1
|
Li B. Unwrap RAP1's Mystery at Kinetoplastid Telomeres. Biomolecules 2024; 14:67. [PMID: 38254667 PMCID: PMC10813129 DOI: 10.3390/biom14010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Although located at the chromosome end, telomeres are an essential chromosome component that helps maintain genome integrity and chromosome stability from protozoa to mammals. The role of telomere proteins in chromosome end protection is conserved, where they suppress various DNA damage response machineries and block nucleolytic degradation of the natural chromosome ends, although the detailed underlying mechanisms are not identical. In addition, the specialized telomere structure exerts a repressive epigenetic effect on expression of genes located at subtelomeres in a number of eukaryotic organisms. This so-called telomeric silencing also affects virulence of a number of microbial pathogens that undergo antigenic variation/phenotypic switching. Telomere proteins, particularly the RAP1 homologs, have been shown to be a key player for telomeric silencing. RAP1 homologs also suppress the expression of Telomere Repeat-containing RNA (TERRA), which is linked to their roles in telomere stability maintenance. The functions of RAP1s in suppressing telomere recombination are largely conserved from kinetoplastids to mammals. However, the underlying mechanisms of RAP1-mediated telomeric silencing have many species-specific features. In this review, I will focus on Trypanosoma brucei RAP1's functions in suppressing telomeric/subtelomeric DNA recombination and in the regulation of monoallelic expression of subtelomere-located major surface antigen genes. Common and unique mechanisms will be compared among RAP1 homologs, and their implications will be discussed.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA;
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
2
|
Soni A, Klebanov-Akopyan O, Erben E, Plaschkes I, Benyamini H, Mitesser V, Harel A, Yamin K, Onn I, Shlomai J. UMSBP2 is chromatin remodeler that functions in regulation of gene expression and suppression of antigenic variation in trypanosomes. Nucleic Acids Res 2023; 51:5678-5698. [PMID: 37207337 PMCID: PMC10287944 DOI: 10.1093/nar/gkad402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
Universal Minicircle Sequence binding proteins (UMSBPs) are CCHC-type zinc-finger proteins that bind the single-stranded G-rich UMS sequence, conserved at the replication origins of minicircles in the kinetoplast DNA, the mitochondrial genome of kinetoplastids. Trypanosoma brucei UMSBP2 has been recently shown to colocalize with telomeres and to play an essential role in chromosome end protection. Here we report that TbUMSBP2 decondenses in vitro DNA molecules, which were condensed by core histones H2B, H4 or linker histone H1. DNA decondensation is mediated via protein-protein interactions between TbUMSBP2 and these histones, independently of its previously described DNA binding activity. Silencing of the TbUMSBP2 gene resulted in a significant decrease in the disassembly of nucleosomes in T. brucei chromatin, a phenotype that could be reverted, by supplementing the knockdown cells with TbUMSBP2. Transcriptome analysis revealed that silencing of TbUMSBP2 affects the expression of multiple genes in T. brucei, with a most significant effect on the upregulation of the subtelomeric variant surface glycoproteins (VSG) genes, which mediate the antigenic variation in African trypanosomes. These observations suggest that UMSBP2 is a chromatin remodeling protein that functions in the regulation of gene expression and plays a role in the control of antigenic variation in T. brucei.
Collapse
Affiliation(s)
- Awakash Soni
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel- Canada and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Olga Klebanov-Akopyan
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel- Canada and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Esteban Erben
- Heidelberg University Center for Molecular Biology at Heidelberg University, DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, 69120 Heidelberg, Germany
| | - Inbar Plaschkes
- The Info-Core Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Hadar Benyamini
- The Info-Core Bioinformatics Unit, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Vera Mitesser
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel- Canada and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Amnon Harel
- Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold Street, Safed1311502, Israel
| | - Katereena Yamin
- Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold Street, Safed1311502, Israel
| | - Itay Onn
- Azrieli Faculty of Medicine, Bar-Ilan University, 8 Henrietta Szold Street, Safed1311502, Israel
| | - Joseph Shlomai
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel- Canada and the Kuvin Center for the Study of Infectious and Tropical Diseases, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| |
Collapse
|
3
|
Previously Unidentified Histone H1-Like Protein Is Involved in Cell Division and Ribosome Biosynthesis in Toxoplasma gondii. mSphere 2022; 7:e0040322. [PMID: 36468865 PMCID: PMC9769792 DOI: 10.1128/msphere.00403-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chromatin dynamics can regulate all DNA-dependent processes. Access to DNA within chromatin is orchestrated mainly by histones and their posttranslational modifications (PTMs). Like other eukaryotes, the apicomplexan parasite Toxoplasma gondii encodes four canonical histones and five histone variants. In contrast, the linker histone (H1) has never been identified in apicomplexan parasites. In other eukaryotes, histone H1 compacts the chromatin by linking the nucleosome and increasing the DNA compaction. H1 is a multifunctional protein and can be involved in different steps of DNA metabolism or associated with protein complexes related to distinct biological processes. We have identified a novel protein in T. gondii ("TgH1-like") that, although lacking the globular domain of mammalian H1, is remarkably like the H1-like proteins of bacteria and trypanosomatids. Our results demonstrate that TgH1-like is a nuclear protein associated with chromatin and other histones. Curiously, TgH1-like is also in the nucleolus and associated with ribosomal proteins, indicating a versatile function in this parasite. Although knockout of the tgh1-like gene does not affect the cell cycle, it causes endopolygeny and asynchronous division. Interestingly, mutation of posttranslationally modified amino acids results in defects in cell division like those in the Δtgh1-like mutant, showing that these sites are important for protein function. Furthermore, in the bradyzoite stage, this protein is expressed only in dividing parasites, reinforcing its importance in cell division. Indeed, the absence of TgH1-like decreases compaction of peripheral chromatin, confirming its role in the chromatin modulation in T. gondii. IMPORTANCE Histone H1, or linker histone, is an important protein that binds to the nucleosome, aiding chromatin compaction. Here, we characterize for the first time a linker histone in T. gondii, named TgH1-like. It is a small and basic protein that corresponds only to the C-terminal portion of the human H1 but is similar to histone H1 from trypanosomatids and bacteria. TgH1-like is located in the nucleus, interacts with nucleosome histones, and acts in chromatin structure and cell division. Our findings show for the first time the presence of a histone H1 protein in an apicomplexan parasite and will provide new insights into cell division and chromatin dynamics in T. gondii and related parasites.
Collapse
|
4
|
Faria J, Briggs EM, Black JA, McCulloch R. Emergence and adaptation of the cellular machinery directing antigenic variation in the African trypanosome. Curr Opin Microbiol 2022; 70:102209. [PMID: 36215868 DOI: 10.1016/j.mib.2022.102209] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 01/25/2023]
Abstract
Survival of the African trypanosome within its mammalian hosts, and hence transmission between hosts, relies upon antigenic variation, where stochastic changes in the composition of their protective variant-surface glycoprotein (VSG) coat thwart effective removal of the pathogen by adaptive immunity. Antigenic variation has evolved remarkable mechanistic complexity in Trypanosoma brucei, with switching of the VSG coat executed by either transcriptional or recombination reactions. In the former, a single T. brucei cell selectively transcribes one telomeric VSG transcription site, termed the expression site (ES), from a pool of around 15. Silencing of the active ES and activation of one previously silent ES can lead to a co-ordinated VSG coat switch. Outside the ESs, the T. brucei genome contains an enormous archive of silent VSG genes and pseudogenes, which can be recombined into the ES to execute a coat switch. Most such recombination involves gene conversion, including copying of a complete VSG and more complex reactions where novel 'mosaic' VSGs are formed as patchworks of sequences from several silent (pseudo)genes. Understanding of the cellular machinery that directs transcriptional and recombination VSG switching is growing rapidly and the emerging picture is of the use of proteins, complexes and pathways that are not limited to trypanosomes, but are shared across the wider grouping of kinetoplastids and beyond, suggesting co-option of widely used, core cellular reactions. We will review what is known about the machinery of antigenic variation and discuss if there remains the possibility of trypanosome adaptations, or even trypanosome-specific machineries, that might offer opportunities to impair this crucial parasite-survival process.
Collapse
Affiliation(s)
- Joana Faria
- York Biomedical Research Institute, Department of Biology, University of York, United Kingdom.
| | - Emma M Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Jennifer A Black
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil; Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom
| | - Richard McCulloch
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow G12 8TA, United Kingdom.
| |
Collapse
|
5
|
Maree JP, Tvardovskiy A, Ravnsborg T, Jensen ON, Rudenko G, Patterton HG. Trypanosoma brucei histones are heavily modified with combinatorial post-translational modifications and mark Pol II transcription start regions with hyperacetylated H2A. Nucleic Acids Res 2022; 50:9705-9723. [PMID: 36095123 PMCID: PMC9508842 DOI: 10.1093/nar/gkac759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 08/09/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022] Open
Abstract
Trypanosomes diverged from the main eukaryotic lineage about 600 million years ago, and display some unusual genomic and epigenetic properties that provide valuable insight into the early processes employed by eukaryotic ancestors to regulate chromatin-mediated functions. We analysed Trypanosoma brucei core histones by high mass accuracy middle-down mass spectrometry to map core histone post-translational modifications (PTMs) and elucidate cis-histone combinatorial PTMs (cPTMs). T. brucei histones are heavily modified and display intricate cPTMs patterns, with numerous hypermodified cPTMs that could contribute to the formation of non-repressive euchromatic states. The Trypanosoma brucei H2A C-terminal tail is hyperacetylated, containing up to five acetylated lysine residues. MNase-ChIP-seq revealed a striking enrichment of hyperacetylated H2A at Pol II transcription start regions, and showed that H2A histones that are hyperacetylated in different combinations localised to different genomic regions, suggesting distinct epigenetic functions. Our genomics and proteomics data provide insight into the complex epigenetic mechanisms used by this parasite to regulate a genome that lacks the transcriptional control mechanisms found in later-branched eukaryotes. The findings further demonstrate the complexity of epigenetic mechanisms that were probably shared with the last eukaryotic common ancestor.
Collapse
Affiliation(s)
- Johannes P Maree
- Department of Biochemistry, Stellenbosch University, Stellenbosch 7600, South Africa
| | - Andrey Tvardovskiy
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Tina Ravnsborg
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Ole N Jensen
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical Sciences, and Center for Epigenetics, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Gloria Rudenko
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Hugh-G Patterton
- Center for Bioinformatics and Computational Biology, Stellenbosch University, Stellenbosch 7600, South Africa
| |
Collapse
|
6
|
López-Escobar L, Hänisch B, Halliday C, Ishii M, Akiyoshi B, Dean S, Sunter JD, Wheeler RJ, Gull K. Stage-specific transcription activator ESB1 regulates monoallelic antigen expression in Trypanosoma brucei. Nat Microbiol 2022; 7:1280-1290. [PMID: 35879525 PMCID: PMC9352583 DOI: 10.1038/s41564-022-01175-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
Variant surface glycoprotein (VSG) coats bloodstream form Trypanosoma brucei parasites, and monoallelic VSG expression underpins the antigenic variation necessary for pathogenicity. One of thousands of VSG genes is transcribed by RNA polymerase I in a singular nuclear structure called the expression site body (ESB), but how monoallelic VSG transcription is achieved remains unclear. Using a localization screen of 153 proteins we found one, ESB-specific protein 1 (ESB1), that localized only to the ESB and is expressed only in VSG-expressing life cycle stages. ESB1 associates with DNA near the active VSG promoter and is necessary for VSG expression, with overexpression activating inactive VSG promoters. Mechanistically, ESB1 is necessary for recruitment of a subset of ESB components, including RNA polymerase I, revealing that the ESB has separately assembled subdomains. Because many trypanosomatid parasites have divergent ESB1 orthologues yet do not undergo antigenic variation, ESB1 probably represents an important class of transcription regulators.
Collapse
Affiliation(s)
| | - Benjamin Hänisch
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Clare Halliday
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Midori Ishii
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Bungo Akiyoshi
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.,Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK.
| | | | - Keith Gull
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Williams DL, Sikora VM, Hammer MA, Amin S, Brinjikji T, Brumley EK, Burrows CJ, Carrillo PM, Cromer K, Edwards SJ, Emri O, Fergle D, Jenkins MJ, Kaushik K, Maydan DD, Woodard W, Clowney EJ. May the Odds Be Ever in Your Favor: Non-deterministic Mechanisms Diversifying Cell Surface Molecule Expression. Front Cell Dev Biol 2022; 9:720798. [PMID: 35087825 PMCID: PMC8787164 DOI: 10.3389/fcell.2021.720798] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
How does the information in the genome program the functions of the wide variety of cells in the body? While the development of biological organisms appears to follow an explicit set of genomic instructions to generate the same outcome each time, many biological mechanisms harness molecular noise to produce variable outcomes. Non-deterministic variation is frequently observed in the diversification of cell surface molecules that give cells their functional properties, and is observed across eukaryotic clades, from single-celled protozoans to mammals. This is particularly evident in immune systems, where random recombination produces millions of antibodies from only a few genes; in nervous systems, where stochastic mechanisms vary the sensory receptors and synaptic matching molecules produced by different neurons; and in microbial antigenic variation. These systems employ overlapping molecular strategies including allelic exclusion, gene silencing by constitutive heterochromatin, targeted double-strand breaks, and competition for limiting enhancers. Here, we describe and compare five stochastic molecular mechanisms that produce variety in pathogen coat proteins and in the cell surface receptors of animal immune and neuronal cells, with an emphasis on the utility of non-deterministic variation.
Collapse
Affiliation(s)
- Donnell L. Williams
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Veronica Maria Sikora
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Max A. Hammer
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Sayali Amin
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Taema Brinjikji
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Emily K. Brumley
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Connor J. Burrows
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Paola Michelle Carrillo
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Kirin Cromer
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Summer J. Edwards
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Olivia Emri
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Daniel Fergle
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - M. Jamal Jenkins
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| | - Krishangi Kaushik
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Daniella D. Maydan
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - Wrenn Woodard
- MCDB 464 – Cellular Diversity in the Immune and Nervous Systems, University of Michigan, Ann Arbor, MI, United States
| | - E. Josephine Clowney
- Department of Molecular, Cellular and Developmental Biology, The University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
8
|
Faria JRC. A nuclear enterprise: zooming in on nuclear organization and gene expression control in the African trypanosome. Parasitology 2021; 148:1237-1253. [PMID: 33407981 PMCID: PMC8311968 DOI: 10.1017/s0031182020002437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022]
Abstract
African trypanosomes are early divergent protozoan parasites responsible for high mortality and morbidity as well as a great economic burden among the world's poorest populations. Trypanosomes undergo antigenic variation in their mammalian hosts, a highly sophisticated immune evasion mechanism. Their nuclear organization and mechanisms for gene expression control present several conventional features but also a number of striking differences to the mammalian counterparts. Some of these unorthodox characteristics, such as lack of controlled transcription initiation or enhancer sequences, render their monogenic antigen transcription, which is critical for successful antigenic variation, even more enigmatic. Recent technological developments have advanced our understanding of nuclear organization and gene expression control in trypanosomes, opening novel research avenues. This review is focused on Trypanosoma brucei nuclear organization and how it impacts gene expression, with an emphasis on antigen expression. It highlights several dedicated sub-nuclear bodies that compartmentalize specific functions, whilst outlining similarities and differences to more complex eukaryotes. Notably, understanding the mechanisms underpinning antigen as well as general gene expression control is of great importance, as it might help designing effective control strategies against these organisms.
Collapse
Affiliation(s)
- Joana R. C. Faria
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, DundeeDD1 5EH, UK
| |
Collapse
|
9
|
Li B, Zhao Y. Regulation of Antigenic Variation by Trypanosoma brucei Telomere Proteins Depends on Their Unique DNA Binding Activities. Pathogens 2021; 10:pathogens10080967. [PMID: 34451431 PMCID: PMC8402208 DOI: 10.3390/pathogens10080967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, Variant Surface Glycoprotein (VSG), to evade the host immune response. Such antigenic variation is a key pathogenesis mechanism that enables T. brucei to establish long-term infections. VSG is expressed exclusively from subtelomere loci in a strictly monoallelic manner, and DNA recombination is an important VSG switching pathway. The integrity of telomere and subtelomere structure, maintained by multiple telomere proteins, is essential for T. brucei viability and for regulating the monoallelic VSG expression and VSG switching. Here we will focus on T. brucei TRF and RAP1, two telomere proteins with unique nucleic acid binding activities, and summarize their functions in telomere integrity and stability, VSG switching, and monoallelic VSG expression. Targeting the unique features of TbTRF and TbRAP1′s nucleic acid binding activities to perturb the integrity of telomere structure and disrupt VSG monoallelic expression may serve as potential therapeutic strategy against T. brucei.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence: (B.L.); (Y.Z.)
| | - Yanxiang Zhao
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Correspondence: (B.L.); (Y.Z.)
| |
Collapse
|
10
|
Black JA, Crouch K, Lemgruber L, Lapsley C, Dickens N, Tosi LRO, Mottram JC, McCulloch R. Trypanosoma brucei ATR Links DNA Damage Signaling during Antigenic Variation with Regulation of RNA Polymerase I-Transcribed Surface Antigens. Cell Rep 2021; 30:836-851.e5. [PMID: 31968257 PMCID: PMC6988115 DOI: 10.1016/j.celrep.2019.12.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 11/29/2022] Open
Abstract
Trypanosoma brucei evades mammalian immunity by using recombination to switch its surface-expressed variant surface glycoprotein (VSG), while ensuring that only one of many subtelomeric multigene VSG expression sites are transcribed at a time. DNA repair activities have been implicated in the catalysis of VSG switching by recombination, not transcriptional control. How VSG switching is signaled to guide the appropriate reaction or to integrate switching into parasite growth is unknown. Here, we show that the loss of ATR, a DNA damage-signaling protein kinase, is lethal, causing nuclear genome instability and increased VSG switching through VSG-localized damage. Furthermore, ATR loss leads to the increased transcription of silent VSG expression sites and expression of mixed VSGs on the cell surface, effects that are associated with the altered localization of RNA polymerase I and VEX1. This work shows that ATR acts in antigenic variation both through DNA damage signaling and surface antigen expression control. Loss of the repair protein kinase ATR in Trypanosoma brucei is lethal Loss of T. brucei ATR alters VSG coat expression needed for immune evasion Monoallelic RNA polymerase I VSG expression is undermined by ATR loss ATR loss leads to expression of subtelomeric VSGs, indicative of recombination
Collapse
Affiliation(s)
- Jennifer Ann Black
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK; Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Kathryn Crouch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Craig Lapsley
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK
| | - Nicholas Dickens
- Marine Science Lab, FAU Harbor Branch Oceanographic Institute, 5600 US 1 North, Fort Pierce, FL 34946, USA
| | - Luiz R O Tosi
- Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900 SP, Brazil
| | - Jeremy C Mottram
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York YO10 5DD, UK
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity, and Inflammation, University of Glasgow, Sir Graeme Davis Building, 120 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
11
|
Histone Modifications and Other Facets of Epigenetic Regulation in Trypanosomatids: Leaving Their Mark. mBio 2020; 11:mBio.01079-20. [PMID: 32873754 PMCID: PMC7468196 DOI: 10.1128/mbio.01079-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone posttranslational modifications (PTMs) modulate several eukaryotic cellular processes, including transcription, replication, and repair. Vast arrays of modifications have been identified in conventional eukaryotes over the last 20 to 25 years. While initial studies uncovered these primarily on histone tails, multiple modifications were subsequently found on the central globular domains as well. Histones are evolutionarily conserved across eukaryotes, and a large number of their PTMs and the functional relevance of these PTMs are largely conserved. Histone posttranslational modifications (PTMs) modulate several eukaryotic cellular processes, including transcription, replication, and repair. Vast arrays of modifications have been identified in conventional eukaryotes over the last 20 to 25 years. While initial studies uncovered these primarily on histone tails, multiple modifications were subsequently found on the central globular domains as well. Histones are evolutionarily conserved across eukaryotes, and a large number of their PTMs and the functional relevance of these PTMs are largely conserved. Trypanosomatids, however, are early diverging eukaryotes. Although possessing all four canonical histones as well as several variants, their sequences diverge from those of other eukaryotes, particularly in the tails. Consequently, the modifications they carry also vary. Initial analyses almost 15 years ago suggested that trypanosomatids possessed a smaller collection of histone modifications. However, exhaustive high resolution mass spectrometry analyses in the last few years have overturned this belief, and it is now evident that the “histone code” proposed by Allis and coworkers in the early years of this century is as complex in these organisms as in other eukaryotes. Trypanosomatids cause several diseases, and the members of this group of organisms have varied lifestyles, evolving diverse mechanisms to evade the host immune system, some of which have been found to be principally controlled by epigenetic mechanisms. This minireview aims to acquaint the reader with the impact of histone PTMs on trypanosomatid cellular processes, as well as other facets of trypanosomatid epigenetic regulation, including the influence of three-dimensional (3D) genome architecture, and discusses avenues for future investigations.
Collapse
|
12
|
Alonso VL, Tavernelli LE, Pezza A, Cribb P, Ritagliati C, Serra E. Aim for the Readers! Bromodomains As New Targets Against Chagas’ Disease. Curr Med Chem 2019; 26:6544-6563. [DOI: 10.2174/0929867325666181031132007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/11/2022]
Abstract
Bromodomains recognize and bind acetyl-lysine residues present in histone and non-histone
proteins in a specific manner. In the last decade they have raised as attractive targets for drug discovery
because the miss-regulation of human bromodomains was discovered to be involved in the development
of a large spectrum of diseases. However, targeting eukaryotic pathogens bromodomains
continues to be almost unexplored. We and others have reported the essentiality of diverse bromodomain-
containing proteins in protozoa, offering a new opportunity for the development of antiparasitic
drugs, especially for Trypansoma cruzi, the causative agent of Chagas’ disease. Mammalian bromodomains
were classified in eight groups based on sequence similarity but parasitic bromodomains are very
divergent proteins and are hard to assign them to any of these groups, suggesting that selective inhibitors
can be obtained. In this review, we describe the importance of lysine acetylation and bromodomains
in T. cruzi as well as the current knowledge on mammalian bromodomains. Also, we summarize
the myriad of small-molecules under study to treat different pathologies and which of them have been
tested in trypanosomatids and other protozoa. All the information available led us to propose that
T. cruzi bromodomains should be considered as important potential targets and the search for smallmolecules
to inhibit them should be empowered.
Collapse
Affiliation(s)
- Victoria Lucia Alonso
- Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | | | - Alejandro Pezza
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Pamela Cribb
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Carla Ritagliati
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Esteban Serra
- Instituto de Biologia Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| |
Collapse
|
13
|
Sima N, McLaughlin EJ, Hutchinson S, Glover L. Escaping the immune system by DNA repair and recombination in African trypanosomes. Open Biol 2019; 9:190182. [PMID: 31718509 PMCID: PMC6893398 DOI: 10.1098/rsob.190182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
African trypanosomes escape the mammalian immune response by antigenic variation-the periodic exchange of one surface coat protein, in Trypanosoma brucei the variant surface glycoprotein (VSG), for an immunologically distinct one. VSG transcription is monoallelic, with only one VSG being expressed at a time from a specialized locus, known as an expression site. VSG switching is a predominantly recombination-driven process that allows VSG sequences to be recombined into the active expression site either replacing the currently active VSG or generating a 'new' VSG by segmental gene conversion. In this review, we describe what is known about the factors that influence this process, focusing specifically on DNA repair and recombination.
Collapse
Affiliation(s)
- Núria Sima
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Emilia Jane McLaughlin
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Sebastian Hutchinson
- Trypanosome Cell Biology and INSERM U1201, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Lucy Glover
- Trypanosome Molecular Biology, Department of Parasites and Insect Vectors, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
14
|
Saha A, Nanavaty VP, Li B. Telomere and Subtelomere R-loops and Antigenic Variation in Trypanosomes. J Mol Biol 2019; 432:4167-4185. [PMID: 31682833 DOI: 10.1016/j.jmb.2019.10.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022]
Abstract
Trypanosoma brucei is a kinetoplastid parasite that causes African trypanosomiasis, which is fatal if left untreated. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune responses. VSGs are exclusively expressed from subtelomeric expression sites (ESs) where VSG genes are flanked by upstream 70 bp repeats and downstream telomeric repeats. The telomere downstream of the active VSG is transcribed into a long-noncoding RNA (TERRA), which forms RNA:DNA hybrids (R-loops) with the telomeric DNA. At an elevated level, telomere R-loops cause more telomeric and subtelomeric double-strand breaks (DSBs) and increase VSG switching rate. In addition, stabilized R-loops are observed at the 70 bp repeats and immediately downstream of ES-linked VSGs in RNase H defective cells, which also have an increased amount of subtelomeric DSBs and more frequent VSG switching. Although subtelomere plasticity is expected to be beneficial to antigenic variation, severe defects in subtelomere integrity and stability increase cell lethality. Therefore, regulation of the telomere and 70 bp repeat R-loop levels is important for the balance between antigenic variation and cell fitness in T. brucei. In addition, the high level of the active ES transcription favors accumulation of R-loops at the telomere and 70 bp repeats, providing an intrinsic mechanism for local DSB formation, which is a strong inducer of VSG switching.
Collapse
Affiliation(s)
- Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Vishal P Nanavaty
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Science and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA; Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| |
Collapse
|
15
|
Dynamic colocalization of 2 simultaneously active VSG expression sites within a single expression-site body in Trypanosoma brucei. Proc Natl Acad Sci U S A 2019; 116:16561-16570. [PMID: 31358644 PMCID: PMC6697882 DOI: 10.1073/pnas.1905552116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The African trypanosome Trypanosoma brucei expresses a single variant surface glycoprotein (VSG) gene from one of multiple VSG expression sites (ESs) in a stringent monoallelic fashion. The counting mechanism behind this restriction is poorly understood. Unusually for a eukaryote, the active ES is transcribed by RNA polymerase I (Pol I) within a unique Pol I body called the expression-site body (ESB). We have demonstrated the importance of the ESB in restricting the singular expression of VSG. We have generated double-expresser trypanosomes, which simultaneously express 2 ESs at the same time in an unstable dynamic fashion. These cells predominantly contain 1 ESB, and, surprisingly, simultaneous transcription of the 2 ESs is observed only when they are both colocalized within it. Monoallelic exclusion ensures that the African trypanosome Trypanosoma brucei exclusively expresses only 1 of thousands of different variant surface glycoprotein (VSG) coat genes. The active VSG is transcribed from 1 of 15 polycistronic bloodstream-form VSG expression sites (ESs), which are controlled in a mutually exclusive fashion. Unusually, T. brucei uses RNA polymerase I (Pol I) to transcribe the active ES, which is unprecedented among eukaryotes. This active ES is located within a unique extranucleolar Pol I body called the expression-site body (ESB). A stringent restriction mechanism prevents T. brucei from expressing multiple ESs at the same time, although how this is mediated is unclear. By using drug-selection pressure, we generated VSG double-expresser T. brucei lines, which have disrupted monoallelic exclusion, and simultaneously express 2 ESs in a dynamic fashion. The 2 unstably active ESs appear epigenetically similar to fully active ESs as determined by using chromatin immunoprecipitation for multiple epigenetic marks (histones H3 and H1, TDP1, and DNA base J). We find that the double-expresser cells, similar to wild-type single-expresser cells, predominantly contain 1 subnuclear ESB, as determined using Pol I or the ESB marker VEX1. Strikingly, simultaneous transcription of the 2 dynamically transcribed ESs is normally observed only when the 2 ESs are both located within this single ESB. This colocalization is reversible in the absence of drug selection. This discovery that simultaneously active ESs dynamically share a single ESB demonstrates the importance of this unique subnuclear body in restricting the monoallelic expression of VSG.
Collapse
|
16
|
Overexpression of Trypanosoma cruzi High Mobility Group B protein (TcHMGB) alters the nuclear structure, impairs cytokinesis and reduces the parasite infectivity. Sci Rep 2019; 9:192. [PMID: 30655631 PMCID: PMC6336821 DOI: 10.1038/s41598-018-36718-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/21/2018] [Indexed: 12/28/2022] Open
Abstract
Kinetoplastid parasites, included Trypanosoma cruzi, the causal agent of Chagas disease, present a unique genome organization and gene expression. Although they control gene expression mainly post-transcriptionally, chromatin accessibility plays a fundamental role in transcription initiation control. We have previously shown that High Mobility Group B protein from Trypanosoma cruzi (TcHMGB) can bind DNA in vitro. Here, we show that TcHMGB also acts as an architectural protein in vivo, since the overexpression of this protein induces changes in the nuclear structure, mainly the reduction of the nucleolus and a decrease in the heterochromatin:euchromatin ratio. Epimastigote replication rate was markedly reduced presumably due to a delayed cell cycle progression with accumulation of parasites in G2/M phase and impaired cytokinesis. Some functions involved in pathogenesis were also altered in TcHMGB-overexpressing parasites, like the decreased efficiency of trypomastigotes to infect cells in vitro, the reduction of intracellular amastigotes replication and the number of released trypomastigotes. Taken together, our results suggest that the TcHMGB protein is a pleiotropic player that controls cell phenotype and it is involved in key cellular processes.
Collapse
|
17
|
Nuclear Phosphatidylinositol 5-Phosphatase Is Essential for Allelic Exclusion of Variant Surface Glycoprotein Genes in Trypanosomes. Mol Cell Biol 2019; 39:MCB.00395-18. [PMID: 30420356 DOI: 10.1128/mcb.00395-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/23/2018] [Indexed: 11/20/2022] Open
Abstract
Allelic exclusion of variant surface glycoprotein (VSG) genes is essential for African trypanosomes to evade the host antibody response by antigenic variation. The mechanisms by which this parasite expresses only one of its ∼2,000 VSG genes at a time are unknown. We show that nuclear phosphatidylinositol 5-phosphatase (PIP5Pase) interacts with repressor activator protein 1 (RAP1) in a multiprotein complex and functions in the control of VSG allelic exclusion. RAP1 binds PIP5Pase substrate phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3], and catalytic mutation of PIP5Pase that inhibits PI(3,4,5)P3 dephosphorylation results in simultaneous transcription of VSGs from all telomeric expression sites (ESs) and from silent subtelomeric VSG arrays. PIP5Pase and RAP1 bind to telomeric ESs, especially at 70-bp repeats and telomeres, and their binding is altered by PIP5Pase inactivation or knockdown, implying changes in ES chromatin organization. Our data suggest a model whereby PIP5Pase controls PI(3,4,5)P3 binding by RAP1 and, thus, RAP1 silencing of telomeric and subtelomeric VSG genes. Hence, allelic exclusion of VSG genes may entail control of nuclear phosphoinositides.
Collapse
|
18
|
Cestari I, Stuart K. Transcriptional Regulation of Telomeric Expression Sites and Antigenic Variation in Trypanosomes. Curr Genomics 2018; 19:119-132. [PMID: 29491740 PMCID: PMC5814960 DOI: 10.2174/1389202918666170911161831] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/03/2017] [Accepted: 05/04/2017] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Trypanosoma brucei uses antigenic variation to evade the host antibody clearance by periodically changing its Variant Surface Glycoprotein (VSGs) coat. T. brucei encode over 2,500 VSG genes and pseudogenes, however they transcribe only one VSG gene at time from one of the 20 telomeric Expression Sites (ESs). VSGs are transcribed in a monoallelic fashion by RNA polymerase I from an extranucleolar site named ES body. VSG antigenic switching occurs by transcriptional switching between telomeric ESs or by recombination of the VSG gene expressed. VSG expression is developmentally regulated and its transcription is controlled by epigenetic mechanisms and influenced by a telomere position effect. CONCLUSION Here, we discuss 1) the molecular basis underlying transcription of telomeric ESs and VSG antigenic switching; 2) the current knowledge of VSG monoallelic expression; 3) the role of inositol phosphate pathway in the regulation of VSG expression and switching; and 4) the developmental regulation of Pol I transcription of procyclin and VSG genes.
Collapse
Affiliation(s)
- Igor Cestari
- Center for Infectious Disease Research, Seattle, WA98109, USA
| | - Ken Stuart
- Center for Infectious Disease Research, Seattle, WA98109, USA
- Department of Global Health, University of Washington, Seattle, WA98195, USA
| |
Collapse
|
19
|
How to create coats for all seasons: elucidating antigenic variation in African trypanosomes. Emerg Top Life Sci 2017; 1:593-600. [PMID: 33525853 PMCID: PMC7289013 DOI: 10.1042/etls20170105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 11/17/2022]
Abstract
Extracellular parasites of the mammalian bloodstream face considerable challenges including incessant assault by the immune system. African trypanosomes are consummate survivors in this inclement environment and are renowned for their supremely sophisticated strategy of antigenic variation of their protective surface coat during the course of chronic infections. Recent developments are making us realize how complex this antigenic machinery is and are allowing us to tackle previously intractable problems. However, many of the simplest (and arguably the most important) questions still remain unanswered!
Collapse
|
20
|
Abstract
Protozoan parasites colonize numerous metazoan hosts and insect vectors through their life cycles, with the need to respond quickly and reversibly while encountering diverse and often hostile ecological niches. To succeed, parasites must also persist within individuals until transmission between hosts is achieved. Several parasitic protozoa cause a huge burden of disease in humans and livestock, and here we focus on the parasites that cause malaria and African trypanosomiasis. Efforts to understand how these pathogens adapt to survive in varied host environments, cause disease, and transmit between hosts have revealed a wealth of epigenetic phenomena. Epigenetic switching mechanisms appear to be ideally suited for the regulation of clonal antigenic variation underlying successful parasitism. We review the molecular players and complex mechanistic layers that mediate the epigenetic regulation of virulence gene expression. Understanding epigenetic processes will aid the development of antiparasitic therapeutics.
Collapse
Affiliation(s)
- Manoj T Duraisingh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, 651 Huntington Avenue, Boston, MA 02115, USA.
| | - David Horn
- Division of Biological Chemistry & Drug Discovery, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
21
|
Maree JP, Povelones ML, Clark DJ, Rudenko G, Patterton HG. Well-positioned nucleosomes punctuate polycistronic pol II transcription units and flank silent VSG gene arrays in Trypanosoma brucei. Epigenetics Chromatin 2017; 10:14. [PMID: 28344657 PMCID: PMC5359979 DOI: 10.1186/s13072-017-0121-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 03/14/2017] [Indexed: 12/18/2022] Open
Abstract
Background The compaction of DNA in chromatin in eukaryotes allowed the expansion of genome size and coincided with significant evolutionary diversification. However, chromatin generally represses DNA function, and mechanisms coevolved to regulate chromatin structure and its impact on DNA. This included the selection of specific nucleosome positions to modulate accessibility to the DNA molecule. Trypanosoma brucei, a member of the Excavates supergroup, falls in an ancient evolutionary branch of eukaryotes and provides valuable insight into the organization of chromatin in early genomes. Results We have mapped nucleosome positions in T. brucei and identified important differences compared to other eukaryotes: The RNA polymerase II initiation regions in T. brucei do not exhibit pronounced nucleosome depletion, and show little evidence for defined −1 and +1 nucleosomes. In contrast, a well-positioned nucleosome is present directly on the splice acceptor sites within the polycistronic transcription units. The RNA polyadenylation sites were depleted of nucleosomes, with a single well-positioned nucleosome present immediately downstream of the predicted sites. The regions flanking the silent variant surface glycoprotein (VSG) gene cassettes showed extensive arrays of well-positioned nucleosomes, which may repress cryptic transcription initiation. The silent VSG genes themselves exhibited a less regular nucleosomal pattern in both bloodstream and procyclic form trypanosomes. The DNA replication origins, when present within silent VSG gene cassettes, displayed a defined nucleosomal organization compared with replication origins in other chromosomal core regions. Conclusions Our results indicate that some organizational features of chromatin are evolutionarily ancient, and may already have been present in the last eukaryotic common ancestor. Electronic supplementary material The online version of this article (doi:10.1186/s13072-017-0121-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Megan Lindsay Povelones
- Department of Biology, Pennsylvania State University (Brandywine Campus), Media, PA 19063 USA
| | - David Johannes Clark
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, MD USA
| | - Gloria Rudenko
- Department of Life Sciences, Imperial College London, South Kensington, London, SW7 2AZ UK
| | | |
Collapse
|
22
|
Selective inhibition of RNA polymerase I transcription as a potential approach to treat African trypanosomiasis. PLoS Negl Trop Dis 2017; 11:e0005432. [PMID: 28263991 PMCID: PMC5354456 DOI: 10.1371/journal.pntd.0005432] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 03/16/2017] [Accepted: 02/23/2017] [Indexed: 02/06/2023] Open
Abstract
Trypanosoma brucei relies on an essential Variant Surface Glycoprotein (VSG) coat for survival in the mammalian bloodstream. High VSG expression within an expression site body (ESB) is mediated by RNA polymerase I (Pol I), which in other eukaryotes exclusively transcribes ribosomal RNA genes (rDNA). As T. brucei is reliant on Pol I for VSG transcription, we investigated Pol I transcription inhibitors for selective anti-trypanosomal activity. The Pol I inhibitors quarfloxin (CX-3543), CX-5461, and BMH-21 are currently under investigation for treating cancer, as rapidly dividing cancer cells are particularly dependent on high levels of Pol I transcription compared with nontransformed cells. In T. brucei all three Pol I inhibitors have IC50 concentrations for cell proliferation in the nanomolar range: quarfloxin (155 nM), CX-5461 (279 nM) or BMH-21 (134 nM) compared with IC50 concentrations in the MCF10A human breast epithelial cell line (4.44 μM, 6.89 μM or 460 nM, respectively). T. brucei was therefore 29-fold more sensitive to quarfloxin, 25-fold more sensitive to CX-5461 and 3.4-fold more sensitive to BMH-21. Cell death in T. brucei was due to rapid inhibition of Pol I transcription, as within 15 minutes treatment with the inhibitors rRNA precursor transcript was reduced 97-98% and VSG precursor transcript 91-94%. Incubation with Pol I transcription inhibitors also resulted in disintegration of the ESB as well as the nucleolus subnuclear structures, within one hour. Rapid ESB loss following the block in Pol I transcription argues that the ESB is a Pol I transcription nucleated structure, similar to the nucleolus. In addition to providing insight into Pol I transcription and ES control, Pol I transcription inhibitors potentially also provide new approaches to treat trypanosomiasis. Trypanosoma brucei is protected by an essential Variant Surface Glycoprotein (VSG) coat in the mammalian bloodstream. The active VSG gene is transcribed by RNA polymerase I (Pol I), which typically only transcribes rDNA. Pol I transcription inhibitors are under clinical trials for cancer chemotherapy. As T. brucei relies on Pol I for VSG transcription, we investigated its susceptibility to these drugs. We show that quarfloxin (CX-3543), CX-5461, and BMH-21 are effective against T. brucei at nanomolar concentrations. T. brucei death was due to rapid and specific inhibition of Pol I transcription. Incubation with Pol I transcription inhibitors also resulted in disappearance of Pol I subnuclear structures like the nucleolus and the VSG expression site body (ESB). Rapid ESB loss followed the Pol I transcription block, arguing that the ESB is nucleated by Pol I transcription. Pol I transcription inhibitors could therefore potentially function as novel drugs against trypanosomiasis.
Collapse
|
23
|
Rout MP, Obado SO, Schenkman S, Field MC. Specialising the parasite nucleus: Pores, lamins, chromatin, and diversity. PLoS Pathog 2017; 13:e1006170. [PMID: 28253370 PMCID: PMC5333908 DOI: 10.1371/journal.ppat.1006170] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Michael P. Rout
- The Rockefeller University, New York, New York, United States of America
| | - Samson O. Obado
- The Rockefeller University, New York, New York, United States of America
| | | | - Mark C. Field
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
24
|
The nuclear envelope and gene organization in parasitic protozoa: Specializations associated with disease. Mol Biochem Parasitol 2016; 209:104-113. [PMID: 27475118 DOI: 10.1016/j.molbiopara.2016.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/12/2016] [Accepted: 07/26/2016] [Indexed: 12/11/2022]
Abstract
The parasitic protozoa Trypanosoma brucei and Plasmodium falciparum are lethal human parasites that have developed elegant strategies of immune evasion by antigenic variation. Despite the vast evolutionary distance between the two taxa, both parasites employ strict monoallelic expression of their membrane proteins, variant surface glycoproteins in Trypanosomes and the var, rif and stevor genes in Plasmodium, in order to evade their host's immune system. Additionally, both telomeric location and epigenetic controls are prominent features of these membrane proteins. As such, telomeres, chromatin structure and nuclear organization all contribute to control of gene expression and immune evasion. Here, we discuss the importance of epigenetics and sub-nuclear context for the survival of these disease-causing parasites.
Collapse
|
25
|
The VEXing problem of monoallelic expression in the African trypanosome. Proc Natl Acad Sci U S A 2016; 113:7017-9. [PMID: 27317742 DOI: 10.1073/pnas.1608546113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
26
|
Devlin R, Marques CA, Paape D, Prorocic M, Zurita-Leal AC, Campbell SJ, Lapsley C, Dickens N, McCulloch R. Mapping replication dynamics in Trypanosoma brucei reveals a link with telomere transcription and antigenic variation. eLife 2016; 5:e12765. [PMID: 27228154 PMCID: PMC4946898 DOI: 10.7554/elife.12765] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/26/2016] [Indexed: 01/14/2023] Open
Abstract
Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating - a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility.
Collapse
Affiliation(s)
- Rebecca Devlin
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Catarina A Marques
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Paape
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Marko Prorocic
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Andrea C Zurita-Leal
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Samantha J Campbell
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Craig Lapsley
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Nicholas Dickens
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Richard McCulloch
- The Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
27
|
DNA Recombination Strategies During Antigenic Variation in the African Trypanosome. Microbiol Spectr 2016; 3:MDNA3-0016-2014. [PMID: 26104717 DOI: 10.1128/microbiolspec.mdna3-0016-2014] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Survival of the African trypanosome in its mammalian hosts has led to the evolution of antigenic variation, a process for evasion of adaptive immunity that has independently evolved in many other viral, bacterial and eukaryotic pathogens. The essential features of trypanosome antigenic variation have been understood for many years and comprise a dense, protective Variant Surface Glycoprotein (VSG) coat, which can be changed by recombination-based and transcription-based processes that focus on telomeric VSG gene transcription sites. However, it is only recently that the scale of this process has been truly appreciated. Genome sequencing of Trypanosoma brucei has revealed a massive archive of >1000 VSG genes, the huge majority of which are functionally impaired but are used to generate far greater numbers of VSG coats through segmental gene conversion. This chapter will discuss the implications of such VSG diversity for immune evasion by antigenic variation, and will consider how this expressed diversity can arise, drawing on a growing body of work that has begun to examine the proteins and sequences through which VSG switching is catalyzed. Most studies of trypanosome antigenic variation have focused on T. brucei, the causative agent of human sleeping sickness. Other work has begun to look at antigenic variation in animal-infective trypanosomes, and we will compare the findings that are emerging, as well as consider how antigenic variation relates to the dynamics of host-trypanosome interaction.
Collapse
|
28
|
Matthews KR. 25 years of African trypanosome research: From description to molecular dissection and new drug discovery. Mol Biochem Parasitol 2015; 200:30-40. [PMID: 25736427 PMCID: PMC4509711 DOI: 10.1016/j.molbiopara.2015.01.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 01/09/2015] [Accepted: 01/13/2015] [Indexed: 01/27/2023]
Abstract
The Molecular Parasitology conference was first held at the Marine Biological laboratory, Woods Hole, USA 25 years ago. Since that first meeting, the conference has evolved and expanded but has remained the showcase for the latest research developments in molecular parasitology. In this perspective, I reflect on the scientific discoveries focussed on African trypanosomes (Trypanosoma brucei spp.) that have occurred since the inaugural MPM meeting and discuss the current and future status of research on these parasites.
Collapse
Affiliation(s)
- Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JT, UK.
| |
Collapse
|
29
|
DNA double-strand breaks and telomeres play important roles in trypanosoma brucei antigenic variation. EUKARYOTIC CELL 2015; 14:196-205. [PMID: 25576484 DOI: 10.1128/ec.00207-14] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human-infecting microbial pathogens all face a serious problem of elimination by the host immune response. Antigenic variation is an effective immune evasion mechanism where the pathogen regularly switches its major surface antigen. In many cases, the major surface antigen is encoded by genes from the same gene family, and its expression is strictly monoallelic. Among pathogens that undergo antigenic variation, Trypanosoma brucei (a kinetoplastid), which causes human African trypanosomiasis, Plasmodium falciparum (an apicomplexan), which causes malaria, Pneumocystis jirovecii (a fungus), which causes pneumonia, and Borrelia burgdorferi (a bacterium), which causes Lyme disease, also express their major surface antigens from loci next to the telomere. Except for Plasmodium, DNA recombination-mediated gene conversion is a major pathway for surface antigen switching in these pathogens. In the last decade, more sophisticated molecular and genetic tools have been developed in T. brucei, and our knowledge of functions of DNA recombination in antigenic variation has been greatly advanced. VSG is the major surface antigen in T. brucei. In subtelomeric VSG expression sites (ESs), VSG genes invariably are flanked by a long stretch of upstream 70-bp repeats. Recent studies have shown that DNA double-strand breaks (DSBs), particularly those in 70-bp repeats in the active ES, are a natural potent trigger for antigenic variation in T. brucei. In addition, telomere proteins can influence VSG switching by reducing the DSB amount at subtelomeric regions. These findings will be summarized and their implications will be discussed in this review.
Collapse
|
30
|
Hovel-Miner G, Mugnier M, Papavasiliou FN, Pinger J, Schulz D. A Host-Pathogen Interaction Reduced to First Principles: Antigenic Variation in T. brucei. Results Probl Cell Differ 2015; 57:23-46. [PMID: 26537376 DOI: 10.1007/978-3-319-20819-0_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Antigenic variation is a common microbial survival strategy, powered by diversity in expressed surface antigens across the pathogen population over the course of infection. Even so, among pathogens, African trypanosomes have the most comprehensive system of antigenic variation described. African trypanosomes (Trypanosoma brucei spp.) are unicellular parasites native to sub-Saharan Africa, and the causative agents of sleeping sickness in humans and of n'agana in livestock. They cycle between two habitats: a specific species of fly (Glossina spp. or, colloquially, the tsetse) and the bloodstream of their mammalian hosts, by assuming a succession of proliferative and quiescent developmental forms, which vary widely in cell architecture and function. Key to each of the developmental forms that arise during these transitions is the composition of the surface coat that covers the plasma membrane. The trypanosome surface coat is extremely dense, covered by millions of repeats of developmentally specified proteins: procyclin gene products cover the organism while it resides in the tsetse and metacyclic gene products cover it while in the fly salivary glands, ready to make the transition to the mammalian bloodstream. But by far the most interesting coat is the Variant Surface Glycoprotein (VSG) coat that covers the organism in its infectious form (during which it must survive free living in the mammalian bloodstream). This coat is highly antigenic and elicits robust VSG-specific antibodies that mediate efficient opsonization and complement mediated lysis of the parasites carrying the coat against which the response was made. Meanwhile, a small proportion of the parasite population switches coats, which stimulates a new antibody response to the prevalent (new) VSG species and this process repeats until immune system failure. The disease is fatal unless treated, and treatment at the later stages is extremely toxic. Because the organism is free living in the blood, the VSG:antibody surface represents the interface between pathogen and host, and defines the interaction of the parasite with the immune response. This interaction (cycles of VSG switching, antibody generation, and parasite deletion) results in stereotypical peaks and troughs of parasitemia that were first recognized more than 100 years ago. Essentially, the mechanism of antigenic variation in T. brucei results from a need, at the population level, to maintain an extensive repertoire, to evade the antibody response. In this chapter, we will examine what is currently known about the VSG repertoire, its depth, and the mechanisms that diversify it both at the molecular (DNA) and at the phenotypic (surface displayed) level, as well as how it could interact with antibodies raised specifically against it in the host.
Collapse
Affiliation(s)
- Galadriel Hovel-Miner
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Monica Mugnier
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - F Nina Papavasiliou
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Jason Pinger
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Danae Schulz
- Laboratory of Lymphocyte Biology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
31
|
Mandal P, Chauhan S, Tomar RS. H3 clipping activity of glutamate dehydrogenase is regulated by stefin B and chromatin structure. FEBS J 2014; 281:5292-308. [PMID: 25263734 DOI: 10.1111/febs.13069] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/15/2014] [Accepted: 09/23/2014] [Indexed: 11/29/2022]
Abstract
Glutamate dehydrogenase has been recently identified as a tissue-specific histone H3-specific clipping enzyme. We have previously shown that it cleaves free as well as chromatin-bound histone H3. However, the physiological significance of this enzyme is still not clear. The present study aimed to improve our understanding of its significance in vivo. Using biochemical and cell biological approaches, we show that glutamate dehydrogenase is primarily associated with euchromatin, and it re-localizes from the nuclear periphery to the nucleolus upon DNA damage. The cysteine protease inhibitor stefin B regulates the H3 clipping activity of the enzyme. Chromatin structure and certain histone modifications influence H3 clipping activity. Interestingly, we also observed that an in vivo truncated form of H3 lacks H3K56 acetylation, which is a code for the DNA damage response. Together, these results suggest that glutamate dehydrogenase is a euchromatin-associated enzyme, and its H3 clipping activity is regulated by chromatin structure, histone modifications and an in vivo inhibitor. In response to DNA damage, it re-localizes to the nuclei, and hence may be involved in regulation of gene expression in vivo.
Collapse
Affiliation(s)
- Papita Mandal
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | | | | |
Collapse
|
32
|
Denninger V, Rudenko G. FACT plays a major role in histone dynamics affecting VSG expression site control in Trypanosoma brucei. Mol Microbiol 2014; 94:945-62. [PMID: 25266856 PMCID: PMC4625058 DOI: 10.1111/mmi.12812] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2014] [Indexed: 12/21/2022]
Abstract
Chromatin remodelling is involved in the transcriptional regulation of the RNA polymerase I transcribed variant surface glycoprotein (VSG) expression sites (ESs) of Trypanosoma brucei. We show that the T. brucei FACT complex contains the Pob3 and Spt16 subunits, and plays a key role in ES silencing. We see an inverse correlation between transcription and condensed chromatin, whereby FACT knockdown results in ES derepression and more open chromatin around silent ES promoters. Derepressed ESs show increased sensitivity to micrococcal nuclease (MNase) digestion, and a decrease in histones at silent ES promoters but not telomeres. In contrast, FACT knockdown results in more histones at the active ES, correlated with transcription shut-down. ES promoters are derepressed in cells stalled at the G2/M cell cycle stage after knockdown of FACT, but not in G2/M cells stalled after knockdown of cyclin 6. This argues that the observed ES derepression is a direct consequence of histone chaperone activity by FACT at the G2/M cell cycle stage which could affect transcription elongation, rather than an indirect consequence of a cell cycle checkpoint. These experiments highlight the role of the FACT complex in cell cycle-specific chromatin remodelling within VSG ESs.
Collapse
Affiliation(s)
- Viola Denninger
- Division of Cell and Molecular Biology, Sir Alexander Fleming Building, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | | |
Collapse
|
33
|
Jehi SE, Li X, Sandhu R, Ye F, Benmerzouga I, Zhang M, Zhao Y, Li B. Suppression of subtelomeric VSG switching by Trypanosoma brucei TRF requires its TTAGGG repeat-binding activity. Nucleic Acids Res 2014; 42:12899-911. [PMID: 25313155 PMCID: PMC4227783 DOI: 10.1093/nar/gku942] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, VSG, in the bloodstream of its mammalian host to evade the host immune response. VSGs are expressed exclusively from subtelomeric loci, and we have previously shown that telomere proteins TbTIF2 and TbRAP1 play important roles in VSG switching and VSG silencing regulation, respectively. We now discover that the telomere duplex DNA-binding factor, TbTRF, also plays a critical role in VSG switching regulation, as a transient depletion of TbTRF leads to significantly more VSG switching events. We solved the NMR structure of the DNA-binding Myb domain of TbTRF, which folds into a canonical helix-loop-helix structure that is conserved to the Myb domains of mammalian TRF proteins. The TbTRF Myb domain tolerates well the bulky J base in T. brucei telomere DNA, and the DNA-binding affinity of TbTRF is not affected by the presence of J both in vitro and in vivo. In addition, we find that point mutations in TbTRF Myb that significantly reduced its in vivo telomere DNA-binding affinity also led to significantly increased VSG switching frequencies, indicating that the telomere DNA-binding activity is critical for TbTRF's role in VSG switching regulation.
Collapse
Affiliation(s)
- Sanaa E Jehi
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Xiaohua Li
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, P.R. China
| | - Ranjodh Sandhu
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Fei Ye
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Imaan Benmerzouga
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Mingjie Zhang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P. R. China
| | - Yanxiang Zhao
- Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, P. R. China
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA Department of Molecular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH 44195, USA The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
34
|
Mono-allelic VSG expression by RNA polymerase I in Trypanosoma brucei: expression site control from both ends? Gene 2014; 556:68-73. [PMID: 25261847 DOI: 10.1016/j.gene.2014.09.047] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 02/01/2023]
Abstract
Trypanosoma brucei is a vector borne, lethal protistan parasite of humans and livestock in sub-Saharan Africa. Antigenic variation of its cell surface coat enables the parasite to evade adaptive immune responses and to live freely in the blood of its mammalian hosts. The coat consists of ten million copies of variant surface glycoprotein (VSG) that is expressed from a single VSG gene, drawn from a large repertoire and located near the telomere at one of fifteen so-called bloodstream expression sites (BESs). Thus, antigenic variation is achieved by switching to the expression of a different VSG gene. A BES is a tandem array of expression site-associated genes and a terminal VSG gene. It is polycistronically transcribed by a multifunctional RNA polymerase I (RNAPI) from a short promoter that is located 45-60 kb upstream of the VSG gene. The mechanism(s) restricting VSG expression to a single BES are not well understood. There is convincing evidence that epigenetic silencing and transcription attenuation play important roles. Furthermore, recent data indicated that there is regulation at the level of transcription initiation and that, surprisingly, the VSG mRNA appears to have a role in restricting VSG expression to a single gene. Here, we review BES expression regulation and propose a model in which telomere-directed, epigenetic BES silencing is opposed by BES promoter-directed, activated RNAPI transcription.
Collapse
|
35
|
Pena AC, Pimentel MR, Manso H, Vaz-Drago R, Pinto-Neves D, Aresta-Branco F, Rijo-Ferreira F, Guegan F, Pedro Coelho L, Carmo-Fonseca M, Barbosa-Morais NL, Figueiredo LM. Trypanosoma brucei histone H1 inhibits RNA polymerase I transcription and is important for parasite fitness in vivo. Mol Microbiol 2014; 93:645-63. [PMID: 24946224 PMCID: PMC4285223 DOI: 10.1111/mmi.12677] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2014] [Indexed: 11/30/2022]
Abstract
Trypanosoma brucei is a unicellular parasite that causes sleeping sickness in humans. Most of its transcription is constitutive and driven by RNA polymerase II. RNA polymerase I (Pol I) transcribes not only ribosomal RNA genes, but also protein-encoding genes, including variant surface glycoproteins (VSGs) and procyclins. In T. brucei, histone H1 (H1) is required for VSG silencing and chromatin condensation. However, whether H1 has a genome-wide role in transcription is unknown. Here, using RNA sequencing we show that H1 depletion changes the expression of a specific cohort of genes. Interestingly, the predominant effect is partial loss of silencing of Pol I loci, such as VSG and procyclin genes. Labelling of nascent transcripts with 4-thiouridine showed that H1 depletion does not alter the level of labelled Pol II transcripts. In contrast, the levels of 4sU-labelled Pol I transcripts were increased by two- to sixfold, suggesting that H1 preferentially blocks transcription at Pol I loci. Finally, we observed that parasites depleted of H1 grow almost normally in culture but they have a reduced fitness in mice, suggesting that H1 is important for host-pathogen interactions.
Collapse
Affiliation(s)
- Ana C Pena
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, Edifício Egas Moniz, 1649-028, Lisboa, Portugal
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Maree JP, Patterton HG. The epigenome of Trypanosoma brucei: a regulatory interface to an unconventional transcriptional machine. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:743-50. [PMID: 24942804 DOI: 10.1016/j.bbagrm.2014.05.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 05/09/2014] [Accepted: 05/28/2014] [Indexed: 12/15/2022]
Abstract
The epigenome represents a major regulatory interface to the eukaryotic genome. Nucleosome positions, histone variants, histone modifications and chromatin associated proteins all play a role in the epigenetic regulation of DNA function. Trypanosomes, an ancient branch of the eukaryotic evolutionary lineage, exhibit some highly unusual transcriptional features, including the arrangement of functionally unrelated genes in large, polymerase II transcribed polycistronic transcription units, often exceeding hundreds of kilobases in size. It is generally believed that transcription initiation plays a minor role in regulating the transcript level of genes in trypanosomes, which are mainly regulated post-transcriptionally. Recent advances have revealed that epigenetic mechanisms play an essential role in the transcriptional regulation of Trypanosoma brucei. This suggested that the modulation of gene activity, particularly that of pol I transcribed genes, is, indeed, an important control mechanism, and that the epigenome is critical in regulating gene expression programs that allow the successful migration of this parasite between hosts, as well as the continuous evasion of the immune system in mammalian hosts. A wide range of epigenetic signals, readers, writers and erasers have been identified in trypanosomes, some of which have been mapped to essential genetic functions. Some epigenetic mechanisms have also been observed to be unique to trypanosomes. We review recent advances in our understanding of epigenetic control mechanisms in T. brucei, the causative agent of African sleeping sickness, and highlight the utility of epigenetic targets in the possible development of new therapies for human African trypanosomiasis.
Collapse
Affiliation(s)
- Johannes P Maree
- Advanced Biomolecular Research Cluster, University of the Free State, PO Box 339, Bloemfontein 9332, South Africa
| | - Hugh-G Patterton
- Advanced Biomolecular Research Cluster, University of the Free State, PO Box 339, Bloemfontein 9332, South Africa.
| |
Collapse
|
37
|
Transcription is initiated on silent variant surface glycoprotein expression sites despite monoallelic expression in Trypanosoma brucei. Proc Natl Acad Sci U S A 2014; 111:8943-8. [PMID: 24889641 DOI: 10.1073/pnas.1404873111] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
African trypanosomes survive the immune defense of their hosts by regularly changing their antigenic coat made of variant surface glycoprotein (VSG). The Trypanosoma brucei genome contains more than 1,000 VSG genes. To be expressed, a given VSG gene must be located in one of 15 telomeric regions termed "VSG expression sites" (ESs), each of which contains a polycistronic transcription unit that includes ES-associated genes. Only one ES is fully active at a time, so only one VSG gene is transcribed per cell. Although this monoallelic expression is controlled at the transcriptional level, the precise molecular mechanism for this control is not understood. Here we report that in single cells transcription is initiated on several ESs simultaneously, indicating that the monoallelic control is not determined only at transcription initiation, but also at further control steps such as transcription elongation or RNA processing.
Collapse
|
38
|
Nguyen TN, Müller LSM, Park SH, Siegel TN, Günzl A. Promoter occupancy of the basal class I transcription factor A differs strongly between active and silent VSG expression sites in Trypanosoma brucei. Nucleic Acids Res 2013; 42:3164-76. [PMID: 24353315 PMCID: PMC3950698 DOI: 10.1093/nar/gkt1301] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Monoallelic expression within a gene family is found in pathogens exhibiting antigenic variation and in mammalian olfactory neurons. Trypanosoma brucei, a lethal parasite living in the human bloodstream, expresses variant surface glycoprotein (VSG) from 1 of 15 bloodstream expression sites (BESs) by virtue of a multifunctional RNA polymerase I. The active BES is transcribed in an extranucleolar compartment termed the expression site body (ESB), whereas silent BESs, located elsewhere within the nucleus, are repressed epigenetically. The regulatory mechanisms, however, are poorly understood. Here we show that two essential subunits of the basal class I transcription factor A (CITFA) predominantly occupied the promoter of the active BES relative to that of a silent BES, a phenotype that was maintained after switching BESs in situ. In these experiments, high promoter occupancy of CITFA was coupled to high levels of both promoter-proximal RNA abundance and RNA polymerase I occupancy. Accordingly, fluorescently tagged CITFA-7 was concentrated in the nucleolus and the ESB. Because a ChIP-seq analysis found that along the entire BES, CITFA-7 is specifically enriched only at the promoter, our data strongly indicate that monoallelic BES transcription is activated by a mechanism that functions at the level of transcription initiation.
Collapse
Affiliation(s)
- Tu N Nguyen
- Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030, USA and Research Center for Infectious Diseases, University of Würzburg, 97080 Würzburg, Germany
| | | | | | | | | |
Collapse
|
39
|
Pascoalino B, Dindar G, Vieira-da-Rocha JP, Machado CR, Janzen CJ, Schenkman S. Characterization of two different Asf1 histone chaperones with distinct cellular localizations and functions in Trypanosoma brucei. Nucleic Acids Res 2013; 42:2906-18. [PMID: 24322299 PMCID: PMC3950673 DOI: 10.1093/nar/gkt1267] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The anti-silencing function protein 1 (Asf1) is a chaperone that forms a complex with histones H3 and H4 facilitating dimer deposition and removal from chromatin. Most eukaryotes possess two different Asf1 chaperones but their specific functions are still unknown. Trypanosomes, a group of early-diverged eukaryotes, also have two, but more divergent Asf1 paralogs than Asf1 of higher eukaryotes. To unravel possible different functions, we characterized the two Asf1 proteins in Trypanosoma brucei. Asf1A is mainly localized in the cytosol but translocates to the nucleus in S phase. In contrast, Asf1B is predominantly localized in the nucleus, as described for other organisms. Cytosolic Asf1 knockdown results in accumulation of cells in early S phase of the cell cycle, whereas nuclear Asf1 knockdown arrests cells in S/G2 phase. Overexpression of cytosolic Asf1 increases the levels of histone H3 and H4 acetylation. In contrast to cytosolic Asf1, overexpression of nuclear Asf1 causes less pronounced growth defects in parasites exposed to genotoxic agents, prompting a function in chromatin remodeling in response to DNA damage. Only the cytosolic Asf1 interacts with recombinant H3/H4 dimers in vitro. These findings denote the early appearance in evolution of distinguishable functions for the two Asf1 chaperons in trypanosomes.
Collapse
Affiliation(s)
- Bruno Pascoalino
- Depto. de Microbiologia, Imunologia e Parasitologia, UNIFESP, Rua Pedro de Toledo 669 L6A, São Paulo, São Paulo 04039-032, Brazil, Lehrstuhl für Zell- und Entwicklungsbiologie, Theodor-Boveri-Institut, Biozentrum der Universität Würzburg, Am Hubland, 97074 Würzburg, Germany and Depto. de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, CP 4861, 30161-970, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
40
|
Glover L, Hutchinson S, Alsford S, McCulloch R, Field MC, Horn D. Antigenic variation in African trypanosomes: the importance of chromosomal and nuclear context in VSG expression control. Cell Microbiol 2013; 15:1984-93. [PMID: 24047558 PMCID: PMC3963442 DOI: 10.1111/cmi.12215] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/09/2013] [Accepted: 09/11/2013] [Indexed: 12/24/2022]
Abstract
African trypanosomes are lethal human and animal parasites that use antigenic variation for evasion of host adaptive immunity. To facilitate antigenic variation, trypanosomes dedicate approximately one third of their nuclear genome, including many minichromosomes, and possibly all sub-telomeres, to variant surface glycoprotein (VSG) genes and associated sequences. Antigenic variation requires transcription of a single VSG by RNA polymerase I (Pol-I), with silencing of other VSGs, and periodic switching of the expressed gene, typically via DNA recombination with duplicative translocation of a new VSG to the active site. Thus, telomeric location, epigenetic controls and monoallelic transcription by Pol-I at an extranucleolar site are prominent features of VSGs and their expression, with telomeres, chromatin structure and nuclear organization all making vitally important contributions to monoallelic VSG expression control and switching. We discuss VSG transcription, recombination and replication control within this chromosomal and sub-nuclear context.
Collapse
Affiliation(s)
- Lucy Glover
- Division of Biological Chemistry & Drug Discovery, College of Life Sciences, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| | | | | | | | | | | |
Collapse
|
41
|
Pandya UM, Sandhu R, Li B. Silencing subtelomeric VSGs by Trypanosoma brucei RAP1 at the insect stage involves chromatin structure changes. Nucleic Acids Res 2013; 41:7673-82. [PMID: 23804762 PMCID: PMC3763547 DOI: 10.1093/nar/gkt562] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen variant surface glycoprotein (VSG) to evade mammalian host immune responses at the bloodstream form (BF) stage. Monoallelic expression of BF Expression Site (BES)-linked VSGs and silencing of metacyclic VSGs (mVSGs) in BF cells are essential for antigenic variation, whereas silencing of both BES-linked and mVSGs in the procyclic form (PF) cells is important for cell survival in the midgut of its insect vector. We have previously shown that silencing BES-linked VSGs in BF cells depends on TbRAP1. We now show that TbRAP1 silences both BES-linked and mVSGs at both BF and PF stages. The strength of TbRAP1-mediated BES-linked VSG silencing is stronger in the PF cells than that in BF cells. In addition, Formaldehyde-Assisted Isolation of Regulatory Elements analysis and MNase digestion demonstrated that depletion of TbRAP1 in PF cells led to a chromatin structure change, which is significantly stronger at the subtelomeric VSG loci than at chromosome internal loci. On the contrary, no significant chromatin structure changes were detected on depletion of TbRAP1 in BF cells. Our observations indicate that TbRAP1 helps to determine the chromatin structure at the insect stage, which likely contributes to its strong silencing effect on VSGs.
Collapse
Affiliation(s)
- Unnati M Pandya
- Department of Biological, Geological, and Environmental Sciences, Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH 44115, USA
| | | | | |
Collapse
|
42
|
Alexandratos A, Clos J, Samiotaki M, Efstathiou A, Panayotou G, Soteriadou K, Smirlis D. The loss of virulence of histone H1 overexpressingLeishmania donovaniparasites is directly associated with a reduction of HSP83 rate of translation. Mol Microbiol 2013; 88:1015-31. [DOI: 10.1111/mmi.12240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2013] [Indexed: 01/15/2023]
Affiliation(s)
- Alexandros Alexandratos
- Laboratory of Molecular Parasitology; Department of Microbiology; Hellenic Pasteur Institute; 127 Vas Sofias Ave. Athens Greece
- Chemistry Department; University of Ioannina; Ioannina Greece
| | - Joachim Clos
- Bernhard Nocht Institute for Tropical Medicine; Hamburg Germany
| | - Martina Samiotaki
- Biomedical Sciences Research Center; ‘Alexander Fleming’; Vari Greece
| | - Antonia Efstathiou
- Laboratory of Molecular Parasitology; Department of Microbiology; Hellenic Pasteur Institute; 127 Vas Sofias Ave. Athens Greece
| | - George Panayotou
- Biomedical Sciences Research Center; ‘Alexander Fleming’; Vari Greece
| | - Ketty Soteriadou
- Laboratory of Molecular Parasitology; Department of Microbiology; Hellenic Pasteur Institute; 127 Vas Sofias Ave. Athens Greece
| | - Despina Smirlis
- Laboratory of Molecular Parasitology; Department of Microbiology; Hellenic Pasteur Institute; 127 Vas Sofias Ave. Athens Greece
| |
Collapse
|
43
|
Kim HS, Park SH, Günzl A, Cross GAM. MCM-BP is required for repression of life-cycle specific genes transcribed by RNA polymerase I in the mammalian infectious form of Trypanosoma brucei. PLoS One 2013; 8:e57001. [PMID: 23451133 PMCID: PMC3581582 DOI: 10.1371/journal.pone.0057001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/16/2013] [Indexed: 12/22/2022] Open
Abstract
Trypanosoma brucei variant surface glycoprotein (VSG) expression is a classic example of allelic exclusion. While the genome of T. brucei contains >2,000 VSG genes and VSG pseudogenes, only one allele is expressed at the surface of each infectious trypanosome and the others are repressed. Along with recombinatorial VSG switching, allelic exclusion provides a major host evasion mechanism for trypanosomes, a phenomenon known as antigenic variation. To extend our understanding of how trypanosomes escape host immunity by differential expression of VSGs, we attempted to identify genes that contribute to VSG silencing, by performing a loss-of-silencing screen in T. brucei using a transposon-mediated random insertional mutagenesis. One identified gene, which we initially named LOS1, encodes a T. brucei MCM-Binding Protein (TbMCM-BP). Here we show that TbMCM-BP is essential for viability of infectious bloodstream-form (BF) trypanosome and is required for proper cell-cycle progression. Tandem affinity purification of TbMCM-BP followed by mass spectrometry identified four subunits (MCM4-MCM7) of the T. brucei MCM complex, a replicative helicase, and MCM8, a subunit that is uniquely co-purified with TbMCM-BP. TbMCM-BP is required not only for repression of subtelomeric VSGs but also for silencing of life-cycle specific, insect-stage genes, procyclin and procyclin-associated genes (PAGs), that are normally repressed in BF trypanosomes and are transcribed by RNA polymerase I. Our study uncovers a functional link between chromosome maintenance and RNA pol I-mediated gene silencing in T. brucei.
Collapse
Affiliation(s)
- Hee-Sook Kim
- Laboratory of Molecular Parasitology, The Rockefeller University, New York, New York, United States of America.
| | | | | | | |
Collapse
|
44
|
Narayanan MS, Rudenko G. TDP1 is an HMG chromatin protein facilitating RNA polymerase I transcription in African trypanosomes. Nucleic Acids Res 2013; 41:2981-92. [PMID: 23361461 PMCID: PMC3597664 DOI: 10.1093/nar/gks1469] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Unusually for a eukaryote, Trypanosoma brucei transcribes its variant surface glycoprotein (VSG) gene expression sites (ESs) in a monoallelic fashion using RNA polymerase I (Pol I). It is still unclear how ES transcription is controlled in T. brucei. Here, we show that the TDP1 architectural chromatin protein is an essential high mobility group box (HMGB) protein facilitating Pol I transcription in T. brucei. TDP1 is specifically enriched at the active compared with silent VSG ES and immediately downstream of ribosomal DNA promoters and is abundant in the nucleolus and the expression site body subnuclear compartments. Distribution of TDP1 at Pol I-transcribed loci is inversely correlated with histones. Depletion of TDP1 results in up to 40–90% reduction in VSG and rRNA transcripts and a concomitant increase in histones H3, H2A and H1 at these Pol I transcription units. TDP1 shares features with the Saccharomyces cerevisiae HMGB protein Hmo1, but it is the first architectural chromatin protein facilitating Pol I-mediated transcription of both protein coding genes as well as rRNA. These results show that TDP1 has a mutually exclusive relationship with histones on actively transcribed Pol I transcription units, providing insight into how Pol I transcription is controlled.
Collapse
Affiliation(s)
- Mani Shankar Narayanan
- Division of Cell and Molecular Biology, Imperial College London, South Kensington, London SW7 2AZ, UK
| | | |
Collapse
|