1
|
Beernink PT, Di Carluccio C, Marchetti R, Cerofolini L, Carillo S, Cangiano A, Cowieson N, Bones J, Molinaro A, Paduano L, Fragai M, Beernink BP, Gulati S, Shaughnessy J, Rice PA, Ram S, Silipo A. Gonococcal Mimitope Vaccine Candidate Forms a Beta-Hairpin Turn and Binds Hydrophobically to a Therapeutic Monoclonal Antibody. JACS AU 2024; 4:2617-2629. [PMID: 39055159 PMCID: PMC11267536 DOI: 10.1021/jacsau.4c00359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024]
Abstract
The spread of multidrug-resistant strains of Neisseria gonorrhoeae, the etiologic agent of gonorrhea, represents a global health emergency. Therefore, the development of a safe and effective vaccine against gonorrhea is urgently needed. In previous studies, murine monoclonal antibody (mAb) 2C7 was raised against gonococcal lipooligosaccharide (LOS). mAb 2C7 elicits complement-dependent bactericidal activity against gonococci, and its glycan epitope is expressed by almost every clinical isolate. Furthermore, we identified a peptide, cyclic peptide 2 (CP2) that mimicked the 2C7 LOS epitope, elicited bactericidal antibodies in mice, and actively protected in a mouse vaginal colonization model. In this study, we performed structural analyses of mAb 2C7 and its complex with the CP2 peptide by X-ray crystallography, NMR spectroscopy, and molecular dynamics (MD) simulations. The crystal structure of Fab 2C7 bound to CP2 showed that the peptide adopted a beta-hairpin conformation and bound the Fab primarily through hydrophobic interactions. We employed NMR spectroscopy and MD simulations to map the 2C7 epitope and identify the bioactive conformation of CP2. We also used small-angle X-ray scattering (SAXS) and native mass spectrometry to obtain further information about the shape and assembly state of the complex. Collectively, our new structural information suggests strategies for humanizing mAb 2C7 as a therapeutic against gonococcal infection and for optimizing peptide CP2 as a vaccine antigen.
Collapse
Affiliation(s)
- Peter T. Beernink
- Department
of Pediatrics, University of California
San Francisco, 5700 Martin Luther King Jr. Way, Oakland, California 94609, United States
| | - Cristina Di Carluccio
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
4, 80126 Naples, Italy
| | - Roberta Marchetti
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
4, 80126 Naples, Italy
| | - Linda Cerofolini
- Department
of Chemistry, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Sara Carillo
- National
Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock,
Co., Dublin A94 X099, Ireland
| | - Alessandro Cangiano
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
4, 80126 Naples, Italy
| | - Nathan Cowieson
- Diamond
Light Source, Didcot, OX11 0DE Oxfordshire, England, United Kingdom
| | - Jonathan Bones
- National
Institute for Bioprocessing Research and Training, Foster Avenue, Mount Merrion, Blackrock,
Co., Dublin A94 X099, Ireland
- School of
Chemical and Bioprocess Engineering, University
College Dublin, Belfield Dublin 4, Ireland
| | - Antonio Molinaro
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
4, 80126 Naples, Italy
| | - Luigi Paduano
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
4, 80126 Naples, Italy
| | - Marco Fragai
- Department
of Chemistry, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy
| | - Benjamin P. Beernink
- Department
of Pediatrics, University of California
San Francisco, 5700 Martin Luther King Jr. Way, Oakland, California 94609, United States
| | - Sunita Gulati
- Department
of Infectious Diseases and Immunology, University
of Massachusetts Chan Medical School, 364 Plantation St, Worcester, Massachusetts 01605, United States
| | - Jutamas Shaughnessy
- Department
of Infectious Diseases and Immunology, University
of Massachusetts Chan Medical School, 364 Plantation St, Worcester, Massachusetts 01605, United States
| | - Peter A. Rice
- Department
of Infectious Diseases and Immunology, University
of Massachusetts Chan Medical School, 364 Plantation St, Worcester, Massachusetts 01605, United States
| | - Sanjay Ram
- Department
of Infectious Diseases and Immunology, University
of Massachusetts Chan Medical School, 364 Plantation St, Worcester, Massachusetts 01605, United States
| | - Alba Silipo
- Department
of Chemical Sciences, University of Naples
Federico II, Via Cintia
4, 80126 Naples, Italy
| |
Collapse
|
2
|
Williams E, Seib KL, Fairley CK, Pollock GL, Hocking JS, McCarthy JS, Williamson DA. Neisseria gonorrhoeae vaccines: a contemporary overview. Clin Microbiol Rev 2024; 37:e0009423. [PMID: 38226640 PMCID: PMC10938898 DOI: 10.1128/cmr.00094-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Neisseria gonorrhoeae infection is an important public health issue, with an annual global incidence of 87 million. N. gonorrhoeae infection causes significant morbidity and can have serious long-term impacts on reproductive and neonatal health and may rarely cause life-threatening disease. Global rates of N. gonorrhoeae infection have increased over the past 20 years. Importantly, rates of antimicrobial resistance to key antimicrobials also continue to increase, with the United States Centers for Disease Control and Prevention identifying drug-resistant N. gonorrhoeae as an urgent threat to public health. This review summarizes the current evidence for N. gonorrhoeae vaccines, including historical clinical trials, key N. gonorrhoeae vaccine preclinical studies, and studies of the impact of Neisseria meningitidis vaccines on N. gonorrhoeae infection. A comprehensive survey of potential vaccine antigens, including those identified through traditional vaccine immunogenicity approaches, as well as those identified using more contemporary reverse vaccinology approaches, are also described. Finally, the potential epidemiological impacts of a N. gonorrhoeae vaccine and research priorities for further vaccine development are described.
Collapse
Affiliation(s)
- Eloise Williams
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Christopher K. Fairley
- Melbourne Sexual Health Centre, Alfred Health, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Georgina L. Pollock
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Jane S. Hocking
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - James S. McCarthy
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Service, Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Deborah A. Williamson
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- Victorian Infectious Diseases Reference Laboratory at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Tzeng YL, Sannigrahi S, Borrow R, Stephens DS. Neisseria gonorrhoeae lipooligosaccharide glycan epitopes recognized by bactericidal IgG antibodies elicited by the meningococcal group B-directed vaccine, MenB-4C. Front Immunol 2024; 15:1350344. [PMID: 38440731 PMCID: PMC10909805 DOI: 10.3389/fimmu.2024.1350344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/29/2024] [Indexed: 03/06/2024] Open
Abstract
Introduction Outer membrane vesicles (OMVs) of Neisseria meningitidis in the group B-directed vaccine MenB-4C (BexseroR) protect against infections with Neisseria gonorrhoeae. The immunological basis for protection remains unclear. N. meningitidis OMV vaccines generate human antibodies to N. meningitidis and N. gonorrhoeae lipooligosaccharide (LOS/endotoxin), but the structural specificity of these LOS antibodies is not defined. Methods Ten paired human sera obtained pre- and post-MenB-4C immunization were used in Western blots to probe N. meningitidis and N. gonorrhoeae LOS. Post-MenB-4C sera (7v5, 19v5, and 17v5), representing individual human variability in LOS recognition, were then used to interrogate structurally defined LOSs of N. meningitidis and N. gonorrhoeae strains and mutants and studied in bactericidal assays. Results and discussion Post-MenB-4C sera recognized both N. meningitidis and N. gonorrhoeae LOS species, ~10% of total IgG to gonococcal OMV antigens. N. meningitidis and N. gonorrhoeae LOSs were broadly recognized by post-IgG antibodies, but with individual variability for LOS structures. Deep truncation of LOS, specifically a rfaK mutant without α-, β-, or γ-chain glycosylation, eliminated LOS recognition by all post-vaccine sera. Serum 7v5 IgG antibodies recognized the unsialyated L1 α-chain, and a 3-PEA-HepII or 6-PEA-HepII was part of the conformational epitope. Replacing the 3-PEA on HepII with a 3-Glc blocked 7v5 IgG antibody recognition of N. meningitidis and N. gonorrhoeae LOSs. Serum 19v5 recognized lactoneotetrose (LNT) or L1 LOS-expressing N. meningitidis or N. gonorrhoeae with a minimal α-chain structure of Gal-Glc-HepI (L8), a 3-PEA-HepII or 6-PEA-HepII was again part of the conformational epitope and a 3-Glc-HepII blocked 19v5 antibody binding. Serum 17v5 LOS antibodies recognized LNT or L1 α-chains with a minimal HepI structure of three sugars and no requirement for HepII modifications. These LOS antibodies contributed to the serum bactericidal activity against N. gonorrhoeae. The MenB-4C vaccination elicits bactericidal IgG antibodies to N. gonorrhoeae conformational epitopes involving HepI and HepII glycosylated LOS structures shared between N. meningitidis and N. gonorrhoeae. LOS structures should be considered in next-generation gonococcal vaccine design.
Collapse
Affiliation(s)
- Yih-Ling Tzeng
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Soma Sannigrahi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
| | - Ray Borrow
- Meningococcal Reference Unit, UK Health Security Agency, Manchester Royal Infirmary, Manchester, United Kingdom
| | - David S. Stephens
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
4
|
Waltmann A, Duncan JA, Pier GB, Cywes-Bentley C, Cohen MS, Hobbs MM. Experimental Urethral Infection with Neisseria gonorrhoeae. Curr Top Microbiol Immunol 2024; 445:109-125. [PMID: 35246736 PMCID: PMC9441470 DOI: 10.1007/82_2021_250] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Gonorrhea rates and antibiotic resistance are both increasing. Neisseria gonorrhoeae (Ng) is an exclusively human pathogen and is exquisitely adapted to its natural host. Ng can subvert immune responses and undergoes frequent antigenic variation, resulting in limited immunity and protection from reinfection. Previous gonococcal vaccine efforts have been largely unsuccessful, and the last vaccine to be tested in humans was more than 35 years ago. Advancing technologies and the threat of untreatable gonorrhea have fueled renewed pursuit of a vaccine as a long-term sustainable solution for gonorrhea control. Despite the development of a female mouse model of genital gonococcal infection two decades ago, correlates of immunity or protection remain largely unknown, making the gonococcus a challenging vaccine target. The controlled human urethral infection model of gonorrhea (Ng CHIM) has been used to study gonococcal pathogenesis and the basis of anti-gonococcal immunity. Over 200 participants have been inoculated without serious adverse events. The Ng CHIM replicates the early natural course of urethral infection. We are now at an inflexion point to pivot the use of the model for vaccine testing to address the urgency of improved gonorrhea control. Herein we discuss the need for gonorrhea vaccines, and the advantages and limitations of the Ng CHIM in accelerating the development of gonorrhea vaccines.
Collapse
Affiliation(s)
- Andreea Waltmann
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Joseph A Duncan
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Gerald B Pier
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | | | - Myron S Cohen
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA
| | - Marcia M Hobbs
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, USA.
| |
Collapse
|
5
|
Gulati S, Mattsson AH, Schussek S, Zheng B, DeOliveira RB, Shaughnessy J, Lewis LA, Rice PA, Comstedt P, Ram S. Preclinical efficacy of a cell division protein candidate gonococcal vaccine identified by artificial intelligence. mBio 2023; 14:e0250023. [PMID: 37905891 PMCID: PMC10746169 DOI: 10.1128/mbio.02500-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 11/02/2023] Open
Abstract
IMPORTANCE Vaccines to curb the global spread of multidrug-resistant gonorrhea are urgently needed. Here, 26 vaccine candidates identified by an artificial intelligence-driven platform (Efficacy Discriminative Educated Network[EDEN]) were screened for efficacy in the mouse vaginal colonization model. Complement-dependent bactericidal activity of antisera and the EDEN protective scores both correlated positively with the reduction in overall bacterial colonization burden. NGO1549 (FtsN) and NGO0265, both involved in cell division, displayed the best activity and were selected for further development. Both antigens, when fused to create a chimeric protein, elicited bactericidal antibodies against a wide array of gonococcal isolates and significantly attenuated the duration and burden of gonococcal colonization of mouse vaginas. Protection was abrogated in mice that lacked complement C9, the last step in the formation of the membrane attack complex pore, suggesting complement-dependent bactericidal activity as a mechanistic correlate of protection of the vaccine. FtsN and NGO0265 represent promising vaccine candidates against gonorrhea.
Collapse
Affiliation(s)
- Sunita Gulati
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | | | - Bo Zheng
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Rosane B. DeOliveira
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jutamas Shaughnessy
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Lisa A. Lewis
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Peter A. Rice
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
6
|
Roe SK, Felter B, Zheng B, Ram S, Wetzler LM, Garges E, Zhu T, Genco CA, Massari P. In Vitro Pre-Clinical Evaluation of a Gonococcal Trivalent Candidate Vaccine Identified by Transcriptomics. Vaccines (Basel) 2023; 11:1846. [PMID: 38140249 PMCID: PMC10747275 DOI: 10.3390/vaccines11121846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/03/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Gonorrhea, a sexually transmitted disease caused by Neisseria gonorrhoeae, poses a significant global public health threat. Infection in women can be asymptomatic and may result in severe reproductive complications. Escalating antibiotic resistance underscores the need for an effective vaccine. Approaches being explored include subunit vaccines and outer membrane vesicles (OMVs), but an ideal candidate remains elusive. Meningococcal OMV-based vaccines have been associated with reduced rates of gonorrhea in retrospective epidemiologic studies, and with accelerated gonococcal clearance in mouse vaginal colonization models. Cross-protection is attributed to shared antigens and possibly cross-reactive, bactericidal antibodies. Using a Candidate Antigen Selection Strategy (CASS) based on the gonococcal transcriptome during human mucosal infection, we identified new potential vaccine targets that, when used to immunize mice, induced the production of antibodies with bactericidal activity against N. gonorrhoeae strains. The current study determined antigen recognition by human sera from N. gonorrhoeae-infected subjects, evaluated their potential as a multi-antigen (combination) vaccine in mice and examined the impact of different adjuvants (Alum or Alum+MPLA) on functional antibody responses to N. gonorrhoeae. Our results indicated that a stronger Th1 immune response component induced by Alum+MPLA led to antibodies with improved bactericidal activity. In conclusion, a combination of CASS-derived antigens may be promising for developing effective gonococcal vaccines.
Collapse
Affiliation(s)
- Shea K. Roe
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Brian Felter
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA (S.R.)
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA (S.R.)
| | - Lee M. Wetzler
- Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Eric Garges
- Department of Preventive Medicine and Biostatistics, F. Edward Hebert School of Medicine, Uniformed Services University, Bethesda, MD 20814, USA;
| | - Tianmou Zhu
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Caroline A. Genco
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| | - Paola Massari
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA; (S.K.R.); (C.A.G.)
| |
Collapse
|
7
|
Martinez FG, Zielke RA, Fougeroux CE, Li L, Sander AF, Sikora AE. Development of a Tag/Catcher-mediated capsid virus-like particle vaccine presenting the conserved Neisseria gonorrhoeae SliC antigen that blocks human lysozyme. Infect Immun 2023; 91:e0024523. [PMID: 37916806 PMCID: PMC10715030 DOI: 10.1128/iai.00245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/10/2023] [Indexed: 11/03/2023] Open
Abstract
Virus-like particles (VLPs) are promising nanotools for the development of subunit vaccines due to high immunogenicity and safety. Herein, we explored the versatile and effective Tag/Catcher-AP205 capsid VLP (cVLP) vaccine platform to address the urgent need for the development of an effective and safe vaccine against gonorrhea. The benefits of this clinically validated cVLP platform include its ability to facilitate unidirectional, high-density display of complex/full-length antigens through an effective split-protein Tag/Catcher conjugation system. To assess this modular approach for making cVLP vaccines, we used a conserved surface lipoprotein, SliC, that contributes to the Neisseria gonorrhoeae defense against human lysozyme, as a model antigen. This protein was genetically fused at the N- or C-terminus to the small peptide Tag enabling their conjugation to AP205 cVLP, displaying the complementary Catcher. We determined that SliC with the N-terminal SpyTag, N-SliC, retained lysozyme-blocking activity and could be displayed at high density on cVLPs without causing aggregation. In mice, the N-SliC-VLP vaccines, adjuvanted with AddaVax or CpG, induced significantly higher antibody titers compared to controls. In contrast, similar vaccine formulations containing monomeric SliC were non-immunogenic. Accordingly, sera from N-SliC-VLP-immunized mice also had significantly higher human complement-dependent serum bactericidal activity. Furthermore, the N-SliC-VLP vaccines administered subcutaneously with an intranasal boost elicited systemic and vaginal IgG and IgA, whereas subcutaneous delivery alone failed to induce vaginal IgA. The N-SliC-VLP with CpG (10 µg/dose) induced the most significant increase in total serum IgG and IgG3 titers, vaginal IgG and IgA, and bactericidal antibodies.
Collapse
Affiliation(s)
- Fabian G. Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | | | - Lixin Li
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
| | - Adam F. Sander
- AdaptVac Aps, Hørsholm, Denmark
- Faculty of Health Science, University of Copenhagen, Copenhagen, Denmark
- Institute for Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, USA
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, Oregon, USA
| |
Collapse
|
8
|
Belcher T, Rollier CS, Dold C, Ross JDC, MacLennan CA. Immune responses to Neisseria gonorrhoeae and implications for vaccine development. Front Immunol 2023; 14:1248613. [PMID: 37662926 PMCID: PMC10470030 DOI: 10.3389/fimmu.2023.1248613] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/26/2023] [Indexed: 09/05/2023] Open
Abstract
Neisseria gonorrheoae is the causative agent of gonorrhea, a sexually transmitted infection responsible for a major burden of disease with a high global prevalence. Protective immunity to infection is often not observed in humans, possible due to high variability of key antigens, induction of blocking antibodies, or a large number of infections being relatively superficial and not inducing a strong immune response. N. gonorrhoeae is a strictly human pathogen, however, studies using mouse models provide useful insights into the immune response to gonorrhea. In mice, N. gonorrhoea appears to avoid a protective Th1 response by inducing a less protective Th17 response. In mouse models, candidate vaccines which provoke a Th1 response can accelerate the clearance of gonococcus from the mouse female genital tract. Human studies indicate that natural infection often induces a limited immune response, with modest antibody responses, which may correlate with the clinical severity of gonococcal disease. Studies of cytokine responses to gonococcal infection in humans provide conflicting evidence as to whether infection induces an IL-17 response. However, there is evidence for limited induction of protective immunity from a study of female sex workers in Kenya. A controlled human infection model (CHIM) has been used to examine the immune response to gonococcal infection in male volunteers, but has not to date demonstrated protection against re-infection. Correlates of protection for gonorrhea are lacking, which has hampered the progress towards developing a successful vaccine. However, the finding that the Neisseria meningitidis serogroup B vaccines, elicit cross-protection against gonorrhea has invigorated the gonococcal vaccine field. More studies of infection in humans, either natural infection or CHIM studies, are needed to understand better gonococcal protective immunity.
Collapse
Affiliation(s)
- Thomas Belcher
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Christina Dold
- The Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Jonathan D. C. Ross
- Sexual Health and HIV, University Hospitals Birmingham NHS Trust, Birmingham, United Kingdom
| | - Calman A. MacLennan
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
9
|
Waltmann A, Balthazar JT, Begum AA, Hua N, Jerse AE, Shafer WM, Hobbs MM, Duncan JA. Neisseria gonorrhoeae MtrCDE Efflux Pump During In Vivo Experimental Genital Tract Infection in Men and Mice Reveals the Presence of Within-Host Colonization Bottleneck. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.23.23291824. [PMID: 37425726 PMCID: PMC10327229 DOI: 10.1101/2023.06.23.23291824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The MtrCDE efflux pump of Neisseria gonorrhoeae exports a wide range of antimicrobial compounds that the gonococcus encounters at mucosal surfaces during colonization and infection. Here, we evaluate the role of this efflux pump system in strain FA1090 in human male urethral infection with a Controlled Human Infection Model. Using the strategy of competitive multi-strain infection with wild-type FA1090 and an isogenic mutant strain that does not contain a functional MtrCDE pump, we found that the presence of the efflux pump during human experimental infection did not confer a competitive advantage. This finding is in contrast to previous findings in female mice, which demonstrated that gonococci of strain FA19 lacking a functional MtrCDE pump had a significantly reduced fitness compared to the wild type strain in the lower genital tract of female mice. We conducted competitive infections in female mice with FA19 and FA1090 strains, including mutants that do not assemble a functional Mtr efflux pump, demonstrating the fitness advantage provided byt the MtrCDE efflux pump during infection of mice is strain dependent. Our data indicate that new gonorrhea treatment strategies targeting the MtrCDE efflux pump functions may not be universally efficacious in naturally occurring infections. Owing to the equal fitness of FA1090 strains in men, our experiments unexpectedly demonstrated the likely presence of an early colonization bottleneck of N. gonorrhoeae in the human male urethra. TRIAL REGISTRATION Clinicaltrials.gov NCT03840811 .
Collapse
|
10
|
Girgis MM, Christodoulides M. Vertebrate and Invertebrate Animal and New In Vitro Models for Studying Neisseria Biology. Pathogens 2023; 12:782. [PMID: 37375472 DOI: 10.3390/pathogens12060782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
The history of Neisseria research has involved the use of a wide variety of vertebrate and invertebrate animal models, from insects to humans. In this review, we itemise these models and describe how they have made significant contributions to understanding the pathophysiology of Neisseria infections and to the development and testing of vaccines and antimicrobials. We also look ahead, briefly, to their potential replacement by complex in vitro cellular models.
Collapse
Affiliation(s)
- Michael M Girgis
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, UK
| |
Collapse
|
11
|
Del Bino L, Østerlid KE, Wu DY, Nonne F, Romano MR, Codée J, Adamo R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem Rev 2022; 122:15672-15716. [PMID: 35608633 PMCID: PMC9614730 DOI: 10.1021/acs.chemrev.2c00021] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Antimicrobial resistance (AMR) is emerging as the next potential pandemic. Different microorganisms, including the bacteria Acinetobacter baumannii, Clostridioides difficile, Escherichia coli, Enterococcus faecium, Klebsiella pneumoniae, Neisseria gonorrhoeae, Pseudomonas aeruginosa, non-typhoidal Salmonella, and Staphylococcus aureus, and the fungus Candida auris, have been identified by the WHO and CDC as urgent or serious AMR threats. Others, such as group A and B Streptococci, are classified as concerning threats. Glycoconjugate vaccines have been demonstrated to be an efficacious and cost-effective measure to combat infections against Haemophilus influenzae, Neisseria meningitis, Streptococcus pneumoniae, and, more recently, Salmonella typhi. Recent times have seen enormous progress in methodologies for the assembly of complex glycans and glycoconjugates, with developments in synthetic, chemoenzymatic, and glycoengineering methodologies. This review analyzes the advancement of glycoconjugate vaccines based on synthetic carbohydrates to improve existing vaccines and identify novel candidates to combat AMR. Through this literature survey we built an overview of structure-immunogenicity relationships from available data and identify gaps and areas for further research to better exploit the peculiar role of carbohydrates as vaccine targets and create the next generation of synthetic carbohydrate-based vaccines.
Collapse
Affiliation(s)
| | - Kitt Emilie Østerlid
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | - Dung-Yeh Wu
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | - Jeroen Codée
- Leiden
Institute of Chemistry, Leiden University, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
12
|
Elhassanny AEM, Abutaleb NS, Seleem MN. Auranofin exerts antibacterial activity against Neisseria gonorrhoeae in a female mouse model of genital tract infection. PLoS One 2022; 17:e0266764. [PMID: 35446884 PMCID: PMC9022871 DOI: 10.1371/journal.pone.0266764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 03/27/2022] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae has been classified by the U.S. Centers for Disease Control and Prevention as an urgent threat due to the rapid development of antibiotic resistance to currently available antibiotics. Therefore, there is an urgent need to find new antibiotics to treat gonococcal infections. In our previous study, the gold-containing drug auranofin demonstrated potent in vitro activity against clinical isolates of N. gonorrhoeae, including multidrug-resistant strains. Therefore, the aim of this study was to investigate the in vivo activity of auranofin against N. gonorrhoeae using a murine model of vaginal infection. A significant reduction in N. gonorrhoeae recovered from the vagina was observed for infected mice treated with auranofin compared to the vehicle over the course of treatment. Relative to the vehicle, after three and five days of treatment with auranofin, a 1.04 (91%) and 1.40 (96%) average log10-reduction of recovered N. gonorrhoeae was observed. In conclusion, auranofin has the potential to be further investigated as a novel, safe anti-gonococcal agent to help meet the urgent need for new antimicrobial agents for N. gonorrhoeae infection.
Collapse
Affiliation(s)
- Ahmed E. M. Elhassanny
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Nader S. Abutaleb
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Mohamed N. Seleem
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| |
Collapse
|
13
|
Abstract
Neisseria gonorrhoeae is an obligate human pathogen that is the cause of the sexually transmitted disease gonorrhoea. Recently, there has been a surge in gonorrhoea cases that has been exacerbated by the rapid rise in gonococcal multidrug resistance to all useful antimicrobials resulting in this organism becoming a significant public health burden. Therefore, there is a clear and present need to understand the organism's biology through its physiology and pathogenesis to help develop new intervention strategies. The gonococcus initially colonises and adheres to host mucosal surfaces utilising a type IV pilus that helps with microcolony formation. Other adhesion strategies include the porin, PorB, and the phase variable outer membrane protein Opa. The gonococcus is able to subvert complement mediated killing and opsonisation by sialylation of its lipooligosaccharide and deploys a series of anti-phagocytic mechanisms. N. gonorrhoeae is a fastidious organism that is able to grow on a limited number of primary carbon sources such as glucose and lactate. The utilization of lactate by the gonococcus has been implicated in a number of pathogenicity mechanisms. The bacterium lives mainly in microaerobic environments and can grow both aerobically and anaerobically with the aid of nitrite. The gonococcus does not produce siderophores for scavenging iron but can utilize some produced by other bacteria, and it is able to successful chelate iron from host haem, transferrin and lactoferrin. The gonococcus is an incredibly versatile human pathogen; in the following chapter, we detail the intricate mechanisms used by the bacterium to invade and survive within the host.
Collapse
Affiliation(s)
- Luke R Green
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Ernesto Feliz Diaz Parga
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom
| | - Jonathan G Shaw
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
14
|
Christodoulides M, Humbert MV, Heckels JE. The potential utility of liposomes for Neisseria vaccines. Expert Rev Vaccines 2021; 20:1235-1256. [PMID: 34524062 DOI: 10.1080/14760584.2021.1981865] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Species of the genus Neisseria are important global pathogens. Neisseria gonorrhoeae (gonococcus) causes the sexually transmitted disease gonorrhea and Neisseria meningitidis (meningococcus) causes meningitis and sepsis. Liposomes are self-assembled spheres of phospholipid bilayers enclosing a central aqueous space, and they have attracted much interest and use as a delivery vehicle for Neisseria vaccine antigens. AREAS COVERED A brief background on Neisseria infections and the success of licensed meningococcal vaccines are provided. The absence of a gonococcal vaccine is highlighted. The use of liposomes for delivering Neisseria antigens and adjuvants, for the purposes of generating specific immune responses, is reviewed. The use of other lipid-based systems for antigen and adjuvant delivery is examined briefly. EXPERT OPINION With renewed interest in developing a gonococcal vaccine, liposomes remain an attractive option for delivering antigens. The discipline of nanotechnology provides additional nanoparticle-based options for gonococcal vaccine development. Future work would be needed to tailor the composition of liposomes and other nanoparticles to the specific vaccine antigen(s), in order to generate optimal anti-gonococcal immune responses. The potential use of liposomes and other nanoparticles to deliver anti-gonococcal compounds to treat infections also should be explored further.
Collapse
Affiliation(s)
- Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - Maria Victoria Humbert
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| | - John E Heckels
- Neisseria Research Group, Molecular Microbiology, School of Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, UK
| |
Collapse
|
15
|
Harrison OB, Maiden MCJ. Recent advances in understanding and combatting Neisseria gonorrhoeae: a genomic perspective. Fac Rev 2021; 10:65. [PMID: 34557869 PMCID: PMC8442004 DOI: 10.12703/r/10-65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The sexually transmitted infection (STI) gonorrhoea remains a major global public health concern. The World Health Organization (WHO) estimates that 87 million new cases in individuals who were 15 to 49 years of age occurred in 2016. The growing number of gonorrhoea cases is concerning given the rise in gonococci developing antimicrobial resistance (AMR). Therefore, a global action plan is needed to facilitate surveillance. Indeed, the WHO has made surveillance leading to the elimination of STIs (including gonorrhoea) a global health priority. The availability of whole genome sequence data offers new opportunities to combat gonorrhoea. This can be through (i) enhanced surveillance of the global prevalence of AMR, (ii) improved understanding of the population biology of the gonococcus, and (iii) opportunities to mine sequence data in the search for vaccine candidates. Here, we review the current status in Neisseria gonorrhoeae genomics. In particular, we explore how genomics continues to advance our understanding of this complex pathogen.
Collapse
Affiliation(s)
- Odile B Harrison
- Department of Zoology, University of Oxford, The Peter Medawar Building, Oxford, UK
| | - Martin CJ Maiden
- Department of Zoology, University of Oxford, The Peter Medawar Building, Oxford, UK
| |
Collapse
|
16
|
Connolly KL, Pilligua-Lucas M, Gomez C, Costenoble-Caherty AC, Soc A, Underwood K, Macintyre AN, Sempowski GD, Jerse AE. Preclinical Testing of Vaccines and Therapeutics for Gonorrhea in Female Mouse Models of Lower and Upper Reproductive Tract Infection. J Infect Dis 2021; 224:S152-S160. [PMID: 34396408 DOI: 10.1093/infdis/jiab211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Murine models of Neisseria gonorrhoeae lower reproductive tract infection are valuable systems for studying N. gonorrhoeae adaptation to the female host and immune responses to infection. These models have also accelerated preclinical testing of candidate therapeutic and prophylactic products against gonorrhea. However, because N. gonorrhoeae infection is restricted to the murine cervicovaginal region, there is a need for an in vivo system for translational work on N. gonorrhoeae pelvic inflammatory disease (PID). Here we discuss the need for well-characterized preclinical upper reproductive tract infection models for developing candidate products against N. gonorrhoeae PID, and report a refinement of the gonorrhea mouse model that supports sustained upper reproductive tract infection. To establish this new model for vaccine testing, we also tested the licensed meningococcal 4CMenB vaccine, which cross-protects against murine N. gonorrhoeae lower reproductive tract infection, for efficacy against N. gonorrhoeae in the endometrium and oviducts following transcervical or vaginal challenge.
Collapse
Affiliation(s)
- Kristie L Connolly
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Michelle Pilligua-Lucas
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Carolina Gomez
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | | | - Anthony Soc
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Knashka Underwood
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | - Andrew N Macintyre
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Gregory D Sempowski
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Ann E Jerse
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Haese EC, Thai VC, Kahler CM. Vaccine Candidates for the Control and Prevention of the Sexually Transmitted Disease Gonorrhea. Vaccines (Basel) 2021; 9:vaccines9070804. [PMID: 34358218 PMCID: PMC8310131 DOI: 10.3390/vaccines9070804] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 11/25/2022] Open
Abstract
The World Health Organization (WHO) has placed N. gonorrhoeae on the global priority list of antimicrobial resistant pathogens and is urgently seeking the development of new intervention strategies. N. gonorrhoeae causes 86.9 million cases globally per annum. The effects of gonococcal disease are seen predominantly in women and children and especially in the Australian Indigenous community. While economic modelling suggests that this infection alone may directly cost the USA health care system USD 11.0–20.6 billion, indirect costs associated with adverse disease and pregnancy outcomes, disease prevention, and productivity loss, mean that the overall effect of the disease is far greater still. In this review, we summate the current progress towards the development of a gonorrhea vaccine and describe the clinical trials being undertaken in Australia to assess the efficacy of the current formulation of Bexsero® in controlling disease.
Collapse
|
18
|
Yarlagadda V, Rao VN, Kaur M, Guitor AK, Wright GD. A Screen of Natural Product Extracts Identifies Moenomycin as a Potent Antigonococcal Agent. ACS Infect Dis 2021; 7:1569-1577. [PMID: 33826296 DOI: 10.1021/acsinfecdis.1c00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Increasing multidrug resistance in Neisseria gonorrheae is a growing public health crisis. Resistance to the last line therapies, cephalosporins and azithromycin, are of particular concern, fueling the need to discover new treatments. Here, we identified the phosphoglycolipid moenomycin from a screen of microbial natural products against drug-resistant N. gonorrheae as a potent antigonococcal agent. Moenomycin demonstrates excellent activity (MIC = 0.004-0.03 μg/mL) against a variety of multidrug-resistant N. gonorrheae. Importantly, moenomycin, thought to be a Gram-positive specific antibiotic, penetrates the Gram-negative gonococcal outer membrane. Moenomycin causes intracellular accumulation of peptidoglycan precursors, cell blebbing, and rupture of the cell envelope, all consistent with cell wall biosynthesis inhibition. Serial bacterial exposure to moenomycin for 14 days revealed slow development of resistance (MICDay14 = 0.03-0.06 μg/mL), unlike the clinically used drug azithromycin. Our results offer the potential utility of moenomycin as a lead for antigonococcal therapeutic candidates and warrant further investigation.
Collapse
Affiliation(s)
- Venkateswarlu Yarlagadda
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Vishwas N. Rao
- Medical Scientist Training Program, School of Medicine, Duke University, Durham, North Carolina 27710, United States
| | - Manpreet Kaur
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Allison K. Guitor
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Gerard D. Wright
- David Braley Center for Antibiotic Discovery, M.G. DeGroote Institute for Infectious Disease Research, Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| |
Collapse
|
19
|
Reyes Díaz LM, Lastre González MDSJB, Cuello M, Sierra-González VG, Ramos Pupo R, Lantero MI, Harandi AM, Black S, Pérez O. VA-MENGOC-BC Vaccination Induces Serum and Mucosal Anti Neisseria gonorrhoeae Immune Responses and Reduces the Incidence of Gonorrhea. Pediatr Infect Dis J 2021; 40:375-381. [PMID: 33591079 DOI: 10.1097/inf.0000000000003047] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Overall, there are over 30 different sexually transmitted infections with Neisseria gonorrhoeae being the third most frequent with a reported 78 million cases per year. Gonococcal infection causes genital inflammation, which can be a risk factor for others sexually transmitted infections, particularly human immunodeficiency virus. Gonorrhea is a treatable disease, but recently an increase in antibiotic resistance has been of concern. There are currently no vaccines available. However, parenteral vaccination with anti N. meningitidis serogroup B vaccine has been reported to decrease the incidence of gonococcal burden in New Zealand and in Cuba despite the fact that parenteral vaccination is not deemed to induce mucosal IgA. Here we explore possible mechanisms of protection against gonococcal infection through parenteral meningococcal B vaccination. METHODS Ninety-two serum, saliva and oropharyngeal swabs samples of young adults (healthy and Neisseria carriers) of the internal higher school were obtained. They have been vaccinated with VA-MENGOC-BC (MBV) during their infancy and boosted with a third dose during this study. Serum and saliva samples were analyzed by ELISA and Western blot to measured IgG and IgA antibodies against N. meningitidis and N. gonorrhoeae antigens. N. meningitidis carriers were determined by standard microbiologic test. In addition, we reviewed epidemiologic data for N. meningitidis and N. gonorrhoeae infections in Cuba. RESULTS Epidemiologic data show the influence of MBV over gonorrhea incidence suggesting to be dependent of sexual arrival age of vaccines but not over syphilis. Laboratorial data permit the detection of 70 and 22 noncarriers and carriers of N. meningitidis, respectively. Serum anti-MBV antigens (PL) responses were boosted by a third dose and were independent of carriage stages, but saliva anti-PL IgA responses were only present and were significant induced in carriers subjects. Carriers boosted with a third dose of MBV induced similar antigonococcal and -PL saliva IgA and serum IgG responses; meanwhile, serum antigonococcal IgG was significantly lower. In saliva, at least 2 gonococcal antigens were identified by Western blot. Finally, gonococcal-specific mucosal IgA antibody responses, in addition to the serum IgG antibodies, might contributed to the reduction of the incidence of N. gonorrhoeae. We hypothesize that this might have contributed to the observed reductions of the incidence of N. gonorrhoeae. CONCLUSION These results suggest a mechanism for the influence of a Proteoliposome-based meningococcal BC vaccine on gonococcal incidence.
Collapse
Affiliation(s)
- Laura M Reyes Díaz
- From the Instituto de Ciencias Básicas y Preclínicas "Victoria de Girón," Havana, Cuba
| | | | - Maribel Cuello
- Facultad de Ingenierías, Universidad Técnica "Luis Vargas Torres" de Esmeraldas, Esmeralda, Ecuador
| | | | - Raúl Ramos Pupo
- Immunology Department, Instituto de Ciencias Básicas y Preclínicas "Victoria de Girón," Havana, Cuba
- Biomedical Research Institute (BIOMED), Faculty of Medicine and Life Science, Hasselt University, Hasselt, Belgium
| | | | - Ali M Harandi
- Department of Microbiology & Immunology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Vaccine Evaluation Center, British Columbia Children's Hospital Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven Black
- Cincinnati Children's Hospital, Cincinnati, Ohio
| | - Oliver Pérez
- From the Instituto de Ciencias Básicas y Preclínicas "Victoria de Girón," Havana, Cuba
- Latin American and Caribean Association of Immunology (ALACI), Havana, Cuba
| |
Collapse
|
20
|
Antibody-Dependent Enhancement of Bacterial Disease: Prevalence, Mechanisms, and Treatment. Infect Immun 2021; 89:IAI.00054-21. [PMID: 33558319 DOI: 10.1128/iai.00054-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Antibody-dependent enhancement (ADE) of viral disease has been demonstrated for infections caused by flaviviruses and influenza viruses; however, antibodies that enhance bacterial disease are relatively unknown. In recent years, a few studies have directly linked antibodies with exacerbation of bacterial disease. This ADE of bacterial disease has been observed in mouse models and human patients with bacterial infections. This antibody-mediated enhancement of bacterial infection is driven by various mechanisms that are disparate from those found in viral ADE. This review aims to highlight and discuss historic evidence, potential molecular mechanisms, and current therapies for ADE of bacterial infection. Based on specific case studies, we report how plasmapheresis has been successfully used in patients to ameliorate infection-related symptomatology associated with bacterial ADE. A greater understanding and appreciation of bacterial ADE of infection and disease could lead to better management of infections and inform current vaccine development efforts.
Collapse
|
21
|
Parzych EM, Gulati S, Zheng B, Bah MA, Elliott STC, Chu JD, Nowak N, Reed GW, Beurskens FJ, Schuurman J, Rice PA, Weiner DB, Ram S. Synthetic DNA Delivery of an Optimized and Engineered Monoclonal Antibody Provides Rapid and Prolonged Protection against Experimental Gonococcal Infection. mBio 2021; 12:e00242-21. [PMID: 33727348 PMCID: PMC8092225 DOI: 10.1128/mbio.00242-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
Monoclonal antibody (MAb) 2C7 recognizes a lipooligosaccharide epitope expressed by most clinical Neisseria gonorrhoeae isolates and mediates complement-dependent bactericidal activity. We recently showed that a recombinant human IgG1 chimeric variant of MAb 2C7 containing an E430G Fc modification (2C7_E430G), which enhances complement activation, outperformed the parental MAb 2C7 (2C7_WT) in vivo Because natural infection with N. gonorrhoeae often does not elicit protective immunity and reinfections are common, approaches that prolong bacterial control in vivo are of great interest. Advances in DNA-based approaches have demonstrated the combined benefit of genetic engineering, formulation optimizations, and facilitated delivery via CELLECTRA-EP technology, which can induce robust in vivo expression of protective DNA-encoded monoclonal antibodies (DMAbs) with durable serum activity relative to traditional recombinant MAb therapies. Here, we created optimized 2C7-derived DMAbs encoding the parental Fc (2C7_WT) or complement-enhancing Fc variants (2C7_E430G and 2C7_E345K). 2C7 DMAbs were rapidly generated and detected throughout the 4-month study. While all complement-engaging 2C7 variants facilitated rapid clearance following primary N. gonorrhoeae challenge (day 8 after DMAb administration), the complement-enhancing 2C7_E430G variant demonstrated significantly higher potency against mice rechallenged 65 days after DMAb administration. Passive intravenous transfer of in vivo-produced, purified 2C7 DMAbs confirmed the increased potency of the complement-enhancing variants. This study highlights the ability of the DMAb platform to launch the in vivo production of antibodies engineered to promote and optimize downstream innate effector mechanisms such as complement-mediated killing, leading to hastened bacterial elimination.IMPORTANCENeisseria gonorrhoeae has become resistant to most antibiotics in clinical use. Currently, there is no safe and effective vaccine against gonorrhea. Measures to prevent the spread of gonorrhea are a global health priority. A monoclonal antibody (MAb) called 2C7, directed against a lipooligosaccharide glycan epitope expressed by most clinical isolates, displays complement-dependent bactericidal activity and hastens clearance of gonococcal vaginal colonization in mice. Fc mutations in a human IgG1 chimeric version of MAb 2C7 further enhance complement activation, and the resulting MAb displays greater activity than wild-type MAb 2C7 in vivo Here, we utilized a DNA-encoded MAb (DMAb) construct designed to launch production and assembly of "complement-enhanced" chimeric MAb 2C7 in vivo The ensuing rapid and sustained MAb 2C7 expression attenuated gonococcal colonization in mice at 8 days as well as 65 days postadministration. The DMAb system may provide an effective, economical platform to deliver MAbs for durable protection against gonorrhea.
Collapse
Affiliation(s)
- Elizabeth M Parzych
- Vaccine & Immunotherapy Center, The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania, USA
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Mamadou A Bah
- Vaccine & Immunotherapy Center, The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania, USA
| | - Sarah T C Elliott
- Vaccine & Immunotherapy Center, The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania, USA
| | - Jacqueline D Chu
- Vaccine & Immunotherapy Center, The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania, USA
| | - Nancy Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - George W Reed
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | | | - Janine Schuurman
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - David B Weiner
- Vaccine & Immunotherapy Center, The Wistar Institute of Anatomy and Biology, Philadelphia, Pennsylvania, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
22
|
Jefferson A, Smith A, Fasinu PS, Thompson DK. Sexually Transmitted Neisseria gonorrhoeae Infections-Update on Drug Treatment and Vaccine Development. MEDICINES 2021; 8:medicines8020011. [PMID: 33562607 PMCID: PMC7914478 DOI: 10.3390/medicines8020011] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022]
Abstract
Background: Sexually transmitted gonorrhea, caused by the Gram-negative diplococcus Neisseria gonorrhoeae, continues to be a serious global health challenge despite efforts to eradicate it. Multidrug resistance among clinical N. gonorrhoeae isolates has limited treatment options, and attempts to develop vaccines have not been successful. Methods: A search of published literature was conducted, and information extracted to provide an update on the status of therapeutics and vaccine development for gonorrheal infection. Results: Recommended pharmacological treatment for gonorrhea has changed multiple times due to increasing acquisition of resistance to existing antibiotics by N. gonorrhoeae. Only broad-spectrum cephalosporin-based combination therapies are currently recommended for treatment of uncomplicated urogenital and anorectal gonococcal infections. With the reported emergence of ceftriaxone resistance, successful strategies addressing the global burden of gonorrhea must include vaccination. Century-old efforts at developing an effective vaccine against gonorrhea, leading to only four clinical trials, have not yielded any successful vaccine. Conclusions: While it is important to continue to explore new drugs for the treatment of gonorrhea, the historical trend of resistance acquisition suggests that any long-term strategy should include vaccine development. Advanced technologies in proteomics and in silico approaches to vaccine target identification may provide templates for future success.
Collapse
Affiliation(s)
- Amber Jefferson
- School of Pharmacy, College of Pharmacy & Health Sciences, Campbell University, Buies Creek, NC 27506, USA; (A.J.); (A.S.)
| | - Amanda Smith
- School of Pharmacy, College of Pharmacy & Health Sciences, Campbell University, Buies Creek, NC 27506, USA; (A.J.); (A.S.)
| | - Pius S. Fasinu
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
| | - Dorothea K. Thompson
- Department of Pharmaceutical Sciences, College of Pharmacy & Health Sciences, Campbell University, Buies Creek, NC 27506, USA;
- Correspondence: ; Tel.: +1-910-893-7463
| |
Collapse
|
23
|
Sikora AE, Gomez C, Le Van A, Baarda BI, Darnell S, Martinez FG, Zielke RA, Bonventre JA, Jerse AE. A novel gonorrhea vaccine composed of MetQ lipoprotein formulated with CpG shortens experimental murine infection. Vaccine 2020; 38:8175-8184. [PMID: 33162204 DOI: 10.1016/j.vaccine.2020.10.077] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 11/18/2022]
Abstract
Bacterial surface lipoproteins are emerging as attractive vaccine candidates due to their biological importance and the feasibility of their large-scale production for vaccine manufacturing. The global prevalence of gonorrhea, resistance to antibiotics, and serious consequences to reproductive and neonatal health necessitate development of effective vaccines. Reverse vaccinology identified the surface-displayed L-methionine binding lipoprotein MetQ (NGO2139) and its homolog GNA1946 (NMB1946) as gonococcal and meningococcal vaccine candidates, respectively. Here, we assessed the suitability of MetQ for inclusion in a gonorrhea vaccine by examining MetQ conservation, its function inNeisseria gonorrhoeae (Ng) pathogenesis, and its ability to induce protective immune responses using a female murine model of lower genital tract infection. In-depth bioinformatics, phylogenetics and mapping the most prevalent Ng polymorphic amino acids to the GNA1946 crystal structure revealed remarkable MetQ conservation: ~97% Ng isolates worldwide possess a single MetQ variant. Mice immunized with rMetQ-CpG (n = 40), a vaccine containing a tag-free version of MetQ formulated with CpG, exhibited robust, antigen-specific antibody responses in serum and at the vaginal mucosae including IgA. Consistent with the activity of CpG as a Th1-stimulating adjuvant, the serum IgG1/IgG2a ratio of 0.38 suggested a Th1 bias. Combined data from two independent challenge experiments demonstrated that rMetQ-CpG immunized mice cleared infection faster than control animals (vehicle, p < 0.0001; CpG, p = 0.002) and had lower Ng burden (vehicle, p = 0.03; CpG, p < 0.0001). We conclude rMetQ-CpG induces a protective immune response that accelerates bacterial clearance from the murine lower genital tract and represents an attractive component of a gonorrhea subunit vaccine.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97330, United States; Vaccine and Gene Therapy Institute, Oregon Health & Science University, Beaverton, OR, United States.
| | - Carolina Gomez
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Adriana Le Van
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Benjamin I Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97330, United States
| | - Stephen Darnell
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Fabian G Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97330, United States
| | - Ryszard A Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97330, United States
| | - Josephine A Bonventre
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR 97330, United States
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States.
| |
Collapse
|
24
|
Gottlieb SL, Jerse AE, Delany-Moretlwe S, Deal C, Giersing BK. Advancing vaccine development for gonorrhoea and the Global STI Vaccine Roadmap. Sex Health 2020; 16:426-432. [PMID: 31476278 DOI: 10.1071/sh19060] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/13/2019] [Indexed: 12/11/2022]
Abstract
Efforts to develop vaccines against Neisseria gonorrhoeae have become increasingly important, given the rising threat of gonococcal antimicrobial resistance (AMR). Recent data suggest vaccines for gonorrhoea are biologically feasible; in particular, epidemiological evidence shows that vaccines against a closely related pathogen, serogroup B Neisseria meningitidis outer membrane vesicle (OMV) vaccines, may reduce gonorrhoea incidence. Vaccine candidates using several approaches are currently in preclinical development, including meningococcal and gonococcal OMV vaccines, a lipooligosaccharide epitope and purified protein subunit vaccines. The Global STI Vaccine Roadmap provides action steps to build on this technical momentum and advance gonococcal vaccine development. Better quantifying the magnitude of gonorrhoea-associated disease burden, for outcomes like infertility, and modelling the predicted role of gonococcal vaccines in addressing AMR will be essential for building a full public health value proposition, which can justify investment and help with decision making about future vaccine policy and programs. Efforts are underway to gain consensus on gonorrhoea vaccine target populations, implementation strategies and other preferred product characteristics that would make these vaccines suitable for use in low- and middle-income, as well as high-income, contexts. Addressing these epidemiological, programmatic and policy considerations in parallel to advancing research and development, including direct assessment of the ability of meningococcal B OMV vaccines to prevent gonorrhoea, can help bring about the development of viable gonococcal vaccines.
Collapse
Affiliation(s)
- Sami L Gottlieb
- Department of Reproductive Health and Research, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland; and Corresponding author.
| | - Ann E Jerse
- Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Sinead Delany-Moretlwe
- Wits RHI, University of the Witwatersrand, 22 Esselen Street, 2001 Johannesburg, South Africa
| | - Carolyn Deal
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5601 Fishers Lane, Bethesda, MD 20892, USA
| | - Birgitte K Giersing
- Department of Immunizations, Vaccines, and Biologicals, World Health Organization, Avenue Appia 20, 1211 Geneva, Switzerland
| |
Collapse
|
25
|
Semchenko EA, Tan A, Borrow R, Seib KL. The Serogroup B Meningococcal Vaccine Bexsero Elicits Antibodies to Neisseria gonorrhoeae. Clin Infect Dis 2020; 69:1101-1111. [PMID: 30551148 PMCID: PMC6743822 DOI: 10.1093/cid/ciy1061] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/08/2018] [Indexed: 12/24/2022] Open
Abstract
Background Neisseria gonorrhoeae and Neisseria meningitidis are closely-related bacteria that cause a significant global burden of disease. Control of gonorrhoea is becoming increasingly difficult, due to widespread antibiotic resistance. While vaccines are routinely used for N. meningitidis, no vaccine is available for N. gonorrhoeae. Recently, the outer membrane vesicle (OMV) meningococcal B vaccine, MeNZB, was reported to be associated with reduced rates of gonorrhoea following a mass vaccination campaign in New Zealand. To probe the basis for this protection, we assessed the cross-reactivity to N. gonorrhoeae of serum raised to the meningococcal vaccine Bexsero, which contains the MeNZB OMV component plus 3 recombinant antigens (Neisseria adhesin A, factor H binding protein [fHbp]-GNA2091, and Neisserial heparin binding antigen [NHBA]-GNA1030). Methods A bioinformatic analysis was performed to assess the similarity of MeNZB OMV and Bexsero antigens to gonococcal proteins. Rabbits were immunized with the OMV component or the 3 recombinant antigens of Bexsero, and Western blots and enzyme-linked immunosorbent assays were used to assess the generation of antibodies recognizing N. gonorrhoeae. Serum from humans immunized with Bexsero was investigated to assess the nature of the anti-gonococcal response. Results There is a high level of sequence identity between MeNZB OMV and Bexsero OMV antigens, and between the antigens and gonococcal proteins. NHBA is the only Bexsero recombinant antigen that is conserved and surfaced exposed in N. gonorrhoeae. Bexsero induces antibodies in humans that recognize gonococcal proteins. Conclusions The anti-gonococcal antibodies induced by MeNZB-like OMV proteins could explain the previously-seen decrease in gonorrhoea following MeNZB vaccination. The high level of human anti-gonococcal NHBA antibodies generated by Bexsero vaccination may provide additional cross-protection against gonorrhoea.
Collapse
Affiliation(s)
- Evgeny A Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Aimee Tan
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Ray Borrow
- Vaccine Evaluation Unit, Public Health England, Manchester Royal Infirmary, United Kingdom
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
26
|
Rubin DHF, Ross JDC, Grad YH. The frontiers of addressing antibiotic resistance in Neisseria gonorrhoeae. Transl Res 2020; 220:122-137. [PMID: 32119845 PMCID: PMC7293957 DOI: 10.1016/j.trsl.2020.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
The sexually transmitted infection gonorrhea, caused by the Gram-negative bacterium Neisseria gonorrhoeae, can cause urethritis, cervicitis, and systemic disease, among other manifestations. N. gonorrhoeae has rapidly rising incidence along with increasing levels of antibiotic resistance to a broad range of drugs including first-line treatments. The rise in resistance has led to fears of untreatable gonorrhea causing substantial disease globally. In this review, we will describe multiple approaches being undertaken to slow and control this spread of resistance. First, a number of old drugs have been repurposed and new drugs are being developed with activity against Neisseria gonorrhoeae. Second, vaccine development, long an important goal, is advancing. Third, new diagnostics promise rapid detection of antibiotic resistance and a shift from empiric to tailored treatment. The deployment of these new tools for addressing the challenge of antibiotic resistance will require careful consideration to provide optimal care for all patients while extending the lifespan of treatment regimens.
Collapse
Affiliation(s)
- Daniel H F Rubin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts
| | - Jonathan D C Ross
- Department of Sexual Health and HIV, Birmingham University Hospitals NHS Foundation Trust, Birmingham, UK
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Center for Communicable Disease Dynamics, Harvard T. H. Chan School of Public Health, Boston, Massachusetts; Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
27
|
Gulati S, Schoenhofen IC, Lindhout-Djukic T, Schur MJ, Landig CS, Saha S, Deng L, Lewis LA, Zheng B, Varki A, Ram S. Therapeutic CMP-Nonulosonates against Multidrug-Resistant Neisseria gonorrhoeae. THE JOURNAL OF IMMUNOLOGY 2020; 204:3283-3295. [PMID: 32434942 DOI: 10.4049/jimmunol.1901398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 04/08/2020] [Indexed: 12/29/2022]
Abstract
Neisseria gonorrhoeae deploys a unique immune evasion strategy wherein the lacto-N-neotetraose termini of lipooligosaccharide (LOS) are "capped" by a surface LOS sialyltransferase (Lst), using extracellular host-derived CMP-sialic acid (CMP-Neu5Ac in humans). LOS sialylation enhances complement resistance by recruiting factor H (FH; alternative complement pathway inhibitor) and also by limiting classical pathway activation. Sialylated LOS also engages inhibitory Siglecs on host leukocytes, dampening innate immunity. Previously, we showed that analogues of CMP-sialic acids (CMP-nonulosonates [CMP-NulOs]), such as CMP-Leg5,7Ac2 and CMP-Neu5Ac9N3, are also substrates for Lst. Incorporation of Leg5,7Ac2 and Neu5Ac9N3 into LOS results in N. gonorrhoeae being fully serum sensitive. Importantly, intravaginal administration of CMP-Leg5,7Ac2 attenuated N. gonorrhoeae colonization of mouse vaginas. In this study, we characterize and develop additional candidate therapeutic CMP-NulOs. CMP-ketodeoxynonulosonate (CMP-Kdn) and CMP-Kdn7N3, but not CMP-Neu4,5Ac2, were substrates for Lst, further elucidating gonococcal Lst specificity. Lacto-N-neotetraose LOS capped with Kdn and Kdn7N3 bound FH to levels ∼60% of that seen with Neu5Ac and enabled gonococci to resist low (3.3%) but not higher (10%) concentrations of human complement. CMP-Kdn, CMP-Neu5Ac9N3, and CMP-Leg5,7Ac2 administered intravaginally (10 μg/d) to N. gonorrhoeae-colonized mice were equally efficacious. Of the three CMP-NulOs above, CMP-Leg5,7Ac2 was the most pH and temperature stable. In addition, Leg5,7Ac2-fed human cells did not display this NulO on their surface. Moreover, CMP-Leg5,7Ac2 was efficacious against several multidrug-resistant gonococci in mice with a humanized sialome (Cmah-/- mice) or humanized complement system (FH/C4b-binding protein transgenic mice). CMP-Leg5,7Ac2 and CMP-Kdn remain viable leads as topical preventive/therapeutic agents against the global threat of multidrug-resistant N. gonorrhoeae.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ian C Schoenhofen
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada;
| | - Theresa Lindhout-Djukic
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Melissa J Schur
- Human Health Therapeutics Research Centre, National Research Council of Canada, Ottawa, Ontario K1A 0R6, Canada
| | - Corinna S Landig
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093; and.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Sudeshna Saha
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093; and.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Lingquan Deng
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093; and.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605
| | - Ajit Varki
- Department of Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093; and.,Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California, San Diego, La Jolla, CA 92093
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
28
|
Bypassing Phase Variation of Lipooligosaccharide (LOS): Using Heptose 1 Glycan Mutants To Establish Widespread Efficacy of Gonococcal Anti-LOS Monoclonal Antibody 2C7. Infect Immun 2020; 88:IAI.00862-19. [PMID: 31818965 DOI: 10.1128/iai.00862-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/23/2019] [Indexed: 01/02/2023] Open
Abstract
The sialylatable lacto-N-neotetraose (LNnT; Gal-GlcNAc-Gal-Glc) moiety from heptose I (HepI) of the lipooligosaccharide (LOS) of Neisseria gonorrhoeae undergoes positive selection during human infection. Lactose (Gal-Glc) from HepII, although phase variable, is commonly expressed in humans; loss of HepII lactose compromises gonococcal fitness in mice. Anti-LOS monoclonal antibody (MAb) 2C7, a promising antigonococcal immunotherapeutic that elicits complement-dependent bactericidal activity and attenuates gonococcal colonization in mice, recognizes an epitope comprised of lactoses expressed simultaneously from HepI and HepII. Glycan extensions beyond lactose on HepI modulate binding and function of MAb 2C7 in vitro Here, four gonococcal LOS mutants, each with lactose from HepII but fixed (unable to phase-vary) LOS HepI glycans extended beyond the lactose substitution of HepI (lactose alone, Gal-lactose, LNnT, or GalNAc-LNnT), were used to define how HepI glycan extensions affect (i) mouse vaginal colonization and (ii) efficacy in vitro and in vivo of a human IgG1 chimeric derivative of MAb 2C7 (2C7-Ximab) with a complement-enhancing E-to-G Fc mutation at position 430 (2C7-Ximab-E430G). About 10-fold lower 2C7-Ximab-E430G concentrations achieved similar complement-dependent killing of three gonococcal mutants with glycan extensions beyond lactose-substituted HepI (lactose alone, LNnT, or GalNAc-LNnT) as 2C7-Ximab (unmodified Fc). The fourth mutant (Gal-lactose) resisted direct complement-dependent killing but was killed approximately 70% by 2C7-Ximab-E430G in the presence of polymorphonuclear leukocytes and complement. Only mutants with (sialylatable) LNnT from HepI colonized mice for >3 days, reiterating the importance of LNnT sialylation for infection. 2C7-Ximab-E430G significantly attenuated colonization caused by the virulent mutants.
Collapse
|
29
|
Vincent LR, Jerse AE. Biological feasibility and importance of a gonorrhea vaccine for global public health. Vaccine 2019; 37:7419-7426. [PMID: 29680200 PMCID: PMC6892272 DOI: 10.1016/j.vaccine.2018.02.081] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 02/05/2018] [Accepted: 02/19/2018] [Indexed: 02/06/2023]
Abstract
There is a growing public health interest in controlling sexually transmitted infections (STIs) through vaccination due to increasing recognition of the global disease burden of STIs and the role of STIs in women's reproductive health, adverse pregnancy outcomes, and the health and well-being of neonates. Neisseria gonorrhoeae has historically challenged vaccine development through the expression of phase and antigenically variable surface molecules and its capacity to cause repeated infections without inducing protective immunity. An estimated 78 million new N. gonorrhoeae infections occur annually and the greatest disease burden is carried by low- and middle-income countries (LMIC). Current control measures are clearly inadequate and threatened by the rapid emergence of antibiotic resistance. The gonococcus now holds the status of "super-bug" as there is currently no single reliable monotherapy for empirical treatment of gonorrhea. The problem of antibiotic resistance has elevated treatment costs and necessitated the establishment of large surveillance programs to track the spread of resistant strains. Here we review the need for a gonorrhea vaccine with respect to global disease burden and related socioeconomic and treatment costs, with an emphasis on the impact of gonorrhea on women and newborns. We also highlight the challenge of estimating the impact of a gonorrhea vaccine due to the need for more data on the burden of gonococcal pelvic inflammatory disease and related sequelae and of gonorrhea-associated adverse pregnancy outcomes and the problem of empirical diagnosis and treatment of STIs in LMIC. There is also a lack of clinical and basic science research in the area of gonococcal/chlamydia coinfection, which occurs in a high percentage of individuals with gonorrhea and should be considered when testing the efficacy of gonorrhea vaccines. Finally, we review recent research that suggests a gonorrhea vaccine is feasible and discuss challenges and research gaps in gonorrhea vaccine development.
Collapse
Affiliation(s)
- Leah R Vincent
- National Institute of Allergy and Infectious Diseases, 5601 Fishers Lane, Rockville, MD 20852, United States.
| | - Ann E Jerse
- Department of Microbiology and Immunology F. Edward Herbert School of Medicine, Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD 20854, United States.
| |
Collapse
|
30
|
Clow F, O’Hanlon CJ, Christodoulides M, Radcliff FJ. Feasibility of Using a Luminescence-Based Method to Determine Serum Bactericidal Activity against Neisseria gonorrhoeae. Vaccines (Basel) 2019; 7:vaccines7040191. [PMID: 31766474 PMCID: PMC6963289 DOI: 10.3390/vaccines7040191] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/12/2019] [Accepted: 11/19/2019] [Indexed: 01/15/2023] Open
Abstract
Development of a vaccine to limit the impact of antibiotic resistant Neisseria gonorrhoeae is now a global priority. Serum bactericidal antibody (SBA) is a possible indicator of protective immunity to N. gonorrhoeae, but conventional assays measure colony forming units (CFU), which is time-consuming. A luminescent assay that quantifies ATP as a surrogate measure of bacterial viability was tested on N. gonorrhoeae strains FA1090, MS11 and P9-17 and compared to CFU-based readouts. There was a linear relationship between CFU and ATP levels for all three strains (r > 0.9). Normal human serum (NHS) is a common source of complement for SBA assays, but needs to be screened for non-specific bactericidal activity. NHS from 10 individuals were used for serum sensitivity assays-sensitivity values were significantly reduced with the ATP method for FA1090 (5/10, p < 0.05) and MS11 (10/10, p < 0.05), whereas P9-17 data were comparable for all donors. Our results suggest that measuring ATP underestimates serum sensitivity of N. gonorrhoeae and that the CFU method is a better approach. However, mouse anti-P9-17 outer membrane vesicles (OMV) SBA titres to P9-17 were comparable with both methods (r = 0.97), suggesting this assay can be used to rapidly screen sera for bactericidal antibodies to gonococci.
Collapse
Affiliation(s)
- Fiona Clow
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (F.C.); (C.J.O.)
| | - Conor J O’Hanlon
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (F.C.); (C.J.O.)
| | - Myron Christodoulides
- Faculty of Medicine, Academic Unit of Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton, Southampton SO166YD, UK;
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (F.C.); (C.J.O.)
- Correspondence: ; Tel.: +64-9923-6272
| |
Collapse
|
31
|
Abstract
The global spread of multidrug-resistant strains of Neisseria gonorrhoeae constitutes a public health emergency. With limited antibiotic treatment options, there is an urgent need for development of a safe and effective vaccine against gonorrhea. Previously, we constructed a prototype vaccine candidate comprising a peptide mimic (mimitope) of a glycan epitope on gonococcal lipooligosaccharide (LOS), recognized by monoclonal antibody 2C7. The 2C7 epitope is (i) broadly expressed as a gonococcal antigenic target in human infection, (ii) a critical requirement for gonococcal colonization in the experimental setting, and (iii) a virulence determinant that is maintained and expressed by gonococci. Here, we have synthesized to >95% purity through a relatively facile and economical process a tetrapeptide derivative of the mimitope that was cyclized through a nonreducible thioether bond, thereby rendering the compound homogeneous and stable. This vaccine candidate, called TMCP2, when administered at 0, 3, and 6 weeks to BALB/c mice at either 50, 100 or 200 μg/dose in combination with glucopyranosyl lipid A-stable oil-in-water nanoemulsion (GLA-SE; a Toll-like receptor 4 and TH1-promoting adjuvant), elicited bactericidal IgG and reduced colonization levels of gonococci in experimentally infected mice while accelerating clearance by each of two different gonococcal strains. Similarly, a 3-dose biweekly schedule (50 μg TMCP2/dose) was also effective in mice. We have developed a gonococcal vaccine candidate that can be scaled up and produced economically to a high degree of purity. The candidate elicits bactericidal antibodies and is efficacious in a preclinical experimental infection model.IMPORTANCE Neisseria gonorrhoeae has become resistant to most antibiotics. The incidence of gonorrhea is also sharply increasing. A safe and effective antigonococcal vaccine is urgently needed. Lipooligosaccharide (LOS), the most abundant outer membrane molecule, is indispensable for gonococcal pathogenesis. A glycan epitope on LOS that is recognized by monoclonal antibody (MAb) 2C7 (called the 2C7 epitope) is expressed almost universally by gonococci in vivo Previously, we identified a peptide mimic (mimitope) of the 2C7 epitope, which when configured as an octamer and used as an immunogen, attenuated colonization of mice by gonococci. Here, a homogenous, stable tetrameric derivative of the mimitope, when combined with a TH1-promoting adjuvant and used as an immunogen, also effectively attenuates gonococcal colonization of mice. This candidate peptide vaccine can be produced economically, an important consideration for gonorrhea, which affects socioeconomically underprivileged populations disproportionately, and represents an important advance in the development of a gonorrhea vaccine.
Collapse
|
32
|
Russell MW, Jerse AE, Gray-Owen SD. Progress Toward a Gonococcal Vaccine: The Way Forward. Front Immunol 2019; 10:2417. [PMID: 31681305 PMCID: PMC6803597 DOI: 10.3389/fimmu.2019.02417] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/27/2019] [Indexed: 12/26/2022] Open
Abstract
The concept of immunizing against gonorrhea has received renewed interest because of the recent emergence of strains of Neisseria gonorrhoeae that are resistant to most currently available antibiotics, an occurrence that threatens to render gonorrhea untreatable. However, despite efforts over many decades, no vaccine has yet been successfully developed for human use, leading to pessimism over whether this goal was actually attainable. Several factors have contributed to this situation, including extensive variation of the expression and specificity of many of the gonococcal surface antigens, and the ability of N. gonorrhoeae to resist destruction by complement and other innate immune defense mechanisms. The natural host restriction of N. gonorrhoeae for humans, coupled with the absence of any definable state of immunity arising from an episode of gonorrhea, have also complicated efforts to study gonococcal pathogenesis and the host's immune responses. However, recent findings have elucidated how the gonococcus exploits and manipulates the host's immune system for its own benefit, utilizing human-specific receptors for attachment to and invasion of tissues, and subverting adaptive immune responses that might otherwise be capable of eliminating it. While no single experimental model is capable of providing all the answers, experiments utilizing human cells and tissues in vitro, various in vivo animal models, including genetically modified strains of mice, and both experimental and observational human clinical studies, have combined to yield important new insight into the immuno-pathogenesis of gonococcal infection. In turn, these have now led to novel approaches for the development of a gonococcal vaccine. Ongoing investigations utilizing all available tools are now poised to make the development of an effective human vaccine against gonorrhea an achievable goal within a foreseeable time-frame.
Collapse
Affiliation(s)
- Michael W. Russell
- Department of Microbiology and Immunology, University at Buffalo, Buffalo, NY, United States
| | - Ann E. Jerse
- Department of Microbiology and Immunology, F. Edward Herbert School of Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Scott D. Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
33
|
Genetic Similarity of Gonococcal Homologs to Meningococcal Outer Membrane Proteins of Serogroup B Vaccine. mBio 2019; 10:mBio.01668-19. [PMID: 31506309 PMCID: PMC6737241 DOI: 10.1128/mbio.01668-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The human pathogens Neisseria gonorrhoeae and Neisseria meningitidis share high genome identity. Retrospective analysis of surveillance data from New Zealand indicates the potential cross-protective effect of outer membrane vesicle (OMV) meningococcal serogroup B vaccine (MeNZB) against N. gonorrhoeae A licensed OMV-based MenB vaccine, MenB-4C, consists of a recombinant FHbp, NhbA, NadA, and the MeNZB OMV. Previous work has identified several abundantly expressed outer membrane proteins (OMPs) as major components of the MenB-4C OMV with high sequence similarity between N. gonorrhoeae and N. meningitidis, suggesting a mechanism for cross-protection. To build off these findings, we performed comparative genomic analysis on 970 recent N. gonorrhoeae isolates collected through a U.S surveillance system against N. meningitidis serogroup B (NmB) reference sequences. We identified 1,525 proteins that were common to both Neisseria species, of which 57 proteins were predicted to be OMPs using in silico methods. Among the MenB-4C antigens, NhbA showed moderate sequence identity (73%) to the respective gonococcal homolog, was highly conserved within N. gonorrhoeae, and was predicted to be surface expressed. In contrast, the gonococcal FHbp was predicted not to be surface expressed, while NadA was absent in all N. gonorrhoeae isolates. Our work confirmed recent observations (E. A. Semchenko, A. Tan, R. Borrow, and K. L. Seib, Clin Infect Dis, 2018, https://doi.org/10.1093/cid/ciy1061) and describes homologous OMPs from a large panel of epidemiologically relevant N. gonorrhoeae strains in the United States against NmB reference strains. Based on our results, we report a set of OMPs that may contribute to the previously observed cross-protection and provide potential antigen targets to guide the next steps in gonorrhea vaccine development.IMPORTANCE Gonorrhea, a sexually transmitted disease, causes substantial global morbidity and economic burden. New prevention and control measures for this disease are urgently needed, as strains resistant to almost all classes of antibiotics available for treatment have emerged. Previous reports demonstrate that cross-protection from gonococcal infections may be conferred by meningococcal serogroup B (MenB) outer membrane vesicle (OMV)-based vaccines. Among 1,525 common proteins shared across the genomes of both N. gonorrhoeae and N. meningitidis, 57 proteins were predicted to be surface expressed (outer membrane proteins [OMPs]) and thus preferred targets for vaccine development. The majority of these OMPs showed high sequence identity between the 2 bacterial species. Our results provide valuable insight into the meningococcal antigens present in the current OMV-containing MenB-4C vaccine that may contribute to cross-protection against gonorrhea and may inform next steps in gonorrhea vaccine development.
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Neisseria gonorrhoeae is one of the most common causes of sexually transmitted infections, with an estimated more than 100 million cases of gonorrhea each year worldwide. N. gonorrhoeae has gained recent increasing attention because of the alarming rise in incidence and the widespread emergence of multidrug-resistant gonococcal strains. Vaccine development is one area of renewed interest. Herein, we review the recent advances in this area. RECENT FINDINGS Vaccine development for N. gonorrhoeae has been problematic, but recent progress in the field has provided new hope that a gonococcal vaccine may be feasible. Several new vaccine antigens have been characterized in various models of infection. Furthermore, the first potential vaccine-induced protection against gonorrhea in humans has been reported, with decreased rates of gonorrhea described among individuals vaccinated with the Neisseria meningitidis serogroup B vaccine, MeNZB. SUMMARY As antibiotic resistance continues to increase, vaccine development for N. gonorrhoeae becomes more urgent. The MeNZB vaccine is shown to have efficacy, albeit relatively low, against N. gonorrhoeae. This finding has the potential to reinvigorate research in the field of gonococcal vaccine development and will guide future studies of the antigens and mechanism(s) required for protection against gonococcal infection.
Collapse
|
35
|
Gulati S, Beurskens FJ, de Kreuk BJ, Roza M, Zheng B, DeOliveira RB, Shaughnessy J, Nowak NA, Taylor RP, Botto M, He X, Ingalls RR, Woodruff TM, Song WC, Schuurman J, Rice PA, Ram S. Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody. PLoS Biol 2019; 17:e3000323. [PMID: 31216278 PMCID: PMC6602280 DOI: 10.1371/journal.pbio.3000323] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/01/2019] [Accepted: 05/30/2019] [Indexed: 12/25/2022] Open
Abstract
Multidrug-resistant Neisseria gonorrhoeae is a global health problem. Monoclonal antibody (mAb) 2C7 recognizes a gonococcal lipooligosaccharide epitope that is expressed by >95% of clinical isolates and hastens gonococcal vaginal clearance in mice. Chimeric mAb 2C7 (human immunoglobulin G1 [IgG1]) with an E430G Fc modification that enhances Fc:Fc interactions and hexamerization following surface-target binding and increases complement activation (HexaBody technology) showed significantly greater C1q engagement and C4 and C3 deposition compared to mAb 2C7 with wild-type Fc. Greater complement activation by 2C7-E430G Fc translated to increased bactericidal activity in vitro and, consequently, enhanced efficacy in mice, compared with “Fc-unmodified” chimeric 2C7. Gonococci bind the complement inhibitors factor H (FH) and C4b-binding protein (C4BP) in a human-specific manner, which dampens antibody (Ab)-mediated complement-dependent killing. The variant 2C7-E430G Fc overcame the barrier posed by these inhibitors in human FH/C4BP transgenic mice, for which a single 1 μg intravenous dose cleared established infection. Chlamydia frequently coexists with and exacerbates gonorrhea; 2C7-E430G Fc also proved effective against gonorrhea in gonorrhea/chlamydia-coinfected mice. Complement activation alone was necessary and sufficient for 2C7 function, evidenced by the fact that (1) “complement-inactive” Fc modifications that engaged Fc gamma receptor (FcγR) rendered 2C7 ineffective, nonetheless; (2) 2C7 was nonfunctional in C1q−/− mice, when C5 function was blocked, or in C9−/− mice; and (3) 2C7 remained effective in neutrophil-depleted mice and in mice treated with PMX205, a C5a receptor (C5aR1) inhibitor. We highlight the importance of complement activation for antigonococcal Ab function in the genital tract. Elucidating the correlates of protection against gonorrhea will inform the development of Ab-based gonococcal vaccines and immunotherapeutics. A chimeric antibody that contains a "complement-enhancing" mutation in Fc (so-called HexaBody technology) shows increased bactericidal activity compared to antibody bearing wild-type Fc and may represent a promising immunotherapeutic approach against multidrug-resistant gonorrhea.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | | | | | | | - Bo Zheng
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rosane B. DeOliveira
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Nancy A. Nowak
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Ronald P. Taylor
- University of Virginia, Charlottesville, Virginia, United States of America
| | - Marina Botto
- Center for Complement and Inflammation Research, Imperial College, London, United Kingdom
| | - Xianbao He
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Robin R. Ingalls
- Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Trent M. Woodruff
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, Brisbane, Australia
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | | | - Peter A. Rice
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail: (SR); (FJB)
| |
Collapse
|
36
|
Petousis-Harris H, Radcliff FJ. Exploitation of Neisseria meningitidis Group B OMV Vaccines Against N. gonorrhoeae to Inform the Development and Deployment of Effective Gonorrhea Vaccines. Front Immunol 2019; 10:683. [PMID: 31024540 PMCID: PMC6465565 DOI: 10.3389/fimmu.2019.00683] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 03/13/2019] [Indexed: 01/13/2023] Open
Abstract
Have potential clues to an effective gonorrhea vaccine been lurking in international disease surveillance data for decades? While no clinically effective vaccines against gonorrhea have been developed we present direct and indirect evidence that a vaccine is not only possible, but may already exist. Experience from Cuba, New Zealand, and Canada suggest that vaccines containing Group B Neisseria meningitides outer membrane vesicles (OMV) developed to control type-specific meningococcal disease may also prevent a significant proportion of gonorrhea. The mechanisms for this phenomenon have not yet been elucidated but we present some strategies for unraveling potential cross protective antigens and effector immune responses by exploiting stored sera from clinical trials and individuals primed with a meningococcal group B OMV vaccine (MeNZB). Elucidating these will contribute to the ongoing development of high efficacy vaccine options for gonorrhea. While the vaccine used in New Zealand, where the strongest empirical evidence has been gathered, is no longer available, the OMV has been included in the multi component recombinant meningococcal vaccine 4CMenB (Bexsero) which is now licensed and used in numerous countries. Several lines of evidence suggest it has the potential to affect gonorrhea prevalence. A vaccine to control gonorrhea does not need to be perfect and modeling supports that even a moderately efficacious vaccine could make a significant impact in disease prevalence. How might we use an off the shelf vaccine to reduce the burden of gonorrhea? What are some of the potential societal barriers in a world where vaccine hesitancy is growing? We summarize the evidence and consider some of the remaining questions.
Collapse
Affiliation(s)
- Helen Petousis-Harris
- Department of General Practice and Primary Health Care, University of Auckland, Auckland, New Zealand
| | - Fiona J Radcliff
- Department of Molecular Medicine and Pathology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
37
|
Cristillo AD, Bristow CC, Torrone E, Dillon JA, Kirkcaldy RD, Dong H, Grad YH, Nicholas RA, Rice PA, Lawrence K, Oldach D, Shafer WM, Zhou P, Wi TE, Morris SR, Klausner JD. Antimicrobial Resistance in Neisseria gonorrhoeae: Proceedings of the STAR Sexually Transmitted Infection-Clinical Trial Group Programmatic Meeting. Sex Transm Dis 2019; 46:e18-e25. [PMID: 30363025 PMCID: PMC6370498 DOI: 10.1097/olq.0000000000000929] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 10/01/2018] [Indexed: 11/27/2022]
Abstract
The goal of the Sexually Transmitted Infection Clinical Trial Group's Antimicrobial Resistance (AMR) in Neisseria gonorrhoeae (NG) meeting was to assemble experts from academia, government, nonprofit and industry to discuss the current state of research, gaps and challenges in research and technology and priorities and new directions to address the continued emergence of multidrug-resistant NG infections. Topics discussed at the meeting, which will be the focus of this article, include AMR NG global surveillance initiatives, the use of whole genome sequencing and bioinformatics to understand mutations associated with AMR, mechanisms of AMR, and novel antibiotics, vaccines and other methods to treat AMR NG. Key points highlighted during the meeting include: (i) US and International surveillance programs to understand AMR in NG; (ii) the US National Strategy for combating antimicrobial-resistant bacteria; (iii) surveillance needs, challenges, and novel technologies; (iv) plasmid-mediated and chromosomally mediated mechanisms of AMR in NG; (v) novel therapeutic (eg, sialic acid analogs, factor H [FH]/Fc fusion molecule, monoclonal antibodies, topoisomerase inhibitors, fluoroketolides, LpxC inhibitors) and preventative (eg, peptide mimic) strategies to combat infection. The way forward will require renewed political will, new funding initiatives, and collaborations across academic and commercial research and public health programs.
Collapse
Affiliation(s)
- Anthony D. Cristillo
- From the Department of Clinical Research and Bioscience Social & Scientific Systems, Inc., Silver Spring, MD
| | - Claire C. Bristow
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA
| | - Elizabeth Torrone
- Division of STD Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA
| | - Jo-Anne Dillon
- Department of Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatchewan, Canada
| | - Robert D. Kirkcaldy
- Division of STD Prevention, US Centers for Disease Control and Prevention (CDC), Atlanta, GA
| | - Huan Dong
- Charles R. Drew University of Medicine and Sciences, Los Angeles, CA
- David Geffen School of Medicine at University of California, Los Angeles, CA
| | - Yonatan H. Grad
- Department of Immunology and Infectious Diseases, Harvard University T.H. Chan School of Public Health, Boston, MA
| | - Robert A. Nicholas
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Peter A. Rice
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA
| | | | | | - William Maurice Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta
- Veterans Affairs Medical Center, Decatur, GA
| | - Pei Zhou
- Department of Biochemistry, Duke University Medical Center, Durham, NC; and
| | - Teodora E. Wi
- Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland; and
| | - Sheldon R. Morris
- Department of Medicine, University of California San Diego School of Medicine, La Jolla, CA
| | - Jeffrey D. Klausner
- Division of Infectious Diseases, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
38
|
Gulati S, Shaughnessy J, Ram S, Rice PA. Targeting Lipooligosaccharide (LOS) for a Gonococcal Vaccine. Front Immunol 2019; 10:321. [PMID: 30873172 PMCID: PMC6400993 DOI: 10.3389/fimmu.2019.00321] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 02/07/2019] [Indexed: 01/06/2023] Open
Abstract
The increasing incidence of gonorrhea worldwide and the global spread of multidrug-resistant strains of Neisseria gonorrhoeae, constitute a public health emergency. With dwindling antibiotic treatment options, there is an urgent need to develop safe and effective vaccines. Gonococcal lipooligosaccharides (LOSs) are potential vaccine candidates because they are densely represented on the bacterial surface and are readily accessible as targets of adaptive immunity. Less well-understood is whether LOSs evoke protective immune responses. Although gonococcal LOS-derived oligosaccharides (OSs) are major immune targets, often they undergo phase variation, a feature that seemingly makes LOS less desirable as a vaccine candidate. However, the identification of a gonococcal LOS-derived OS epitope, called 2C7, that is: (i) a broadly expressed gonococcal antigenic target in human infection; (ii) a virulence determinant, that is maintained by the gonococcus and (iii) a critical requirement for gonococcal colonization in the experimental setting, circumvents its limitation as a potential vaccine candidate imposed by phase variation. Difficulties in purifying structurally intact OSs from LOSs led to "conversion" of the 2C7 epitope into a peptide mimic that elicited cross-reactive IgG anti-OS antibodies that also possess complement-dependent bactericidal activity against gonococci. Mice immunized with the 2C7 peptide mimic clear vaginal colonization more rapidly and reduce gonococcal burdens. 2C7 vaccine satisfies criteria that are desirable in a gonococcal vaccine candidate: broad representation of the antigenic target, service as a virulence determinant that is also critical for organism survival in vivo and elicitation of broadly cross-reactive IgG bactericidal antibodies when used as an immunogen.
Collapse
Affiliation(s)
- Sunita Gulati
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
39
|
Pharmacokinetic Data Are Predictive of In Vivo Efficacy for Cefixime and Ceftriaxone against Susceptible and Resistant Neisseria gonorrhoeae Strains in the Gonorrhea Mouse Model. Antimicrob Agents Chemother 2019; 63:AAC.01644-18. [PMID: 30642924 DOI: 10.1128/aac.01644-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/18/2018] [Indexed: 01/10/2023] Open
Abstract
There is a pressing need for drug development for gonorrhea. Here we describe a pharmacokinetic (PK)/pharmacodynamic (PD) analysis of extended-spectrum cephalosporins (ESC) against drug-susceptible and drug-resistant gonococcal strains in a murine genital tract infection model. The PK determined in uninfected mice displayed a clear dose-response in plasma levels following single doses of ceftriaxone (CRO) (intraperitoneal) or cefixime (CFM) (oral). The observed doses required for efficacy against ESC-susceptible (ESCs) strain FA1090 were 5 mg/kg of body weight (CRO) and 12 mg/kg (CFM); these doses had estimated therapeutic times (the time that the free drug concentration remains above the MIC [fT MIC]) of 24 h and 37 h, respectively. No single dose of CRO or CFM was effective against ESC-resistant (ESCr) strain H041. However, fractionation (three times a day every 8 h [TIDq8h]) of a 120-mg/kg dose of CRO resulted in estimated therapeutic times in the range of 23 h and cleared H041 infection in a majority (90%) of mice, comparable to the findings for gentamicin. In contrast, multiple CFM doses of 120 or 300 mg/kg administered TIDq8h cleared infection in ≤50% of mice, with the therapeutic times estimated from single-dose PK data being 13 and 27 h, respectively. This study reveals a clear relationship between plasma ESC levels and bacterial clearance rates in the gonorrhea mouse model. The PK/PD relationships observed in mice reflected those observed in humans, with in vivo efficacy against an ESCs strain requiring doses that yielded an fT MIC in excess of 20 to 24 h. PK data also accurately predicted the failure of single doses of ESCs against an ESCr strain and were useful in designing effective dosing regimens.
Collapse
|
40
|
Lovett A, Duncan JA. Human Immune Responses and the Natural History of Neisseria gonorrhoeae Infection. Front Immunol 2019; 9:3187. [PMID: 30838004 PMCID: PMC6389650 DOI: 10.3389/fimmu.2018.03187] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/31/2018] [Indexed: 11/13/2022] Open
Abstract
The intimate relationship between humans and Neisseria gonorrhoeae infections span centuries, which is evidenced in case reports from studies dating back to the late 1700s and historical references that predate medical literature. N. gonorrhoeae is an exclusive human pathogen that infects the genital tract of both men and women as well as other mucosal surfaces including the oropharynx and rectum. In symptomatic infections, N. gonorrhoeae induces a robust inflammatory response at the site of infection. However, infections can also present asymptomatically complicating efforts to reduce transmission. N. gonorrhoeae infections have been effectively treated with antibiotics since their use was introduced in humans. Despite the existence of effective antibiotic treatments, N. gonorrhoeae remains one of the most common sexually transmitted pathogens and antibiotic resistant strains have arisen that limit treatment options. Development of a vaccine to prevent infection is considered a critical element of controlling this pathogen. The efforts to generate an effective gonococcal vaccine is limited by our poor understanding of the natural immunologic responses to infection. It is largely accepted that natural protective immunity to N. gonorrhoeae infections in humans does not occur or is very rare. Previous studies of the natural history of infection as well as some of the humoral and cellular immune responses to infection offer a window into the issues surrounding N. gonorrhoeae vaccine development. In this review, we summarize the current body of knowledge pertaining to human immune responses to gonococcal infections and the role of these responses in mediating protection from N. gonorrhoeae.
Collapse
Affiliation(s)
- Angela Lovett
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph A Duncan
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.,Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
41
|
Abstract
Neisseria gonorrhoeae infection is a major public health problem worldwide. The increasing incidence of gonorrhea coupled with global spread of multidrug-resistant isolates of gonococci has ushered in an era of potentially untreatable infection. Gonococcal disease elicits limited immunity, and individuals are susceptible to repeated infections. In this chapter, we describe gonococcal disease and epidemiology and the structure and function of major surface components involved in pathogenesis. We also discuss the mechanisms that gonococci use to evade host immune responses and the immune responses following immunization with selected bacterial components that may overcome evasion. Understanding the biology of the gonococcus may aid in preventing the spread of gonorrhea and also facilitate the development of gonococcal vaccines and treatments.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
42
|
Abstract
Mouse models of infection are important tools in the study of infectious disease or host the development of products to prevent or treat infections. The estradiol-treated mouse model of Neisseria gonorrhoeae genital tract infection has proved to be a valuable system for determining the importance of gonococcal factors that mediate evasion of host innate effectors in vivo or host gonococcal adaptation to hormonally driven host factors in females. Examination of mechanisms that Neisseria gonorrhoeae uses to subvert the host immune response also has been greatly aided by this whole model system, as have studies on the consequence of antibiotic resistance mutations on gonococcal fitness in vivo and the search for new antibiotics to treat antibiotic-resistant infections. The strict human specificity of N. gonorrhoeae limits the ability of experimental murine infection to mimic human infection. However, in recent years, the development of transgenic mice and protocols for supplementing mice with human factors has improved animal modeling of gonorrhea. To date, however, because the mouse estrous cycle is much shorter than the human reproductive cycle, all reported gonorrhea mouse models require treatment with estradiol and antibiotics to maintain an estrus-like state and suppress the overgrowth of inhibitory commensal flora that occurs under the influence of estrogen to allow sustained N. gonorrhoeae infection. In this chapter, we detail the methods used to (1) prepare the mice for experimental infection with N. gonorrhoeae, (2) inoculate mice and quantitatively culture vaginal swabs for noncompetitive and competitive infection experiments, and (3) monitor the host innate immune response to infection.
Collapse
Affiliation(s)
- Erica L Raterman
- Uniformed Services, University of the Health Sciences, Bethesda, MD, USA
| | - Ann E Jerse
- Uniformed Services, University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
43
|
Micoli F, Costantino P, Adamo R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 2018; 42:388-423. [PMID: 29547971 PMCID: PMC5995208 DOI: 10.1093/femsre/fuy011] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cell surface carbohydrates have been proven optimal targets for vaccine development. Conjugation of polysaccharides to a carrier protein triggers a T-cell-dependent immune response to the glycan moiety. Licensed glycoconjugate vaccines are produced by chemical conjugation of capsular polysaccharides to prevent meningitis caused by meningococcus, pneumococcus and Haemophilus influenzae type b. However, other classes of carbohydrates (O-antigens, exopolysaccharides, wall/teichoic acids) represent attractive targets for developing vaccines. Recent analysis from WHO/CHO underpins alarming concern toward antibiotic-resistant bacteria, such as the so called ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and additional pathogens such as Clostridium difficile and Group A Streptococcus. Fungal infections are also becoming increasingly invasive for immunocompromised patients or hospitalized individuals. Other emergencies could derive from bacteria which spread during environmental calamities (Vibrio cholerae) or with potential as bioterrorism weapons (Burkholderia pseudomallei and mallei, Francisella tularensis). Vaccination could aid reducing the use of broad-spectrum antibiotics and provide protection by herd immunity also to individuals who are not vaccinated. This review analyzes structural and functional differences of the polysaccharides exposed on the surface of emerging pathogenic bacteria, combined with medical need and technological feasibility of corresponding glycoconjugate vaccines.
Collapse
Affiliation(s)
- Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH), Via Fiorentina 1, 53100 Siena
| | | | | |
Collapse
|
44
|
Baarda BI, Martinez FG, Sikora AE. Proteomics, Bioinformatics and Structure-Function Antigen Mining For Gonorrhea Vaccines. Front Immunol 2018; 9:2793. [PMID: 30564232 PMCID: PMC6288298 DOI: 10.3389/fimmu.2018.02793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Expanding efforts to develop preventive gonorrhea vaccines is critical because of the serious health consequences combined with the prevalence and the dire possibility of untreatable gonorrhea. Reverse vaccinology, which includes genome and proteome mining, has proven successful in the discovery of vaccine candidates against many pathogenic bacteria. Here, we describe proteomic applications including comprehensive, quantitative proteomic platforms and immunoproteomics coupled with broad-ranging bioinformatics that have been applied for antigen mining to develop gonorrhea vaccine(s). We further focus on outlining the vaccine candidate decision tree, describe the structure-function of novel proteome-derived antigens as well as ways to gain insights into their roles in the cell envelope, and underscore new lessons learned about the fascinating biology of Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- Benjamin I. Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Fabian G. Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
45
|
Shaughnessy J, Lewis LA, Zheng B, Carr C, Bass I, Gulati S, DeOliveira RB, Gose S, Reed GW, Botto M, Rice PA, Ram S. Human Factor H Domains 6 and 7 Fused to IgG1 Fc Are Immunotherapeutic against Neisseria gonorrhoeae. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2700-2709. [PMID: 30266769 PMCID: PMC6200640 DOI: 10.4049/jimmunol.1701666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 08/27/2018] [Indexed: 01/15/2023]
Abstract
Novel therapeutics against multidrug-resistant Neisseria gonorrhoeae are urgently needed. Gonococcal lipooligosaccharide often expresses lacto-N-neotetraose (LNnT), which becomes sialylated in vivo, enhancing factor H (FH) binding and contributing to the organism's ability to resist killing by complement. We previously showed that FH domains 18-20 (with a D-to-G mutation at position 1119 in domain 19) fused to Fc (FHD1119G/Fc) displayed complement-dependent bactericidal activity in vitro and attenuated gonococcal vaginal colonization of mice. Gonococcal lipooligosaccharide phase variation can result in loss of LNnT expression. Loss of sialylated LNnT, although associated with a considerable fitness cost, could decrease efficacy of FHD1119G/Fc. Similar to N. meningitidis, gonococci also bind FH domains 6 and 7 through Neisserial surface protein A (NspA). In this study, we show that a fusion protein comprising FH domains 6 and 7 fused to human IgG1 Fc (FH6,7/Fc) bound to 15 wild-type antimicrobial resistant isolates of N. gonorrhoeae and to each of six lgtA gonococcal deletion mutants. FH6,7/Fc mediated complement-dependent killing of 8 of the 15 wild-type gonococcal isolates and effectively reduced the duration and burden of vaginal colonization of three gonococcal strains tested in wild-type mice, including two strains that resisted complement-dependent killing but on which FH6,7/Fc enhanced C3 deposition. FH/Fc lost efficacy when Fc was mutated to abrogate C1q binding and in C1q-/- mice, highlighting the requirement of the classical pathway for its activity. Targeting gonococci with FH6,7/Fc provides an additional immunotherapeutic approach against multidrug-resistant gonorrhea.
Collapse
Affiliation(s)
- Jutamas Shaughnessy
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Lisa A Lewis
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Bo Zheng
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Caleb Carr
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Isaac Bass
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sunita Gulati
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Rosane B DeOliveira
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Severin Gose
- San Francisco Department of Public Health, San Francisco, CA 94102; and
| | - George W Reed
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Marina Botto
- Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| | - Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605;
| |
Collapse
|
46
|
A Novel Sialylation Site on Neisseria gonorrhoeae Lipooligosaccharide Links Heptose II Lactose Expression with Pathogenicity. Infect Immun 2018; 86:IAI.00285-18. [PMID: 29844237 DOI: 10.1128/iai.00285-18] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 05/22/2018] [Indexed: 01/15/2023] Open
Abstract
Sialylation of lacto-N-neotetraose (LNnT) extending from heptose I (HepI) of gonococcal lipooligosaccharide (LOS) contributes to pathogenesis. Previously, gonococcal LOS sialyltransterase (Lst) was shown to sialylate LOS in Triton X-100 extracts of strain 15253, which expresses lactose from both HepI and HepII, the minimal structure required for monoclonal antibody (MAb) 2C7 binding. Ongoing work has shown that growth of 15253 in cytidine monophospho-N-acetylneuraminic acid (CMP-Neu5Ac)-containing medium enables binding to CD33/Siglec-3, a cell surface receptor that binds sialic acid, suggesting that lactose termini on LOSs of intact gonococci can be sialylated. Neu5Ac was detected on LOSs of strains 15253 and an MS11 mutant with lactose only from HepI and HepII by mass spectrometry; deleting HepII lactose rendered Neu5Ac undetectable. Resistance of HepII lactose Neu5Ac to desialylation by α2-3-specific neuraminidase suggested an α2-6 linkage. Although not associated with increased factor H binding, HepII lactose sialylation inhibited complement C3 deposition on gonococci. Strain 15253 mutants that lacked Lst or HepII lactose were significantly attenuated in mice, confirming the importance of HepII Neu5Ac in virulence. All 75 minimally passaged clinical isolates from Nanjing, China, expressed HepII lactose, evidenced by reactivity with MAb 2C7; MAb 2C7 was bactericidal against the first 62 (of 75) isolates that had been collected sequentially and were sialylated before testing. MAb 2C7 effectively attenuated 15253 vaginal colonization in mice. In conclusion, this novel sialylation site could explain the ubiquity of gonococcal HepII lactose in vivo Our findings reinforce the candidacy of the 2C7 epitope as a vaccine antigen and MAb 2C7 as an immunotherapeutic antibody.
Collapse
|
47
|
Immunization with recombinant truncated Neisseria meningitidis-Macrophage Infectivity Potentiator (rT-Nm-MIP) protein induces murine antibodies that are cross-reactive and bactericidal for Neisseria gonorrhoeae. Vaccine 2018; 36:3926-3936. [PMID: 29803329 PMCID: PMC6018565 DOI: 10.1016/j.vaccine.2018.05.069] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/14/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023]
Abstract
Antigenicity of rT-N. meningitidis-MIP vaccine batches is reproducible in mice. Antibodies to rT-Nm-MIP cross-react with surface Ng-MIP and adhere to gonococci. Antisera to rT-Nm-MIP are cross-bactericidal for gonococci. Meningococcal OM can be engineered to express T-Nm-MIP.
Neisseria meningitidis (Nm) and N. gonorrhoeae (Ng) express a Macrophage Infectivity Potentiator (MIP, NMB1567/NEIS1487) protein in their outer membrane (OM). In this study, we prepared independent batches of liposomes (n = 3) and liposomes + MonoPhosphoryl Lipid A (MPLA) (n = 3) containing recombinant truncated Nm-MIP protein encoded by Allele 2 (rT-Nm-MIP, amino acids 22–142), and used these to immunize mice. We tested the hypothesis that independent vaccine batches showed similar antigenicity, and that antisera could recognise both meningococcal and gonococcal MIP and induce cross-species bactericidal activity. The different batches of M2 rT-Nm-MIP-liposomes ± MPLA showed no significant (P > 0.05) batch-to-batch variation in antigenicity. Anti-rT-Nm-MIP sera reacted equally and specifically with Nm-MIP and Ng-MIP in OM and on live bacterial cell surfaces. Specificity was shown by no antiserum reactivity with Δmip bacteria. Using human complement/serum bactericidal assays, anti-M2 rT-Nm-MIP sera killed homologous meningococcal serogroup B (MenB) strains (median titres of 32–64 for anti-rT-Nm-MIP-liposome sera; 128–256 for anti-rT-Nm-MIP-liposome + MPLA sera) and heterologous M1 protein-expressing MenB strains (titres of 64 for anti rT-Nm-MIP-liposome sera; 128–256 for anti-rT-Nm-MIP-liposome + MPLA sera). Low-level killing (P < 0.05) was observed for a MenB isolate expressing M7 protein (titres 4–8), but MenB strains expressing M6 protein were not killed (titre < 4–8). Killing (P < 0.05) was observed against MenC and MenW bacteria expressing homologous M2 protein (titres of 8–16) but not against MenA or MenY bacteria (titres < 4–8). Antisera to M2 rT-Nm-MIP showed significant (P < 0.05) cross-bactericidal activity against gonococcal strain P9-17 (expressing M35 Ng-MIP, titres of 64–512) and strain 12CFX_T_003 (expressing M10 Ng-MIP, titres 8–16) but not against FA1090 (expressing M8 Ng-MIP). As an alternative to producing recombinant protein, we engineered successfully the Nm-OM to express M2 Truncated–Nm-MIP, but lipooligosaccharide-extraction with Na-DOC was contra-indicated. Our data suggest that a multi-component vaccine containing a select number of Nm- and Ng-MIP type proteins would be required to provide broad coverage of both pathogens.
Collapse
|
48
|
Rice PA, Shafer WM, Ram S, Jerse AE. Neisseria gonorrhoeae: Drug Resistance, Mouse Models, and Vaccine Development. Annu Rev Microbiol 2018; 71:665-686. [PMID: 28886683 DOI: 10.1146/annurev-micro-090816-093530] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gonorrhea, an obligate human infection, is on the rise worldwide and gonococcal strains resistant to many antibiotics are emerging. Appropriate antimicrobial treatment and prevention, including effective vaccines, are urgently needed. To guide investigation, an experimental model of genital tract infection has been developed in female mice to study mechanisms by which Neisseria gonorrhoeae evades host-derived antimicrobial factors and to identify protective and immunosuppressive pathways. Refinements of the animal model have also improved its use as a surrogate host of human infection and accelerated the testing of novel therapeutic and prophylactic compounds against gonococcal infection. Reviewed herein are the (a) history of antibiotic usage and resistance against gonorrhea and the consequences of resistance mechanisms that may increase gonococcal fitness and therefore the potential for spread, (b) use of gonococcal infection in the animal model system to study mechanisms of pathogenesis and host defenses, and
Collapse
Affiliation(s)
- Peter A Rice
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321; ,
| | - William M Shafer
- Department of Microbiology and Immunology and Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia 30322.,Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia 30033;
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605-4321; ,
| | - Ann E Jerse
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, Maryland 20814-4799;
| |
Collapse
|
49
|
Edwards JL, Jennings MP, Apicella MA, Seib KL. Is gonococcal disease preventable? The importance of understanding immunity and pathogenesis in vaccine development. Crit Rev Microbiol 2016; 42:928-41. [PMID: 26805040 PMCID: PMC4958600 DOI: 10.3109/1040841x.2015.1105782] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/01/2015] [Accepted: 10/06/2015] [Indexed: 12/31/2022]
Abstract
Gonorrhea is a major, global public health problem for which there is no vaccine. The continuing emergence of antibiotic-resistant strains raises concerns that untreatable Neisseria gonorrhoeae may become widespread in the near future. Consequently, there is an urgent need for increased efforts towards the development of new anti-gonococcal therapeutics and vaccines, as well as suitable models for potential pre-clinical vaccine trials. Several current issues regarding gonorrhea are discussed herein, including the global burden of disease, the emergence of antibiotic-resistance, the status of vaccine development and, in particular, a focus on the model systems available to evaluate drug and vaccine candidates. Finally, alternative approaches to evaluate vaccine candidates are presented. Such approaches may provide valuable insights into the protective mechanisms, and correlates of protection, required to prevent gonococcal transmission, local infection and disease sequelae.
Collapse
Affiliation(s)
- Jennifer L. Edwards
- Department of Pediatrics, The Research Institute at Nationwide Children's Hospital and The Ohio State UniversityColumbus,
OH,
USA
| | | | | | - Kate L. Seib
- Institute for Glycomics, Griffith University,
Gold Coast,
Australia
| |
Collapse
|
50
|
Summary and Recommendations from the National Institute of Allergy and Infectious Diseases (NIAID) Workshop "Gonorrhea Vaccines: the Way Forward". CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:656-63. [PMID: 27335384 DOI: 10.1128/cvi.00230-16] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
UNLABELLED There is an urgent need for the development of an antigonococcal vaccine due to the increasing drug resistance found in this pathogen. The U.S. Centers for Disease Control (CDC) have identified multidrug-resistant gonococci (GC) as among 3 "urgent" hazard-level threats to the U.S. POPULATION In light of this, on 29 to 30 June 2015, the National Institute for Allergy and Infectious Diseases (NIAID) sponsored a workshop entitled "Gonorrhea Vaccines: the Way Forward." The goal of the workshop was to gather leaders in the field to discuss several key questions on the current status of gonorrhea vaccine research and the path forward to a licensed gonorrhea vaccine. Representatives from academia, industry, U.S. Government agencies, and a state health department were in attendance. This review summarizes each of the 4 scientific sessions and a series of 4 breakout sessions that occurred during the one and a half days of the workshop. Topics raised as high priority for future development included (i) reinvigoration of basic research to understand gonococcal infection and immunity to allow intervention in processes essential for infection; (ii) clinical infection studies to establish parallels and distinctions between in vitro and animal infection models versus natural human genital and pharyngeal infection and to inform in silico modeling of vaccine impact; and (iii) development of an integrated pipeline for preclinical and early clinical evaluation and direct comparisons of potential vaccine antigens and adjuvants and routes of delivery.
Collapse
|