1
|
Nguyen SK, Long E, Edgar JR, Firth AE, Stewart H. The EMCV protein 2B* is required for efficient cell lysis via both caspase-3-dependent and -independent pathways during infection. J Gen Virol 2025; 106:002075. [PMID: 39928567 PMCID: PMC11811419 DOI: 10.1099/jgv.0.002075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 02/12/2025] Open
Abstract
2B* is a poorly characterized protein encoded by an overlapping ORF in the genome of encephalomyocarditis virus (EMCV). We have previously found 2B* to have a role in innate immune antagonism; however, this role is distinct from an earlier described phenotype whereby 2B*KO viruses exhibit extremely small plaques compared to WT. Here, we report that the small plaque phenotype is recapitulated by novel EMCV mutant viruses harbouring mutations across the C-terminal domain of 2B*, confirming a functional role of 2B* in promoting viral spread. We found that 2B*KO EMCV displays impaired extracellular virus titres compared to WT EMCV, despite producing a similar number of infectious particles overall. This correlates with a reduction in cell lysis and lower levels of caspase-3 cleavage occurring during infection. Further investigation using caspase inhibitors and knockout cells revealed that WT EMCV can utilize both caspase-3-dependent and caspase-3-independent pathways to achieve cell lysis, the former of which is likely to be GSDME-mediated pyroptosis. 2B* increases the efficiency of both lytic pathways through an as-yet-undefined mechanism. This work reveals 2B*, a protein only found in EMCV, to be a key regulator of multiple lytic cell death pathways, leading to enhanced rates of virus release. This explains the rapid cell death observed during WT EMCV infection and the small plaque phenotype seen in both 2B*KO and previously described 2B* mutant viruses.
Collapse
Affiliation(s)
| | - Edward Long
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - James R. Edgar
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Hazel Stewart
- Department of Pathology, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Liu Q, Tan Y, Zhang ZW, Tang W, Han L, Peng KP, Liu MH, Tian GX. The role of NLRP3 inflammasome-mediated pyroptosis in astrocytes during hyperoxia-induced brain injury. Inflamm Res 2025; 74:25. [PMID: 39862240 DOI: 10.1007/s00011-024-01984-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 10/18/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Hyperoxia-induced brain injury is a severe neurological complication that is often accompanied by adverse long-term prognosis. The pathogenesis of hyperoxia-induced brain injury is highly complex, with neuroinflammation playing a crucial role. The activation of the nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3) inflammasome, which plays a pivotal role in regulating and amplifying the inflammatory response, is the pathological core of hyperoxia-induced brain injury. Additionally, astrocytes actively participate in neuroinflammatory responses. However, there is currently no comprehensive overview summarizing the role of astrocytes in hyperoxia-induced brain injury and the NLRP3 signaling pathways in astrocytes. OBJECTIVE This article aims to provide an overview of studies reported in the literature investigating the pathological role of astrocyte involvement during the inflammatory response in hyperoxia-induced brain injury, the mechanisms of hyperoxia activateing the NLRP3 inflammasome to mediate pyroptosis in astrocytes, and the potential therapeutic effects of drugs targeting the NLRP3 inflammasome to alleviate hyperoxia-induced brain injury. METHOD We searched major databases (including PubMed, Web of Science, and Google Scholar, etc.) for literature encompassing astrocytes, NLRP3 inflammasome, and pyroptosis during hyperoxia-induced brain injury up to Oct 2024. We combined with studies found in the reference lists of the included studies. CONCLUSION In this study, we elucidated the transition of function in astrocytes and activation mechanisms under hyperoxic conditions, and we summarized the potential upstream of the trigger involved in NLRP3 inflammasome activation during hyperoxia-induced brain injury, such as ROS and potassium efflux. Furthermore, we described the signaling pathways of the NLRP3 inflammasome and pyroptosis executed by GSDMD and GSDME in astrocytes under hyperoxic conditions. Finally, we summarized the inhibitors targeting the NLRP3 inflammasome in astrocytes to provide new insights for treating hyperoxia-induced brain injury.
Collapse
Affiliation(s)
- Qiao Liu
- Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yan Tan
- Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Zhan-Wei Zhang
- Department of Neurosurgery, The First Hospital of Hunan University of Chinese Medicine, 40007, Changsha, China
| | - Wang Tang
- Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Lei Han
- Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Ke-Ping Peng
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Hospital of Hunan University of Chinese Medicine, 40007, Changsha, China
| | - Ming-Hui Liu
- Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Gui-Xiang Tian
- Department of Ultrasound, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
| |
Collapse
|
3
|
Ren D, Ye X, Chen R, Jia X, He X, Tao J, Jin T, Wu S, Zhang H. Activation and evasion of inflammasomes during viral and microbial infection. Cell Mol Life Sci 2025; 82:56. [PMID: 39833559 PMCID: PMC11753444 DOI: 10.1007/s00018-025-05575-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/31/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
The inflammasome is a cytoplasmic multiprotein complex that induces the maturation of the proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) or pyroptosis by activating caspases, which play critical roles in regulating inflammation, cell death, and various cellular processes. Multiple studies have shown that the inflammasome is a key regulator of the host defence response against pathogen infections. During the process of pathogenic microbe invasion into host cells, the host's innate immune system recognizes these microbes by activating inflammasomes, triggering inflammatory responses to clear the microbes and initiate immune responses. Moreover, microbial pathogens have evolved various mechanisms to inhibit or evade the activation of inflammasomes. Therefore, we review the interactions between viruses and microbes with inflammasomes during the invasion process, highlight the molecular mechanisms of inflammasome activation induced by microbial pathogen infection, and highlight the corresponding strategies that pathogens employ to evade inflammasome activity. Finally, we also discuss potential therapeutic strategies for the treatment of pathogenic microbial infections via the targeting of inflammasomes and their products.
Collapse
Affiliation(s)
- Dan Ren
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiaoou Ye
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Ruiming Chen
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xiuzhi Jia
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Xianhong He
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jinhui Tao
- Department of Rheumatology and Immunology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
| |
Collapse
|
4
|
Xie J, Idris A, Feng R. The complex interplay between encephalomyocarditis virus and the host defence system. Virulence 2024; 15:2383559. [PMID: 39066684 DOI: 10.1080/21505594.2024.2383559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024] Open
Abstract
A variety of animals can be infected by encephalomyocarditis virus (EMCV). EMCV is the established causative agent of myocarditis and encephalitis in some animals. EMCV causes high fatality in suckling and weaning piglets, making pigs the most susceptible domestic animal species. Importantly, EMCV has zoonotic potential to infect the human population. The ability of the pathogen to avoid and undermine the initial defence mechanism of the host contributes to its virulence and pathogenicity. A large body of literature highlights the intricate strategies employed by EMCV to escape the innate immune machinery to suit its "pathogenic needs." Here, we also provide examples on how EMCV interacts with certain host proteins to dampen the infection process. Hence, this concise review aims to summarize these findings in a compendium of decades of research on this exciting yet underappreciated topic.
Collapse
Affiliation(s)
- Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, QLD, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
5
|
Devantier K, Kjær VMS, Griffin S, Kragelund BB, Rosenkilde MM. Advancing the field of viroporins-Structure, function and pharmacology: IUPHAR Review 39. Br J Pharmacol 2024; 181:4450-4490. [PMID: 39224966 DOI: 10.1111/bph.17317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 09/04/2024] Open
Abstract
Viroporins possess important potential as antiviral targets due to their critical roles during virus life cycles, spanning from virus entry to egress. Although the antiviral amantadine targets the M2 viroporin of influenza A virus, successful progression of other viroporin inhibitors into clinical use remains challenging. These challenges relate in varying proportions to a lack of reliable full-length 3D-structures, difficulties in functionally characterising individual viroporins, and absence of verifiable direct binding between inhibitor and viroporin. This review offers perspectives to help overcome these challenges. We provide a comprehensive overview of the viroporin family, including their structural and functional features, highlighting the moldability of their energy landscapes and actions. To advance the field, we suggest a list of best practices to aspire towards unambiguous viroporin identification and characterisation, along with considerations of potential pitfalls. Finally, we present current and future scenarios of, and prospects for, viroporin targeting drugs.
Collapse
Affiliation(s)
- Kira Devantier
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Viktoria M S Kjær
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stephen Griffin
- Leeds Institute of Medical Research, St James' University Hospital, School of Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - Birthe B Kragelund
- Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mette M Rosenkilde
- Molecular and Translational Pharmacology, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
6
|
Li S, Wang J, Dai X, Li C, Li T, Chen L. The PDZ domain of the E protein in SARS-CoV induces carcinogenesis and poor prognosis in LUAD. Microbes Infect 2024; 26:105381. [PMID: 38914369 DOI: 10.1016/j.micinf.2024.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 06/26/2024]
Abstract
BACKGROUND In both lung adenocarcinoma (LUAD) and severe acute respiratory syndrome (SARS), uncontrolled inflammation can be detected in lung tissue. The PDZ-binding motif (PBM) in the SARS-CoV-1 E protein has been demonstrated to be a virulence factor that induces a cytokine storm. METHODS To identify gene expression fluctuations induced by PBM, microarray sequencing data of lung tissue infected with wild-type (SARS-CoV-1-E-wt) or recombinant virus (SARS-CoV-1-E-mutPBM) were analyzed, followed by functional enrichment analysis. To understand the role of the screened genes in LUAD, overall survival and immune correlation were calculated. RESULTS A total of 12 genes might participate in the initial and developmental stages of LUAD through expression variation and mutation. Moreover, dysregulation of a total of 12 genes could lead to a poorer prognosis. In addition, the downregulation of MAMDC2 and ITGA8 by PBM could also affect patient prognosis. Although the conserved PBM (-D-L-L-V-) can be found at the end of the carboxyl terminus in multiple E proteins of coronaviruses, the specific function of each protein depends on the entire amino acid sequence. CONCLUSIONS In summary, PBM containing the SARS-CoV-1 E protein promoted the carcinogenesis of LUAD by dysregulating important gene expression profiles and subsequently influencing the immune response and overall prognosis.
Collapse
Affiliation(s)
- Shun Li
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China; Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China
| | - Jinxuan Wang
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
| | - Xiaozhen Dai
- School of Biosciences and Technology, Chengdu Medical College, Chengdu 610500, China
| | - Churong Li
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China
| | - Tao Li
- Radiotherapy Center, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Long Chen
- School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610500, China; Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan 610500, China.
| |
Collapse
|
7
|
Mao S, Liu X, Wu D, Zhang Z, Sun D, Ou X, Huang J, Wu Y, Yang Q, Tian B, Chen S, Liu M, Zhu D, Zhang S, Zhao X, He Y, Wu Z, Jia R, Wang M, Cheng A. Duck hepatitis A virus 1-encoded 2B protein disturbs ion and organelle homeostasis to promote NF-κB/NLRP3-mediated inflammatory response. Int J Biol Macromol 2024; 280:135876. [PMID: 39322136 DOI: 10.1016/j.ijbiomac.2024.135876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/29/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Previous studies by our group and others have highlighted the critical role of hyperinflammation in the pathogenicity of duck hepatitis A virus 1 (DHAV-1), an avian picornavirus that has caused significant devastation in the duck industry worldwide for decades. However, the precise mechanisms by which DHAV-1 infection regulates the inflammatory responses, particularly the production of IL-1β, remain poorly understood. In this study, we demonstrate that DHAV-1 infection triggers NF-κB- and NLRP3 inflammasome-mediated IL-1β production. Mechanistically, DHAV-1 infection, particularly its replication and translation, disrupts cellular homeostasis of Ca2+, K+, ROS and cathepsin, which act cooperatively as assembly signals for NLRP3 inflammasome activation. By screening DHAV-1-encoded proteins, we identified that the viroporin 2B dominates NF-κB as well as NLRP3 inflammasome activation. Mutation analysis revealed that I43 within the 2B protein is the key amino acid for Ca2+ mobilization and subsequent activation of NF-κB transcriptional activity and NLRP3 inflammasome. Moreover, DHAV-1 infection and the 2B protein activate the MAVS- and MyD88-NF-κB pathways by relay, providing the necessary priming signals for NLRP3 inflammasome activation. In summary, our findings elucidate a mechanism through which DHAV-1 triggers inflammatory responses via NF-κB/NLRP3 inflammasome activation, offering new perspectives on DHAV-1 pathogenesis and informing the development of targeted anti-DHAV-1 treatments.
Collapse
Affiliation(s)
- Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
| | - Xinghong Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Dandan Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhilong Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
| | - Yu He
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Zhen Wu
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China.
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China.
| |
Collapse
|
8
|
Zhang X, Chen G, Yin J, Nie L, Li L, Du Q, Tong D, Huang Y. Pseudorabies Virus UL4 protein promotes the ASC-dependent inflammasome activation and pyroptosis to exacerbate inflammation. PLoS Pathog 2024; 20:e1012546. [PMID: 39316625 PMCID: PMC11421794 DOI: 10.1371/journal.ppat.1012546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/30/2024] [Indexed: 09/26/2024] Open
Abstract
Pseudorabies virus (PRV) infection causes systemic inflammatory responses and inflammatory damages in infected animals, which are associated with the activation of inflammasome and pyroptosis in infected tissues. Here, we identified a critical function of PRV non-structural protein UL4 that enhanced ASC-dependent inflammasome activation to promote pyroptosis. Whereas, the deficiency of viral UL4 was able to reduce ASC-dependent inflammasome activation and the occurrences of pyroptosis. Mechanistically, the 132-145 aa of UL4 permitted its translocation from the nucleus to the cytoplasm to interact with cytoplasmic ASC to promote the activation of NLRP3 and AIM2 inflammasome. Further research showed that UL4 promoted the phosphorylation levels of SYK and JNK to enhance the ASC phosphorylation, which led to the increase of ASC oligomerization, thus promoting the activation of NLRP3 and AIM2 inflammasome and enhanced GSDMD-mediated pyroptosis. In vivo experiments further showed that PRV UL4 (132DVAADAAAEAAAAE145) mutated strain (PRV-UL4mut) infection did not lead to a significant decrease in viral titers at 12 h. p. i, but it induced lower levels of IL-1β, IL-18, and GSDMD-NT, which led to an alleviated inflammatory infiltration and pathological damage in the lungs and brains, and a lower death rate compared with wild-type PRV strain infection. Taken together, our findings unravel that UL4 is an important viral regulator to manipulate the inflammasome signaling and pyroptosis of host cells to promote the pathogenicity of PRV, which might be further exploited as a new target for live attenuated vaccines or therapeutic strategies against pseudorabies in the future.
Collapse
Affiliation(s)
- Xiaohua Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Guiyuan Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Junqing Yin
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Lichen Nie
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Linghao Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| | - Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Ministry of Education, Yangling, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Yangling, China
- Engineering Research Center of Efficient New Vaccines for Animals, Universities of Shaanxi Province, Yangling, China
| |
Collapse
|
9
|
Sui B, Zhao J, Wang J, Zheng J, Zhou R, Wu D, Zeng Z, Yuan Y, Fu Z, Zhao L, Zhou M. Lyssavirus matrix protein inhibits NLRP3 inflammasome assembly by binding to NLRP3. Cell Rep 2024; 43:114478. [PMID: 38985668 DOI: 10.1016/j.celrep.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/06/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024] Open
Abstract
Lyssavirus is a kind of neurotropic pathogen that needs to evade peripheral host immunity to enter the central nervous system to accomplish infection. NLRP3 inflammasome activation is essential for the host to defend against pathogen invasion. This study demonstrates that the matrix protein (M) of lyssavirus can inhibit both the priming step and the activation step of NLRP3 inflammasome activation. Specifically, M of lyssavirus can compete with NEK7 for binding to NLRP3, which restricts downstream apoptosis-associated speck-like protein containing a CARD (ASC) oligomerization. The serine amino acid at the 158th site of M among lyssavirus is critical for restricting ASC oligomerization. Moreover, recombinant lab-attenuated lyssavirus rabies (rabies lyssavirus [RABV]) with G158S mutation at M decreases interleukin-1β (IL-1β) production in bone-marrow-derived dendritic cells (BMDCs) to facilitate lyssavirus invasion into the brain thereby elevating pathogenicity in mice. Taken together, this study reveals a common mechanism by which lyssavirus inhibits NLRP3 inflammasome activation to evade host defenses.
Collapse
Affiliation(s)
- Baokun Sui
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianqing Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinxiao Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiaxin Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zonghui Zeng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Yueming Yuan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenfang Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China; Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan 430070, China.
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Preventive Veterinary Medicine of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
10
|
Duan Y, Zhu Y, Zhang L, Wang W, Zhang M, Tian J, Li Q, Ai J, Wang R, Xie Z. Activation of the NLRP3 inflammasome by human adenovirus type 7 L4 100-kilodalton protein. Front Immunol 2024; 15:1294898. [PMID: 38660301 PMCID: PMC11041921 DOI: 10.3389/fimmu.2024.1294898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 04/03/2024] [Indexed: 04/26/2024] Open
Abstract
Human adenovirus type 7 (HAdV-7) is a significant viral pathogen that causes respiratory infections in children. Currently, there are no specific antiviral drugs or vaccines for children targeting HAdV-7, and the mechanisms of its pathogenesis remain unclear. The NLRP3 inflammasome-driven inflammatory cascade plays a crucial role in the host's antiviral immunity. Our previous study demonstrated that HAdV-7 infection activates the NLRP3 inflammasome. Building upon this finding, our current study has identified the L4 100 kDa protein encoded by HAdV-7 as the primary viral component responsible for NLRP3 inflammasome activation. By utilizing techniques such as co-immunoprecipitation, we have confirmed that the 100 kDa protein interacts with the NLRP3 protein and facilitates the assembly of the NLRP3 inflammasome by binding specifically to the NACHT and LRR domains of NLRP3. These insights offer a deeper understanding of HAdV-7 pathogenesis and contribute to the development of novel antiviral therapies.
Collapse
Affiliation(s)
- Yali Duan
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
- Department of Infectious Diseases, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yun Zhu
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Linlin Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pediatrics, Beijing Jingmei Group General Hospital, Beijing, China
| | - Meng Zhang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
- Department of Pediatric Rehabilitation, Beijing Boai Hospital, School of Rehabilitation Medicine, Capital Medical University, China Rehabilitation Research Center, Beijing, China
| | - Jiao Tian
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Qi Li
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Junhong Ai
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Ran Wang
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhengde Xie
- Beijing Key Laboratory of Pediatric Respiratory Infectious Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, Laboratory of Infection and Virology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
- Research Unit of Critical Infection in Children, 2019RU016, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
11
|
Cedillo-Barrón L, García-Cordero J, Visoso-Carvajal G, León-Juárez M. Viroporins Manipulate Cellular Powerhouses and Modulate Innate Immunity. Viruses 2024; 16:345. [PMID: 38543711 PMCID: PMC10974846 DOI: 10.3390/v16030345] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 05/23/2024] Open
Abstract
Viruses have a wide repertoire of molecular strategies that focus on their replication or the facilitation of different stages of the viral cycle. One of these strategies is mediated by the activity of viroporins, which are multifunctional viral proteins that, upon oligomerization, exhibit ion channel properties with mild ion selectivity. Viroporins facilitate multiple processes, such as the regulation of immune response and inflammasome activation through the induction of pore formation in various cell organelle membranes to facilitate the escape of ions and the alteration of intracellular homeostasis. Viroporins target diverse membranes (such as the cellular membrane), endoplasmic reticulum, and mitochondria. Cumulative data regarding the importance of mitochondria function in multiple processes, such as cellular metabolism, energy production, calcium homeostasis, apoptosis, and mitophagy, have been reported. The direct or indirect interaction of viroporins with mitochondria and how this interaction affects the functioning of mitochondrial cells in the innate immunity of host cells against viruses remains unclear. A better understanding of the viroporin-mitochondria interactions will provide insights into their role in affecting host immune signaling through the mitochondria. Thus, in this review, we mainly focus on descriptions of viroporins and studies that have provided insights into the role of viroporins in hijacked mitochondria.
Collapse
Affiliation(s)
- Leticia Cedillo-Barrón
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Julio García-Cordero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
| | - Giovani Visoso-Carvajal
- Department of Molecular Biomedicine, Center for Research and Advanced Studies (CINVESTAV-IPN) Av., IPN # 2508 Col., San Pedro Zacatenco, Mexico City 07360, Mexico; (J.G.-C.); (G.V.-C.)
- Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón esq, Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Mexico City 11340, Mexico
| | - Moisés León-Juárez
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| |
Collapse
|
12
|
Ivin Y, Butusova A, Gladneva E, Gmyl A, Ishmukhametov A. Comprehensive Elucidation of the Role of L and 2A Security Proteins on Cell Death during EMCV Infection. Viruses 2024; 16:280. [PMID: 38400055 PMCID: PMC10892303 DOI: 10.3390/v16020280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/03/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
The EMCV L and 2A proteins are virulence factors that counteract host cell defense mechanisms. Both L and 2A exhibit antiapoptotic properties, but the available data were obtained in different cell lines and under incomparable conditions. This study is aimed at checking the role of these proteins in the choice of cell death type in three different cell lines using three mutants of EMCV lacking functional L, 2A, and both proteins together. We have found that both L and 2A are non-essential for viral replication in HeLa, BHK, and RD cell lines, as evidenced by the viability of the virus in the absence of both functional proteins. L-deficient infection led to the apoptotic death of HeLa and RD cells, and the necrotic death of BHK cells. 2A-deficient infection induced apoptosis in BHK and RD cells. Infection of HeLa cells with the 2A-deficient mutant was finalized with exclusive caspase-dependent death with membrane permeabilization, morphologically similar to pyroptosis. We also demonstrated that inactivation of both proteins, along with caspase inhibition, delayed cell death progression. The results obtained demonstrate that proteins L and 2A play a critical role in choosing the path of cell death during infection, but the result of their influence depends on the properties of the host cells.
Collapse
Affiliation(s)
- Yury Ivin
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
| | - Anna Butusova
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
| | - Ekaterina Gladneva
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
| | - Anatoly Gmyl
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
| | - Aydar Ishmukhametov
- FSASI “M.P. Chumakov Federal Scientific Center for Research and Development of Immunobiological Drugs of the Russian Academy of Sciences (Polio Institute)”, 118819 Moscow, Russia; (A.B.); (E.G.); (A.I.)
- Institute of Translational Medicine and Biotechnology, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
13
|
Chen L, Yang L, Li Y, Liu T, Yang B, Liu L, Wu R. Autophagy and Inflammation: Regulatory Roles in Viral Infections. Biomolecules 2023; 13:1454. [PMID: 37892135 PMCID: PMC10604974 DOI: 10.3390/biom13101454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway in eukaryotic organisms, playing an adaptive role in various pathophysiological processes throughout evolution. Inflammation is the immune system's response to external stimuli and tissue damage. However, persistent inflammatory reactions can lead to a range of inflammatory diseases and cancers. The interaction between autophagy and inflammation is particularly evident during viral infections. As a crucial regulator of inflammation, autophagy can either promote or inhibit the occurrence of inflammatory responses. In turn, inflammation can establish negative feedback loops by modulating autophagy to suppress excessive inflammatory reactions. This interaction is pivotal in the pathogenesis of viral diseases. Therefore, elucidating the regulatory roles of autophagy and inflammation in viral infections will significantly enhance our understanding of the mechanisms underlying related diseases. Furthermore, it will provide new insights and theoretical foundations for disease prevention, treatment, and drug development.
Collapse
Affiliation(s)
- Li Chen
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Limin Yang
- School of Medicine, Dalian University, Dalian 116622, China;
| | - Yingyu Li
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Tianrun Liu
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Bolun Yang
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Lei Liu
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| | - Rui Wu
- School of Medicine, Jiamusi University, Jiamusi 154007, China; (L.C.); (Y.L.); (T.L.); (B.Y.)
| |
Collapse
|
14
|
Chen D, Tuo T, Zhang Y, Zhou L, Ge X, Han J, Guo X, Yang H. PRRSV inhibited the proliferation of CSFV by inducing IL-1β maturation via NLRP3 inflammasome activation. Vet Microbiol 2023; 284:109825. [PMID: 37453262 DOI: 10.1016/j.vetmic.2023.109825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/18/2023]
Abstract
PRRSV and CSFV are both common infectious pathogens in porcine populations, posing significant threats to the healthy development of the porcine industry. Vaccine immunization is the main way to prevent and control these two diseases. Increasing studies have demonstrated that there is an interaction between PRRSV co-infection and CSFV vaccine immune failure. To investigate the effect of PRRSV infection on CSFV proliferation and its molecular mechanism, the proliferation dynamics of PRRSV/CSFV, the NLRP3 inflammasome components, and IL-1β expression levels were detected in PRRSV/CSFV alone- or co-infection. Subsequently, the relationship between inflammasome activation, IL-1β expression, and CSFV proliferation was analyzed through the construction of an inflammasome activation model, specific siRNA interference, and specific inhibitor treatment. The results showed that CSFV infection had a poor regulatory effect on NLRP3 inflammasome activation and IL-1β maturation, but PRRSV and CSFV co-infection could significantly up-regulate the expression of NLRP3 and ASC, induce Caspase-1 activation, and promote IL-1β maturation. It was further determined that NLRP3 inflammasome components played important roles in IL-1β maturation and inhibiting CSFV proliferation by PRRSV. Additional experiments indicated that PRRSV replication is essential for NLRP3 inflammasome activation, IL-1β maturation, and CSFV proliferation inhibition. More importantly, NLRP3 inflammasome activation is regulated by the TLR4-MyD88-NF-κB pathways. In conclusion, PRRSV infection induced IL-1β maturation by activating the NLRP3 inflammasome through the TLR4-MyD88-NF-κB pathways and then inhibited the proliferation of CSFV. These data further improved the theoretical basis for PRRSV inducing inflammatory factors and leading to the failure of CSFV immunization.
Collapse
Affiliation(s)
- Dengjin Chen
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Tianbei Tuo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yongning Zhang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Lei Zhou
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xinna Ge
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jun Han
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xin Guo
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China.
| | - Hanchun Yang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
15
|
Zheng Q, Hua C, Liang Q, Cheng H. The NLRP3 inflammasome in viral infection (Review). Mol Med Rep 2023; 28:160. [PMID: 37417336 PMCID: PMC10407610 DOI: 10.3892/mmr.2023.13047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
The interplay between pathogen and host determines the immune response during viral infection. The Nod‑like receptor (NLR) protein 3 inflammasome is a multiprotein complex that induces the activation of inflammatory caspases and the release of IL‑1β, which play an important role in the innate immune responses. In the present review, the mechanisms of the NLR family pyrin domain containing 3 inflammasome activation and its dysregulation in viral infection were addressed.
Collapse
Affiliation(s)
- Qiaoli Zheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Chunting Hua
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Qichang Liang
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
16
|
Han YH, Liu XD, Jin MH, Sun HN, Kwon T. Role of NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Inflamm Res 2023; 72:1839-1859. [PMID: 37725102 DOI: 10.1007/s00011-023-01790-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases are a common group of neurological disorders characterized by progressive loss of neuronal structure and function leading to cognitive impairment. Recent studies have shown that neuronal pyroptosis mediated by the NLRP3 inflammasome plays a crucial role in the pathogenesis of neurodegenerative diseases. OBJECTIVE AND METHOD The NLRP3 inflammasome is a multiprotein complex that, when activated within cells, triggers an inflammatory response, ultimately leading to pyroptotic cell death of neurons. Pyroptosis is a typical pro-inflammatory programmed cell death process occurring downstream of NLRP3 inflammasome activation, characterized by the formation of pores on the cell membrane by the GSDMD protein, leading to cell lysis and the release of inflammatory factors. It has been found that NLRP3 inflammasome-mediated neuronal pyroptosis is closely associated with the development of various neurodegenerative diseases, such as Alzheimer's disease, traumatic brain injury, and Parkinson's disease. Therefore, inhibiting NLRP3 inflammasome activation and attenuating neuronal pyroptosis could potentially serve as novel strategies for the treatment of neurodegenerative diseases. RESULTS The aim of this review is to explore the role of NLRP3 activation-mediated neuronal pyroptosis and neuroinflammation in neurodegenerative diseases. Firstly, we extensively discuss the relationship between NLRP3 inflammasome-mediated neuronal pyroptosis and neuroinflammation in various neurodegenerative diseases. Subsequently, we further explore the mechanisms driving NLRP3 activation and assembly, as well as the post-translational modifications regulating NLRP3 inflammasome activation. CONCLUSION Understanding these mechanisms will contribute to a deeper understanding of the link between neuronal pyroptosis and neurodegenerative diseases, and hold significant implications for the treatment and prevention of neurodegenerative diseases.
Collapse
Affiliation(s)
- Ying-Hao Han
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Xiao-Dong Liu
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Mei-Hua Jin
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China
| | - Hu-Nan Sun
- College of Life Science & Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, 163319, China.
| | - Taeho Kwon
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup-si, Jeonbuk, 56216, Republic of Korea.
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
17
|
Shi W, Jin M, Chen H, Wu Z, Yuan L, Liang S, Wang X, Memon FU, Eldemery F, Si H, Ou C. Inflammasome activation by viral infection: mechanisms of activation and regulation. Front Microbiol 2023; 14:1247377. [PMID: 37608944 PMCID: PMC10440708 DOI: 10.3389/fmicb.2023.1247377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023] Open
Abstract
Viral diseases are the most common problems threatening human health, livestock, and poultry industries worldwide. Viral infection is a complex and competitive dynamic biological process between a virus and a host/target cell. During viral infection, inflammasomes play important roles in the host and confer defense mechanisms against the virus. Inflammasomes are polymeric protein complexes and are considered important components of the innate immune system. These immune factors recognize the signals of cell damage or pathogenic microbial infection after activation by the canonical pathway or non-canonical pathway and transmit signals to the immune system to initiate the inflammatory responses. However, some viruses inhibit the activation of the inflammasomes in order to replicate and proliferate in the host. In recent years, the role of inflammasome activation and/or inhibition during viral infection has been increasingly recognized. Therefore, in this review, we describe the biological properties of the inflammasome associated with viral infection, discuss the potential mechanisms that activate and/or inhibit NLRP1, NLRP3, and AIM2 inflammasomes by different viruses, and summarize the reciprocal regulatory effects of viral infection on the NLRP3 inflammasome in order to explore the relationship between viral infection and inflammasomes. This review will pave the way for future studies on the activation mechanisms of inflammasomes and provide novel insights for the development of antiviral therapies.
Collapse
Affiliation(s)
- Wen Shi
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Mengyun Jin
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hao Chen
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | | | - Liuyang Yuan
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Si Liang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xiaohan Wang
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Fareed Uddin Memon
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Fatma Eldemery
- Department of Hygiene and Zoonoses, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Changbo Ou
- College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| |
Collapse
|
18
|
Surya W, Tavares-Neto E, Sanchis A, Queralt-Martín M, Alcaraz A, Torres J, Aguilella VM. The Complex Proteolipidic Behavior of the SARS-CoV-2 Envelope Protein Channel: Weak Selectivity and Heterogeneous Oligomerization. Int J Mol Sci 2023; 24:12454. [PMID: 37569828 PMCID: PMC10420310 DOI: 10.3390/ijms241512454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
The envelope (E) protein is a small polypeptide that can form ion channels in coronaviruses. In SARS coronavirus 2 (SARS-CoV-2), the agent that caused the recent COVID-19 pandemic, and its predecessor SARS-CoV-1, E protein is found in the endoplasmic reticulum-Golgi intermediate compartment (ERGIC), where virion budding takes place. Several reports claim that E protein promotes the formation of "cation-selective channels". However, whether this term represents specificity to certain ions (e.g., potassium or calcium) or the partial or total exclusion of anions is debatable. Herein, we discuss this claim based on the available data for SARS-CoV-1 and -2 E and on new experiments performed using the untagged full-length E protein from SARS-CoV-2 in planar lipid membranes of different types, including those that closely mimic the ERGIC membrane composition. We provide evidence that the selectivity of the E-induced channels is very mild and depends strongly on lipid environment. Thus, despite past and recent claims, we found no indication that the E protein forms cation-selective channels that prevent anion transport, and even less that E protein forms bona fide specific calcium channels. In fact, the E channel maintains its multi-ionic non-specific neutral character even in concentrated solutions of Ca2+ ions. Also, in contrast to previous studies, we found no evidence that SARS-CoV-2 E channel activation requires a particular voltage, high calcium concentrations or low pH, in agreement with available data from SARS-CoV-1 E. In addition, sedimentation velocity experiments suggest that the E channel population is mostly pentameric, but very dynamic and probably heterogeneous, consistent with the broad distribution of conductance values typically found in electrophysiological experiments. The latter has been explained by the presence of proteolipidic channel structures.
Collapse
Affiliation(s)
- Wahyu Surya
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Ernesto Tavares-Neto
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12080 Castellon, Spain; (E.T.-N.); (M.Q.-M.); (A.A.)
| | - Andrea Sanchis
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12080 Castellon, Spain; (E.T.-N.); (M.Q.-M.); (A.A.)
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12080 Castellon, Spain; (E.T.-N.); (M.Q.-M.); (A.A.)
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12080 Castellon, Spain; (E.T.-N.); (M.Q.-M.); (A.A.)
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore;
| | - Vicente M. Aguilella
- Laboratory of Molecular Biophysics, Department of Physics, Universitat Jaume I, 12080 Castellon, Spain; (E.T.-N.); (M.Q.-M.); (A.A.)
| |
Collapse
|
19
|
Wu N, Zheng C, Xu J, Ma S, Jia H, Yan M, An F, Zhou Y, Qi J, Bian H. Race between virus and inflammasomes: inhibition or escape, intervention and therapy. Front Cell Infect Microbiol 2023; 13:1173505. [PMID: 37465759 PMCID: PMC10351387 DOI: 10.3389/fcimb.2023.1173505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 07/20/2023] Open
Abstract
The inflammasome is a multiprotein complex that further regulates cell pyroptosis and inflammation by activating caspase-1. The assembly and activation of inflammasome are associated with a variety of diseases. Accumulative studies have shown that inflammasome is a key modulator of the host's defense response to viral infection. Indeed, it has been established that activation of inflammasome occurs during viral infection. At the same time, the host has evolved a variety of corresponding mechanisms to inhibit unnecessary inflammasome activation. Therefore, here, we review and summarize the latest research progress on the interaction between inflammosomes and viruses, highlight the assembly and activation of inflammosome in related cells after viral infection, as well as the corresponding molecular regulatory mechanisms, and elucidate the effects of this activation on virus immune escape and host innate and adaptive immune defenses. Finally, we also discuss the potential therapeutic strategies to prevent and/or ameliorate viral infection-related diseases via targeting inflammasomes and its products.
Collapse
Affiliation(s)
- Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunzhi Zheng
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiarui Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fuxiang An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi Zhou
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
20
|
Pourcelot M, da Silva Moraes RA, Lacour S, Fablet A, Caignard G, Vitour D. Activation of Inflammasome during Bluetongue Virus Infection. Pathogens 2023; 12:801. [PMID: 37375491 DOI: 10.3390/pathogens12060801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Bluetongue virus (BTV), a double-stranded RNA virus belonging to the Sedoreoviridae family, provokes an economically important disease in ruminants. In this study, we show that the production of activated caspase-1 and interleukin 1 beta (IL-1β) is induced in BTV-infected cells. This response seems to require virus replication since a UV-inactivated virus is unable to activate this pathway. In NLRP3-/- cells, BTV could not trigger further IL-1β synthesis, indicating that it occurs through NLRP3 inflammasome activation. Interestingly, we observed differential activation levels in bovine endothelial cells depending on the tissue origin. In particular, inflammasome activation was stronger in umbilical cord cells, suggesting that these cells are more prone to induce the inflammasome upon BTV infection. Finally, the strength of the inflammasome activation also depends on the BTV strain, which points to the importance of viral origin in inflammasome modulation. This work reports the crucial role of BTV in the activation of the NLRP3 inflammasome and further shows that this activation relies on BTV replication, strains, and cell types, thus providing new insights into BTV pathogenesis.
Collapse
Affiliation(s)
- Marie Pourcelot
- UMR Virologie, Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, 94703 Maisons-Alfort, France
| | - Rayane Amaral da Silva Moraes
- UMR Virologie, Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, 94703 Maisons-Alfort, France
| | - Sandrine Lacour
- UMR Virologie, Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, 94703 Maisons-Alfort, France
| | - Aurore Fablet
- UMR Virologie, Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, 94703 Maisons-Alfort, France
| | - Grégory Caignard
- UMR Virologie, Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, 94703 Maisons-Alfort, France
| | - Damien Vitour
- UMR Virologie, Laboratory for Animal Health, INRAE, Ecole Nationale Vétérinaire d'Alfort, ANSES, 94703 Maisons-Alfort, France
| |
Collapse
|
21
|
Waqqar S, Lee K, Lawley B, Bilton T, Quiñones-Mateu ME, Bostina M, Burga LN. Directed Evolution of Seneca Valley Virus in Tumorsphere and Monolayer Cell Cultures of a Small-Cell Lung Cancer Model. Cancers (Basel) 2023; 15:cancers15092541. [PMID: 37174006 PMCID: PMC10177334 DOI: 10.3390/cancers15092541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
The Seneca Valley virus (SVV) is an oncolytic virus from the picornavirus family, characterized by a 7.3-kilobase RNA genome encoding for all the structural and functional viral proteins. Directed evolution by serial passaging has been employed for oncolytic virus adaptation to increase the killing efficacy towards certain types of tumors. We propagated the SVV in a small-cell lung cancer model under two culture conditions: conventional cell monolayer and tumorspheres, with the latter resembling more closely the cellular structure of the tumor of origin. We observed an increase of the virus-killing efficacy after ten passages in the tumorspheres. Deep sequencing analyses showed genomic changes in two SVV populations comprising 150 single nucleotides variants and 72 amino acid substitutions. Major differences observed in the tumorsphere-passaged virus population, compared to the cell monolayer, were identified in the conserved structural protein VP2 and in the highly variable P2 region, suggesting that the increase in the ability of the SVV to kill cells over time in the tumorspheres is acquired by capsid conservation and positively selecting mutations to counter the host innate immune responses.
Collapse
Affiliation(s)
- Shakeel Waqqar
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Kai Lee
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Blair Lawley
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Timothy Bilton
- Invermay Agricultural Centre, AgResearch, Mosgiel 9092, New Zealand
| | | | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
22
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
23
|
Yamada T, Takaoka A. Innate immune recognition against SARS-CoV-2. Inflamm Regen 2023; 43:7. [PMID: 36703213 PMCID: PMC9879261 DOI: 10.1186/s41232-023-00259-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the causative virus of pandemic acute respiratory disease called coronavirus disease 2019 (COVID-19). Most of the infected individuals have asymptomatic or mild symptoms, but some patients show severe and critical systemic inflammation including tissue damage and multi-organ failures. Immune responses to the pathogen determine clinical course. In general, the activation of innate immune responses is mediated by host pattern-recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs) as well as host damage-associated molecular patterns (DAMPs), which results in the activation of the downstream gene induction programs of types I and III interferons (IFNs) and proinflammatory cytokines for inducing antiviral activity. However, the excessive activation of these responses may lead to deleterious inflammation. Here, we review the recent advances in our understanding of innate immune responses to SARS-CoV-2 infection, particularly in terms of innate recognition and the subsequent inflammation underlying COVID-19 immunopathology.
Collapse
Affiliation(s)
- Taisho Yamada
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido Japan ,grid.39158.360000 0001 2173 7691Molecular Medical Biochemistry Unit, Graduate School of Chemical Sciences and Engineering Hokkaido University, Sapporo, Hokkaido Japan
| | - Akinori Takaoka
- grid.39158.360000 0001 2173 7691Division of Signaling in Cancer and Immunology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido Japan ,grid.39158.360000 0001 2173 7691Molecular Medical Biochemistry Unit, Graduate School of Chemical Sciences and Engineering Hokkaido University, Sapporo, Hokkaido Japan
| |
Collapse
|
24
|
Infection and Immunity. Clin Immunol 2023. [DOI: 10.1016/b978-0-12-818006-8.00007-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
25
|
Huang HI, Chio CC, Lin JY, Chou CJ, Lin CC, Chen SH, Yu LS. EV-A71 induced IL-1β production in THP-1 macrophages is dependent on NLRP3, RIG-I, and TLR3. Sci Rep 2022; 12:21425. [PMID: 36503883 PMCID: PMC9741760 DOI: 10.1038/s41598-022-25458-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
Enterovirus A71 (EV-A71) is an emerging enterovirus that can cause neurological complications. Enhanced serum IL-1β levels were observed in EV-A71 patients with severe neurological symptoms. However, the roles of sensors in enterovirus-induced IL-1β production are unclear. In this study, we identified that pattern recognition receptors, including RIG-I, TLR3, and TLR8, are implicated in EV-A71-triggered IL-1β release in human macrophages. EV-A71 infection results in caspase-1 and caspase-8, which act as regulators of EV-A71-induced NLRP3 and RIG-I inflammasome activation. Moreover, knockdown of the expression of TLR3 and TLR8 decreased the released IL-1β in an NLRP3-dependent manner. Since TLR3 and TLR8 ligands promote NLRP3 inflammasome activation via caspase-8, the alternative pathway may be involved. In summary, these results indicate that activation of the NLRP3 and RIG-I inflammasomes in EV-A71-infected macrophages is mediated by caspase-1 and caspase-8 and affected by TLRs, including TLR3 and TLR8.
Collapse
Affiliation(s)
- Hsing-I Huang
- grid.145695.a0000 0004 1798 0922Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan ,grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan ,grid.454211.70000 0004 1756 999XDepartment of Pediatrics, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chi-Chong Chio
- grid.145695.a0000 0004 1798 0922Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan ,grid.145695.a0000 0004 1798 0922Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Jhao-Yin Lin
- grid.145695.a0000 0004 1798 0922Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan ,grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chia-Jung Chou
- grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Chia-Chen Lin
- grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Shih-Hsiang Chen
- grid.454211.70000 0004 1756 999XDivision of Pediatric Hematology/Oncology, Linkou Chang Gung Memorial Hospital, Kwei-Shan, Tao-Yuan, Taiwan ,grid.145695.a0000 0004 1798 0922College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| | - Liang-Sheng Yu
- grid.145695.a0000 0004 1798 0922Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan
| |
Collapse
|
26
|
Orzalli MH, Parameswaran P. Effector-triggered immunity in mammalian antiviral defense. Trends Immunol 2022; 43:1006-1017. [PMID: 36369102 DOI: 10.1016/j.it.2022.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/08/2022] [Indexed: 01/12/2023]
Abstract
Effector-triggered immunity (ETI) is a common defense strategy used by mammalian host cells that is engaged upon detection of the enzymatic activities of pathogen-encoded proteins or the effects of their expression on cellular homeostasis. However, in contrast to the effector-triggered responses engaged upon bacterial infection, much less is understood about the activation and consequences of these responses following viral infection. Several recent studies have identified novel mechanisms by which viruses engage ETI, highlighting the importance of these immune responses in antiviral defense. We summarize recent advances in understanding how mammalian cells sense virus-encoded effector proteins, the downstream signaling pathways that are triggered by these sensing events, and how viruses manipulate these pathways to become more successful pathogens.
Collapse
Affiliation(s)
- Megan H Orzalli
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| | - Pooja Parameswaran
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
27
|
Fan W, Wang Y, Jiang S, Li Y, Yao X, Wang M, Zhao J, Sun X, Jiang X, Zhong L, Han Y, Song H, Xu Y. Identification of key proteins of cytopathic biotype bovine viral diarrhoea virus involved in activating NF-κB pathway in BVDV-induced inflammatory response. Virulence 2022; 13:1884-1899. [PMID: 36316807 PMCID: PMC9629132 DOI: 10.1080/21505594.2022.2135724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Bovine viral diarrhoea virus (BVDV) is the etiologic agent of bovine viral diarrhea-mucosal disease, one of the most important viral diseases in cattle, with inflammatory diarrhea, enteritis, and mucosa necrosis as the major clinical manifestations. NF-κB is an important transcription complex that regulates the expression of genes involved in inflammation and immune responses. NLRP3 inflammasome plays a key role in the development of inflammatory diseases. However, whether the activation of NF-κB is crucial for BVDV infection-induced inflammatory responses remains unclear. The results of our present study showed that BVDV infection significantly activated the NF-κB pathway and promoted the expression of NLRP3 inflammasome components (NLRP3, ASC, pro-caspase 1) as well inflammatory cytokine pro-IL-1β in BVDV-infected bovine cells, resulting in the cleavage of pro-caspase 1 and pro-IL-1β into active form caspase 1 and IL-1β. However, the levels of the NLRP3 inflammasome components and inflammatory cytokines were obviously inhibited, as well the cleavage of pro-caspase 1 and pro-IL-1β in the pre-treated bovine cells with NF-κB-specific inhibitors after BVDV infection. Further, cytopathic biotype BVDV (cpBVDV) Erns and NS5A proteins with their key functional domains contributed to BVDV-induced inflammatory responses via activating the NF-κB pathway were confirmed experimentally. Especially, the NS5A can promote cholesterol synthesis and accelerate its augmentation, further activating the NF-κB signalling pathway. Conclusively, our data elucidate that the activation of NF-κB signaling pathway plays a crucial role in cpBVDV infection-induced inflammatory responses.
Collapse
Affiliation(s)
- Wenlu Fan
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,College of Animal Science & Technology, Nanjing Agricultural University, Nanjing, P.R. China
| | - Yixin Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Sheng Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Yuan Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Xin Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
| | - Mei Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Jinghua Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiaobo Sun
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiaoxia Jiang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Linhan Zhong
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Yanyan Han
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China
| | - Houhui Song
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,CONTACT Houhui Song
| | - Yigang Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,Zhejiang Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, College of Animal Science & Technology, College of Veterinary Medicine, Zhejiang A&F University, Hangzhou, P.R. China,Yigang Xu
| |
Collapse
|
28
|
Surya W, Torres J. Oligomerization-Dependent Beta-Structure Formation in SARS-CoV-2 Envelope Protein. Int J Mol Sci 2022; 23:13285. [PMID: 36362071 PMCID: PMC9658050 DOI: 10.3390/ijms232113285] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/28/2022] [Accepted: 10/28/2022] [Indexed: 08/13/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. In SARS-CoV-2, the channel-forming envelope (E) protein is almost identical to the E protein in SARS-CoV, and both share an identical α-helical channel-forming domain. Structures for the latter are available in both detergent and lipid membranes. However, models of the extramembrane domains have only been obtained from solution NMR in detergents, and show no β-strands, in contrast to secondary-structure predictions. Herein, we have studied the conformation of purified SARS-CoV-2 E protein in lipid bilayers that mimic the composition of ER-Golgi intermediate compartment (ERGIC) membranes. The full-length E protein at high protein-to-lipid ratios produced a clear shoulder at 1635 cm-1, consistent with the β-structure, but this was absent when the E protein was diluted, which instead showed a band at around 1688 cm-1, usually assigned to β-turns. The results were similar with a mixture of POPC:POPG (2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine/3-glycerol) and also when using an E-truncated form (residues 8-65). However, the latter only showed β-structure formation at the highest concentration tested, while having a weaker oligomerization tendency in detergents than in full-length E protein. Therefore, we conclude that E monomer-monomer interaction triggers formation of the β-structure from an undefined structure (possibly β-turns) in at least about 15 residues located at the C-terminal extramembrane domain. Due to its proximity to the channel, this β-structure domain could modulate channel activity or modify membrane structure at the time of virion formation inside the cell.
Collapse
Affiliation(s)
| | - Jaume Torres
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| |
Collapse
|
29
|
Wang C, Yang R, Yang F, Han Y, Ren Y, Xiong X, Wang X, Bi Y, Li L, Qiu Y, Xu Y, Zhou X. Echovirus 11 infection induces pyroptotic cell death by facilitating NLRP3 inflammasome activation. PLoS Pathog 2022; 18:e1010787. [PMID: 36026486 PMCID: PMC9455886 DOI: 10.1371/journal.ppat.1010787] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 09/08/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022] Open
Abstract
Echovirus 11 (ECHO 11) is a positive-strand RNA virus belonging to the genus Enterovirus of the family Picornaviridae. ECHO 11 infections can cause severe inflammatory illnesses in neonates, including severe acute hepatitis with coagulopathy. The activation of NLRP3 inflammasome is important for host defense against invading viruses, which also contributes to viral pathogenicity. However, whether and how ECHO 11 induces NLRP3 inflammasome activation remains unclear. In this study, we isolated a clinical strain of ECHO 11 from stools of an ECHO 11-infected newborn patient with necrotizing hepatitis. This virus shared 99.95% sequence identity with the previously published ECHO 11 sequence. The clinically isolated ECHO 11 can efficiently infect liver cells and strongly induces inflammation. Moreover, we showed that ECHO 11 induced IL-1β secretion and pyroptosis in cells and mouse bone marrow-derived macrophages (BMDMs). Furthermore, ECHO 11 infection triggered NLRP3 inflammasome activation, as evidenced by cleavages of GSDMD, pro-IL-1β and pro-caspase-1, and the release of LDH. ECHO 11 2B protein was required for NLRP3 inflammasome activation via interacting with NLRP3 to facilitate the inflammasome complex assembly. In vivo, expression of ECHO 11 2B also activated NLRP3 inflammasome in the murine liver. Besides, 2Bs of multiple EVs can also interact with NLRP3 and induce NLRP3 inflammasome activation. Together, our findings demonstrate a mechanism by which ECHO 11 induces inflammatory responses by activating NLRP3 inflammasome, providing novel insights into the pathogenesis of ECHO 11 infection. NLRP3 inflammasome is important for host defense against invading viruses, and contributes to viral pathogenicity. Human echovirus 11 (ECHO 11) belongs to the Enterovirus genus from the family Picornavirida, and it can cause severe acute hepatitis in newborns with high morbidity and mortality. However, the knowledge about the pathogenesis of ECHO 11 infection is limited. Whether and how ECHO 11 induces NLRP3 inflammasome activation remains unclear. This work provides the first demonstration that ECHO 11 can induce inflammatory responses via activating NLRP3 inflammasome and pyroptosis. More importantly, ECHO 11-encoded 2B protein was found to activate NLRP3 inflammasome in cells and in vivo, and the interaction between 2B and NLRP3 was required for inflammasome complex assembly. Furthermore, we uncovered that 2Bs of other enteroviruses, including enterovirus 71, coxsackievirus A16 (CVA16) and CVB3 could induce NLRP3 inflammasome and interact with NLRP3. Our findings uncover a mechanism by which ECHO 11 induces inflammatory responses and demonstrate a novel function of ECHO 11 2B.
Collapse
Affiliation(s)
- Chong Wang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Ruyi Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Fengxia Yang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| | - Yang Han
- Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology & Wuhan Jinyintan Hospital, Wuhan Jinyintan Hospital, Wuhan, Hubei, China
| | - Yujie Ren
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xiaobei Xiong
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Xingyun Wang
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| | - Yidan Bi
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| | - Lijun Li
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
| | - Yang Qiu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- * E-mail: (YQ); (YX); (XZ)
| | - Yi Xu
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, Guangdong, China
- * E-mail: (YQ); (YX); (XZ)
| | - Xi Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- * E-mail: (YQ); (YX); (XZ)
| |
Collapse
|
30
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
31
|
Nonstructural Protein NSs Activates Inflammasome and Pyroptosis through Interaction with NLRP3 in Human Microglial Cells Infected with Severe Fever with Thrombocytopenia Syndrome Bandavirus. J Virol 2022; 96:e0016722. [PMID: 35695505 PMCID: PMC9278151 DOI: 10.1128/jvi.00167-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is a tick-borne febrile disease caused by SFTS virus (SFTSV), or Dabie bandavirus, in the Phenuiviridae family. Clinically neurological disorders in SFTS have been commonly reported, but their neuropathogenesis has rarely been studied. Microglia are a type of neuroglia accounting for 10 to 12% of all cells in the brain. As resident immune cells, microglial cells are the first line of immune defense present in the central nervous system (CNS). Here, we report that SFTSV was able to infect microglial cells and stimulate interleukin 1β (IL-1β) secretion in the brains of infected neonatal BALB/c mice. We characterized the cell death induced in infected human microglial HMC3 cells, also susceptible to SFTSV, and found that the NOD-like receptor protein 3 (NLRP3) inflammasome was activated, leading to secretion of IL-1β and pyroptosis. Knockdown of NLRP3 or inhibition of the NLRP3 inflammasome activation suppressed the viral replication, suggesting that the activation of the NLRP3 inflammasome may support SFTSV replication in microglial cells. Viral nonstructural protein NSs, a known modulator of immune responses, interacted and colocalized with NLRP3 for the inflammasome activation. It appeared that the N-terminal fragment, amino acids 1 to 66, of NSs was critical to promote the assembly of the inflammasome complex by interacting with NLRP3 for its activation in microglial cells. Our findings provide evidence that SFTSV may cause neurological disorders through infecting microglia and activating the inflammasome through its nonstructural protein NSs for neural cell death and inflammation. This study may have revealed a novel mechanism of SFTSV NSs in dysregulating host response. IMPORTANCE Encephalitis or encephalopathy during severe fever with thrombocytopenia syndrome (SFTS) is considered a critical risk factor leading to high mortality, but there have been no studies to date on the pathogenesis of encephalitis or encephalopathy caused by SFTS virus. Here, we report that SFTSV infection can active the NLRP3 inflammasome and induce IL-1β secretion in the brains of infected newborn mice. In infected human HMC3 microglia, SFTSV activated the NLRP3 inflammasome via the viral nonstructural protein NSs through interaction with its N-terminal fragment. Notably, our findings suggest that the activation of the NLRP3 inflammasome may promote SFTSV replication in infected microglial cells. This study may reveal a novel mechanism by SFTSV to dysregulate host responses through its nonstructural protein, which could help us understand viral neuropathogenesis in SFTS patients.
Collapse
|
32
|
Xia X, Cheng A, Wang M, Ou X, Sun D, Mao S, Huang J, Yang Q, Wu Y, Chen S, Zhang S, Zhu D, Jia R, Liu M, Zhao XX, Gao Q, Tian B. Functions of Viroporins in the Viral Life Cycle and Their Regulation of Host Cell Responses. Front Immunol 2022; 13:890549. [PMID: 35720341 PMCID: PMC9202500 DOI: 10.3389/fimmu.2022.890549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Viroporins are virally encoded transmembrane proteins that are essential for viral pathogenicity and can participate in various stages of the viral life cycle, thereby promoting viral proliferation. Viroporins have multifaceted effects on host cell biological functions, including altering cell membrane permeability, triggering inflammasome formation, inducing apoptosis and autophagy, and evading immune responses, thereby ensuring that the virus completes its life cycle. Viroporins are also virulence factors, and their complete or partial deletion often reduces virion release and reduces viral pathogenicity, highlighting the important role of these proteins in the viral life cycle. Thus, viroporins represent a common drug-protein target for inhibiting drugs and the development of antiviral therapies. This article reviews current studies on the functions of viroporins in the viral life cycle and their regulation of host cell responses, with the aim of improving the understanding of this growing family of viral proteins.
Collapse
Affiliation(s)
- Xiaoyan Xia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China.,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu City, China
| |
Collapse
|
33
|
Breitinger U, Farag NS, Sticht H, Breitinger HG. Viroporins: Structure, function, and their role in the life cycle of SARS-CoV-2. Int J Biochem Cell Biol 2022; 145:106185. [PMID: 35219876 PMCID: PMC8868010 DOI: 10.1016/j.biocel.2022.106185] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
Abstract
Viroporins are indispensable for viral replication. As intracellular ion channels they disturb pH gradients of organelles and allow Ca2+ flux across ER membranes. Viroporins interact with numerous intracellular proteins and pathways and can trigger inflammatory responses. Thus, they are relevant targets in the search for antiviral drugs. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) underlies the world-wide pandemic of COVID-19, where an effective therapy is still lacking despite impressive progress in the development of vaccines and vaccination campaigns. Among the 29 proteins of SARS-CoV-2, the E- and ORF3a proteins have been identified as viroporins that contribute to the massive release of inflammatory cytokines observed in COVID-19. Here, we describe structure and function of viroporins and their role in inflammasome activation and cellular processes during the virus replication cycle. Techniques to study viroporin function are presented, with a focus on cellular and electrophysiological assays. Contributions of SARS-CoV-2 viroporins to the viral life cycle are discussed with respect to their structure, channel function, binding partners, and their role in viral infection and virus replication. Viroporin sequences of new variants of concern (α–ο) of SARS-CoV-2 are briefly reviewed as they harbour changes in E and 3a proteins that may affect their function.
Collapse
Affiliation(s)
- Ulrike Breitinger
- Department of Biochemistry, German University in Cairo, New Cairo, Egypt
| | - Noha S Farag
- Department of Microbiology and Immunology, German University in Cairo, New Cairo, Egypt
| | - Heinrich Sticht
- Division of Bioinformatics, Institute for Biochemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany
| | | |
Collapse
|
34
|
Senecavirus a 3D Interacts with NLRP3 to Induce IL-1β Production by Activating NF-κB and Ion Channel Signals. Microbiol Spectr 2022; 10:e0209721. [PMID: 35254168 PMCID: PMC9045273 DOI: 10.1128/spectrum.02097-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Senecavirus A (SVA) infection induces inflammation in animals, such as fever, diarrhea, vesicles and erosions, and even death. The inflammatory cytokine interleukin-1β (IL-1β) plays a pivotal role in inflammatory responses to combat microbes. Although SVA infection can produce inflammatory clinical symptoms, the modulation of IL-1β production by SVA infection remains unknown at present. Here, both in vitro and in vivo, SVA robustly induced IL-1β production in macrophages and pigs. Infection performed in NOD-, LRR-, and pyrin domain-containing three (NLRP3) knockdown cells indicated that NLRP3 is essential for SVA-induced IL-1β secretion. Importantly, we identified that the 1 to 154 amino acid (aa) portion of SVA 3D binds to the NLRP3 NACHT domain to activate NLRP3 inflammasome assembly and IL-1β secretion. In addition, the SVA 3D protein interacts with IKKα and IKKβ to induce NF-κB activation, which facilitates pro-IL-1β transcription. Meanwhile, 3D induces p65 nucleus entry. Moreover, SVA 3D induces calcium influx and potassium efflux, which triggers IL-1β secretion. Ion channels might be related to 3D binding with NLRP3, resulting in NLRP3-ASC complex assembly. We found that 3D protein expression induced tissue hemorrhage and swelling in the mice model. Consistently, expression of 3D in mice caused IL-1β maturation and secretion. In the natural host of pigs, we confirmed that 3D also induced IL-1β production. Our data reveal a novel mechanism underlying the activation of the NLRP3 inflammasome after SVA 3D expression, which provides clues for controlling pig’s inflammation during the SVA infection. IMPORTANCE Inflammation refers to the response of the immune system to viral, bacterial, and fungal infections or other foreign particles in the body, which can involve the production of a wide array of soluble inflammatory mediators. The NLRP3 inflammasome is one of the best-characterized inflammasome leading to IL-1β production and maturation. Senecavirus A (SVA) is an oncolytic virus that can cause fever, vesicles and erosions, severe fatal diarrhea, and even the sudden death of piglets. In this study, we demonstrated that 1 to 154 aa of SVA polymerase protein 3D interacts with the NACHT domain of NLRP3 to induce IL-1β production via the NF-κB signaling pathway and ion channel signal. Our study unveils the mechanism underlying the regulation of inflammasome assembly and production of IL-1β in response to SVA infection that will help better understand the modulation of host inflammation in pathogens invasion and development of the vaccine.
Collapse
|
35
|
Abstract
Mitochondria are dynamic organelles vital for energy production with now appreciated roles in immune defense. During microbial infection, mitochondria serve as signaling hubs to induce immune responses to counteract invading pathogens like viruses. Mitochondrial functions are central to a variety of antiviral responses including apoptosis and type I interferon signaling (IFN-I). While apoptosis and IFN-I mediated by mitochondrial antiviral signaling (MAVS) are well-established defenses, new dimensions of mitochondrial biology are emerging as battlefronts during viral infection. Increasingly, it has become apparent that mitochondria serve as reservoirs for distinct cues that trigger immune responses and that alterations in mitochondrial morphology may also tip infection outcomes. Furthermore, new data are foreshadowing pivotal roles for classic, homeostatic facets of this organelle as host-virus interfaces, namely, the tricarboxylic acid (TCA) cycle and electron transport chain (ETC) complexes like respiratory supercomplexes. Underscoring the importance of "housekeeping" mitochondrial activities in viral infection is the growing list of viral-encoded inhibitors including mimics derived from cellular genes that antagonize these functions. For example, virologs for ETC factors and several enzymes from the TCA cycle have been recently identified in DNA virus genomes and serve to pinpoint new vulnerabilities during infection. Here, we highlight recent advances for known antiviral functions associated with mitochondria as well as where the next battlegrounds may be based on viral effectors. Collectively, new methodology and mechanistic insights over the coming years will strengthen our understanding of how an ancient molecular truce continues to defend cells against viruses.
Collapse
Affiliation(s)
- Mahsa Sorouri
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyron Chang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Genetics, Disease, and Development Graduate Program, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dustin C Hancks
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
36
|
Insights from structural studies of the Cardiovirus 2A protein. Biosci Rep 2022; 42:230648. [PMID: 35022657 PMCID: PMC8777194 DOI: 10.1042/bsr20210406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Cardioviruses are single-stranded RNA viruses of the family Picornaviridae. In addition to being the first example of internal ribosome entry site (IRES) utilization, cardioviruses also employ a series of alternative translation strategies, such as Stop-Go translation and programmed ribosome frameshifting. Here, we focus on cardiovirus 2A protein, which is not only a primary virulence factor, but also exerts crucial regulatory functions during translation, including activation of viral ribosome frameshifting and inhibition of host cap-dependent translation. Only recently, biochemical and structural studies have allowed us to close the gaps in our knowledge of how cardiovirus 2A is able to act in diverse translation-related processes as a novel RNA-binding protein. This review will summarize these findings, which ultimately may lead to the discovery of other RNA-mediated gene expression strategies across a broad range of RNA viruses.
Collapse
|
37
|
FMDV Leader Protein Interacts with the NACHT and LRR Domains of NLRP3 to Promote IL-1β Production. Viruses 2021; 14:v14010022. [PMID: 35062226 PMCID: PMC8778935 DOI: 10.3390/v14010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 11/17/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) infection causes inflammatory clinical symptoms, such as high fever and vesicular lesions, even death of animals. Interleukin-1β (IL-1β) is an inflammatory cytokine that plays an essential role in inflammatory responses against viral infection. The viruses have developed multiple strategies to induce the inflammatory responses, including regulation of IL-1β production. However, the molecular mechanism underlying the induction of IL-1β by FMDV remains not fully understood. Here, we found that FMDV robustly induced IL-1β production in macrophages and pigs. Infection of Casp-1 inhibitor-treated cells and NOD-, LRR- and pyrin domain-containing 3 (NLRP3)-knockdown cells indicated that NLRP3 is essential for FMDV-induced IL-1β secretion. More importantly, we found that FMDV Lpro associates with the NACHT and LRR domains of NLRP3 to promote NLRP3 inflammasome assembly and IL-1β secretion. Moreover, FMDV Lpro induces calcium influx and potassium efflux, which trigger NLRP3 activation. Our data revealed the mechanism underlying the activation of the NLRP3 inflammasome after FMDV Lpro expression, thus providing insights for the control of FMDV infection-induced inflammation.
Collapse
|
38
|
Xu S, Xie J, Zhang X, Chen L, Bi Y, Li X, Idris A, Feng R. DDX56 antagonizes IFN-β production to enhance EMCV replication by inhibiting IRF3 nuclear translocation. Vet Microbiol 2021; 264:109304. [PMID: 34922148 DOI: 10.1016/j.vetmic.2021.109304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/23/2022]
Abstract
DEAD (Asp-Glu-Ala-Asp)-box RNA helicases (DDX) play important roles in viral infection, either as cytosolic viral nucleic acids sensors or as essential host factors for viral replication. In this study, we identified DDX56 as a positive regulator for encephalomyocarditis virus (EMCV) replication. EMCV infection promotes DDX56 expression via its viral proteins, VP3 and 3C. We showed that DDX56 overexpression promotes EMCV replication whereas its loss dampened EMCV replication. Consequently, knockdown of DDX56 increases type I interferon (IFN) expression during EMCV infection. We also showed that DDX56 interrupts IFN regulatory factor 3 (IRF3) phosphorylation and its nucleus translocation by directly targeting KPNA3 and KPNA4 in an EMCV-triggered MDA5 signaling activation cascade leading to the blockade of IFN-β production. Overall, we showed that DDX56 is a novel negative regulator of EMCV-mediated IFN-β responses and that DDX56 plays a critical role in EMCV replication. These findings reveal a novel strategy for EMCV to utilize a host factor to evade the host innate immune response and provide us new insight into the function of DDX56.
Collapse
Affiliation(s)
- Shujuan Xu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiangbo Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Lei Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yingjie Bi
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| |
Collapse
|
39
|
Li X, Ma R, Wu B, Niu Y, Li H, Li D, Xie J, Idris A, Feng R. HSP27 Protein Dampens Encephalomyocarditis Virus Replication by Stabilizing Melanoma Differentiation-Associated Gene 5. Front Microbiol 2021; 12:788870. [PMID: 34899669 PMCID: PMC8664592 DOI: 10.3389/fmicb.2021.788870] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/05/2021] [Indexed: 12/28/2022] Open
Abstract
Heat shock proteins (HSPs) are a protein family that respond to physiological stress, such as heat, starvation, and infection. As cellular protein chaperones, they play an important role in protein folding, assembly, and degradation. Though it is well known that HSP27 is involved in a range of viral infections, its role during an encephalomyocarditis virus (EMCV) infection is not known. Here, we report that EMCV degrades HSP27 and that EMCV proteins 2Cpro and 3Apro are primarily responsible for its degradation. Consequently, loss of cellular HSP27 augmented EMCV proliferation, an effect that could be reversed upon HSP27 overexpression. Importantly, we found that HSP27 positively regulated EMCV-triggered type I interferon (IFN) production. Moreover, overexpression of 2Cpro and 3Apro significantly blocked type I IFN production. We also found for the first time that HSP27, as a molecular chaperone, can specifically interact with MDA5 and stabilize the expression of MDA5. Collectively, this study shows that HSP27 dampens EMCV infectivity by positively regulating EMCV-triggered retinoic acid-inducible gene (RIG)-I-like receptor (RLR)/melanoma differentiation-associated gene 5 (MDA5) signal pathway, while EMCV proteins 2Cpro and 3Apro interact with HSP27 and degrade HSP27 protein expression to allow EMCV proliferation. Our findings provide further mechanistic evidence for EMCV partaking in immune escape mechanisms, and that 2Cpro and 3Apro could serve as potential antiviral targets.
Collapse
Affiliation(s)
- Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ruixian Ma
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Bei Wu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yuhui Niu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Hongshan Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- School of Pharmacy and Medical Science, Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
40
|
Kong F, You H, Zheng K, Tang R, Zheng C. The crosstalk between pattern-recognition receptor signaling and calcium signaling. Int J Biol Macromol 2021; 192:745-756. [PMID: 34634335 DOI: 10.1016/j.ijbiomac.2021.10.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/25/2021] [Accepted: 10/04/2021] [Indexed: 01/08/2023]
Abstract
The innate immune system is the first line of host defense, and it is capable of resisting both exogenous pathogenic challenges and endogenous danger signals via different pattern recognition receptors (PRRs), including Toll-like receptors, retinoic acid-inducible gene-1 (RIG-1)-like receptors, cytosolic DNA sensors, as well as nucleotide-binding oligomerization domain (NOD)-like receptors. After recognizing the pathogen-associated molecular patterns from exogenous microbes or the damage-associated molecular patterns from endogenous immune-stimulatory signals, these PRRs signaling pathways can induce the expression of interferons and inflammatory factors against microbial pathogen invasion and endogenous stresses. Calcium (Ca2+) is a second messenger that participates in the modulation of various biological processes, including survival, proliferation, apoptosis, and immune response, and is involved in diverse diseases, such as autoimmune diseases and virus infection. To date, accumulating evidence elucidated that the PRR signaling exhibited a regulatory effect on Ca2+ signaling. Meanwhile, Ca2+ signaling also played a critical role in controlling biological processes mediated by the PRR adaptors. Since the importance of these two signalings, it would be interesting to clarify the deeper biological implications of their interplays. This review focuses on the crosstalk between Ca2+ signaling and PRR signaling to regulate innate immune responses.
Collapse
Affiliation(s)
- Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| |
Collapse
|
41
|
Host protein, HSP90β, antagonizes IFN-β signaling pathway and facilitates the proliferation of encephalomyocarditis virus in vitro. Virus Res 2021; 305:198547. [PMID: 34425163 DOI: 10.1016/j.virusres.2021.198547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 11/22/2022]
Abstract
Encephalomyocarditis virus (EMCV) is a small, non-enveloped, single stranded RNA virus which infects a wide variety of mammalian species, and has zoonotic importance. Many host proteins are known to regulate EMCV proliferation by interacting with its structural or nonstructural proteins, but the regulatory role and mechanism of heat shock protein 90β (HSP90β), in EMCV infection has not been reported yet. Here, we report that overexpression of HSP90β significantly promotes the growth and proliferation of EMCV in vitro. On the contrary, down-regulation of HSP90β by RNAi or geldanamycin inhibits EMCV replication. HSP90β suppresses IFN-β responses in the RLRs pathway by targeting the expression of the key adaptor molecules MAVS, TBK1, and IRF3, but not MDA5. This study demonstrates the firsthand information that HSP90β plays a positive role in viral proliferation by inhibiting EMCV induced IFN-β production. Collectively, the results reveal new insights into HSP90β-assisted progression of EMCV infection.
Collapse
|
42
|
Mitochondrial DNA in innate immune responses against infectious diseases. Biochem Soc Trans 2021; 48:2823-2838. [PMID: 33155647 DOI: 10.1042/bst20200687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 12/30/2022]
Abstract
Mitochondrial DNA (mtDNA) can initiate an innate immune response when mislocalized in a compartment other than the mitochondrial matrix. mtDNA plays significant roles in regulating mitochondrial dynamics as well as mitochondrial unfolded protein response (UPR). The mislocalized extra-mtDNA can elicit innate immune response via cGAS-STING (cyclic GMP-AMP synthase-stimulator of interferon genes) pathway, inducing the expression of the interferon-stimulated genes (ISGs). Also, cytosolic damaged mtDNA is cleared up by various pathways which are responsible for participating in the activation of inflammatory responses. Four pathways of extra-mitochondrial mtDNA clearance are highlighted in this review - the inflammasome activation mechanism, neutrophil extracellular traps formation, recognition by Toll-like receptor 9 and transfer of mtDNA between cells packaged into extracellular vesicles. Anomalies in these pathways are associated with various diseases. We posit our review in the present pandemic situation and discuss how mtDNA elicits innate immune responses against different viruses and bacteria. This review gives a comprehensive picture of the role of extra-mitochondrial mtDNA in infectious diseases and speculates that research towards its understanding would help establish its therapeutic potential.
Collapse
|
43
|
The Natterin Proteins Diversity: A Review on Phylogeny, Structure, and Immune Function. Toxins (Basel) 2021; 13:toxins13080538. [PMID: 34437409 PMCID: PMC8402412 DOI: 10.3390/toxins13080538] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/12/2021] [Accepted: 07/21/2021] [Indexed: 12/14/2022] Open
Abstract
Since the first record of the five founder members of the group of Natterin proteins in the venom of the medically significant fish Thalassophryne nattereri, new sequences have been identified in other species. In this work, we performed a detailed screening using available genome databases across a wide range of species to identify sequence members of the Natterin group, sequence similarities, conserved domains, and evolutionary relationships. The high-throughput tools have enabled us to dramatically expand the number of members within this group of proteins, which has a remote origin (around 400 million years ago) and is spread across Eukarya organisms, even in plants and primitive Agnathans jawless fish. Overall, the survey resulted in 331 species presenting Natterin-like proteins, mainly fish, and 859 putative genes. Besides fish, the groups with more species included in our analysis were insects and birds. The number and variety of annotations increased the knowledge of the obtained sequences in detail, such as the conserved motif AGIP in the pore-forming loop involved in the transmembrane barrel insertion, allowing us to classify them as important constituents of the innate immune defense system as effector molecules activating immune cells by interacting with conserved intracellular signaling mechanisms in the hosts.
Collapse
|
44
|
Land WG. Role of DAMPs in respiratory virus-induced acute respiratory distress syndrome-with a preliminary reference to SARS-CoV-2 pneumonia. Genes Immun 2021; 22:141-160. [PMID: 34140652 PMCID: PMC8210526 DOI: 10.1038/s41435-021-00140-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/28/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023]
Abstract
When surveying the current literature on COVID-19, the "cytokine storm" is considered to be pathogenetically involved in its severe outcomes such as acute respiratory distress syndrome, systemic inflammatory response syndrome, and eventually multiple organ failure. In this review, the similar role of DAMPs is addressed, that is, of those molecules, which operate upstream of the inflammatory pathway by activating those cells, which ultimately release the cytokines. Given the still limited reports on their role in COVID-19, the emerging topic is extended to respiratory viral infections with focus on influenza. At first, a brief introduction is given on the function of various classes of activating DAMPs and counterbalancing suppressing DAMPs (SAMPs) in initiating controlled inflammation-promoting and inflammation-resolving defense responses upon infectious and sterile insults. It is stressed that the excessive emission of DAMPs upon severe injury uncovers their fateful property in triggering dysregulated life-threatening hyperinflammatory responses. Such a scenario may happen when the viral load is too high, for example, in the respiratory tract, "forcing" many virus-infected host cells to decide to commit "suicidal" regulated cell death (e.g., necroptosis, pyroptosis) associated with release of large amounts of DAMPs: an important topic of this review. Ironically, although the aim of this "suicidal" cell death is to save and restore organismal homeostasis, the intrinsic release of excessive amounts of DAMPs leads to those dysregulated hyperinflammatory responses-as typically involved in the pathogenesis of acute respiratory distress syndrome and systemic inflammatory response syndrome in respiratory viral infections. Consequently, as briefly outlined in this review, these molecules can be considered valuable diagnostic and prognostic biomarkers to monitor and evaluate the course of the viral disorder, in particular, to grasp the eventual transition precociously from a controlled defense response as observed in mild/moderate cases to a dysregulated life-threatening hyperinflammatory response as seen, for example, in severe/fatal COVID-19. Moreover, the pathogenetic involvement of these molecules qualifies them as relevant future therapeutic targets to prevent severe/ fatal outcomes. Finally, a theory is presented proposing that the superimposition of coronavirus-induced DAMPs with non-virus-induced DAMPs from other origins such as air pollution or high age may contribute to severe and fatal courses of coronavirus pneumonia.
Collapse
Affiliation(s)
- Walter Gottlieb Land
- German Academy for Transplantation Medicine, Munich, Germany.
- Molecular ImmunoRheumatology, INSERM UMR_S1109, Laboratory of Excellence Transplantex, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
45
|
Zhao N, Di B, Xu LL. The NLRP3 inflammasome and COVID-19: Activation, pathogenesis and therapeutic strategies. Cytokine Growth Factor Rev 2021; 61:2-15. [PMID: 34183243 PMCID: PMC8233448 DOI: 10.1016/j.cytogfr.2021.06.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), exhibits a wide spectrum of clinical presentations, ranging from asymptomatic cases to severe pneumonia or even death. In severe COVID-19 cases, an increased level of proinflammatory cytokines has been observed in the bloodstream, forming the so-called “cytokine storm”. Generally, nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome activation intensely induces cytokine production as an inflammatory response to viral infection. Therefore, the NLRP3 inflammasome can be a potential target for the treatment of COVID-19. Hence, this review first introduces the canonical NLRP3 inflammasome activation pathway. Second, we review the cellular/molecular mechanisms of NLRP3 inflammasome activation by SARS-CoV-2 infection (e.g., viroporins, ion flux and the complement cascade). Furthermore, we describe the involvement of the NLRP3 inflammasome in the pathogenesis of COVID-19 (e.g., cytokine storm, respiratory manifestations, cardiovascular comorbidity and neurological symptoms). Finally, we also propose several promising inhibitors targeting the NLRP3 inflammasome, cytokine products and neutrophils to provide novel therapeutic strategies for COVID-19.
Collapse
Affiliation(s)
- Ni Zhao
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China
| | - Bin Di
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li-Li Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 210009, China; Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
46
|
Saeedi-Boroujeni A, Mahmoudian-Sani MR, Nashibi R, Houshmandfar S, Tahmaseby Gandomkari S, Khodadadi A. Tranilast: a potential anti-Inflammatory and NLRP3 inflammasome inhibitor drug for COVID-19. Immunopharmacol Immunotoxicol 2021; 43:247-258. [PMID: 34015982 PMCID: PMC8146296 DOI: 10.1080/08923973.2021.1925293] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 04/23/2021] [Indexed: 12/16/2022]
Abstract
SARS-CoV-2 is a type of beta-CoV that develops acute pneumonia, which is an inflammatory condition. A cytokine storm has been recognized as one of the leading causes of death in patients with COVID-19. ALI and ARDS along with multiple organ failure have also been presented as the consequences of acute inflammation and cytokine storm. It has been previously confirmed that SARS-CoV, as another member of the beta-CoV family, activates NLRP3 inflammasome and consequently develops acute inflammation in a variety of ways through having complex interactions with the host immune system using structural and nonstructural proteins. Numerous studies conducted on Tranilast have further demonstrated that the given drug can act as an effective anti-chemotactic factor on controlling inflammation, and thus, it can possibly help the improvement of the acute form of COVID-19 by inhibiting some key inflammation-associated transcription factors such as NF-κB and impeding NLRP3 inflammasome. Several studies have comparably revealed the direct effect of this drug on the prevention of inappropriate tissue's remodeling; inhibition of neutrophils, IL-5, and eosinophils; repression of inflammatory cell infiltration into inflammation site; restriction of factors involved in acute airway inflammation like IL-33; and suppression of cytokine IL-13, which increase mucosal secretions. Therefore, Tranilast may be considered as a potential treatment for patients with the acute form of COVID-19 along with other drugs.
Collapse
Affiliation(s)
- Ali Saeedi-Boroujeni
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Abadan School of Medical Sciences, Abadan, Iran
- Immunology Today, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Roohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Infectious Diseases & Tropical Medicine Ward, Razi Teaching Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sheyda Houshmandfar
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sima Tahmaseby Gandomkari
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
47
|
Protective effects of the NLRP3 inflammasome against infectious bursal disease virus replication in DF-1 cells. Arch Virol 2021; 166:1943-1950. [PMID: 33982180 DOI: 10.1007/s00705-021-05099-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Inflammatory responses are an important part of the innate immune response during viral infection. Various inflammasome complexes have been identified. The pyrin domain-containing 3 (NLRP3) inflammasome plays a critical role in detecting some RNA viruses, such as influenza virus. However, the effect of the NLRP3 inflammasome on infectious bursal disease virus (IBDV) replication is still unclear. Here, we report that IBDV-infection induces the transcription of NLRP3 inflammasome and IL-1β genes in the immortalized chicken embryo fibroblast cell line DF-1. Inhibition of caspase-1 by Belnacasan (VX-765) suppressed the transcription of IL-1β, reduced cell lysis, and significantly promoted IBDV replication in DF-1 cells. Furthermore, knockdown of NLRP3 by small interfering RNA promoted IBDV replication in the host cells. Thus, IBDV can induce NLRP3 inflammasome activation in DF-1 cells through a mechanism requiring viral replication, revealing a new antiviral mechanism employed by the host.
Collapse
|
48
|
Choudhury SKM, Ma X, Abdullah SW, Zheng H. Activation and Inhibition of the NLRP3 Inflammasome by RNA Viruses. J Inflamm Res 2021; 14:1145-1163. [PMID: 33814921 PMCID: PMC8009543 DOI: 10.2147/jir.s295706] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/27/2021] [Indexed: 12/17/2022] Open
Abstract
Inflammation refers to the response of the immune system to viral, bacterial, and fungal infections, or other foreign particles in the body, which can involve the production of a wide array of soluble inflammatory mediators. It is important for the development of many RNA virus-infected diseases. The primary factors through which the infection becomes inflammation involve inflammasome. Inflammasomes are proteins complex that the activation is responsive to specific pathogens, host cell damage, and other environmental stimuli. Inflammasomes bring about the maturation of various pro-inflammatory cytokines such as IL-18 and IL-1β in order to mediate the innate immune defense mechanisms. Many RNA viruses and their components, such as encephalomyocarditis virus (EMCV) 2B viroporin, the viral RNA of hepatitis C virus, the influenza virus M2 viroporin, the respiratory syncytial virus (RSV) small hydrophobic (SH) viroporin, and the human rhinovirus (HRV) 2B viroporin can activate the Nod-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome to influence the inflammatory response. On the other hand, several viruses use virus-encoded proteins to suppress inflammation activation, such as the influenza virus NS1 protein and the measles virus (MV) V protein. In this review, we summarize how RNA virus infection leads to the activation or inhibition of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- S K Mohiuddin Choudhury
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - XuSheng Ma
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - Sahibzada Waheed Abdullah
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| | - HaiXue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China
| |
Collapse
|
49
|
Han Y, Xie J, Xu S, Bi Y, Li X, Zhang H, Idris A, Bai J, Feng R. Encephalomyocarditis Virus Abrogates the Interferon Beta Signaling Pathway via Its Structural Protein VP2. J Virol 2021; 95:e01590-20. [PMID: 33328314 PMCID: PMC8094936 DOI: 10.1128/jvi.01590-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/21/2020] [Indexed: 12/28/2022] Open
Abstract
Type I interferon (IFN)-mediated antiviral responses are critical for modulating host-virus responses, and indeed, viruses have evolved strategies to antagonize this pathway. Encephalomyocarditis virus (EMCV) is an important zoonotic pathogen, which causes myocarditis, encephalitis, neurological disease, reproductive disorders, and diabetes in pigs. This study aims to understand how EMCV interacts with the IFN pathway. EMCV circumvents the type I IFN response by expressing proteins that antagonize cellular innate immunity. Here, we show that EMCV VP2 is a negative regulator of the IFN-β pathway. This occurs via the degradation of the MDA5-mediated cytoplasmic double-stranded RNA (dsRNA) antiviral sensing RIG-I-like receptor (RLR) pathway. We show that structural protein VP2 of EMCV interacts with MDA5, MAVS, and TBK1 through its C terminus. In addition, we found that EMCV VP2 could significantly degrade RLRs by the proteasomal and lysosomal pathways. For the first time, EMCV VP2 was shown to play an important role in EMCV evasion of the type I IFN signaling pathway. This study expands our understanding that EMCV utilizes its capsid protein VP2 to evade the host antiviral response.IMPORTANCE Encephalomyocarditis virus is an important pathogen that can cause encephalitis, myocarditis, neurological diseases, and reproductive disorders. It also causes huge economic losses for the swine industry worldwide. Innate immunity plays an important role in defending the host from pathogen infection. Understanding pathogen microorganisms evading the host immune system is of great importance. Currently, whether EMCV evades cytosolic RNA sensing and signaling is still poorly understood. In the present study, we found that viral protein VP2 antagonized the RLR signaling pathway by degrading MDA5, MAVS, and TBK1 protein expression to facilitate viral replication in HEK293 cells. The findings in this study identify a new mechanism for EMCV evading the host's innate immune response, which provide new insights into the virus-host interaction and help develop new antiviral approaches against EMCV.
Collapse
Affiliation(s)
- Yumei Han
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
| | - Shujuan Xu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yingjie Bi
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Haixia Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- Menzies Health Institute Queensland, School of Medical Science, Griffith University, Southport, Queensland, Australia
| | - Jialin Bai
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
50
|
Liu JW, Chu M, Jiao YJ, Zhou CM, Qi R, Yu XJ. SFTSV Infection Induced Interleukin-1β Secretion Through NLRP3 Inflammasome Activation. Front Immunol 2021; 12:595140. [PMID: 33708197 PMCID: PMC7940371 DOI: 10.3389/fimmu.2021.595140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/11/2021] [Indexed: 11/13/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne virus that causes hemorrhagic fever. Previous studies showed that SFTSV-infected patients exhibited elevated levels of pro-inflammatory cytokines like interleukin-1β (IL-1β), indicating that SFTSV infection may activate inflammasomes. However, the detailed mechanism remains poorly understood. Herein, we found that SFTSV could stimulate the IL-1β secretion in the infected human peripheral blood mononuclear cells (PBMCs), human macrophages, and C57/BL6 mice. We demonstrate that the maturation and secretion of IL-1β during SFTSV infection is mediated by the nucleotide and oligomerization domain, leucine-rich repeat-containing protein family, pyrin-containing domain 3 (NLRP3) inflammasome. This process is dependent on protease caspase-1, a component of the NLRP3 inflammasome complex. For the first time, our study discovered the role of NLRP3 in response to SFTSV infection. This finding may lead to the development of novel drugs to impede the pathogenesis of SFTSV infection.
Collapse
Affiliation(s)
- Jian-Wei Liu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| | - Min Chu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| | - Yong-Jun Jiao
- Institute of Pathogenic Microbiology, Jiangsu Provincial Center for Disease Prevention and Control, Nanjing, China
| | - Chuan-Min Zhou
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| | - Rui Qi
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| | - Xue-Jie Yu
- State Key Laboratory of Virology, School of Health Sciences, Wuhan University, Wuhan, China
| |
Collapse
|