclassification. Definitions had limited correlation with one another (ρ = 0.268–0.447; p < 0.001), with the exception of Koehler and Verweij (ρ = 0.893; p < 0.001); 33.9% of patients reported to have CAPA did not fulfill any research definitions. Patients were diagnosed after a median of 8 days (interquartile range 5–14) in ICUs. Tracheobronchitis occurred in 3% of patients examined with bronchoscopy. The mortality rate was high (59.2%). Applying CAPA research definitions did not strengthen the association between mould-active antifungals and survival. Conclusions The reported prevalence of CAPA is significant but may be exaggerated by nonstandard definitions.
Collapse
|
47
|
Fumagalli J, Panigada M, Klompas M, Berra L. Ventilator-associated pneumonia among SARS-CoV-2 acute respiratory distress syndrome patients. Curr Opin Crit Care 2022; 28:74-82. [PMID: 34932525 PMCID: PMC8711306 DOI: 10.1097/mcc.0000000000000908] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
PURPOSE OF REVIEW We conducted a systematic literature review to summarize the available evidence regarding the incidence, risk factors, and clinical characteristics of ventilator-associated pneumonia (VAP) in patients undergoing mechanical ventilation because of acute respiratory distress syndrome secondary to SARS-CoV-2 infection (C-ARDS). RECENT FINDINGS Sixteen studies (6484 patients) were identified. Bacterial coinfection was uncommon at baseline (<15%) but a high proportion of patients developed positive bacterial cultures thereafter leading to a VAP diagnosis (range 21-64%, weighted average 50%). Diagnostic criteria varied between studies but most signs of VAP have substantial overlap with the signs of C-ARDS making it difficult to differentiate between bacterial colonization versus superinfection. Most episodes of VAP were associated with Gram-negative bacteria. Occasional cases were also attributed to herpes virus reactivations and pulmonary aspergillosis. Potential factors driving high VAP incidence rates include immunoparalysis, prolonged ventilation, exposure to immunosuppressants, understaffing, lapses in prevention processes, and overdiagnosis. SUMMARY Covid-19 patients who require mechanical ventilation for ARDS have a high risk (>50%) of developing VAP, most commonly because of Gram-negative bacteria. Further work is needed to elucidate the disease-specific risk factors for VAP, strategies for prevention, and how best to differentiate between bacterial colonization versus superinfection.
Collapse
Affiliation(s)
- Jacopo Fumagalli
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Mauro Panigada
- Department of Anesthesia, Critical Care and Emergency, Fondazione IRCCS Ca’ Granda - Ospedale Maggiore Policlinico, Milan, Italy
| | - Michael Klompas
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Healthcare Institute
- Department of Medicine, Brigham and Women's Hospital
| | - Lorenzo Berra
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, USA
| |
Collapse
|
48
|
Salazar F, Bignell E, Brown GD, Cook PC, Warris A. Pathogenesis of Respiratory Viral and Fungal Coinfections. Clin Microbiol Rev 2022; 35:e0009421. [PMID: 34788127 PMCID: PMC8597983 DOI: 10.1128/cmr.00094-21] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Individuals suffering from severe viral respiratory tract infections have recently emerged as "at risk" groups for developing invasive fungal infections. Influenza virus is one of the most common causes of acute lower respiratory tract infections worldwide. Fungal infections complicating influenza pneumonia are associated with increased disease severity and mortality, with invasive pulmonary aspergillosis being the most common manifestation. Strikingly, similar observations have been made during the current coronavirus disease 2019 (COVID-19) pandemic. The copathogenesis of respiratory viral and fungal coinfections is complex and involves a dynamic interplay between the host immune defenses and the virulence of the microbes involved that often results in failure to return to homeostasis. In this review, we discuss the main mechanisms underlying susceptibility to invasive fungal disease following respiratory viral infections. A comprehensive understanding of these interactions will aid the development of therapeutic modalities against newly identified targets to prevent and treat these emerging coinfections.
Collapse
Affiliation(s)
- Fabián Salazar
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Elaine Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Peter C. Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
49
|
Lackner N, Thomé C, Öfner D, Joannidis M, Mayerhöfer T, Arora R, Samardzic E, Posch W, Breitkopf R, Lass-Flörl C. COVID-19 Associated Pulmonary Aspergillosis: Diagnostic Performance, Fungal Epidemiology and Antifungal Susceptibility. J Fungi (Basel) 2022; 8:jof8020093. [PMID: 35205848 PMCID: PMC8875712 DOI: 10.3390/jof8020093] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/17/2022] [Indexed: 12/24/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) raises concerns as to whether it contributes to an increased mortality. The incidence of CAPA varies widely within hospitals and countries, partly because of difficulties in obtaining a reliable diagnosis. We implemented a routine screening of respiratory specimens in COVID-19 ICU patients for Aspergillus species using culture and galactomannan (GM) detection from serum and/or bronchoalveolar lavages (BAL). Out of 329 ICU patients treated during March 2020 and April 2021, 23 (7%) suffered from CAPA, 13 of probable, and 10 of possible. In the majority of cases, culture, microscopy, and GM testing were in accordance with CAPA definition. However, we saw that the current definitions underscore to pay attention for fungal microscopy and GM detection in BALs, categorizing definitive CAPA diagnosis based on culture positive samples only. The spectrum of Aspergillus species involved Aspergillus fumigatus, followed by Aspergillus flavus, Aspergillus niger, and Aspergillus nidulans. We noticed changes in fungal epidemiology, but antifungal resistance was not an issue in our cohort. The study highlights that the diagnosis and incidence of CAPA is influenced by the application of laboratory-based diagnostic tests. Culture positivity as a single microbiological marker for probable definitions may overestimate CAPA cases and thus may trigger unnecessary antifungal treatment.
Collapse
Affiliation(s)
- Nina Lackner
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, A-6020 Innsbruck, Austria; (N.L.); (E.S.); (W.P.)
| | - Claudius Thomé
- Department of Neurosurgery, Medical University Innsbruck, A-6020 Innsbruck, Austria;
| | - Dietmar Öfner
- Department of Visceral, Transplant and Thoracic Surgery, Medical University of Innsbruck, A-6020 Innsbruck, Austria;
| | - Michael Joannidis
- Department of Internal Medicine, Division of Intensive Care and Emergency Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria; (M.J.); (T.M.)
| | - Timo Mayerhöfer
- Department of Internal Medicine, Division of Intensive Care and Emergency Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria; (M.J.); (T.M.)
| | - Rohit Arora
- Department of Trauma Surgery and Sports Medicine, Medical University Innsbruck, A-6020 Innsbruck, Austria;
| | - Eldina Samardzic
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, A-6020 Innsbruck, Austria; (N.L.); (E.S.); (W.P.)
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, A-6020 Innsbruck, Austria; (N.L.); (E.S.); (W.P.)
| | - Robert Breitkopf
- Department of Anaesthesia and Intensive Care, Medical University Innsbruck, A-6020 Innsbruck, Austria;
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University Innsbruck, A-6020 Innsbruck, Austria; (N.L.); (E.S.); (W.P.)
- Correspondence:
| |
Collapse
|
50
|
Vargas-Junior V, Antunes D, Guimarães AC, Caffarena E. In silico investigation of riboswitches in fungi: structural and dynamical insights into TPP riboswitches in Aspergillus oryzae. RNA Biol 2022; 19:90-103. [PMID: 34989318 PMCID: PMC8786325 DOI: 10.1080/15476286.2021.2015174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Riboswitches are RNA sensors affecting post-transcriptional processes through their ability to bind to small molecules. Thiamine pyrophosphate (TPP) riboswitch plays a crucial role in regulating genes involved in synthesizing or transporting thiamine and phosphorylated derivatives in bacteria, archaea, plants, and fungi. Although TPP riboswitch is reasonably well known in bacteria, there is a gap in the knowledge of the fungal TPP riboswitches structure and dynamics, involving mainly sequence variation and TPP interaction with the aptamers. On the other hand, the increase of fungal infections and antifungal resistance raises the need for new antifungal therapies. In this work, we used computational approaches to build three-dimensional models for the three TPP riboswitches identified in Aspergillus oryzae, in which we studied their structure, dynamics, and binding free energy change (ΔGbind) with TPP. Interaction patterns between the TPP and the surrounding nucleotides were conserved among the three models, evidencing high structural conservation. Furthermore, we show that the TPP riboswitch from the A. oryzae NMT1 gene behaves similarly to the E. coli thiA gene concerning the ΔGbind. In contrast, mutations in the fungal TPP riboswitches from THI4 and the nucleoside transporter genes led to structural differences, affecting the binding-site volume, hydrogen bond occupancy, and ΔGbind. Besides, the number of water molecules surrounding TPP influenced the ΔGbind considerably. Notably, our ΔGbind estimation agreed with previous experimental data, reinforcing the relationship between sequence conservation and TPP interaction.
Collapse
Affiliation(s)
- Valdemir Vargas-Junior
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Programme (Procc - Fiocruz), Rio de Janeiro, Brazil
| | - Deborah Antunes
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (Ioc - Fiocruz), Rio de Janeiro, Brazil
| | - Ana Carolina Guimarães
- Laboratory of Functional Genomics and Bioinformatics, Oswaldo Cruz Institute (Ioc - Fiocruz), Rio de Janeiro, Brazil
| | - Ernesto Caffarena
- Computational Biophysics and Molecular Modeling Group, Scientific Computing Programme (Procc - Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|