1
|
Tsedilin A, Schmidtke M, Monakhova N, Leneva I, Falynskova I, Khrenova M, Lane TR, Ekins S, Makarov V. Indole-core inhibitors of influenza a neuraminidase: iterative medicinal chemistry and molecular modeling. Eur J Med Chem 2024; 277:116768. [PMID: 39163780 DOI: 10.1016/j.ejmech.2024.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/05/2024] [Accepted: 08/11/2024] [Indexed: 08/22/2024]
Abstract
Influenza viruses that cause seasonal and pandemic flu are a permanent health threat. The surface glycoprotein, neuraminidase, is crucial for the infectivity of the virus and therefore an attractive target for flu drug discovery campaigns. We have designed and synthesized more than 40 3-indolinone derivatives. We mainly investigated the role of substituents at the 2 position of the core as well as the introduction of substituents or a nitrogen atom in the fused phenyl ring of the core for inhibition of influenza virus neuraminidase activity and replication in vitro and in vivo. After evaluating the compounds for their ability to inhibit the viral neuraminidase, six potent inhibitors 3c, 3e, 7c, 12o, 12v, 18d were progressed to evaluate for cytotoxicity and inhibition of influenza virus A/PR/8/34 replication in in MDCK cells. Two hit compounds 3e and 12o were tested in an animal model of influenza virus infection. Molecular mechanism of the 3-indolinone derivatives interactions with the neuraminidase was revealed in molecular dynamic simulations. Proposed inhibitors bind to the 430-cavity that is different from the conventional binding site of commercial compounds. The most promising 3-indolinone inhibitors demonstrate stronger interactions with the neuraminidase in molecular models that supports proposed binding site.
Collapse
Affiliation(s)
- Andrey Tsedilin
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia
| | - Michaela Schmidtke
- Institute of Medical Microbiology, Section of Experimental Virology, Jena University Hospital, Hans-Knöll-Straße 2, 07745, Jena, Germany
| | - Natalia Monakhova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia
| | - Irina Leneva
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology, 105064, Moscow, Russia
| | - Irina Falynskova
- Mechnikov Research Institute of Vaccines and Sera, Department of Virology, 105064, Moscow, Russia
| | - Maria Khrenova
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - Thomas R Lane
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC27606, USA
| | - Sean Ekins
- Collaborations Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, NC27606, USA
| | - Vadim Makarov
- Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences (Research Centre of Biotechnology RAS), Leninsky prospect, 33, build. 2, 119071, Moscow, Russia.
| |
Collapse
|
2
|
Han J, Yang C, Xiao Y, Li J, Jin N, Li Y. Influenza B virus: Target and acting mechanism of antiviral drugs. Microb Pathog 2024; 197:107051. [PMID: 39442816 DOI: 10.1016/j.micpath.2024.107051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The influenza B virus is one of the causes of seasonal influenza, which has a long history of existence in various populations. Adolescents, children, pregnant women, the elderly, as well as patients with major diseases such as high blood pressure, diabetes, and cancer, and those with low immunity are more susceptible to infection by the influenza virus. During the influenza seasons, the influenza B virus can cause significant harm and economic burden. At present, neuraminidase inhibitors, hemagglutinin inhibitors and RNA polymerase inhibitors are the main antiviral drugs that are used in the clinical treatment of influenza B. Due to the repeated use of antiviral drugs in recent years, the emergence of resistant strains of the influenza virus exacerbated. By combining anti-viral drugs with different mechanisms of action or using a combination of traditional Chinese medicine and chemical drugs, the problem of reduced drug sensitivity can be improved. This article introduces the drug targets of the influenza B virus and the mechanism of virus resistance. It also emphasizes the clinically used antiviral drugs and their mechanisms of action, thereby providing a reference basis for the development of new anti-influenza drugs.
Collapse
Affiliation(s)
- Jicheng Han
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Chunhui Yang
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Yan Xiao
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China.
| | - Jingjing Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Ningyi Jin
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China
| | - Yiquan Li
- Key Laboratory of Jilin Province for Traditional Chinese Medicine Prevention and Treatment of Infectious Diseases, College of Integrative Medicine, Changchun University of Chinese Medicine, Changchun, PR China.
| |
Collapse
|
3
|
Chakraborty S, Chauhan A. Fighting the flu: a brief review on anti-influenza agents. Biotechnol Genet Eng Rev 2024; 40:858-909. [PMID: 36946567 DOI: 10.1080/02648725.2023.2191081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023]
Abstract
The influenza virus causes one of the most prevalent and lethal infectious viral diseases of the respiratory system; the disease progression varies from acute self-limiting mild fever to disease chronicity and death. Although both the preventive and treatment measures have been vital in protecting humans against seasonal epidemics or sporadic pandemics, there are several challenges to curb the influenza virus such as limited or poor cross-protection against circulating virus strains, moderate protection in immune-compromised patients, and rapid emergence of resistance. Currently, there are four US-FDA-approved anti-influenza drugs to treat flu infection, viz. Rapivab, Relenza, Tamiflu, and Xofluza. These drugs are classified based on their mode of action against the viral replication cycle with the first three being Neuraminidase inhibitors, and the fourth one targeting the viral polymerase. The emergence of the drug-resistant strains of influenza, however, underscores the need for continuous innovation towards development and discovery of new anti-influenza agents with enhanced antiviral effects, greater safety, and improved tolerability. Here in this review, we highlighted commercially available antiviral agents besides those that are at different stages of development including under clinical trials, with a brief account of their antiviral mechanisms.
Collapse
Affiliation(s)
| | - Ashwini Chauhan
- Department of Microbiology, Tripura University, Agartala, India
| |
Collapse
|
4
|
Sabt A, Khaleel EF, Shaldam MA, Ebaid MS, Mustafa Badi R, Allayeh AK, Eldehna WM, Dziadek J. Discovery of new quinoline derivatives bearing 1-aryl-1,2,3-triazole motif as influenza H1N1 virus neuraminidase inhibitors. Bioorg Chem 2024; 151:107703. [PMID: 39137601 DOI: 10.1016/j.bioorg.2024.107703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
Sporadically and periodically, influenza outbreaks threaten global health and the economy. Antigen drift-induced influenza virus mutations hamper antiviral drug development. Thus, a novel antiviral agent is urgently needed to address medication inefficacy issues. Herein, sixteen new quinoline-triazole hybrids 6a-h and 9a-h were prepared and evaluated in vitro against the H1N1 virus. In particular, 6d, 6e, and 9b showed promising H1N1 antiviral activity with selective index (SI) CC50/IC50 values of 15.8, 37, and 29.15. After that, the inhibition rates for various mechanisms of action (virus replication, adsorption, and virucidal activity) were investigated for the most efficient candidates 6d, 6e, and 9b. Additionally, their ability to inhibit neuraminidase was evaluated. With an IC50 value of 0.30 µM, hybrid 6d demonstrated effective and comparable inhibitory activity to Oseltamivir. Ultimately, molecular modeling investigations, encompassing molecular docking and molecular dynamic simulations, were conducted to provide a scientific basis for the observed antiviral results.
Collapse
Affiliation(s)
- Ahmed Sabt
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo 12622, Egypt.
| | - Eman F Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Manal S Ebaid
- Chemistry of Natural Compounds Department, Pharmaceutical and Drug Industries Research Institute, National Research Center, Dokki, Cairo 12622, Egypt; Department of Chemistry, College of Science, Northern Border University, Arar, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia
| | - Abdou K Allayeh
- Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Canal El Mahmoudia St., Alexandria 21648, Egypt.
| | - Jaroslaw Dziadek
- Laboratory of Genetics and Physiology of Mycobacterium, Institute of Medical Biology of the Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
5
|
Choudhury A, Ojha PK, Ray S. Hazards of antiviral contamination in water: Dissemination, fate, risk and their impact on fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135087. [PMID: 38964042 DOI: 10.1016/j.jhazmat.2024.135087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Antiviral drugs are a cornerstone in the first line of antiviral therapy and their demand rises consistently with increments in viral infections and successive outbreaks. The drugs enter the waters due to improper disposal methods or via human excreta following their consumption; consequently, many of them are now classified as emerging pollutants. Hereby, we review the global dissemination of these medications throughout different water bodies and thoroughly investigate the associated risk they pose to the aquatic fauna, particularly our vertebrate relative fish, which has great economic and dietary importance and subsequently serves as a major doorway to the human exposome. Our risk assessment identifies eleven such drugs that presently pose high to moderate levels of risk to the fish. The antiviral drugs are likely to induce oxidative stress, alter the behaviour, affect different physiological processes and provoke various toxicological mechanisms. Many of the compounds exhibit elevated bioaccumulation potential, while, some have an increased tendency to leach through soil and contaminate the groundwater. Eight antiviral medications show a highly recalcitrant nature and would impact the aquatic life consistently in the long run and continue to influence the human exposome. Thereby, we call for urgent ecopharmacovigilance measures and modification of current water treatment methods.
Collapse
Affiliation(s)
- Abhigyan Choudhury
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Probir Kumar Ojha
- Drug Discovery and Development (DDD) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
6
|
Duwe SC, Milde J, Heider A, Wedde M, Schweiger B, Dürrwald R. Increase of Synergistic Secondary Antiviral Mutations in the Evolution of A(H1N1)pdm09 Influenza Virus Neuraminidases. Viruses 2024; 16:1109. [PMID: 39066271 PMCID: PMC11281601 DOI: 10.3390/v16071109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
The unexpected emergence of oseltamivir-resistant A(H1N1) viruses in 2008 was facilitated in part by the establishment of permissive secondary neuraminidase (NA) substitutions that compensated for the fitness loss due to the NA-H275Y resistance substitution. These viruses were replaced in 2009 by oseltamivir-susceptible A(H1N1)pdm09 influenza viruses. Genetic analysis and screening of A(H1N1)pdm09 viruses circulating in Germany between 2009 and 2024 were conducted to identify any potentially synergistic or resistance-associated NA substitutions. Selected viruses were then subjected to further characterization in vitro. In the NA gene of circulating A(H1N1)pdm09 viruses, two secondary substitutions, NA-V241I and NA-N369K, were identified. These substitutions demonstrated a stable lineage in phylogenetic analysis since the 2010-2011 influenza season. The data indicate a slight increase in viral NA bearing two additional potentially synergistic substitutions, NA-I223V and NA-S247N, in the 2023-2024 season, which both result in a slight reduction in susceptibility to NA inhibitors. The accumulation of secondary synergistic substitutions in the NA of A(H1N1)pdm09 viruses increases the probability of the emergence of antiviral-resistant viruses. Therefore, it is crucial to closely monitor the evolution of circulating influenza viruses and to develop additional antiviral drugs against different target proteins.
Collapse
Affiliation(s)
- Susanne C. Duwe
- Unit 17 Influenza and Other Respiratory Viruses, Department 1 Infectious Diseases, Robert Koch-Institute, 13353 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Tare DS, Pawar SD, Shil P, Atre NM. Structural and functional characterization of avian influenza H9N2 virus neuraminidase with a combination of five novel mutations. Arch Biochem Biophys 2024; 757:110041. [PMID: 38750923 DOI: 10.1016/j.abb.2024.110041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/08/2024] [Accepted: 05/12/2024] [Indexed: 05/20/2024]
Abstract
The influenza virus neuraminidase (NA) protein is responsible for actively cleaving the sialic acid (SA) bound to the viral hemagglutinin. In the present study, we identified a combination of five novel amino acid substitutions in the NA, conferring increased substrate binding and altered surface characteristics to a low pathogenic avian influenza (LPAI) H9N2 virus strain. The H9N2 strain reported from India, A/Environmental/India/1726265/2017 (H9N2-1726265) showed the combination of amino acid substitutions T149I, R249W, G346A, W403R and G435R, which were in the vicinity of the enzyme active site cavity. The strain A/chicken/India/99321/2009 (H9N2-99321) did not show these substitutions and was used for comparison. Virus elution was studied using turkey red blood cells (tRBCs). NA enzyme kinetics assays were carried out using the MUNANA substrate, which is an SA analogue. Homology modelling and molecular docking were performed to determine alterations in the surface characteristics and substrate binding. H9N2-1726265 showed enhanced elution from tRBCs. Enzyme kinetics revealed a lower KM of H9N2-1726265 (111.5 μM) as compared to H9N2-99321 (135.2 μM), indicating higher substrate binding affinity of H9N2-1726265, due to which the NA enzyme cleaved the SA more efficiently, leading to faster elution. Molecular docking revealed a greater number of binding interactions of H9N2-1726265 to SA as compared to H9N2-99321 corroborating the greater substrate binding affinity. Changes in the surface charge, hydrophobicity, and contour, were observed in H9N2-1726265 NA due to the five substitutions. Thus, the novel combination of five amino acids near the sialic acid binding site of NA, resulted in altered surface characteristics, higher substrate binding affinity, and virus elution.
Collapse
Affiliation(s)
- Deeksha S Tare
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Shailesh D Pawar
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India.
| | - Pratip Shil
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| | - Nitin M Atre
- ICMR-National Institute of Virology, 130/1, Sus Road, Pashan, Pune, 411021, India
| |
Collapse
|
8
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. Retracted and republished from: "The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs". mBio 2024; 15:e0017524. [PMID: 38551343 PMCID: PMC11077966 DOI: 10.1128/mbio.00175-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the Food and Drug Administration are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. These recommended antivirals are currently effective for major subtypes of IVs as the compounds target conserved domains in neuraminidase or polymerase acidic (PA) protein. However, this trend may gradually change due to the selection of antiviral drugs and the natural evolution of IVs. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Department of High-Tech Development, Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Epidemic Prevention Laboratory, Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
9
|
Abdullahi M, Uzairu A, Shallangwa GA, Mamza PA, Ibrahim MT, Chandra A, Goel VK. In-silico molecular modelling studies of some camphor imine based compounds as anti-influenza A (H1N1) pdm09 virus agents. J Biomol Struct Dyn 2024; 42:2013-2033. [PMID: 37166274 DOI: 10.1080/07391102.2023.2209654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/09/2023] [Indexed: 05/12/2023]
Abstract
The advent of influenza A (H1N1) drug-resistant strains led to the search quest for more potent inhibitors of the influenza A virus, especially in this devastating COVID-19 pandemic era. Hence, the present research utilized some molecular modelling strategies to unveil new camphor imine-based compounds as anti-influenza A (H1N1) pdm09 agents. The 2D-QSAR results revealed GFA-MLR (R2train = 0.9158, Q2=0.8475) and GFA-ANN (R2train = 0.9264, Q2=0.9238) models for the anti-influenza A (H1N1) pdm09 activity prediction which have passed the QSAR model acceptability thresholds. The results from the 3D-QSAR studies also revealed CoMFA (R2train =0.977, Q2=0.509) and CoMSIA_S (R2train =0.976, Q2=0.527) models for activity predictions. Based on the notable information derived from the 2D-QSAR, 3D-QSAR, and docking analysis, ten (10) new camphor imine-based compounds (22a-22j) were designed using the most active compound 22 as the template. Furthermore, the high predicted activity and binding scores of compound 22j were further justified by the high reactive sites shown in the electrostatic potential maps and other quantum chemical calculations. The MD simulation of 22j in the active site of the influenza hemagglutinin (HA) receptor confirmed the dynamic stability of the complex. Moreover, the appraisals of drug-likeness and ADMET properties of the proposed compounds showed zero violation of Lipinski's criteria with good pharmacokinetic profiles. Hence, the outcomes in this work recommend further in-depth in vivo and in-vitro investigations to validate these theoretical findings.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mustapha Abdullahi
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
- Faculty of Sciences, Department of Pure and Applied Chemistry, Kaduna State University, Zaria, Kaduna State, Nigeria
| | - Adamu Uzairu
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Gideon Adamu Shallangwa
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Paul Andrew Mamza
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Muhammad Tukur Ibrahim
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, Zaria, Kaduna State, Nigeria
| | - Anshuman Chandra
- School of Physical Science, Jawaharlal Nehru University, New Delhi, Delhi, India
| | - Vijay Kumar Goel
- School of Physical Science, Jawaharlal Nehru University, New Delhi, Delhi, India
| |
Collapse
|
10
|
Chen X, Huang Y, Gao P, Wu F, Han Y, Zhang C, Hu Z, Zhao F, Shcherbakov DN, Pan W, Niu X, Li X, Liu S, Xu W. Engineering of novel hemagglutinin biosensors for rapid detection and drug screening of Influenza A H7N9 virus. Int J Biol Macromol 2024; 258:129126. [PMID: 38163504 DOI: 10.1016/j.ijbiomac.2023.129126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
New pathogenic influenza virus strains are constantly emerging, posing a serious risk to both human health and economic growth. To effectively control the spread of this virus, there is an urgent need for early, rapid, sensitive, simple, and cost-effective detection technologies, as well as new and effective antiviral drugs. In this study, we have successfully achieved a significant milestone by successfully fusing the H7N9 influenza virus hemagglutinin (HA) protein with the nano-luciferase component, resulting in the development of a novel set of biosensors. This remarkable achievement marks the first instance of utilizing this biosensor technology for influenza antibody detection. Our biosensor technology also has the potential to facilitate the development of antiviral drugs targeting specific epitopes of the HA protein, providing a promising avenue for the treatment of H7N9 influenza virus infections. Furthermore, our biosensors have broad applications beyond H7N9 influenza virus detection, as they can be expanded for the detection of other pathogens and drug screening applications in the future. By providing a novel and effective solution to the detection and treatment of influenza viruses, our biosensors have the potential to revolutionize the field of infectious disease control.
Collapse
Affiliation(s)
- Xin Chen
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yuan Huang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Peixuan Gao
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Fang Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yongyue Han
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chuwen Zhang
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Zhuowen Hu
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510070, China
| | - Fang Zhao
- National Clinical Research Centre for Infectious Diseases, the Third People's Hospital of Shenzhen and the Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen 518112, Guangdong Province, China
| | - Dmitry N Shcherbakov
- State Research Center of Virology and Biotechnology VECTOR, Koltsovo 630559, Russia; Department of Physical-Chemistry Biology and Biotechnology, Altai State University, Barnaul 656049, Russia
| | - Weiqi Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510120, China
| | - Xiaoyan Li
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong 510070, China.
| | - Shuwen Liu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; State Key Laboratory of Organ Failure Research, Guangdong Provincial Institute of Nephrology, Southern Medical University, Guangzhou 510515, China.
| | - Wei Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, China; Key Laboratory of Infectious Diseases Research in South China, Ministry of Education, Southern Medical University, Guangzhou, Guangdong 510515, China.
| |
Collapse
|
11
|
Li Y, Huo S, Yin Z, Tian Z, Huang F, Liu P, Liu Y, Yu F. The current state of research on influenza antiviral drug development: drugs in clinical trial and licensed drugs. mBio 2023; 14:e0127323. [PMID: 37610204 PMCID: PMC10653855 DOI: 10.1128/mbio.01273-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Influenza viruses (IVs) threaten global human health due to the high morbidity, infection, and mortality rates. Currently, the influenza drugs recommended by the FDA are oseltamivir, zanamivir, peramivir, and baloxavir marboxil. Notably, owing to the high variability of IVs, no drug exists that can effectively treat all types and subtypes of IVs. Moreover, the current trend of drug resistance is likely to continue as the viral genome is constantly mutating. Therefore, there is an urgent need to develop drugs related to the treatment of influenza to deal with the next pandemic. Here, we summarized the cutting-edge research in mechanism of action, inhibitory activity, and clinical efficacy of drugs that have been approved and drugs that are still in clinical trials for influenza treatment. We hope this review will provide up-to-date and comprehensive information on influenza antivirals and generate hypotheses for screens and development of new broad-spectrum influenza drugs in the near future.
Collapse
Affiliation(s)
- Yanbai Li
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Shanshan Huo
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zhe Yin
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Zuguang Tian
- Baoding City Science and Technology Bureau, Baoding, China
| | - Fang Huang
- Tongzhou District Center For Animal Disease Control and Prevention, Beijing, China
| | - Peng Liu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Yue Liu
- Department of Biochemistry and Biophysics, University of California, San Francisco, California, USA
| | - Fei Yu
- Hebei Key Laboratory of Analysis and Control of Zoonotic Pathogenic Microorganism, Hebei Wild Animal Health Center, College of Life Sciences, Hebei Agricultural University, Baoding, China
| |
Collapse
|
12
|
Kurt M, Ercan S, Pirinccioglu N. Designing new drug candidates as inhibitors against wild and mutant type neuraminidases: molecular docking, molecular dynamics and binding free energy calculations. J Biomol Struct Dyn 2023; 41:7847-7861. [PMID: 36152997 DOI: 10.1080/07391102.2022.2125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022]
Abstract
Influenza virus is the cause of the death of millions of people with about 3-4 pandemics every hundred years in history. It also turns into a seasonal disease, bringing about approximately 5-15% of the population to be infected and 290,000-650,000 people to die every year. These numbers reveal that it is necessary to be on the alert to work towards influenza in order to protect public health. There are FDA-approved antiviral drugs such as oseltamivir and zanamivir recommended by the World Center for Disease Prevention. However, after the recent outbreaks such as bird flu and swine flu, increasing studies have shown that the flu virus has gained resistance to these drugs. So, there is an urgent need to find new drugs effective against this virus. This study aims to investigate new drug candidates targeting neuraminidase (NA) for the treatment of influenza by using computer aided drug design approaches. They involve virtual scanning, de novo design, rational design, docking, MD, MMGB/PBSA. The investigation includes H1N1, H5N1, H2N2 and H3N2 neuraminidase proteins and their mutant variants possessing resistance to FDA-approved drugs. Virtual screening consists of approximately 30 thousand molecules while de novo and rational designs produced over a hundred molecules. These approaches produced three lead molecules with binding energies for both non-mutant (-34.84, -59.99 and -60.66 kcal/mol) and mutant (-40.40, -58.93, -76.19 kcal/mol) H2N2 NA calculated by MM-PBSA compared with those of oseltamivir -25.64 and -18.40 respectively. The results offer new drug candidates against influenza infection.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Murat Kurt
- Institute of Science, Dicle University, Diyarbakır, Turkey
| | - Selami Ercan
- Department of Chemistry, Batman University, Batman, Turkey
| | | |
Collapse
|
13
|
Ivachtchenko AV, Ivashchenko AA, Shkil DO, Ivashchenko IA. Aprotinin-Drug against Respiratory Diseases. Int J Mol Sci 2023; 24:11173. [PMID: 37446350 PMCID: PMC10342444 DOI: 10.3390/ijms241311173] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
Aprotinin (APR) was discovered in 1930. APR is an effective pan-protease inhibitor, a typical "magic shotgun". Until 2007, APR was widely used as an antithrombotic and anti-inflammatory drug in cardiac and noncardiac surgeries for reduction of bleeding and thus limiting the need for blood transfusion. The ability of APR to inhibit proteolytic activation of some viruses leads to its use as an antiviral drug for the prevention and treatment of acute respiratory virus infections. However, due to incompetent interpretation of several clinical trials followed by incredible controversy in the literature, the usage of APR was nearly stopped for a decade worldwide. In 2015-2020, after re-analysis of these clinical trials' data the restrictions in APR usage were lifted worldwide. This review discusses antiviral mechanisms of APR action and summarizes current knowledge and prospective regarding the use of APR treatment for diseases caused by RNA-containing viruses, including influenza and SARS-CoV-2 viruses, or as a part of combination antiviral treatment.
Collapse
Affiliation(s)
- Alexandre V. Ivachtchenko
- ChemDiv Inc., San Diego, CA 92130, USA; (A.A.I.); (I.A.I.)
- ASAVI LLC, 1835 East Hallandale Blvd #442, Hallandale Beach, FL 33009, USA;
| | | | - Dmitrii O. Shkil
- ASAVI LLC, 1835 East Hallandale Blvd #442, Hallandale Beach, FL 33009, USA;
| | | |
Collapse
|
14
|
Scior T, Cuanalo-Contreras K, Islas AA, Martinez-Laguna Y. Targeting the Human Influenza a Virus: The Methods, Limitations, and Pitfalls of Virtual Screening for Drug-like Candidates Including Scaffold Hopping and Compound Profiling. Viruses 2023; 15:v15051056. [PMID: 37243142 DOI: 10.3390/v15051056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, we describe the input data and processing steps to find antiviral lead compounds by a virtual screen. Two-dimensional and three-dimensional filters were designed based on the X-ray crystallographic structures of viral neuraminidase co-crystallized with substrate sialic acid, substrate-like DANA, and four inhibitors (oseltamivir, zanamivir, laninamivir, and peramivir). As a result, ligand-receptor interactions were modeled, and those necessary for binding were utilized as screen filters. Prospective virtual screening (VS) was carried out in a virtual chemical library of over half a million small organic substances. Orderly filtered moieties were investigated based on 2D- and 3D-predicted binding fingerprints disregarding the "rule-of-five" for drug likeness, and followed by docking and ADMET profiling. Two-dimensional and three-dimensional screening were supervised after enriching the dataset with known reference drugs and decoys. All 2D, 3D, and 4D procedures were calibrated before execution, and were then validated. Presently, two top-ranked substances underwent successful patent filing. In addition, the study demonstrates how to work around reported VS pitfalls in detail.
Collapse
Affiliation(s)
- Thomas Scior
- Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Colonia San Manuel, Puebla 72570, Mexico
| | - Karina Cuanalo-Contreras
- Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Colonia San Manuel, Puebla 72570, Mexico
| | - Angel A Islas
- Faculty of Chemical Sciences, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Colonia San Manuel, Puebla 72570, Mexico
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Ygnacio Martinez-Laguna
- Vicerrectoría de Investigación y Estudios de Posgrado, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| |
Collapse
|
15
|
Xie J, Tan P, Geng F, Shang Q, Qin S, Hao L. A practical and rapid screening method for influenza virus neuraminidase inhibitors based on fluorescence detection. ANAL SCI 2023; 39:547-556. [PMID: 36617368 PMCID: PMC9826620 DOI: 10.1007/s44211-023-00267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/29/2022] [Indexed: 01/09/2023]
Abstract
A new analytical method for rapid screening of influenza virus neuraminidase inhibitors was established. The method is based on the principle that, given a certain amount of neuraminidase, the sample and the neuraminidase act in the microplate for a period of time, and the active neuraminidase that is not inhibited by the sample can generate a fluorescence value at a specific wavelength after binding to the substrate, and the rate of inhibition of neuraminidase by the sample can be calculated based on the actual detected fluorescence value. This newly developed method was used to screen and evaluate the in vitro anti-neuraminidase activity of 39 high-purity compounds contained in three traditional Chinese herbal medicines, and finally 25 compounds with strong activity were obtained. The newly established neuraminidase inhibitor analytical method has these advantages of practicality, rapidity, high sensitivity and low cost, and has a good value for promotion and application. This article newly establishes a rapid, sensitive, simple and practical screening method for influenza virus neuraminidase inhibitors, which is a great complement to the existing methods and has a good promotion and application value.
Collapse
Affiliation(s)
- Junjie Xie
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Peng Tan
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China.
| | - Funeng Geng
- Sichuan Key Laboratory for Medicinal American Cockroach, Sichuan Good Doctor Panxi Pharmaceutical Co., Ltd., Chengdu, 610000, China
| | - Qiang Shang
- Sichuan Engineering Research Center of Antiviral Traditional Chinese Medicine Industrialization, Pengzhou, 611900, China
| | - Shanbo Qin
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Lu Hao
- Key Laboratory of Biological Evaluation of TCM Quality of State Administration of Traditional Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| |
Collapse
|
16
|
Prevalence and mechanisms of evolutionary contingency in human influenza H3N2 neuraminidase. Nat Commun 2022; 13:6443. [PMID: 36307418 PMCID: PMC9616408 DOI: 10.1038/s41467-022-34060-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/12/2022] [Indexed: 12/25/2022] Open
Abstract
Neuraminidase (NA) of human influenza H3N2 virus has evolved rapidly and been accumulating mutations for more than half-century. However, biophysical constraints that govern the evolutionary trajectories of NA remain largely elusive. Here, we show that among 70 natural mutations that are present in the NA of a recent human H3N2 strain, >10% are deleterious for an ancestral strain. By mapping the permissive mutations using combinatorial mutagenesis and next-generation sequencing, an extensive epistatic network is revealed. Biophysical and structural analyses further demonstrate that certain epistatic interactions can be explained by non-additive stability effect, which in turn modulates membrane trafficking and enzymatic activity of NA. Additionally, our results suggest that other biophysical mechanisms also contribute to epistasis in NA evolution. Overall, these findings not only provide mechanistic insights into the evolution of human influenza NA and elucidate its sequence-structure-function relationship, but also have important implications for the development of next-generation influenza vaccines.
Collapse
|
17
|
Structural and inhibitor sensitivity analysis of influenza B-like viral neuraminidases derived from Asiatic toad and spiny eel. Proc Natl Acad Sci U S A 2022; 119:e2210724119. [PMID: 36191180 PMCID: PMC9586306 DOI: 10.1073/pnas.2210724119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus neuraminidase (NA) is an important target for antiviral development because it plays a crucial role in releasing newly assembled viruses. Two unique influenza-like virus genomes were recently reported in the Wuhan Asiatic toad and Wuhan spiny eel. Their NA genes appear to be highly divergent from all known influenza NAs, raising key questions as to whether the Asiatic toad influenza-like virus NA (tNA) and spiny eel NA (eNA) have canonical NA activities and structures and whether they show sensitivity to NA inhibitors (NAIs). Here, we found that both tNA and eNA have neuraminidase activities. A detailed structural analysis revealed that tNA and eNA present similar overall structures to currently known NAs, with a conserved calcium binding site. Inhibition assays indicated that tNA is resistant to NAIs, while eNA is still sensitive to NAIs. E119 is conserved in canonical NAs. The P119E substitution in tNA can restore sensitivity to NAIs, and, in contrast, the E119P substitution in eNA decreased its sensitivity to NAIs. The structures of NA-inhibitor complexes further provide a detailed insight into NA-inhibitor interactions at the atomic level. Moreover, tNA and eNA have unique N-glycosylation sites compared with canonical NAs. Collectively, the structural features, NA activities, and sensitivities to NAIs suggest that fish- and amphibian-derived influenza-like viruses may circulate in these vertebrates. More attention should be paid to these influenza-like viruses because their NA molecules may play roles in the emergence of NAI resistance.
Collapse
|
18
|
Albeshri A, Baeshen NA, Bouback TA, Aljaddawi AA. Evaluation of cytotoxicity and antiviral activity of Rhazya stricta Decne leaves extract against influenza A/PR/8/34 (H1N1). Saudi J Biol Sci 2022; 29:103375. [PMID: 35935104 PMCID: PMC9352461 DOI: 10.1016/j.sjbs.2022.103375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/09/2022] [Accepted: 07/10/2022] [Indexed: 11/28/2022] Open
Abstract
Influenza viruses have developed resistance to the current classes of drugs, which means they could eventually become more virulent and cause more mortality and hospitalization. Our study aims to investigate the antiviral activity of Rhazya stricta Decne leaves extract in vitro and search for new promising drugs from R. stricta identified compounds in silico. The study was performed in vitro by utilizing Madin-Darby Canine Kidney cell line (MDCK) as a substrate for the influenza virus and estimating the inhibition performance of the plant leaves extract. Additionally, in silico screening was conducted to explore the antiviral activity of R. stricta phytochemicals. We investigated the cytotoxicity of R. stricta leaves extract and its antiviral activity against influenza virus (A/Puerto Rico/8/34 (H1N1)) using the MTT assay. The mode of action of the plant leaves extract during the viral life cycle was tested using time-of-addition assay. In silico analyses were performed, including molecular docking, drug-likeness analysis, and toxicity risk assessment, to state the leading compounds to be developed into an anti-influenza virus drug. The 50% cytotoxicity concentration of the leaves extract was CC50: 184.6 µg/mL, and the 50% inhibition concentration was CI50: 19.71 µg\mL. The time of addition assay revealed that R. stricta leaves extract exerted its activity in the late step of the influenza virus replication cycle. In comparison to Oseltamivir, the leading compounds showed better binding affinity and can be developed into oral drugs with low toxicity risk. Isolation and purification of the leading compounds and testing their antiviral activity in vitro and in vivo are required.
Collapse
|
19
|
Abdullahi M, Uzairu A, Shallangwa GA, Mamza PA, Ibrahim MT. Computational modelling studies of some 1,3-thiazine derivatives as anti-influenza inhibitors targeting H1N1 neuraminidase via 2D-QSAR, 3D-QSAR, molecular docking, and ADMET predictions. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:104. [PMID: 36000144 PMCID: PMC9389500 DOI: 10.1186/s43088-022-00280-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/27/2022] [Indexed: 12/19/2022] Open
Abstract
Abstract
Background
Influenza virus disease remains one of the most contagious diseases that aided the deaths of many patients, especially in this COVID-19 pandemic era. Recent discoveries have shown that the high prevalence of influenza and SARS-CoV-2 coinfection can rapidly increase the death rate of patients. Hence, it became necessary to search for more potent inhibitors for influenza disease therapy. The present study utilized some computational modeling concepts such as 2D-QSAR, 3D-QSAR, molecular docking simulation, and ADMET predictions of some 1,3-thiazine derivatives as inhibitors of influenza neuraminidase (NA).
Results
The 2D-QSAR modeling results showed GFA-MLR ($$R_{{\text{train }}}^{2}$$
R
train
2
= 0.9192, Q2 = 0.8767, R2adj = 0.8991, RMSE = 0.0959, $$R_{{{\text{test}}}}^{2}$$
R
test
2
= 0.8943, $$R_{{{\text{pred}}}}^{2}$$
R
pred
2
= 0.7745) and GFA-ANN ($$R_{{\text{train }}}^{2}$$
R
train
2
= 0.9227, Q2 = 0.9212, RMSE = 0.0940, $$R_{{{\text{test}}}}^{2}$$
R
test
2
= 0.8831, $$R_{{{\text{pred}}}}^{2}$$
R
pred
2
= 0.7763) models with the computed descriptors as ATS7s, SpMax5_Bhv, nHBint6, and TDB9m for predicting the NA inhibitory activities of compounds which have passed the global criteria of accepting QSAR model. The 3D-QSAR modeling was carried out based on the comparative molecular field analysis (CoMFA) and comparative similarity indices analysis (CoMSIA). The CoMFA_ES ($$R_{{\text{train }}}^{2}$$
R
train
2
= 0.9620, Q2 = 0.643) and CoMSIA_SED ($$R_{{\text{train }}}^{2}$$
R
train
2
= 0.8770, Q2 = 0.702) models were found to also have good and reliable predicting ability. The compounds were also virtually screened based on their binding scores via molecular docking simulations with the active site of the NA (H1N1) target receptor which also confirms their resilient potency. Four potential lead compounds (4, 7, 14, and 15) with the relatively high inhibitory rate (> 50%) and docking (> − 6.3 kcal/mol) scores were identified as the possible lead candidates for in silico exploration of improved anti-influenza agents.
Conclusion
The drug-likeness and ADMET predictions of the lead compounds revealed non-violation of Lipinski’s rule and good pharmacokinetic profiles as important guidelines for rational drug design. Hence, the outcome of this research set a course for the in silico design and exploration of novel NA inhibitors with improved potency.
Collapse
|
20
|
Abdullahi M, Uzairu A, Shallangwa GA, Mamza PA, Ibrahim MT. In-silico modelling studies of 5-benzyl-4-thiazolinone derivatives as influenza neuraminidase inhibitors via 2D-QSAR, 3D-QSAR, molecular docking, and ADMET predictions. Heliyon 2022; 8:e10101. [PMID: 36016519 PMCID: PMC9396554 DOI: 10.1016/j.heliyon.2022.e10101] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/22/2022] [Accepted: 07/26/2022] [Indexed: 01/12/2023] Open
Abstract
Influenza virus disease is one of the most infectious diseases responsible for many human deaths, and the high mutability of the virus causes drug resistance effects in recent times. As such, it became necessary to explore more inhibitors that could avert future influenza pandemics. The present research utilized some in-silico modelling concepts such as 2D-QSAR, 3D-QSAR, molecular docking simulation, and ADMET predictions on some 5-benzyl-4-thiazolinone derivatives as influenza neuraminidase (NA) inhibitors. The 2D-QSAR modelling results revealed GFA-MLR (R train 2 =0.8414, Q2 = 0.7680) and GFA-ANN (R train 2 =0.8754, Q2 = 0.8753) models with the most relevant descriptors (MATS3i, SpMax5_Bhe, minsOH and VE3_D) for predicting the inhibitory activities of the molecules which has passed the global criteria of accepting QSAR models. The results of the 3D-QSAR modelling results showed that CoMFA_ES (R train 2 =0.9030, Q2 = 0.5390) and CoMSIA_EA (R train 2 =0.880, Q2 = 0.547) models are having good predicting ability among other developed models. The molecules were virtually screened via molecular docking simulation with the active site of NA protein receptor (pH1N1) which confirms their resilient potency when compared with zanamivir standard drug. Molecule 11 as the most potent molecule formed more H-bond interactions with the key residues such as TRP178, ARG152, ARG292, ARG371, and TYR406 that triggered the catalytic reactions for NA inhibition. Furthermore, six (6) molecules (9, 10, 11, 17, 22, and 31) with relatively high inhibitory activities and docking scores were identified as the possible leads for in-silico exploration of novel NA inhibitors. The drug-likeness and ADMET predictions of the lead molecules revealed non-violation of Lipinski's rule and good pharmacokinetic profiles respectively, which are important guidelines for rational drug design. Hence, the outcome of this study overlaid a solid foundation for the in-silico design and exploration of novel NA inhibitors with improved potency.
Collapse
Affiliation(s)
- Mustapha Abdullahi
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
- Faculty of Sciences, Department of Pure and Applied Chemistry, Kaduna State University, Tafawa Balewa Way, Kaduna, Nigeria
| | - Adamu Uzairu
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Gideon Adamu Shallangwa
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Paul Andrew Mamza
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| | - Muhammad Tukur Ibrahim
- Faculty of Physical Sciences, Department of Chemistry, Ahmadu Bello University, P.M.B. 1044, Zaria, Kaduna State, Nigeria
| |
Collapse
|
21
|
Tian Z, Sun L, Chi B, Du Z, Zhang X, Liu Y, Zhou H. Affinity ultrafiltration and UPLC-HR-Orbitrap-MS based screening of neuraminidase inhibitors from Angelica pubescens. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1208:123398. [PMID: 35921697 DOI: 10.1016/j.jchromb.2022.123398] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 10/16/2022]
Abstract
Traditional Chinese medicine is a rich source of natural products and has a long history of use because of its remarkable clinical efficacy. In the present study, the chemical constitutes of Angelica pubescens were studied by ultra high performance liquid chromatography and high-resolution Orbitrap mass spectrometry (UPLC-HR-Orbitrap-MS). A total of 78 compounds were identified and the main composition were coumarins and phenolic acids. Then, the neuraminidase was incubated with extract of Angelica pubescens to screen the neuraminidase inhibitors by affinity ultrafiltration methods. As a result, 13 small molecules were discovered to interact with neuraminidase for the first time. In vitro neuraminidase inhibitory activity of the screened compounds and extract of Angelica pubescens was tested, and isochlorogenic acid C, isochlorogenic acid B, osthole, chlorogenic acid, xanthotoxin, phellopterin and imperatorin were proved to have this activity. In addition, molecular docking analysis was conducted to predict the potential docking position. This study may provide a reference for the medical substance basis in Angelica and the clinical usage of this drug.
Collapse
Affiliation(s)
- Zhenhua Tian
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Luping Sun
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Bingqing Chi
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhen Du
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Xiumei Zhang
- Department of Quality Management, Shandong Drug and Food Vocational College, Weihai 264210, China.
| | - Yuecheng Liu
- Institute of Traditional Chinese Medicine Analysis, Shandong Academy of Chinese Medicine, Jinan 250014, China.
| | - Honglei Zhou
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
22
|
Aberrant Cellular Glycosylation May Increase the Ability of Influenza Viruses to Escape Host Immune Responses through Modification of the Viral Glycome. mBio 2022; 13:e0298321. [PMID: 35285699 PMCID: PMC9040841 DOI: 10.1128/mbio.02983-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Individuals with metabolic dysregulation of cellular glycosylation often experience severe influenza disease, with a poor immune response to the virus and low vaccine efficacy. Here, we investigate the consequences of aberrant cellular glycosylation for the glycome and the biology of influenza virus. We transiently induced aberrant N-linked glycosylation in cultured cells with an oligosaccharyltransferase inhibitor, NGI-1. Cells treated with NGI-1 produced morphologically unaltered viable influenza virus with sequence-neutral glycosylation changes (primarily reduced site occupancy) in the hemagglutinin and neuraminidase proteins. Hemagglutinin with reduced glycan occupancy required a higher concentration of surfactant protein D (an important innate immunity respiratory tract collectin) for inhibition compared to that with normal glycan occupancy. Immunization of mice with NGI-1-treated virus significantly reduced antihemagglutinin and antineuraminidase titers of total serum antibody and reduced hemagglutinin protective antibody responses. Our data suggest that aberrant cellular glycosylation may increase the risk of severe influenza as a result of the increased ability of glycome-modified influenza viruses to evade the immune response.
Collapse
|
23
|
Abstract
The continuous emergence and reemergence of diverse subtypes of influenza A viruses, which are known as "HxNy" and are mediated through the reassortment of viral genomes, account for seasonal epidemics, occasional pandemics, and zoonotic outbreaks. We summarize and discuss the characteristics of historic human pandemic HxNy viruses and diverse subtypes of HxNy among wild birds, mammals, and live poultry markets. In addition, we summarize the key molecular features of emerging infectious HxNy influenza viruses from the perspectives of the receptor binding of Hx, the inhibitor-binding specificities and drug-resistance features of Ny, and the matching of the gene segments. Our work enhances our understanding of the potential threats of novel reassortant influenza viruses to public health and provides recommendations for effective prevention, control, and research of this pathogen.
Collapse
Affiliation(s)
- William J Liu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yan Wu
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Weifeng Shi
- Shandong First Medical University and Shandong Academy of Medical Sciences, Tai'an 271016, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - George F Gao
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), Beijing 102206, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences (CAS), Beijing 100101, China
| |
Collapse
|
24
|
Bifunctional Inhibitors of Influenza Virus Neuraminidase: Molecular Design of a Sulfonamide Linker. Int J Mol Sci 2021; 22:ijms222313112. [PMID: 34884917 PMCID: PMC8657994 DOI: 10.3390/ijms222313112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
The growing resistance of the influenza virus to widely used competitive neuraminidase inhibitors occupying the active site of the enzyme requires the development of bifunctional compounds that can simultaneously interact with other regulatory sites on the protein surface. When developing such an inhibitor and combining structural fragments that could be located in the sialic acid cavity of the active site and the adjacent 430-cavity, it is necessary to select a suitable linker not only for connecting the fragments, but also to ensure effective interactions with the unique arginine triad Arg118-Arg292-Arg371 of neuraminidase. Using molecular modeling, we have demonstrated the usefulness of the sulfonamide group in the linker design and the potential advantage of this functional group over other isosteric analogues.
Collapse
|
25
|
Luo S, Zhao X, Wang Y, Duan L. Theoretical investigating mechanisms of drug-resistance generated by mutation-induced changes in influenza viruses. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2110193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Xiaoyu Zhao
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Yihui Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
26
|
Molecular networking-based chemical profiling and anti-influenza viral and neuroprotective effects of Elaeocarpus hygrophilus Kurz. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01723-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Campbell AC, Tanner JJ, Krause KL. Optimisation of Neuraminidase Expression for Use in Drug Discovery by Using HEK293-6E Cells. Viruses 2021; 13:v13101893. [PMID: 34696326 PMCID: PMC8538103 DOI: 10.3390/v13101893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/11/2021] [Accepted: 09/14/2021] [Indexed: 12/02/2022] Open
Abstract
Influenza virus is a highly contagious virus that causes significant human mortality and morbidity annually. The most effective drugs for treating influenza are the neuraminidase inhibitors, but resistance to these inhibitors has emerged, and additional drug discovery research on neuraminidase and other targets is needed. Traditional methods of neuraminidase production from embryonated eggs are cumbersome, while insect cell derived protein is less reflective of neuraminidase produced during human infection. Herein we describe a method for producing neuraminidase from a human cell line, HEK293-6E, and demonstrate the method by producing the neuraminidase from the 1918 H1N1 pandemic influenza strain. This method produced high levels of soluble neuraminidase expression (>3000 EU/mL), was enhanced by including a secretion signal from a viral chemokine binding protein, and does not require co-expression of additional proteins. The neuraminidase produced was of sufficient quantity and purity to support high resolution crystal structure determination. The structure solved using this protein conformed to the previously reported structure. Notably the glycosylation at three asparagine residues was superior in quality to that from insect cell derived neuraminidase. This method of production of neuraminidase should prove useful in further studies, such as the characterisation of inhibitor binding.
Collapse
Affiliation(s)
- Ashley C. Campbell
- Department of Biochemistry, University of Otago, 710 Cumberland St., Dunedin 9016, New Zealand;
| | - John J. Tanner
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA;
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA
| | - Kurt L. Krause
- Department of Biochemistry, University of Otago, 710 Cumberland St., Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Correspondence:
| |
Collapse
|
28
|
Malbari K, Saha P, Chawla-Sarkar M, Dutta S, Rai S, Joshi M, Kanyalkar M. In quest of small-molecules as potent non-competitive inhibitors against influenza. Bioorg Chem 2021; 114:105139. [PMID: 34243071 DOI: 10.1016/j.bioorg.2021.105139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 05/14/2021] [Accepted: 06/28/2021] [Indexed: 12/19/2022]
Abstract
A series of scaffolds namely aurones, 3-indolinones, 4-quinolones and cinnamic acid-piperazine hybrids, was designed, synthesized and investigated in vitro against influenza A/H1N1pdm09 virus. Designed molecules adopted different binding mode i.e., in 430-cavity of neuraminidase, unlike sialic acid and oseltamivir in molecular docking studies. All molecules reduced the viral titer and exhibited non-cytotoxicity along with cryo-protective property towards MDCK cells. Molecules (Z)-2-(3'-Chloro-benzylidene)-1,2-dihydro-indol-3-one (2f), (Z)-2-(4'-Chloro-benzylidene)-1,2-dihydro-indol-3-one (2g) and 2-(2'-Methoxy-phenyl)-1H-quinolin-4-one (3a) were the most interesting molecules identified in this research, endowed with robust potencies showing low-nanomolar EC50 values of 4.0 nM, 6.7 nM and 4.9 nM, respectively, compared to reference competitive and non-competitive inhibitors: oseltamivir (EC50 = 12.7 nM) and quercetin (EC50 = 0.56 µM), respectively. Besides, 2f, 2g and 3a exhibited good neuraminidase inhibitory activity in sub-micromolar range (IC50 = 0.52 µM, 3.5 µM, 1.3 µM respectively). Moreover, these molecules were determined as non-competitive inhibitors similar to reference non-competitive inhibitor quercetin unlike reference competitive inhibitor oseltamivir in kinetics studies.
Collapse
Affiliation(s)
- Khushboo Malbari
- Department of Pharmaceutical Chemistry, Prin K M Kundnani College of Pharmacy, Cuffe Parade, Mumbai 400005, India
| | - Priyanka Saha
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Beleghata, Kolkata 700010, India
| | - Mamta Chawla-Sarkar
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Beleghata, Kolkata 700010, India
| | - Shanta Dutta
- Division of Virology, ICMR-National Institute of Cholera and Enteric Diseases (ICMR-NICED), Beleghata, Kolkata 700010, India
| | - Swita Rai
- Department of Pharmaceutical Chemistry, Prin K M Kundnani College of Pharmacy, Cuffe Parade, Mumbai 400005, India
| | - Mamata Joshi
- National Facility for High Field NMR, Tata Institute of Fundamental Research (TIFR), Colaba, Mumbai 400005, India
| | - Meena Kanyalkar
- Department of Pharmaceutical Chemistry, Prin K M Kundnani College of Pharmacy, Cuffe Parade, Mumbai 400005, India.
| |
Collapse
|
29
|
Zhao H, Jiang S, Ye Z, Zhu H, Hu B, Meng P, Hu Y, Zhang H, Wang K, Wang J, Tian Y. Discovery of hydrazide-containing oseltamivir analogues as potent inhibitors of influenza A neuraminidase. Eur J Med Chem 2021; 221:113567. [PMID: 34082224 DOI: 10.1016/j.ejmech.2021.113567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/16/2021] [Accepted: 05/17/2021] [Indexed: 01/13/2023]
Abstract
Neuraminidase (NA) inhibitors play a prime role in treating influenza. However, a variety of viruses containing mutant NAs have developed severe drug resistance towards NA inhibitors, so it is of crucial significance to solve this problem. Encouraged by urea-containing compound 12 disclosed by our lab, we designed a series of oseltamivir derivatives bearing hydrazide fragment for targeting the 150 cavity. Among the synthesized compounds, compound 17a showed 8.77-fold, 4.12-fold, 203-fold and 6.23-fold more potent activity than oseltamivir carboxylate against NAs from H5N1, H1N1, H5N1-H274Y, H1N1-H274Y, respectively. Meanwhile, the best compound 17a exhibited satisfactory metabolic stability in vitro. This study offers an important reference for the structural optimization of oseltamivir aiming at potent inhibition against H274Y mutant of NAs.
Collapse
Affiliation(s)
- Hongqian Zhao
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Siyuan Jiang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Zhifan Ye
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Hongxi Zhu
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Baichun Hu
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Peipei Meng
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China
| | - Yanmei Hu
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA
| | - Huicong Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Kuanglei Wang
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| | - Jun Wang
- Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, USA.
| | - Yongshou Tian
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang, 110016, PR China.
| |
Collapse
|
30
|
Karnchanapandh K, Hanpaibool C, Mahalapbutr P, Rungrotmongkol T. Source of oseltamivir resistance due to single E276D, R292K, and double E276D/R292K mutations in H10N4 influenza neuraminidase. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115294] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Mtambo SE, Amoako DG, Somboro AM, Agoni C, Lawal MM, Gumede NS, Khan RB, Kumalo HM. Influenza Viruses: Harnessing the Crucial Role of the M2 Ion-Channel and Neuraminidase toward Inhibitor Design. Molecules 2021; 26:880. [PMID: 33562349 PMCID: PMC7916051 DOI: 10.3390/molecules26040880] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/18/2022] Open
Abstract
As a member of the Orthomyxoviridae family of viruses, influenza viruses (IVs) are known causative agents of respiratory infection in vertebrates. They remain a major global threat responsible for the most virulent diseases and global pandemics in humans. The virulence of IVs and the consequential high morbidity and mortality of IV infections are primarily attributed to the high mutation rates in the IVs' genome coupled with the numerous genomic segments, which give rise to antiviral resistant and vaccine evading strains. Current therapeutic options include vaccines and small molecule inhibitors, which therapeutically target various catalytic processes in IVs. However, the periodic emergence of new IV strains necessitates the continuous development of novel anti-influenza therapeutic options. The crux of this review highlights the recent studies on the biology of influenza viruses, focusing on the structure, function, and mechanism of action of the M2 channel and neuraminidase as therapeutic targets. We further provide an update on the development of new M2 channel and neuraminidase inhibitors as an alternative to existing anti-influenza therapy. We conclude by highlighting therapeutic strategies that could be explored further towards the design of novel anti-influenza inhibitors with the ability to inhibit resistant strains.
Collapse
Affiliation(s)
- Sphamadla E. Mtambo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Daniel G. Amoako
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Anou M. Somboro
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
- Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Clement Agoni
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Monsurat M. Lawal
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Nelisiwe S. Gumede
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Rene B. Khan
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| | - Hezekiel M. Kumalo
- Drug Research and Innovation Unit, Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban 4000, South Africa; (S.E.M.); (A.M.S.); (C.A.); (M.M.L.); (N.S.G.); (R.B.K.)
| |
Collapse
|
32
|
Jeong JH, Choi WS, Antigua KJC, Choi YK, Govorkova EA, Webby RJ, Baek YH, Song MS. In Vitro Profiling of Laninamivir-Resistant Substitutions in N3 to N9 Avian Influenza Virus Neuraminidase Subtypes and Their Association with In Vivo Susceptibility. J Virol 2020; 95:e01679-20. [PMID: 33055248 PMCID: PMC7737746 DOI: 10.1128/jvi.01679-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/05/2020] [Indexed: 11/20/2022] Open
Abstract
Laninamivir (LAN) is a long-acting neuraminidase (NA) inhibitor (NAI) with a similar binding profile in the influenza NA enzyme active site as those of other NAIs, oseltamivir (OS), zanamivir (ZAN), and peramivir, and may share common resistance markers with these NAIs. We screened viruses with NA substitutions previously found during OS and ZAN selection in avian influenza viruses (AIVs) of the N3 to N9 subtypes for LAN susceptibility. Of the 72 NA substitutions, 19 conferred resistance to LAN, which ranged from 11.2- to 549.8-fold-decreased inhibitory activity over that of their parental viruses. Ten NA substitutions reduced the susceptibility to all four NAIs, whereas the remaining 26 substitutions yielded susceptibility to one or more NAIs. To determine whether the in vitro susceptibility of multi-NAI-resistant AIVs is associated with in vivo susceptibility, we infected BALB/c mice with recombinant AIVs with R292K (ma81K-N3R292K) or Q136K (ma81K-N8Q136K) NA substitutions, which impart in vitro susceptibility only to LAN or OS, respectively. Both ma81K-N3R292K and ma81K-N8Q136K virus-infected mice exhibited reduced weight loss, mortality, and lung viral titers when treated with their susceptible NAIs, confirming the in vitro susceptibility of these substitutions. Together, LAN resistance profiling of AIVs of a range of NA subtypes improves the understanding of NAI resistance mechanisms. Furthermore, the association of in vitro and in vivo NAI susceptibility indicates that our models are useful tools for monitoring NAI susceptibility of AIVs.IMPORTANCE The chemical structures of neuraminidase inhibitors (NAIs) possess similarities, but slight differences can result in variable susceptibility of avian influenza viruses (AIVs) carrying resistance-associated NA substitutions. Therefore, comprehensive susceptibility profiling of these substitutions in AIVs is critical for understanding the mechanism of antiviral resistance. In this study, we profiled resistance to the anti-influenza drug laninamivir in AIVs with substitutions known to impart resistance to other NAIs. We found 10 substitutions that conferred resistance to all four NAIs tested. On the other hand, we found that the remaining 26 NA substitutions were susceptible to at least one or more NAIs and showed for a small selection that in vitro data predicted in vivo behavior. Therefore, our findings highlight the usefulness of screening resistance markers in NA enzyme inhibition assays and animal models of AIV infections.
Collapse
Affiliation(s)
- Ju Hwan Jeong
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Won-Suk Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Khristine Joy C Antigua
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Young Ki Choi
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Elena A Govorkova
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Yun Hee Baek
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| | - Min-Suk Song
- Department of Microbiology, Chungbuk National University College of Medicine and Medical Research Institute, Cheongju, Republic of Korea
| |
Collapse
|
33
|
A universal dual mechanism immunotherapy for the treatment of influenza virus infections. Nat Commun 2020; 11:5597. [PMID: 33154358 PMCID: PMC7645797 DOI: 10.1038/s41467-020-19386-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 09/30/2020] [Indexed: 02/07/2023] Open
Abstract
Seasonal influenza epidemics lead to 3–5 million severe infections and 290,000–650,000 annual global deaths. With deaths from the 1918 influenza pandemic estimated at >50,000,000 and future pandemics anticipated, the need for a potent influenza treatment is critical. In this study, we design and synthesize a bifunctional small molecule by conjugating the neuraminidase inhibitor, zanamivir, with the highly immunogenic hapten, dinitrophenyl (DNP), which specifically targets the surface of free virus and viral-infected cells. We show that this leads to simultaneous inhibition of virus release, and immune-mediated elimination of both free virus and virus-infected cells. Intranasal or intraperitoneal administration of a single dose of drug to mice infected with 100x MLD50 virus is shown to eradicate advanced infections from representative strains of both influenza A and B viruses. Since treatments of severe infections remain effective up to three days post lethal inoculation, our approach may successfully treat infections refractory to current therapies. In this study, the authors combine an anti-viral drug and immune system inducer to treat influenza A and B viral infections in vitro and in vivo. They show that the compound outperforms zanamivir alone as it is still able to clear infection three days post infection, and it can be administered via different routes without reduced efficacy.
Collapse
|
34
|
Tan Q, Duan L, Ma Y, Wu F, Huang Q, Mao K, Xiao W, Xia H, Zhang S, Zhou E, Ma P, Song S, Li Y, Zhao Z, Sun Y, Li Z, Geng W, Yin Z, Jin Y. Is oseltamivir suitable for fighting against COVID-19: In silico assessment, in vitro and retrospective study. Bioorg Chem 2020; 104:104257. [PMID: 32927129 PMCID: PMC7463036 DOI: 10.1016/j.bioorg.2020.104257] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/27/2020] [Accepted: 08/30/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Oseltamivir is a first-line antiviral drug, especially in primary hospitals. During the ongoing outbreak of coronavirus disease 2019 (COVID-19), most patients with COVID-19 who are symptomatic have used oseltamivir. Considering its popular and important role as an antiviral drug, it is necessary to evaluate oseltamivir in the treatment of COVID-19. OBJECTIVE To evaluate the effect of oseltamivir against COVID-19. METHODS Swiss-model was used to construct the structure of the N-terminal RNA-binding domain (NRBD) of the nucleoprotein (NC), papain-like protease (PLpro), and RNA-directed RNA polymerase (RdRp) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). TM-align program was performed to compare the structure of the viral proteins with the structure of the neuraminidase of influenza A. Molecular docking was used to analyze the theoretical possibility of effective binding of oseltamivir with the active centers of the viral proteins. In vitro study was used to evaluate the antiviral efficiency of oseltamivir against SARS-CoV-2. By clinical case analysis, we statistically evaluated whether the history of oseltamivir use influenced the progression of the disease. RESULTS The structures of NRBD, PLpro, and RdRp were built successfully. The results from TM-align suggested that the S protein, NRBD, 3C-like protease (3CLpro), PLPrO, and RdRp were structurally similar to the influenza A neuraminidase, with TM-scores of 0.30077, 0.19254, 0.28766, 0.30666, and 0.34047, respectively. Interestingly, the active center of 3CL pro was found to be similar to the active center from the neuraminidase of influenza A. Through an analysis of molecular docking, we discovered that oseltamivir carboxylic acid was more favorable to bind to the active site of 3CLpro effectively, but its inhibitory effect was not strong compared with the positive group. Finally, we used in vitro study and retrospective case analysis to verify our speculations. We found that oseltamivir is ineffective against SARS-CoV-2 in vitro study and the clinical use of oseltamivir did not improve the patients' symptoms and signs and did not slow the disease progression. CONCLUSIONS We consider that oseltamivir isn't suitable for the treatment of COVID-19. During the outbreak of novel coronavirus, when oseltamivir is not effective for the patients after they take it, health workers should be highly vigilant about the possibility of COVID-19.
Collapse
Affiliation(s)
- Qi Tan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Limin Duan
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - YanLing Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Huang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kaimin Mao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjing Xiao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui Xia
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shujing Zhang
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - E Zhou
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pei Ma
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Siwei Song
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - YuMei Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zilin Zhao
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yice Sun
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zeyu Li
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Geng
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zengrong Yin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yang Jin
- Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Pulmonary Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
35
|
Wang HX, Zeng MS, Ye Y, Liu JY, Xu PP. Antiviral activity of puerarin as potent inhibitor of influenza virus neuraminidase. Phytother Res 2020; 35:324-336. [PMID: 32757226 DOI: 10.1002/ptr.6803] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 12/11/2022]
Abstract
Puerarin is a major isofiavone compound isolated from the root of Pueraria lobata. It was reported that puerarin had antioxidant, antiinflammatory, antitumor, cholesterol lowering, liver protective, and neuroprotective properties. However, few studies have explored the antiviral effect of puerarin and its target mechanism related to influenza virus. Here, the antiinfluenza activity of puerarin in vitro and in vivo and its mode of action on the potential inhibition of neuraminidase (NA) were investigated. Puerarin displayed an inhibitory effect on A/FM/1/1947(H1N1) (EC50 = 52.06 μM). An indirect immunofluorescence assay indicated that puerarin blocked the nuclear export of viral NP. The inhibition of NA activity confirmed that puerarin can block the release of newly formed virus particles from infected cells. Puerarin (100 and 200 mg/kg/d) exhibited effective antiviral activity in mice, conferring 50% and 70% protection from death against H1N1, reducing virus titers, and effectively alleviating inflammation in the lungs. The molecular docking results showed that puerarin had a strong binding affinity with NA from H1N1. The results of the molecular dynamics simulation revealed that puerarin had higher stable binding at the 150-loop region of the NA protein. These results demonstrated that puerarin acts as a NA blocker to inhibit influenza A virus both in cellular and animal models. Thus, puerarin has potential utility for the treatment of the influenza virus infection.
Collapse
Affiliation(s)
- Hui-Xian Wang
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mao-Sen Zeng
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yi Ye
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jin-Yuan Liu
- Basic Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pei-Ping Xu
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
36
|
Laninamivir-Interferon Lambda 1 Combination Treatment Promotes Resistance by Influenza A Virus More Rapidly than Laninamivir Alone. Antimicrob Agents Chemother 2020; 64:AAC.00301-20. [PMID: 32393488 DOI: 10.1128/aac.00301-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/30/2020] [Indexed: 12/18/2022] Open
Abstract
Each year, 5% to 20% of the population of the United States becomes infected with influenza A virus. Combination therapy with two or more antiviral agents has been considered a potential treatment option for influenza virus infection. However, the clinical results derived from combination treatment with two or more antiviral drugs have been variable. We examined the effectiveness of cotreatment with two distinct classes of anti-influenza drugs, i.e., neuraminidase (NA) inhibitor, laninamivir, and interferon lambda 1 (IFN-λ1), against the emergence of drug-resistant virus variants in vitro We serially passaged pandemic A/California/04/09 [A(H1N1)pdm09] influenza virus in a human lung epithelial cell line (Calu-3) in the presence or absence of increasing concentrations of laninamivir or laninamivir plus IFN-λ1. Surprisingly, laninamivir used in combination with IFN-λ1 promoted the emergence of the E119G NA mutation five passages earlier than laninamivir alone (passage 2 versus passage 7, respectively). Acquisition of this mutation resulted in significantly reduced sensitivity to the NA inhibitors laninamivir (∼284-fold) and zanamivir (∼1,024-fold) and decreased NA enzyme catalytic activity (∼5-fold) compared to the parental virus. Moreover, the E119G NA mutation emerged together with concomitant hemagglutinin (HA) mutations (T197A and D222G), which were selected more rapidly by combination treatment with laninamivir plus IFN-λ1 (passages 2 and 3, respectively) than by laninamivir alone (passage 10). Our results show that treatment with laninamivir alone or in combination with IFN-λ1 can lead to the emergence of drug-resistant influenza virus variants. The addition of IFN-λ1 in combination with laninamivir may promote acquisition of drug resistance more rapidly than treatment with laninamivir alone.
Collapse
|
37
|
Antiviral Activities of Compounds Isolated from Pinus densiflora (Pine Tree) against the Influenza A Virus. Biomolecules 2020; 10:biom10050711. [PMID: 32375402 PMCID: PMC7278015 DOI: 10.3390/biom10050711] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Pinus densiflora was screened in an ongoing project to discover anti-influenza candidates from natural products. An extensive phytochemical investigation provided 26 compounds, including two new megastigmane glycosides (1 and 2), 21 diterpenoids (3–23), and three flavonoids (24–26). The chemical structures were elucidated by a series of chemical reactions, including modified Mosher’s analysis and various spectroscopic measurements such as LC/MS and 1D- and 2D-NMR. The anti-influenza A activities of all isolates were screened by cytopathic effect (CPE) inhibition assays and neuraminidase (NA) inhibition assays. Ten candidates were selected, and detailed mechanistic studies were performed by various assays, such as Western blot, immunofluorescence, real-time PCR and flow cytometry. Compound 5 exerted its antiviral activity not by direct neutralizing virion surface proteins, such as HA, but by inhibiting the expression of viral mRNA. In contrast, compound 24 showed NA inhibitory activity in a noncompetitive manner with little effect on viral mRNA expression. Interestingly, both compounds 5 and 24 were shown to inhibit nitric oxide (NO) production and inducible nitric oxide synthase (iNOS) expression in a dose-dependent manner. Taken together, these results provide not only the chemical profiling of P. densiflora but also anti-influenza A candidates.
Collapse
|
38
|
Improvement in predicting drug sensitivity changes associated with protein mutations using a molecular dynamics based alchemical mutation method. Sci Rep 2020; 10:2161. [PMID: 32034220 PMCID: PMC7005789 DOI: 10.1038/s41598-020-58877-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/20/2020] [Indexed: 12/27/2022] Open
Abstract
While molecular-targeted drugs have demonstrated strong therapeutic efficacy against diverse diseases such as cancer and infection, the appearance of drug resistance associated with genetic variations in individual patients or pathogens has severely limited their clinical efficacy. Therefore, precision medicine approaches based on the personal genomic background provide promising strategies to enhance the effectiveness of molecular-targeted therapies. However, identifying drug resistance mutations in individuals by combining DNA sequencing and in vitro analyses is generally time consuming and costly. In contrast, in silico computation of protein-drug binding free energies allows for the rapid prediction of drug sensitivity changes associated with specific genetic mutations. Although conventional alchemical free energy computation methods have been used to quantify mutation-induced drug sensitivity changes in some protein targets, these methods are often adversely affected by free energy convergence. In this paper, we demonstrate significant improvements in prediction performance and free energy convergence by employing an alchemical mutation protocol, MutationFEP, which directly estimates binding free energy differences associated with protein mutations in three types of a protein and drug system. The superior performance of MutationFEP appears to be attributable to its more-moderate perturbation scheme. Therefore, this study provides a deeper level of insight into computer-assisted precision medicine.
Collapse
|
39
|
Computational analysis of drug like candidates against Neuraminidase of Human Influenza A virus subtypes. INFORMATICS IN MEDICINE UNLOCKED 2020. [DOI: 10.1016/j.imu.2019.100284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
40
|
Chen J, Feng S, Xu Y, Huang X, Zhang J, Chen J, An X, Zhang Y, Ning X. Discovery and characterization of a novel peptide inhibitor against influenza neuraminidase. RSC Med Chem 2020; 11:148-154. [PMID: 33479615 PMCID: PMC7433756 DOI: 10.1039/c9md00473d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/13/2019] [Indexed: 01/11/2023] Open
Abstract
Neuraminidase, an abundant glycoprotein on the influenza virus surface, plays crucial roles in virus replication. Targeting neuraminidase could be a splendid way for the prevention of the spread of influenza infections. Herein, we have identified an octapeptide (errKPAQP) from a synthesized peptide library, originating from mimicking the binding pocket of oseltamivir in neuraminidase, as a potent peptide neuraminidase inhibitor. The docking-based virtual studies showed that errKPAQP exhibited a strong binding affinity (a docking score of -20.03) and nanomolar affinity (11 nM) to influenza neuraminidase, and can inhibit neuraminidase activity at a concentration as low as 4.25 μM, leading to effective protection of MDCK cells from influenza virus-induced death and replication. Furthermore, errKPAQP presented low hemolytic activity, minimal cytotoxicity, and good pharmacokinetic characteristics, which are imperative for an anti-influenza drug. Importantly, errKPAQP was capable of reducing influenza virus-induced inflammation, the serious damage to the lung tissues, and mortality rates in infected mice, indicating that it could protect against the lethal challenge of influenza viruses in vivo. Therefore, we have developed a novel neuraminidase peptide inhibitor with advantageous biological properties and high inhibitory activity towards neuraminidase, and it can serve as a promising anti-influenza drug.
Collapse
Affiliation(s)
- Jianmei Chen
- Department of Biomedical Engineering , Nanjing National Laboratory of Microstructures , College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China . ;
- Chemistry and Biomedicine Innovation Center , Nanjing University , China
| | - Shujun Feng
- Department of Biomedical Engineering , Nanjing National Laboratory of Microstructures , College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China . ;
- Chemistry and Biomedicine Innovation Center , Nanjing University , China
| | - Yurui Xu
- Department of Biomedical Engineering , Nanjing National Laboratory of Microstructures , College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China . ;
- Chemistry and Biomedicine Innovation Center , Nanjing University , China
| | - Xinyu Huang
- Department of Biomedical Engineering , Nanjing National Laboratory of Microstructures , College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China . ;
- Chemistry and Biomedicine Innovation Center , Nanjing University , China
| | - Jikang Zhang
- Department of Biomedical Engineering , Nanjing National Laboratory of Microstructures , College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China . ;
- Chemistry and Biomedicine Innovation Center , Nanjing University , China
| | - Jiao Chen
- Jiangsu Province Academy of Traditional Chinese Medicine , Nanjing , Jiangsu 210028 , China
| | - Xueying An
- State Key Laboratory of Pharmaceutical Biotechnology , Department of Sports Medicine and Adult Reconstructive Surgery , Nanjing Drum Tower Hospital , The Affiliated Hospital of Nanjing University Medical School , 321 Zhongshan Road , Nanjing 210008 , Jiangsu , PR China
| | - Yu Zhang
- Department of Biomedical Engineering , Nanjing National Laboratory of Microstructures , College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China . ;
- Chemistry and Biomedicine Innovation Center , Nanjing University , China
| | - Xinghai Ning
- Department of Biomedical Engineering , Nanjing National Laboratory of Microstructures , College of Engineering and Applied Sciences , Nanjing University , Nanjing , Jiangsu 210093 , China . ;
- Chemistry and Biomedicine Innovation Center , Nanjing University , China
| |
Collapse
|
41
|
Fluorescent sialic derivatives for the specific detection of influenza viruses. Bioorg Med Chem Lett 2019; 29:126773. [DOI: 10.1016/j.bmcl.2019.126773] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/19/2019] [Accepted: 10/19/2019] [Indexed: 12/20/2022]
|
42
|
Source of oseltamivir resistance due to single E119D and double E119D/H274Y mutations in pdm09H1N1 influenza neuraminidase. J Comput Aided Mol Des 2019; 34:27-37. [PMID: 31773463 DOI: 10.1007/s10822-019-00251-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 11/09/2019] [Indexed: 12/24/2022]
Abstract
Influenza epidemics are responsible for an average of 3-5 millions of severe cases and up to 500,000 deaths around the world. One of flu pandemic types is influenza A(H1N1)pdm09 virus (pdm09H1N1). Oseltamivir is the antiviral drug used to treat influenza targeting at neuraminidase (NA) located on the viral surface. Influenza virus undergoes high mutation rates and leads to drug resistance, and thus the development of more efficient drugs is required. In the present study, all-atom molecular dynamics simulations were applied to understand the oseltamivir resistance caused by the single E119D and double E119D/H274Y mutations on NA. The obtained results in terms of binding free energy and intermolecular interactions in the ligand-protein interface showed that the oseltamivir could not be well accommodated in the binding pocket of both NA mutants and the 150-loop moves out from oseltamivir as an "open" state. A greater number of water molecules accessible to the binding pocket could disrupt the oseltamivir binding with NA target as seen be high mobility of oseltamivir at the active site. Additionally, our finding could guide to the design and development of novel NA inhibitor drugs.
Collapse
|
43
|
Rohini K, Ramanathan K, Shanthi V. Multi-Dimensional Screening Strategy for Drug Repurposing with Statistical Framework—A New Road to Influenza Drug discovery. Cell Biochem Biophys 2019; 77:319-333. [DOI: 10.1007/s12013-019-00887-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 09/16/2019] [Indexed: 12/17/2022]
|
44
|
Extending the Stalk Enhances Immunogenicity of the Influenza Virus Neuraminidase. J Virol 2019; 93:JVI.00840-19. [PMID: 31375573 DOI: 10.1128/jvi.00840-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 06/28/2019] [Indexed: 12/17/2022] Open
Abstract
Influenza viruses express two surface glycoproteins, the hemagglutinin (HA) and the neuraminidase (NA). Anti-NA antibodies protect from lethal influenza virus challenge in the mouse model and correlate inversely with virus shedding and symptoms in humans. Consequently, the NA is a promising target for influenza virus vaccine design. Current seasonal vaccines, however, poorly induce anti-NA antibodies, partly because of the immunodominance of the HA over the NA when the two glycoproteins are closely associated. To address this issue, here we investigated whether extending the stalk domain of the NA could render it more immunogenic on virus particles. Two recombinant influenza viruses based on the H1N1 strain A/Puerto Rico/8/1934 (PR8) were rescued with NA stalk domains extended by 15 or 30 amino acids. Formalin-inactivated viruses expressing wild-type NA or the stalk-extended NA variants were used to vaccinate mice. The virus with the 30-amino-acid stalk extension induced significantly higher anti-NA IgG responses (characterized by increased in vitro antibody-dependent cellular cytotoxicity [ADCC] activity) than the wild-type PR8 virus, while anti-HA IgG levels were unaffected. Similarly, extending the stalk domain of the NA of a recent H3N2 virus enhanced the induction of anti-NA IgGs in mice. On the basis of these results, we hypothesize that the subdominance of the NA can be modulated if the protein is modified such that its height surpasses that of the HA on the viral membrane. Extending the stalk domain of NA may help to enhance its immunogenicity in influenza virus vaccines without compromising antibody responses to HA.IMPORTANCE The efficacy of influenza virus vaccines could be improved by enhancing the immunogenicity of the NA protein. One of the reasons for its poor immunogenicity is the immunodominance of the HA over the NA in many seasonal influenza virus vaccines. Here we demonstrate that, in the mouse model, extending the stalk domain of the NA protein can enhance its immunogenicity on virus particles and overcome the immunodominance of the HA without affecting antibody responses to the HA. The antibody repertoire is broadened by the extended NA and includes additional ADCC-active antibodies. Our findings may assist in the efforts toward more effective influenza virus vaccines.
Collapse
|
45
|
Choi JG, Kim YS, Kim JH, Chung HS. Antiviral activity of ethanol extract of Geranii Herba and its components against influenza viruses via neuraminidase inhibition. Sci Rep 2019; 9:12132. [PMID: 31431635 PMCID: PMC6702199 DOI: 10.1038/s41598-019-48430-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/31/2019] [Indexed: 11/09/2022] Open
Abstract
Influenza viruses are a serious threat to human health, causing numerous deaths and pandemics worldwide. To date, neuraminidase (NA) inhibitors have primarily been used to treat influenza. However, there is a growing need for novel NA inhibitors owing to the emergence of resistant viruses. Geranii Herba (Geranium thunbergii Siebold et Zuccarini), which is edible, has long been used in a variety of disease treatments in Asia. Although recent studies have reported its various pharmacological activities, the effect of Geranii Herba and its components on influenza viruses has not yet been reported. In this study, Geranii Herba ethanol extract (GHE) and its component geraniin showed high antiviral activity against influenza A strain as well as influenza B strain, against which oseltamivir has less efficacy than influenza A strain, by inhibiting NA activity following viral infection in Madin–Darby canine kidney cells. Thus, GHE and its components may be useful for the development of anti-influenza drugs.
Collapse
Affiliation(s)
- Jang-Gi Choi
- Korea Institute of Oriental Medicine (KIOM), Korean Medicine (KM) Application Center, Daegu, 41062, Republic of Korea
| | - Young Soo Kim
- Korea Institute of Oriental Medicine (KIOM), Korean Medicine (KM) Application Center, Daegu, 41062, Republic of Korea
| | - Ji Hye Kim
- Korea Institute of Oriental Medicine (KIOM), Korean Medicine (KM) Application Center, Daegu, 41062, Republic of Korea
| | - Hwan-Suck Chung
- Korea Institute of Oriental Medicine (KIOM), Korean Medicine (KM) Application Center, Daegu, 41062, Republic of Korea.
| |
Collapse
|
46
|
Xiao Y, Park JK, Williams S, Ramuta M, Cervantes-Medina A, Bristol T, Smith S, Czajkowski L, Han A, Kash JC, Memoli MJ, Taubenberger JK. Deep sequencing of 2009 influenza A/H1N1 virus isolated from volunteer human challenge study participants and natural infections. Virology 2019; 534:96-107. [PMID: 31226666 PMCID: PMC6652224 DOI: 10.1016/j.virol.2019.06.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 06/05/2019] [Accepted: 06/06/2019] [Indexed: 10/26/2022]
Abstract
Nasal wash samples from 15 human volunteers challenged with GMP manufactured influenza A/California/04/2009(H1N1) and from 5 naturally infected influenza patients of the 2009 pandemic were deep sequenced using viral targeted hybridization enrichment. Ten single nucleotide polymorphism (SNP) positions were found in the challenge virus. Some of the nonsynonymous changes in the inoculant virus were maintained in some challenge participants, but not in others, indicating that virus is evolving away from the Vero cell adapted inoculant, for example SNPs in the neuraminidase. Many SNP sites in challenge patients and naturally infected patients were found, many not identified previously. The SNPs identified, and phylogenetic analyses, showed that intrahost evolution of the virus are different in challenge participants and naturally infected patients. This study, using hybridization enrichment without PCR, provided an accurate and unbiased assessment of differential intrahost viral evolution from a uniform influenza inoculant in humans and comparison to naturally infected patients.
Collapse
Affiliation(s)
- Yongli Xiao
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Jae-Keun Park
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stephanie Williams
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mitchell Ramuta
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Adriana Cervantes-Medina
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tyler Bristol
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sarah Smith
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lindsay Czajkowski
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alison Han
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Matthew J Memoli
- Clinical Studies Unit, Laboratory if Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Bassetti M, Castaldo N, Carnelutti A. Neuraminidase inhibitors as a strategy for influenza treatment: pros, cons and future perspectives. Expert Opin Pharmacother 2019; 20:1711-1718. [PMID: 31169040 DOI: 10.1080/14656566.2019.1626824] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Introduction: Influenza represents a major public health threat worldwide. Implementation of good personal health and hygiene habits, together with vaccination, is the most effective tools to reduce influenza burden both in community and in healthcare setting. However, achieving adequate vaccination rates is challenging, and vaccination does not always guarantee complete protection. Neuraminidase inhibitors represent an important measure to reduce the risk of influenza-related complications among high-risk patients developing influenza infection. Areas covered: Neuraminidase inhibitors have been proven to be safe and effective in reducing influenza severity, duration of symptoms, hospitalizations, and influenza-related-mortality. Here the authors review the available data on neuraminidase inhibitors, including the mechanism of action, pharmacokinetics, efficacy, safety and current indications for their use in clinical practice. Expert opinion: Although vaccination is the most effective tool to reduce influenza-associated morbidity and mortality, neuraminidase inhibitors represent an important option for the treatment of patients with influenza infection, particularly in high-risk categories. Moreover, antivirals play an important role in influenza prevention and prophylaxis in selected settings.
Collapse
Affiliation(s)
- Matteo Bassetti
- Infectious Diseases Clinic, Department of Medicine University of Udine and Azienda Sanitaria Universitaria Integrata di Udine , Udine , Italy
| | - Nadia Castaldo
- Infectious Diseases Clinic, Department of Medicine University of Udine and Azienda Sanitaria Universitaria Integrata di Udine , Udine , Italy
| | - Alessia Carnelutti
- Infectious Diseases Clinic, Department of Medicine University of Udine and Azienda Sanitaria Universitaria Integrata di Udine , Udine , Italy
| |
Collapse
|
48
|
Structure-aided drug development of potential neuraminidase inhibitors against pandemic H1N1 exploring alternate binding mechanism. Mol Divers 2019; 23:927-951. [DOI: 10.1007/s11030-019-09919-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/14/2019] [Indexed: 01/10/2023]
|
49
|
Bello M. Impact of tetramerization on the ligand recognition of N1 influenza neuraminidase via MMGBSA approach. Biopolymers 2018; 110:e23251. [PMID: 30589081 DOI: 10.1002/bip.23251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 11/09/2022]
Abstract
Influenza virus neuraminidase (NA) is a homotetrameric surface protein that, in contrast to other non-influenza NAs, requires a quaternary assembly to exhibit enzymatic activity, suggesting that the oligomeric state significantly impacts the active site of influenza NA. Nevertheless, most structure-based drug design studies have been reported by employing the monomeric state in the closed or open-loop due to the computational cost of employing the tetrameric NA. In this work, we present MD simulations coupled to the MMGBSA approach of avian N1 type NA in its monomeric and tetrameric closed and open-loop state both with and without the inhibitor oseltamivir and its natural substrate, sialic acid. Structural and energetic analyses revealed that the tetrameric state impacts flexibility as well as the map of interactions participating in stabilizing the protein-ligand complexes with respect to the monomeric state. It was observed that the tetrameric state exerts dissimilar effects in binding affinity, characteristic of positive and negative cooperativity for oseltamivir and sialic acid, respectively. Based on our results, to perform a confident structure-based drug design, as well as to evaluate the impact of key mutations through MD simulations, it is important to consider the tetrameric state closed-loop state.
Collapse
Affiliation(s)
- Martiniano Bello
- Laboratorio de Modelado Molecular, Bioinformática y Diseño de Fármacos de la Escuela Superior de Medicina, Instituto Politécnico Nacional, México City, Mexico
| |
Collapse
|
50
|
DNA-linked inhibitor antibody assay (DIANA) as a new method for screening influenza neuraminidase inhibitors. Biochem J 2018; 475:3847-3860. [PMID: 30404922 PMCID: PMC6292454 DOI: 10.1042/bcj20180764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/01/2018] [Accepted: 11/06/2018] [Indexed: 12/25/2022]
Abstract
Influenza neuraminidase is responsible for the escape of new viral particles from the infected cell surface. Several neuraminidase inhibitors are used clinically to treat patients or stockpiled for emergencies. However, the increasing development of viral resistance against approved inhibitors has underscored the need for the development of new antivirals effective against resistant influenza strains. A facile, sensitive, and inexpensive screening method would help achieve this goal. Recently, we described a multiwell plate-based DNA-linked inhibitor antibody assay (DIANA). This highly sensitive method can quantify femtomolar concentrations of enzymes. DIANA also has been applied to high-throughput enzyme inhibitor screening, allowing the evaluation of inhibition constants from a single inhibitor concentration. Here, we report the design, synthesis, and structural characterization of a tamiphosphor derivative linked to a reporter DNA oligonucleotide for the development of a DIANA-type assay to screen potential influenza neuraminidase inhibitors. The neuraminidase is first captured by an immobilized antibody, and the test compound competes for binding to the enzyme with the oligo-linked detection probe, which is then quantified by qPCR. We validated this novel assay by comparing it with the standard fluorometric assay and demonstrated its usefulness for sensitive neuraminidase detection as well as high-throughput screening of potential new neuraminidase inhibitors.
Collapse
|