1
|
Varela ELP, Gomes ARQ, Santos ASBD, Cruz JNDA, Carvalho EPDE, Prazeres BAPD, Dolabela MF, Percario S. Lycopene supplementation promoted increased survival and decreased parasitemia in mice with severe malaria: comparison with N-acetylcysteine. AN ACAD BRAS CIENC 2024; 96:e20230347. [PMID: 39046019 DOI: 10.1590/0001-3765202420230347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 11/29/2023] [Indexed: 07/25/2024] Open
Abstract
Oxidative stress is involved in the pathogenesis of malaria, causing anemia, respiratory complications, and cerebral malaria. To mitigate oxidative stress, we investigated the effect of nutritional supplementation whit lycopene (LYC) on the evolution of parasitemia and survival rate in mice infected with Plasmodium berghei ANKA (Pb), comparing to the effects promoted by N-acetylcysteine (NAC). Therefore, 175 mice were randomly distributed into 4 groups; Sham: untreated and uninfected animals; Pb: animals infected with Pb; LYC+Pb: animals treated with LYC and infected with Pb; NAC+Pb: animals treated with NAC and infected with Pb. The animals were followed for 12 days after infection, and survival and parasitemia rates were evaluated. There was a 40.1% increase in parasitemia in the animals of the Pb group on the 12th day, and a survival rate of 45%. LYC supplementation slowed the development of parasitemia to 19% and promoted a significative increase in the survival rate of 80% on the 12th day after infection, compared to the Pb group, effects superior to those promoted by NAC, providing strong evidence of the beneficial effect of LYC on in vivo malaria and stressing the importance of antioxidant supplementation in the treatment of this disease.
Collapse
Affiliation(s)
- Everton Luiz P Varela
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Antônio Rafael Q Gomes
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Instituto de Ciências da Saúde, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Aline S B Dos Santos
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Jorddy N DA Cruz
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Instituto de Ciências da Saúde, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Eliete P DE Carvalho
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Benedito Antônio P Dos Prazeres
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Maria Fani Dolabela
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Pará, Instituto de Ciências da Saúde, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| | - Sandro Percario
- Universidade Federal do Pará, Instituto de Ciências Biológicas, Laboratório de Pesquisas em Estresse Oxidativo, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia - Rede BIONORTE, Universidade Federal do Pará, Instituto de Ciências Biológicas, Av. Augusto Correa, 01, 66075-110 Belém, PA, Brazil
| |
Collapse
|
2
|
Chen H, Phuektes P, Yeo LS, Wong YH, Lee RCH, Yi B, Hou X, Liu S, Cai Y, Chu JJH. Attenuation of neurovirulence of chikungunya virus by a single amino acid mutation in viral E2 envelope protein. J Biomed Sci 2024; 31:8. [PMID: 38229040 DOI: 10.1186/s12929-024-00995-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/05/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) has reemerged as a major public health concern, causing chikungunya fever with increasing cases and neurological complications. METHODS In the present study, we investigated a low-passage human isolate of the East/ Central/South African (ECSA) lineage of CHIKV strain LK(EH)CH6708, which exhibited a mix of small and large viral plaques. The small and large plaque variants were isolated and designated as CHIKV-SP and CHIKV-BP, respectively. CHIKV-SP and CHIKV-BP were characterized in vitro and in vivo to compare their virus production and virulence. Additionally, whole viral genome analysis and reverse genetics were employed to identify genomic virulence factors. RESULTS CHIKV-SP demonstrated lower virus production in mammalian cells and attenuated virulence in a murine model. On the other hand, CHIKV-BP induced higher pro-inflammatory cytokine levels, compromised the integrity of the blood-brain barrier, and led to astrocyte infection in mouse brains. Furthermore, the CHIKV-SP variant had limited transmission potential in Aedes albopictus mosquitoes, likely due to restricted dissemination. Whole viral genome analysis revealed multiple genetic mutations in the CHIKV-SP variant, including a Glycine (G) to Arginine (R) mutation at position 55 in the viral E2 glycoprotein. Reverse genetics experiments confirmed that the E2-G55R mutation alone was sufficient to reduce virus production in vitro and virulence in mice. CONCLUSIONS These findings highlight the attenuating effects of the E2-G55R mutation on CHIKV pathogenicity and neurovirulence and emphasize the importance of monitoring this mutation in natural infections.
Collapse
Affiliation(s)
- Huixin Chen
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Patchara Phuektes
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Li Sze Yeo
- School of Applied Science, Republic Polytechnic, Singapore, Singapore
| | - Yi Hao Wong
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Regina Ching Hua Lee
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bowen Yi
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xinjun Hou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Sen Liu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Yu Cai
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Justin Jang Hann Chu
- Laboratory of Molecular RNA Virology and Antiviral Strategies, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Collaborative and Translation Unit for HFMD, Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
| |
Collapse
|
3
|
Pollenus E, Possemiers H, Knoops S, Prenen F, Vandermosten L, Thienpont C, Abdurahiman S, Demeyer S, Cools J, Matteoli G, Vanoirbeek JAJ, Vande Velde G, Van den Steen PE. Single cell RNA sequencing reveals endothelial cell killing and resolution pathways in experimental malaria-associated acute respiratory distress syndrome. PLoS Pathog 2024; 20:e1011929. [PMID: 38236930 PMCID: PMC10826972 DOI: 10.1371/journal.ppat.1011929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/30/2024] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Plasmodium parasites cause malaria, a global health disease that is responsible for more than 200 million clinical cases and 600 000 deaths each year. Most deaths are caused by various complications, including malaria-associated acute respiratory distress syndrome (MA-ARDS). Despite the very rapid and efficient killing of parasites with antimalarial drugs, 15% of patients with complicated malaria succumb. This stresses the importance of investigating resolution mechanisms that are involved in the recovery from these complications once the parasite is killed. To study the resolution of MA-ARDS, P. berghei NK65-infected C57BL/6 mice were treated with antimalarial drugs after onset of symptoms, resulting in 80% survival. Micro-computed tomography revealed alterations of the lungs upon infection, with an increase in total and non-aerated lung volume due to edema. Whole body plethysmography confirmed a drastically altered lung ventilation, which was restored during resolution. Single-cell RNA sequencing indicated an increased inflammatory state in the lungs upon infection, which was accompanied by a drastic decrease in endothelial cells, consistent with CD8+ T cell-mediated killing. During resolution, anti-inflammatory pathways were upregulated and proliferation of endothelial cells was observed. MultiNicheNet interactome analysis identified important changes in the ligand-receptor interactions during disease resolution that warrant further exploration in order to develop new therapeutic strategies. In conclusion, our study provides insights in pro-resolving pathways that limit inflammation and promote endothelial cell proliferation in experimental MA-ARDS. This information may be useful for the design of adjunctive treatments to enhance resolution after Plasmodium parasite killing by antimalarial drugs.
Collapse
Affiliation(s)
- Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hendrik Possemiers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Leen Vandermosten
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Chloë Thienpont
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Saeed Abdurahiman
- Laboratory of Mucosal Immunology, Translational Research in Gastro-Intestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Sofie Demeyer
- Laboratory of Molecular Biology of Leukemia, Department of Human Genetics, VIB—KU Leuven, Leuven, Belgium
| | - Jan Cools
- Laboratory of Molecular Biology of Leukemia, Department of Human Genetics, VIB—KU Leuven, Leuven, Belgium
| | - Gianluca Matteoli
- Laboratory of Mucosal Immunology, Translational Research in Gastro-Intestinal Disorders (TARGID), Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Jeroen A. J. Vanoirbeek
- Centre for Environment and Health, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Greetje Vande Velde
- Biomedical MRI, Department of Imaging & Pathology, KU Leuven, Leuven, Belgium
| | - Philippe E. Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology & Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 2023; 19:688-709. [PMID: 37857843 DOI: 10.1038/s41582-023-00881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.
Collapse
Affiliation(s)
- Alexandros Hadjilaou
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany.
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Brandi
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Mathias Riehn
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| |
Collapse
|
5
|
Ho A, Ngala B, Yamada C, Garcia C, Duarte C, Akkaoui J, Ciolac D, Nusbaum A, Kochen W, Efremova D, Groppa S, Nathanson L, Bissel S, Oblak A, Kacena MA, Movila A. IL-34 exacerbates pathogenic features of Alzheimer's disease and calvaria osteolysis in triple transgenic (3x-Tg) female mice. Biomed Pharmacother 2023; 166:115435. [PMID: 37666180 DOI: 10.1016/j.biopha.2023.115435] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/22/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023] Open
Abstract
Hallmark features of Alzheimer's disease (AD) include elevated accumulation of aggregated Aβ40 and Aβ42 peptides, hyperphosphorylated Tau (p-Tau), and neuroinflammation. Emerging evidence indicated that interleukin-34 (IL-34) contributes to AD and inflammatory osteolysis via the colony-stimulating factor-1 receptor (CSF-1r). In addition, CSF-1r is also activated by macrophage colony-stimulating factor-1 (M-CSF). While the role of M-CSF in bone physiology and pathology is well addressed, it remains controversial whether IL-34-mediated signaling promotes osteolysis, neurodegeneration, and neuroinflammation in relation to AD. In this study, we injected 3x-Tg mice with mouse recombinant IL-34 protein over the calvaria bone every other day for 42 days. Then, behavioral changes, brain pathology, and calvaria osteolysis were evaluated using various behavioral maze and histological assays. We demonstrated that IL-34 administration dramatically elevated AD-like anxiety and memory loss, pathogenic amyloidogenesis, p-Tau, and RAGE expression in female 3x-Tg mice. Furthermore, IL-34 delivery promoted calvaria inflammatory osteolysis compared to the control group. In addition, we also compared the effects of IL-34 and M-CSF on macrophages, microglia, and RANKL-mediated osteoclastogenesis in relation to AD pathology in vitro. We observed that IL-34-exposed SIM-A9 microglia and 3x-Tg bone marrow-derived macrophages released significantly elevated amounts of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, compared to M-CSF treatment in vitro. Furthermore, IL-34, but not M-CSF, elevated RANKL-primed osteoclastogenesis in the presence of Aβ40 and Aβ42 peptides in bone marrow derived macrophages isolated from female 3x-Tg mice. Collectively, our data indicated that IL-34 elevates AD-like features, including behavioral changes and neuroinflammation, as well as osteoclastogenesis in female 3x-Tg mice.
Collapse
Affiliation(s)
- Anny Ho
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Bidii Ngala
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chiaki Yamada
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher Garcia
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Carolina Duarte
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA
| | - Juliet Akkaoui
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Dumitru Ciolac
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Amilia Nusbaum
- Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA
| | - William Kochen
- College of Psychology, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Daniela Efremova
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Stanislav Groppa
- Laboratory of Neurobiology and Medical Genetics, "Nicolae Testemițanu" State University of Medicine and Pharmacology, Chisinau, Republic of Moldova; Department of Neurology, Institute of Emergency Medicine, Chisinau, Republic of Moldova
| | - Lubov Nathanson
- Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA
| | - Stephanie Bissel
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Adrian Oblak
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Melissa A Kacena
- Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Alexandru Movila
- Department of Oral Sciences and Translational Research, College of Dental Medicine, Nova Southeastern University, Davie, FL, USA; Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN, USA; Indiana Center for Musculoskeletal Health, Indiana University School of Medicine, Indianapolis, IN, USA; Institute for Neuro Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL, USA.
| |
Collapse
|
6
|
Rai S, Girdhar M, Siraj F, Sharma S, Kumar M, Katyal A. Mechanistic insights into immunopathogenesis of murine cerebral malaria: Cues from "young" C57BL/6J and BALB/c mice. Immunol Lett 2023; 256-257:9-19. [PMID: 36931472 DOI: 10.1016/j.imlet.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/04/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023]
Abstract
Cerebral malaria (CM), a major cause of mortality in children <5 years, presents disparity in pathophysiological features and poor prognosis compared to adults. Adult C57BL/6J mice infected with Plasmodium berghei ANKA (PbA) are widely used to understand CM pathogenesis compared to relatively less prone BALB/c mice; however, age and immune status of the host also influence disease sequelae and cerebral manifestations. Murine models of CM known so far do not project complete disease spectrum of pediatric CM. The present study was designed to dissect and differentiate CM immunopathogenesis in "young" BALB/c and C57BL/6J mice infected with PbA, in search of a competent mouse model mimicking pediatric CM. Multipronged approach including the analysis of blood-brain barrier (BBB) permeability and parasite infiltration, histopathology, nitric oxide levels, and pro/anti-inflammatory (TNF-α, IFN-γ, IL-4, and IL-10) cytokine expression were compared in the cortices of both young BALB/c and C57BL/6J mice. The results illustrate severe course of infection and typical CM like histopathological alterations including monocytic plugging in PbA-infected "young" BALB/c compared to C57BL/6J mice. The decreased expression of tight junction proteins (ZO-1 and Claudin-3) and Evan's blue extravasation was also more evident in BALB/c mice indicating a more permeable BBB. The increased cortical expression of TNF-α, IFN-γ, IL-4, IL-10, iNOS, eNOS, nNOS, and associated activation of brain resident cells in cortices of BALB/c with progressive parasitaemia depicts the cumulative involvement of host immune responses and parasite accumulation in progression of CM. Thus, the incongruity of cytokine balance resulted in worsening of disease manifestation in "young" BALB/c similar to pediatric CM.
Collapse
Affiliation(s)
- Shweta Rai
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Meetali Girdhar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Fouzia Siraj
- Department of Pathology, National Institute of Pathology, ICMR, Safdarjung Hospital, New Delhi, India
| | - Sheetal Sharma
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Mukesh Kumar
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India
| | - Anju Katyal
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, North campus, New Delhi 110007, India.
| |
Collapse
|
7
|
FDA-Approved Kinase Inhibitors in Preclinical and Clinical Trials for Neurological Disorders. Pharmaceuticals (Basel) 2022; 15:ph15121546. [PMID: 36558997 PMCID: PMC9784968 DOI: 10.3390/ph15121546] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Cancers and neurological disorders are two major types of diseases. We previously developed a new concept termed "Aberrant Cell Cycle Diseases" (ACCD), revealing that these two diseases share a common mechanism of aberrant cell cycle re-entry. The aberrant cell cycle re-entry is manifested as kinase/oncogene activation and tumor suppressor inactivation, which are hallmarks of both tumor growth in cancers and neuronal death in neurological disorders. Therefore, some cancer therapies (e.g., kinase inhibition, tumor suppressor elevation) can be leveraged for neurological treatments. The United States Food and Drug Administration (US FDA) has so far approved 74 kinase inhibitors, with numerous other kinase inhibitors in clinical trials, mostly for the treatment of cancers. In contrast, there are dire unmet needs of FDA-approved drugs for neurological treatments, such as Alzheimer's disease (AD), intracerebral hemorrhage (ICH), ischemic stroke (IS), traumatic brain injury (TBI), and others. In this review, we list these 74 FDA-approved kinase-targeted drugs and identify those that have been reported in preclinical and/or clinical trials for neurological disorders, with a purpose of discussing the feasibility and applicability of leveraging these cancer drugs (FDA-approved kinase inhibitors) for neurological treatments.
Collapse
|
8
|
Eeka P, Phanithi PB. Lymphotoxin-α Orchestrate Hypoxia and Immune factors to Induce Experimental Cerebral Malaria: Inhibition Mitigates Pathogenesis, Neurodegeneration, and Increase Survival. J Mol Neurosci 2022; 72:2425-2439. [PMID: 36469197 DOI: 10.1007/s12031-022-02076-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022]
Abstract
Knockdown studies have shown lymphotoxin-α (Lt-α) as a critical molecule for Experimental cerebral malaria (ECM) pathogenesis. We investigated the role of lymphotoxin-α in regulating active caspase-3 and calpain1. T cell infiltration into the brains, and subsequent neuronal cell death are the essential features of Plasmodium berghei ANKA(PbA)-induced ECM. Our results showed increased Lt-α levels during ECM. Treatment of naïve mice with serum from ECM mice and exogenous Lt-α was lethal. We inhibited Lt-α in vivo during PbA infection by injecting the mice with anti-Lt-α antibody. Inhibition of Lt-α mitigated neuronal cell death and increased mice's survival until 30-day post-infection (p.i.) compared to only 15 days survival of PbA control mice.
Collapse
Affiliation(s)
- Prabhakar Eeka
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India.,Department of Biotechnology, GITAM Institute of Sciences, GITAM Deemed to Be University, Visakhapatnam, India
| | - Prakash Babu Phanithi
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, India.
| |
Collapse
|
9
|
Rosa-Gonçalves P, de Sousa LP, Maia AB, Ribeiro-Gomes FL, Gress CCTDL, Werneck GL, Souza DO, Almeida RF, Daniel-Ribeiro CT. Dynamics and immunomodulation of cognitive deficits and behavioral changes in non-severe experimental malaria. Front Immunol 2022; 13:1021211. [PMID: 36505414 PMCID: PMC9729266 DOI: 10.3389/fimmu.2022.1021211] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Data recently reported by our group indicate that stimulation with a pool of immunogens capable of eliciting type 2 immune responses can restore the cognitive and behavioral dysfunctions recorded after a single episode of non-severe rodent malaria caused by Plasmodium berghei ANKA. Here we explored the hypothesis that isolated immunization with one of the type 2 immune response-inducing immunogens, the human diphtheria-tetanus (dT) vaccine, may revert damages associated with malaria. To investigate this possibility, we studied the dynamics of cognitive deficits and anxiety-like phenotype following non-severe experimental malaria and evaluated the effects of immunization with both dT and of a pool of type 2 immune stimuli in reversing these impairments. Locomotor activity and long-term memory deficits were assessed through the open field test (OFT) and novel object recognition task (NORT), while the anxiety-like phenotype was assessed by OFT and light/dark task (LDT). Our results indicate that poor performance in cognitive-behavioral tests can be detected as early as the 12th day after the end of antimalarial treatment with chloroquine and may persist for up to 155 days post infection. The single immunization strategy with the human dT vaccine showed promise in reversal of long-term memory deficits in NORT, and anxiety-like behavior in OFT and LDT.
Collapse
Affiliation(s)
- Pamela Rosa-Gonçalves
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Luciana Pereira de Sousa
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Aline Barbosa Maia
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Flávia Lima Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Caroline Cristhiani Tavares de Lima Gress
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Guilherme Loureiro Werneck
- Departamento de Epidemiologia do Instituto de Medicina Social da Universidade do Estado do Rio de Janeiro and Instituto de Estudos de Saúde Coletiva da Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roberto Farina Almeida
- Departamento de Ciências Biológicas, Programa de Pós-Graduação em Ciências Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil,Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil,*Correspondence: Cláudio Tadeu Daniel-Ribeiro,
| |
Collapse
|
10
|
Das A, Sahu W, Ojha DK, Reddy KS, Suar M. Comparative Analysis of Host Metabolic Alterations in Murine Malaria Models with Uncomplicated or Severe Malaria. J Proteome Res 2022; 21:2261-2276. [PMID: 36169658 DOI: 10.1021/acs.jproteome.2c00123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Malaria varies in severity, with complications ranging from uncomplicated to severe malaria. Severe malaria could be attributed to peripheral hyperparasitemia or cerebral malaria. The metabolic interactions between the host and Plasmodium species are yet to be understood during these infections of varied pathology and severity. An untargeted metabolomics approach utilizing the liquid chromatography-mass spectrometry platform has been used to identify the affected host metabolic pathways and associated metabolites in the serum of murine malaria models with uncomplicated malaria, hyperparasitemia, and experimental cerebral malaria. We report that mice with malaria share similar metabolic attributes like higher levels of bile acids, bile pigments, and steroid hormones that have been reported for human malaria infections. Moreover, in severe malaria, upregulated levels of metabolites like phenylalanine, histidine, valine, pipecolate, ornithine, and pantothenate, with decreased levels of arginine and hippurate, were observed. Metabolites of sphingolipid metabolism were upregulated in experimental cerebral malaria. Higher levels of 20-hydroxy-leukotriene B4 and epoxyoctadecamonoenoic acids were found in uncomplicated malaria, with lower levels observed for experimental cerebral malaria. Our study provides insights into host biology during different pathological stages of malaria disease and would be useful for the selection of animal models for evaluating diagnostic and therapeutic interventions against malaria. The raw data files are available via MetaboLights with the identifier MTBLS4387.
Collapse
Affiliation(s)
- Aleena Das
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India.,Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India
| | - Welka Sahu
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India
| | - Deepak Kumar Ojha
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India
| | - K Sony Reddy
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India.,Technology Business Incubator, Kalinga Institute of Industrial Technology (Deemed University), Bhubaneswar751024, India
| |
Collapse
|
11
|
Olatunde AC, Cornwall DH, Roedel M, Lamb TJ. Mouse Models for Unravelling Immunology of Blood Stage Malaria. Vaccines (Basel) 2022; 10:1525. [PMID: 36146602 PMCID: PMC9501382 DOI: 10.3390/vaccines10091525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Malaria comprises a spectrum of disease syndromes and the immune system is a major participant in malarial disease. This is particularly true in relation to the immune responses elicited against blood stages of Plasmodium-parasites that are responsible for the pathogenesis of infection. Mouse models of malaria are commonly used to dissect the immune mechanisms underlying disease. While no single mouse model of Plasmodium infection completely recapitulates all the features of malaria in humans, collectively the existing models are invaluable for defining the events that lead to the immunopathogenesis of malaria. Here we review the different mouse models of Plasmodium infection that are available, and highlight some of the main contributions these models have made with regards to identifying immune mechanisms of parasite control and the immunopathogenesis of malaria.
Collapse
Affiliation(s)
| | | | | | - Tracey J. Lamb
- Department of Pathology, University of Utah, Emma Eccles Jones Medical Research Building, 15 N Medical Drive E, Room 1420A, Salt Lake City, UT 84112, USA
| |
Collapse
|
12
|
Castaño BL, Silva AA, Hernandez-Velasco LL, Pinheiro APDS, Gibaldi D, Mineo JR, Silva NM, Lannes-Vieira J. Sulfadiazine Plus Pyrimethamine Therapy Reversed Multiple Behavioral and Neurocognitive Changes in Long-Term Chronic Toxoplasmosis by Reducing Brain Cyst Load and Inflammation-Related Alterations. Front Immunol 2022; 13:822567. [PMID: 35572567 PMCID: PMC9091718 DOI: 10.3389/fimmu.2022.822567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Toxoplasma gondii infects one-third of the world population. For decades, it has been considered a silent lifelong infection. However, chronically T. gondii-infected persons may present psychiatric and neurocognitive changes as anxiety, depression, and memory loss. In a model of long-term chronic infection, behavioral alterations parallel neuroinflammation and systemic high cytokine levels, and may reflect brain cyst load. Recent findings support that in chronic infection an active parasite-host interplay involves an immune-mediated control of tissue cysts. Here, we tested the idea that etiological treatment in chronic phase may add advantage to intrinsic immune-mediated cyst control and impact behavioral changes. Thus, we combined sulfadiazine-plus-pyrimethamine (S+P), the first-choice therapy for toxoplasmosis, to study the association of brain cyst load and biological processes related to the immune response (neuroinflammation, blood-brain barrier -BBB- disruption and serum cytokine levels), with behavioral and neurocognitive changes of long-term chronic infection. Female C57BL/6 mice (H-2b) were infected (5 cysts, ME-49 strain) and treated with S+P from 30 to 60 days postinfection (dpi), compared with vehicle (Veh)-treated and noninfected controls. At endpoints (pre-therapy, 30 dpi; S+P therapy, 60 dpi; after ceased therapy, 90 dpi), independent groups were subjected to behavioral tests, and brain tissues and sera were collected. Multiple behavioral and neurocognitive changes were detected in the early (30 dpi) and long-term (60 and 90 dpi) chronic infection. S+P therapy resolved locomotor alterations, anxiety, and depressive-like behavior, partially or transiently ameliorated hyperactivity and habituation memory loss. Analysis after therapy cessation showed that S+P therapy reduced the number of stimuli required for aversive memory consolidation. S+P therapy resulted in reduced brain cyst load, neuroinflammation and BBB disruption, and lowered systemic Th1-cytokine levels. Correlation analysis revealed association between IFNγ, TNF and MCP-1/CCL2 serum levels, brain cyst load and behavioral and neurocognitive alterations. Moreover, principal-component analysis (PCA-2D and 3D projections) highlighted distinction between clusters (noninfected; Veh-treated and S+P-treated infected). Thus, our data suggest that S+P therapy added gain to intrinsic brain cyst control and, direct or indirectly, ameliorated inflammation-related alterations, traits associated with behavioral and neurocognitive alterations.
Collapse
Affiliation(s)
- Barrios Leda Castaño
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - Andrea Alice Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Federal University Fluminense, Niterói, Brazil
| | | | | | - Daniel Gibaldi
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| | - José Roberto Mineo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Neide Maria Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Brazil
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
13
|
Yang J, Han X, Gao KN, Qi ZM. Listeria monocytogenes Inoculation Impedes the Development of Brain Pathology in Experimental Cerebral Malaria by Inhibition of Parasitemia. ACS Infect Dis 2022; 8:998-1009. [PMID: 35362944 DOI: 10.1021/acsinfecdis.1c00623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cerebral malaria (CM) is a serious central nervous system dysfunction caused by Plasmodium falciparum infection. In this study, we investigated the effect of Listeria monocytogenes (Lm) inoculation on experimental cerebral malaria (ECM) using Plasmodium berghei ANKA (PbA)-infected C57BL/6 mice. Live Lm inoculation inhibited the parasitemia and alleviated ECM symptoms. The protective effect against ECM symptoms was connected with improved brain pathology manifested as a less-damaged blood-brain barrier, decreased parasite sequestration, and milder local inflammation. Meanwhile, Lm inoculation decreased expression of cell adhesion molecules (ICAM-1 and VCAM-1) and accumulation of pathogenic CD8+ T cells in the brain. In keeping with the suppression of parasitemia, there was an upregulation of IFN-γ, IL-12, MCP-1, and NO expression in the spleen by Lm inoculation upon PbA infection. Early treatment with exogenous IFN-γ exhibited a similar effect to Lm inoculation on PbA infection. Taken together, Lm inoculation impedes the development of brain pathology in ECM, and early systemic IFN-γ production may play a critical role in these protective effects.
Collapse
Affiliation(s)
- Ji Yang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
- Department of Basic Medical Laboratory, General Hospital of Northern Theatre Command, Shenyang, Liaoning 110016, China
| | - Xue Han
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
- Department of Medical Basic Experimental Teaching Center, China Medical University, Shenyang, Liaoning 110122, China
| | - Kang-Ning Gao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| | - Zan-Mei Qi
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning 110122, China
| |
Collapse
|
14
|
Jin J, Ba MA, Wai CH, Mohanty S, Sahu PK, Pattnaik R, Pirpamer L, Fischer M, Heiland S, Lanzer M, Frischknecht F, Mueller AK, Pfeil J, Majhi M, Cyrklaff M, Wassmer SC, Bendszus M, Hoffmann A. Transcellular blood-brain barrier disruption in malaria-induced reversible brain edema. Life Sci Alliance 2022; 5:5/6/e202201402. [PMID: 35260473 PMCID: PMC8905774 DOI: 10.26508/lsa.202201402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
We present how reversible edema can reliably be induced in experimental cerebral malaria and show that it is associated with transcellular blood–brain barrier disruption and delayed microhemorrhages. Brain swelling occurs in cerebral malaria (CM) and may either reverse or result in fatal outcome. It is currently unknown how brain swelling in CM reverses, as brain swelling at the acute stage is difficult to study in humans and animal models with reliable induction of reversible edema are not known. In this study, we show that reversible brain swelling in experimental murine CM can be induced reliably after single vaccination with radiation-attenuated sporozoites as proven by in vivo high-field magnetic resonance imaging. Our results provide evidence that brain swelling results from transcellular blood–brain barrier disruption (BBBD), as revealed by electron microscopy. This mechanism enables reversal of brain swelling but does not prevent persistent focal brain damage, evidenced by microhemorrhages, in areas of most severe BBBD. In adult CM patients magnetic resonance imaging demonstrate microhemorrhages in more than one third of patients with reversible edema, emphasizing similarities of the experimental model and human disease. Our data suggest that targeting transcellular BBBD may represent a promising adjunct therapeutic approach to reduce edema and may improve neurological outcome.
Collapse
Affiliation(s)
- Jessica Jin
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Mame Aida Ba
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Chi Ho Wai
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, India
| | - Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital, Rourkela, India
| | | | - Lukas Pirpamer
- Department of Neurology, Division of Neurogeriatrics, Medical University of Graz, Graz, Austria
| | - Manuel Fischer
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Sabine Heiland
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Michael Lanzer
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Friedrich Frischknecht
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Ann-Kristin Mueller
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany
| | - Johannes Pfeil
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany.,German Center for Infection Research (DZIF), Heidelberg, Germany.,Center for Childhood and Adolescent Medicine, General Pediatrics, University Hospital, Heidelberg, Germany
| | - Megharay Majhi
- Department of Radiology, Ispat General Hospital, Rourkela, India
| | - Marek Cyrklaff
- Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany
| | - Samuel C Wassmer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - Angelika Hoffmann
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany .,Division of Experimental Radiology, Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany.,Centre for Infectious Diseases, Parasitology Unit, Heidelberg University Hospital, Heidelberg, Germany.,University Institute of Diagnostic and Interventional Neuroradiology, University Hospital Bern, Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
15
|
Castaño Barrios L, Da Silva Pinheiro AP, Gibaldi D, Silva AA, Machado Rodrigues e Silva P, Roffê E, da Costa Santiago H, Tostes Gazzinelli R, Mineo JR, Silva NM, Lannes-Vieira J. Behavioral alterations in long-term Toxoplasma gondii infection of C57BL/6 mice are associated with neuroinflammation and disruption of the blood brain barrier. PLoS One 2021; 16:e0258199. [PMID: 34610039 PMCID: PMC8491889 DOI: 10.1371/journal.pone.0258199] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022] Open
Abstract
The Apicomplexa protozoan Toxoplasma gondii is a mandatory intracellular parasite and the causative agent of toxoplasmosis. This illness is of medical importance due to its high prevalence worldwide and may cause neurological alterations in immunocompromised persons. In chronically infected immunocompetent individuals, this parasite forms tissue cysts mainly in the brain. In addition, T. gondii infection has been related to mental illnesses such as schizophrenia, bipolar disorder, depression, obsessive-compulsive disorder, as well as mood, personality, and other behavioral changes. In the present study, we evaluated the kinetics of behavioral alterations in a model of chronic infection, assessing anxiety, depression and exploratory behavior, and their relationship with neuroinflammation and parasite cysts in brain tissue areas, blood-brain-barrier (BBB) integrity, and cytokine status in the brain and serum. Adult female C57BL/6 mice were infected by gavage with 5 cysts of the ME-49 type II T. gondii strain, and analyzed as independent groups at 30, 60 and 90 days postinfection (dpi). Anxiety, depressive-like behavior, and hyperactivity were detected in the early (30 dpi) and long-term (60 and 90 dpi) chronic T. gondii infection, in a direct association with the presence of parasite cysts and neuroinflammation, independently of the brain tissue areas, and linked to BBB disruption. These behavioral alterations paralleled the upregulation of expression of tumor necrosis factor (TNF) and CC-chemokines (CCL2/MCP-1, CCL3/MIP-1α, CCL4/MIP-1β and CCL5/RANTES) in the brain tissue. In addition, increased levels of interferon-gamma (IFNγ), TNF and CCL2/MCP-1 were detected in the peripheral blood, at 30 and 60 dpi. Our data suggest that the persistence of parasite cysts induces sustained neuroinflammation, and BBB disruption, thus allowing leakage of cytokines of circulating plasma into the brain tissue. Therefore, all these factors may contribute to behavioral changes (anxiety, depressive-like behavior, and hyperactivity) in chronic T. gondii infection.
Collapse
Affiliation(s)
- Leda Castaño Barrios
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Da Silva Pinheiro
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniel Gibaldi
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea Alice Silva
- Multiuser Laboratory for Research Support in Nephrology and Medical Sciences, Federal University Fluminense, Niterói, Rio de Janeiro, Brazil
| | | | - Ester Roffê
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo Tostes Gazzinelli
- Department of Biochemistry and Immunology, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Roberto Mineo
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Neide Maria Silva
- Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Joseli Lannes-Vieira
- Laboratory of Biology of the Interactions, Oswaldo Cruz Institute/Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Ghazanfari N, Gregory JL, Devi S, Fernandez-Ruiz D, Beattie L, Mueller SN, Heath WR. CD8 + and CD4 + T Cells Infiltrate into the Brain during Plasmodium berghei ANKA Infection and Form Long-Term Resident Memory. THE JOURNAL OF IMMUNOLOGY 2021; 207:1578-1590. [PMID: 34400523 DOI: 10.4049/jimmunol.2000773] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 07/18/2021] [Indexed: 12/31/2022]
Abstract
In the Plasmodium berghei ANKA mouse model of malaria, accumulation of CD8+ T cells and infected RBCs in the brain promotes the development of experimental cerebral malaria (ECM). In this study, we used malaria-specific transgenic CD4+ and CD8+ T cells to track evolution of T cell immunity during the acute and memory phases of P. berghei ANKA infection. Using a combination of techniques, including intravital multiphoton and confocal microscopy and flow cytometric analysis, we showed that, shortly before onset of ECM, both CD4+ and CD8+ T cell populations exit the spleen and begin infiltrating the brain blood vessels. Although dominated by CD8+ T cells, a proportion of both T cell subsets enter the brain parenchyma, where they are largely associated with blood vessels. Intravital imaging shows these cells moving freely within the brain parenchyma. Near the onset of ECM, leakage of RBCs into areas of the brain can be seen, implicating severe damage. If mice are cured before ECM onset, brain infiltration by T cells still occurs, but ECM is prevented, allowing development of long-term resident memory T cell populations within the brain. This study shows that infiltration of malaria-specific T cells into the brain parenchyma is associated with cerebral immunopathology and the formation of brain-resident memory T cells. The consequences of these resident memory populations is unclear but raises concerns about pathology upon secondary infection.
Collapse
Affiliation(s)
- Nazanin Ghazanfari
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; and.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Julia L Gregory
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; and.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; and.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel Fernandez-Ruiz
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; and.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; and.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; and.,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - William R Heath
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia; and .,The Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Qin J, Lovelace MD, Mitchell AJ, de Koning-Ward T, Grau GE, Pai S. Perivascular macrophages create an intravascular niche for CD8 + T cell localisation prior to the onset of fatal experimental cerebral malaria. Clin Transl Immunology 2021; 10:e1273. [PMID: 33854773 PMCID: PMC8026342 DOI: 10.1002/cti2.1273] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/03/2021] [Accepted: 03/14/2021] [Indexed: 12/12/2022] Open
Abstract
Objectives The immunologic events that build up to the fatal neurological stage of experimental cerebral malaria (ECM) are incompletely understood. Here, we dissect immune cell behaviour occurring in the central nervous system (CNS) when Plasmodium berghei ANKA (PbA)‐infected mice show only minor clinical signs. Methods A 2‐photon intravital microscopy (2P‐IVM) brain imaging model was used to study the spatiotemporal context of early immunological events in situ during ECM. Results Early in the disease course, antigen‐specific CD8+ T cells came in contact and arrested on the endothelium of post‐capillary venules. CD8+ T cells typically adhered adjacent to, or were in the near vicinity of, perivascular macrophages (PVMs) that line post‐capillary venules. Closer examination revealed that CD8+ T cells crawled along the inner vessel wall towards PVMs that lay on the abluminal side of large post‐capillary venules. ‘Activity hotspots’ in large post‐capillary venules were characterised by T‐cell localisation, activated morphology and clustering of PVM, increased abutting of post‐capillary venules by PVM and augmented monocyte accumulation. In the later stages of infection, when mice exhibited neurological signs, intravascular CD8+ T cells increased in number and changed their behaviour, actively crawling along the endothelium and displaying frequent, short‐term interactions with the inner vessel wall at hotspots. Conclusion Our study suggests an active interaction between PVM and CD8+ T cells occurs across the blood–brain barrier (BBB) in early ECM, which may be the initiating event in the inflammatory cascade leading to BBB alteration and neuropathology.
Collapse
Affiliation(s)
| | - Michael D Lovelace
- Applied Neurosciences Program Peter Duncan Neurosciences Research Unit St Vincent's Centre for Applied Medical Research Sydney NSW Australia.,UNSW St Vincent's Clinical School Faculty of Medicine UNSW Sydney Sydney NSW Australia
| | - Andrew J Mitchell
- Materials Characterisation and Fabrication Platform Department of Chemical Engineering University of Melbourne Parkville VIC Australia
| | | | - Georges Er Grau
- Vascular Immunology Unit Discipline of Pathology School of Medical Sciences University of Sydney Camperdown NSW Australia
| | - Saparna Pai
- Centre for Molecular Therapeutics Australian Institute of Tropical Health and Medicine James Cook University Cairns QLD Australia.,Faculty of Medicine and Health University of Sydney Sydney NSW Australia
| |
Collapse
|
18
|
Ngo-Thanh H, Thuy TD, Suzue K, Kamitani W, Yokoo H, Isoda K, Shimokawa C, Hisaeda H, Imai T. Long-term acrylamide exposure exacerbates brain and lung pathology in a mouse malaria model. Food Chem Toxicol 2021; 151:112132. [PMID: 33737113 DOI: 10.1016/j.fct.2021.112132] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
The consumption of dietary acrylamide (ACR), a carcinogen, results in the dysfunction of various organs and the immune system. However, the impact of ACR exposure on the progression of infectious diseases is unknown. This study investigated the effect of ACR on the progression of malaria infection using a mouse model of malaria. C57BL/6 mice were continuously treated with ACR at a dose of 20 mg/kg bodyweight/day for six weeks (long-term exposure) or phosphate-buffered saline (PBS). Next, the mice were infected with the rodent malaria parasite, Plasmodium berghei NK65 (PbNK). Parasitemia and survival rate were analyzed in the different treatment groups. Magnetic resonance imaging (MRI) and histopathological analyses were performed to evaluate the effect of ACR exposure on the morphology of various organs. Long-term ACR exposure exacerbated PbNK-induced multiorgan dysfunction. MRI and histopathological analysis revealed signs of encephalomeningitis and acute respiratory distress syndrome in the PbNK-infected long-term ACR exposure mice, which decreased the survival rate of mice, but not in the PbNK-infected long-term PBS exposure group. These findings enhance our understanding of the impact of ACR on the progression of infectious diseases, such as malaria.
Collapse
Affiliation(s)
- Ha Ngo-Thanh
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan; National Hospital for Tropical Diseases, Hanoi, Viet Nam
| | - Trang Dam Thuy
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Wataru Kamitani
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hideaki Yokoo
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Koji Isoda
- Department of Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Chikako Shimokawa
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hajime Hisaeda
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan.
| | - Takashi Imai
- Department of Infectious Diseases and Host Defense, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan.
| |
Collapse
|
19
|
Dhangadamajhi G, Singh S. Malaria link of hypertension: a hidden syndicate of angiotensin II, bradykinin and sphingosine 1-phosphate. Hum Cell 2021; 34:734-744. [PMID: 33683655 DOI: 10.1007/s13577-021-00513-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 01/22/2023]
Abstract
In malaria-endemic countries, the burden of hypertension is on the rise. Although malaria and hypertension seem to have no direct link, several studies in recent years support their possible link. Three bioactive molecules such as angiotensin II (Ang II), bradykinin (BK) and sphingosine 1-phosphate (S1P) are crucial in regulating blood pressure. While the increased level of Ang II and S1P are responsible for inducing hypertension, BK is arthero-protective and anti-hypertensive. Therefore, in the present review, based on available literatures we highlight the present knowledge on the production and bioavailability of these molecules, the mechanism of their regulation of hypertension, and patho-physiological role in malaria. Further, a possible link between malaria and hypertension is hypothesized through various arguments based on experimental evidence. Understanding of their mechanisms of blood pressure regulation during malaria infection may open up avenues for drug therapeutics and management of malaria in co-morbidity with hypertension.
Collapse
Affiliation(s)
- Gunanidhi Dhangadamajhi
- Department of Biotechnology, Maharaja Sriramchandra Bhanjadeo University, Takatpur, Baripada, Odisha, 75003, India.
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
20
|
Drewry LL, Harty JT. Balancing in a black box: Potential immunomodulatory roles for TGF-β signaling during blood-stage malaria. Virulence 2021; 11:159-169. [PMID: 32043415 PMCID: PMC7051139 DOI: 10.1080/21505594.2020.1726569] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Malarial disease caused by Plasmodium parasites challenges the mammalian immune system with a delicate balancing act. Robust inflammatory responses are required to control parasite replication within red blood cells, which if unchecked, can lead to severe anemia and fatality. However, the same inflammatory response that controls parasite replication is also associated with immunopathology and severe disease, as is exemplified by cerebral malaria. A robust literature has identified critical roles for innate, cellular, and humoral immune responses orchestrated by IFN-γ and TH1 type responses in controlling blood stage malarial disease. In contrast, TGF-β and IL-10 have been identified as important anti–inflammatory immunomodulators that help to limit inflammation and pathology during malaria. TGF-β is a pleiotropic cytokine, with the ability to exert a wide variety of context-dependent immunomodulatory roles. The specific mechanisms that allow TGF-β to protect against malarial pathology remain essentially unexplored and offer a promising avenue to dissect the most critical elements of immunomodulation in avoiding severe malaria. Here we discuss potential immunomodulatory roles for TGF-β during malaria in light of recent advances in our understanding of the role of Tregs during blood-stage malaria.
Collapse
Affiliation(s)
- Lisa L Drewry
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - John T Harty
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA.,Department of Pathology, University of Iowa, Iowa City, IA, USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
21
|
Dhangadamajhi G, Singh S. Sphingosine 1-Phosphate in Malaria Pathogenesis and Its Implication in Therapeutic Opportunities. Front Cell Infect Microbiol 2020; 10:353. [PMID: 32923406 PMCID: PMC7456833 DOI: 10.3389/fcimb.2020.00353] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 11/13/2022] Open
Abstract
Sphingosine 1-Phosphate (S1P) is a bioactive lipid intermediate in the sphingolipid metabolism, which exist in two pools, intracellular and extracellular, and each pool has a different function. The circulating extracellular pool, specifically the plasma S1P is shown to be important in regulating various physiological processes related to malaria pathogenesis in recent years. Although blood cells (red blood cells and platelets), vascular endothelial cells and hepatocytes are considered as the important sources of plasma S1P, their extent of contribution is still debated. The red blood cells (RBCs) and platelets serve as a major repository of intracellular S1P due to lack, or low activity of S1P degrading enzymes, however, contribution of platelets toward maintaining plasma S1P is shown negligible under normal condition. Substantial evidences suggest platelets loss during falciparum infection as a contributing factor for severe malaria. However, platelets function as a source for plasma S1P in malaria needs to be examined experimentally. RBC being the preferential site for parasite seclusion, and having the ability of trans-cellular S1P transportation to EC upon tight cell-cell contact, might play critical role in differential S1P distribution and parasite growth. In the present review, we have summarized the significance of both the S1P pools in the context of malaria, and how the RBC content of S1P can be channelized in better ways for its possible implication in therapeutic opportunities to control malaria.
Collapse
Affiliation(s)
| | - Shailja Singh
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
22
|
Kraisin S, Martinod K, Desender L, Pareyn I, Verhenne S, Deckmyn H, Vanhoorelbeke K, Van den Steen PE, De Meyer SF. von Willebrand factor increases in experimental cerebral malaria but is not essential for late-stage pathogenesis in mice. J Thromb Haemost 2020; 18:2377-2390. [PMID: 32485089 DOI: 10.1111/jth.14932] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 01/07/2023]
Abstract
BACKGROUND Cerebral malaria (CM) is the most severe complication of malaria. Endothelial activation, cytokine release, and vascular obstruction are essential hallmarks of CM. Clinical studies have suggested a link between von Willebrand factor (VWF) and malaria pathology. OBJECTIVES To investigate the contribution of VWF in the pathogenesis of experimental cerebral malaria (ECM). METHODS Both Vwf+/+ and Vwf-/- mice were infected with Plasmodium berghei ANKA (PbANKA) to induce ECM. Alterations of plasma VWF and ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13), platelet count, neurological features, and accumulation of platelets and leukocytes in the brain were examined following infection. RESULTS Plasma VWF levels significantly increased upon PbANKA infection in Vwf+/+ animals. While ADAMTS13 activity was not affected, high molecular weight VWF multimers disappeared at the end-stage ECM, possibly due to an ongoing hypercoagulability. Although the number of reticulocytes, a preferential target for the parasites, was increased in Vwf-/- mice compared to Vwf+/+ mice early after infection, parasitemia levels did not markedly differ between the two groups. Interestingly, Vwf-/- mice manifested overall clinical ECM features similar to those observed in Vwf+/+ animals. At day 8.5 post-infection, however, clinical ECM features in Vwf-/- mice were slightly more beneficial than in Vwf+/+ animals. Despite these minor differences, overall survival was not different between Vwf-/- and Vwf+/+ mice. Similarly, PbANKA-induced thrombocytopenia, leukocyte, and platelet accumulations in the brain were not altered by the absence of VWF. CONCLUSIONS Our study suggests that increased VWF concentration is a hallmark of ECM. However, VWF does not have a major influence in modulating late-stage ECM pathogenesis.
Collapse
Affiliation(s)
- Sirima Kraisin
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Kimberly Martinod
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Linda Desender
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Inge Pareyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Sebastien Verhenne
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Hans Deckmyn
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Karen Vanhoorelbeke
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Simon F De Meyer
- Laboratory for Thrombosis Research, KU Leuven Campus Kulak Kortrijk, Kortrijk, Belgium
| |
Collapse
|
23
|
Kumar SP, Babu PP. Aberrant Dopamine Receptor Signaling Plays Critical Role in the Impairment of Striatal Neurons in Experimental Cerebral Malaria. Mol Neurobiol 2020; 57:5069-5083. [PMID: 32833186 DOI: 10.1007/s12035-020-02076-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/14/2020] [Indexed: 01/19/2023]
Abstract
One-fourth survivors of cerebral malaria (CM) retain long-term cognitive and behavioral deficits. Structural abnormalities in striatum are reported in 80% of children with CM. Dopamine receptors (D1 and D2) are widely expressed in striatal medium spiny neurons (MSNs) that regulate critical physiological functions related to behavior and cognition. Dysregulation of dopamine receptors alters the expression of downstream proteins such as dopamine- and cAMP-regulated phosphoprotein (DARPP), Ca2+/calmodulin-dependent protein kinase II alpha (CaMKIIα), and p25/cyclin-dependent kinase 5 (cdk5). However, the role of dopamine receptor signaling dysfunction on the outcome of striatal neuron degeneration is unknown underlying the pathophysiology of CM. Using experimental CM (ECM), the present study attempted to understand the role of aberrant dopamine receptor signaling and its possible relation in causing MSNs morphological impairment. The effect of antimalarial drug artemether (ARM) rescue therapy was also assessed after ECM on the outcome of dopamine receptors downstream signaling. ECM was induced in C57BL/6 mice (male and female) infecting with Plasmodium berghei ANKA (PbA) parasite that reiterates the clinical setting of CM. We demonstrated that ECM caused a significant increase in the expression of D1, D2 receptors, phosphorylated DARPP, p25, cdk5, CaMKIIα, and D1-D2 heteromers. A substantial increase in neuronal damage observed in the dorsolateral striatum region of ECM brains (particularly in MSNs) as revealed by increased Fluoro-Jade C staining, reduced dendritic spine density, and impaired dendritic arborization with varicosities. While the ARM rescue therapy significantly altered the effects of ECM induced dopamine receptor signaling dysfunction and neurodegeneration. Overall, our data suggest that dysregulation of dopamine receptor signaling plays an important role in the degeneration of MSNs, and the ARM rescue therapy might provide better insights to develop effective therapeutic strategies for CM.
Collapse
Affiliation(s)
- Simhadri Praveen Kumar
- Neuroscience Laboratory (F-23/71), Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Phanithi Prakash Babu
- Neuroscience Laboratory (F-23/71), Department of Biotechnology and Bioinformatics, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India.
| |
Collapse
|
24
|
Guha SK, Sarkar I, Patgaonkar M, Banerjee S, Mukhopadhyay S, Sharma S, Pathak S, Vaidya VA. A history of juvenile mild malaria exacerbates chronic stress-evoked anxiety-like behavior, neuroinflammation, and decline of adult hippocampal neurogenesis in mice. J Neuroimmunol 2020; 348:577363. [PMID: 32919145 DOI: 10.1016/j.jneuroim.2020.577363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/15/2020] [Accepted: 08/16/2020] [Indexed: 01/23/2023]
Abstract
Children residing in high malaria transmission regions are particularly susceptible to malaria. This early-life window is also a critical period for development and maturation of the nervous system, and inflammatory insults during this period may evoke a persistent increase in vulnerability for psychopathology. We employed a two-hit model of juvenile mild malaria and a two-week chronic unpredictable mild stress (CUMS) regime, commencing 60 days post-parasite clearance, to assess whether a history of juvenile infection predisposed the mice towards mood-related behavioral alterations and neurocognitive deficits. We showed that adult mice with a history of juvenile malaria (A-H/JMAL) exhibited heightened CUMS-associated anxiety-like behavior, with no observable change in cognitive behavior. In contrast, mice with a history of adult malaria did not exhibit such enhanced stress vulnerability. At baseline, A-H/JMAL mice showed increased activated microglia within the hippocampal dentate gyrus subfield. This was accompanied by a decrease in proliferating neuronal progenitors, with total number of immature hippocampal neurons unaltered. This neuroinflammatory and neurogenic decline was further exacerbated by CUMS. At day-14 post-CUMS, hippocampi of A-H/JMAL mice showed significantly higher microglial activation, and a concomitant decrease in progenitor proliferation and number of immature neurons. Taken together, these results suggest that a history of juvenile mild malaria leaves a neuroinflammatory mark within the hippocampal niche, and this may contribute to a heightened stress response in adulthood. Our findings lend credence to the idea that the burden of malaria in early-life results in sustained CNS changes that could contribute to increased vulnerability to adult-onset neuronal insults.
Collapse
Affiliation(s)
- Suman K Guha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Ishita Sarkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Mandar Patgaonkar
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Souvik Banerjee
- Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India
| | - Siuli Mukhopadhyay
- Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India
| | - Shobhona Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
| | - Sulabha Pathak
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| | - Vidita A Vaidya
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
25
|
Zhang Q, Ao Z, Hu N, Zhu Y, Liao F, Han D. Neglected interstitial space in malaria recurrence and treatment. NANO RESEARCH 2020; 13:2869-2878. [PMID: 32837694 PMCID: PMC7378403 DOI: 10.1007/s12274-020-2946-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 05/30/2023]
Abstract
The interstitial space, a widespread fluid-filled compartment throughout the body, is related to many pathophysiological alterations and diseases, attracting increasing attention. The vital role of interstitial space in malaria infection and treatment has been neglected current research efforts. We confirmed the reinfection capacity of parasites sequestrated in interstitial space, which replenish the mechanism of recurrence. Malaria parasite-infected mice were treated with artemisinin-loaded liposomes through the interstitial space and exhibited a better therapeutic response. Notably, compared with oral administration, interstitial administration showed an unexpectedly high activation and recruitment of immune cells, and resulted in better clearance of sequestered parasites from organs, and enhanced pathological recovery. The interstitial route of administration prolongs the blood circulation time of artemisinin and increases its plasma concentration, and may compensate for the inefficiency of oral administration and the nanotoxicity of intravenous administration, providing a potential strategy for infectious disease therapy.
Collapse
Affiliation(s)
- Qiang Zhang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhuo Ao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Nan Hu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- Department of Traditional Chinese Medicine, Chengde Medical University, Chengde, 066000 China
| | - Yuting Zhu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Fulong Liao
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100049 China
| | - Dong Han
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
26
|
Chen KY, Cheng CJ, Cheng CC, Jhan KY, Chen YJ, Wang LC. The excretory/secretory products of fifth-stage larval Angiostrongylus cantonensis induces autophagy via the Sonic hedgehog pathway in mouse brain astrocytes. PLoS Negl Trop Dis 2020; 14:e0008290. [PMID: 32479527 PMCID: PMC7289448 DOI: 10.1371/journal.pntd.0008290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 06/11/2020] [Accepted: 04/13/2020] [Indexed: 12/22/2022] Open
Abstract
Angiostrongyliasis is induced by the nematode Angiostrongylus cantonensis and leads to eosinophilic meningitis and meningoencephalitis in humans. Excretory-secretory products (ESPs) are important investigation targets for studying the relationship between hosts and nematodes. These products assist worms in penetrating the blood-brain barrier and avoiding the host immune response. Autophagy is a catabolic process that is responsible for digesting cytoplasmic organelles, proteins, and lipids and removing them through lysosomes. This process is essential to cell survival and homeostasis during nutritional deficiency, cell injury and stress. In this study, we investigated autophagy induction upon treatment with the ESPs of the fifth-stage larvae (L5) of A. cantonensis and observed the relationship between autophagy and the Shh pathway. First, the results showed that A. cantonensis infection induced blood-brain barrier dysfunction and pathological changes in the brain. Moreover, A. cantonensis L5 ESPs stimulated autophagosome formation and the expression of autophagy molecules, such as LC3B, Beclin, and p62. The data showed that upon ESPs treatment, rapamycin elevated cell viability through the activation of the autophagy mechanism in astrocytes. Finally, we found that ESPs induced the activation of the Sonic hedgehog (Shh) signaling pathway and that the expression of autophagy molecules was increased through the Shh signaling pathway. Collectively, these results suggest that A. cantonensis L5 ESPs stimulate autophagy through the Shh signaling pathway and that autophagy has a protective effect in astrocytes. In helminthes, Excretory-secretory products (ESPs) contains a wide range of molecules, including proteins, lipids, glycans, and nucleic acids, that assist in the penetration of host defensive barriers, reduction of oxidative stress, and avoid the host immune attack. It has been known as a key factor for parasite development, including feeding, invasion and molting. Therefore, ESPs is a valuable target for the investigation of the host-parasite relationships. However, only a few researches about the function of Angiostrongyliasis cantonensis ESPs have been verified to date. Angiostrongyliasis cantonensis, a blood-feeding nematode, and it is an important causative agent of eosinophilic meningitis and meningoencephalitis in human. Recent our studies have demonstrated that the A. cantonensis ESPs can induce oxidative stress, apoptosis, and immune response. In this study, we will use a mouse astrocytes as a model to investigate the signaling mechanisms of autophagy induction by ESPs treatment. First, the Microarray, Western blotting, and Transmission electron microscopy data demonstrated that A. cantonensis ESPs can induce autophagy generation in astrocytes. Next, ESPs-induced autophagy was activated via Sonic hedgehog (Shh) signaling, and it has a protective potential for astrocytes. These finding will provide new insights into the mechanisms and effects of the A. cantonensis ESPs.
Collapse
Affiliation(s)
- Kuang-Yao Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Chien-Ju Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Chieh Cheng
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-Yuan Jhan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yi-Ju Chen
- Department of Parasitology, School of Medicine, China Medical University, Taichung, Taiwan
| | - Lian-Chen Wang
- Department of Parasitology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
27
|
Darling TK, Mimche PN, Bray C, Umaru B, Brady LM, Stone C, Eboumbou Moukoko CE, Lane TE, Ayong LS, Lamb TJ. EphA2 contributes to disruption of the blood-brain barrier in cerebral malaria. PLoS Pathog 2020; 16:e1008261. [PMID: 31999807 PMCID: PMC6991964 DOI: 10.1371/journal.ppat.1008261] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 12/07/2019] [Indexed: 01/01/2023] Open
Abstract
Disruption of blood-brain barrier (BBB) function is a key feature of cerebral malaria. Increased barrier permeability occurs due to disassembly of tight and adherens junctions between endothelial cells, yet the mechanisms governing junction disassembly and vascular permeability during cerebral malaria remain poorly characterized. We found that EphA2 is a principal receptor tyrosine kinase mediating BBB breakdown during Plasmodium infection. Upregulated on brain microvascular endothelial cells in response to inflammatory cytokines, EphA2 is required for the loss of junction proteins on mouse and human brain microvascular endothelial cells. Furthermore, EphA2 is necessary for CD8+ T cell brain infiltration and subsequent BBB breakdown in a mouse model of cerebral malaria. Blocking EphA2 protects against BBB breakdown highlighting EphA2 as a potential therapeutic target for cerebral malaria.
Collapse
Affiliation(s)
- Thayer K. Darling
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Patrice N. Mimche
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Christian Bray
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Banlanjo Umaru
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Lauren M. Brady
- Department of Pediatric Infectious Diseases, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Colleen Stone
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Carole Else Eboumbou Moukoko
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Biological Sciences, University of Douala, Douala, Cameroon
| | - Thomas E. Lane
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| | - Lawrence S. Ayong
- Malaria Research Unit, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Tracey J. Lamb
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
28
|
de Azevedo-Quintanilha IG, Vieira-de-Abreu A, Ferreira AC, Reis PA, Silva TI, Nascimento DDO, Campbell RA, Estato V, Weyrich AS, Bozza PT, Zimmerman GA, Castro-Faria-Neto HC. Integrin αDβ2 influences cerebral edema, leukocyte accumulation and neurologic outcomes in experimental severe malaria. PLoS One 2019; 14:e0224610. [PMID: 31869339 PMCID: PMC6927624 DOI: 10.1371/journal.pone.0224610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022] Open
Abstract
Malaria is an infectious disease of major worldwide clinical importance that causes a variety of severe, or complicated, syndromes including cerebral malaria, which is often fatal. Leukocyte integrins are essential for host defense but also mediate physiologic responses of the innate and adaptive immune systems. We previously showed that targeted deletion of the αD subunit (αD-/-) of the αDβ2 integrin, which is expressed on key leukocyte subsets in mice and humans, leads to absent expression of the integrin heterodimer on murine macrophages and reduces mortality in mice infected with Plasmodium berghei ANKA (P. berghei ANKA). To further identify mechanisms involved in the protective effect of αD deletion in this model of severe malaria we examined wild type C57BL/6 (WT) and αD-/- mice after P. berghei ANKA infection and found that vessel plugging and leukocyte infiltration were significantly decreased in the brains of αD-/- animals. Intravital microscopy demonstrated decreased rolling and adhesion of leukocytes in cerebral vessels of αD-/- mice. Flow cytometry analysis showed decreased T-lymphocyte accumulation in the brains of infected αD-/- animals. Evans blue dye exclusion assays demonstrated significantly less dye extravasation in the brains of αD-/- mice, indicating preserved blood-brain barrier integrity. WT mice that were salvaged from P. berghei ANKA infection by treatment with chloroquine had impaired aversive memory, which was not observed in αD-/- mice. We conclude that deletion of integrin αDβ2 alters the natural course of experimental severe malaria, demonstrating previously unrecognized activities of a key leukocyte integrin in immune-inflammatory responses that mediate cerebral involvement.
Collapse
Affiliation(s)
| | - Adriana Vieira-de-Abreu
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - André C. Ferreira
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia A. Reis
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tathiany I. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Danielle de O. Nascimento
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robert A. Campbell
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Vanessa Estato
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrew S. Weyrich
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Patrícia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Guy A. Zimmerman
- Department of Internal Medicine and Program in Molecular Medicine, University of Utah, Salt Lake City, Utah, United States of America
| | - Hugo C. Castro-Faria-Neto
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
29
|
Handschuh J, Amore J, Müller AJ. From the Cradle to the Grave of an Infection: Host-Pathogen Interaction Visualized by Intravital Microscopy. Cytometry A 2019; 97:458-470. [PMID: 31777152 DOI: 10.1002/cyto.a.23938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/12/2019] [Accepted: 11/06/2019] [Indexed: 12/11/2022]
Abstract
During infections, interactions between host immune cells and the pathogen occur in distinct anatomical locations and along defined time scales. This can best be assessed in the physiological context of an infection in the living tissue. Consequently, intravital imaging has enabled us to dissect the critical phases and events throughout an infection in real time in living tissues. Specifically, advances in visualizing specific cell types and individual pathogens permitted tracking the early events of tissue invasion of the pathogen, cellular interactions involved in the induction of the immune response as well the events implicated in clearance of the infection. In this respect, two vantage points have evolved since the initial employment of this technique in the field of infection biology. On the one hand, strategies acquired by the pathogen to establish within the host and circumvent or evade the immune defenses have been elucidated. On the other hand, analyzing infections from the immune system's perspective has led to insights into the dynamic cellular interactions that are involved in the initial recognition of the pathogen, immune induction as well as effector function delivery and immunopathology. Furthermore, an increasing interest in probing functional parameters in vivo has emerged, such as the analysis of pathogen reactivity to stress conditions imposed by the host organism in order to mediate clearance upon pathogen encounter. Here, we give an overview on recent intravital microscopy findings of host-pathogen interactions along the course of an infection, from both the immune system's and pathogen's perspectives. We also discuss recent developments and future perspectives in extracting intravital information beyond the localization of pathogens and their interaction with immune cells. Such reporter systems on the pathogen's physiological state and immune cell functions may prove useful in dissecting the functional dynamics of host-pathogen interactions. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals, Inc. on behalf of International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Juliane Handschuh
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Jonas Amore
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, 39120, Magdeburg, Germany.,Intravital Microscopy of Infection and Immunity, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| |
Collapse
|
30
|
Li C, Zhang L, Wang C, Teng H, Fan B, Chopp M, Zhang ZG. N-Acetyl-Seryl-Aspartyl-Lysyl-Proline Augments Thrombolysis of tPA (Tissue-Type Plasminogen Activator) in Aged Rats After Stroke. Stroke 2019; 50:2547-2554. [PMID: 31387512 PMCID: PMC6710137 DOI: 10.1161/strokeaha.119.026212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background and Purpose- Stroke is a leading cause of disability worldwide, mainly affecting the elderly. However, preclinical studies in aged ischemic animals are limited. N-acetyl-seryl-aspartyl-lysyl-proline (AcSDKP) is a naturally occurring tetrapeptide with vascular-protective properties. The present study investigated the effect of AcSDKP on tPA (tissue-type plasminogen activator)-induced thrombolysis in aged rats after ischemic stroke. Methods- Aged male rats (18 months) were subjected to embolic middle cerebral artery occlusion. Rats subjected to 4 hours of middle cerebral artery occlusion were randomized into the following groups: (1) AcSDKP; (2) tPA; (3) AcSDKP in combination with tPA; and (4) saline. Neurological deficits, cerebral microvascular patency and integrity, and infarction were examined at 1 day and 7 days after middle cerebral artery occlusion. In vitro experiments were performed to examine the effect of AcSDKP on aged cerebral endothelial cell permeability. Results- Compared with saline, AcSDKP, or tPA as monotherapy did not have any therapeutic effects, whereas AcSDKP in combination with tPA significantly reduced cerebral tissue infarction and improved neurological outcome without increasing cerebral hemorrhage. Concurrently, the combination treatment significantly augmented microvascular perfusion and reduced thrombosis and blood-brain barrier leakage. In vitro, compared with cerebral endothelial cells from ischemic adult rats, the endothelial cells from ischemic aged rats exhibited significantly increased leakage. AcSDKP suppressed tPA-induced aged endothelial cell leakage and reduced expression of ICAM-1 (intercellular adhesion molecule 1) and NF (nuclear factor)-κB. Conclusions- The present study provides evidence for the therapeutic efficacy of AcSDKP in combination tPA for the treatment of embolic stroke in aged rats at 4 hours after stroke onset. AcSDKP likely acts on cerebral endothelial cells to enhance the benefits of tPA by increasing tissue perfusion and augmenting the integrity of the blood-brain barrier. Visual Overview- An online visual overview is available for this article.
Collapse
Affiliation(s)
- Chao Li
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Li Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Chunyang Wang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Hua Teng
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Baoyan Fan
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
- Department of Physics, Oakland University, Rochester, Michigan, 48309
| | - Zheng Gang Zhang
- Department of Neurology, Henry Ford Hospital, Detroit, Michigan 48202
| |
Collapse
|
31
|
Lee NJ, Ha SK, Sati P, Absinta M, Luciano NJ, Lefeuvre JA, Schindler MK, Leibovitch EC, Ryu JK, Petersen MA, Silva AC, Jacobson S, Akassoglou K, Reich DS. Spatiotemporal distribution of fibrinogen in marmoset and human inflammatory demyelination. Brain 2019; 141:1637-1649. [PMID: 29688408 DOI: 10.1093/brain/awy082] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/04/2018] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis is an inflammatory demyelinating disease of the central nervous system. Although it has been extensively studied, the proximate trigger of the immune response remains uncertain. Experimental autoimmune encephalomyelitis in the common marmoset recapitulates many radiological and pathological features of focal multiple sclerosis lesions in the cerebral white matter, unlike traditional experimental autoimmune encephalomyelitis in rodents. This provides an opportunity to investigate how lesions form as well as the relative timing of factors involved in lesion pathogenesis, especially during early stages of the disease. We used MRI to track experimental autoimmune encephalomyelitis lesions in vivo to determine their age, stage of development, and location, and we assessed the corresponding histopathology post-mortem. We focused on the plasma protein fibrinogen-a marker for blood-brain barrier leakage that has also been linked to a pathogenic role in inflammatory demyelinating lesion development. We show that fibrinogen has a specific spatiotemporal deposition pattern, apparently deriving from the central vein in early experimental autoimmune encephalomyelitis lesions <6 weeks old, and preceding both demyelination and visible gadolinium enhancement on MRI. Thus, fibrinogen leakage is one of the earliest detectable events in lesion pathogenesis. In slightly older lesions, fibrinogen is found inside microglia/macrophages, suggesting rapid phagocytosis. Quantification demonstrates positive correlation of fibrinogen deposition with accumulation of inflammatory cells, including microglia/macrophages and T cells. The peak of fibrinogen deposition coincides with the onset of demyelination and axonal loss. In samples from chronic multiple sclerosis cases, fibrinogen was found at the edge of chronic active lesions, which have ongoing demyelination and inflammation, but not in inactive lesions, suggesting that fibrinogen may play a role in sustained inflammation even in the chronic setting. In summary, our data support the notion that fibrinogen is a key player in the early pathogenesis, as well as sustained inflammation, of inflammatory demyelinating lesions.
Collapse
Affiliation(s)
- Nathanael J Lee
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.,Department of Neuroscience, Georgetown University Medical Center, Georgetown University, Washington, DC 20007, USA
| | - Seung-Kwon Ha
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pascal Sati
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Martina Absinta
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas J Luciano
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jennifer A Lefeuvre
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew K Schindler
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jae Kyu Ryu
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mark A Petersen
- Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Pediatrics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Afonso C Silva
- Cerebral Microcirculation Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katerina Akassoglou
- Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
32
|
Mitoma H, Manto M. Disruption of the Blood-Brain Barrier During Neuroinflammatory and Neuroinfectious Diseases. NEUROIMMUNE DISEASES 2019. [PMCID: PMC7121618 DOI: 10.1007/978-3-030-19515-1_7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the organ of highest metabolic demand, utilizing over 25% of total body glucose utilization via an enormous vasculature with one capillary every 73 μm, the brain evolves a barrier at the capillary and postcapillary venules to prevent toxicity during serum fluctuations in metabolites and hormones, to limit brain swelling during inflammation, and to prevent pathogen invasion. Understanding of neuroprotective barriers has since evolved to incorporate the neurovascular unit (NVU), the blood-cerebrospinal fluid (CSF) barrier, and the presence of CNS lymphatics that allow leukocyte egress. Identification of the cellular and molecular participants in BBB function at the NVU has allowed detailed analyses of mechanisms that contribute to BBB dysfunction in various disease states, which include both autoimmune and infectious etiologies. This chapter will introduce some of the cellular and molecular components that promote barrier function but may be manipulated by inflammatory mediators or pathogens during neuroinflammation or neuroinfectious diseases.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium, Department of Neurosciences, University of Mons, Mons, Belgium
| |
Collapse
|
33
|
Silva LS, Pinheiro AS, Teixeira DE, Silva-Aguiar RP, Peruchetti DB, Scharfstein J, Caruso-Neves C, Pinheiro AAS. Kinins Released by Erythrocytic Stages of Plasmodium falciparum Enhance Adhesion of Infected Erythrocytes to Endothelial Cells and Increase Blood Brain Barrier Permeability via Activation of Bradykinin Receptors. Front Med (Lausanne) 2019; 6:75. [PMID: 31058153 PMCID: PMC6478011 DOI: 10.3389/fmed.2019.00075] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 03/27/2019] [Indexed: 12/13/2022] Open
Abstract
Background:Plasmodium falciparum, the etiologic agent of malaria, is a major cause of infant death in Africa. Although research on the contact system has been revitalized by recent discoveries in the field of thrombosis, limited efforts were done to investigate the role of its proinflammatory arm, the kallikrein kinin system (KKS), in the pathogenesis of neglected parasitic diseases, such as malaria. Owing to the lack of animal models, the dynamics of central nervous system (CNS) pathology caused by the sequestration of erythrocytic stages of P. falciparum is not fully understood. Given the precedent that kinins destabilize the blood brain barrier (BBB) in ischemic stroke, here we sought to determine whether Plasmodium falciparum infected erythrocytes (Pf-iRBC) conditioned medium enhances parasite sequestration and impairs BBB integrity via activation of the kallikrein kinin system (KKS). Methods: Monolayers of human brain endothelial cell line (BMECs) are preincubated with the conditioned medium from Pf-iRBCs or RBCs (controls) in the presence or absence of HOE-140 or DALBK, antagonists of bradykinin receptor B2 (B2R) and bradykinin receptor B1 (B1R), respectively. Following washing, the treated monolayers are incubated with erythrocytes, infected or not with P. falciparum mature forms, to examine whether the above treatment (i) has impact on the adhesion of Pf-iRBC to BMEC monolayer, (ii) increases the macromolecular permeability of the tracer BSA-FITC, and (iii) modifies the staining pattern of junctional proteins (ZO-1 and β-catenin). Results: We found that kinins generated in the parasite conditioned medium, acting via bradykinin B2 and/or B1 receptors (i) enhanced Pf-iRBC adhesion to the endothelium monolayer and (ii) impaired the endothelial junctions formed by ZO-1 and β-catenin, consequently disrupting the integrity of the BBB. Conclusions: Our studies raise the possibility that therapeutic targeting of kinin forming enzymes and/or endothelial bradykinin receptors might reduce extent of Pf-iRBC sequestration and help to preserve BBB integrity in cerebral malaria (CM).
Collapse
Affiliation(s)
- Leandro S Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Douglas E Teixeira
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo P Silva-Aguiar
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo B Peruchetti
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Instituto Nacional de Ciência e Tecnologia em Medicina Regenerativa, INCT-Regenera, Conselho Nacional de Pesquisa e Desenvolvimento (CNPq), Rio de Janeiro, Brazil
| | - Ana Acacia S Pinheiro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
34
|
De Niz M, Nacer A, Frischknecht F. Intravital microscopy: Imaging host-parasite interactions in the brain. Cell Microbiol 2019; 21:e13024. [PMID: 30830993 DOI: 10.1111/cmi.13024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/14/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Abstract
Intravital fluorescence microscopy (IVM) is a powerful technique for imaging multiple organs, including the brain of living mice and rats. It enables the direct visualisation of cells in situ providing a real-life view of biological processes that in vitro systems cannot. In addition, to the technological advances in microscopy over the last decade, there have been supporting innovations in data storage and analytical packages that enable the visualisation and analysis of large data sets. Here, we review the advantages and limitations of techniques predominantly used for brain IVM, including thinned skull windows, open skull cortical windows, and a miniaturised optical system based on microendoscopic probes that can be inserted into deep tissues. Further, we explore the relevance of these techniques for the field of parasitology. Several protozoan infections are associated with neurological symptoms including Plasmodium spp., Toxoplasma spp., and Trypanosoma spp. IVM has led to crucial findings on these parasite species, which are discussed in detail in this review.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, University of Bern, Bern, Switzerland.,Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasglow, UK
| | - Adéla Nacer
- Division of Bacteriology, National Institute for Biological Standards and Control, Medicines and Healthcare products Regulatory Agency, EN63QG, Potters Bar, UK
| | - Friedrich Frischknecht
- Parasitology-Centre for Infectious Diseases, University of Heidelberg Medical School, Heidelberg, Germany
| |
Collapse
|
35
|
Abstract
Malaria is a causative factor in about 500.000 deaths each year world-wide. Cerebral malaria is a particularly severe complication of this disease and thus associated with an exceedingly high mortality. Malaria retinopathy is an ocular manifestation often associated with cerebral malaria, and presumably shares a substantial part of its pathophysiology. Here, we describe that indeed murine malaria retinopathy reproduced the main hallmarks of the corresponding human disease. In the living animal, we were able to follow the circulation and cellular localization of malaria parasites transgenically labelled with GFP via non-invasive in vivo retinal imaging. We found that malaria parasites cross the blood-retinal-barrier and infiltrate the neuroretina, concomitant with an extensive, irreversible, and long-lasting retinal neurodegeneration. Furthermore, anti-malarial treatment with dihydroartemisinin strongly diminished the load of circulating parasites but resolved the symptoms of the retinopathy only in part. In summary, we introduce here a novel preclinical model for human cerebral malaria that is much more directly accessible for studies into disease pathophysiology and development of novel treatment approaches. In vivo retinal imaging may furthermore serve as a valuable tool for the early diagnosis of the human disease.
Collapse
|
36
|
DeStefano JG, Jamieson JJ, Linville RM, Searson PC. Benchmarking in vitro tissue-engineered blood-brain barrier models. Fluids Barriers CNS 2018; 15:32. [PMID: 30514389 PMCID: PMC6280508 DOI: 10.1186/s12987-018-0117-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 11/11/2018] [Indexed: 12/13/2022] Open
Abstract
The blood–brain barrier (BBB) plays a key role in regulating transport into and out of the brain. With increasing interest in the role of the BBB in health and disease, there have been significant advances in the development of in vitro models. The value of these models to the research community is critically dependent on recapitulating characteristics of the BBB in humans or animal models. However, benchmarking in vitro models is surprisingly difficult since much of our knowledge of the structure and function of the BBB comes from in vitro studies. Here we describe a set of parameters that we consider a starting point for benchmarking and validation. These parameters are associated with structure (ultrastructure, wall shear stress, geometry), microenvironment (basement membrane and extracellular matrix), barrier function (transendothelial electrical resistance, permeability, efflux transport), cell function (expression of BBB markers, turnover), and co-culture with other cell types (astrocytes and pericytes). In suggesting benchmarks, we rely primarily on imaging or direct measurements in humans and animal models.
Collapse
Affiliation(s)
- Jackson G DeStefano
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - John J Jamieson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Raleigh M Linville
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA.,Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, USA. .,Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, USA. .,120 Croft Hall, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA.
| |
Collapse
|
37
|
Hempel C, Sporring J, Kurtzhals JAL. Experimental cerebral malaria is associated with profound loss of both glycan and protein components of the endothelial glycocalyx. FASEB J 2018; 33:2058-2071. [DOI: 10.1096/fj.201800657r] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Casper Hempel
- Centre for Medical ParasitologyDepartment of Clinical MicrobiologyCopenhagen University HospitalCopenhagenDenmark
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
- Department of Micro- and NanotechnologyTechnical University of DenmarkLyngbyDenmark
| | - Jon Sporring
- Department for Computer SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Jørgen Anders Lindholm Kurtzhals
- Centre for Medical ParasitologyDepartment of Clinical MicrobiologyCopenhagen University HospitalCopenhagenDenmark
- Department of Immunology and MicrobiologyUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
38
|
Nath N, Prasad HK, Kumar M. Cerebroprotective effects of hydrogen sulfide in homocysteine-induced neurovascular permeability: Involvement of oxidative stress, arginase, and matrix metalloproteinase-9. J Cell Physiol 2018; 234:3007-3019. [PMID: 30206943 DOI: 10.1002/jcp.27120] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 01/25/2023]
Abstract
An elevated level of homocysteine (Hcy) leads to hyperhomocysteinemia (HHcy), which results in vascular dysfunction and pathological conditions identical to stroke symptoms. Hcy increases oxidative stress and leads to increase in blood-brain barrier permeability and leakage. Hydrogen sulfide (H2 S) production during the metabolism of Hcy has a cerebroprotective effect, although its effectiveness in Hcy-induced neurodegeneration and neurovascular permeability is less explored. Therefore, the current study was designed to perceive the neuroprotective effect of exogenous H 2 S against HHcy, a cause of neurodegeneration. To test this hypothesis, we used four groups of mice: control, Hcy, control + sodium hydrosulfide hydrate (NaHS), and Hcy + NaHS, and an HHcy mice model in Swiss albino mice by giving a dose of 1.8 g of dl-Hcy/L in drinking for 8-10 weeks. Mice that have 30 µmol/L Hcy were taken for the study, and a H 2 S supplementation of 20 μmol/L was given for 8 weeks to all groups of mice. HHcy results in the rise of the levels of superoxide and nitrite, although a concomitant decrease in the level of superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, and arginase in oxidative stress and a concomitant decrease in the endogenous level of H 2 S. Although H 2 S supplementation ameliorated, the effect of HHcy and the levels of H 2 S returned to the average level in HHcy animals supplemented with H 2 S. Interestingly, H 2 S supplementation ameliorated neurovascular remodeling and neurodegeneration. Thus, our study suggested that H 2 S could be a beneficial therapeutic candidate for the treatment of Hcy-associated neurodegeneration, such as stroke and neurovascular disorders.
Collapse
Affiliation(s)
- Nibendu Nath
- Department of LifeScience and Bioinformatics, Assam University, Silchar, India
| | | | - Munish Kumar
- Department of Biochemistry, University of Allahabad, Allahabad, India
| |
Collapse
|
39
|
Ghazanfari N, Mueller SN, Heath WR. Cerebral Malaria in Mouse and Man. Front Immunol 2018; 9:2016. [PMID: 30250468 PMCID: PMC6139318 DOI: 10.3389/fimmu.2018.02016] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Abstract
Cerebral malaria (CM) is an acute encephalopathy caused by the malaria parasite Plasmodium falciparum, which develops in a small minority of infected patients and is responsible for the majority of deaths in African children. Despite decades of research on CM, the pathogenic mechanisms are still relatively poorly defined. Nevertheless, many studies in recent years, using a combination of animal models, in vitro cell culture work, and human patients, provide significant insight into the pathologic mechanisms leading to CM. In this review, we summarize recent findings from mouse models and human studies on the pathogenesis of CM, understanding of which may enable development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Nazanin Ghazanfari
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
40
|
FTY720 restores endothelial cell permeability induced by malaria sera. Sci Rep 2018; 8:10959. [PMID: 30026484 PMCID: PMC6053398 DOI: 10.1038/s41598-018-28536-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/22/2018] [Indexed: 02/07/2023] Open
Abstract
Increased endothelial cell (EC) permeability in severe Plasmodium falciparum malaria contributes to major complications of severe malaria. This study explored EC permeability in malaria, and evaluated the potential use of FTY720 to restore EC permeability. ECs were incubated with sera from malaria patients (P. vivax, uncomplicated and complicated P. falciparum malaria). Cellular permeability was investigated using a fluorescein isothiocyanate (FITC)-dextran permeability assay. FTY720, an analogue of sphingosine-1-phosphate (S1P), was tested for its potential action in maintaining EC integrity. ECs incubated with sera from malaria patients with complicated P. falciparum showed higher fluorescein leakage compared with ECs incubated with sera from P. vivax (p < 0.001) and uncomplicated P. falciparum (p < 0.001). ECs pretreated with FTY720 before incubation with malaria sera had significantly decreased fluorescein leakage compared with no FTY720 treatment. In addition, FTY720 treatment significantly reduced fluorescein leakage for both uncomplicated (at 45 min) (p = 0.015), and complicated P. falciparum malaria (15 min) (p = 0.043). The permeability increase induced by complicated P. falciparum sera was significantly reversed and prevented by FTY720 in vitro. FTY720 may have clinical applications to protect against endothelial barrier dysfunction in severe P. falciparum malaria.
Collapse
|
41
|
Wilson KD, Ochoa LF, Solomon OD, Pal R, Cardona SM, Carpio VH, Keiser PH, Cardona AE, Vargas G, Stephens R. Elimination of intravascular thrombi prevents early mortality and reduces gliosis in hyper-inflammatory experimental cerebral malaria. J Neuroinflammation 2018; 15:173. [PMID: 29866139 PMCID: PMC5987620 DOI: 10.1186/s12974-018-1207-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/17/2018] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Cerebral malaria (CM) is the most lethal outcome of Plasmodium infection. There are clear correlations between expression of inflammatory cytokines, severe coagulopathies, and mortality in human CM. However, the mechanisms intertwining the coagulation and inflammation pathways, and their roles in CM, are only beginning to be understood. In mice with T cells deficient in the regulatory cytokine IL-10 (IL-10 KO), infection with Plasmodium chabaudi leads to a hyper-inflammatory response and lethal outcome that can be prevented by anti-TNF treatment. However, inflammatory T cells are adherent within the vasculature and not present in the brain parenchyma, suggesting a novel form of cerebral inflammation. We have previously documented behavioral dysfunction and microglial activation in infected IL-10 KO animals suggestive of neurological involvement driven by inflammation. In order to understand the relationship of intravascular inflammation to parenchymal dysfunction, we studied the congestion of vessels with leukocytes and fibrin(ogen) and the relationship of glial cell activation to congested vessels in the brains of P. chabaudi-infected IL-10 KO mice. METHODS Using immunofluorescence microscopy, we describe severe thrombotic congestion in these animals. We stained for immune cell surface markers (CD45, CD11b, CD4), fibrin(ogen), microglia (Iba-1), and astrocytes (GFAP) in the brain at the peak of behavioral symptoms. Finally, we investigated the roles of inflammatory cytokine tumor necrosis factor (TNF) and coagulation on the pathology observed using neutralizing antibodies and low-molecular weight heparin to inhibit both inflammation and coagulation, respectively. RESULTS Many blood vessels in the brain were congested with thrombi containing adherent leukocytes, including CD4 T cells and monocytes. Despite containment of the pathogen and leukocytes within the vasculature, activated microglia and astrocytes were prevalent in the parenchyma, particularly clustered near vessels with thrombi. Neutralization of TNF, or the coagulation cascade, significantly reduced both thrombus formation and gliosis in P. chabaudi-infected IL-10 KO mice. CONCLUSIONS These findings support the contribution of cytokines, coagulation, and leukocytes within the brain vasculature to neuropathology in malaria infection. Strikingly, localization of inflammatory leukocytes within intravascular clots suggests a mechanism for interaction between the two cascades by which cytokines drive local inflammation without considerable cellular infiltration into the brain parenchyma.
Collapse
Affiliation(s)
- Kyle D Wilson
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Lorenzo F Ochoa
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Olivia D Solomon
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Rahul Pal
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Sandra M Cardona
- Department of Biology, One UTSA Circle, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Victor H Carpio
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Philip H Keiser
- Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0435, USA
| | - Astrid E Cardona
- Department of Biology, One UTSA Circle, University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Gracie Vargas
- Center for Biomedical Engineering, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.,Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA
| | - Robin Stephens
- Department of Microbiology and Immunology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA. .,Department of Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0435, USA. .,Institute for Human Infections and Immunity, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555, USA.
| |
Collapse
|
42
|
Fetal and Maternal Innate Immunity Receptors Have Opposing Effects on the Severity of Experimental Malaria in Pregnancy: Beneficial Roles for Fetus-Derived Toll-Like Receptor 4 and Type I Interferon Receptor 1. Infect Immun 2018; 86:IAI.00708-17. [PMID: 29440369 PMCID: PMC5913849 DOI: 10.1128/iai.00708-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 02/07/2018] [Indexed: 12/13/2022] Open
Abstract
Malaria in pregnancy (MiP) is a distinctive clinical form of Plasmodium infection and is a cause of placental insufficiency leading to poor pregnancy outcomes. Maternal innate immunity responses play a decisive role in the development of placental inflammation, but the action of fetus-derived factors in MiP outcomes has been overlooked. We investigated the role of the Tlr4 and Ifnar1 genes, taking advantage of heterogenic mating strategies to dissect the effects mediated by maternally and fetally derived Toll-like receptor 4 (TLR4) or type I interferon receptor 1 (IFNAR1). Using a mouse infection system displaying severe MiP outcomes, we found that the expressions of TLR4 and IFNAR1 in the maternal compartment take part in deleterious MiP outcomes, but their fetal counterparts patently counteract these effects. We uncovered that fetal TLR4 contributes to the in vitro uptake of infected erythrocytes by trophoblasts and to the innate immune response in the placenta, offering robust protection of fetus viability, but had no sensible impact on the placental parasite burden. In contrast, we observed that the expression of IFNAR1 in the fetal compartment was associated with a reduced placental parasite burden but had little beneficial effect on fetus outcomes. Furthermore, the downregulation of Ifnar1 expression in infected placentas and in trophoblasts exposed to infected erythrocytes indicated that the interferon-IFNAR1 pathway is involved in the trophoblast response to infection. This work unravels that maternal and fetal counterparts of innate immune pathways drive opposing responses in murine placental malaria and implicates the activation of innate receptors in fetal trophoblast cells in the control of placental infection and in the protection of the fetus.
Collapse
|
43
|
Sorensen EW, Lian J, Ozga AJ, Miyabe Y, Ji SW, Bromley SK, Mempel TR, Luster AD. CXCL10 stabilizes T cell-brain endothelial cell adhesion leading to the induction of cerebral malaria. JCI Insight 2018; 3:98911. [PMID: 29669942 PMCID: PMC5931132 DOI: 10.1172/jci.insight.98911] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/14/2018] [Indexed: 01/12/2023] Open
Abstract
Malaria remains one of the world's most significant human infectious diseases and cerebral malaria (CM) is its most deadly complication. CM pathogenesis remains incompletely understood, hindering the development of therapeutics to prevent this lethal complication. Elevated levels of the chemokine CXCL10 are a biomarker for CM, and CXCL10 and its receptor CXCR3 are required for experimental CM (ECM) in mice, but their role has remained unclear. Using multiphoton intravital microscopy, CXCR3 receptor- and ligand-deficient mice and bone marrow chimeric mice, we demonstrate a key role for endothelial cell-produced CXCL10 in inducing the firm adhesion of T cells and preventing their cell detachment from the brain vasculature. Using a CXCL9 and CXCL10 dual-CXCR3-ligand reporter mouse, we found that CXCL10 was strongly induced in the brain endothelium as early as 4 days after infection, while CXCL9 and CXCL10 expression was found in inflammatory monocytes and monocyte-derived DCs within the blood vasculature on day 8. The induction of both CXCL9 and CXCL10 was completely dependent on IFN-γ receptor signaling. These data demonstrate that IFN-γ-induced, endothelium-derived CXCL10 plays a critical role in mediating the T cell-endothelial cell adhesive events that initiate the inflammatory cascade that injures the endothelium and induces the development of ECM.
Collapse
|
44
|
Movila A, Kajiya M, Wisitrasameewong W, Stashenko P, Vardar-Sengul S, Hernandez M, Thomas Temple H, Kawai T. Intravital endoscopic technology for real-time monitoring of inflammation caused in experimental periodontitis. J Immunol Methods 2018; 457:26-29. [PMID: 29567043 DOI: 10.1016/j.jim.2018.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/02/2018] [Accepted: 03/12/2018] [Indexed: 12/27/2022]
Abstract
We report a novel method for in situ imaging of microvascular permeability in inflamed gingival tissue, using state-of-the-art Cellvizio™ intravital endoscopic technology and a mouse model of ligature-induced periodontitis. The silk ligature was first placed at the upper left second molar. Seven days later, the ligature was removed, and the animals were intravenously injected with Evans blue. Evans blue dye, which selectively binds to blood albumin, was used to monitor the level of inflammation by monitoring vascular permeability in control non-diseased and ligature-induced experimental periodontitis tissue. More specifically, leakage of Evans blue-bound albumin from the micro-capillary to connective tissue indicates the state of inflammation occurring in the specific site. Evans blue leakage from blood vessels was imaged in situ by directly attaching the endoscope (mini Z tip) of the Cellvizio™ system to the gingival tissue without any surgical incision. Evans blue emission intensity was significantly elevated in gingiva of periodontitis lesions, but not control non-ligature placed gingiva, indicating that this technology can be used as a potential minimally invasive diagnostic tool to monitor the level of inflammation at the periodontal disease site.
Collapse
Affiliation(s)
- Alexandru Movila
- The Forsyth Institute, Department of Immunology, Cambridge, MA, USA; Harvard University School of Dental Medicine, Department of Oral Medicine, Infection, and Immunity, Boston, MA, USA; Nova Southeastern University, College of Dental Medicine, Fort Lauderdale, FL, USA.
| | - Mikihito Kajiya
- The Forsyth Institute, Department of Immunology, Cambridge, MA, USA
| | | | - Philip Stashenko
- Harvard University School of Dental Medicine, Department of Oral Medicine, Infection, and Immunity, Boston, MA, USA
| | - Saynur Vardar-Sengul
- Nova Southeastern University, College of Dental Medicine, Fort Lauderdale, FL, USA
| | - Maria Hernandez
- Nova Southeastern University, College of Dental Medicine, Fort Lauderdale, FL, USA
| | - H Thomas Temple
- Nova Southeastern University, College of Allopathic Medicine, Fort Lauderdale, FL, USA
| | - Toshihisa Kawai
- Nova Southeastern University, College of Dental Medicine, Fort Lauderdale, FL, USA
| |
Collapse
|
45
|
Vanka R, Kuppusamy G, Praveen Kumar S, Baruah UK, Karri VVSR, Pandey V, Babu PP. Ameliorating the in vivo antimalarial efficacy of artemether using nanostructured lipid carriers. J Microencapsul 2018; 35:121-136. [PMID: 29448884 DOI: 10.1080/02652048.2018.1441915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cerebral malaria (CM) is a fatal neurological complication of Plasmodium falciparum infection that affects children (below five years old) in sub-Saharan Africa and adults in South-East Asia each year having the fatality rate of 10-25%. The survivors of CM also have high risk of long term neurological or cognitive deficits. The objective of the present investigation was to develop optimised nanostructured lipid carriers (NLCs) of artemether (ARM) for enhanced anti-malarial efficacy of ARM. NLCs of ARM were prepared by a combination of high speed homogenisation (HSH) and probe sonication techniques. Preliminary solubility studies for ARM showed highest solubility in trimyristin (solid lipid), capmul MCM NF (liquid lipid) and polysorbate 80 (surfactant). Trimyristin and capmul showed superior miscibility at a ratio of 70:30.The optimised NLC formulation has the particle size (PS) of: 48.59 ± 3.67 nm, zeta potential (ZP) of: -32 ± 1.63 mV and entrapment efficiency (EE) of: 91 ± 3.62%. In vitro cell line (human embryonic kidney fibroblast cell line (HEK 293 T)) cytotoxicity studies showed that prepared formulation was non-toxic. The results of in vivo studies in CM induced mice prevented the recrudescence of parasite after administration of NLCs of ARM. Additionally, NLCs of ARM showed better parasite clearance, higher survival (60%) in comparison to ARM solution (40%). Also it was observed that lesser entrapment of Evans blue stain (prepared in PBS as solution) in the NLCs of ARM treated brains of C57BL/6 mice than ARM solution treated mice. Hence NLCs of ARM may be a better alternative for improving therapeutic efficacy than ARM solution.
Collapse
Affiliation(s)
- Ravisankar Vanka
- a Department of Pharmaceutics, JSS College of Pharmacy, Ooty , Jagadguru Sri Shivarathreeswara University , Mysuru , India
| | - Gowthamarajan Kuppusamy
- a Department of Pharmaceutics, JSS College of Pharmacy, Ooty , Jagadguru Sri Shivarathreeswara University , Mysuru , India
| | - Simhadri Praveen Kumar
- b Department of Biotechnology and Bioinformatics, School of Life Sciences , University of Hyderabad , Hyderabad , Telangana , India
| | - Uday Krishna Baruah
- a Department of Pharmaceutics, JSS College of Pharmacy, Ooty , Jagadguru Sri Shivarathreeswara University , Mysuru , India
| | | | - Vimal Pandey
- b Department of Biotechnology and Bioinformatics, School of Life Sciences , University of Hyderabad , Hyderabad , Telangana , India
| | - Phanithi Prakash Babu
- b Department of Biotechnology and Bioinformatics, School of Life Sciences , University of Hyderabad , Hyderabad , Telangana , India
| |
Collapse
|
46
|
Varo R, Crowley VM, Sitoe A, Madrid L, Serghides L, Kain KC, Bassat Q. Adjunctive therapy for severe malaria: a review and critical appraisal. Malar J 2018; 17:47. [PMID: 29361945 PMCID: PMC5781278 DOI: 10.1186/s12936-018-2195-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/19/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Despite recent efforts and successes in reducing the malaria burden globally, this infection still accounts for an estimated 212 million clinical cases, 2 million severe malaria cases, and approximately 429,000 deaths annually. Even with the routine use of effective anti-malarial drugs, the case fatality rate for severe malaria remains unacceptably high, with cerebral malaria being one of the most life-threatening complications. Up to one-third of cerebral malaria survivors are left with long-term cognitive and neurological deficits. From a population point of view, the decrease of malaria transmission may jeopardize the development of naturally acquired immunity against the infection, leading to fewer total cases, but potentially an increase in severe cases. The pathophysiology of severe and cerebral malaria is not completely understood, but both parasite and host determinants contribute to its onset and outcomes. Adjunctive therapy, based on modulating the host response to infection, could help to improve the outcomes achieved with specific anti-malarial therapy. RESULTS AND CONCLUSIONS In the last decades, several interventions targeting different pathways have been tested. However, none of these strategies have demonstrated clear beneficial effects, and some have shown deleterious outcomes. This review aims to summarize evidence from clinical trials testing different adjunctive therapy for severe and cerebral malaria in humans. It also highlights some preclinical studies which have evaluated novel strategies and other candidate therapeutics that may be evaluated in future clinical trials.
Collapse
Affiliation(s)
- Rosauro Varo
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique.
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain.
| | - Valerie M Crowley
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Antonio Sitoe
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique
| | - Lola Madrid
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain
| | - Lena Serghides
- Toronto General Research Institute (TGRI), University Health Network, Toronto, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Canada
- Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Kevin C Kain
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Tropical Diseases Unit, Division of Infectious Diseases, Department of Medicine, UHN-Toronto General Hospital, Toronto, ON, Canada
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique.
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.
| |
Collapse
|
47
|
Gun SY, Claser C, Teo TH, Howland SW, Poh CM, Chye RRY, Ng LFP, Rénia L. Interferon regulatory factor 1 is essential for pathogenic CD8+ T cell migration and retention in the brain during experimental cerebral malaria. Cell Microbiol 2018; 20:e12819. [PMID: 29281764 DOI: 10.1111/cmi.12819] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 10/15/2017] [Accepted: 11/26/2017] [Indexed: 12/22/2022]
Abstract
Host immune response has a key role in controlling the progression of malaria infection. In the well-established murine model of experimental cerebral malaria (ECM) with Plasmodium berghei ANKA infection, proinflammatory Th1 and CD8+ T cell response are essential for disease development. Interferon regulatory factor 1 (IRF1) is a transcription factor that promotes Th1 responses, and its absence was previously shown to protect from ECM death. Yet the exact mechanism of protection remains unknown. Here we demonstrated that IRF1-deficient mice (IRF1 knockout) were protected from ECM death despite displaying early neurological signs. Resistance to ECM death was a result of reduced parasite sequestration and pathogenic CD8+ T cells in the brain. Further analysis revealed that IRF1 deficiency suppress interferon-γ production and delayed CD8+ T cell proliferation. CXCR3 expression was found to be decreased in pathogenic CD8+ T cells, which limited their migration to the brain. In addition, reduced expression of adhesion molecules by brain endothelial cells hampered leucocyte retention in the brain. Taken together, these factors limited sequestration of pathogenic CD8+ T cells and consequently its ability to induce extensive damage to the blood-brain barrier.
Collapse
Affiliation(s)
- Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Teck Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Shanshan W Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Rebecca Ren Ying Chye
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Biological Science, National University of Singapore, Singapore
| | - Lisa F P Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore.,Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
48
|
Eeka P, Phanithi PB. Cytotoxic T Lymphocyte Granzyme-b mediates neuronal cell death during Plasmodium berghei ANKA induced experimental cerebral malaria. Neurosci Lett 2018; 664:58-65. [DOI: 10.1016/j.neulet.2017.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/26/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
|
49
|
Higgins SJ, Purcell LA, Silver KL, Tran V, Crowley V, Hawkes M, Conroy AL, Opoka RO, Hay JG, Quaggin SE, Thurston G, Liles WC, Kain KC. Dysregulation of angiopoietin-1 plays a mechanistic role in the pathogenesis of cerebral malaria. Sci Transl Med 2017; 8:358ra128. [PMID: 27683553 DOI: 10.1126/scitranslmed.aaf6812] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Accepted: 09/09/2016] [Indexed: 12/16/2022]
Abstract
Cerebral malaria is a leading cause of global morbidity and mortality. Interventions targeting the underlying pathophysiology of cerebral malaria may improve outcomes compared to treatment with antimalarials alone. Microvascular leak plays an important role in the pathogenesis of cerebral malaria. The angiopoietin (Ang)-Tie-2 system is a critical regulator of vascular function. We show that Ang-1 expression and soluble Tie-2 expression were associated with disease severity and outcome in a prospective study of Ugandan children with severe malaria and in a preclinical murine model of experimental cerebral malaria. Ang-1 was necessary for maintenance of vascular integrity and survival in a mouse model of cerebral malaria. Therapeutic administration of Ang-1 preserved blood-brain barrier integrity and, in combination with artesunate treatment, improved survival beyond that with artesunate alone. These data define a role for dysregulation of the Ang-Tie-2 axis in the pathogenesis of cerebral malaria and support the evaluation of Ang-Tie-2-based interventions as potential adjunctive therapies for treating severe malaria.
Collapse
Affiliation(s)
- Sarah J Higgins
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada. Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | | | - Karlee L Silver
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada. Grand Challenges Canada, Toronto, Ontario M5G 1L7, Canada
| | - Vanessa Tran
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Valerie Crowley
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Michael Hawkes
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada. Department of Pediatrics, University of Alberta, Edmonton, Alberta T6G 1C9, Canada
| | - Andrea L Conroy
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Mulago Hospital and Makerere University, Kampala 7051, Uganda
| | - John G Hay
- New York University School of Medicine, New York, NY 10006, USA
| | - Susan E Quaggin
- Feinberg Cardiovascular Research Institute and Division of Nephrology/Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - W Conrad Liles
- Departments of Medicine, Pathology, Pharmacology and Global Health, University of Washington, Seattle, WA 98195, USA
| | - Kevin C Kain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada. Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada.
| |
Collapse
|
50
|
Crowley VM, Ayi K, Lu Z, Liby KT, Sporn M, Kain KC. Synthetic oleanane triterpenoids enhance blood brain barrier integrity and improve survival in experimental cerebral malaria. Malar J 2017; 16:463. [PMID: 29137631 PMCID: PMC5686938 DOI: 10.1186/s12936-017-2109-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/04/2017] [Indexed: 12/31/2022] Open
Abstract
Background Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection associated with high mortality and neurocognitive impairment in survivors. New anti-malarials and host-based adjunctive therapy may improve clinical outcome in CM. Synthetic oleanane triterpenoid (SO) compounds have shown efficacy in the treatment of diseases where inflammation and oxidative stress contribute to pathogenesis. Methods A derivative of the SO 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), CDDO-ethyl amide (CDDO-EA) was investigated for the treatment of severe malaria in a pre-clinical model. CDDO-EA was evaluated in vivo as a monotherapy as well as adjunctive therapy with parenteral artesunate in the Plasmodium berghei strain ANKA experimental cerebral malaria (ECM) model. Results CDDO-EA alone improved outcome in ECM and, given as adjunctive therapy in combination with artesunate, it significantly improved outcome over artesunate alone (p = 0.009). Improved survival was associated with reduced inflammation, enhanced endothelial stability and blood–brain barrier integrity. Survival was improved even when administered late in the disease course after the onset of neurological symptoms. Conclusions These results indicate that SO are a new class of immunomodulatory drugs and support further studies investigating this class of agents as potential adjunctive therapy for severe malaria.
Collapse
Affiliation(s)
- Valerie M Crowley
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Kodjo Ayi
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Ziyue Lu
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Karen T Liby
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA
| | - Michael Sporn
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA
| | - Kevin C Kain
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, Canada. .,Tropical Diseases Unit, Division of Infectious Diseases, Department of Medicine, UHN-Toronto General Hospital, Toronto, ON, Canada.
| |
Collapse
|