1
|
Lozada-Ramos H, Álvarez-Payares J, Daza-Arana JE, Salas-Marín LM. Cryptococcal Meningitis in an HCV-Positive and IVDU- and HIV-Negative Patient: A Case Report and Literature Review. Int Med Case Rep J 2024; 17:855-860. [PMID: 39464491 PMCID: PMC11512521 DOI: 10.2147/imcrj.s486119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024] Open
Abstract
Background Cryptococcal meningitis (CM) is a central nervous system (CNS) infection that occurs mainly in immunocompromised individuals such as those with human immunodeficiency virus (HIV) infection. However, the prevalence of CM in immunocompetent patients has increased. Although CM has been reported in patients with hepatitis C virus (HCV) infection, it has not yet been fully established whether there is an association between both conditions. CM has also been reported in patients with intravenous drug use (IVDU), which is related to the immunosuppression caused by these drugs. Case Presentation We report the case of a 24-year-old man who presented with meningitis secondary to Cryptococcus gattii infection. He had a history of IVDU and HCV infection, was HIV-negative and without antiviral treatment. The patient received adequate antifungal treatment during induction, consolidation, and maintenance phases. His condition relapsed, requiring dose adjustment, with an excellent response during clinical follow-up for both meningitis and HCV infection. A brain biopsy was requested during relapse to rule out other co-infection. Conclusion The case of an individual diagnosed with cryptococcal meningitis, who had a history of IVDU and HCV infection, is presented. The coexistence of such events could shadow the prognosis of this group of subjects, related to immunosuppression that can be caused through different pathways. Having HCV and being a IVDU simultaneously could increase the risk of Cryptococcus infection.
Collapse
Affiliation(s)
- Heiler Lozada-Ramos
- Medicine Program, School of Health, Universidad Santiago de Cali, Palmira, Colombia
- Movement and Health Research Group, School of Health, Universidad Santiago de Cali, Santiago de Cali, Colombia
- Doctoral Program in Infectious Diseases, Universidad de Santander – UDES, Bucaramanga, Colombia
| | - Jorge Álvarez-Payares
- Medicine Program, School of Health, Universidad del Valle, San Fernando Campus, Santiago de Cali, Colombia
| | - Jorge Enrique Daza-Arana
- Movement and Health Research Group, School of Health, Universidad Santiago de Cali, Santiago de Cali, Colombia
- Physiotherapy Program, School of Health, Universidad Santiago de Cali, Cali, Colombia
| | - Luisa María Salas-Marín
- Medicine Program, School of Health, Universidad del Valle, San Fernando Campus, Santiago de Cali, Colombia
| |
Collapse
|
2
|
Yang J, Rong SJ, Zhou HF, Yang C, Sun F, Li JY. Lysosomal control of dendritic cell function. J Leukoc Biol 2023; 114:518-531. [PMID: 37774493 DOI: 10.1093/jleuko/qiad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
Lysosomal compartments undergo extensive remodeling during dendritic cell (DC) activation to meet the dynamic functional requirements of DCs. Instead of being regarded as stationary and digestive organelles, recent studies have increasingly appreciated the versatile roles of lysosomes in regulating key aspects of DC biology. Lysosomes actively control DC motility by linking calcium efflux to the actomyosin contraction, while enhanced DC lysosomal membrane permeability contributes to the inflammasome activation. Besides, lysosomes provide a platform for the transduction of innate immune signaling and the intricate host-pathogen interplay. Lysosomes and lysosome-associated structures are also critically engaged in antigen presentation and cross-presentation processes, which are pivotal for the induction of antigen-specific adaptive immune response. Through the current review, we emphasize that lysosome targeting strategies serve as vital DC-based immunotherapies in fighting against tumor, infectious diseases, and autoinflammatory disorders.
Collapse
Affiliation(s)
- Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No.1277, 430000, Wuhan, China
| | - Shan-Jie Rong
- Department of Respiratory and Critical Care Medicine, Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Jiefang Avenue No.1095, 430000, Wuhan, China
| | - Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No.1277, 430000, Wuhan, China
| | - Chao Yang
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Ling Jiaohu Road No.11, 430000, Wuhan, China
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Jiefang Avenue No.1095, 430000, Wuhan, China
| | - Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No.1277, 430000, Wuhan, China
| |
Collapse
|
3
|
Kalayasiri R, Dadwat K, Thika S, Sirivichayakul S, Maes M. Methamphetamine (MA) use and MA-induced psychosis are associated with increasing aberrations in the compensatory immunoregulatory system, interleukin-1α, and CCL5 levels. Transl Psychiatry 2023; 13:361. [PMID: 37996407 PMCID: PMC10667231 DOI: 10.1038/s41398-023-02645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/24/2023] [Accepted: 10/31/2023] [Indexed: 11/25/2023] Open
Abstract
There are only a few studies reporting on the immunological profiles of methamphetamine (MA) use, MA dependency, or MA-induced psychosis (MAP). This study measured M1 macrophage, T helper (Th)-1, Th-2, growth factor, and chemokine profiles, as well as the immune inflammatory response system (IRS) and compensatory immunoregulatory system (CIRS) in peripheral blood samples from patients with MA use (n = 51), MA dependence (n = 47), and MAP (n = 43) in comparison with controls (n = 32). We discovered that persistent MA use had a robust immunosuppressive impact on all immunological profiles. The most reliable biomarker profile of MA use is the combination of substantial CIRS suppression and a rise in selected pro-inflammatory cytokines, namely CCL27 (CTACK), CCL11 (eotaxin), and interleukin (IL)-1α. In addition, MA dependency is associated with increased immunosuppression, as demonstrated by lower stem cell factor levels and higher IL-10 levels. MAP is related to a significant decrease in all immunological profiles, particularly CIRS, and an increase in CCL5 (RANTES), IL-1α, and IL-12p70 signaling. In conclusion, long-term MA use and dependency severely undermine immune homeostasis, whereas MAP may be the consequence of increased IL-1α - CCL5 signaling superimposed on strongly depleted CIRS and Th-1 functions. The widespread immunosuppression established in longstanding MA use may increase the likelihood of infectious and immune illness or exacerbate disorders such as hepatitis and AIDS. Furthermore, elevated levels of CCL5, CCL11, CCL27, IL-1α, and/or IL-12p70 may play a role in the peripheral (atherosclerosis, cutaneous inflammation, immune aberrations, hypospermatogenesis) and central (neuroinflammation, neurotoxic, neurodegenerative, depression, anxiety, and psychosis) side effects of MA use.
Collapse
Affiliation(s)
- Rasmon Kalayasiri
- Department of Psychiatry, Epidemiology of Psychiatric Disorders and Mental Health Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Kanokwan Dadwat
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Supaksorn Thika
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Sunee Sirivichayakul
- Division of Allergy and Clinical Immunology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Michael Maes
- Department of Psychiatry, Epidemiology of Psychiatric Disorders and Mental Health Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
- Cognitive Fitness and Technology Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
- Research Institute, Medical University Plovdiv, Plovdiv, Bulgaria.
- Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Korea.
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, 610072, China.
| |
Collapse
|
4
|
Gopinath A, Riaz T, Miller E, Phan L, Smith A, Syed O, Franks S, Martinez LR, Khoshbouei H. Methamphetamine induces a low dopamine transporter expressing state without altering the total number of peripheral immune cells. Basic Clin Pharmacol Toxicol 2023; 133:496-507. [PMID: 36710070 PMCID: PMC10382601 DOI: 10.1111/bcpt.13838] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/22/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023]
Abstract
Methamphetamine is a widely abused psychostimulant and one of the main targets of dopamine transporter (DAT). Methamphetamine reduces DAT-mediated dopamine uptake and stimulates dopamine efflux leading to increased synaptic dopamine levels many folds above baseline. Methamphetamine also targets DAT-expressing peripheral immune cells, reduces wound healing and increases infection susceptibility. Peripheral immune cells such as myeloid cells, B cells and T cells express DAT. DAT activity on monocytes and macrophages exhibits immune suppressive properties via an autocrine paracrine mechanism, where deletion or inhibition of DAT activity increases inflammatory responses. In this study, utilizing a mouse model of daily single dose of methamphetamine administration, we investigated the impact of the drug on DAT expression in peripheral immune cells. We found in methamphetamine-treated mice that DAT expression was down-regulated in most of the innate and adaptive immune cells. Methamphetamine did not increase or decrease the total number of innate and adaptive immune cells but changed their immunophenotype to low-DAT-expressing phenotype. Moreover, serum cytokine distributions were altered in methamphetamine-treated mice. Therefore, resembling its effect in the CNS, in the periphery, methamphetamine regulates DAT expression on peripheral immune cell subsets, potentially describing methamphetamine regulation of peripheral immunity.
Collapse
Affiliation(s)
- Adithya Gopinath
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Tabish Riaz
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Emily Miller
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Leah Phan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Aidan Smith
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Ohee Syed
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Stephen Franks
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, Florida, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, Florida, USA
- Center for Immunology and Transplantation, University of Florida, Gainesville, Florida, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
5
|
Miller EJ, Khoshbouei H. Immunity on ice: The impact of methamphetamine on peripheral immunity. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2023; 99:217-250. [PMID: 38467482 DOI: 10.1016/bs.apha.2023.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Methamphetamine (METH) regulation of the dopamine transporter (DAT) and central nervous system (CNS) dopamine transmission have been extensively studied. However, our understanding of how METH influences neuroimmune communication and innate and adaptive immunity is still developing. Recent studies have shed light on the bidirectional communication between the CNS and the peripheral immune system. They have established a link between CNS dopamine levels, dopamine neuronal activity, and peripheral immunity. Akin to dopamine neurons in the CNS, a majority of peripheral immune cells also express DAT, implying that in addition to their effect in the CNS, DAT ligands such as methamphetamine may have a role in modulating peripheral immunity. For example, by directly influencing DAT-expressing peripheral immune cells and thus peripheral immunity, METH can trigger a feed-forward cascade that impacts the bidirectional communication between the CNS and peripheral immune system. In this review, we aim to discuss the current understanding of how METH modulates both innate and adaptive immunity and identify areas where knowledge gaps exist. These gaps will then be considered in guiding future research directions.
Collapse
Affiliation(s)
- Emily J Miller
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| | - Habibeh Khoshbouei
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, United States.
| |
Collapse
|
6
|
A Case of Multifocal Pneumonia and Bacteremia Due to Streptococcus pneumoniae Complicated by Purulent Pericarditis in an Immunocompetent Patient. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2023. [DOI: 10.1097/ipc.0000000000001208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Kaewman P, Nudmamud-Thanoi S, Thongleart J, Charoenlappanit S, Roytrakul S, Thanoi S. Differential protein expression of GABA A receptor alpha 1 subunit and calbindin in rat spermatozoa associated with proteomic analysis in testis following methamphetamine administration. PLoS One 2023; 18:e0273888. [PMID: 36598915 DOI: 10.1371/journal.pone.0273888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
Methamphetamine (METH) can induce spermatogenesis impairment, testicular apoptosis, and abnormal sperm quality. It also promotes changes in the expression of receptors for sex hormones and neurotransmitters, including GABA receptors in the testis. Proteomic assessment focusing on proteins involved in the calcium signalling pathway in the testis can facilitate diagnostic factors contributing to testicular and sperm functions, especially those related to spermatogenesis and fertilisation. In this study, we proposed to determine the localisation and differential expression of GABA A receptor alpha 1 subunit (GABA A-α1) in the spermatozoa of METH-administered rats. The differential proteomic profile of the testis was also observed by focusing on proteins in the KEGG pathways belonging to the calcium signalling pathway. There were 212 differentially expressed proteins in the rat testis, based on the cut-off value of 1.2-fold change. Most of those proteins, 13 proteins, were classified in the calcium signalling pathway, including 4 down-regulated and 9 up-regulated proteins. An immunolocalisation study of the GABA A-α1 receptor and calbindin revealed their localisation in the equatorial segment of the head in the rat spermatozoa. The expression of calbindin is also found in the middle piece of sperm. An increase in GABA A-α1 receptor in rat spermatozoa was correlated with an increase in abnormal sperm motility and morphology after methamphetamine exposure. Moreover, calbindin expression in sperm decreased in METH-administered rats. All our findings demonstrate that METH influences intracellular calcium homeostasis by acting through the calcium signalling pathway-associated proteins. Moreover, it might disrupt ion homeostasis in sperm through the GABA A-α1 receptor and calbindin, triggering a change in intracellular calcium and chloride ions. These changes may cause abnormalities in spermatogenesis, testicular apoptosis, and sperm quality impairment.
Collapse
Affiliation(s)
- Paweena Kaewman
- School of Medicine, Walailak University, Nakhon Si Thammarat, Thailand
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sutisa Nudmamud-Thanoi
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| | - Jitnapar Thongleart
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sawanya Charoenlappanit
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Samur Thanoi
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
8
|
Chilunda V, Weiselberg J, Martinez-Meza S, Mhamilawa LE, Cheney L, Berman JW. Methamphetamine induces transcriptional changes in cultured HIV-infected mature monocytes that may contribute to HIV neuropathogenesis. Front Immunol 2022; 13:952183. [PMID: 36059515 PMCID: PMC9433802 DOI: 10.3389/fimmu.2022.952183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
HIV-associated neurocognitive impairment (HIV-NCI) persists in 15-40% of people with HIV (PWH) despite effective antiretroviral therapy. HIV-NCI significantly impacts quality of life, and there is currently no effective treatment for it. The development of HIV-NCI is complex and is mediated, in part, by the entry of HIV-infected mature monocytes into the central nervous system (CNS). Once in the CNS, these cells release inflammatory mediators that lead to neuroinflammation, and subsequent neuronal damage. Infected monocytes may infect other CNS cells as well as differentiate into macrophages, thus contributing to viral reservoirs and chronic neuroinflammation. Substance use disorders in PWH, including the use of methamphetamine (meth), can exacerbate HIV neuropathogenesis. We characterized the effects of meth on the transcriptional profile of HIV-infected mature monocytes using RNA-sequencing. We found that meth mediated an upregulation of gene transcripts related to viral infection, cell adhesion, cytoskeletal arrangement, and extracellular matrix remodeling. We also identified downregulation of several gene transcripts involved in pathogen recognition, antigen presentation, and oxidative phosphorylation pathways. These transcriptomic changes suggest that meth increases the infiltration of mature monocytes that have a migratory phenotype into the CNS, contributing to dysregulated inflammatory responses and viral reservoir establishment and persistence, both of which contribute to neuronal damage. Overall, our results highlight potential molecules that may be targeted for therapy to limit the effects of meth on HIV neuropathogenesis.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Jessica Weiselberg
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Samuel Martinez-Meza
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Lwidiko E. Mhamilawa
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women’s and Children’s Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Laura Cheney
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Medicine, Division of Infectious Diseases, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Joan W. Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, United States
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
9
|
Kong D, Mao JH, Li H, Wang JY, Li YY, Wu XC, Re GF, Luo HY, Kuang YQ, Wang KH. Effects and associated transcriptomic landscape changes of methamphetamine on immune cells. BMC Med Genomics 2022; 15:144. [PMID: 35765053 PMCID: PMC9241331 DOI: 10.1186/s12920-022-01295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background Methamphetamine (METH) abuse causes serious health problems, including injury to the immune system, leading to increased incidence of infections and even making withdrawal more difficult. Of course, immune cells, an important part of the immune system, are also injured in methamphetamine abuse. However, due to different research models and the lack of bioinformatics, the mechanism of METH injury to immune cells has not been clarified. Methods We examined the response of three common immune cell lines, namely Jurkat, NK-92 and THP-1 cell lines, to methamphetamine by cell viability and apoptosis assay in vitro, and examined their response patterns at the mRNA level by RNA-sequencing. Differential expression analysis of two conditions (control and METH treatment) in three types of immune cells was performed using the DESeq2 R package (1.20.0). And some of the differentially expressed genes were verified by qPCR. We performed Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis of differentially expressed genes by the clusterProfiler R package (3.14.3). And gene enrichment analysis was also performed using MetaScape (www.metascape.org). Results The viability of the three immune cells was differentially affected by methamphetamine, and the rate of NK-cell apoptosis was significantly increased. At the mRNA level, we found disorders of cholesterol metabolism in Jurkat cells, activation of ERK1 and ERK2 cascade in NK-92 cells, and disruption of calcium transport channels in THP-1 cells. In addition, all three cells showed changes in the phospholipid metabolic process. Conclusions The results suggest that both innate and adaptive immune cells are affected by METH abuse, and there may be commonalities between different immune cells at the transcriptome level. These results provide new insights into the potential effects by which METH injures the immune cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01295-9.
Collapse
Affiliation(s)
- Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Jun-Hong Mao
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Hong Li
- Narcotics Control Bureau of the Ministry of Public Security of Yunnan Province, Kunming, 650032, China
| | - Jian-Yu Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Yu-Yang Li
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Xiao-Cong Wu
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Guo-Fen Re
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China
| | - Hua-You Luo
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Department of Gastrointestinal and Hernia Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| | - Kun-Hua Wang
- NHC Key Laboratory of Drug Addiction Medicine, Kunming Medical University, Kunming, 650032, China. .,Yunnan University, Kunming, 650032, China.
| |
Collapse
|
10
|
Jia J, Yang JQ, Du YR, Xu Y, Kong D, Zhang XL, Mao JH, Hu GF, Wang KH, Kuang YQ. Transcriptomic Profiling Reveals Underlying Immunoregulation Mechanisms of Resistant Hypertension in Injection Drug Users. J Inflamm Res 2022; 15:3409-3420. [PMID: 35706529 PMCID: PMC9191201 DOI: 10.2147/jir.s361634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 05/25/2022] [Indexed: 12/18/2022] Open
Abstract
Background Hypertension is a common complication in injection drug users (IDU), especially a high proportion of resistant hypertension occurs among them. However, the involving mechanisms remain largely unknown. Methods We here investigated the key signaling moieties in resistant hypertension in drug users. Analyses were performed with high-throughput transcriptomic sequencing data of peripheral blood from individuals with drug-sensitive hypertension (Ctrl-DS), IDU with resistant hypertension (IDU-DR), and IDU with sensitive hypertension (IDU-DS). Results We showed that 17 and 1 genes in IDU-DS, 48 and 4 genes in IDU-DR were upregulated and downregulated compared Ctrl-DS, and 2 and 4 genes were upregulated and downregulated in IDU-DR compared with IDU-DS, respectively (p ≤ 0.01 and |log2(FC)| ≥ 1). Differentially expressed genes (DEGs) between Ctrl-DS and IDU-DS were mainly involved in Gene ontology terms of immunoglobulin complex and blood microparticle. DEGs between IDU-DS and IDU-DR were mainly involved in immune system process and immunoglobulin complex. DEGs between Ctrl-DS and IDU-DR were mainly involved in immunoglobulin complex, blood microparticle and cytoplasmic vesicle lumen. We identified 2 gene clusters (brown modules, MEbrown; turquoise module, MEturquoise) correlated with IDU-DR and a gene cluster (magenta module, MEmagenta) correlated with IDU-DS by weighted gene co-expression network analysis (WGCNA). Functional analysis demonstrated that pathways of focal adhesion and focalin-1-rich granule lumen were involved in the development of IDU-DR, and the cytosolic large ribosomal subunit may relate to IDU-DR. Further, immune cell infiltration analysis demonstrated that the abundance of dendritic cells (DCs), natural Treg cells (nTreg), and exhausted T cells (Tex) in IDU-DR and IDU-DS, naïve CD8+ T cells in IDU-DS was significantly different compared with that in Ctrl-DS. The abundance of cytotoxic T cells (Tc) was significantly different between IDU-DS and IDU-DR. Conclusion Our findings indicated a potential function of immunoregulation mechanisms for resistant hypertension.
Collapse
Affiliation(s)
- Jie Jia
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, People's Republic of China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Ji-Qun Yang
- Third People's Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, 650041, People's Republic of China
| | - Ying-Rong Du
- Third People's Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, 650041, People's Republic of China
| | - Yu Xu
- Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Deshenyue Kong
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, People's Republic of China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Xiu-Ling Zhang
- Third People's Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, 650041, People's Republic of China
| | - Jun-Hong Mao
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, People's Republic of China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| | - Gui-Fang Hu
- Third People's Hospital of Kunming City/Drug Rehabilitation Hospital of Kunming City, Kunming, 650041, People's Republic of China
| | - Kun-Hua Wang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, People's Republic of China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China.,School of Medicine, Yunnan University, Kunming, 650500, People's Republic of China
| | - Yi-Qun Kuang
- NHC Key Laboratory of Drug Addiction Medicine, First Affiliated Hospital of Kunming Medical University, Kunming Medical University, Kunming, 650032, People's Republic of China.,Scientific Research Laboratory Center, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, People's Republic of China
| |
Collapse
|
11
|
Grabowska K, Macur K, Zieschang S, Zaman L, Haverland N, Schissel A, Morsey B, Fox HS, Ciborowski P. HIV-1 and methamphetamine alter galectins -1, -3, and -9 in human monocyte-derived macrophages. J Neurovirol 2022; 28:99-112. [PMID: 35175539 PMCID: PMC9076712 DOI: 10.1007/s13365-021-01025-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 12/05/2022]
Abstract
Macrophages are key elements of the innate immune system. Their HIV-1 infection is a complex process that involves multiple interacting factors and various steps and is further altered by exposure of infected cells to methamphetamine (Meth), a common drug of abuse in people living with HIV. This is reflected by dynamic changes in the intracellular and secreted proteomes of these cells. Quantification of these changes poses a challenge for experimental design and associated analytics. In this study, we measured the effect of Meth on expression of intracellular and secreted galectins-1, -3, and -9 in HIV-1 infected human monocyte-derived macrophages (hMDM) using SWATH-MS, which was further followed by MRM targeted mass spectrometry validation. Cells were exposed to Meth either prior to or after infection. Our results are the first to perform comprehensive quantifications of galectins in primary hMDM cells during HIV-1 infection and Meth exposure a building foundation for future studies on the molecular mechanisms underlying cellular pathology of hMDM resulting from viral infection and a drug of abuse—Meth.
Collapse
Affiliation(s)
- Kinga Grabowska
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Katarzyna Macur
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.,Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Sarah Zieschang
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Lubaba Zaman
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Nicole Haverland
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Andrew Schissel
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
12
|
Mech AM, Merteroglu M, Sealy IM, Teh MT, White RJ, Havelange W, Brennan CH, Busch-Nentwich EM. Behavioral and Gene Regulatory Responses to Developmental Drug Exposures in Zebrafish. Front Psychiatry 2022; 12:795175. [PMID: 35082702 PMCID: PMC8785235 DOI: 10.3389/fpsyt.2021.795175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/29/2021] [Indexed: 01/22/2023] Open
Abstract
Developmental consequences of prenatal drug exposure have been reported in many human cohorts and animal studies. The long-lasting impact on the offspring-including motor and cognitive impairments, cranial and cardiac anomalies and increased prevalence of ADHD-is a socioeconomic burden worldwide. Identifying the molecular changes leading to developmental consequences could help ameliorate the deficits and limit the impact. In this study, we have used zebrafish, a well-established behavioral and genetic model with conserved drug response and reward pathways, to identify changes in behavior and cellular pathways in response to developmental exposure to amphetamine, nicotine or oxycodone. In the presence of the drug, exposed animals showed altered behavior, consistent with effects seen in mammalian systems, including impaired locomotion and altered habituation to acoustic startle. Differences in responses seen following acute and chronic exposure suggest adaptation to the presence of the drug. Transcriptomic analysis of exposed larvae revealed differential expression of numerous genes and alterations in many pathways, including those related to cell death, immunity and circadian rhythm regulation. Differential expression of circadian rhythm genes did not correlate with behavioral changes in the larvae, however, two of the circadian genes, arntl2 and per2, were also differentially expressed at later stages of development, suggesting a long-lasting impact of developmental exposures on circadian gene expression. The immediate-early genes, egr1, egr4, fosab, and junbb, which are associated with synaptic plasticity, were downregulated by all three drugs and in situ hybridization showed that the expression for all four genes was reduced across all neuroanatomical regions, including brain regions implicated in reward processing, addiction and other psychiatric conditions. We anticipate that these early changes in gene expression in response to drug exposure are likely to contribute to the consequences of prenatal exposure and their discovery might pave the way to therapeutic intervention to ameliorate the long-lasting deficits.
Collapse
Affiliation(s)
- Aleksandra M. Mech
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Munise Merteroglu
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Ian M. Sealy
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - Muy-Teck Teh
- Centre for Oral Immunobiology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, England, United Kingdom
| | - Richard J. White
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| | - William Havelange
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Caroline H. Brennan
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
| | - Elisabeth M. Busch-Nentwich
- School of Biological and Behavioural Sciences, Faculty of Science and Engineering, Queen Mary University of London, London, United Kingdom
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
13
|
Chand S, Gowen A, Savine M, Moore D, Clark A, Huynh W, Wu N, Odegaard K, Weyrich L, Bevins RA, Fox HS, Pendyala G, Yelamanchili SV. A comprehensive study to delineate the role of an extracellular vesicle-associated microRNA-29a in chronic methamphetamine use disorder. J Extracell Vesicles 2021; 10:e12177. [PMID: 34913274 PMCID: PMC8674191 DOI: 10.1002/jev2.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 10/27/2021] [Accepted: 11/25/2021] [Indexed: 12/17/2022] Open
Abstract
Extracellular vesicles (EVs), which express a repertoire of cargo molecules (cf. proteins, microRNA, lipids, etc.), have been garnering a prominent role in the modulation of several cellular processes. Here, using both non-human primate and rodent model systems, we provide evidence that brain-derived EV (BDE) miRNA, miR-29a-3p (mir-29a), is significantly increased during chronic methamphetamine (MA) exposure. Further, miR-29a levels show significant increase both with drug-seeking and reinstatement in a rat MA self-administration model. We also show that EV-associated miR-29a is enriched in EV pool comprising of small EVs and exomeres and further plays a critical role in MA-induced inflammation and synaptodendritic damage. Furthermore, treatment with the anti-inflammatory drug ibudilast (AV411), which is known to reduce MA relapse, decreased the expression of miR-29a and subsequently attenuated inflammation and rescued synaptodendritic injury. Finally, using plasma from MUD subjects, we provide translational evidence that EV-miR29a could potentially serve as a biomarker to detect neuronal damage in humans diagnosed with MA use disorder (MUD). In summary, our work suggests that EV-associated miR-29a-3p plays a crucial role in MUD and might be used as a potential blood-based biomarker for detecting chronic inflammation and synaptic damage.
Collapse
Affiliation(s)
- Subhash Chand
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Austin Gowen
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Mason Savine
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Dalia Moore
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Alexander Clark
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Wendy Huynh
- Department of PsychologyUniversity of Nebraska–Lincoln (UNL)LincolnNebraskaUSA
| | - Niming Wu
- Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Katherine Odegaard
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | | | - Rick A. Bevins
- Department of PsychologyUniversity of Nebraska–Lincoln (UNL)LincolnNebraskaUSA
| | - Howard S. Fox
- Department of Neurological SciencesUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Gurudutt Pendyala
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| | - Sowmya V. Yelamanchili
- Department of AnesthesiologyUniversity of Nebraska Medical Center (UNMC)OmahaNebraskaUSA
| |
Collapse
|
14
|
Miller DR, Bu M, Gopinath A, Martinez LR, Khoshbouei H. Methamphetamine Dysregulation of the Central Nervous System and Peripheral Immunity. J Pharmacol Exp Ther 2021; 379:372-385. [PMID: 34535563 PMCID: PMC9351721 DOI: 10.1124/jpet.121.000767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/16/2021] [Indexed: 11/22/2022] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant that increases extracellular monoamines, such as dopamine and norepinephrine, and affects multiple tissue and cell types in the central nervous system (CNS) and peripheral immune cells. The reinforcing properties of METH underlie its significant abuse potential and dysregulation of peripheral immunity and central nervous system functions. Together, the constellation of METH's effects on cellular targets and regulatory processes has led to immune suppression and neurodegeneration in METH addicts and animal models of METH exposure. Here we extensively review many of the cell types and mechanisms of METH-induced dysregulation of the central nervous and peripheral immune systems. SIGNIFICANCE STATEMENT: Emerging research has begun to show that methamphetamine regulates dopaminergic neuronal activity. In addition, METH affects non-neuronal brain cells, such as microglia and astrocytes, and immunological cells of the periphery. Concurrent disruption of bidirectional communication between dopaminergic neurons and glia in the CNS and peripheral immune cell dysregulation gives rise to a constellation of dysfunctional neuronal, cell, and tissue types. Therefore, understanding the pathophysiology of METH requires consideration of the multiple targets at the interface between basic and clinical neuroscience.
Collapse
Affiliation(s)
- Douglas R Miller
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Mengfei Bu
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Adithya Gopinath
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Luis R Martinez
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| | - Habibeh Khoshbouei
- Department of Neuroscience, College of Medicine (D.R.M., M.B., A.G., H.K.), and Department of Oral Biology, College of Dentistry (L.R.M.), University of Florida, Gainesville, Florida
| |
Collapse
|
15
|
Macur K, Zieschang S, Lei S, Morsey B, Jaquet S, Belshan M, Fox HS, Ciborowski P. SWATH-MS and MRM: Quantification of Ras-related proteins in HIV-1 infected and methamphetamine-exposed human monocyte-derived macrophages (hMDM). Proteomics 2021; 21:e2100005. [PMID: 34051048 PMCID: PMC9977323 DOI: 10.1002/pmic.202100005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 12/30/2022]
Abstract
HIV-1 infection of macrophages is a multistep and multifactorial process that has been shown to be enhanced by exposure to methamphetamine (Meth). In this study, we sought to identify the underlying mechanisms of this effect by quantifying the effect of Meth on the proteome of HIV-1-infected macrophages using sequential windowed acquisition of all theoretical fragment ion mass spectra (SWATH-MS) approach. The analyses identified several members of the Rab family of proteins as being dysregulated by Meth treatment, which was confirmed by bioinformatic analyses that indicated substantial alteration of vesicular transport pathways. Validation of the SWATH-MS was performed using an MRM based approach, which confirmed that Meth exposure affects expression of the Rab proteins. However, the pattern of expression changes were highly dynamic, and displayed high donor-to-donor variability. Surprisingly a similar phenomenon was observed for Actin. Our results demonstrate that Meth affects vesicular transport pathways, suggesting a possible molecular mechanism underlying its effect on HIV infection hMDM and a potential broader effect of Meth on cellular homeostasis.
Collapse
Affiliation(s)
- Katarzyna Macur
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE,Core Facility Laboratories, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Poland
| | - Sarah Zieschang
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Shulei Lei
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Spencer Jaquet
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Michael Belshan
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE
| | - Howard S. Fox
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, School of Medicine, University of Nebraska Medical Center, Omaha, NE,Corresponding author: Dr. Pawel Ciborowski, Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, 985800 University of Nebraska Medical Center, Omaha, NE 68198-5800, phone +1 (402) 559-3733, fax +1 (402) 559-7495
| |
Collapse
|
16
|
Limanaqi F, Busceti CL, Celli R, Biagioni F, Fornai F. Autophagy as a gateway for the effects of methamphetamine: From neurotransmitter release and synaptic plasticity to psychiatric and neurodegenerative disorders. Prog Neurobiol 2021; 204:102112. [PMID: 34171442 DOI: 10.1016/j.pneurobio.2021.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023]
Abstract
As a major eukaryotic cell clearing machinery, autophagy grants cell proteostasis, which is key for neurotransmitter release, synaptic plasticity, and neuronal survival. In line with this, besides neuropathological events, autophagy dysfunctions are bound to synaptic alterations that occur in mental disorders, and early on, in neurodegenerative diseases. This is also the case of methamphetamine (METH) abuse, which leads to psychiatric disturbances and neurotoxicity. While consistently altering the autophagy machinery, METH produces behavioral and neurotoxic effects through molecular and biochemical events that can be recapitulated by autophagy blockade. These consist of altered physiological dopamine (DA) release, abnormal stimulation of DA and glutamate receptors, as well as oxidative, excitotoxic, and neuroinflammatory events. Recent molecular insights suggest that METH early impairs the autophagy machinery, though its functional significance remains to be investigated. Here we discuss evidence suggesting that alterations of DA transmission and autophagy are intermingled within a chain of events underlying behavioral alterations and neurodegenerative phenomena produced by METH. Understanding how METH alters the autophagy machinery is expected to provide novel insights into the neurobiology of METH addiction sharing some features with psychiatric disorders and parkinsonism.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy
| | | | - Roberta Celli
- IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy
| | | | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma, 55, 56126, Pisa, PI, Italy; IRCCS Neuromed, Via Atinense 18, 86077 Pozzilli, IS, Italy.
| |
Collapse
|
17
|
Lakpa KL, Khan N, Afghah Z, Chen X, Geiger JD. Lysosomal Stress Response (LSR): Physiological Importance and Pathological Relevance. J Neuroimmune Pharmacol 2021; 16:219-237. [PMID: 33751445 PMCID: PMC8099033 DOI: 10.1007/s11481-021-09990-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/08/2021] [Indexed: 02/08/2023]
Abstract
Extensive work has characterized endoplasmic reticulum (ER) and mitochondrial stress responses. In contrast, very little has been published about stress responses in lysosomes; subcellular acidic organelles that are physiologically important and are of pathological relevance. The greater lysosomal system is dynamic and is comprised of endosomes, lysosomes, multivesicular bodies, autophagosomes, and autophagolysosomes. They are important regulators of cellular physiology, they represent about 5% of the total cellular volume, they are heterogeneous in their sizes and distribution patterns, they are electron dense, and their subcellular positioning within cells varies in response to stimuli, insults and pH. These organelles are also integral to the pathogenesis of lysosomal storage diseases and it is increasingly recognized that lysosomes play important roles in the pathogenesis of such diverse conditions as neurodegenerative disorders and cancer. The purpose of this review is to focus attention on lysosomal stress responses (LSR), compare LSR with better characterized stress responses in ER and mitochondria, and form a framework for future characterizations of LSR. We synthesized data into the concept of LSR and present it here such that the definition of LSR can be modified as new knowledge is added and specific therapeutics are developed.
Collapse
Affiliation(s)
- Koffi L Lakpa
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Nabab Khan
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Zahra Afghah
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Xuesong Chen
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA
| | - Jonathan D Geiger
- Department of Biomedical Sciences, Dakota School of Medicine and Health Sciences, University of North, Grand Forks, ND, 58203, USA.
| |
Collapse
|
18
|
Hernandez-Santini AC, Mitha AN, Chow D, Hamed MF, Gucwa AL, Vaval V, Martinez LR. Methamphetamine facilitates pulmonary and splenic tissue injury and reduces T cell infiltration in C57BL/6 mice after antigenic challenge. Sci Rep 2021; 11:8207. [PMID: 33859291 PMCID: PMC8050260 DOI: 10.1038/s41598-021-87728-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (METH) is a strong addictive central nervous system stimulant. METH abuse can alter biological processes and immune functions necessary for host defense. The acquisition and transmission of HIV, hepatitis, and other communicable diseases are possible serious infectious consequences of METH use. METH also accumulates extensively in major organs. Despite METH being a major public health and safety problem globally, there are limited studies addressing the impact of this popular recreational psychostimulant on tissue adaptive immune responses after exposure to T cell dependent [ovalbumin (OVA)] and independent [lipopolysaccharide (LPS)] antigens. We hypothesized that METH administration causes pulmonary and splenic tissue alterations and reduces T cell responses to OVA and LPS in vivo, suggesting the increased susceptibility of users to infection. Using a murine model of METH administration, we showed that METH causes tissue injury, apoptosis, and alters helper and cytotoxic T cell recruitment in antigen challenged mice. METH also reduces the expression and distribution of CD3 and CD28 molecules on the surface of human Jurkat T cells. In addition, METH decreases the production of IL-2 in these T-like cells, suggesting a negative impact on T lymphocyte activation and proliferation. Our findings demonstrate the pleotropic effects of METH on cell-mediated immunity. These alterations have notable implications on tissue homeostasis and the capacity of the host to respond to infection.
Collapse
Affiliation(s)
| | - Anum N Mitha
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, USA
| | - Daniela Chow
- Department of Biological Sciences, The Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, USA
| | - Mohamed F Hamed
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Room DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA.,Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Azad L Gucwa
- Department of Biology, Farmingdale State College, Farmingdale, NY, USA
| | - Valerie Vaval
- Department of Biomedical Sciences, Long Island University, C. W. Post, Brookville, NY, USA
| | - Luis R Martinez
- Department of Oral Biology, University of Florida College of Dentistry, 1395 Center Drive, Room DG-48, P.O. Box 100424, Gainesville, FL, 32610, USA.
| |
Collapse
|
19
|
Associations between Cryptococcus Genotypes, Phenotypes, and Clinical Parameters of Human Disease: A Review. J Fungi (Basel) 2021; 7:jof7040260. [PMID: 33808500 PMCID: PMC8067209 DOI: 10.3390/jof7040260] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
The genus Cryptococcus contains two primary species complexes that are significant opportunistic human fungal pathogens: C. neoformans and C. gattii. In humans, cryptococcosis can manifest in many ways, but most often results in either pulmonary or central nervous system disease. Patients with cryptococcosis can display a variety of symptoms on a spectrum of severity because of the interaction between yeast and host. The bulk of our knowledge regarding Cryptococcus and the mechanisms of disease stem from in vitro experiments and in vivo animal models that make a fair attempt, but do not recapitulate the conditions inside the human host. To better understand the dynamics of initiation and progression in cryptococcal disease, it is important to study the genetic and phenotypic differences in the context of human infection to identify the human and fungal risk factors that contribute to pathogenesis and poor clinical outcomes. In this review, we summarize the current understanding of the different clinical presentations and health outcomes that are associated with pathogenicity and virulence of cryptococcal strains with respect to specific genotypes and phenotypes.
Collapse
|
20
|
Mekraksakit P, Elmassry M, Leelaviwat N, Nugent K. Invasive pneumococcal disease confirmed in five different sites including Austrian syndrome in a male patient with methamphetamine abuse. BMJ Case Rep 2020; 13:13/12/e239718. [PMID: 33303512 DOI: 10.1136/bcr-2020-239718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A 60-year-old man with no significant medical history was found unresponsive by his neighbour; he had neck stiffness on physical examination in the emergency department. He later developed acute hypoxic respiratory failure requiring endotracheal intubation. He is a binge drinker on weekends, and methamphetamine was detected in his urine. Contrast-enhanced CT of the chest, abdomen and pelvis revealed multifocal pneumonia, bilateral psoas abscesses and right infraspinatus muscle abscess. Blood, sputum and cerebrospinal fluid cultures grew Streptococcus pneumoniae Transthoracic echocardiography (TTE) revealed tricuspid endocarditis with mild valve insufficiency. He was initially treated with intravenous antibiotics and underwent incision and drainage of right psoas abscess. However, he still had recurrent fever and confusion. Repeat TTE showed larger vegetation, and he also developed septic emboli at the posterior basal right lower lobe pulmonary artery. The patient underwent tricuspid valve debridement and was finally discharged after completing 6 weeks of intravenous antibiotic treatment.
Collapse
Affiliation(s)
- Poemlarp Mekraksakit
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Mohamed Elmassry
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | - Natnicha Leelaviwat
- Department of Internal Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kenneth Nugent
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| |
Collapse
|
21
|
Polk C, Meredith J, Kuprenas A, Leonard M. Cryptococcus meningitis mimicking cerebral septic emboli, a case report series demonstrating injection drug use as a risk factor for development of disseminated disease. BMC Infect Dis 2020; 20:381. [PMID: 32460792 PMCID: PMC7254669 DOI: 10.1186/s12879-020-05108-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/18/2020] [Indexed: 11/29/2022] Open
Abstract
Background Clinicians may be less inclined to consider a diagnosis of cryptococcal meningitis in people without HIV infection or transplant-related immunosuppression. This may lead to a delay in diagnosis particularly if disseminated cryptococcal disease mimics cerebral septic emboli in injection drug use (IDU) leading to a search for endocarditis or other infectious sources. Though, IDU has been described as a potential risk for disseminated cryptococcal disease. Case presentations We present two cases of cryptococcal meningitis in IDU without HIV or other obvious immune deficits. Both patients presented with at least 2 weeks of headache and blurred vision. They developed central nervous system (CNS) vasculitis, one of which mimicked septic cerebral emboli, but both resulted with poor neurologic outcomes. Conclusions IDU likely induces an underappreciated immune deficit and is a risk factor for developing cryptococcal meningitis. This diagnosis, which can mimic cerebral septic emboli through involvement of a CNS vasculitis, should be considered in the setting of IDU.
Collapse
Affiliation(s)
| | - Jacqueline Meredith
- Atrium Health, Department of Pharmacy, Antimicrobial Support Network, Charlotte, NC, USA
| | | | | |
Collapse
|
22
|
Chen X, Qiu F, Zhao X, Lu J, Tan X, Xu J, Chen C, Zhang F, Liu C, Qiao D, Wang H. Astrocyte-Derived Lipocalin-2 Is Involved in Mitochondrion-Related Neuronal Apoptosis Induced by Methamphetamine. ACS Chem Neurosci 2020; 11:1102-1116. [PMID: 32186847 DOI: 10.1021/acschemneuro.9b00559] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methamphetamine (METH) is a widely abused and highly addictive psychoactive stimulant that can induce neuronal apoptosis. Lipocalin-2 (LCN2) is a member of the lipocalin family, and its upregulation is involved in cell death in the adult brain. However, the role of LCN2 in METH-induced neurotoxicity has not been reported. In this study, we found that LCN2 was predominantly expressed in hippocampal astrocytes after METH exposure and that recombinant LCN2 (Re LCN2) can induce neuronal apoptosis in vitro and in vivo. The inhibition of LCN2 and LCN2R, a cell surface receptor for LCN2, reduced METH- and Re LCN2-induced mitochondrion-related neuronal apoptosis in cultures of primary rat neurons and animal models. Our study supports the role of reactive oxygen species (ROS) generation and the PRKR-like ER kinase (PERK)-mediated signaling pathway in the upregulation of astrocyte-derived LCN2 after METH exposure. Additionally, the serum and cerebrospinal fluid (CSF) levels of LCN2 were significantly upregulated after METH exposure. These results indicate that upregulation of astrocyte-derived LCN2 binding to LCN2R is involved in METH-induced mitochondrion-related neuronal apoptosis.
Collapse
Affiliation(s)
- Xuebing Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Feng Qiu
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| | - Xu Zhao
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jiancong Lu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Xiaohui Tan
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Jingtao Xu
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Chuanxiang Chen
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Fu Zhang
- Key Lab of Forensic Pathology, Guangdong Public Security Department, Guangzhou 510050, China
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou 510030, China
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
| | - Huijun Wang
- School of Forensic Medicine, Southern Medical University, Guangzhou 510515, China
- Department of Laboratory Medicine, Nanhai Hospital, Southern Medical University, Foshan, Guangdong 528244, China
| |
Collapse
|
23
|
Limanaqi F, Busceti CL, Biagioni F, Fornai F, Puglisi-Allegra S. Autophagy-Based Hypothesis on the Role of Brain Catecholamine Response During Stress. Front Psychiatry 2020; 11:569248. [PMID: 33093837 PMCID: PMC7527533 DOI: 10.3389/fpsyt.2020.569248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Stressful events, similar to abused drugs, significantly affect the homeostatic balance of the catecholamine brain systems while activating compensation mechanisms to restore balance. In detail, norepinephrine (NE)- and dopamine (DA)-containing neurons within the locus coeruleus (LC) and ventral tegmental area (VTA), are readily and similarly activated by psychostimulants and stressful events involving neural processes related to perception, reward, cognitive evaluation, appraisal, and stress-dependent hormonal factors. Brain catecholamine response to stress results in time-dependent regulatory processes involving mesocorticolimbic circuits and networks, where LC-NE neurons respond more readily than VTA-DA neurons. LC-NE projections are dominant in controlling the forebrain DA-targeted areas, such as the nucleus accumbens (NAc) and medial pre-frontal cortex (mPFC). Heavy and persistent coping demand could lead to sustained LC-NE and VTA-DA neuronal activity, that, when persisting chronically, is supposed to alter LC-VTA synaptic connections. Increasing evidence has been provided indicating a role of autophagy in modulating DA neurotransmission and synaptic plasticity. This alters behavior, and emotional/cognitive experience in response to drug abuse and occasionally, to psychological stress. Thus, relevant information to address the role of stress and autophagy can be drawn from psychostimulants research. In the present mini-review we discuss the role of autophagy in brain catecholamine response to stress and its dysregulation. The findings here discussed suggest a crucial role of regulated autophagy in the response and adaptation of LC-NE and VTA-DA systems to stress.
Collapse
Affiliation(s)
- Fiona Limanaqi
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, Pisa, Italy
| | | | | | - Francesco Fornai
- Department of Translational Research and New Technologies on Medicine and Surgery, University of Pisa, Pisa, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | | |
Collapse
|
24
|
Cheng B, Sang JM, Cui Z, Bacani N, Armstrong HL, Zhu J, Elefante J, Olarewaju G, Card KG, Blackwell E, Lachowsky NJ, Hogg RS, Roth EA, Moore DM. Factors Associated with Cessation or Reduction of Methamphetamine Use among Gay, Bisexual, and Other Men Who Have Sex with Men (gbMSM) in Vancouver Canada. Subst Use Misuse 2020; 55:1692-1701. [PMID: 32406780 PMCID: PMC7527035 DOI: 10.1080/10826084.2020.1756854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Methamphetamine (MA) use among gay, bisexual, and other men who have sex with men (gbMSM) is a pervasive issue, associated with detrimental health outcomes. We identified factors associated with discontinuation or reduction in MA among a subset of gbMSM reporting frequent (at least weekly) use, with a specific focus on symptoms of anxiety and depression. Methods: We recruited sexually-active gbMSM aged ≥16 years in Vancouver, Canada into a prospective-cohort study using respondent-driven sampling. Participants completed study visits once every six months. We used generalized linear mixed models to identify factors associated with reductions in MA use following a visit where participants previously reported using MA at least weekly. Results: Of 584 cohort participants with at least one follow-up visit, 67 (11.5%) reported frequent MA use at baseline or in follow-up visits. Of these, 46 (68.7%) had at least one subsequent study visit where they transitioned to less frequent (monthly or less) or no MA use. In multivariable models, reduced MA use was less likely for those who spent >50% of social time with other gbMSM (aRR = 0.49, 95%CI:0.28-0.85), gave or received drugs in exchange for sex (aRR = 0.34, 95%CI:0.13-0.87), injected drugs (aRR = 0.35, 95%CI:0.18-0.68), or used gamma-hydroxybutyrate (GHB) (aRR = 0.41, 95%CI:0.21-0.78). Symptoms of anxiety or depression were not associated with reductions in MA use. Conclusions: Social connection and drug-related factors surrounding MA use were associated with reductions, but anxiety and depressive symptomatology were not. Incorporating socialization and polysubstance-related components with MA reduction may help in developing efficacious interventions toward reducing MA use for gbMSM.
Collapse
Affiliation(s)
- Brooke Cheng
- Faculty of Science, University of British Columbia, Vancouver, BC, Canada
| | - Jordan M Sang
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Zishan Cui
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Nicanor Bacani
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | | | - Julia Zhu
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Julius Elefante
- St. Paul's Hospital, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Gbolahan Olarewaju
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Kiffer G Card
- University of Victoria, Victoria, BC, Canada.,Canadian Institute for Substance Use Research, Victoria, BC, Canada
| | | | - Nathan J Lachowsky
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,University of Victoria, Victoria, BC, Canada.,Canadian Institute for Substance Use Research, Victoria, BC, Canada
| | - Robert S Hogg
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Simon Fraser University, Burnaby, BC, Canada
| | - Eric A Roth
- University of Victoria, Victoria, BC, Canada
| | - David M Moore
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Chilunda V, Calderon TM, Martinez-Aguado P, Berman JW. The impact of substance abuse on HIV-mediated neuropathogenesis in the current ART era. Brain Res 2019; 1724:146426. [PMID: 31473221 PMCID: PMC6889827 DOI: 10.1016/j.brainres.2019.146426] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
Approximately 37 million people worldwide are infected with human immunodeficiency virus (HIV). One highly significant complication of HIV infection is the development of HIV-associated neurocognitive disorders (HAND) in 15-55% of people living with HIV (PLWH), that persists even in the antiretroviral therapy (ART) era. The entry of HIV into the central nervous system (CNS) occurs within 4-8 days after peripheral infection. This establishes viral reservoirs that may persist even in the presence of ART. Once in the CNS, HIV infects resident macrophages, microglia, and at low levels, astrocytes. In response to chronic infection and cell activation within the CNS, viral proteins, inflammatory mediators, and host and viral neurotoxic factors produced over extended periods of time result in neuronal injury and loss, cognitive deficits and HAND. Substance abuse is a common comorbidity in PLWH and has been shown to increase neuroinflammation and cognitive disorders. Additionally, it has been associated with poor ART adherence, and increased viral load in the cerebrospinal fluid (CSF), that may also contribute to increased neuroinflammation and neuronal injury. Studies have examined mechanisms that contribute to neuroinflammation and neuronal damage in PLWH, and how substances of abuse exacerbate these effects. This review will focus on how substances of abuse, with an emphasis on methamphetamine (meth), cocaine, and opioids, impact blood brain barrier (BBB) integrity and transmigration of HIV-infected and uninfected monocytes across the BBB, as well as their effects on monocytes/macrophages, microglia, and astrocytes within the CNS. We will also address how these substances of abuse may contribute to HIV-mediated neuropathogenesis in the context of suppressive ART. Additionally, we will review the effects of extracellular dopamine, a neurotransmitter that is increased in the CNS by substances of abuse, on HIV neuropathogenesis and how this may contribute to neuroinflammation, neuronal insult, and HAND in PLWH with active substance use. Lastly, we will discuss some potential therapies to limit CNS inflammation and damage in HIV-infected substance abusers.
Collapse
Affiliation(s)
- Vanessa Chilunda
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Tina M Calderon
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Pablo Martinez-Aguado
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA
| | - Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, USA.
| |
Collapse
|
26
|
Pawlak K, Lech K, Vei A, Burch S, Zieschang S, Jaquet S, Yu F, Harwood E, Morsey B, Fox HS, Ciborowski P. Secreted Metabolome of Human Macrophages Exposed to Methamphetamine. Anal Chem 2019; 91:9190-9197. [PMID: 31265257 DOI: 10.1021/acs.analchem.9b01952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Macrophages comprise a major component of the human innate immune system that is involved in maintaining homeostasis and responding to infections or other insults. Besides cytokines and chemokines, macrophages presumably influence the surrounding environment by secreting various types of metabolites. Characterization of secreted metabolites under normal and pathological conditions is critical for understanding the complex innate immune system. To investigate the secreted metabolome, we developed a novel workflow consisting of one Reverse Phase (RP) C18 column linked in tandem with a Cogent cholesterol-modified RP C18. This system was used to compare the secreted metabolomes of human monocyte-derived macrophages (hMDM) under normal conditions to those exposed to methamphetamine (Meth). This new experimental approach allowed us to measure 92 metabolites, identify 11 of them as differentially expressed, separate and identify three hydroxymethamphetamine (OHMA) isomers, and identify a new, yet unknown metabolite with a m/z of 192. This study is the first of its kind to address the secreted metabolomic response of hMDM to an insult by Meth. Besides the discovery of novel metabolites secreted by macrophages, we provide a novel methodology to investigate metabolomic profiling.
Collapse
Affiliation(s)
- Katarzyna Pawlak
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States.,Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| | - Katarzyna Lech
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States.,Faculty of Chemistry , Warsaw University of Technology , Noakowskiego 3 , 00-664 Warsaw , Poland
| | - Akou Vei
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Sydney Burch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Sarah Zieschang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Spencer Jaquet
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Fang Yu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Emma Harwood
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Brenda Morsey
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Howard S Fox
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center , 985800 University of Nebraska Medical Center , Omaha , Nebraska 68198-5800 , United States
| |
Collapse
|
27
|
Combination of acute intravenous methamphetamine injection and LPS challenge facilitate leukocyte infiltration into the central nervous system of C57BL/6 mice. Int Immunopharmacol 2019; 75:105751. [PMID: 31319359 DOI: 10.1016/j.intimp.2019.105751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022]
Abstract
Methamphetamine (METH) is a stimulant of the central nervous system (CNS) that causes behavioral changes in users. METH is slowly cleared from brain tissue and its chronic use is neurotoxic. METH also alters the cellular and chemical components of inflammation. However, little is known about the effect of a single intravenous dose of METH followed by bacterial lipopolysaccharide (LPS) injection on cellular infiltration and cytokine release in brain tissue. Using a murine model of acute METH administration and flow cytometry, we found that combination of METH and LPS stimulate the infiltration of macrophages (F4/80+cells) and neutrophils (Ly-6G+cells) into the CNS. Histological sections of the brainstem of METH-treated and LPS-challenged C57BL/6 mice demonstrated considerable leukocyte infiltration relative to untreated, LPS, and METH groups. Moreover, rodents treated with LPS alone or combined with METH showed elevated levels of pro-inflammatory cytokines mRNA in brain tissue. Our observations are important because recognizing neuroinflammatory changes after acute METH administration might help us to understand METH-induced neurotoxicity in users.
Collapse
|
28
|
Kang Y, Lee JH, Seo YH, Jang JH, Jeong CH, Lee S, Jeong GS, Park B. Epicatechin Prevents Methamphetamine-Induced Neuronal Cell Death via Inhibition of ER Stress. Biomol Ther (Seoul) 2019; 27:145-151. [PMID: 30514054 PMCID: PMC6430228 DOI: 10.4062/biomolther.2018.092] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/11/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023] Open
Abstract
Methamphetamine (METH) acts strongly on the nervous system and damages neurons and is known to cause neurodegenerative diseases such as Alzheimer’s and Parkinson’s. Flavonoids, polyphenolic compounds present in green tea, red wine and several fruits exhibit antioxidant properties that protect neurons from oxidative damage and promote neuronal survival. Especially, epicatechin (EC) is a powerful flavonoid with antibacterial, antiviral, antitumor and antimutagenic effects as well as antioxidant effects. We therefore investigated whether EC could prevent METH-induced neurotoxicity using HT22 hippocampal neuronal cells. EC reduced METH-induced cell death of HT22 cells. In addition, we observed that EC abrogated the activation of ERK, p38 and inhibited the expression of CHOP and DR4. EC also reduced METH-induced ROS accumulation and MMP. These results suggest that EC may protect HT22 hippocampal neurons against METH-induced cell death by reducing ER stress and mitochondrial damage.
Collapse
Affiliation(s)
- Youra Kang
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Ji-Ha Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Jung-Hee Jang
- Department of Pharmacology, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Chul-Ho Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Sooyeun Lee
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Gil-Saeng Jeong
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| | - Byoungduck Park
- College of Pharmacy, Keimyung University, Daegu 42601, Republic of Korea
| |
Collapse
|
29
|
Methamphetamine Impairs IgG1-Mediated Phagocytosis and Killing of Cryptococcus neoformans by J774.16 Macrophage- and NR-9640 Microglia-Like Cells. Infect Immun 2019; 87:IAI.00113-18. [PMID: 30510106 DOI: 10.1128/iai.00113-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/27/2018] [Indexed: 01/14/2023] Open
Abstract
The prevalence of methamphetamine (METH) use is estimated at ∼35 million people worldwide, with over 10 million users in the United States. Chronic METH abuse and dependence predispose the users to participate in risky behaviors that may result in the acquisition of HIV and AIDS-related infections. Cryptococcus neoformans is an encapsulated fungus that causes cryptococcosis, an opportunistic infection that has recently been associated with drug users. METH enhances C. neoformans pulmonary infection, facilitating its dissemination and penetration into the central nervous system in mice. C. neoformans is a facultative intracellular microorganism and an excellent model to study host-pathogen interactions. METH compromises phagocyte effector functions, which might have deleterious consequences on infection control. In this study, we investigated the role of METH in phagocytosis and antigen processing by J774.16 macrophage- and NR-9460 microglia-like cells in the presence of a specific IgG1 to C. neoformans capsular polysaccharide. METH inhibits antibody-mediated phagocytosis of cryptococci by macrophages and microglia, likely due to reduced expression of membrane-bound Fcγ receptors. METH interferes with phagocytic cells' phagosomal maturation, resulting in impaired fungal control. Phagocytic cell reduction in nitric oxide production during interactions with cryptococci was associated with decreased levels of tumor necrosis factor alpha (TNF-α) and lowered expression of Fcγ receptors. Importantly, pharmacological levels of METH in human blood and organs are cytotoxic to ∼20% of the phagocytes. Our findings suggest that METH abrogates immune cellular and molecular functions and may be deadly to phagocytic cells, which may result in increased susceptibility of users to acquire infectious diseases.
Collapse
|
30
|
Methamphetamine alters T cell cycle entry and progression: role in immune dysfunction. Cell Death Discov 2018; 4:44. [PMID: 29581895 PMCID: PMC5859078 DOI: 10.1038/s41420-018-0045-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 01/31/2023] Open
Abstract
We and others have demonstrated that stimulants such as methamphetamine (METH) exerts immunosuppressive effects on the host’s innate and adaptive immune systems and has profound immunological implications. Evaluation of the mechanisms responsible for T-cell immune dysregulation may lead to ways of regulating immune homeostasis during stimulant use. Here we evaluated the effects of METH on T cell cycle entry and progression following activation. Kinetic analyses of cell cycle progression of T-cell subsets exposed to METH demonstrated protracted G1/S phase transition and differentially regulated genes responsible for cell cycle regulation. This result was supported by in vivo studies where mice exposed to METH had altered G1 cell cycle phase and impaired T-cell proliferation. In addition, T cells subsets exposed to METH had significant decreased expression of cyclin E, CDK2 and transcription factor E2F1 expression. Overall, our results indicate that METH exposure results in altered T cell cycle entry and progression. Our findings suggest that disruption of cell cycle machinery due to METH may limit T-cell proliferation essential for mounting an effective adaptive immune response and thus may strongly contribute to deleterious effect on immune system.
Collapse
|
31
|
Shen Y, Wu L, Wang J, Wu X, Zhang X. The Role of Mitochondria in Methamphetamine-induced inhibitory effects on osteogenesis of Mesenchymal Stem Cells. Eur J Pharmacol 2018; 826:56-65. [PMID: 29501866 DOI: 10.1016/j.ejphar.2018.02.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/25/2018] [Accepted: 02/28/2018] [Indexed: 01/22/2023]
Abstract
Methamphetamine (METH) abuse causes significant physical, psychological, and social concerns. Therefore, in this study, we investigated its effects on osteogenic differentiation of mesenchymal stem cells (MSCs). We found that METH dose-dependently affected MSCs viability. Upon osteogenic induction, the 3 and 30 µmol/l METH dosages without deleterious effects on MSCs viability resulted in the down-regulation of osteoblastic marker genes (Alp, Bglap, and Runx2), suppression of the protein expression of RUNX2, and decreased ALP activity and mineralization ability. Mitochondria are essential during osteogenesis of MSCs. Our analysis on mitochondrial function revealed that METH decreased ATP production, suppressed the oxygen consumption rate, and depolarized the mitochondrial membrane potential, but it had no significant effects on the protein expression of the five complexes on the respiratory chain. Additionally, METH could impair mitochondrial biogenesis, as demonstrated by decreased mtDNA and down-regulated biogenesis factors. Mitochondrial fusion regulators were also decreased at the mRNA and protein levels. However, mitochondrial fission and mitophagy were not affected. In conclusion, our study revealed that exposure to METH could result in decreased mitochondrial biogenesis and fusion as well as mitochondrial dysfunction, and thus it suppressed the osteogenesis of MSCs.
Collapse
Affiliation(s)
- Yulai Shen
- State Key Laboratory of Reproductive Medicine (SKLRM) and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Lu Wu
- State Key Laboratory of Reproductive Medicine (SKLRM) and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Jun Wang
- State Key Laboratory of Reproductive Medicine (SKLRM) and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China
| | - Xin Wu
- State Key Laboratory of Reproductive Medicine (SKLRM) and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
| | - Xuemei Zhang
- State Key Laboratory of Reproductive Medicine (SKLRM) and Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211100, China.
| |
Collapse
|
32
|
Ye T, Sun D, Dong G, Xu G, Wang L, Du J, Ren P, Yu S. The effect of methamphetamine abuse on dental caries and periodontal diseases in an Eastern China city. BMC Oral Health 2018; 18:8. [PMID: 29321070 PMCID: PMC5763656 DOI: 10.1186/s12903-017-0463-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 12/17/2017] [Indexed: 01/20/2023] Open
Abstract
Background Dental diseases are among the most frequently reported health problems in drug abusers. However, few studies have been conducted on oral health of methamphetamine (meth) abusers in China. The aim of the present study was to investigate the caries and periodontal health profile of former meth abusers in Eastern China. Methods A cross-sectional study was conducted on 162 former meth abusers in the male Zhoushan Compulsory Detoxification Center. A standardized questionnaire, which collected information about age, drug-use duration / pattern, oral hygiene habit and systemic diseases, was administered. Then, a dental examination was performed to investigate the severity of dental caries and periodontal diseases. In evaluating dental caries, the prevalence of dental caries, the scores of decayed teeth (DT), missing teeth (MT), filled teeth (FT), and decayed, missing, filled teeth (DMFT) were recorded. In evaluating periodontal diseases, community periodontal index (CPI), and the prevalence of gingival bleeding, dental calculus, periodontal pocket and loose teeth, were recorded. Additionally, the non-parametric test was adopted to analyze the potential risk factors via SPSS. Results All the participants abused meth by inhalation. The mean scores of DT, MT, FT and DMFT in the former meth users were 2.72 ± 2.78, 3.07 ± 3.94, 0.33 ± 1.03 and 6.13 ± 5.20 respectively. The prevalence of gingival bleeding, dental calculus, periodontal pocket and loose teeth was 97.53%, 95.68%, 51.23% and 9.26% respectively. The DT, DMFT and CPI scores in those who had abused meth for longer than 4 years were significantly higher than those who abused for less than 4 years (P = 0.039, 0.045, P < 0.001, respectively). The DT score in those who brushed their teeth more than twice a day were significantly lower than those who brushed less (P = 0.018). Conclusions The status of caries and periodontal diseases among former male meth users in Eastern China was poor. Prolonged drug abuse and lower frequency of tooth brushing may be the risk factors of their poor status of caries and periodontal diseases. Electronic supplementary material The online version of this article (10.1186/s12903-017-0463-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tao Ye
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Dongliang Sun
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Guangying Dong
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China
| | - Guangjie Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China.,Department of Stomatology, Chinese PLA 413 Hospital, Zhoushan, Zhejiang, 316000, People's Republic of China
| | - Ligang Wang
- Department of Stomatology, Chinese PLA 413 Hospital, Zhoushan, Zhejiang, 316000, People's Republic of China
| | - Jinjin Du
- Department of Stomatology, Chinese PLA 413 Hospital, Zhoushan, Zhejiang, 316000, People's Republic of China
| | - Pengcheng Ren
- Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China.
| | - Shibin Yu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shanxi Key Laboratory of Oral Diseases, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, 710032, People's Republic of China.
| |
Collapse
|
33
|
Shah A, Kumar A. Methamphetamine-mediated endoplasmic reticulum (ER) stress induces type-1 programmed cell death in astrocytes via ATF6, IRE1α and PERK pathways. Oncotarget 2018; 7:46100-46119. [PMID: 27323860 PMCID: PMC5216784 DOI: 10.18632/oncotarget.10025] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/26/2016] [Indexed: 12/21/2022] Open
Abstract
Methamphetamine (MA), a psychostimulant drug has been associated with a variety of neurotoxic effects which are thought to be mediated by induction of pro-inflammatory cytokines/chemokines, oxidative stress and damage to blood-brain-barrier. Conversely, the ER stress-mediated apoptosis has been implicated in several neurodegenerative diseases. However, its involvement in MA-mediated neurodegenerative effects remains largely unexplored. The present study was undertaken to assess the effect of MA on ER stress and its possible involvement in apoptosis. For this purpose, SVGA astrocytes were treated with MA, which induced the expressions of BiP and CHOP at both, mRNA and protein levels. This phenomenon was also confirmed in HFA and various regions of mouse brain. Assessment of IRE1α, ATF6 and PERK pathways further elucidated the mechanistic details underlying MA-mediated ER stress. Knockdown of various intermediate molecules in ER stress pathways using siRNA demonstrated reduction in MA-mediated CHOP. Finally, MA-mediated apoptosis was demonstrated via MTT assay and TUNEL staining. The involvement of ER stress in the apoptosis was demonstrated with the help of MTT and TUNEL assays in the presence of siRNA against various ER stress proteins. The apoptosis also involved activation of caspase-3 and caspase-9, which was reversed by knockdown with various siRNAs. Altogether, this is the first report demonstrating mechanistic details responsible for MA-mediated ER stress and its role in apoptosis. This study provides a novel group of targets that can be explored in future for management of MA-mediated cell death and MA-associated neurodegenerative disorders.
Collapse
Affiliation(s)
- Ankit Shah
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| |
Collapse
|
34
|
Zhang X, Hu Y, Justice AC, Li B, Wang Z, Zhao H, Krystal JH, Xu K. DNA methylation signatures of illicit drug injection and hepatitis C are associated with HIV frailty. Nat Commun 2017; 8:2243. [PMID: 29269866 PMCID: PMC5740109 DOI: 10.1038/s41467-017-02326-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/20/2017] [Indexed: 01/13/2023] Open
Abstract
Intravenous illicit drug use (IDU) and hepatitis C infection (HCV) commonly co-occur among HIV-infected individuals. These co-occurring conditions may produce interacting epigenetic effects in white blood cells that influence immune function and health outcomes. Here, we report an epigenome-wide association analysis comparing IDU+/ HCV+ and IDU-/HCV- in 386 HIV-infected individuals as a discovery sample and in 412 individuals as a replication sample. We observe 6 significant CpGs in the promoters of 4 genes, NLRC5, TRIM69, CX3CR1, and BCL9, in the discovery sample and in meta-analysis. We identify 19 differentially methylated regions on chromosome 6 harboring MHC gene clusters. Importantly, a panel of IDU+/HCV+-associated CpGs discriminated HIV frailty based upon a validated index with an area under the curve of 79.3% for high frailty and 82.3% for low frailty. These findings suggest that IDU and HCV involve epigenetic programming and that their associated methylation signatures discriminate HIV pathophysiologic frailty.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA
| | - Ying Hu
- National Cancer Institute Center for Biomedical Information & Information Technology, 9609 Medical Center Drive, Bethesda, MD, 20850, USA
| | - Amy C Justice
- VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA
- Yale University School of Medicine, New Haven Veterans Affairs Connecticut Healthcare System, New Haven, CT, 06516, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Zuoheng Wang
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06511, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, 06511, USA
| | - John H Krystal
- Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT, 06511, USA
- VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA
| | - Ke Xu
- Department of Psychiatry, Yale School of Medicine, 300 George Street, New Haven, CT, 06511, USA.
- VA Connecticut Healthcare System, 950 Campbell Avenue, West Haven, CT, 06516, USA.
| |
Collapse
|
35
|
Yu C, Narasipura SD, Richards MH, Hu XT, Yamamoto B, Al-Harthi L. HIV and drug abuse mediate astrocyte senescence in a β-catenin-dependent manner leading to neuronal toxicity. Aging Cell 2017; 16:956-965. [PMID: 28612507 PMCID: PMC5595688 DOI: 10.1111/acel.12593] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 12/27/2022] Open
Abstract
Emerging evidence suggests that cell senescence plays an important role in aging-associated diseases including neurodegenerative diseases. HIV leads to a spectrum of neurologic diseases collectively termed HIV-associated neurocognitive disorders (HAND). Drug abuse, particularly methamphetamine (meth), is a frequently abused psychostimulant among HIV+ individuals and its abuse exacerbates HAND. The mechanism by which HIV and meth lead to brain cell dysregulation is not entirely clear. In this study, we evaluated the impact of HIV and meth on astrocyte senescence using in vitro and several animal models. Astrocytes constitute up to 50% of brain cells and play a pivotal role in marinating brain homeostasis. We show here that HIV and meth induce significant senescence of primary human fetal astrocytes, as evaluated by induction of senescence markers (β-galactosidase and p16INK4A ), senescence-associated morphologic changes, and cell cycle arrest. HIV- and meth-mediated astrocyte senescence was also demonstrated in three small animal models (humanized mouse model of HIV/NSG-huPBMCs, HIV-transgenic rats, and in a meth administration rat model). Senescent astrocytes in turn mediated neuronal toxicity. Further, we show that β-catenin, a pro-survival/proliferation transcriptional co-activator, is downregulated by HIV and meth in human astrocytes and this downregulation promotes astrocyte senescence while induction of β-catenin blocks HIV- and meth-mediated astrocyte senescence. These studies, for the first time, demonstrate that HIV and meth induce astrocyte senescence and implicate the β-catenin pathway as potential therapeutic target to overcome astrocyte senescence.
Collapse
Affiliation(s)
- Chunjiang Yu
- Department of Immunology and Microbiology; Rush University Medical Center; Chicago IL 60612 USA
| | - Srinivas D. Narasipura
- Department of Immunology and Microbiology; Rush University Medical Center; Chicago IL 60612 USA
| | - Maureen H. Richards
- Department of Immunology and Microbiology; Rush University Medical Center; Chicago IL 60612 USA
| | - Xiu-Ti Hu
- Department of Pharmacology; Rush University Medical Center; Chicago IL 60612 USA
| | - Bryan Yamamoto
- Department of Pharmacology and Toxicology; Indiana University School of Medicine; Indianapolis IN 46202 USA
| | - Lena Al-Harthi
- Department of Immunology and Microbiology; Rush University Medical Center; Chicago IL 60612 USA
| |
Collapse
|
36
|
Methamphetamine: Effects on the brain, gut and immune system. Pharmacol Res 2017; 120:60-67. [DOI: 10.1016/j.phrs.2017.03.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 02/08/2017] [Accepted: 03/07/2017] [Indexed: 12/31/2022]
|
37
|
Aslanyan L, Ekhar VV, DeLeon-Rodriguez CM, Martinez LR. Capsular specific IgM enhances complement-mediated phagocytosis and killing of Cryptococcus neoformans by methamphetamine-treated J774.16 macrophage-like cells. Int Immunopharmacol 2017; 49:77-84. [PMID: 28551495 DOI: 10.1016/j.intimp.2017.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/29/2022]
Abstract
Methamphetamine (METH) is a powerful and highly addictive stimulant that affects the central nervous system of users in the United States and worldwide, and its consumption is associated to the acquisition of HIV and AIDS-related infections. METH enhances cryptococcosis in mice, an opportunistic infection caused by the encapsulated fungus Cryptococcus neoformans. Due to its ability to survive within macrophages, C. neoformans is an ideal model to study pathogen-macrophage interactions. METH abrogates normal macrophage function, which might contribute to the higher rate and more rapid progression of infections in drug abusers. Hence, we investigated the role of complement and specific IgM to C. neoformans capsular polysaccharide on the function of J774.16 macrophage-like cells after exposure to METH. We found that complement and IgM significantly promotes complement-mediated phagocytosis of C. neoformans by J774.16 cells in comparison to co-incubation with complement alone. IgM enhances the expression of complement receptor 3 on the surface macrophages treated with the drug. Also, IgM-increased macrophage phagocytosis of C. neoformans may be associated with upregulation of GTPase-RhoA, a key regulator of the actin polymerization signaling cascade. Fungal cells incubated with complement and IgM in the presence of METH demonstrated higher number of cells per aggregate, a possible explanation for their enhanced ingestion by phagocytes. IgM increased killing of yeast cells by macrophages by inhibiting the alkalization of the phagosome and stimulating the intracellular production of nitric oxide. Together, our findings suggest that IgM stimulates the effector functions of macrophages against opportunistic pathogens in the setting of drug abuse.
Collapse
Affiliation(s)
- Lilit Aslanyan
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States
| | - Vaibhav V Ekhar
- Department of Biomedical Sciences, Long Island University-Post, Brookville, NY, United States
| | - Carlos M DeLeon-Rodriguez
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Luis R Martinez
- Department of Biomedical Sciences, NYIT College of Osteopathic Medicine, New York Institute of Technology, Old Westbury, NY, United States; Department of Biomedical Sciences, Long Island University-Post, Brookville, NY, United States; Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
38
|
Sanchez AB, Kaul M. Neuronal Stress and Injury Caused by HIV-1, cART and Drug Abuse: Converging Contributions to HAND. Brain Sci 2017; 7:brainsci7030025. [PMID: 28241493 PMCID: PMC5366824 DOI: 10.3390/brainsci7030025] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/15/2017] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
Multiple mechanisms appear to contribute to neuronal stress and injury underlying HIV-associated neurocognitive disorders (HAND), which occur despite the successful introduction of combination antiretroviral therapy (cART). Evidence is accumulating that components of cART can itself be neurotoxic upon long-term exposure. In addition, abuse of psychostimulants, such as methamphetamine (METH), seems to compromise antiretroviral therapy and aggravate HAND. However, the combined effect of virus and recreational and therapeutic drugs on the brain is still incompletely understood. However, several lines of evidence suggest a shared critical role of oxidative stress, compromised neuronal energy homeostasis and autophagy in promotion and prevention of neuronal dysfunction associated with HIV-1 infection, cART and psychostimulant use. In this review, we present a synopsis of recent work related to neuronal stress and injury induced by HIV infection, antiretrovirals (ARVs) and the highly addictive psychostimulant METH.
Collapse
Affiliation(s)
- Ana B Sanchez
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| | - Marcus Kaul
- Immunity and Pathogenesis Program, Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
- Department of Psychiatry, University of California San Diego, San Diego, CA 92093, USA.
| |
Collapse
|
39
|
Chen PI, Cao A, Miyagawa K, Tojais NF, Hennigs JK, Li CG, Sweeney NM, Inglis AS, Wang L, Li D, Ye M, Feldman BJ, Rabinovitch M. Amphetamines promote mitochondrial dysfunction and DNA damage in pulmonary hypertension. JCI Insight 2017; 2:e90427. [PMID: 28138562 DOI: 10.1172/jci.insight.90427] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Amphetamine (AMPH) or methamphetamine (METH) abuse can cause oxidative damage and is a risk factor for diseases including pulmonary arterial hypertension (PAH). Pulmonary artery endothelial cells (PAECs) from AMPH-associated-PAH patients show DNA damage as judged by γH2AX foci and DNA comet tails. We therefore hypothesized that AMPH induces DNA damage and vascular pathology by interfering with normal adaptation to an environmental perturbation causing oxidative stress. Consistent with this, we found that AMPH alone does not cause DNA damage in normoxic PAECs, but greatly amplifies DNA damage in hypoxic PAECs. The mechanism involves AMPH activation of protein phosphatase 2A, which potentiates inhibition of Akt. This increases sirtuin 1, causing deacetylation and degradation of HIF1α, thereby impairing its transcriptional activity, resulting in a reduction in pyruvate dehydrogenase kinase 1 and impaired cytochrome c oxidase 4 isoform switch. Mitochondrial oxidative phosphorylation is inappropriately enhanced and, as a result of impaired electron transport and mitochondrial ROS increase, caspase-3 is activated and DNA damage is induced. In mice given binge doses of METH followed by hypoxia, HIF1α is suppressed and pulmonary artery DNA damage foci are associated with worse pulmonary vascular remodeling. Thus, chronic AMPH/METH can induce DNA damage associated with vascular disease by subverting the adaptive responses to oxidative stress.
Collapse
|
40
|
Cases of disseminated cryptococcosis in intravenous drug abusers without HIV infection: A new risk factor? Med Mycol Case Rep 2016; 14:17-19. [PMID: 27995054 PMCID: PMC5154963 DOI: 10.1016/j.mmcr.2016.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/21/2022] Open
Abstract
Cryptococcosis is a fungal disease which has been characterized by its identified risk groups. There are many risk factors identified. We present a surprising four cases of disseminated cryptococcosis in intravenous drug abuse (IVDA) patients in a short period of time and in one geographical area, this observation suggest that there may be a new association with IVDA and cryptococosis.
Collapse
|
41
|
Bai Y, Zhang Y, Hua J, Yang X, Zhang X, Duan M, Zhu X, Huang W, Chao J, Zhou R, Hu G, Yao H. Silencing microRNA-143 protects the integrity of the blood-brain barrier: implications for methamphetamine abuse. Sci Rep 2016; 6:35642. [PMID: 27767041 PMCID: PMC5073292 DOI: 10.1038/srep35642] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 10/03/2016] [Indexed: 12/31/2022] Open
Abstract
MicroRNA-143 (miR-143) plays a critical role in various cellular processes; however, the role of miR-143 in the maintenance of blood-brain barrier (BBB) integrity remains poorly defined. Silencing miR-143 in a genetic animal model or via an anti-miR-143 lentivirus prevented the BBB damage induced by methamphetamine. miR-143, which targets p53 unregulated modulator of apoptosis (PUMA), increased the permeability of human brain endothelial cells and concomitantly decreased the expression of tight junction proteins (TJPs). Silencing miR-143 increased the expression of TJPs and protected the BBB integrity against the effects of methamphetamine treatment. PUMA overexpression increased the TJP expression through a mechanism that involved the NF-κB and p53 transcription factor pathways. Mechanistically, methamphetamine mediated up-regulation of miR-143 via sigma-1 receptor with sequential activation of the mitogen-activated protein kinase (MAPK) and phosphatidylinositol-3' kinase (PI3K)/Akt and STAT3 pathways. These results indicated that silencing miR-143 could provide a novel therapeutic strategy for BBB damage-related vascular dysfunction.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jun Hua
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, China
| | - Xiangyu Yang
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| | - Xiaotian Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ming Duan
- Virosis Laboratory, Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, 5333 Xi An Road, Changchun, 130062, China
| | - Xinjian Zhu
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wenhui Huang
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine, University of Saarland, Homburg D-66421, Germany
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rongbin Zhou
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 140 Hanzhong Road, Nanjing, Jiangsu, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
42
|
Cao L, Fu M, Kumar S, Kumar A. Methamphetamine potentiates HIV-1 gp120-mediated autophagy via Beclin-1 and Atg5/7 as a pro-survival response in astrocytes. Cell Death Dis 2016; 7:e2425. [PMID: 27763640 PMCID: PMC5133984 DOI: 10.1038/cddis.2016.317] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/05/2016] [Accepted: 08/23/2016] [Indexed: 01/02/2023]
Abstract
Methamphetamine (METH), a commonly used controlled substance, is known to exacerbate neuropathological dysfunction in HIV-infected individuals. The neuropathological manifestation results from cell death or dysfunction in the central nervous system (CNS) wherein autophagy is expected to have an important role. Autophagy is generally considered protective during deprivation/stress. However, excessive autophagy can be destructive, leading to autophagic cell death. This study was designed to investigate if METH and HIV-1 gp120 interact to induce autophagy in SVGA astrocytes, and whether autophagy is epiphenomenal or it has a role in METH- and gp120-induced cytotoxicity. We found that METH and gp120 IIIb caused an increase in LC3II level in astrocytes in a dose- and time-dependent manner, and the level of LC3II was further increased when the cells were treated with METH and gp120 IIIb in combination. Next, we sought to explore the mechanism by which METH and gp120 induce the autophagic response. We found that METH induces autophagy via opioid and metabotropic glutamate receptor type 5 (mGluR5) receptors. Other than that, signaling proteins Akt, mammalian target of rapamycin (mTOR), Beclin-1, Atg5 and Atg7 were involved in METH and gp120-mediated autophagy. In addition, long-term treatment of METH and gp120 IIIb resulted in cell death, which was exacerbated by inhibition of autophagy. This suggests that autophagy functions as a protective response against apoptosis caused by METH and gp120. This study is novel and clinically relevant because METH abuse among HIV-infected populations is highly prevalent and is known to cause exacerbated neuroAIDS.
Collapse
Affiliation(s)
- Lu Cao
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Mingui Fu
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Santosh Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Anil Kumar
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
43
|
Zhang Y, Shen K, Bai Y, Lv X, Huang R, Zhang W, Chao J, Nguyen LK, Hua J, Gan G, Hu G, Yao H. Mir143-BBC3 cascade reduces microglial survival via interplay between apoptosis and autophagy: Implications for methamphetamine-mediated neurotoxicity. Autophagy 2016; 12:1538-59. [PMID: 27464000 PMCID: PMC5082785 DOI: 10.1080/15548627.2016.1191723] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 05/10/2016] [Accepted: 05/16/2016] [Indexed: 02/08/2023] Open
Abstract
BBC3 (BCL2 binding component 3) is a known apoptosis inducer; however, its role in microglial survival remains poorly understood. In addition to the classical transcription factor TRP53, Mir143 is involved in BBC3 expression at the post-transcriptional level. Here, we identify unique roles of Mir143-BBC3 in mediating microglial survival via the regulation of the interplay between apoptosis and autophagy. Autophagy inhibition accelerated methamphetamine-induced apoptosis, whereas autophagy induction attenuated the decrease in microglial survival. Moreover, anti-Mir143-dependent BBC3 upregulation reversed the methamphetamine-induced decrease in microglial survival via the regulation of apoptosis and autophagy. The in vivo relevance of these findings was confirmed in mouse models, which demonstrated that the microinjection of anti-Mir143 into the hippocampus ameliorated the methamphetamine-induced decrease in microglia as well as that observed in heterozygous Mir143(+/-) mice. These findings provide new insight regarding the specific contributions of Mir143-BBC3 to microglial survival in the context of drug abuse.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Kai Shen
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ying Bai
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Xuan Lv
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Rongrong Huang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wei Zhang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Jie Chao
- Department of Physiology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lan K. Nguyen
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Victoria Australia
- Biomedicine Discovery Institute, Monash University, Melbourne, Victoria Australia
| | - Jun Hua
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guangming Gan
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Phillips TJ, Mootz JRK, Reed C. Identification of Treatment Targets in a Genetic Mouse Model of Voluntary Methamphetamine Drinking. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:39-85. [PMID: 27055611 DOI: 10.1016/bs.irn.2016.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Methamphetamine has powerful stimulant and euphoric effects that are experienced as rewarding and encourage use. Methamphetamine addiction is associated with debilitating illnesses, destroyed relationships, child neglect, violence, and crime; but after many years of research, broadly effective medications have not been identified. Individual differences that may impact not only risk for developing a methamphetamine use disorder but also affect treatment response have not been fully considered. Human studies have identified candidate genes that may be relevant, but lack of control over drug history, the common use or coabuse of multiple addictive drugs, and restrictions on the types of data that can be collected in humans are barriers to progress. To overcome some of these issues, a genetic animal model comprised of lines of mice selectively bred for high and low voluntary methamphetamine intake was developed to identify risk and protective alleles for methamphetamine consumption, and identify therapeutic targets. The mu opioid receptor gene was supported as a target for genes within a top-ranked transcription factor network associated with level of methamphetamine intake. In addition, mice that consume high levels of methamphetamine were found to possess a nonfunctional form of the trace amine-associated receptor 1 (TAAR1). The Taar1 gene is within a mouse chromosome 10 quantitative trait locus for methamphetamine consumption, and TAAR1 function determines sensitivity to aversive effects of methamphetamine that may curb intake. The genes, gene interaction partners, and protein products identified in this genetic mouse model represent treatment target candidates for methamphetamine addiction.
Collapse
Affiliation(s)
- T J Phillips
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States; Veterans Affairs Portland Health Care System, Portland, OR, United States.
| | - J R K Mootz
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - C Reed
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
45
|
The overexpression of Thioredoxin-1 suppressing inflammation induced by methamphetamine in spleen. Drug Alcohol Depend 2016; 159:66-71. [PMID: 26684867 DOI: 10.1016/j.drugalcdep.2015.11.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 10/06/2015] [Accepted: 11/14/2015] [Indexed: 12/13/2022]
Abstract
BACKGROUND Methamphetamine (METH) is an addictive psychostimulant and has been shown to induce oxidative stress and inflammation in various tissues. Thioredoxin-1 (Trx-1) plays the roles in regulating redox and inhibiting inflammation. Whether Trx-1 is involved in METH-induced inflammation is still unknown. METHODS The present study was designed to investigate inflammatory factors in spleen of wild type and Trx-1 overexpression transgenic mice after METH treatment. RESULTS We found the mRNA level of Trx-1 was decreased and mRNA level of Trx-1 binding protein-2 (TBP-2) was increased. The mRNA levels of tumor necrosis factor-α (TNF-α), interferon-γ(IFN-γ), interleukin-2 (IL-2), T-bet and signal transducer and activators of transcription 4 (STAT 4) were increased and the mRNA levels of IL-10, GA-TA-binding protein-3 (GATA-3) and STAT 6 were decreased. Overexpression of Trx-1 reversed the above effects induced by METH. CONCLUSION The present study showed for the first time that Trx-1 overexpression suppressed the inflammation induced by METH.
Collapse
|
46
|
Effect of Methamphetamine on Spectral Binding, Ligand Docking and Metabolism of Anti-HIV Drugs with CYP3A4. PLoS One 2016; 11:e0146529. [PMID: 26741368 PMCID: PMC4704828 DOI: 10.1371/journal.pone.0146529] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/19/2015] [Indexed: 11/19/2022] Open
Abstract
Cytochrome P450 3A4 (CYP3A4) is the major drug metabolic enzyme, and is involved in the metabolism of antiretroviral drugs, especially protease inhibitors (PIs). This study was undertaken to examine the effect of methamphetamine on the binding and metabolism of PIs with CYP3A4. We showed that methamphetamine exhibits a type I spectral change upon binding to CYP3A4 with δAmax and KD of 0.016±0.001 and 204±18 μM, respectively. Methamphetamine-CYP3A4 docking showed that methamphetamine binds to the heme of CYP3A4 in two modes, both leading to N-demethylation. We then studied the effect of methamphetamine binding on PIs with CYP3A4. Our results showed that methamphetamine alters spectral binding of nelfinavir but not the other type I PIs (lopinavir, atazanavir, tipranavir). The change in spectral binding for nelfinavir was observed at both δAmax (0.004±0.0003 vs. 0.0068±0.0001) and KD (1.42±0.36 vs.2.93±0.08 μM) levels. We further tested effect of methamphetamine on binding of 2 type II PIs; ritonavir and indinavir. Our results showed that methamphetamine alters the ritonavir binding to CYP3A4 by decreasing both the δAmax (0.0038±0.0003 vs. 0.0055±0.0003) and KD (0.043±0.0001 vs. 0.065±0.001 nM), while indinavir showed only reduced KD in presence of methamphetamine (0.086±0.01 vs. 0.174±0.03 nM). Furthermore, LC-MS/MS studies in high CYP3A4 human liver microsomes showed a decrease in the formation of hydroxy ritonavir in the presence of methamphetamine. Finally, CYP3A4 docking with lopinavir and ritonavir in the absence and presence of methamphetamine showed that methamphetamine alters the docking of ritonavir, which is consistent with the results obtained from spectral binding and metabolism studies. Overall, our results demonstrated differential effects of methamphetamine on the binding and metabolism of PIs with CYP3A4. These findings have clinical implication in terms of drug dose adjustment of antiretroviral medication, especially with ritonavir-boosted antiretroviral therapy, in HIV-1-infected individuals who abuse methamphetamine.
Collapse
|
47
|
Huckans M, Fuller BE, Chalker ALN, Adams M, Loftis JM. Plasma Inflammatory Factors Are Associated with Anxiety, Depression, and Cognitive Problems in Adults with and without Methamphetamine Dependence: An Exploratory Protein Array Study. Front Psychiatry 2015; 6:178. [PMID: 26732994 PMCID: PMC4683192 DOI: 10.3389/fpsyt.2015.00178] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/04/2015] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES It is hypothesized that immune factors influence addictive behaviors and contribute to relapse. The primary study objectives were to (1) compare neuropsychiatric symptoms across adults with active methamphetamine (MA) dependence, in early remission from MA dependence, and with no history of substance dependence, (2) determine whether active or recent MA dependence affects the expression of immune factors, and (3) evaluate the association between immune factor levels and neuropsychiatric symptoms. METHODS A cross-sectional study was conducted using between group comparisons and regression analyses to investigate associations among variables. Eighty-four adults were recruited into control (CTL) (n = 31), MA-active (n = 17), or MA-remission (n = 36) groups. Participants completed self-report measures of anxiety, depression, and memory complaints and objective tests of attention and executive function. Blood samples were collected, and a panel of immune factors was measured using multiplex technology. RESULTS Relative to CTLs, MA-dependent adults evidenced greater anxiety and depression during active use (p < 0.001) and remission (p < 0.007), and more attention, memory, and executive problems during remission (p < 0.01) but not active dependence. Regression analyses identified 10 immune factors (putatively associated with cytokine-cytokine receptor interactions) associated with anxiety, depression, and memory problems. CONCLUSION While psychiatric symptoms are present during active MA dependence and remission, at least some cognitive difficulties emerge only during remission. Altered expression of a network of immune factors contributes to neuropsychiatric symptom severity.
Collapse
Affiliation(s)
- Marilyn Huckans
- Research and Development Service, VA Portland Health Care System, Portland, OR, USA
- Mental Health and Clinical Neurosciences Division, VA Portland Health Care System, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Bret E. Fuller
- Research and Development Service, VA Portland Health Care System, Portland, OR, USA
- Mental Health and Clinical Neurosciences Division, VA Portland Health Care System, Portland, OR, USA
| | - Alison L. N. Chalker
- Research and Development Service, VA Portland Health Care System, Portland, OR, USA
| | - Madeleine Adams
- Research and Development Service, VA Portland Health Care System, Portland, OR, USA
| | - Jennifer M. Loftis
- Research and Development Service, VA Portland Health Care System, Portland, OR, USA
- Department of Psychiatry, Oregon Health & Science University, Portland, OR, USA
- Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
48
|
Seo JW, Jones SM, Hostetter TA, Iliff JJ, West GA. Methamphetamine induces the release of endothelin. J Neurosci Res 2015; 94:170-8. [PMID: 26568405 DOI: 10.1002/jnr.23697] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/09/2015] [Accepted: 10/28/2015] [Indexed: 11/09/2022]
Abstract
Methamphetamine is a potent psychostimulant drug of abuse that increases release and blocks reuptake of dopamine, producing intense euphoria, factors that may contribute to its widespread abuse. It also produces severe neurotoxicity resulting from oxidative stress, DNA damage, blood-brain barrier disruption, microgliosis, and mitochondrial dysfunction. Intracerebral hemorrhagic and ischemic stroke have been reported after intravenous and oral abuse of methamphetamine. Several studies have shown that methamphetamine causes vasoconstriction of vessels. This study investigates the effect of methamphetamine on endothelin-1 (ET-1) release in mouse brain endothelial cells by ELISA. ET-1 transcription as well as endothelial nitric oxide synthase (eNOS) activation and transcription were measured following methamphetamine treatment. We also examine the effect of methamphetamine on isolated cerebral arteriolar vessels from C57BL/6 mice. Penetrating middle cerebral arterioles were cannulated at both ends with a micropipette system. Methamphetamine was applied extraluminally, and the vascular response was investigated. Methamphetamine treatment of mouse brain endothelial cells resulted in ET-1 release and a transient increase in ET-1 message. The activity and transcription of eNOS were only slightly enhanced after 24 hr of treatment with methamphetamine. In addition, methamphetamine caused significant vasoconstriction of isolated mouse intracerebral arterioles. The vasoconstrictive effect of methamphetamine was attenuated by coapplication of the endothelin receptor antagonist PD145065. These findings suggest that vasoconstriction induced by methamphetamine is mediated through the endothelin receptor and may involve an endothelin-dependent pathway.
Collapse
Affiliation(s)
- Jeong-Woo Seo
- Neurotrauma Research, Swedish Medical Center, Englewood, Colorado
| | - Susan M Jones
- Neurotrauma Research, Swedish Medical Center, Englewood, Colorado
| | | | - Jeffrey J Iliff
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, Oregon
| | | |
Collapse
|
49
|
Chronic administration of methamphetamine promotes atherosclerosis formation in ApoE−/− knockout mice fed normal diet. Atherosclerosis 2015; 243:268-77. [DOI: 10.1016/j.atherosclerosis.2015.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 08/22/2015] [Accepted: 09/02/2015] [Indexed: 11/19/2022]
|
50
|
Rommel N, Rohleder NH, Wagenpfeil S, Haertel-Petri R, Kesting MR. Evaluation of methamphetamine-associated socioeconomic status and addictive behaviors, and their impact on oral health. Addict Behav 2015; 50:182-7. [PMID: 26151583 DOI: 10.1016/j.addbeh.2015.06.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/12/2015] [Accepted: 06/16/2015] [Indexed: 01/17/2023]
Abstract
BACKGROUND Chronic methamphetamine abuse can lead to multiple health hazards. In particular, the substance is associated with devastating effects on oral health including symptoms such as rampant caries, gingiva inflammation, and xerostomia, whereby the term "Meth Mouth" occurs in the current literature. However, "Meth Mouth" pathology is primarily described on the basis of individual cases or has been evaluated without consideration of the mass of potential influencing factors. Therefore, we have conducted a systematic study to investigate the effects of accompanying factors and circumstances on oral health in cases of chronic methamphetamine abuse. METHODS In cooperation with two centers for addiction medicine, we assessed the data of 100 chronic methamphetamine users and 100 matched-pair controls between March 2012 and November 2013. We investigated their socioeconomic status, details of methamphetamine consumption behavior, collateral consumption of sugar beverages, nicotine alcohol, and other addictive substances including cannabis, opioids, other stimulants, and hallucinogens, and dental care. RESULTS We found considerably greater unstable social circumstances, a high collateral consumption of substances with pathogenic potential for the stomatognathic system, and significantly poorer dental care in the methamphetamine-user group. CONCLUSIONS Various factors have to be considered with regard to methamphetamine use and its influence on oral health. These factors can trigger potential damage by the drug methamphetamine possibly leading to the symptoms of "Meth Mouth", and should be considered in prevention and therapy strategies.
Collapse
|