1
|
Tay JH, Kocher A, Duchene S. Assessing the effect of model specification and prior sensitivity on Bayesian tests of temporal signal. PLoS Comput Biol 2024; 20:e1012371. [PMID: 39504312 DOI: 10.1371/journal.pcbi.1012371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/23/2024] [Indexed: 11/08/2024] Open
Abstract
Our understanding of the evolution of many microbes has been revolutionised by the molecular clock, a statistical tool to infer evolutionary rates and timescales from analyses of biomolecular sequences. In all molecular clock models, evolutionary rates and times are jointly unidentifiable and 'calibration' information must therefore be used. For many organisms, sequences sampled at different time points can be employed for such calibration. Before attempting to do so, it is recommended to verify that the data carry sufficient information for molecular dating, a practice referred to as evaluation of temporal signal. Recently, a fully Bayesian approach, BETS (Bayesian Evaluation of Temporal Signal), was proposed to overcome known limitations of other commonly used techniques such as root-to-tip regression or date randomisation tests. BETS requires the specification of a full Bayesian phylogenetic model, posing several considerations for untangling the impact of model choice on the detection of temporal signal. Here, we aimed to (i) explore the effect of molecular clock model and tree prior specification on the results of BETS and (ii) provide guidelines for improving our confidence in molecular clock estimates. Using microbial molecular sequence data sets and simulation experiments, we assess the impact of the tree prior and its hyperparameters on the accuracy of temporal signal detection. In particular, highly informative priors that are inconsistent with the data can result in the incorrect detection of temporal signal. In consequence, we recommend: (i) using prior predictive simulations to determine whether the prior generates a reasonable expectation of parameters of interest, such as the evolutionary rate and age of the root node, (ii) conducting prior sensitivity analyses to assess the robustness of the posterior to the choice of prior, and (iii) selecting a molecular clock model that reasonably describes the evolutionary process.
Collapse
Affiliation(s)
- John H Tay
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Arthur Kocher
- Transmission, Infection, Diversification and Evolution Group, Max Planck Institute of Geoanthropology, Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Sebastian Duchene
- Peter Doherty Institute for Infection and Immunity, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
- DEMI unit, Department of Computational Biology, Institut Pasteur, Paris, France
| |
Collapse
|
2
|
Sujith S, Naresh R, Srivisanth BU, Sajeevan A, Rajaramon S, David H, Solomon AP. Aptamers: precision tools for diagnosing and treating infectious diseases. Front Cell Infect Microbiol 2024; 14:1402932. [PMID: 39386170 PMCID: PMC11461471 DOI: 10.3389/fcimb.2024.1402932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 09/03/2024] [Indexed: 10/12/2024] Open
Abstract
Infectious diseases represent a significant global health challenge, with bacteria, fungi, viruses, and parasitic protozoa being significant causative agents. The shared symptoms among diseases and the emergence of new pathogen variations make diagnosis and treatment complex. Conventional diagnostic methods are laborious and intricate, underscoring the need for rapid, accurate techniques. Aptamer-based technologies offer a promising solution, as they are cost-effective, sensitive, specific, and convenient for molecular disease diagnosis. Aptamers, which are single-stranded RNA or DNA sequences, serve as nucleotide equivalents of monoclonal antibodies, displaying high specificity and affinity for target molecules. They are structurally robust, allowing for long-term storage without substantial activity loss. Aptamers find applications in diverse fields such as drug screening, material science, and environmental monitoring. In biomedicine, they are extensively studied for biomarker detection, diagnostics, imaging, and targeted therapy. This comprehensive review focuses on the utility of aptamers in managing infectious diseases, particularly in the realms of diagnostics and therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | - Helma David
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
3
|
Castiglioni VG, Olmo-Uceda MJ, Martín S, Félix MA, González R, Elena SF. Experimental evolution of an RNA virus in Caenorhabditis elegans. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 123:105623. [PMID: 38901623 DOI: 10.1016/j.meegid.2024.105623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/02/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
The discovery of Orsay virus (OrV), the first virus infecting wild populations of Caenorhabditis elegans, has boosted studies of viral immunity pathways in this nematode. Considering the many advantages that C. elegans offers for fundamental research in host-pathogen interactions, this pathosystem has high potential to become a model system for experimental virus evolution studies. However, the evolutionary constraints - i.e, the balance between genetic variation, selection, drift and historical contingency- operating in this pathosystem have barely been explored. Here we describe for the first time an evolution experiment of two different OrV strains in C. elegans. Comparison of the two ancestral strains showed differences in infectivity and sequence, and highlighted the importance of consistently normalize viral inocula for meaningful comparisons among strains. After 10 serial passages of evolution, we report slight changes in infectivity and non-synonymous mutations fixed in the evolved viral populations. In addition, we observed numerous minor variants emerging in the viral population. These minor variants were not randomly distributed along the genome but concentrated in polymorphic genomic regions. Overall, our work established the grounds for future experimental virus evolution studies using Caenorhabditis nematodes.
Collapse
Affiliation(s)
- Victoria G Castiglioni
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain
| | - María J Olmo-Uceda
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain
| | - Susana Martín
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain
| | - Marie-Anne Félix
- Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005 Paris, France
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain; Institut de Biologie de l'École Normale Supérieure, CNRS, INSERM, 75005 Paris, France.
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC-Universitat de València), Paterna, 46980 València, Spain; Santa Fe Institute, Sant Fe, NM 87501, USA.
| |
Collapse
|
4
|
Zhao Y, Zhu X, Zhang Z, Chen J, Chen Y, Hu C, Chen X, Robertson ID, Guo A. The Prevalence and Molecular Characterization of Bovine Leukemia Virus among Dairy Cattle in Henan Province, China. Viruses 2024; 16:1399. [PMID: 39339874 PMCID: PMC11437460 DOI: 10.3390/v16091399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Enzootic bovine leukosis, a neoplastic disease caused by the bovine leukemia virus (BLV), was the primary cancer affecting cattle in China before 1985. Although its prevalence decreased significantly between 1986 and 2000, enzootic bovine leukosis has been re-emerging since 2000. This re-emergence has been largely overlooked, possibly due to the latent nature of BLV infection or the perceived lack of sufficient evidence. This study investigated the molecular epidemiology of BLV infections in dairy cattle in Henan province, Central China. Blood samples from 668 dairy cattle across nine farms were tested using nested polymerase chain reaction assays targeting the partial envelope (env) gene (gp51 fragment). Twenty-three samples tested positive (animal-level prevalence of 3.4%; 95% confidence interval: 2.2, 5.1). The full-length env gene sequences from these positive samples were obtained and phylogenetically analyzed, along with previously reported sequences from the GenBank database. The sequences from positive samples were clustered into four genotypes (1, 4, 6, and 7). The geographical annotation of the maximum clade credibility trees suggested that the two genotype 1 strains in Henan might have originated from Japan, while the genotype 7 strain is likely to have originated from Moldova. Subsequent Bayesian stochastic search variable selection analysis further indicated a strong geographical association between the Henan strains and Japan, as well as Moldova. The estimated substitution rate for the env gene ranged from 4.39 × 10-4 to 2.38 × 10-3 substitutions per site per year. Additionally, codons 291, 326, 385, and 480 were identified as positively selected sites, potentially associated with membrane fusion, epitope peptide vaccine design, and transmembrane signal transduction. These findings contribute to the broader understanding of BLV epidemiology in Chinese dairy cattle and highlight the need for measures to mitigate further BLV transmission within and between cattle herds in China.
Collapse
Affiliation(s)
- Yuxi Zhao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Xiaojie Zhu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia
| | - Zhen Zhang
- Henan Province Seed Industry Development Center, Department of Agriculture and Rural Affairs of Henan Province, Zhengzhou 450045, China
| | - Jianguo Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Yingyu Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Changmin Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Xi Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| | - Ian D. Robertson
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia
| | - Aizhen Guo
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (X.Z.); (J.C.); (Y.C.); (C.H.); (X.C.)
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, The Cooperative Innovation Centre for Sustainable Pig Production, Wuhan 430070, China;
| |
Collapse
|
5
|
Xiong D, Zhang X, Xu B, Shi M, Chen M, Dong Z, Zhong J, Gong R, Wu C, Li J, Wei H, Yu J. PHDtools: A platform for pathogen detection and multi-dimensional genetic signatures decoding to realize pathogen genomics data analyses online. Gene 2024; 909:148306. [PMID: 38408616 DOI: 10.1016/j.gene.2024.148306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 02/28/2024]
Abstract
OBJECTIVES Facing the emerging diseases, rapid identification of the pathogen and multi-dimensional characterization of the genomic features at both isolate-level and population-level through high-throughput sequencing data can provide invaluable information to guide the development of antiviral agents and strategies. However, a user-friendly program is in urgent need for clinical laboratories without bioinformatics background to decode the complex big genomics data. METHODS In this study, we developed an interactive online platform named PHDtools with a total of 15 functions to analyze metagenomics data to identify the potential pathogen and decode multi-dimensional genetic signatures including intra-/inter-host variations and lineage-level variations. The platform was applied to analyze the meta-genomic data of the samples collected from the 172 imported COVID-19 cases. RESULTS According to the analytical results of mNGS, 27 patients were found to have the co-infections of SARS-CoV-2 with either influenza virus (n = 9) or human picobirnavirus (n = 19). Enough coverages of all the assembled SARS-CoV-2 genomes provided the sub-lineages of Omicron variant, and the number of mutations in the non-structural genes and M gene was increased, as well as the intra-host variations occurred in E and M gene were under positive selection (Ka/Ks > 1). These findings of increased or changed mutations in the SARS-CoV-2 genome characterized the current adaptive evolution patterns of Omicron sub-lineages, and revealed the evolution speed of these sub-lineages might increase. CONCLUSIONS Consequently, the application of PHDtools has proved that this platform is accurate, user-friendly and convenient for clinical users who are deficient in bioinformatics, and the clinical monitor of SARS-CoV-2 genomes by PHDtools also highlighted the potential evolution features of current SARS-CoV-2 and indicated that the development of anti-SARS-CoV-2 agents and new-designed vaccines should incorporate the gene variations other than S gene.
Collapse
Affiliation(s)
- Dongyan Xiong
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; Centre for Novostics, Hong Kong Science Park, Pak Shek Kok, New Territories, Hong Kong SAR, China; Department of Chemical Pathology, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong SAR, China
| | - Xiaoxu Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Bohan Xu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjuan Shi
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Dong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Jie Zhong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Rui Gong
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Chang Wu
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Ji Li
- Hubei International Travel Healthcare Center (Wuhan Customs Port Outpatient Department), Wuhan 430070, China
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and Biosafety, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Gao X, Bian T, Gao P, Ge X, Zhang Y, Han J, Guo X, Zhou L, Yang H. Fidelity Characterization of Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus and NADC30-like Strain. Viruses 2024; 16:797. [PMID: 38793678 PMCID: PMC11125636 DOI: 10.3390/v16050797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
The porcine reproductive and respiratory syndrome virus (PRRSV) has significantly impacted the global pork industry for over three decades. Its high mutation rates and frequent recombination greatly intensifies its epidemic and threat. To explore the fidelity characterization of Chinese highly pathogenic PRRSV JXwn06 and the NADC30-like strain CHsx1401, self-recombination and mutation in PAMs, MARC-145 cells, and pigs were assessed. In vitro, CHsx1401 displayed a higher frequency of recombination junctions and a greater diversity of junction types than JXwn06. In vivo, CHsx1401 exhibited fewer junction types yet maintained a higher junction frequency. Notably, JXwn06 showed more accumulation of mutations. To pinpoint the genomic regions influencing their fidelity, chimeric viruses were constructed, with the exchanged nsp9-10 regions between JXwn06 and CHsx1401. The SJn9n10 strain, which incorporates JXwn06's nsp9-10 into the CHsx1401 genome, demonstrated reduced sensitivity to nucleotide analogs compared to CHsx1401. Conversely, compared with JXwn06, the JSn9n10 strain showed increased sensitivity to these inhibitors. The swapped nsp9-10 also influences the junction frequency and accumulated mutations as their donor strains. The results indicate a propensity for different types of genetic variations between these two strains and further highlight the nsp9-10 region as a critical determinant of their fidelity.
Collapse
Affiliation(s)
- Xiang Gao
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Ting Bian
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Peng Gao
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Xinna Ge
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Yongning Zhang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Jun Han
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Xin Guo
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Lei Zhou
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| | - Hanchun Yang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China; (X.G.)
- Key Laboratory of Animal Epidemiology of Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, China Agricultural University, Beijing 100094, China
| |
Collapse
|
7
|
Meng R, Xing Z, Chang JY, Yu Z, Thongchol J, Xiao W, Wang Y, Chamakura K, Zeng Z, Wang F, Young R, Zeng L, Zhang J. Structural basis of Acinetobacter type IV pili targeting by an RNA virus. Nat Commun 2024; 15:2746. [PMID: 38553443 PMCID: PMC10980823 DOI: 10.1038/s41467-024-47119-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Acinetobacters pose a significant threat to human health, especially those with weakened immune systems. Type IV pili of acinetobacters play crucial roles in virulence and antibiotic resistance. Single-stranded RNA bacteriophages target the bacterial retractile pili, including type IV. Our study delves into the interaction between Acinetobacter phage AP205 and type IV pili. Using cryo-electron microscopy, we solve structures of the AP205 virion with an asymmetric dimer of maturation proteins, the native Acinetobacter type IV pili bearing a distinct post-translational pilin cleavage, and the pili-bound AP205 showing its maturation proteins adapted to pilin modifications, allowing each phage to bind to one or two pili. Leveraging these results, we develop a 20-kilodalton AP205-derived protein scaffold targeting type IV pili in situ, with potential for research and diagnostics.
Collapse
Affiliation(s)
- Ran Meng
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Yale University, New Haven, CT, 06520, USA
| | - Zhongliang Xing
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jeng-Yih Chang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- UMass Chan Medical School, Worcester, MA, 01655, USA
| | - Zihao Yu
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Jirapat Thongchol
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Wen Xiao
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Yuhang Wang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Karthik Chamakura
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
- Armata Pharmaceuticals, Inc., Marina del Rey, CA, 90292, USA
| | - Zhiqi Zeng
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Fengbin Wang
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Ry Young
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Lanying Zeng
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA
| | - Junjie Zhang
- Center for Phage Technology, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
8
|
Paredes MI, Ahmed N, Figgins M, Colizza V, Lemey P, McCrone JT, Müller N, Tran-Kiem C, Bedford T. Underdetected dispersal and extensive local transmission drove the 2022 mpox epidemic. Cell 2024; 187:1374-1386.e13. [PMID: 38428425 PMCID: PMC10962340 DOI: 10.1016/j.cell.2024.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/15/2023] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
The World Health Organization declared mpox a public health emergency of international concern in July 2022. To investigate global mpox transmission and population-level changes associated with controlling spread, we built phylogeographic and phylodynamic models to analyze MPXV genomes from five global regions together with air traffic and epidemiological data. Our models reveal community transmission prior to detection, changes in case reporting throughout the epidemic, and a large degree of transmission heterogeneity. We find that viral introductions played a limited role in prolonging spread after initial dissemination, suggesting that travel bans would have had only a minor impact. We find that mpox transmission in North America began declining before more than 10% of high-risk individuals in the USA had vaccine-induced immunity. Our findings highlight the importance of broader routine specimen screening surveillance for emerging infectious diseases and of joint integration of genomic and epidemiological information for early outbreak control.
Collapse
Affiliation(s)
- Miguel I Paredes
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| | - Nashwa Ahmed
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Marlin Figgins
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Department of Applied Mathematics, University of Washington, Seattle, WA, USA
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d'Epidémiologie et de Santé Publique IPLESP, Paris, France
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - John T McCrone
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Nicola Müller
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Cécile Tran-Kiem
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Trevor Bedford
- Department of Epidemiology, University of Washington, Seattle, WA, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA
| |
Collapse
|
9
|
Kabir A, Ullah K, Ali Kamboh A, Abubakar M, Shafiq M, Wang L. The Pathogenesis of Foot-and-Mouth Disease Virus Infection: How the Virus Escapes from Immune Recognition and Elimination. Arch Immunol Ther Exp (Warsz) 2024; 72:aite-2024-0013. [PMID: 38910298 DOI: 10.2478/aite-2024-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/22/2024] [Indexed: 06/25/2024]
Abstract
Foot-and-mouth disease virus (FMDV) is a highly contagious and economically devastating pathogen that affects cloven-hoofed animals worldwide. FMDV infection causes vesicular lesions in the mouth, feet, and mammary glands, as well as severe systemic symptoms such as fever, salivation, and lameness. The pathogenesis of FMDV infection involves complex interactions between the virus and the host immune system, which determine the outcome of the disease. FMDV has evolved several strategies to evade immune recognition and elimination, such as antigenic variation, receptor switching, immune suppression, and subversion of innate and adaptive responses. This review paper summarizes the current knowledge on the pathogenesis of FMDV infection and the mechanisms of immune evasion employed by the virus. It also discusses the challenges and opportunities for developing effective vaccines and therapeutics against this important animal disease.
Collapse
Affiliation(s)
- Abdul Kabir
- 1Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Sindh, Pakistan
| | - Kalim Ullah
- 2Laboratory of Human Virology and Oncology, Center of Pathogen Biology and Immunology, Institute of Basic Medical Research, Shantou University Medical College, Shantou, Guangdong, China
| | - Asghar Ali Kamboh
- 1Department of Veterinary Microbiology, Faculty of Animal Husbandry and Veterinary Sciences, Sindh Agriculture University Tandojam, Sindh, Pakistan
| | - Muhammad Abubakar
- 3Department of Microbiology, National Veterinary Laboratories, NVL, Islamabad, Pakistan
| | - Muhammad Shafiq
- 4Department of Pharmacology, Research Institute of Clinical Pharmacy, Shantou University Medical College, Shantou, China
| | - Li Wang
- 5Department of Dermatology, Beijing University of Chinese Medicine Shenzhen Hospital, Longgang, Shenzen, China
- 6Department of Dermatology, Shenzhen University General Hospital, Shenzhen University, Shenzen, China
| |
Collapse
|
10
|
Lorenzo-Redondo R, de Sant’Anna Carvalho AM, Hultquist JF, Ozer EA. SARS-CoV-2 genomics and impact on clinical care for COVID-19. J Antimicrob Chemother 2023; 78:ii25-ii36. [PMID: 37995357 PMCID: PMC10667012 DOI: 10.1093/jac/dkad309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/02/2023] [Indexed: 11/25/2023] Open
Abstract
The emergence and worldwide spread of SARS-CoV-2 during the COVID-19 pandemic necessitated the adaptation and rapid deployment of viral WGS and analysis techniques that had been previously applied on a more limited basis to other viral pathogens, such as HIV and influenza viruses. The need for WGS was driven in part by the low mutation rate of SARS-CoV-2, which necessitated measuring variation along the entire genome sequence to effectively differentiate lineages and characterize viral evolution. Several WGS approaches designed to maximize throughput and accuracy were quickly adopted by surveillance labs around the world. These broad-based SARS-CoV-2 genomic sequencing efforts revealed ongoing evolution of the virus, highlighted by the successive emergence of new viral variants throughout the course of the pandemic. These genomic insights were instrumental in characterizing the effects of viral mutations on transmissibility, immune escape and viral tropism, which in turn helped guide public health policy, the use of monoclonal antibody therapeutics and vaccine development strategies. As the use of direct-acting antivirals for the treatment of COVID-19 became more widespread, the potential for emergence of antiviral resistance has driven ongoing efforts to delineate resistance mutations and to monitor global sequence databases for their emergence. Given the critical role of viral genomics in the international effort to combat the COVID-19 pandemic, coordinated efforts should be made to expand global genomic surveillance capacity and infrastructure towards the anticipation and prevention of future pandemics.
Collapse
Affiliation(s)
- Ramon Lorenzo-Redondo
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Alexandre Machado de Sant’Anna Carvalho
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Judd F Hultquist
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| |
Collapse
|
11
|
Abstract
Understanding the factors that shape viral evolution is critical for developing effective antiviral strategies, accurately predicting viral evolution, and preventing pandemics. One fundamental determinant of viral evolution is the interplay between viral protein biophysics and the host machineries that regulate protein folding and quality control. Most adaptive mutations in viruses are biophysically deleterious, resulting in a viral protein product with folding defects. In cells, protein folding is assisted by a dynamic system of chaperones and quality control processes known as the proteostasis network. Host proteostasis networks can determine the fates of viral proteins with biophysical defects, either by assisting with folding or by targeting them for degradation. In this review, we discuss and analyze new discoveries revealing that host proteostasis factors can profoundly shape the sequence space accessible to evolving viral proteins. We also discuss the many opportunities for research progress proffered by the proteostasis perspective on viral evolution and adaptation.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Jessica E Patrick
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - C Brandon Ogbunugafor
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| | - Matthew D Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
12
|
Roder AE, Johnson KEE, Knoll M, Khalfan M, Wang B, Schultz-Cherry S, Banakis S, Kreitman A, Mederos C, Youn JH, Mercado R, Wang W, Chung M, Ruchnewitz D, Samanovic MI, Mulligan MJ, Lässig M, Luksza M, Das S, Gresham D, Ghedin E. Optimized quantification of intra-host viral diversity in SARS-CoV-2 and influenza virus sequence data. mBio 2023; 14:e0104623. [PMID: 37389439 PMCID: PMC10470513 DOI: 10.1128/mbio.01046-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 07/01/2023] Open
Abstract
High error rates of viral RNA-dependent RNA polymerases lead to diverse intra-host viral populations during infection. Errors made during replication that are not strongly deleterious to the virus can lead to the generation of minority variants. However, accurate detection of minority variants in viral sequence data is complicated by errors introduced during sample preparation and data analysis. We used synthetic RNA controls and simulated data to test seven variant-calling tools across a range of allele frequencies and simulated coverages. We show that choice of variant caller and use of replicate sequencing have the most significant impact on single-nucleotide variant (SNV) discovery and demonstrate how both allele frequency and coverage thresholds impact both false discovery and false-negative rates. When replicates are not available, using a combination of multiple callers with more stringent cutoffs is recommended. We use these parameters to find minority variants in sequencing data from SARS-CoV-2 clinical specimens and provide guidance for studies of intra-host viral diversity using either single replicate data or data from technical replicates. Our study provides a framework for rigorous assessment of technical factors that impact SNV identification in viral samples and establishes heuristics that will inform and improve future studies of intra-host variation, viral diversity, and viral evolution. IMPORTANCE When viruses replicate inside a host cell, the virus replication machinery makes mistakes. Over time, these mistakes create mutations that result in a diverse population of viruses inside the host. Mutations that are neither lethal to the virus nor strongly beneficial can lead to minority variants that are minor members of the virus population. However, preparing samples for sequencing can also introduce errors that resemble minority variants, resulting in the inclusion of false-positive data if not filtered correctly. In this study, we aimed to determine the best methods for identification and quantification of these minority variants by testing the performance of seven commonly used variant-calling tools. We used simulated and synthetic data to test their performance against a true set of variants and then used these studies to inform variant identification in data from SARS-CoV-2 clinical specimens. Together, analyses of our data provide extensive guidance for future studies of viral diversity and evolution.
Collapse
Affiliation(s)
- A. E. Roder
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
| | - K. E. E. Johnson
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - M. Knoll
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - M. Khalfan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - B. Wang
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - S. Schultz-Cherry
- Department of Infectious Diseases, St Jude Children Research Hospital, Memphis, Tennessee, USA
| | - S. Banakis
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
| | - A. Kreitman
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
| | - C. Mederos
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
| | - J.-H. Youn
- Department of Laboratory Medicine, NIH, Bethesda, Maryland, USA
| | - R. Mercado
- Department of Laboratory Medicine, NIH, Bethesda, Maryland, USA
| | - W. Wang
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
| | - M. Chung
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
| | - D. Ruchnewitz
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - M. I. Samanovic
- Department of Medicine, New York University Langone Vaccine Center, New York, New York, USA
| | - M. J. Mulligan
- Department of Medicine, New York University Langone Vaccine Center, New York, New York, USA
| | - M. Lässig
- Institute for Biological Physics, University of Cologne, Cologne, Germany
| | - M. Luksza
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - S. Das
- Department of Laboratory Medicine, NIH, Bethesda, Maryland, USA
| | - D. Gresham
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| | - E. Ghedin
- Systems Genomics Section, Laboratory of Parasitic Diseases, DIR, NIAID, NIH, Bethesda, Maryland, USA
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, New York, USA
| |
Collapse
|
13
|
Moreno‐Pérez MG, Bera S, McLeish M, Fraile A, García‐Arenal F. Reversion of a resistance-breaking mutation shows reversion costs and high virus diversity at necrotic local lesions. MOLECULAR PLANT PATHOLOGY 2023; 24:142-153. [PMID: 36435959 PMCID: PMC9831284 DOI: 10.1111/mpp.13281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/28/2022] [Accepted: 10/29/2022] [Indexed: 06/16/2023]
Abstract
An instance of host range evolution relevant to plant virus disease control is resistance breaking. Resistance breaking can be hindered by across-host fitness trade-offs generated by negative effects of resistance-breaking mutations on the virus fitness in susceptible hosts. Different mutations in pepper mild mottle virus (PMMoV) coat protein result in the breaking in pepper plants of the resistance determined by the L3 resistance allele. Of these, mutation M138N is widespread in PMMoV populations, despite associated fitness penalties in within-host multiplication and survival. The stability of mutation M138N was analysed by serial passaging in L3 resistant plants. Appearance on passaging of necrotic local lesions (NLL), indicating an effective L3 resistance, showed reversion to nonresistance-breaking phenotypes was common. Most revertant genotypes had the mutation N138K, which affects the properties of the virus particle, introducing a penalty of reversion. Hence, the costs of reversion may determine the evolution of resistance-breaking in addition to resistance-breaking costs. The genetic diversity of the virus population in NLL was much higher than in systemically infected tissues, and included mutations reported to break L3 resistance other than M138N. Infectivity assays on pepper genotypes with different L alleles showed high phenotypic diversity in respect to L alleles in NLL, including phenotypes not reported in nature. Thus, high diversity at NLL may potentiate the appearance of genotypes that enable the colonization of new host genotypes or species. Collectively, the results of this study contribute to better understanding the evolutionary dynamics of resistance breaking and host-range expansions.
Collapse
Affiliation(s)
- Manuel G. Moreno‐Pérez
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Sayanta Bera
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Michael McLeish
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| | - Fernando García‐Arenal
- Centro de Biotecnología y Genómica de Plantas UPM‐INIA/CSICUniversidad Politécnica de MadridMadridSpain
- E.T.S.I. Agronómica, Alimentaria y de BiosistemasCampus de Montegancedo, UPMMadridSpain
| |
Collapse
|
14
|
Xiong D, Zhang X, Yu J, Wei H. Distribution of intra-host variations and mutations in the genomes of SARS-CoV-2 and their implications on detection and therapeutics. MedComm (Beijing) 2022; 3:e186. [PMID: 36474856 PMCID: PMC9717708 DOI: 10.1002/mco2.186] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 12/03/2022] Open
Abstract
The ongoing circulation of SARS-CoV-2 variants of concern (VOCs) has caused global concerns, because VOCs could escape current vaccines, antiviral drugs, and diagnosis. Analyzing mutations and intra-host diversities in different and widespread VOCs can provide important insights to virus adaptive evolution and validity of vaccines, antiviral drugs, and diagnosis. In this study, by analyzing 1744 high-throughput sequencing data for intra-host single-nucleotide variations (iSNVs) and 3,668,205 genome sequences for mutations in different VOCs, it was found that Omicron variant is still evolving at high speed, especially having high iSNVs frequency in its S and N genes. The efficacies of antibodies or detection primers targeting these two genes are at high risks to be invalid. Instead, highly conserved regions such as NSP8 gene could be better therapeutic and detection targets. Furthermore, mutations in later VOCs could be traced to the minor alleles in the previous variant samples such as Alpha and Delta in different countries. Finally, it was found that mutations C14408T in RdRp and A18163G in NSP14 gene might be associated with the higher genetic diversity in Omicron. Our findings not only contribute to understanding the adaptive evolution of SARS-CoV-2 VOCs, but also provide useful information for both drugs and diagnostic kits development.
Collapse
Affiliation(s)
- Dongyan Xiong
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- CAS Key Laboratory of Special Pathogens and BiosafetyUniversity of Chinese Academy of SciencesBeijingChina
| | - Xiaoxu Zhang
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
| | - Junping Yu
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- CAS Key Laboratory of Special Pathogens and BiosafetyUniversity of Chinese Academy of SciencesBeijingChina
| | - Hongping Wei
- CAS Key Laboratory of Special Pathogens and BiosafetyCenter for Biosafety Mega‐ScienceWuhan Institute of VirologyChinese Academy of SciencesWuhanChina
- CAS Key Laboratory of Special Pathogens and BiosafetyUniversity of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
15
|
Itani T, Chalapa V, Semenov A, Sergeev A. Laboratory diagnosis of nonpolio enteroviruses: A review of the current literature. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
16
|
Khan MZI, Nazli A, Al-furas H, Asad MI, Ajmal I, Khan D, Shah J, Farooq MA, Jiang W. An overview of viral mutagenesis and the impact on pathogenesis of SARS-CoV-2 variants. Front Immunol 2022; 13:1034444. [PMID: 36518757 PMCID: PMC9742215 DOI: 10.3389/fimmu.2022.1034444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/04/2022] [Indexed: 11/29/2022] Open
Abstract
Viruses are submicroscopic, obligate intracellular parasites that carry either DNA or RNA as their genome, protected by a capsid. Viruses are genetic entities that propagate by using the metabolic and biosynthetic machinery of their hosts and many of them cause sickness in the host. The ability of viruses to adapt to different hosts and settings mainly relies on their ability to create de novo variety in a short interval of time. The size and chemical composition of the viral genome have been recognized as important factors affecting the rate of mutations. Coronavirus disease 2019 (Covid-19) is a novel viral disease that has quickly become one of the world's leading causes of mortality, making it one of the most serious public health problems in recent decades. The discovery of new medications to cope with Covid-19 is a difficult and time-consuming procedure, as new mutations represent a serious threat to the efficacy of recently developed vaccines. The current article discusses viral mutations and their impact on the pathogenicity of newly developed variants with a special emphasis on Covid-19. The biology of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), its mutations, pathogenesis, and treatment strategies are discussed in detail along with the statistical data.
Collapse
Affiliation(s)
| | - Adila Nazli
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Hawaa Al-furas
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development, Ministry of Education (MOE) of China, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Muhammad Imran Asad
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Iqra Ajmal
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China
| | - Dildar Khan
- Faculty of Biological Sciences, Department of Pharmacy, Quaid-i-Azam University, Islamabad, Pakistan
| | - Jaffer Shah
- Department of Health, New York, NY, United States,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| | - Muhammad Asad Farooq
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| | - Wenzheng Jiang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, East China Normal University, Shanghai, China,*Correspondence: Jaffer Shah, ; Muhammad Asad Farooq, ; Wenzheng Jiang,
| |
Collapse
|
17
|
Li Y, Bletsa M, Zisi Z, Boonen I, Gryseels S, Kafetzopoulou L, Webster JP, Catalano S, Pybus OG, Van de Perre F, Li H, Li Y, Li Y, Abramov A, Lymberakis P, Lemey P, Lequime S. Endogenous Viral Elements in Shrew Genomes Provide Insights into Pestivirus Ancient History. Mol Biol Evol 2022; 39:msac190. [PMID: 36063436 PMCID: PMC9550988 DOI: 10.1093/molbev/msac190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
As viral genomic imprints in host genomes, endogenous viral elements (EVEs) shed light on the deep evolutionary history of viruses, ancestral host ranges, and ancient viral-host interactions. In addition, they may provide crucial information for calibrating viral evolutionary timescales. In this study, we conducted a comprehensive in silico screening of a large data set of available mammalian genomes for EVEs deriving from members of the viral family Flaviviridae, an important group of viruses including well-known human pathogens, such as Zika, dengue, or hepatitis C viruses. We identified two novel pestivirus-like EVEs in the reference genome of the Indochinese shrew (Crocidura indochinensis). Homologs of these novel EVEs were subsequently detected in vivo by molecular detection and sequencing in 27 shrew species, including 26 species representing a wide distribution within the Crocidurinae subfamily and one in the Soricinae subfamily on different continents. Based on this wide distribution, we estimate that the integration event occurred before the last common ancestor of the subfamily, about 10.8 million years ago, attesting to an ancient origin of pestiviruses and Flaviviridae in general. Moreover, we provide the first description of Flaviviridae-derived EVEs in mammals even though the family encompasses numerous mammal-infecting members. This also suggests that shrews were past and perhaps also current natural reservoirs of pestiviruses. Taken together, our results expand the current known Pestivirus host range and provide novel insight into the ancient evolutionary history of pestiviruses and the Flaviviridae family in general.
Collapse
Affiliation(s)
- Yiqiao Li
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Magda Bletsa
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Zafeiro Zisi
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Ine Boonen
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sophie Gryseels
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Belgium Evolutionary Ecology Group, University of Antwerp, 2610 Wilrijk, Belgium
| | - Liana Kafetzopoulou
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Virology Department, Belgium Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Joanne P Webster
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - Stefano Catalano
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | - Oliver G Pybus
- Department of Pathobiology and Population Science, Royal Veterinary College, University of London, Herts, AL9 7TA, UK
| | | | - Haotian Li
- Marine College, Shandong University (Weihai), 264209 Weihai, China
| | - Yaoyao Li
- Marine College, Shandong University (Weihai), 264209 Weihai, China
| | - Yuchun Li
- Marine College, Shandong University (Weihai), 264209 Weihai, China
| | - Alexei Abramov
- Laboratory of Theriology, Zoological Institute of the Russian Academy of Sciences, 190121 Saint Petersburg, Russia
| | | | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Sébastian Lequime
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, the Netherlands
| |
Collapse
|
18
|
Strobel HM, Stuart EC, Meyer JR. A Trait-Based Approach to Predicting Viral Host-Range Evolvability. Annu Rev Virol 2022; 9:139-156. [PMID: 36173699 DOI: 10.1146/annurev-virology-091919-092003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Predicting the evolution of virus host range has proven to be extremely difficult, in part because of the sheer diversity of viruses, each with unique biology and ecological interactions. We have not solved this problem, but to make the problem more tractable, we narrowed our focus to three traits intrinsic to all viruses that may play a role in host-range evolvability: mutation rate, recombination rate, and phenotypic heterogeneity. Although each trait should increase evolvability, they cannot do so unbounded because fitness trade-offs limit the ability of all three traits to maximize evolvability. By examining these constraints, we can begin to identify groups of viruses with suites of traits that make them especially concerning, as well as ecological and environmental conditions that might push evolution toward accelerating host-range expansion.
Collapse
Affiliation(s)
- Hannah M Strobel
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Elizabeth C Stuart
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - Justin R Meyer
- Division of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
19
|
Roder AE, Johnson KEE, Knoll M, Khalfan M, Wang B, Schultz-Cherry S, Banakis S, Kreitman A, Mederos C, Youn JH, Mercado R, Wang W, Ruchnewitz D, Samanovic MI, Mulligan MJ, Lassig M, Łuksza M, Das S, Gresham D, Ghedin E. Optimized Quantification of Intrahost Viral Diversity in SARS-CoV-2 and Influenza Virus Sequence Data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.05.05.442873. [PMID: 36656775 PMCID: PMC9836620 DOI: 10.1101/2021.05.05.442873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
High error rates of viral RNA-dependent RNA polymerases lead to diverse intra-host viral populations during infection. Errors made during replication that are not strongly deleterious to the virus can lead to the generation of minority variants. However, accurate detection of minority variants in viral sequence data is complicated by errors introduced during sample preparation and data analysis. We used synthetic RNA controls and simulated data to test seven variant calling tools across a range of allele frequencies and simulated coverages. We show that choice of variant caller, and use of replicate sequencing have the most significant impact on single nucleotide variant (SNV) discovery and demonstrate how both allele frequency and coverage thresholds impact both false discovery and false negative rates. We use these parameters to find minority variants in sequencing data from SARS-CoV-2 clinical specimens and provide guidance for studies of intrahost viral diversity using either single replicate data or data from technical replicates. Our study provides a framework for rigorous assessment of technical factors that impact SNV identification in viral samples and establishes heuristics that will inform and improve future studies of intrahost variation, viral diversity, and viral evolution. IMPORTANCE When viruses replicate inside a host, the virus replication machinery makes mistakes. Over time, these mistakes create mutations that result in a diverse population of viruses inside the host. Mutations that are neither lethal to the virus, nor strongly beneficial, can lead to minority variants that are minor members of the virus population. However, preparing samples for sequencing can also introduce errors that resemble minority variants, resulting in inclusion of false positive data if not filtered correctly. In this study, we aimed to determine the best methods for identification and quantification of these minority variants by testing the performance of seven commonly used variant calling tools. We used simulated and synthetic data to test their performance against a true set of variants, and then used these studies to inform variant identification in data from clinical SARS-CoV-2 clinical specimens. Together, analyses of our data provide extensive guidance for future studies of viral diversity and evolution.
Collapse
|
20
|
Rochman ND, Wolf YI, Koonin EV. Molecular adaptations during viral epidemics. EMBO Rep 2022; 23:e55393. [PMID: 35848484 PMCID: PMC9346483 DOI: 10.15252/embr.202255393] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/18/2022] [Accepted: 06/27/2022] [Indexed: 07/20/2023] Open
Abstract
In 1977, the world witnessed both the eradication of smallpox and the beginning of the modern age of genomics. Over the following half-century, 7 epidemic viruses of international concern galvanized virologists across the globe and led to increasingly extensive virus genome sequencing. These sequencing efforts exerted over periods of rapid adaptation of viruses to new hosts, in particular, humans provide insight into the molecular mechanisms underpinning virus evolution. Investment in virus genome sequencing was dramatically increased by the unprecedented support for phylogenomic analyses during the COVID-19 pandemic. In this review, we attempt to piece together comprehensive molecular histories of the adaptation of variola virus, HIV-1 M, SARS, H1N1-SIV, MERS, Ebola, Zika, and SARS-CoV-2 to the human host. Disruption of genes involved in virus-host interaction in animal hosts, recombination including genome segment reassortment, and adaptive mutations leading to amino acid replacements in virus proteins involved in host receptor binding and membrane fusion are identified as the key factors in the evolution of epidemic viruses.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Yuri I Wolf
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| | - Eugene V Koonin
- National Center for Biotechnology InformationNational Library of MedicineBethesdaMDUSA
| |
Collapse
|
21
|
Nishimura L, Fujito N, Sugimoto R, Inoue I. Detection of Ancient Viruses and Long-Term Viral Evolution. Viruses 2022; 14:v14061336. [PMID: 35746807 PMCID: PMC9230872 DOI: 10.3390/v14061336] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 12/22/2022] Open
Abstract
The COVID-19 outbreak has reminded us of the importance of viral evolutionary studies as regards comprehending complex viral evolution and preventing future pandemics. A unique approach to understanding viral evolution is the use of ancient viral genomes. Ancient viruses are detectable in various archaeological remains, including ancient people's skeletons and mummified tissues. Those specimens have preserved ancient viral DNA and RNA, which have been vigorously analyzed in the last few decades thanks to the development of sequencing technologies. Reconstructed ancient pathogenic viral genomes have been utilized to estimate the past pandemics of pathogenic viruses within the ancient human population and long-term evolutionary events. Recent studies revealed the existence of non-pathogenic viral genomes in ancient people's bodies. These ancient non-pathogenic viruses might be informative for inferring their relationships with ancient people's diets and lifestyles. Here, we reviewed the past and ongoing studies on ancient pathogenic and non-pathogenic viruses and the usage of ancient viral genomes to understand their long-term viral evolution.
Collapse
Affiliation(s)
- Luca Nishimura
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Naoko Fujito
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Ryota Sugimoto
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Mishima 411-8540, Japan; (L.N.); (N.F.); (R.S.)
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
- Correspondence: ; Tel.: +81-55-981-6795
| |
Collapse
|
22
|
Sun Y, Zhang Y, Zhang X. Complementary Effects of Virus Population Are Required for Efficient Virus Infection. Front Microbiol 2022; 13:877702. [PMID: 35633682 PMCID: PMC9137883 DOI: 10.3389/fmicb.2022.877702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
It is believed that the virions of a virus infecting a host may share the identical viral genome and characteristics. However, the role of genomic heterogeneity of the virions of a virus in virus infection has not been extensively explored. To address this issue, white spot syndrome virus (WSSV), a DNA virus infecting crustaceans, was characterized in the current study. In WSSV, differences in two nucleotides of the viral genome generated two types of WSSV, forming a virus population that consisted of Type A WSSV (encoding WSSV lncRNA-24) and Type B WSSV (encoding the wsv195 gene) at a ratio of 1:3. The virus populations in all virus-infected cells and tissues of different hosts exhibited a stable 1:3 structure. WSSV lncRNA-24 in Type A WSSV promoted virus infection by binding to shrimp and WSSV miRNAs, while the wsv195 gene in Type B WSSV played an essential role in virus infection. Loss of Type A WSSV or Type B WSSV in the WSSV population led to a 100-fold decrease in viral copy number in shrimp. Simultaneous loss of both types of WSSV prevented virus infection. These results indicated that the virus infection process was completed by two types of WSSV encoding different functional genes, revealing the complementary effects of WSSV population. Therefore, our study highlights the importance of the complementarity of virus population components in virus infection.
Collapse
Affiliation(s)
| | | | - Xiaobo Zhang
- College of Life Sciences and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhejiang University, Hangzhou, China
| |
Collapse
|
23
|
Shen ZJ, Jia H, Xie CD, Shagainar J, Feng Z, Zhang X, Li K, Zhou R. Bayesian Phylodynamic Analysis Reveals the Dispersal Patterns of African Swine Fever Virus. Viruses 2022; 14:v14050889. [PMID: 35632631 PMCID: PMC9147906 DOI: 10.3390/v14050889] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 02/07/2023] Open
Abstract
The evolutionary and demographic history of African swine fever virus (ASFV) is potentially quite valuable for developing efficient and sustainable management strategies. In this study, we performed phylogenetic, phylodynamic, and phylogeographic analyses of worldwide ASFV based on complete ASFV genomes, B646L gene, and E183L gene sequences obtained from NCBI to understand the epidemiology of ASFV. Bayesian phylodynamic analysis and phylogenetic analysis showed highly similar results of group clustering between E183L and the complete genome. The evidence of migration and the demographic history of ASFV were also revealed by the Bayesian phylodynamic analysis. The evolutionary rate was estimated to be 1.14 × 10−5 substitution/site/year. The large out-migration from the viral population in South Africa played a crucial role in spreading the virus worldwide. Our study not only provides resources for the better utilization of genomic data but also reveals the comprehensive worldwide evolutionary history of ASFV with a broad sampling window across ~70 years. The characteristics of the virus spatiotemporal transmission are also elucidated, which could be of great importance for devising strategies to control the virus.
Collapse
Affiliation(s)
- Zhao-Ji Shen
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-J.S.); (H.J.); (C.-D.X.); (J.S.)
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528231, China;
| | - Hong Jia
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-J.S.); (H.J.); (C.-D.X.); (J.S.)
| | - Chun-Di Xie
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-J.S.); (H.J.); (C.-D.X.); (J.S.)
| | - Jurmt Shagainar
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-J.S.); (H.J.); (C.-D.X.); (J.S.)
| | - Zheng Feng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan 528231, China;
| | - Xiaodong Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China;
| | - Kui Li
- Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- Correspondence: (K.L.); (R.Z.)
| | - Rong Zhou
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.-J.S.); (H.J.); (C.-D.X.); (J.S.)
- Correspondence: (K.L.); (R.Z.)
| |
Collapse
|
24
|
Huang YW, Lee CW, Lin NS, Cuong HV, Hu CC, Hsu YH. First Report of Distinct Bamboo mosaic virus (BaMV) Isolates Infecting Bambusa funghomii in Vietnam and the Identification of a Highly Variable Region in the BaMV Genome. Viruses 2022; 14:698. [PMID: 35458428 PMCID: PMC9032891 DOI: 10.3390/v14040698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
New isolates of the Bamboo mosaic virus (BaMV) were identified in Bambusa funghomii bamboo in Vietnam. Sequence analyses revealed that the Vietnam isolates are distinct from all known BaMV strains, sharing the highest sequence identities (about 77%) with the Yoshi isolates reported in California, USA. Unique satellite RNAs were also found to be associated with the BaMV Vietnam isolates. A possible recombination event was detected in the genome of BaMV-VN2. A highly variable region was identified in the ORF1 gene, in between the methyl transferase domain and helicase domain. These results revealed the presence of unique BaMV isolates in an additional bamboo species in one more country, Vietnam, and provided evidence in support of the possible involvement of environmental or host factors in the diversification and evolution of BaMV.
Collapse
Affiliation(s)
- Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd, Taichung 40227, Taiwan; (Y.-W.H.); (C.-W.L.)
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd, Taichung 40227, Taiwan; (Y.-W.H.); (C.-W.L.)
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan;
| | - Ha Viet Cuong
- Department of Plant Pathology, Research Center for Tropic Plant Diseases, Vietnam National University of Agriculture, Hanoi 100915, Vietnam;
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd, Taichung 40227, Taiwan; (Y.-W.H.); (C.-W.L.)
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, 250 Kuo-Kuang Rd, Taichung 40227, Taiwan; (Y.-W.H.); (C.-W.L.)
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
25
|
Behl A, Nair A, Mohagaonkar S, Yadav P, Gambhir K, Tyagi N, Sharma RK, Butola BS, Sharma N. Threat, challenges, and preparedness for future pandemics: A descriptive review of phylogenetic analysis based predictions. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 98:105217. [PMID: 35065303 DOI: 10.1016/j.meegid.2022.105217] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 12/01/2021] [Accepted: 01/14/2022] [Indexed: 11/27/2022]
Abstract
For centuries the world has been confronted with many infectious diseases, with a potential to turn into a pandemic posing a constant threat to human lives. Some of these pandemics occurred due to the emergence of new disease or re-emergence of previously known diseases with a few mutations. In such scenarios their optimal prevention and control options were not adequately developed. Most of these diseases are highly contagious and for their timely control, knowledge about the pathogens and disease progression is the basic necessity. In this review, we have presented a documented chronology of the earlier pandemics, evolutionary analysis of the infectious disease with pandemic potential, the role of RNA, difficulties in controlling pandemics, and the likely pathogens that could trigger future pandemics. In this study, the evolutionary history of the pathogens was identified by carrying out phylogenetic analysis. The percentage similarity between different infectious diseases is critically analysed for the identification of their correlation using online sequence matcher tools. The Baltimore classification system was used for finding the genomic nature of the viruses. It was observed that most of the infectious pathogens rise from their animal hosts with some mutations in their genome composition. The phylogenetic tree shows that the single-stranded RNA diseases have a common origin and many of them are having high similarity percentage. The outcomes of this study will help in the identification of potential pathogens that can cause future pandemics. This information will be helpful in the development of early detection techniques, devising preventive mechanism to limit their spread, prophylactic measures, Infection control and therapeutic options, thereby, strengthening our approach towards global preparedness against future pandemics.
Collapse
Affiliation(s)
- Amanpreet Behl
- Department of Molecular Medicine, Jamia Hamdard Univeristy, Hamdard Nagar, New Delhi, Delhi 110062, India
| | - Ashrit Nair
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Sanika Mohagaonkar
- Department of Metabolism, Digestion and Reproduction, Imperial College, London, United Kingdom
| | - Pooja Yadav
- Department of Medical Elementology and Toxicology, Jamia Hamdard, Hamdard Nagar, New Delhi 110062, India
| | - Kirtida Gambhir
- Stem cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
| | - Nishant Tyagi
- Stem cell and Gene Therapy Research Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Delhi 110054, India
| | - Rakesh Kumar Sharma
- Saveetha Institute of Medical and Technical Sciences, 162, Poonamallee High Road, Chennai 600077, Tamil Nadu, India
| | - Bhupendra Singh Butola
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India
| | - Navneet Sharma
- Department of Textile and Fibre Engineering, Indian Institute of Technology, Hauz Khas, New Delhi-110016, India.
| |
Collapse
|
26
|
Wu L, Yang J, Wang D, Cheng Q, Lu W. Scientists’ response to global public health emergencies: A bibliometrics perspective. J Inf Sci 2021. [DOI: 10.1177/01655515211030866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The unprecedented COVID-19 outbreak at the end of 2019 has produced a worldwide health crisis. Scientific research, especially international research collaboration, is crucial to deal successfully with the epidemic. This article aims to review the response modes, and especially the international collaboration characteristic, of the academic community to similar public health events in the past. Based on relevant studies of four major public health emergencies in the past, the major public health emergencies were regarded as ‘new knowledge’ in the academic field. By using knowledge diffusion indicators, such as the breadth and speed of diffusion, and combined with the development characteristics of the event, this article explores the diffusion characteristics of the four major public health emergencies in the academic exchange system and then identifies the academic community’s response mode to the outbreaks. In addition, the characteristics of international collaboration in response to the public health events and the impact of international collaboration on the academic community’s response are analysed. Through the analysis of the international collaboration network, the cooperative groups and core countries in the research collaboration network related to the major public health emergencies are obtained. In terms of COVID-19, it is found that the response speed and intensity of scientists have been significantly improved, but more focus should be given to international collaboration. Our findings could be beneficial to both decision-makers and researchers in policy formulation and conducting research, respectively, to optimally deal with COVID-19 and possible outbreaks in the future.
Collapse
Affiliation(s)
- Leyan Wu
- School of Information Management, Wuhan University, P.R. China; Information Retrieval and Knowledge Mining Laboratory, Wuhan University, P.R. China
| | - Jinqing Yang
- School of Information Management, Wuhan University, P.R. China; Information Retrieval and Knowledge Mining Laboratory, Wuhan University, P.R. China
| | - Dan Wang
- School of Information Management, Wuhan University, P.R. China; Information Retrieval and Knowledge Mining Laboratory, Wuhan University, P.R. China
| | - Qikai Cheng
- School of Information Management, Wuhan University, P.R. China; Information Retrieval and Knowledge Mining Laboratory, Wuhan University, P.R. China
| | - Wei Lu
- School of Information Management, Wuhan University, P.R. China; Information Retrieval and Knowledge Mining Laboratory, Wuhan University, P.R. China
| |
Collapse
|
27
|
Rochman ND, Wolf YI, Faure G, Mutz P, Zhang F, Koonin EV. Ongoing global and regional adaptive evolution of SARS-CoV-2. Proc Natl Acad Sci U S A 2021; 118:e2104241118. [PMID: 34292871 PMCID: PMC8307621 DOI: 10.1073/pnas.2104241118] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Understanding the trends in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution is paramount to control the COVID-19 pandemic. We analyzed more than 300,000 high-quality genome sequences of SARS-CoV-2 variants available as of January 2021. The results show that the ongoing evolution of SARS-CoV-2 during the pandemic is characterized primarily by purifying selection, but a small set of sites appear to evolve under positive selection. The receptor-binding domain of the spike protein and the region of the nucleocapsid protein associated with nuclear localization signals (NLS) are enriched with positively selected amino acid replacements. These replacements form a strongly connected network of apparent epistatic interactions and are signatures of major partitions in the SARS-CoV-2 phylogeny. Virus diversity within each geographic region has been steadily growing for the entirety of the pandemic, but analysis of the phylogenetic distances between pairs of regions reveals four distinct periods based on global partitioning of the tree and the emergence of key mutations. The initial period of rapid diversification into region-specific phylogenies that ended in February 2020 was followed by a major extinction event and global homogenization concomitant with the spread of D614G in the spike protein, ending in March 2020. The NLS-associated variants across multiple partitions rose to global prominence in March to July, during a period of stasis in terms of interregional diversity. Finally, beginning in July 2020, multiple mutations, some of which have since been demonstrated to enable antibody evasion, began to emerge associated with ongoing regional diversification, which might be indicative of speciation.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894;
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Guilhem Faure
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142;
- HHMI, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894;
| |
Collapse
|
28
|
Aimone CD, Lavington E, Hoyer JS, Deppong DO, Mickelson-Young L, Jacobson A, Kennedy GG, Carbone I, Hanley-Bowdoin L, Duffy S. Population diversity of cassava mosaic begomoviruses increases over the course of serial vegetative propagation. J Gen Virol 2021; 102:001622. [PMID: 34310272 PMCID: PMC8491896 DOI: 10.1099/jgv.0.001622] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/05/2021] [Indexed: 01/06/2023] Open
Abstract
Cassava mosaic disease (CMD) represents a serious threat to cassava, a major root crop for more than 300 million Africans. CMD is caused by single-stranded DNA begomoviruses that evolve rapidly, making it challenging to develop durable disease resistance. In addition to the evolutionary forces of mutation, recombination and reassortment, factors such as climate, agriculture practices and the presence of DNA satellites may impact viral diversity. To gain insight into the factors that alter and shape viral diversity in planta, we used high-throughput sequencing to characterize the accumulation of nucleotide diversity after inoculation of infectious clones corresponding to African cassava mosaic virus (ACMV) and East African cassava mosaic Cameroon virus (EACMCV) in the susceptible cassava landrace Kibandameno. We found that vegetative propagation had a significant effect on viral nucleotide diversity, while temperature and a satellite DNA did not have measurable impacts in our study. EACMCV diversity increased linearly with the number of vegetative propagation passages, while ACMV diversity increased for a time and then decreased in later passages. We observed a substitution bias toward C→T and G→A for mutations in the viral genomes consistent with field isolates. Non-coding regions excluding the promoter regions of genes showed the highest levels of nucleotide diversity for each genome component. Changes in the 5' intergenic region of DNA-A resembled the sequence of the cognate DNA-B sequence. The majority of nucleotide changes in coding regions were non-synonymous, most with predicted deleterious effects on protein structure, indicative of relaxed selection pressure over six vegetative passages. Overall, these results underscore the importance of knowing how cropping practices affect viral evolution and disease progression.
Collapse
Affiliation(s)
- Catherine D. Aimone
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Erik Lavington
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - David O. Deppong
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Leigh Mickelson-Young
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Alana Jacobson
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - George G. Kennedy
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Ignazio Carbone
- Center for Integrated Fungal Research, Department of Entomology and Plant Pathology, North Carolina State University, Raleigh NC 27695, USA
| | - Linda Hanley-Bowdoin
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Siobain Duffy
- Department of Ecology, Evolution, and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| |
Collapse
|
29
|
Phylogeographic analysis of Pseudogymnoascus destructans partitivirus-pa explains the spread dynamics of white-nose syndrome in North America. PLoS Pathog 2021; 17:e1009236. [PMID: 33730096 PMCID: PMC7968715 DOI: 10.1371/journal.ppat.1009236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/11/2020] [Indexed: 11/19/2022] Open
Abstract
Understanding the dynamics of white-nose syndrome spread in time and space is an important component for the disease epidemiology and control. We reported earlier that a novel partitivirus, Pseudogymnoascus destructans partitivirus-pa, had infected the North American isolates of Pseudogymnoascus destructans, the fungal pathogen that causes white-nose syndrome in bats. We showed that the diversity of the viral coat protein sequences is correlated to their geographical origin. Here we hypothesize that the geographical adaptation of the virus could be used as a proxy to characterize the spread of white-nose syndrome. We used over 100 virus isolates from diverse locations in North America and applied the phylogeographic analysis tool BEAST to characterize the spread of the disease. The strict clock phylogeographic analysis under the coalescent model in BEAST showed a patchy spread pattern of white-nose syndrome driven from a few source locations including Connecticut, New York, West Virginia, and Kentucky. The source states had significant support in the maximum clade credibility tree and Bayesian stochastic search variable selection analysis. Although the geographic origin of the virus is not definite, it is likely the virus infected the fungus prior to the spread of white-nose syndrome in North America. We also inferred from the BEAST analysis that the recent long-distance spread of the fungus to Washington had its root in Kentucky, likely from the Mammoth cave area and most probably mediated by a human. The time to the most recent common ancestor of the virus is estimated somewhere between the late 1990s to early 2000s. We found the mean substitution rate of 2 X 10-3 substitutions per site per year for the virus which is higher than expected given the persistent lifestyle of the virus, and the stamping-machine mode of replication. Our approach of using the virus as a proxy to understand the spread of white-nose syndrome could be an important tool for the study and management of other infectious diseases.
Collapse
|
30
|
Rochman ND, Wolf YI, Faure G, Mutz P, Zhang F, Koonin EV. Ongoing Global and Regional Adaptive Evolution of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2020.10.12.336644. [PMID: 33083804 PMCID: PMC7574262 DOI: 10.1101/2020.10.12.336644] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Understanding the trends in SARS-CoV-2 evolution is paramount to control the COVID-19 pandemic. We analyzed more than 300,000 high quality genome sequences of SARS-CoV-2 variants available as of January 2021. The results show that the ongoing evolution of SARS-CoV-2 during the pandemic is characterized primarily by purifying selection, but a small set of sites appear to evolve under positive selection. The receptor-binding domain of the spike protein and the nuclear localization signal (NLS) associated region of the nucleocapsid protein are enriched with positively selected amino acid replacements. These replacements form a strongly connected network of apparent epistatic interactions and are signatures of major partitions in the SARS-CoV-2 phylogeny. Virus diversity within each geographic region has been steadily growing for the entirety of the pandemic, but analysis of the phylogenetic distances between pairs of regions reveals four distinct periods based on global partitioning of the tree and the emergence of key mutations. The initial period of rapid diversification into region-specific phylogenies that ended in February 2020 was followed by a major extinction event and global homogenization concomitant with the spread of D614G in the spike protein, ending in March 2020. The NLS associated variants across multiple partitions rose to global prominence in March-July, during a period of stasis in terms of inter-regional diversity. Finally, beginning July 2020, multiple mutations, some of which have since been demonstrated to enable antibody evasion, began to emerge associated with ongoing regional diversification, which might be indicative of speciation.
Collapse
Affiliation(s)
- Nash D Rochman
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Guilhem Faure
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
| | - Pascal Mutz
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| | - Feng Zhang
- Broad Institute of MIT and Harvard, Cambridge, MA 02142
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD 20894
| |
Collapse
|
31
|
Pereson MJ, Mojsiejczuk L, Martínez AP, Flichman DM, Garcia GH, Di Lello FA. Phylogenetic analysis of SARS-CoV-2 in the first few months since its emergence. J Med Virol 2021; 93:1722-1731. [PMID: 32966646 PMCID: PMC7537150 DOI: 10.1002/jmv.26545] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/10/2020] [Accepted: 09/19/2020] [Indexed: 12/24/2022]
Abstract
During the first few months of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) evolution in a new host, contrasting hypotheses have been proposed about the way the virus has evolved and diversified worldwide. The aim of this study was to perform a comprehensive evolutionary analysis to describe the human outbreak and the evolutionary rate of different genomic regions of SARS-CoV-2. The molecular evolution in nine genomic regions of SARS-CoV-2 was analyzed using three different approaches: phylogenetic signal assessment, emergence of amino acid substitutions, and Bayesian evolutionary rate estimation in eight successive fortnights since the virus emergence. All observed phylogenetic signals were very low and tree topologies were in agreement with those signals. However, after 4 months of evolution, it was possible to identify regions revealing an incipient viral lineage formation, despite the low phylogenetic signal since fortnight 3. Finally, the SARS-CoV-2 evolutionary rate for regions nsp3 and S, the ones presenting greater variability, was estimated as 1.37 × 10-3 and 2.19 × 10-3 substitution/site/year, respectively. In conclusion, results from this study about the variable diversity of crucial viral regions and determination of the evolutionary rate are consequently decisive to understand essential features of viral emergence. In turn, findings may allow the first-time characterization of the evolutionary rate of S protein, crucial for vaccine development.
Collapse
Affiliation(s)
- Matías J. Pereson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM)Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos AiresArgentina
| | - Laura Mojsiejczuk
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM)Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos AiresArgentina
| | - Alfredo P. Martínez
- Virology Section, Centro de Educación Médica e Investigaciones Clínicas Norberto Quirno “CEMIC”Buenos AiresArgentina
| | - Diego M. Flichman
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos AiresArgentina
- Instituto de Investigaciones Biomédicas en Retrovirus y Síndrome de Inmunodeficiencia Adquirida (INBIRS) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos AiresBuenos AiresArgentina
| | - Gabriel H. Garcia
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM)Buenos AiresArgentina
| | - Federico A. Di Lello
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM)Buenos AiresArgentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos AiresArgentina
| |
Collapse
|
32
|
Abstract
Community protective immunity can affect RNA virus evolution by selecting for new antigenic variants on the scale of years, exemplified by the need of annual evaluation of influenza vaccines. The extent to which this process termed antigenic drift affects coronaviruses remains unknown. Alike the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), seasonal human coronaviruses (HCoV) likely emerged from animal reservoirs as new human pathogens in the past. We therefore analyzed the long-term evolutionary dynamics of the ubiquitous HCoV-229E and HCoV-OC43 in comparison with human influenza A virus (IAV) subtype H3N2. We focus on viral glycoprotein genes that mediate viral entry into cells and are major targets of host neutralizing antibody responses. Maximum likelihood and Bayesian phylogenies of publicly available gene datasets representing about three decades of HCoV and IAV evolution showed that all viruses had similar ladder-like tree shapes compatible with antigenic drift, supported by different tree shape statistics. Evolutionary rates inferred in a Bayesian framework were 6.5 × 10-4 (95% highest posterior density (HPD), 5.4-7.5 × 10-4) substitutions per site per year (s/s/y) for HCoV-229E spike (S) genes and 5.7 × 10-4 (95% HPD, 5-6.5 × 10-4) s/s/y for HCoV-OC43 S genes, which were about fourfold lower than the 2.5 × 10-3 (95% HPD, 2.3-2.7 × 10-3) s/s/y rate for IAV hemagglutinin (HA) genes. Coronavirus S genes accumulated about threefold less (P < 0.001) non-synonymous mutations (dN) over time than IAV HA genes. In both IAV and HCoV, the average rate of dN within the receptor binding domains (RBD) was about fivefold higher (P < 0.0001) than in other glycoprotein gene regions. Similarly, most sites showing evidence for positive selection occurred within the RBD (HCoV-229E, 6/14 sites, P < 0.05; HCoV-OC43, 23/38 sites, P < 0.01; IAV, 13/15 sites, P = 0.08). In sum, the evolutionary dynamics of HCoV and IAV showed several similarities, yet amino acid changes potentially representing antigenic drift occurred on a lower scale in endemic HCoV compared to IAV. It seems likely that pandemic SARS-CoV-2 evolution will bear similarities with IAV evolution including accumulation of adaptive changes in the RBD, requiring vaccines to be updated regularly, whereas higher SARS-CoV-2 evolutionary stability resembling endemic HCoV can be expected in the post-pandemic stage.
Collapse
Affiliation(s)
- Wendy K Jo
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
| | - Christian Drosten
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- German Centre for Infection Research (DZIF), associated partner Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Felix Drexler
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Virology, Berlin, Germany
- German Centre for Infection Research (DZIF), associated partner Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
33
|
Polymerase Fidelity Contributes to Foot-and-Mouth Disease Virus Pathogenicity and Transmissibility In Vivo. J Virol 2020; 95:JVI.01569-20. [PMID: 33028719 DOI: 10.1128/jvi.01569-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
The low fidelity of foot-and-mouth disease virus (FMDV) RNA-dependent RNA polymerase allows FMDV to exhibit high genetic diversity. Previously, we showed that the genetic diversity of FMDV plays an important role in virulence in suckling mice. Here, we mutated the amino acid residue Phe257, located in the finger domain of FMDV polymerase and conserved across FMDV serotypes, to a cysteine (F257C) to study the relationship between viral genetic diversity, virulence, and transmissibility in natural hosts. The single amino acid substitution in FMDV polymerase resulted in a high-fidelity virus variant, rF257C, with growth kinetics indistinguishable from those of wild-type (WT) virus in cell culture, but it displayed smaller plaques and impaired fitness in direct competition assays. Furthermore, we found that rF257C was attenuated in vivo in both suckling mice and pigs (one of its natural hosts). Importantly, contact exposure experiments showed that the rF257C virus exhibited reduced transmissibility compared to that of wild-type FMDV in the porcine model. This study provides evidence that FMDV genetic diversity is important for viral virulence and transmissibility in susceptible animals. Given that type O FMDV exhibits the highest genetic diversity among all seven serotypes of FMDV, we propose that the lower polymerase fidelity of the type O FMDV could contribute to its dominance worldwide.IMPORTANCE Among the seven serotypes of FMDV, serotype O FMDV have the broadest distribution worldwide, which could be due to their high virulence and transmissibility induced by high genetic diversity. In this paper, we generated a single amino acid substitution FMDV variant with a high-fidelity polymerase associated with viral fitness, virulence, and transmissibility in a natural host. The results highlight that maintenance of viral population diversity is essential for interhost viral spread. This study provides evidence that higher genetic diversity of type O FMDV could increase both virulence and transmissibility, thus leading to their dominance in the global epidemic.
Collapse
|
34
|
Brown DM, Zhang Y, Scheuermann RH. Epidemiology and Sequence-Based Evolutionary Analysis of Circulating Non-Polio Enteroviruses. Microorganisms 2020; 8:microorganisms8121856. [PMID: 33255654 PMCID: PMC7759938 DOI: 10.3390/microorganisms8121856] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/13/2020] [Accepted: 11/17/2020] [Indexed: 02/07/2023] Open
Abstract
Enteroviruses (EVs) are positive-sense RNA viruses, with over 50,000 nucleotide sequences publicly available. While most human infections are typically associated with mild respiratory symptoms, several different EV types have also been associated with severe human disease, especially acute flaccid paralysis (AFP), particularly with endemic members of the EV-B species and two pandemic types—EV-A71 and EV-D68—that appear to be responsible for recent widespread outbreaks. Here we review the recent literature on the prevalence, characteristics, and circulation dynamics of different enterovirus types and combine this with an analysis of the sequence coverage of different EV types in public databases (e.g., the Virus Pathogen Resource). This evaluation reveals temporal and geographic differences in EV circulation and sequence distribution, highlighting recent EV outbreaks and revealing gaps in sequence coverage. Phylogenetic analysis of the EV genus shows the relatedness of different EV types. Recombination analysis of the EV-A species provides evidence for recombination as a mechanism of genomic diversification. The absence of broadly protective vaccines and effective antivirals makes human enteroviruses important pathogens of public health concern.
Collapse
Affiliation(s)
- David M Brown
- Department of Synthetic Biology, J. Craig Venter Institute, Rockville, MD 20850, USA
| | - Yun Zhang
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Richard H Scheuermann
- Department of Informatics, J. Craig Venter Institute, La Jolla, CA 92037, USA
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- La Jolla Institute for Immunology, La Jolla, CA 92065, USA
| |
Collapse
|
35
|
Cowley JA. The genomes of Mourilyan virus and Wēnzhōu shrimp virus 1 of prawns comprise 4 RNA segments. Virus Res 2020; 292:198225. [PMID: 33181202 DOI: 10.1016/j.virusres.2020.198225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/16/2022]
Abstract
Reported here is the complete genome sequence of Mourilyan virus (MoV) that infects giant tiger (Penaeus monodon) and kuruma prawns (P. japonicas) in Australia. Its genome was determined using various PCR strategies based on the sequences of 3 randomly-amplified cDNA clones to its L and M RNA segments discovered in a library generated to determine the genome sequence of gill-associated ronivirus. The sequences of PCR products and clones obtained showed the MoV genome to comprise 4 ssRNA segments (L, M, S1 and S2), as confirmed by Northern blotting using RNA from naïve and MoV-infected prawns, and by Illumina sequence analysis of semi-purified MoV. BLASTn searches identified the MoV L, M and S1 RNA segments to be homologous to Wēnzhōu shrimp virus 1 (WzSV1) segments discovered recently in a P. monodon RNA-Seq library (SRR1745808). Mapping this read library to the MoV S2 RNA segment identified WzSV1 to also possess an equivalent segment. BLASTp searches identified the putative non-structural protein (NSs2; 393-394 aa) encoded in their S2 RNA segments to have no homologs in GenBank. Possibly due to NSs2 being encoded in a discrete RNA segment rather than in ambisense relative to the N protein as in the S RNA segments of other phenuiviruses, each of 6 MoV S1 RNA segment clones sequenced possessed a variable-length (≤ 645 nt) imperfect GA-repeat extending from the N protein stop codon to the more variable ∼90 nt segment terminal sequence. Read mapping of RNA-Seq library SRR1745808 showed the WzSV1 S1 RNA segment to possess a similar GA-repeat. However, paired-read variations hindered definitive assembly of a consensus sequence. All 4 MoV and WzSV1 RNA segments terminated with a 10 nt inverted repeat sequence (5'-ACACAAAGAC.) identical to the RNA segment termini of uukuviruses. Phylogenetic analyses of MoV/WzSV1 RNA-dependant RNA polymerase (L RNA), G1G2 precursor glycoprotein (M RNA) and nucleocapsid (N) protein (S1 RNA) sequences generally clustered them with as yet unassigned crustacean/diptera bunya-like viruses on branches positioned closely to others containing tick-transmitted phenuiviruses. As genome sequences of most phenuiviruses discovered recently have originated from meta-transcriptomics studies, the data presented here showing the MoV and WzSV1 genomes to comprise more than 3 RNA segments, like the plant tenuiviruses, suggests a need to investigate the genomes of these unassigned viruses more closely.
Collapse
Affiliation(s)
- Jeff A Cowley
- Livestock & Aquaculture, CSIRO Agriculture & Food, Queensland Bioscience Precinct, 306 Carmody Road, St. Lucia, QLD, 4067, Australia.
| |
Collapse
|
36
|
McCann HC. Skirmish or war: the emergence of agricultural plant pathogens. CURRENT OPINION IN PLANT BIOLOGY 2020; 56:147-152. [PMID: 32712539 DOI: 10.1016/j.pbi.2020.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
Understanding the ecological and evolutionary processes underlying the emergence of infectious disease is critically important in guiding prevention, management and breeding strategies. Novel pathogen lineages may arise within agricultural environments, wild hosts or from non-host associated disease reservoirs. Although the source of most disease outbreaks remains unknown, environmental and zoonotic origins are frequently identified in mammalian pathosystems and expanded sampling of plant pathosystems reveals important links with wild populations. This review describes key ecological and evolutionary processes underlying disease emergence, with particular emphasis on shifts from wild reservoirs to cultivated hosts and genetic mechanisms driving host adaption subsequent to emergence.
Collapse
Affiliation(s)
- Honour C McCann
- New Zealand Institute for Advanced Study, Massey University, Albany, New Zealand; Max Planck Institute for Developmental Biology, Tübingen, Germany.
| |
Collapse
|
37
|
Peláez A, McLeish MJ, Paswan RR, Dubay B, Fraile A, García-Arenal F. Ecological fitting is the forerunner to diversification in a plant virus with broad host range. J Evol Biol 2020; 34:1917-1931. [PMID: 32618008 DOI: 10.1111/jeb.13672] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/23/2020] [Accepted: 06/24/2020] [Indexed: 11/29/2022]
Abstract
The evolution and diversification of ssRNA plant viruses are often examined under reductionist conditions that ignore potentially much wider biotic interactions. The host range of a plant virus is central to interactions at higher levels that are organized by both fitness and ecological criteria. Here we employ a strategy to minimize sampling biases across distinct plant communities and combine it with a high-throughput sequencing approach to examine the influence of four habitats on the evolution of Watermelon mosaic virus (WMV). Local, regional and global levels of genetic diversity that correspond to spatial and temporal extents are used to infer haplotype relationships using network and phylogenetic approaches. We find that the incidence and genetic diversity of WMV were structured significantly by host species and habitat type. A single haplotype that infected 11 host species of a total of 24 showed that few constraints on host species use exist in the crop communities. When the evolution of WMV was examined at broader levels of organization, we found variation in genetic diversity and contrasting host use footprints that broadly corresponded to habitat effects. The findings demonstrated that nondeterministic ecological factors structured the genetic diversity of WMV. Habitat-driven constraints underlie host use preferences.
Collapse
Affiliation(s)
- Adrián Peláez
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Michael J McLeish
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Ricky R Paswan
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Bhumika Dubay
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Aurora Fraile
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| | - Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM) and Instituto nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) and E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Campus de Montegancedo, UPM, Madrid, Spain
| |
Collapse
|
38
|
Hossain MT, Yokono T, Kashiwagi A. The Single-Stranded RNA Bacteriophage Qβ Adapts Rapidly to High Temperatures: An Evolution Experiment. Viruses 2020; 12:v12060638. [PMID: 32545482 PMCID: PMC7354602 DOI: 10.3390/v12060638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/05/2020] [Accepted: 06/10/2020] [Indexed: 11/22/2022] Open
Abstract
Single-stranded (ss)RNA viruses are thought to evolve rapidly due to an inherently high mutation rate. However, it remains unclear how ssRNA viruses adapt to novel environments and/or how many and what types of substitutions are needed to facilitate this evolution. In this study, we followed the adaptation of the ssRNA bacteriophage Qβ using thermally adapted Escherichia coli as a host, which can efficiently grow at temperatures between 37.2 and 45.3 °C. This made it possible to evaluate Qβ adaptation to the highest known temperature that supports growth, 45.3 °C. We found that Qβ was capable of replication at this temperature; within 114 days (~1260 generations), we detected more than 34 novel point mutations in the genome of the thermally adapted Qβ population, representing 0.8% of the total Qβ genome. In addition, we returned the 45.3 °C-adapted Qβ populations to 37.2 °C and passaged them for 8 days (~124 generations). We found that the reverse-adapted Qβ population showed little to no decrease in fitness. These results indicate that Qβ can evolve in response to increasing temperatures in a short period of time with the accumulation of point mutations.
Collapse
Affiliation(s)
- Md. Tanvir Hossain
- The United Graduate School of Agricultural Science, Iwate University, Morioka 020-8550, Japan;
| | - Toma Yokono
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan;
| | - Akiko Kashiwagi
- The United Graduate School of Agricultural Science, Iwate University, Morioka 020-8550, Japan;
- Faculty of Agriculture and Life Science, Hirosaki University, Hirosaki 036-8561, Japan;
- Correspondence: ; Tel.: +81-172-39-3789
| |
Collapse
|
39
|
Luganini A, Gribaudo G. Retroviruses of the Human Virobiota: The Recycling of Viral Genes and the Resulting Advantages for Human Hosts During Evolution. Front Microbiol 2020; 11:1140. [PMID: 32547531 PMCID: PMC7270195 DOI: 10.3389/fmicb.2020.01140] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/05/2020] [Indexed: 12/25/2022] Open
Abstract
All humans are colonized by a vast diversity of microbes (bacteria, archaea, protozoa, yeast, and fungi; collectively referred to as the microbiota) and viruses (the virobiota). This latter group includes viruses infecting prokaryotic cells (bacteriophages), viruses infecting eukaryotic-host cells, and virus-derived genetic elements present in host chromosomes. Although these eukaryotic viruses are mostly known to be pathogens, they are also able to establish mutualistic relationships with humans. Little is known about the mutualistic aspects of viral infection. Nevertheless, it is clear that evolution of some animal virus-host interactions has led to benefits in the health of the hosts, as is the case with symbiogenesis and endogenization of retroviruses that has exerted a neuroprotective effect on the human brain, and an important role in the fetal development, thus on the evolution of host species. In this review, we summarize how retroviruses provide amazing examples of cooperative-evolution, i.e., successful exchange between viruses and host, and how, in some cases, the benefits have become essential for the hosts’ survival.
Collapse
Affiliation(s)
- Anna Luganini
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Giorgio Gribaudo
- Laboratory of Microbiology and Virology, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| |
Collapse
|
40
|
Impact of Natural or Synthetic Singletons in the Capsid of Human Bocavirus 1 on Particle Infectivity and Immunoreactivity. J Virol 2020; 94:JVI.00170-20. [PMID: 32213611 DOI: 10.1128/jvi.00170-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Human bocavirus 1 (HBoV1) is a parvovirus that gathers increasing attention due to its pleiotropic role as a pathogen and emerging vector for human gene therapy. Curiously, albeit a large variety of HBoV1 capsid variants has been isolated from human samples, only one has been studied as a gene transfer vector to date. Here, we analyzed a cohort of HBoV1-positive samples and managed to PCR amplify and sequence 29 distinct HBoV1 capsid variants. These differed from the originally reported HBoV1 reference strain in 32 nucleotides or four amino acids, including a frequent change of threonine to serine at position 590. Interestingly, this T590S mutation was associated with lower viral loads in infected patients. Analysis of the time course of infection in two patients for up to 15 weeks revealed a gradual accumulation of T590S, concurrent with drops in viral loads. Surprisingly, in a recombinant vector context, T590S was beneficial and significantly increased titers compared to that of T590 variants but had no major impact on their transduction ability or immunoreactivity. Additional targeted mutations in the HBoV1 capsid identified several residues that are critical for transduction, capsid assembly, or DNA packaging. Our new findings on the phylogeny, infectivity, and immunoreactivity of HBoV1 capsid variants improve our understanding of bocaviral biology and suggest strategies to enhance HBoV1 gene transfer vectors.IMPORTANCE The family of Parvoviridae comprises a wide variety of members that exhibit a unique biology and that are concurrently highly interesting as a scaffold for the development of human gene therapy vectors. A most notable example is human bocavirus 1 (HBoV1), which we and others have recently harnessed to cross-package and deliver recombinant genomes derived from another parvovirus, the adeno-associated virus (AAV). Here, we expanded the repertoire of known HBoV1 variants by cloning 29 distinct HBoV1 capsid sequences from primary human samples and by analyzing their properties as AAV/HBoV1 gene transfer vectors. This led to our discovery of a mutational hot spot at HBoV1 capsid position 590 that accumulated in two patients during natural infection and that lowers viral loads but increases vector yields. Thereby, our study expands our current understanding of HBoV1 biology in infected human subjects and concomitantly provides avenues to improve AAV/HBoV1 gene transfer vectors.
Collapse
|
41
|
Nurtay A, Hennessy MG, Alsedà L, Elena SF, Sardanyés J. Host-virus evolutionary dynamics with specialist and generalist infection strategies: Bifurcations, bistability, and chaos. CHAOS (WOODBURY, N.Y.) 2020; 30:053128. [PMID: 32491911 DOI: 10.1063/1.5144875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
In this work, we have investigated the evolutionary dynamics of a generalist pathogen, e.g., a virus population, that evolves toward specialization in an environment with multiple host types. We have particularly explored under which conditions generalist viral strains may rise in frequency and coexist with specialist strains or even dominate the population. By means of a nonlinear mathematical model and bifurcation analysis, we have determined the theoretical conditions for stability of nine identified equilibria and provided biological interpretation in terms of the infection rates for the viral specialist and generalist strains. By means of a stability diagram, we identified stable fixed points and stable periodic orbits, as well as regions of bistability. For arbitrary biologically feasible initial population sizes, the probability of evolving toward stable solutions is obtained for each point of the analyzed parameter space. This probability map shows combinations of infection rates of the generalist and specialist strains that might lead to equal chances for each type becoming the dominant strategy. Furthermore, we have identified infection rates for which the model predicts the onset of chaotic dynamics. Several degenerate Bogdanov-Takens and zero-Hopf bifurcations are detected along with generalized Hopf and zero-Hopf bifurcations. This manuscript provides additional insights into the dynamical complexity of host-pathogen evolution toward different infection strategies.
Collapse
Affiliation(s)
- Anel Nurtay
- Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| | - Matthew G Hennessy
- Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| | - Lluís Alsedà
- Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Científic UV, Paterna 46980 València, Spain
| | - Josep Sardanyés
- Centre de Recerca Matemàtica (CRM), Campus de Bellaterra, Edifici C, 08193 Bellaterra, Spain
| |
Collapse
|
42
|
Świętoń E, Tarasiuk K, Olszewska-Tomczyk M, Iwan E, Śmietanka K. A Turkey-origin H9N2 Avian Influenza Virus Shows Low Pathogenicity but Different Within-Host Diversity in Experimentally Infected Turkeys, Quail and Ducks. Viruses 2020; 12:v12030319. [PMID: 32188100 PMCID: PMC7150878 DOI: 10.3390/v12030319] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 03/14/2020] [Indexed: 02/06/2023] Open
Abstract
Avian influenza virus (AIV) is a highly diverse and widespread poultry pathogen. Its evolution and adaptation may be affected by multiple host and ecological factors, which are still poorly understood. In the present study, a turkey-origin H9N2 AIV was used as a model to investigate the within-host diversity of the virus in turkeys, quail and ducks in conjunction with the clinical course, shedding and seroconversion. Ten birds were inoculated oculonasally with a dose of 106 EID50 of the virus and monitored for 14 days. Virus shedding, transmission and seroconversion were evaluated, and swabs collected at selected time-points were characterized in deep sequencing to assess virus diversity. In general, the virus showed low pathogenicity for the examined bird species, but differences in shedding patterns, seroconversion and clinical outcome were noted. The highest heterogeneity of the virus population as measured by the number of single nucleotide polymorphisms and Shannon entropy was found in oropharyngeal swabs from quail, followed by turkeys and ducks. This suggests a strong bottleneck was imposed on the virus during replication in ducks, which can be explained by its poor adaptation and stronger selection pressure in waterfowl. The high within-host virus diversity in quail with high level of respiratory shedding and asymptomatic course of infection may contribute to our understanding of the role of quail as an intermediate host for adaptation of AIV to other species of poultry. In contrast, low virus complexity was observed in cloacal swabs, mainly from turkeys, showing that the within-host diversity may vary between different replication sites. Consequences of these observations on the virus evolution and adaptation require further investigation.
Collapse
Affiliation(s)
- Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (K.T.); (M.O.-T.); (K.Ś.)
- Correspondence:
| | - Karolina Tarasiuk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (K.T.); (M.O.-T.); (K.Ś.)
| | - Monika Olszewska-Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (K.T.); (M.O.-T.); (K.Ś.)
| | - Ewelina Iwan
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland;
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland; (K.T.); (M.O.-T.); (K.Ś.)
| |
Collapse
|
43
|
Sankaranarayanan R, Palani SN, Kumar A, Selvakumar A. S. P, Tennyson J. Prediction and experimental confirmation of banana bract mosaic virus encoding miRNAs and their targets. ACTA ACUST UNITED AC 2020. [DOI: 10.1186/s41544-019-0044-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Potyviridae is the largest plant infecting family under the monophyletic group Riboviria, infects many of the food, fodder and ornamental crops. Due to the higher mutation and recombination rate, potyvirids are evolving rapidly, adapting to the environmental chaos and expanding their hosts. Virus control measures are need to be updated as the economic importance of potyvirids is massive. microRNAs (miRNAs) are well known for their functional importance in eukaryotes and many viruses. Regardless of its biogenesis, whether canonical or noncanonical, microRNA centric antivirus approaches attract the researchers to the hopeful future of next-generation broad-spectrum antiviral measures.
Methods
In this study, we predicted and screened banana bract mosaic virus (BBrMV) encoding miRNAs by computation approaches and their targets on banana transcriptome using plant small RNA target analysis server (psRNAtarget). The target gene functions were annotated by Blast2GO. The predicted BBrMV miRNAs were experimentally screened by stem-loop RT-PCR.
Results
The results showed that, among the predicted BBrMV miRNAs, miRNA2 is conserved throughout BBrMV isolates and has multiple virus-specific target transcripts. In addition, primary experimental validation for the predicted miRNAs revealed that miRNA2 exists in the BBrMV infected banana leaf samples.
Conclusions
The existence of BBrMV miRNA2 is confirmed by stem-loop RT-PCR followed by cloning and sequencing. The presence of miRNA of Potyviridae is rarely addressed and would definitely spread the hope to understand the virus infectious cycle. Our report would also help to better understand and manipulate potyviral infections.
Collapse
|
44
|
González R, Butković A, Elena SF. From foes to friends: Viral infections expand the limits of host phenotypic plasticity. Adv Virus Res 2020; 106:85-121. [PMID: 32327149 DOI: 10.1016/bs.aivir.2020.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Phenotypic plasticity enables organisms to survive in the face of unpredictable environmental stress. Intimately related to the notion of phenotypic plasticity is the concept of the reaction norm that places phenotypic plasticity in the context of a genotype-specific response to environmental gradients. Whether reaction norms themselves evolve and which factors might affect their shape has been the object of intense debates among evolutionary biologists along the years. Since their discovery, viruses have been considered as pathogens. However, new viromic techniques and a shift in conceptual paradigms are showing that viruses are mostly non-pathogenic ubiquitous entities. Recent studies have shown how viral infections can even be beneficial for their hosts. This may happen especially in the context of stressed hosts, where the virus infection can induce beneficial changes in the host's physiological homeostasis, hence changing the shape of the reaction norm. Despite the fact that underlying physiological mechanisms and evolutionary dynamics are still not well understood, such beneficial interactions are being discovered in a growing number of plant-virus systems. Here, we aim to review these disperse studies and place them into the context of phenotypic plasticity and the evolution of reaction norms. This is an emerging field that is posing many questions that still need to be properly answered. The answers would clearly interest virologists, plant pathologists and evolutionary biologists and likely they will suggest possible future biotechnological applications, including the development of crops with higher survival rates and yield under adverse environmental situations.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Valencia, Spain.
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Valencia, Spain
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas, CSIC-Universitat de València, Valencia, Spain; The Santa Fe Institute, Santa Fe, NM, United States.
| |
Collapse
|
45
|
Abstract
Recent discoveries of contemporary genotypes of hepatitis B virus and parvovirus B19 in ancient human remains demonstrate that little genetic change has occurred in these viruses over 4,500-6,000 years. Endogenous viral elements in host genomes provide separate evidence that viruses similar to many major contemporary groups circulated 100 million years ago or earlier. In this Opinion article, we argue that the extraordinary conservation of virus genome sequences is best explained by a niche-filling model in which fitness optimization is rapidly achieved in their specific hosts. Whereas short-term substitution rates reflect the accumulation of tolerated sequence changes within adapted genomes, longer-term rates increasingly resemble those of their hosts as the evolving niche moulds and effectively imprisons the virus in co-adapted virus-host relationships. Contrastingly, viruses that jump hosts undergo strong and stringent adaptive selection as they maximize their fit to their new niche. This adaptive capability may paradoxically create evolutionary stasis in long-term host relationships. While viruses can evolve and adapt rapidly, their hosts may ultimately shape their longer-term evolution.
Collapse
|
46
|
Ismail SNFB, Baharum SN, Fazry S, Low CF. Comparative genome analysis reveals a distinct influence of nucleotide composition on virus-host species-specific interaction of prawn-infecting nodavirus. JOURNAL OF FISH DISEASES 2019; 42:1761-1772. [PMID: 31637743 DOI: 10.1111/jfd.13093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Discovery of species-specific interaction between the host and virus has drawn the interest of many researchers to study the evolution of the newly emerged virus. Comparative genome analysis provides insights of the virus functional genome evolution and the underlying mechanisms of virus-host interactions. The analysis of nucleotide composition signified the evolution of nodavirus towards host specialization in a host-specific mutation manner. GC-rich genome of betanodavirus was significantly deficient in UpA and UpU dinucleotides composition, whilst the AU-rich genome of gammanodavirus was deficient in CpG dinucleotide. The capsid of MrNV and PvNV of gammanodavirus retains the highest abundance of adenine and uracil at the second codon position, respectively, which were found to be very distinctive from the other genera. ENC-GC3 plot inferred the influence of natural selection and mutational pressure in shaping the evolution of MrNV RdRp and capsid, respectively. Furthermore, CAI/eCAI analysis predicts a comparable adaptability of MrNV in squid, Sepia officinalis than its natural host, Macrobrachium rosenbergii. Thus, further study is warranted to investigate the capacity of MrNV replication in S. officinalis owing to its high codon adaptation index.
Collapse
Affiliation(s)
| | | | - Shazrul Fazry
- Tasik Chini Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Bangi, Malaysia
| | - Chen Fei Low
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
47
|
Risso-Ballester J, Sanjuán R. High Fidelity Deep Sequencing Reveals No Effect of ATM, ATR, and DNA-PK Cellular DNA Damage Response Pathways on Adenovirus Mutation Rate. Viruses 2019; 11:v11100938. [PMID: 31614688 PMCID: PMC6832117 DOI: 10.3390/v11100938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/07/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Most DNA viruses exhibit relatively low rates of spontaneous mutation. However, the molecular mechanisms underlying DNA virus genetic stability remain unclear. In principle, mutation rates should not depend solely on polymerase fidelity, but also on factors such as DNA damage and repair efficiency. Most eukaryotic DNA viruses interact with the cellular DNA damage response (DDR), but the role of DDR pathways in preventing mutations in the virus has not been tested empirically. To address this goal, we serially transferred human adenovirus type 5 in cells in which the telangiectasia-mutated PI3K-related protein kinase (ATM), the ATM/Rad3-related (ATR) kinase, and the DNA-dependent protein kinase (DNA-PK) were chemically inactivated, as well as in control cells displaying normal DDR pathway functioning. High-fidelity deep sequencing of these viral populations revealed mutation frequencies in the order of one-millionth, with no detectable effect of the inactivation of DDR mediators ATM, ATR, and DNA-PK on adenovirus sequence variability. This suggests that these DDR pathways do not play a major role in determining adenovirus genetic diversity.
Collapse
Affiliation(s)
- Jennifer Risso-Ballester
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980 València, Spain.
| | - Rafael Sanjuán
- Institute for Integrative Systems Biology (I2SysBio), Universitat de València-CSIC, Paterna, 46980 València, Spain.
| |
Collapse
|
48
|
Many human RNA viruses show extraordinarily stringent selective constraints on protein evolution. Proc Natl Acad Sci U S A 2019; 116:19009-19018. [PMID: 31484772 DOI: 10.1073/pnas.1907626116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
How negative selection, positive selection, and population size contribute to the large variation in nucleotide substitution rates among RNA viruses remains unclear. Here, we studied the ratios of nonsynonymous-to-synonymous substitution rates (d N/d S) in protein-coding genes of human RNA and DNA viruses and mammals. Among the 21 RNA viruses studied, 18 showed a genome-average d N/d S from 0.01 to 0.10, indicating that over 90% of nonsynonymous mutations are eliminated by negative selection. Only HIV-1 showed a d N/d S (0.31) higher than that (0.22) in mammalian genes. By comparing the d N/d S values among genes in the same genome and among species or strains, we found that both positive selection and population size play significant roles in the d N/d S variation among genes and species. Indeed, even in flaviviruses and picornaviruses, which showed the lowest ratios among the 21 species studied, positive selection appears to have contributed significantly to d N/d S We found the view that positive selection occurs much more frequently in influenza A subtype H3N2 than subtype H1N1 holds only for the hemagglutinin and neuraminidase genes, but not for other genes. Moreover, we found no support for the view that vector-borne RNA viruses have lower d N/d S ratios than non-vector-borne viruses. In addition, we found a correlation between d N and d S, implying a correlation between d N and the mutation rate. Interestingly, only 2 of the 8 DNA viruses studied showed a d N/d S < 0.10, while 4 showed a d N/d S > 0.22. These observations increase our understanding of the mechanisms of RNA virus evolution.
Collapse
|
49
|
Rates of Molecular Evolution in a Marine Synechococcus Phage Lineage. Viruses 2019; 11:v11080720. [PMID: 31390807 PMCID: PMC6722890 DOI: 10.3390/v11080720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/27/2019] [Accepted: 07/31/2019] [Indexed: 12/30/2022] Open
Abstract
Cyanophages are characterized by vast genomic diversity and the formation of stable ecotypes over time. The evolution of phage diversity includes vertical processes, such as mutation, and horizontal processes, such as recombination and gene transfer. Here, we study the contribution of vertical and horizontal processes to short-term evolution of marine cyanophages. Analyzing time series data of Synechococcus-infecting Myoviridae ecotypes spanning up to 17 years, we found a high contribution of recombination relative to mutation (r/m) in all ecotypes. Additionally, we found a molecular clock of substitution and recombination in one ecotype, RIM8. The estimated RIM8 evolutionary rates are 2.2 genome-wide substitutions per year (1.275 × 10−5 substitutions/site/year) and 29 genome-wide nucleotide alterations due to recombination per year. We found 26 variable protein families, of which only two families have a predicted functional annotation, suggesting that they are auxiliary metabolic genes with bacterial homologs. A comparison of our rate estimates to other phage evolutionary rate estimates in the literature reveals a negative correlation of phage substitution rates with their genome size. A comparison to evolutionary rates in bacterial organisms further shows that phages have high rates of mutation and recombination compared to their bacterial hosts. We conclude that the increased recombination rate in phages likely contributes to their vast genomic diversity.
Collapse
|
50
|
Aris-Brosou S, Parent L, Ibeh N. Viral Long-Term Evolutionary Strategies Favor Stability over Proliferation. Viruses 2019; 11:v11080677. [PMID: 31344814 PMCID: PMC6722887 DOI: 10.3390/v11080677] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/12/2019] [Accepted: 07/20/2019] [Indexed: 02/01/2023] Open
Abstract
Viruses are known to have some of the highest and most diverse mutation rates found in any biological replicator, with single-stranded (ss) RNA viruses evolving the fastest, and double-stranded (ds) DNA viruses having rates approaching those of bacteria. As mutation rates are tightly and negatively correlated with genome size, selection is a clear driver of viral evolution. However, the role of intragenomic interactions as drivers of viral evolution is still unclear. To understand how these two processes affect the long-term evolution of viruses infecting humans, we comprehensively analyzed ssRNA, ssDNA, dsRNA, and dsDNA viruses, to find which virus types and which functions show evidence for episodic diversifying selection and correlated evolution. We show that selection mostly affects single stranded viruses, that correlated evolution is more prevalent in DNA viruses, and that both processes, taken independently, mostly affect viral replication. However, the genes that are jointly affected by both processes are involved in key aspects of their life cycle, favoring viral stability over proliferation. We further show that both evolutionary processes are intimately linked at the amino acid level, which suggests that it is the joint action of selection and correlated evolution, and not just selection, that shapes the evolutionary trajectories of viruses—and possibly of their epidemiological potential.
Collapse
Affiliation(s)
- Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
- Department of Mathematics and Statistics, University of Ottawa, Ottawa, ON K1N 6N5, Canada.
| | - Louis Parent
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Neke Ibeh
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|