1
|
Reineking W, Hennig-Pauka I, Schröder L, Höner U, Schreiber E, Geiping L, Lassnig S, Bonilla MC, Hewicker-Trautwein M, de Buhr N. Spontaneous Lethal Outbreak of Influenza A Virus Infection in Vaccinated Sows on Two Farms Suggesting the Occurrence of Vaccine-Associated Enhanced Respiratory Disease with Eosinophilic Lung Pathology. Viruses 2024; 16:955. [PMID: 38932247 PMCID: PMC11209110 DOI: 10.3390/v16060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A virus (IAV) infections in swine are usually subclinical, but they can reach high morbidity rates. The mortality rate is normally low. In this study, six vaccinated, spontaneously deceased sows revealed IAV infection and enhanced neutrophilic bronchopneumonia with unexpectedly large numbers of infiltrating eosinophils. The purpose of this study was to characterize these lung lesions with special emphasis on the phenotypes of inflammatory cells, the presence of eosinophilic peroxidase (EPO), and neutrophil extracellular traps (NETs). The number of Sirius red-stained eosinophils was significantly higher in the lungs of IAV-infected sows compared to healthy pigs, indicating a migration of eosinophils from blood vessels into the lung tissue stimulated by IAV infection. The detection of intra- and extracellular EPO in the lungs suggests its contribution to pulmonary damage. The presence of CD3+ T lymphocytes, CD20+ B lymphocytes, and Iba-1+ macrophages indicates the involvement of cell-mediated immune responses in disease progression. Furthermore, high numbers of myeloperoxidase-positive cells were detected. However, DNA-histone-1 complexes were reduced in IAV-infected sows, leading to the hypothesis that NETs are not formed in the IAV-infected sows. In conclusion, our findings in the lungs of IAV-infected vaccinated sows suggest the presence of so far unreported field cases of vaccine-associated enhanced respiratory disease.
Collapse
Affiliation(s)
- Wencke Reineking
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany (M.H.-T.)
| | - Isabel Hennig-Pauka
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, 49456 Bakum, Germany; (I.H.-P.); (E.S.)
| | | | - Ulf Höner
- Tierärztliche Praxis in Schöppingen, 48624 Schöppingen, Germany
| | - Elena Schreiber
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, 49456 Bakum, Germany; (I.H.-P.); (E.S.)
| | - Lukas Geiping
- Field Station for Epidemiology, University of Veterinary Medicine Hannover, 49456 Bakum, Germany; (I.H.-P.); (E.S.)
| | - Simon Lassnig
- Institute of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.L.); (M.C.B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Marta C. Bonilla
- Institute of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.L.); (M.C.B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Marion Hewicker-Trautwein
- Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany (M.H.-T.)
| | - Nicole de Buhr
- Institute of Biochemistry, University of Veterinary Medicine Hannover, 30559 Hannover, Germany; (S.L.); (M.C.B.)
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| |
Collapse
|
2
|
Adlhoch C, Alm E, Enkirch T, Lamb F, Melidou A, Willgert K, Marangon S, Monne I, Stegeman JA, Delacourt R, Baldinelli F, Broglia A. Drivers for a pandemic due to avian influenza and options for One Health mitigation measures. EFSA J 2024; 22:e8735. [PMID: 38576537 PMCID: PMC10988447 DOI: 10.2903/j.efsa.2024.8735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
Avian influenza viruses (AIV) remain prevalent among wild bird populations in the European Union and European Economic Area (EU/EEA), leading to significant illness in and death of birds. Transmission between bird and mammal species has been observed, particularly in fur animal farms, where outbreaks have been reported. While transmission from infected birds to humans is rare, there have been instances of exposure to these viruses since 2020 without any symptomatic infections reported in the EU/EEA. However, these viruses continue to evolve globally, and with the migration of wild birds, new strains carrying potential mutations for mammalian adaptation could be selected. If avian A(H5N1) influenza viruses acquire the ability to spread efficiently among humans, large-scale transmission could occur due to the lack of immune defences against H5 viruses in humans. The emergence of AIV capable of infecting mammals, including humans, can be facilitated by various drivers. Some intrinsic drivers are related to virus characteristics or host susceptibility. Other drivers are extrinsic and may increase exposure of mammals and humans to AIV thereby stimulating mutation and adaptation to mammals. Extrinsic drivers include the ecology of host species, such as including wildlife, human activities like farming practices and the use of natural resources, climatic and environmental factors. One Health measures to mitigate the risk of AIV adapting to mammals and humans focus on limiting exposure and preventing spread. Key options for actions include enhancing surveillance targeting humans and animals, ensuring access to rapid diagnostics, promoting collaboration between animal and human sectors, and implementing preventive measures such as vaccination. Effective communication to different involved target audiences should be emphasised, as well as strengthening veterinary infrastructure, enforcing biosecurity measures at farms, and reducing wildlife contact with domestic animals. Careful planning of poultry and fur animal farming, especially in areas with high waterfowl density, is highlighted for effective risk reduction.
Collapse
|
3
|
Arruda B, Baker ALV, Buckley A, Anderson TK, Torchetti M, Bergeson NH, Killian ML, Lantz K. Divergent Pathogenesis and Transmission of Highly Pathogenic Avian Influenza A(H5N1) in Swine. Emerg Infect Dis 2024; 30:738-751. [PMID: 38478379 PMCID: PMC10977838 DOI: 10.3201/eid3004.231141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Highly pathogenic avian influenza (HPAI) viruses have potential to cross species barriers and cause pandemics. Since 2022, HPAI A(H5N1) belonging to the goose/Guangdong 2.3.4.4b hemagglutinin phylogenetic clade have infected poultry, wild birds, and mammals across North America. Continued circulation in birds and infection of multiple mammalian species with strains possessing adaptation mutations increase the risk for infection and subsequent reassortment with influenza A viruses endemic in swine. We assessed the susceptibility of swine to avian and mammalian HPAI H5N1 clade 2.3.4.4b strains using a pathogenesis and transmission model. All strains replicated in the lung of pigs and caused lesions consistent with influenza A infection. However, viral replication in the nasal cavity and transmission was only observed with mammalian isolates. Mammalian adaptation and reassortment may increase the risk for incursion and transmission of HPAI viruses in feral, backyard, or commercial swine.
Collapse
|
4
|
Rosone F, Bonfante F, Sala MG, Maniero S, Cersini A, Ricci I, Garofalo L, Caciolo D, Denisi A, Napolitan A, Parente M, Zecchin B, Terregino C, Scicluna MT. Seroconversion of a Swine Herd in a Free-Range Rural Multi-Species Farm against HPAI H5N1 2.3.4.4b Clade Virus. Microorganisms 2023; 11:1162. [PMCID: PMC10224318 DOI: 10.3390/microorganisms11051162] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
Starting from October 2021, several outbreaks of highly pathogenic avian influenza virus (HPAIV) subtype H5N1 were reported in wild and domestic birds in Italy. Following the detection of an HPAIV in a free-ranging poultry farm in Ostia, province of Rome, despite the lack of clinical signs, additional virological and serological analyses were conducted on samples collected from free-ranging pigs, reared in the same holding, due to their direct contact with the infected poultry. While the swine nasal swabs were all RT-PCR negative for the influenza type A matrix (M) gene, the majority (%) of the tested pigs resulted serologically positive for the hemagglutination inhibition test and microneutralization assay, using an H5N1 strain considered to be homologous to the virus detected in the farm. These results provide further evidence of the worrisome replicative fitness that HPAI H5Nx viruses of the 2.3.4.4b clade have in mammalian species. Moreover, our report calls for additional active surveillance, to promptly intercept occasional spillover transmissions to domestic mammals in close contact with HPAI affected birds. Strengthened biosecurity measures and efficient separation should be prioritized in mixed-species farms in areas at risk of HPAI introduction.
Collapse
Affiliation(s)
- Francesca Rosone
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Marcello Giovanni Sala
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Silvia Maniero
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Antonella Cersini
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Ida Ricci
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Luisa Garofalo
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Daniela Caciolo
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Antonella Denisi
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| | - Alessandra Napolitan
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Monja Parente
- State Veterinarians of the Local Health Unit (LHU), 00054 Rome, Italy;
| | - Bianca Zecchin
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), 35020 Legnaro, Italy; (F.B.); (S.M.); (A.N.); (B.Z.)
| | - Maria Teresa Scicluna
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, Via Appia Nuova, 1411, 00178 Rome, Italy; (M.G.S.); (A.C.); (I.R.); (L.G.); (D.C.); (A.D.); (M.T.S.)
| |
Collapse
|
5
|
Runft S, Färber I, Krüger J, Krüger N, Armando F, Rocha C, Pöhlmann S, Burigk L, Leitzen E, Ciurkiewicz M, Braun A, Schneider D, Baumgärtner L, Freisleben B, Baumgärtner W. Alternatives to animal models and their application in the discovery of species susceptibility to SARS-CoV-2 and other respiratory infectious pathogens: A review. Vet Pathol 2022; 59:565-577. [PMID: 35130766 DOI: 10.1177/03009858211073678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The emergence of the coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) inspired rapid research efforts targeting the host range, pathogenesis and transmission mechanisms, and the development of antiviral strategies. Genetically modified mice, rhesus macaques, ferrets, and Syrian golden hamsters have been frequently used in studies of pathogenesis and efficacy of antiviral compounds and vaccines. However, alternatives to in vivo experiments, such as immortalized cell lines, primary respiratory epithelial cells cultured at an air-liquid interface, stem/progenitor cell-derived organoids, or tissue explants, have also been used for isolation of SARS-CoV-2, investigation of cytopathic effects, and pathogen-host interactions. Moreover, initial proof-of-concept studies for testing therapeutic agents can be performed with these tools, showing that animal-sparing cell culture methods could significantly reduce the need for animal models in the future, following the 3R principles of replace, reduce, and refine. So far, only few studies using animal-derived primary cells or tissues have been conducted in SARS-CoV-2 research, although natural infection has been shown to occur in several animal species. Therefore, the need for in-depth investigations on possible interspecies transmission routes and differences in susceptibility to SARS-CoV-2 is urgent. This review gives an overview of studies employing alternative culture systems like primary cell cultures, tissue explants, or organoids for investigations of the pathophysiology and reverse zoonotic potential of SARS-CoV-2 in animals. In addition, future possibilities of SARS-CoV-2 research in animals, including previously neglected methods like the use of precision-cut lung slices, will be outlined.
Collapse
Affiliation(s)
- Sandra Runft
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Iris Färber
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Johannes Krüger
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Nadine Krüger
- German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Federico Armando
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Cheila Rocha
- German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Stefan Pöhlmann
- German Primate Center-Leibniz Institute for Primate Research, Göttingen, Germany
| | - Laura Burigk
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Eva Leitzen
- University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | | | - Armin Braun
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
- Hannover Medical School, Hannover, Germany
| | | | | | | | | |
Collapse
|
6
|
Deciphering transmission dynamics and spillover of avian influenza viruses from avian species to swine populations globally. Virus Genes 2021; 57:541-555. [PMID: 34625868 PMCID: PMC8500266 DOI: 10.1007/s11262-021-01873-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 09/26/2021] [Indexed: 12/21/2022]
Abstract
Genome sequences of eleven avian influenza virus (AIV) subtypes have been reported in swine populations from seven countries until August 2020. To unravel the transmission dynamics and spillover events of AIVs from avian reservoirs to swine, full-length hemagglutinin (HA) sequences of AIV subtypes (n = 11) reported from various avian species and swine were retrieved from the ‘Influenza Research Database’. Phylogenetic analysis identified closely related avian and swine AIV sequences suggesting potential spillover events from multiple domestic and wild avian species, including chicken, duck, pigeon, goose, quail, and aquatic birds to swine. Furthermore, N-linked glycosylation analysis of these closely related AIV sequences supported the possibility of multiple spillover events of highly pathogenic H5N1 and low pathogenic H9N2 viruses from various avian species to swine. The principal coordinate analysis further validated these findings for H5N1 and H9N2 viruses; however, spillover events of the other nine AIV subtypes were limited. Interestingly, the presence of potential mammalian adaptation markers, particularly in some of the swine H5N1, H7N9, and H9N2 viruses, suggested that these viruses may have already adapted in swine. The occurrence and circulation of these AIVs in swine, especially the H5N1 and H9N2 viruses with numerous spillover events from the avian reservoirs to swine, pose a significant threat in terms of their reassortment with endemic swine viruses or circulating human influenza viruses within the swine which may facilitate the emergence of a novel influenza virus strain with pandemic potential.
Collapse
|
7
|
Abstract
Influenza viruses are one of the leading causes of respiratory tract infections in humans and their newly emerging and re-emerging virus strains are responsible for seasonal epidemics and occasional pandemics, leading to a serious threat to global public health systems. The poor clinical outcome and pathogenesis during influenza virus infection in humans and animal models are often associated with elevated proinflammatory cytokines and chemokines production, which is also known as hypercytokinemia or "cytokine storm", that precedes acute respiratory distress syndrome (ARDS) and often leads to death. Although we still do not fully understand the complex nature of cytokine storms, the use of immunomodulatory drugs is a promising approach for treating hypercytokinemia induced by an acute viral infection, including highly pathogenic avian influenza virus infection and Coronavirus Disease 2019 (COVID-19). This review aims to discuss the immune responses and cytokine storm pathology induced by influenza virus infection and also summarize alternative experimental strategies for treating hypercytokinemia caused by influenza virus.
Collapse
Affiliation(s)
- Fanhua Wei
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Agriculture, Ningxia University, Yinchuan, China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province & Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in Western China, Ningxia University, Yinchuan, China.,College of Life Science, Ningxia University, Yinchuan, China
| |
Collapse
|
8
|
Sun H, Liu J, Xiao Y, Duan Y, Yang J, Chen Y, Yu Y, Li H, Zhao Y, Pu J, Sun Y, Liu J, Sun H. Pathogenicity of novel reassortant Eurasian avian-like H1N1 influenza virus in pigs. Virology 2021; 561:28-35. [PMID: 34139638 DOI: 10.1016/j.virol.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 10/21/2022]
Abstract
Reassortant Eurasian avian-like (EA) H1N1 virus, possessing 2009 pandemic (pdm/09) and triple-reassortant (TR)-derived internal genes, namely G4 genotype, has replaced the G1 genotype EA H1N1 virus (all the genes were of EA origin) and become predominant in swine populations in China. Understanding the pathogenicity of G4 viruses in pigs is of great importance for disease control. Here, we conducted comprehensive analyses of replication and pathogenicity of G4 and G1 EA H1N1 viruses in pigs. G4 virus exhibited enhanced replication, increased duration of virus shedding, and caused more severe respiratory lesions in pigs compared with G1 virus. G4 virus, with viral ribonucleoprotein (vRNP) complex genes of pdm/09 origin, exhibited higher levels of nuclear accumulation and higher polymerase activity, which is essential for improved replication of G4 virus. These findings indicate that G4 virus poses a great threat to both swine industry and public health, and control measures should be urgently implemented.
Collapse
Affiliation(s)
- Haoran Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jiyu Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yihong Xiao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271000, Tai'an, China
| | - Yuhong Duan
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jizhe Yang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yu Chen
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yinghui Yu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Han Li
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yuzhong Zhao
- Department of Fundamental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 271000, Tai'an, China
| | - Juan Pu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Yipeng Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China
| | - Jinhua Liu
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| | - Honglei Sun
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, 100193, Beijing, China.
| |
Collapse
|
9
|
Moatasim Y, Kandeil A, Mostafa A, Kutkat O, Sayes ME, El Taweel AN, AlKhazindar M, AbdElSalam ET, El-Shesheny R, Kayali G, Ali MA. Impact of Individual Viral Gene Segments from Influenza A/H5N8 Virus on the Protective Efficacy of Inactivated Subtype-Specific Influenza Vaccine. Pathogens 2021; 10:pathogens10030368. [PMID: 33808583 PMCID: PMC8003407 DOI: 10.3390/pathogens10030368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/18/2023] Open
Abstract
Since its emergence in 2014, the highly pathogenic avian influenza H5N8 virus has continuously and rapidly spread worldwide in the poultry sector resulting in huge economic losses. A typical inactivated H5N8 vaccine is prepared using the six internal genes from A/PR8/1934 (H1N1) and the two major antigenic proteins (HA and NA) from the circulating H5N8 strain with the HA modified to a low pathogenic form (PR8HA/NA-H5N8). The contribution of the other internal proteins from H5N8, either individually or in combination, to the overall protective efficacy of PR8-based H5N8 vaccine has not been investigated. Using reverse genetics, a set of PR8-based vaccines expressing the individual proteins from an H5N8 strain were rescued and compared to the parent PR8 and low pathogenic H5N8 strains and the commonly used PR8HA/NA-H5N8. Except for the PR8-based vaccine strains expressing the HA of H5N8, none of the rescued combinations could efficiently elicit virus-neutralizing antibodies. Compared to PR8, the non-HA viral proteins provided some protection to infected chickens six days post infection. We assume that this late protection was related to cell-based immunity rather than antibody-mediated immunity. This may explain the slight advantage of using full low pathogenic H5N8 instead of PR8HA/NA-H5N8 to improve protection by both the innate and the humoral arms of the immune system.
Collapse
Affiliation(s)
- Yassmin Moatasim
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Omnia Kutkat
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Mohamed El Sayes
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Ahmed N. El Taweel
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
| | - Maha AlKhazindar
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Elsayed T. AbdElSalam
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Gamaa Street, Giza 12613, Egypt; (M.A.); (E.T.A.)
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Ghazi Kayali
- Human Link, Dubai, United Arab Emirates
- Department of Epidemiology, Human Genetics, and Environmental Sciences, University of Texas, Houston, TX 77030, USA
- Correspondence: (G.K.); (M.A.A.)
| | - Mohamed A. Ali
- Center of Scientific Excellence for Influenza Virus, National Research Centre, Environmental Research Division, Giza 12622, Egypt; (Y.M.); (A.K.); (A.M.); (O.K.); (M.E.S.); (A.N.E.T.); (R.E.-S.)
- Correspondence: (G.K.); (M.A.A.)
| |
Collapse
|
10
|
Swine MicroRNAs ssc-miR-221-3p and ssc-miR-222 Restrict the Cross-Species Infection of Avian Influenza Virus. J Virol 2020; 94:JVI.01700-20. [PMID: 32907982 DOI: 10.1128/jvi.01700-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 11/20/2022] Open
Abstract
Avian influenza virus (AIV) can cross species barriers to infect humans and other mammals. However, these species-cross transmissions are most often dead-end infections due to host restriction. Current research about host restriction focuses mainly on the barriers of cell membrane, nuclear envelope, and host proteins; whether microRNAs (miRNAs) play a role in host restriction is largely unknown. In this study, we used porcine alveolar macrophage (PAM) cells as a model to elucidate the role of miRNAs in host range restriction. During AIV infection, 40 dysregulation expressed miRNAs were selected in PAM cells. Among them, two Sus scrofa (ssc; swine) miRNAs, ssc-miR-221-3p and ssc-miR-222, could inhibit the infection and replication of AIV in PAM cells by directly targeting viral genome and inducing cell apoptosis via inhibiting the expression of anti-apoptotic protein HMBOX1. Avian but not swine influenza virus caused upregulated expressions of ssc-miR-221-3p and ssc-miR-222 in PAM cells. We further found that NF-κB P65 was more effectively phosphorylated upon AIV infection and that P65 functioned as a transcription activator to regulate the AIV-induced expression of miR-221-3p/222 Importantly, we found that ssc-miR-221-3p and ssc-miR-222 could also be specifically upregulated upon AIV infection in newborn pig tracheal epithelial (NPTr) cells and also exerted anti-AIV function. In summary, our study indicated that miRNAs act as a host barrier during cross-species infection of influenza A virus.IMPORTANCE The host range of an influenza A virus is determined by species-specific interactions between virus and host cell factors. Host miRNAs can regulate influenza A virus replication; however, the role of miRNAs in host species specificity is unclear. Here, we show that the induced expression of ssc-miR-221-3p and ssc-miR-222 in swine cells is modulated by NF-κB P65 phosphorylation in response to AIV infection but not swine influenza virus infection. ssc-miR-221-3p and ssc-miR-222 exerted antiviral function via targeting viral RNAs and causing apoptosis by inhibiting the expression of HMBOX1 in host cells. These findings uncover miRNAs as a host range restriction factor that limits cross-species infection of influenza A virus.
Collapse
|
11
|
Park MS, Kim JI, Bae JY, Park MS. Animal models for the risk assessment of viral pandemic potential. Lab Anim Res 2020; 36:11. [PMID: 32337177 PMCID: PMC7175453 DOI: 10.1186/s42826-020-00040-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pandemics affect human lives severely and globally. Experience predicts that there will be a pandemic for sure although the time is unknown. When a viral epidemic breaks out, assessing its pandemic risk is an important part of the process that characterizes genomic property, viral pathogenicity, transmission in animal model, and so forth. In this review, we intend to figure out how a pandemic may occur by looking into the past influenza pandemic events. We discuss interpretations of the experimental evidences resulted from animal model studies and extend implications of viral pandemic potentials and ingredients to emerging viral epidemics. Focusing on the pandemic potential of viral infectious diseases, we suggest what should be assessed to prevent global catastrophes from influenza virus, Middle East respiratory syndrome coronavirus, dengue and Zika viruses.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| |
Collapse
|
12
|
Li YT, Linster M, Mendenhall IH, Su YCF, Smith GJD. Avian influenza viruses in humans: lessons from past outbreaks. Br Med Bull 2019; 132:81-95. [PMID: 31848585 PMCID: PMC6992886 DOI: 10.1093/bmb/ldz036] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/11/2019] [Accepted: 10/15/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Human infections with avian influenza viruses (AIV) represent a persistent public health threat. The principal risk factor governing human infection with AIV is from direct contact with infected poultry and is primarily observed in Asia and Egypt where live-bird markets are common. AREAS OF AGREEMENT Changing patterns of virus transmission and a lack of obvious disease manifestations in avian species hampers early detection and efficient control of potentially zoonotic AIV. AREAS OF CONTROVERSY Despite extensive studies on biological and environmental risk factors, the exact conditions required for cross-species transmission from avian species to humans remain largely unknown. GROWING POINTS The development of a universal ('across-subtype') influenza vaccine and effective antiviral therapeutics are a priority. AREAS TIMELY FOR DEVELOPING RESEARCH Sustained virus surveillance and collection of ecological and physiological parameters from birds in different environments is required to better understand influenza virus ecology and identify risk factors for human infection.
Collapse
Affiliation(s)
- Yao-Tsun Li
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Martin Linster
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Yvonne C F Su
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
| | - Gavin J D Smith
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857
- SingHealth Duke-NUS Global Health Institute, 31 Third Hospital Ave, Singapore 168753
- Duke Global Health Institute, Duke University, 310 Trent Drive, Durham, NC 27710, USA
| |
Collapse
|
13
|
|
14
|
Nuñez IA, Ross TM. A review of H5Nx avian influenza viruses. Ther Adv Vaccines Immunother 2019; 7:2515135518821625. [PMID: 30834359 PMCID: PMC6391539 DOI: 10.1177/2515135518821625] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/09/2018] [Indexed: 12/12/2022] Open
Abstract
Highly pathogenic avian influenza viruses (HPAIVs), originating from the A/goose/Guangdong/1/1996 H5 subtype, naturally circulate in wild-bird populations, particularly waterfowl, and often spill over to infect domestic poultry. Occasionally, humans are infected with HPAVI H5N1 resulting in high mortality, but no sustained human-to-human transmission. In this review, the replication cycle, pathogenicity, evolution, spread, and transmission of HPAIVs of H5Nx subtypes, along with the host immune responses to Highly Pathogenic Avian Influenza Virus (HPAIV) infection and potential vaccination, are discussed. In addition, the potential mechanisms for Highly Pathogenic Avian Influenza Virus (HPAIV) H5 Reassorted Viruses H5N1, H5N2, H5N6, H5N8 (H5Nx) viruses to transmit, infect, and adapt to the human host are reviewed.
Collapse
Affiliation(s)
- Ivette A. Nuñez
- Center for Vaccines and Immunology, University of Georgia, Athens, Georgia, USA
| | - Ted M. Ross
- Center for Vaccines and Immunology, University of Georgia, 501 D.W. Brooks Drive, CVI Room 1504, Athens, GA 30602, USA
| |
Collapse
|
15
|
Horman WSJ, Nguyen THO, Kedzierska K, Bean AGD, Layton DS. The Drivers of Pathology in Zoonotic Avian Influenza: The Interplay Between Host and Pathogen. Front Immunol 2018; 9:1812. [PMID: 30135686 PMCID: PMC6092596 DOI: 10.3389/fimmu.2018.01812] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
The emergence of zoonotic strains of avian influenza (AI) that cause high rates of mortality in people has caused significant global concern, with a looming threat that one of these strains may develop sustained human-to-human transmission and cause a pandemic outbreak. Most notable of these viral strains are the H5N1 highly pathogenic AI and the H7N9 low pathogenicity AI viruses, both of which have mortality rates above 30%. Understanding of their mechanisms of infection and pathobiology is key to our preparation for these and future viral strains of high consequence. AI viruses typically circulate in wild bird populations, commonly infecting waterfowl and also regularly entering commercial poultry flocks. Live poultry markets provide an ideal environment for the spread AI and potentially the selection of mutants with a greater propensity for infecting humans because of the potential for spill over from birds to humans. Pathology from these AI virus infections is associated with a dysregulated immune response, which is characterized by systemic spread of the virus, lymphopenia, and hypercytokinemia. It has been well documented that host/pathogen interactions, particularly molecules of the immune system, play a significant role in both disease susceptibility as well as disease outcome. Here, we review the immune/virus interactions in both avian and mammalian species, and provide an overview or our understanding of how immune dysregulation is driven. Understanding these susceptibility factors is critical for the development of new vaccines and therapeutics to combat the next pandemic influenza.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia.,Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC, Australia
| | - Andrew G D Bean
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| | - Daniel S Layton
- Australian Animal Health Laboratory, Health and Biosecurity, Commonwealth Scientific and Industrial Research Organisation (CSIRO), East Geelong, VIC, Australia
| |
Collapse
|
16
|
Meseko C, Globig A, Ijomanta J, Joannis T, Nwosuh C, Shamaki D, Harder T, Hoffman D, Pohlmann A, Beer M, Mettenleiter T, Starick E. Evidence of exposure of domestic pigs to Highly Pathogenic Avian Influenza H5N1 in Nigeria. Sci Rep 2018; 8:5900. [PMID: 29651056 PMCID: PMC5897404 DOI: 10.1038/s41598-018-24371-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 03/14/2018] [Indexed: 12/15/2022] Open
Abstract
Avian influenza viruses (AIV) potentially transmit to swine as shown by experiments, where further reassortment may contribute to the generation of pandemic strains. Associated risks of AIV inter-species transmission are greater in countries like Nigeria with recurrent epidemics of highly pathogenic AI (HPAI) in poultry and significant pig population. Analysis of 129 tracheal swab specimens collected from apparently healthy pigs at slaughterhouse during presence of HPAI virus H5N1 in poultry in Nigeria for influenza A by RT-qPCR yielded 43 positive samples. Twenty-two could be determined by clade specific RT-qPCR as belonging to the H5N1 clade 2.3.2.1c and confirmed by partial hemagglutinin (HA) sequence analysis. In addition, 500 swine sera were screened for antibodies against influenza A virus nucleoprotein and H5 HA using competition ELISAs and hemagglutination inhibition (HI) tests. Serologically, 222 (44.4%) and 42 (8.4%) sera were positive for influenza A virus NP and H5 antibodies, respectively. Sera reacted to H5N1 and A/H1N1pdm09 strains by HI suggesting exposure of the Nigerian domestic pig population to these viruses. We report for the first time in Nigeria, exposure of domestic pigs to H5N1 virus. This poses potential public health and pandemic risk due to interspecies transmission of avian and human influenza viruses.
Collapse
Affiliation(s)
- Clement Meseko
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria.
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany.
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany.
| | - Anja Globig
- Institute of Epidemiology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Jeremiah Ijomanta
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Tony Joannis
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Chika Nwosuh
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - David Shamaki
- Regional Laboratory for Animal Influenza, National Veterinary Research Institute, Vom, Nigeria
| | - Timm Harder
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Donata Hoffman
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Thomas Mettenleiter
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| | - Elke Starick
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Insel Riems, Germany
| |
Collapse
|
17
|
Saito LB, Diaz-Satizabal L, Evseev D, Fleming-Canepa X, Mao S, Webster RG, Magor KE. IFN and cytokine responses in ducks to genetically similar H5N1 influenza A viruses of varying pathogenicity. J Gen Virol 2018; 99:464-474. [PMID: 29458524 DOI: 10.1099/jgv.0.001015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ducks, the reservoir host, are generally permissive to influenza A virus infection without disease symptoms. This natural ecology was upset by the emergence of H5N1 strains, which can kill ducks. To better understand host-virus interactions in the reservoir host, and influenza strain-specific molecular contributions to virulence, we infected White Pekin ducks with three similar H5N1 viruses, with known differences in pathogenicity and replication rate. We quantified viral replication and innate immune gene activation by qPCR, in lung and spleen tissues, isolated on each of the first 3 days of infection. The three viruses replicated well, as measured by accumulation of matrix gene transcript, and viral load declined over time in the spleen. The ducks produced rapid, but temporally limited, IFN and cytokine responses, peaking on the first day post-infection. IFN and proinflammatory cytokine gene induction were greater in response to infection with the more lethal viruses, compared to an attenuated strain. We conclude that a well-regulated IFN response, with the ability to overcome early viral immune inhibition, without hyperinflammation, contributes to the ability of ducks to survive H5N1 influenza replication in their airways, and yet clear systemic infection and limit disease.
Collapse
Affiliation(s)
- Leina B Saito
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Laura Diaz-Satizabal
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Danyel Evseev
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Ximena Fleming-Canepa
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| | - Sai Mao
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada.,Institute of Preventative Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu City, Sichuan, PR China
| | - Robert G Webster
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Katharine E Magor
- Department of Biological Sciences and Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
18
|
Cline TD, Beck D, Bianchini E. Influenza virus replication in macrophages: balancing protection and pathogenesis. J Gen Virol 2017; 98:2401-2412. [PMID: 28884667 DOI: 10.1099/jgv.0.000922] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macrophages are essential for protection against influenza A virus infection, but are also implicated in the morbidity and mortality associated with severe influenza disease, particularly during infection with highly pathogenic avian influenza (HPAI) H5N1 virus. While influenza virus infection of macrophages was once thought to be abortive, it is now clear that certain virus strains can replicate productively in macrophages. This may have important consequences for the antiviral functions of macrophages, the course of disease and the outcome of infection for the host. In this article, we review findings related to influenza virus replication in macrophages and the impact of productive replication on macrophage antiviral functions. A clear understanding of the interactions between influenza viruses and macrophages may lead to new antiviral therapies to relieve the burden of severe disease associated with influenza viruses.
Collapse
Affiliation(s)
- Troy D Cline
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Donald Beck
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Elizabeth Bianchini
- Department of Biological Sciences, California State University, Chico, California, USA
| |
Collapse
|
19
|
Kaplan BS, Torchetti MK, Lager KM, Webby RJ, Vincent AL. Absence of clinical disease and contact transmission of HPAI H5NX clade 2.3.4.4 from North America in experimentally infected pigs. Influenza Other Respir Viruses 2017; 11:464-470. [PMID: 28688206 PMCID: PMC5596520 DOI: 10.1111/irv.12463] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2017] [Indexed: 01/18/2023] Open
Abstract
Background In the fall of 2014, highly pathogenic avian influenza (HPAI) subtype H5N8 clade 2.3.4.4 was introduced into North America by migrating waterfowl from Asia where, through reassortment, novel HPAI H5N2 and H5N1 viruses emerged. Objectives Assess the susceptibility of pigs to HPAI H5N1, H5N2, and H5N8 clade 2.3.3.3 from North America. Methods Pigs and trachea explants were inoculated with a representative panel of H5NX clade 2.3.4.4 HPAI viruses from North America. Nasal swabs, BALF, and sera were collected to assess replication and transmission in challenged and direct contact pigs by RRT‐PCR, virus isolation, hemagglutination inhibition, and ELISA. Results Limited virus replication was restricted to the lower respiratory tract of challenged pigs, though absent in the nasal passages and trachea cultures, as determined by RRT‐PCR in all samples. Seroconversion of inoculated pigs was detected by NP ELISA but was not reliably detected by antigen‐specific hemagglutination inhibition. Boost with adjuvanted virus was required for the production of neutralizing antibodies to assess cross‐reactivity between wild‐type avian strains. All RRT‐PCR and serology tests were negative for contact animals indicating a failure of transmission from primary inoculated pigs. Conclusions H5NX clade 2.3.4.4 strains can replicate in the lower respiratory tract of swine upon high titer inoculation, though appear to be incapable of replication in swine nasal epithelium in vivo or ex vivo in trachea explants in culture. Infected pigs did not produce high levels of serum antibodies following infection. Collectively, our data show HPAI H5NX clade 2.3.4.4 viruses to be poorly adapted for replication and transmission in swine.
Collapse
Affiliation(s)
- Bryan S Kaplan
- USDA, Agricultural Research Service, Virus and Prion Research Unit, National Animal Disease Center, Ames, IA, USA
| | - Mia K Torchetti
- USDA, Animal and Plant Health Inspection Service, National Veterinary Services Laboratory, Ames, IA, USA
| | - Kelly M Lager
- USDA, Agricultural Research Service, Virus and Prion Research Unit, National Animal Disease Center, Ames, IA, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Amy L Vincent
- USDA, Agricultural Research Service, Virus and Prion Research Unit, National Animal Disease Center, Ames, IA, USA
| |
Collapse
|
20
|
Miller RS, Sweeney SJ, Slootmaker C, Grear DA, Di Salvo PA, Kiser D, Shwiff SA. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: implications for disease risk management in North America. Sci Rep 2017; 7:7821. [PMID: 28798293 PMCID: PMC5552697 DOI: 10.1038/s41598-017-07336-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/28/2017] [Indexed: 01/21/2023] Open
Abstract
Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.
Collapse
Affiliation(s)
- Ryan S Miller
- Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States.
| | - Steven J Sweeney
- Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States
| | - Chris Slootmaker
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States
| | - Daniel A Grear
- National Wildlife Health Center, United States Geological Survey, Madison, Wisconsin, United States
| | - Paul A Di Salvo
- Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States
| | - Deborah Kiser
- Center for Epidemiology and Animal Health, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States
| | - Stephanie A Shwiff
- National Wildlife Research Center, Wildlife Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Fort Collins, Colorado, United States
| |
Collapse
|
21
|
Lee IH, Jin SY, Seo SH. Genetic and pathogenic analysis of a novel reassortant H5N6 influenza virus isolated from waterfowl in South Korea in 2016. Arch Virol 2017; 162:3507-3510. [PMID: 28736803 DOI: 10.1007/s00705-017-3488-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 07/03/2017] [Indexed: 11/30/2022]
Abstract
A novel reassortant highly pathogenic H5N6 influenza virus was isolated from waterfowl in South Korea in 2016. Seven genes of this virus originated from an H5N6 virus from China, whereas the remaining gene, PB1, was from an unknown virus. This virus productively infected pigs, which showed viral shedding through their noses and developed severe interstitial pneumonia.
Collapse
Affiliation(s)
- In Hong Lee
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
- Institute for Influenza Virus, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seo Yeon Jin
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
- Institute for Influenza Virus, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang Heui Seo
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
- Institute for Influenza Virus, Chungnam National University, Daejeon, 34134, Republic of Korea.
- Laboratory of Influenza Research, College of Veterinary Medicine, Institute of Influenza Virus, Chungnam National University, 99 Dae-Hak Ro, Yuseong Gu, Daejeon, 305-764, Republic of Korea.
| |
Collapse
|
22
|
Abente EJ, Kitikoon P, Lager KM, Gauger PC, Anderson TK, Vincent AL. A highly pathogenic avian-derived influenza virus H5N1 with 2009 pandemic H1N1 internal genes demonstrates increased replication and transmission in pigs. J Gen Virol 2017; 98:18-30. [PMID: 28206909 DOI: 10.1099/jgv.0.000678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
This study investigated the pathogenicity and transmissibility of a reverse-genetics-derived highly pathogenic avian influenza (HPAI) H5N1 lineage influenza A virus that was isolated from a human, A/Iraq/755/06. We also examined surface gene reassortant viruses composed of the haemagglutinin and neuraminidase from A/Iraq/755/06 and the internal genes of a 2009 pandemic H1N1 virus, A/New York/18/2009 (2Iraq/06 : 6NY/09 H5N1), and haemagglutinin and neuraminidase from A/New York/18/2009 with the internal genes of A/Iraq/755/06 (2NY/09 : 6Iraq/06 H1N1). The parental A/Iraq/755/06 caused little to no lesions in swine, limited virus replication was observed in the upper respiratory and lower respiratory tracts and transmission was detected in 3/5 direct-contact pigs based on seroconversion, detection of viral RNA or virus isolation. In contrast, the 2Iraq/06 : 6NY/09 H5N1 reassortant caused mild lung lesions, demonstrated sustained virus replication in the upper and lower respiratory tracts and transmitted to all contacts (5/5). The 2NY/09 : 6Iraq/06 H1N1 reassortant also caused mild lung lesions, there was evidence of virus replication in the upper respiratory and lower respiratory tracts and transmission was detected in all contacts (5/5). These studies indicate that an HPAI-derived H5N1 reassortant with pandemic internal genes may be more successful in sustaining infection in swine and that HPAI-derived internal genes were marginally compatible with pandemic 2009 H1N1 surface genes. Comprehensive surveillance in swine is critical to identify a possible emerging HPAI reassortant in all regions with HPAI in wild birds and poultry and H1N1pdm09 in pigs or other susceptible hosts.
Collapse
Affiliation(s)
- Eugenio J Abente
- Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Pravina Kitikoon
- Present address: Merck Animal Health, De Soto, Kansas, USA.,Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Kelly M Lager
- Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Phillip C Gauger
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, Iowa, USA
| | - Tavis K Anderson
- Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| | - Amy L Vincent
- Virus and Prion Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, Iowa, USA
| |
Collapse
|
23
|
Sánchez-Betancourt JI, Cervantes-Torres JB, Saavedra-Montañez M, Segura-Velázquez RA. Complete genome sequence of a novel influenza A H1N2 virus circulating in swine from Central Bajio region, Mexico. Transbound Emerg Dis 2017; 64:2083-2092. [PMID: 28181421 DOI: 10.1111/tbed.12620] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Indexed: 11/29/2022]
Abstract
The aim of this study was to perform the complete genome sequence of a swine influenza A H1N2 virus strain isolated from a pig in Guanajuato, México (A/swine/Mexico/GtoDMZC01/2014) and to report its seroprevalence in 86 counties at the Central Bajio zone. To understand the evolutionary dynamics of the isolate, we undertook a phylogenetic analysis of the eight gene segments. These data revealed that the isolated virus is a reassortant H1N2 subtype, as its genes are derived from human (HA, NP, PA) and swine (M, NA, PB1, PB2 and NS) influenza viruses. Pig serum samples were analysed by the hemagglutination inhibition test, using wild H1N2 and H3N2 strains (A/swine/México/Mex51/2010 [H3N2]) as antigen sources. Positive samples to the H1N2 subtype were processed using the field-isolated H1N1 subtype (A/swine/México/Ver37/2010 [H1N1]). Seroprevalence to the H1N2 subtype was 26.74% in the sampled counties, being Jalisco the state with highest seroprevalence to this subtype (35.30%). The results herein reported demonstrate that this new, previously unregistered influenza virus subtype in México that shows internal genes from other swine viral subtypes isolated in the past 5 years, along with human virus-originated genes, is widely distributed in this area of the country.
Collapse
Affiliation(s)
- J I Sánchez-Betancourt
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, CP, 04510, México
| | - J B Cervantes-Torres
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, CP, 04510, México
| | - M Saavedra-Montañez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, CP, 04510, México
| | - R A Segura-Velázquez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, CP, 04510, México
| |
Collapse
|
24
|
Bourret V, Lyall J, Frost SDW, Teillaud A, Smith CA, Leclaire S, Fu J, Gandon S, Guérin JL, Tiley LS. Adaptation of avian influenza virus to a swine host. Virus Evol 2017; 3:vex007. [PMID: 28458917 PMCID: PMC5399929 DOI: 10.1093/ve/vex007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The emergence of pathogenic RNA viruses into new hosts can have dramatic consequences for both livestock and public health. Here we characterize the viral genetic changes that were observed in a previous study which experimentally adapted a field isolate of duck influenza virus to swine respiratory cells. Both pre-existing and de novo mutations were selected during this adaptation. We compare the in vitro growth dynamics of the adapted virus with those of the original strain as well as all possible reassortants using reverse genetics. This full factorial design showed that viral gene segments are involved in complex epistatic interactions on virus fitness, including negative and sign epistasis. We also identify two point mutations at positions 67 and 113 of the HA2 subunit of the hemagglutinin protein conferring a fast growth phenotype on the naïve avian virus in swine cells. These HA2 mutations enhance the pH dependent, HA-mediated membrane fusion. A global H1 maximum-likelihood phylogenetic analysis, combined with comprehensive ancestry reconstruction and tests for directional selection, confirmed the field relevance of the mutation at position 113 of HA2. Most notably, this mutation was associated with the establishment of the H1 'avian-like' swine influenza lineage, regarded as the most likely to cause the next influenza pandemic in humans. This multidisciplinary approach to study the genetics of viral adaptation provides unique insights on the underlying processes leading to influenza emergence in a new host species, and identifies specific targets for future surveillance and functional studies.
Collapse
Affiliation(s)
- Vincent Bourret
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
- Université de Toulouse, INP, ENVT, Toulouse, France
- INRA, UMR 1225, IHAP, Toulouse, France
| | - Jon Lyall
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Simon D W Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Angélique Teillaud
- Université de Toulouse, INP, ENVT, Toulouse, France
- INRA, UMR 1225, IHAP, Toulouse, France
| | - Catherine A Smith
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sarah Leclaire
- Centre d’Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, Montpellier, France
| | - JinQi Fu
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Sylvain Gandon
- Centre d’Ecologie Fonctionnelle et Evolutive, UMR CNRS 5175, Montpellier, France
| | - Jean-Luc Guérin
- Université de Toulouse, INP, ENVT, Toulouse, France
- INRA, UMR 1225, IHAP, Toulouse, France
| | - Laurence S Tiley
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| |
Collapse
|
25
|
|
26
|
Guimarães MB, Hurtado R, Bello CP, Vanstreels RET, Ferreira AJP. SURVEILLANCE FOR NEWCASTLE DISEASE VIRUS, AVIAN INFLUENZA VIRUS AND MYCOPLASMA GALLISEPTICUM IN WILD BIRDS NEAR COMMERCIAL POULTRY FARMS SURROUNDED BY ATLANTIC RAINFOREST REMNANTS, SOUTHEASTERN BRAZIL. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2016. [DOI: 10.1590/1806-9061-2015-0164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Kim SM, Kim YI, Pascua PNQ, Choi YK. Avian Influenza A Viruses: Evolution and Zoonotic Infection. Semin Respir Crit Care Med 2016; 37:501-11. [PMID: 27486732 PMCID: PMC7171714 DOI: 10.1055/s-0036-1584953] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although efficient human-to-human transmission of avian influenza virus has yet to be seen, in the past two decades avian-to-human transmission of influenza A viruses has been reported. Influenza A/H5N1, in particular, has repeatedly caused human infections associated with high mortality, and since 1998 the virus has evolved into many clades of variants with significant antigenic diversity. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) breached the animal-human host species barrier in Asia. In humans, roughly 35% of A/H7N9-infected patients succumbed to the zoonotic infection, and two of three A/H10N8 human infections were also lethal; however, neither of these viruses cause influenza-like symptoms in poultry. While most of these cases were associated with direct contact with infected poultry, some involved sustained human-to-human transmission. Thus, these events elicited concern regarding potential AIV pandemics. This article reviews the human incursions associated with AIV variants and the potential role of pigs as an intermediate host that may hasten AIV evolution. In addition, we discuss the known influenza A virus virulence and transmission factors and their evaluation in animal models. With the growing number of human AIV infections, constant vigilance for the emergence of novel viruses is of utmost importance. In addition, careful characterization and pathobiological assessment of these novel variants will help to identify strains of particular concern for future pandemics.
Collapse
Affiliation(s)
- Se Mi Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Young-Il Kim
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Philippe Noriel Q Pascua
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
28
|
Balzli C, Lager K, Vincent A, Gauger P, Brockmeier S, Miller L, Richt JA, Ma W, Suarez D, Swayne DE. Susceptibility of swine to H5 and H7 low pathogenic avian influenza viruses. Influenza Other Respir Viruses 2016; 10:346-52. [PMID: 26946338 PMCID: PMC4910171 DOI: 10.1111/irv.12386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2016] [Indexed: 12/30/2022] Open
Abstract
Background The ability of pigs to become infected with low pathogenic avian influenza (LPAI) viruses and then generate mammalian adaptable influenza A viruses is difficult to determine. Yet, it is an important link to understanding any relationship between LPAI virus ecology and possible epidemics among swine and/or humans. Objectives Assess susceptibility of pigs to LPAI viruses found within the United States and their direct contact transmission potential. Methods Pigs were inoculated with one of ten H5 or H7 LPAI viruses selected from seven different bird species to test infectivity, virulence, pathogenesis, and potential to transmit virus to contact pigs through histological, RRT‐PCR and seroconversion data. Results Although pigs were susceptible to infection with each of the LPAI viruses, no clinical disease was recognized in any pig. During the acute phase of the infection, minor pulmonary lesions were found in some pigs and one or more pigs in each group were RRT‐PCR‐positive in the lower respiratory tract, but no virus was detected in upper respiratory tract (negative nasal swabs). Except for one group, one or more pigs in each LPAI group developed antibody. No LPAI viruses transmitted to contact pigs. Conclusions LPAI strains from various bird populations within the United States are capable of infecting pigs. Although adaptability and transmission of individual strains seem unlikely, the subclinical nature of the infections demonstrates the need to improve sampling and testing methods to more accurately measure incidence of LPAI virus infection in pigs, and their potential role in human‐zoonotic LPAI virus dynamics.
Collapse
Affiliation(s)
- Charles Balzli
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeastern Poultry Research Laboratory, Athens, GA, USA
| | - Kelly Lager
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | - Amy Vincent
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | - Phillip Gauger
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA.,Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Susan Brockmeier
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | - Laura Miller
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA
| | - Juergen A Richt
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Wenjun Ma
- United States Department of Agriculture, Agricultural Research Service, National Animal Disease Center, Ames, IA, USA.,Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - David Suarez
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeastern Poultry Research Laboratory, Athens, GA, USA
| | - David E Swayne
- United States Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Southeastern Poultry Research Laboratory, Athens, GA, USA
| |
Collapse
|
29
|
Munoz O, De Nardi M, van der Meulen K, van Reeth K, Koopmans M, Harris K, von Dobschuetz S, Freidl G, Meijer A, Breed A, Hill A, Kosmider R, Banks J, Stärk KDC, Wieland B, Stevens K, van der Werf S, Enouf V, Dauphin G, Dundon W, Cattoli G, Capua I. Genetic Adaptation of Influenza A Viruses in Domestic Animals and Their Potential Role in Interspecies Transmission: A Literature Review. ECOHEALTH 2016; 13:171-198. [PMID: 25630935 DOI: 10.1007/s10393-014-1004-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Revised: 12/05/2014] [Accepted: 12/06/2014] [Indexed: 06/04/2023]
Abstract
In December 2011, the European Food Safety Authority awarded a Grant for the implementation of the FLURISK project. The main objective of FLURISK was the development of an epidemiological and virological evidence-based influenza risk assessment framework (IRAF) to assess influenza A virus strains circulating in the animal population according to their potential to cross the species barrier and cause infections in humans. With the purpose of gathering virological data to include in the IRAF, a literature review was conducted and key findings are presented here. Several adaptive traits have been identified in influenza viruses infecting domestic animals and a significance of these adaptations for the emergence of zoonotic influenza, such as shift in receptor preference and mutations in the replication proteins, has been hypothesized. Nonetheless, and despite several decades of research, a comprehensive understanding of the conditions that facilitate interspecies transmission is still lacking. This has been hampered by the intrinsic difficulties of the subject and the complexity of correlating environmental, viral and host factors. Finding the most suitable and feasible way of investigating these factors in laboratory settings represents another challenge. The majority of the studies identified through this review focus on only a subset of species, subtypes and genes, such as influenza in avian species and avian influenza viruses adapting to humans, especially in the context of highly pathogenic avian influenza H5N1. Further research applying a holistic approach and investigating the broader influenza genetic spectrum is urgently needed in the field of genetic adaptation of influenza A viruses.
Collapse
Affiliation(s)
- Olga Munoz
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy.
| | - Marco De Nardi
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
- SAFOSO AG, Bern, Switzerland
| | - Karen van der Meulen
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Kristien van Reeth
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Marion Koopmans
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Kate Harris
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | - Sophie von Dobschuetz
- Royal Veterinary College (RVC), London, UK
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - Gudrun Freidl
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adam Meijer
- Laboratory for Infectious Diseases Research, Diagnostics and Screening (IDS), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Andrew Breed
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | - Andrew Hill
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | | | - Jill Banks
- Animal Health and Veterinary Agency (AHVLA), Surrey, UK
| | | | | | | | - Sylvie van der Werf
- Unit of Molecular Genetics of RNA viruses, National Influenza Center (Northern France), Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Vincent Enouf
- Unit of Molecular Genetics of RNA viruses, National Influenza Center (Northern France), Institut Pasteur, UMR3569 CNRS, University Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Gwenaelle Dauphin
- Food and Agricultural Organization of the United Nations (FAO), Rome, Italy
| | - William Dundon
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| | - Giovanni Cattoli
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| | - Ilaria Capua
- Division of Comparative Biomedical Sciences, OIE/FAO and National Reference Laboratory for Newcastle Disease and Avian Influenza, OIE Collaborating Centre for Diseases at the Human-Animal Interface, Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell'Universita 10, 35020, Legnaro, PD, Italy
| |
Collapse
|
30
|
Abdelwhab EM, Abdel-Moneim AS. Epidemiology, ecology and gene pool of influenza A virus in Egypt: will Egypt be the epicentre of the next influenza pandemic? Virulence 2016; 6:6-18. [PMID: 25635701 DOI: 10.4161/21505594.2014.992662] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Outside Asia, Egypt is considered to be an influenza H5N1 epicentre and presents a far greater pandemic risk than other countries. The long-term endemicity of H5N1 and the recent emergence of H9N2 in poultry call attention to the need for unravelling the epidemiology, ecology and highly diverse gene pool of influenza A virus (IAV) in Egypt which is the aim of this review. Isolation of a considerable number of IAV subtypes from several avian and mammalian hosts was described. Co-infections of poultry with H5N1 and H9N2 and subclinical infections of pigs and humans with H1N1 and H5N1 may raise the potential for the reassortment of these viruses. Moreover, the adjustment of IAV genomes, particularly H5N1, to optimize their evolution toward efficient transmission in human is progressing in Egypt. Understanding the present situation of influenza viruses in Egypt will help in the control of the disease and can potentially prevent a possible pandemic.
Collapse
Key Words
- ELISA, Enzyme linked immunosorbent assay
- Egypt
- H5N1
- H9N2
- HA, hemagglutinin
- HI, hemagglutination inhibition test
- HPAIV, highly pathogenic avian influenza viruses
- IAV, influenza A viruses
- LBM, live bird markets
- LPAIV, low pathogenic avian influenza viruses
- M, matrix
- NA, neuraminidase
- NAMRU-3, Naval Medical Research Unit–3
- NLQP, National Laboratory for Veterinary Quality Control on Poultry Production
- NS, non-structural
- PA, acidic polymerase
- PB, basic polymerase
- WHO, World Health Organization
- epidemiology
- influenza
- pandemic
- reassortment
- virulence
Collapse
Affiliation(s)
- E M Abdelwhab
- a National Laboratory for Veterinary Quality Control on Poultry Production ; Animal Health Research Institute ; Dokki , Giza , Egypt
| | | |
Collapse
|
31
|
Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and pro-inflammatory dysregulation. Sci Rep 2015; 5:17999. [PMID: 26642934 PMCID: PMC4672291 DOI: 10.1038/srep17999] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/03/2015] [Indexed: 12/21/2022] Open
Abstract
Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) influenza viruses in PAM. We found that PAM were readily susceptible to initial infection with all five avian and mammalian influenza viruses but only avian viruses caused early and extensive apoptosis (by 6 h of infection) resulting in reduced virus progeny and moderated pro-inflammation. Full length viral PB1-F2 present only in avian influenza viruses is a virulence factor that targets AM for mitochondrial-associated apoptotic cell death. With the use of reverse genetics on an avian H5N1 virus, we found that full length PB1-F2 contributed to increased apoptosis and pro-inflammation but not to reduced virus replication. Taken together, we propose that early apoptosis of PAM limits the spread of avian influenza viruses and that PB1-F2 could play a contributory role in the process.
Collapse
|
32
|
Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression. J Virol 2015; 89:5651-67. [PMID: 25762737 DOI: 10.1128/jvi.00087-15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/04/2015] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. IMPORTANCE Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment independent of differential sialic acid distribution. The findings also establish that circulating neuraminidase (NA) and PA genes could alter the pathogenic phenotype of the pandemic H1N1 virus, resulting in enhanced disease. The identification of such factors provides a framework for pandemic modeling and surveillance.
Collapse
|
33
|
Tabynov K, Sansyzbay A, Sandybayev N, Mambetaliyev M. The pathogenicity of swan derived H5N1 virus in birds and mammals and its gene analysis. Virol J 2014; 11:207. [PMID: 25471127 PMCID: PMC4264262 DOI: 10.1186/s12985-014-0207-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/17/2014] [Indexed: 01/29/2023] Open
Abstract
Background Highly pathogenic avian influenza (HPAI) H5N1 viruses continue to circulate in poultry and can infect and cause mortality in birds and mammals; the genetic determinants of their increased virulence are largely unknown. The main purpose of this work was to determine the correlation between known molecular determinants of virulence in different avian influenza virus (AIV) genes and the results of experimental infection of birds and mammals with AIV strain A/swan/Mangistau/3/06 (H5N1; SW/3/06). Methods and results We examined the virulence of SW/3/06 in four species of birds (chickens, ducks, turkeys, geese) and five species of mammals (mice, guinea pigs, cats, dogs, pigs), and identified the molecular determinants of virulence in 11 genes (HA, NA, PB1, PB1-F2, PB2, PA, NS1, NS2, M1, M2 and NP). SW/3/06 does not possess the prime virulence determinant of HPAIV – a polybasic HA cleavage site – and is highly pathogenic in chickens. SW/3/06 replicated efficiently in chickens, ducks, turkeys, mice and dogs, causing 100% mortality within 1.6–5.2 days. In addition, no mortalities were observed in geese, guinea pigs, cats and pigs. The HI assay demonstrated all not diseased animals infected with the SW/3/06 virus had undergone seroconversion by 14, 21 and 28 dpi. Eleven mutations in the seven genes were present in SW/3/06. These mutations may play a role in the pathogenicity of this strain in chickens, ducks, turkeys, mice and dogs. Together or separately, mutations 228S-103S-318I in HA may play a role in the efficient replication of SW/3/06 in mammals (mice, dogs, pigs). Conclusions This study provides new information on the pathogenicity of the newly-isolated swan derived H5N1 virus in birds and mammals, and explored the role of molecular determinants of virulence in different genes; such studies may help to identify key virulence or adaptation markers that can be used for global surveillance of viruses threatening to emerge into the human population. Electronic supplementary material The online version of this article (doi:10.1186/s12985-014-0207-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kairat Tabynov
- The Research Institute for Biological Safety Problems, Zhambylskaya oblast, Kordayskiy rayon, Gvardeiskiy, 080409, Republic of Kazakhstan.
| | - Abylay Sansyzbay
- The Research Institute for Biological Safety Problems, Zhambylskaya oblast, Kordayskiy rayon, Gvardeiskiy, 080409, Republic of Kazakhstan.
| | - Nurlan Sandybayev
- The Research Institute for Biological Safety Problems, Zhambylskaya oblast, Kordayskiy rayon, Gvardeiskiy, 080409, Republic of Kazakhstan.
| | - Muratbay Mambetaliyev
- The Research Institute for Biological Safety Problems, Zhambylskaya oblast, Kordayskiy rayon, Gvardeiskiy, 080409, Republic of Kazakhstan.
| |
Collapse
|
34
|
Kuchipudi SV, Tellabati M, Sebastian S, Londt BZ, Jansen C, Vervelde L, Brookes SM, Brown IH, Dunham SP, Chang KC. Highly pathogenic avian influenza virus infection in chickens but not ducks is associated with elevated host immune and pro-inflammatory responses. Vet Res 2014; 45:118. [PMID: 25431115 PMCID: PMC4246556 DOI: 10.1186/s13567-014-0118-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/31/2014] [Indexed: 11/15/2022] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5N1 viruses cause severe infection in chickens at near complete mortality, but corresponding infection in ducks is typically mild or asymptomatic. To understand the underlying molecular differences in host response, primary chicken and duck lung cells, infected with two HPAI H5N1 viruses and a low pathogenicity avian influenza (LPAI) H2N3 virus, were subjected to RNA expression profiling. Chicken cells but not duck cells showed highly elevated immune and pro-inflammatory responses following HPAI virus infection. HPAI H5N1 virus challenge studies in chickens and ducks corroborated the in vitro findings. To try to determine the underlying mechanisms, we investigated the role of signal transducer and activator of transcription-3 (STAT-3) in mediating pro-inflammatory response to HPAIV infection in chicken and duck cells. We found that STAT-3 expression was down-regulated in chickens but was up-regulated or unaffected in ducks in vitro and in vivo following H5N1 virus infection. Low basal STAT-3 expression in chicken cells was completely inhibited by H5N1 virus infection. By contrast, constitutively active STAT-3 detected in duck cells was unaffected by H5N1 virus infection. Transient constitutively-active STAT-3 transfection in chicken cells significantly reduced pro-inflammatory response to H5N1 virus infection; on the other hand, chemical inhibition of STAT-3 activation in duck cells increased pro-inflammatory gene expression following H5N1 virus infection. Collectively, we propose that elevated pro-inflammatory response in chickens is a major pathogenicity factor of HPAI H5N1 virus infection, mediated in part by the inhibition of STAT-3.
Collapse
Affiliation(s)
- Suresh V Kuchipudi
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough, Nottingham LE12 5RD, Leicestershire, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kim HM, Park EH, Yum J, Kim HS, Seo SH. Greater virulence of highly pathogenic H5N1 influenza virus in cats than in dogs. Arch Virol 2014; 160:305-13. [PMID: 25416494 DOI: 10.1007/s00705-014-2284-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 11/10/2014] [Indexed: 11/29/2022]
Abstract
Highly pathogenic H5N1 influenza virus continues to infect animals and humans. We compared the infectivity and pathogenesis of H5N1 virus in domestic cats and dogs to find out which animal is more susceptible to H5N1 influenza virus. When cats and dogs were infected with the H5N1 virus, cats suffered from severe outcomes including death, whereas dogs did not show any mortality. Viruses were shed in the nose and rectum of cats and in the nose of dogs. Viruses were detected in brain, lung, kidney, intestine, liver, and serum in the infected cats, but only in the lung in the infected dogs. Genes encoding inflammatory cytokines and chemokines, Toll-like receptors, and apoptotic factors were more highly expressed in the lungs of cats than in those of dogs. Our results suggest that the intensive monitoring of dogs is necessary to prevent human infection by H5N1 influenza virus, since infected dogs may not show clear clinical signs, in contrast to infected cats.
Collapse
Affiliation(s)
- Heui Man Kim
- Laboratory of Influenza Research, College of Veterinary Medicine, Chungnam National University, 220 Gung Dong, Yuseong Gu, Daejeon, 305-764, Republic of Korea
| | | | | | | | | |
Collapse
|
36
|
Animal models for influenza viruses: implications for universal vaccine development. Pathogens 2014; 3:845-74. [PMID: 25436508 PMCID: PMC4282889 DOI: 10.3390/pathogens3040845] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 01/22/2023] Open
Abstract
Influenza virus infections are a significant cause of morbidity and mortality in the human population. Depending on the virulence of the influenza virus strain, as well as the immunological status of the infected individual, the severity of the respiratory disease may range from sub-clinical or mild symptoms to severe pneumonia that can sometimes lead to death. Vaccines remain the primary public health measure in reducing the influenza burden. Though the first influenza vaccine preparation was licensed more than 60 years ago, current research efforts seek to develop novel vaccination strategies with improved immunogenicity, effectiveness, and breadth of protection. Animal models of influenza have been essential in facilitating studies aimed at understanding viral factors that affect pathogenesis and contribute to disease or transmission. Among others, mice, ferrets, pigs, and nonhuman primates have been used to study influenza virus infection in vivo, as well as to do pre-clinical testing of novel vaccine approaches. Here we discuss and compare the unique advantages and limitations of each model.
Collapse
|
37
|
Pascua PNQ, Choi YK. Zoonotic infections with avian influenza A viruses and vaccine preparedness: a game of "mix and match". Clin Exp Vaccine Res 2014; 3:140-8. [PMID: 25003087 PMCID: PMC4083066 DOI: 10.7774/cevr.2014.3.2.140] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 03/28/2014] [Accepted: 04/02/2014] [Indexed: 11/15/2022] Open
Abstract
Various direct avian-to-human transmissions of influenza A virus subtypes upon exposure to infected poultry have been previously observed in the past decades. Although some of these strains caused lethal infections, the lack of sustained person-to-person transmission has been the major factor that prevented these viruses from causing new pandemics. In 2013, three (A/H7N9, A/H6N1, and A/H10N8) novel avian influenza viruses (AIVs) yet again breached the animal-human host species barrier in Asia. Notably, roughly 20% of the A/H7N9-infected patients succumbed to the zoonotic infection whereas two of three A/H10N8 human infections were also lethal. Thus, these events revived the concerns of potential pandemic threats by AIVs in the horizon. This article reviews the various human incursions with AIV variants and provides insight on how continued circulation of these viruses poses perpetual challenge to global public health. As the world anticipates for the next human pandemic, constant vigilance for newly emerging viruses in nature is highly encouraged. With the various numbers of AIVs demonstrating their capacity to breach the animal-human host interface and apparent limitations of current antivirals, there is a need to broaden the selection of pre-pandemic vaccine candidate viruses and development of novel alternative therapeutic strategies.
Collapse
Affiliation(s)
- Philippe Noriel Q Pascua
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| | - Young Ki Choi
- Department of Microbiology, College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, Korea
| |
Collapse
|
38
|
Low infectivity of a novel avian-origin H7N9 influenza virus in pigs. Arch Virol 2014; 159:2745-9. [PMID: 24906526 DOI: 10.1007/s00705-014-2143-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
We studied the pathogenesis and transmissibility of a novel avian-origin H7N9 influenza virus in pigs. When pigs were infected with H7N9 influenza virus, they did not show any clear clinical signs (such as sneezing, fever and loss of body weight), and they shed viruses through their noses for 2 days after infection. No transmission occurred between infected and naïve pigs. Pigs suffered from mild pneumonia, which was accompanied by the induction of inflammatory cytokines and chemokines such as IL-8 and CCL1. Taken together, our results suggest that pigs may not play an active role in transmitting H7N9 influenza virus to mammals.
Collapse
|
39
|
Wu Y, Qiao C, Yang H, Chen Y, Xin X, Chen H. Immunogenicity and efficacy of a recombinant adenovirus expressing hemagglutinin from the H5N1 subtype of swine influenza virus in mice. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 2014; 78:117-126. [PMID: 24688173 PMCID: PMC3962274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/15/2013] [Indexed: 06/03/2023]
Abstract
The H5N1 influenza viruses infect a range of avian species and have recently been isolated from humans and pigs. In this study we generated a replication-defective recombinant adenovirus (rAd-H5HA-EGFP) expressing the hemagglutinin (HA) gene of H5N1 A/Swine/Fujian/1/2001 (SW/FJ/1/01) and evaluated its immunogenicity and protective efficacy in BALB/c mice. The recombinant virus induced high levels of hemagglutination inhibition (HI) antibody at a median tissue culture infective dose of 10(8) or 10(7). Compared with mice in the control groups, the mice vaccinated with rAd-H5HA-EGFP did not show apparent weight loss after challenge with either the homologous SW/FJ/1/01 or the heterologous H5N1 A/Chicken/Hunan/77/2005 (CK/HuN/77/05). Replication of the challenge virus was partially or completely inhibited, and viruses were detected at significantly lower numbers in the organs of the vaccinated mice, all of which survived the challenge with CK/HuN/77/05, whereas most of the control mice did not. These results indicate that rAd-H5HA-EGFP can provide effective immune protection from highly pathogenic H5N1 viruses in mice and is therefore a promising new candidate vaccine against H5N1 influenza in animals.
Collapse
Affiliation(s)
| | - Chuanling Qiao
- Address all correspondence to Dr. Chuanling Qiao or Dr. Hualan Chen; telephone: 86 451 51997168; fax: 86 451 51997166; e-mail: or
| | | | | | | | - Hualan Chen
- Address all correspondence to Dr. Chuanling Qiao or Dr. Hualan Chen; telephone: 86 451 51997168; fax: 86 451 51997166; e-mail: or
| |
Collapse
|
40
|
Buehler J, Lager K, Vincent A, Miller C, Thacker E, Janke B. Issues encountered in development of enzyme-linked immunosorbent assay for use in detecting Influenza A virus subtype H5N1 exposure in swine. J Vet Diagn Invest 2014; 26:277-81. [PMID: 24464555 DOI: 10.1177/1040638713518775] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A potential mechanism by which highly pathogenic avian Influenza A virus subtype H5N1 could more readily infect human beings is through the infection of and adaptation in pigs. To detect the occurrence of such infection, monitoring of pig populations through serological screening would be highly desirable. In the current study, hemagglutination inhibition assays were able to detect antibodies against H5N1 developed in pigs, but because of antigenic variation between clades, the use of multiple virus strains were required. Whole recombinant virus and recombinant hemagglutinin antigen enzyme-linked immunosorbent assays (ELISAs) were generated that could detect antibody against multiple H5N1 strains, but which also detected antibody against endemic swine influenza viruses. A recombinant hemagglutinin antigen-based ELISA was as effective as the whole virus antigen ELISAs in detecting antibody against the H5N1 virus strains used and eliminated nearly all of the cross-reactivity with non-H5N1 virus antibody. The current study also highlighted the difficulty in establishing a decision (cutoff) value that would effectively counterbalance nonspecific reactivity against sensitivity. The results provide important information and considerations for the development of serological screening assays for highly pathogenic avian H5N1 viruses.
Collapse
Affiliation(s)
- Jason Buehler
- 1Bruce Janke, Veterinary Diagnostic Laboratory, Iowa State University, 1600 South 16th Street, Ames, IA 50011.
| | | | | | | | | | | |
Collapse
|
41
|
van den Brand JMA, Haagmans BL, van Riel D, Osterhaus ADME, Kuiken T. The pathology and pathogenesis of experimental severe acute respiratory syndrome and influenza in animal models. J Comp Pathol 2014; 151:83-112. [PMID: 24581932 PMCID: PMC7094469 DOI: 10.1016/j.jcpa.2014.01.004] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/04/2013] [Accepted: 01/06/2014] [Indexed: 02/08/2023]
Abstract
Respiratory viruses that emerge in the human population may cause high morbidity and mortality, as well as concern about pandemic spread. Examples are severe acute respiratory syndrome coronavirus (SARS-CoV) and novel variants of influenza A virus, such as H5N1 and pandemic H1N1. Different animal models are used to develop therapeutic and preventive measures against such viruses, but it is not clear which are most suitable. Therefore, this review compares animal models of SARS and influenza, with an emphasis on non-human primates, ferrets and cats. Firstly, the pathology and pathogenesis of SARS and influenza are compared. Both diseases are similar in that they affect mainly the respiratory tract and cause inflammation and necrosis centred on the pulmonary alveoli and bronchioles. Important differences are the presence of multinucleated giant cells and intra-alveolar fibrosis in SARS and more fulminant necrotizing and haemorrhagic pneumonia in H5N1 influenza. Secondly, the pathology and pathogenesis of SARS and influenza in man and experimental animals are compared. Host species, host age, route of inoculation, location of sampling and timing of sampling are important to design an animal model that most closely mimics human disease. The design of appropriate animal models requires an accurate pathological description of human cases, as well as a good understanding of the effect of experimental variables on disease outcome.
Collapse
Affiliation(s)
- J M A van den Brand
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - B L Haagmans
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - D van Riel
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - A D M E Osterhaus
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands
| | - T Kuiken
- Department of Viroscience, Erasmus Medical Center, Dr. Molewaterplein 50, 3015 GE Rotterdam, The Netherlands.
| |
Collapse
|
42
|
Abstract
The challenge of increasing swine production and a rising number of novel and known swine influenza viruses has prompted a considerable boost in research into how and why pigs have become such significant hosts for influenza viruses. The ecology of influenza A viruses is rather complicated, involving multiple host species and a segmented genome. Wild aquatic birds are the reservoir for the majority of influenza A viruses, but novel influenza viruses were recently identified in bats. Occasionally, influenza A viruses can be transmitted to mammals from avian species and this event could lead to the generation of human pandemic strains. Swine are thought to be "mixing vessels" because they are susceptible to infection with both avian and mammalian influenza viruses; and novel influenza viruses can be generated in pigs by reassortment. At present, it is difficult to predict which viruses might cause a human pandemic. Therefore, both human and veterinary research needs to give more attention to the potential cross-species transmission capacity of influenza A viruses.
Collapse
|
43
|
Jones JC, Baranovich T, Marathe BM, Danner AF, Seiler JP, Franks J, Govorkova EA, Krauss S, Webster RG. Risk assessment of H2N2 influenza viruses from the avian reservoir. J Virol 2014; 88:1175-88. [PMID: 24227848 PMCID: PMC3911670 DOI: 10.1128/jvi.02526-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 10/24/2013] [Indexed: 11/20/2022] Open
Abstract
H2N2 influenza A viruses were the cause of the 1957-1958 pandemic. Historical evidence demonstrates they arose from avian virus ancestors, and while the H2N2 subtype has disappeared from humans, it persists in wild and domestic birds. Reemergence of H2N2 in humans is a significant threat due to the absence of humoral immunity in individuals under the age of 50. Thus, examination of these viruses, particularly those from the avian reservoir, must be addressed through surveillance, characterization, and antiviral testing. The data presented here are a risk assessment of 22 avian H2N2 viruses isolated from wild and domestic birds over 6 decades. Our data show that they have a low rate of genetic and antigenic evolution and remained similar to isolates circulating near the time of the pandemic. Most isolates replicated in mice and human bronchial epithelial cells, but replication in swine tissues was low or absent. Multiple isolates replicated in ferrets, and 3 viruses were transmitted to direct-contact cage mates. Markers of mammalian adaptation in hemagglutinin (HA) and PB2 proteins were absent from all isolates, and they retained a preference for avian-like α2,3-linked sialic acid receptors. Most isolates remained antigenically similar to pandemic A/Singapore/1/57 (H2N2) virus, suggesting they could be controlled by the pandemic vaccine candidate. All viruses were susceptible to neuraminidase inhibitors and adamantanes. Nonetheless, the sustained pathogenicity of avian H2N2 viruses in multiple mammalian models elevates their risk potential for human infections and stresses the need for continual surveillance as a component of prepandemic planning.
Collapse
Affiliation(s)
- Jeremy C Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Influenza has been recognized as a respiratory disease in swine since its first appearance concurrent with the 1918 "Spanish flu" human pandemic. All influenza viruses of significance in swine are type A, subtype H1N1, H1N2, or H3N2 viruses. Influenza viruses infect epithelial cells lining the surface of the respiratory tract, inducing prominent necrotizing bronchitis and bronchiolitis and variable interstitial pneumonia. Cell death is due to direct virus infection and to insult directed by leukocytes and cytokines of the innate immune system. The most virulent viruses consistently express the following characteristics of infection: (1) higher or more prolonged virus replication, (2) excessive cytokine induction, and (3) replication in the lower respiratory tract. Nearly all the viral proteins contribute to virulence. Pigs are susceptible to infection with both human and avian viruses, which often results in gene reassortment between these viruses and endemic swine viruses. The receptors on the epithelial cells lining the respiratory tract are major determinants of infection by influenza viruses from other hosts. The polymerases, especially PB2, also influence cross-species infection. Methods of diagnosis and characterization of influenza viruses that infect swine have improved over the years, driven both by the availability of new technologies and by the necessity of keeping up with changes in the virus. Testing of oral fluids from pigs for virus and antibody is a recent development that allows efficient sampling of large numbers of animals.
Collapse
Affiliation(s)
- B H Janke
- DVM, PhD, Veterinary Diagnostic Laboratory, Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
45
|
Receptor binding and transmission studies of H5N1 influenza virus in mammals. Emerg Microbes Infect 2013; 2:e85. [PMID: 26038448 PMCID: PMC3880874 DOI: 10.1038/emi.2013.89] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/10/2013] [Accepted: 11/18/2013] [Indexed: 02/04/2023]
Abstract
The H5N1 influenza A virus that is currently circulating in Asia, Africa and Europe has resulted in persistent outbreaks in poultry with sporadic transmission to humans. Thus far, it is believed that H5N1 does not possess sufficient ability for human-to-human transmission and subsequent pandemic infection. Both receptor binding specificity and virus infectivity are key factors in determining whether influenza A virus becomes pandemic. The use of human viral isolates in various studies has helped to illustrate the changes in receptor binding specificity and virulence as a result of adaptation in humans. In this review, we highlight the important amino acids and domains of viral proteins related to receptor binding specificity that have been reported for humans and avians using mammalian models. Thus, this review will consolidate findings from studies that have shed light on the receptor binding and transmission characteristics of the H5N1 influenza virus, with the goal of improving our ability to predict the transmission efficiency or pandemic potential of new viral strains.
Collapse
|
46
|
Guan Y, Smith GJ. The emergence and diversification of panzootic H5N1 influenza viruses. Virus Res 2013; 178:35-43. [PMID: 23735533 PMCID: PMC4017639 DOI: 10.1016/j.virusres.2013.05.012] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Revised: 04/23/2013] [Accepted: 05/20/2013] [Indexed: 02/05/2023]
Abstract
The Asian highly pathogenic avian influenza H5N1 virus was first detected in the goose population of Guangdong, China in 1996. The viruses in this lineage are unique in their ecological success, demonstrating an extremely broad host range and becoming established in poultry over much of Asia and in Africa. H5N1 viruses have also diverged into multiple clades and subclades that generally do not cross neutralize, which has greatly confounded control measures in poultry and pre-pandemic vaccine strain selection. Although H5N1 viruses currently cannot transmit efficiently between mammals they exhibit high mortality in humans and recent experimental studies have shown that it is possible to generate an H5N1 virus that is transmissible in mammals. In addition to causing unprecedented economic losses, the long-term presence of the H5N1 virus in poultry and its frequent introductions to humans continue to pose a significant pandemic threat. Here we provide a summary of the genesis, molecular epidemiology and evolution of this H5N1 lineage, particularly the factors that have contributed to the continued diversification and ecological success of H5N1 viruses, with particular reference to the poultry production systems they have emerged from.
Collapse
Affiliation(s)
- Yi Guan
- State Key Laboratory of Emerging Infectious Diseases and Center of Influenza Research, The University of Hong Kong, Hong Kong SAR, China
- International Institution of Infection and Immunity, Shantou University Medical College, Shantou, China
| | - Gavin J.D. Smith
- Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857
- Duke Global Health Institute, Duke University, Box 90519, Durham, North Carolina 27708
| |
Collapse
|
47
|
Koçer ZA, Obenauer J, Zaraket H, Zhang J, Rehg JE, Russell CJ, Webster RG. Fecal influenza in mammals: selection of novel variants. J Virol 2013; 87:11476-86. [PMID: 23966381 PMCID: PMC3807347 DOI: 10.1128/jvi.01544-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/09/2013] [Indexed: 12/14/2022] Open
Abstract
In aquatic birds, influenza A viruses mainly replicate in the intestinal tract without significantly affecting the health of the host, but in mammals, they replicate in the respiratory tract and often cause disease. Occasionally, influenza viruses have been detected in stool samples of hospitalized patients and in rectal swabs of naturally or experimentally infected mammals. In this study, we compared the biological and molecular differences among four wild-type avian H1N1 influenza viruses and their corresponding fecal and lung isolates in DBA/2J and BALB/cJ mice. All fecal and lung isolates were more pathogenic than the original wild-type viruses, when inoculated into mice of both strains. The increased virulence was associated with the acquisition of genetic mutations. Most of the novel genotypes emerged as PB2(E627K), HA(F128V), HA(F454L), or HA(H300P) variations, and double mutations frequently occurred in the same isolate. However, influenza virus strain- and host-specific differences were also observed in terms of selected variants. The avian H1N1 virus of shorebird origin appeared to be unique in its ability to rapidly adapt to BALB/cJ mice via the fecal route, compared to the adaptability of the H1N1 virus of mallard origin. Furthermore, a bimodal distribution in fecal shedding was observed in mice infected with the fecal isolates, while a normal distribution was observed after infection with the lung isolates or wild-type virus. Fecal isolates contained HA mutations that increased the activation pH of the HA protein. We conclude that influenza virus variants that emerge in fecal isolates in mammals might influence viral transmission, adaptation to mammals, and viral ecology or evolution.
Collapse
Affiliation(s)
| | | | | | | | - Jerold E. Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | |
Collapse
|
48
|
Crisci E, Mussá T, Fraile L, Montoya M. Review: Influenza virus in pigs. Mol Immunol 2013; 55:200-11. [PMID: 23523121 DOI: 10.1016/j.molimm.2013.02.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2012] [Revised: 02/23/2013] [Accepted: 02/25/2013] [Indexed: 12/19/2022]
|
49
|
Londt BZ, Brookes SM, Nash BJ, Núñez A, Kelly MD, Garçon F, Graham SP, Brown IH. Enhanced infectivity of H5N1 highly pathogenic avian influenza (HPAI) virus in pig ex vivo respiratory tract organ cultures following adaptation by in vitro passage. Virus Res 2013; 178:383-91. [PMID: 24050997 DOI: 10.1016/j.virusres.2013.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/05/2013] [Accepted: 09/06/2013] [Indexed: 11/29/2022]
Abstract
Pigs are thought to play a role in the adaptation of avian influenza (AI) viruses to mammalian hosts. To better understand this mechanism and to identify key mutations two highly pathogenic AI (HPAI) viruses (H5N1 and H7N7) were grown in pig cells, To mimic the pressure of an immune response, these viruses were grown in the presence of antiserum to the homologous virus or porcine IFN-γ. Mutations were identified in both viruses grown in vitro in the presence and absence of antisera or IFN-γ and included the PB2 mutations, E627K or 627E,D701N, described previously as requirements for the adaptation of AI viruses to mammalian species. Additional mutations were also identified in PB1, HA, NP and M genes for viruses passaged in the presence of immune pressure. The infectivity of these viruses was then assessed using ex vivo pig bronchi and lung organ cultures. For lung explants, higher levels of virus were detected in organ cultures infected with H5N1 HPAI viruses passaged in pig cell lines regardless of the presence or absence of homologous antisera or IFN-γ when compared with the wild-type parental viruses. No infection was observed for any of the H7N7 HPAI viruses. These results suggest that the mutations identified in H5N1 HPAI viruses may provide a replication or infection advantage in pigs in vivo and that pigs may continue to play an important role in the ecology of influenza A viruses including those of avian origin.
Collapse
Affiliation(s)
- Brandon Z Londt
- Animal Health and Veterinary Laboratories Agency (AHVLA), Addlestone, Surrey KT15 3NB, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Kaplan BS, Webby RJ. The avian and mammalian host range of highly pathogenic avian H5N1 influenza. Virus Res 2013; 178:3-11. [PMID: 24025480 DOI: 10.1016/j.virusres.2013.09.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Accepted: 09/02/2013] [Indexed: 12/19/2022]
Abstract
Highly pathogenic H5N1 influenza viruses have been isolated from a number of avian and mammalian species. Despite intensive control measures the number of human and animal cases continues to increase. A more complete understanding of susceptible species and of contributing environmental and molecular factors is crucial if we are to slow the rate of new cases. H5N1 is currently endemic in domestic poultry in only a handful of countries with sporadic and unpredictable spread to other countries. Close contact of terrestrial bird or mammalian species with infected poultry/waterfowl or their biological products is the major route for interspecies transmission. Intra-species transmission of H5N1 in mammals, including humans, has taken place on a limited scale though it remains to be seen if this will change; recent laboratory studies suggest that it is indeed possible. Here we review the avian and mammalian species that are naturally susceptible to H5N1 infection and the molecular factors associated with its expanded host range.
Collapse
Affiliation(s)
- Bryan S Kaplan
- Division of Virology, Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | | |
Collapse
|