1
|
Albuquerque-Wendt A, McCoy C, Neish R, Dobramysl U, Alagöz Ç, Beneke T, Cowley SA, Crouch K, Wheeler RJ, Mottram JC, Gluenz E. TransLeish: Identification of membrane transporters essential for survival of intracellular Leishmania parasites in a systematic gene deletion screen. Nat Commun 2025; 16:299. [PMID: 39747086 PMCID: PMC11696137 DOI: 10.1038/s41467-024-55538-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
For the protozoan parasite Leishmania, completion of its life cycle requires sequential adaptation of cellular physiology and nutrient scavenging mechanisms to the different environments of a sand fly alimentary tract and the acidic mammalian host cell phagolysosome. Transmembrane transporters are the gatekeepers of intracellular environments, controlling the flux of solutes and ions across membranes. To discover which transporters are vital for survival as intracellular amastigote forms, we carried out a systematic loss-of-function screen of the L. mexicana transportome. A total of 312 protein components of small molecule carriers, ion channels and pumps were identified and targeted in a CRISPR-Cas9 gene deletion screen in the promastigote form, yielding 188 viable null mutants. Forty transporter deletions caused significant loss of fitness in macrophage and mouse infections. A striking example is the Vacuolar H+ ATPase (V-ATPase), which, unexpectedly, was dispensable for promastigote growth in vitro but essential for survival of the disease-causing amastigotes.
Collapse
Affiliation(s)
- Andreia Albuquerque-Wendt
- School of Infection and Immunity, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junqueira 100, 1349-008, Lisbon, Portugal
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
| | - Ciaran McCoy
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
- Animal Physiology and Neurobiology, KU Leuven, 3000, Leuven, Belgium
| | - Rachel Neish
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Ulrich Dobramysl
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Çağla Alagöz
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Tom Beneke
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK
- Department of Cell and Developmental Biology, Biocentre, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Sally A Cowley
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Kathryn Crouch
- School of Infection and Immunity, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK
| | - Richard J Wheeler
- Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Jeremy C Mottram
- York Biomedical Research Institute, Department of Biology, University of York, York, YO10 5DD, UK
| | - Eva Gluenz
- School of Infection and Immunity, University of Glasgow, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK.
- University of Oxford, Sir William Dunn School of Pathology, South Parks Road, Oxford, OX1 3RE, UK.
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, 3012, Bern, Switzerland.
| |
Collapse
|
2
|
García-Soriano JC, de Lucio H, Elvira-Blázquez D, Alcón-Calderón M, Sanz del Olmo N, Sánchez-Murcia PA, Ortega P, de la Mata FJ, Jiménez-Ruiz A. The repertoire of iron superoxide dismutases from Leishmania infantum as targets in the search for therapeutic agents against leishmaniasis. J Enzyme Inhib Med Chem 2024; 39:2377586. [PMID: 39037009 PMCID: PMC11571740 DOI: 10.1080/14756366.2024.2377586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/02/2024] [Indexed: 07/23/2024] Open
Abstract
Species of Leishmania and Trypanosoma genera are the causative agents of relevant parasitic diseases. Survival inside their hosts requires the existence of a potent antioxidant enzymatic machinery. Four iron superoxide dismutases have been described in trypanosomatids (FeSODA, FeSODB1, FeSODB2, and FeSODC) that hold a potential as therapeutic targets. Nonetheless, very few studies have been developed that make use of the purified enzymes. Moreover, FeSODC remains uncharacterised in Leishmania. In this work, for the first time, we describe the purification and enzymatic activity of recombinant versions of the four Leishmania FeSOD isoforms and establish an improved strategy for developing inhibitors. We propose a novel parameter [(V*cyt. c - Vcyt. c)/Vcyt. c] which, in contrast to that used in the classical cytochrome c reduction assay, correlates linearly with enzyme concentration. As a proof of concept, we determine the IC50 values of two ruthenium carbosilane metallodendrimers against these isoforms.
Collapse
Affiliation(s)
| | - Héctor de Lucio
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| | | | | | - Natalia Sanz del Olmo
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Química Andrés Manuel del Río, Alcalá de Henares, Spain
- Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Pedro A. Sánchez-Murcia
- Division of Medicinal Chemistry, Laboratory of Computer-Aided Molecular Design, Otto-Loewi Research Center, Medical University of Graz, Graz, Austria
| | - Paula Ortega
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Química Andrés Manuel del Río, Alcalá de Henares, Spain
- Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Francisco Javier de la Mata
- Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, Instituto de Química Andrés Manuel del Río, Alcalá de Henares, Spain
- Instituto de Investigación Sanitaria Ramón y Cajal, IRYCIS, Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Antonio Jiménez-Ruiz
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Spain
| |
Collapse
|
3
|
Bora K, Sarma M, Kanaujia SP, Dubey VK. Development of novel dual-target drugs against visceral leishmaniasis and combinational study with miltefosine. Free Radic Biol Med 2024; 225:275-285. [PMID: 39388970 DOI: 10.1016/j.freeradbiomed.2024.10.257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/31/2024] [Accepted: 10/02/2024] [Indexed: 10/12/2024]
Abstract
The dual-target inhibitors (ZINC000008876351 and ZINC000253403245) were identified by utilizing an advanced computational drug discovery method by targeting two critical enzymes such as FeSODA (Iron superoxide dismutase) and TryR (Trypanothione reductase) within the antioxidant defense system of Leishmania donovani (Ld). In vitro enzyme inhibition kinetics reveals that both the compound's ability to inhibit the function of enzyme LdFeSODA and LdTryR with inhibition constant (Ki) value in the low μM range. Flow cytometry analysis, specifically at IC50 and 2X IC50 doses of both the compounds, the intracellular ROS was significantly increased as compared to the untreated control. The compounds ZINC000253403245 and ZINC000008876351 exhibited strong anti-leishmanial activity in a dose-dependent manner against both the promastigote and amastigote stages of the parasite. The data indicate that these molecules hold promise as potential anti-leishmanial agents for developing new treatments against visceral leishmaniasis, specifically targeting the LdFeSODA and LdTryR enzymes. Additionally, the in vitro MTT assay shows that combining these compounds with miltefosine produces a synergistic effect compared to miltefosine alone. This suggests that the compounds can boost miltefosine's effectiveness by synergistically inhibiting the growth of L. donovani promastigotes. Given the emergence of miltefosine resistance in some Leishmania strains, these findings are particularly significant.
Collapse
Affiliation(s)
- Kushal Bora
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Manash Sarma
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India
| | - Shankar Prasad Kanaujia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| | - Vikash Kumar Dubey
- School of Biochemical Engineering, Indian Institute of Technology (BHU), Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
4
|
Jin Y, Basu S, Feng M, Ning Y, Munasinghe I, Joachim AM, Li J, Qin L, Madden R, Burks H, Gao P, Wu JQ, Sheikh SW, Joice AC, Perera C, Werbovetz KA, Zhang K, Wang MZ. CYP5122A1 encodes an essential sterol C4-methyl oxidase in Leishmania donovani and determines the antileishmanial activity of antifungal azoles. Nat Commun 2024; 15:9409. [PMID: 39482311 PMCID: PMC11528044 DOI: 10.1038/s41467-024-53790-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/20/2024] [Indexed: 11/03/2024] Open
Abstract
Visceral leishmaniasis is a life-threatening parasitic disease, but current antileishmanial drugs have severe drawbacks. Antifungal azoles inhibit the activity of cytochrome P450 (CYP) 51 enzymes which are responsible for removing the C14α-methyl group of lanosterol, a key step in ergosterol biosynthesis in Leishmania. However, they exhibit varying degrees of antileishmanial activities in culture, suggesting the existence of unrecognized molecular targets. Our previous study reveals that, in Leishmania, lanosterol undergoes parallel C4- and C14-demethylation to form 4α,14α-dimethylzymosterol and T-MAS, respectively. In the current study, CYP5122A1 is identified as a sterol C4-methyl oxidase that catalyzes the sequential oxidation of lanosterol to form C4-oxidation metabolites. CYP5122A1 is essential for both L. donovani promastigotes in culture and intracellular amastigotes in infected mice. CYP5122A1 overexpression results in growth delay, increased tolerance to stress, and altered expression of lipophosphoglycan and proteophosphoglycan. CYP5122A1 also helps to determine the antileishmanial effect of antifungal azoles in vitro. Dual inhibitors of CYP51 and CYP5122A1 possess superior antileishmanial activity against L. donovani promastigotes whereas CYP51-selective inhibitors have little effect on promastigote growth. Our findings uncover the critical biochemical and biological role of CYP5122A1 in L. donovani and provide an important foundation for developing new antileishmanial drugs by targeting both CYP enzymes.
Collapse
Affiliation(s)
- Yiru Jin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Indeewara Munasinghe
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS, 66047, USA
| | - Arline M Joachim
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Lingli Qin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Robert Madden
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Hannah Burks
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, Lawrence, KS, 66047, USA
| | - Judy Qiju Wu
- Department of Pharmacy Practice, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA
| | - Salma Waheed Sheikh
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - April C Joice
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Chamani Perera
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS, 66047, USA
| | - Karl A Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, 43210, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, 79409, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS, 66047, USA.
| |
Collapse
|
5
|
Ferreira GR, Emond-Rheault JG, Alves L, Leprohon P, Smith MA, Papadopoulou B. Evolutionary divergent clusters of transcribed extinct truncated retroposons drive low mRNA expression and developmental regulation in the protozoan Leishmania. BMC Biol 2024; 22:249. [PMID: 39468514 PMCID: PMC11520807 DOI: 10.1186/s12915-024-02051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
BACKGROUND The Leishmania genome harbors formerly active short interspersed degenerated retroposons (SIDERs) representing the largest family of repetitive elements among trypanosomatids. Their substantial expansion in Leishmania is a strong predictor of important biological functions. In this study, we combined multilevel bioinformatic predictions with high-throughput genomic and transcriptomic analyses to gain novel insights into the diversified roles retroposons of the SIDER2 subfamily play in Leishmania genome evolution and expression. RESULTS We show that SIDER2 retroposons form various evolutionary divergent clusters, each harboring homologous SIDER2 sequences usually located nearby in the linear sequence of chromosomes. This intriguing genomic organization underscores the importance of SIDER2 proximity in shaping chromosome dynamics and co-regulation. Accordingly, we show that transcripts belonging to the same SIDER2 cluster can display similar levels of expression. SIDER2 retroposons are mostly transcribed as part of 3'UTRs and account for 13% of the Leishmania transcriptome. Genome-wide expression profiling studies underscore SIDER2 association generally with low mRNA expression. The remarkable link of SIDER2 retroposons with downregulation of gene expression supports their co-option as major regulators of mRNA abundance. SIDER2 sequences also add to the diversification of the Leishmania gene expression repertoire since ~ 35% of SIDER2-containing transcripts can be differentially regulated throughout the parasite development, with a few encoding key virulence factors. In addition, we provide evidence for a functional bias of SIDER2-containing transcripts with protein kinase and transmembrane transporter activities being most represented. CONCLUSIONS Altogether, these findings provide important conceptual advances into evolutionary innovations of transcribed extinct retroposons acting as major RNA cis-regulators.
Collapse
Affiliation(s)
- Gabriel Reis Ferreira
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Jean-Guillaume Emond-Rheault
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Lysangela Alves
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- , Rua Prof. Algacyr Munhoz Mader 3775, Curitiba/PR, CIC, 81310-020, Brazil
| | - Philippe Leprohon
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada
| | - Martin A Smith
- CHU Sainte-Justine Research Centre, Montreal, QC, H3T 1C5, Canada
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Montreal, QC, Montreal, H3T 1J4, Canada
- School of Biotechnology and Molecular Bioscience, Faculty of Science, UNSW Sydney, NSW, Sydney, 2052, Australia
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases and Axis of Infectious and Immune Diseases, Research Center of the Centre Hospitalier Universitaire de Québec-Université Laval, QC, Quebec, Canada.
- Department of Microbiology, Infectious Disease and Immunology, Faculty of Medicine, University Laval, Quebec, QC, G1V 4G2, Canada.
| |
Collapse
|
6
|
Scheiffer G, Domingues KZA, Gorski D, Cobre ADF, Lazo REL, Borba HHL, Ferreira LM, Pontarolo R. In silico approaches supporting drug repurposing for Leishmaniasis: a scoping review. EXCLI JOURNAL 2024; 23:1117-1169. [PMID: 39421030 PMCID: PMC11484518 DOI: 10.17179/excli2024-7552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 10/19/2024]
Abstract
The shortage of treatment options for leishmaniasis, especially those easy to administer and viable for deployment in the world's poorest regions, highlights the importance of employing these strategies to cost-effectively investigate repurposing candidates. This scoping review aims to map the studies using in silico methodologies for drug repurposing against leishmaniasis. This study followed JBI recommendations for scoping reviews. Articles were searched on PubMed, Scopus, and Web of Science databases using keywords related to leishmaniasis and in silico methods for drug discovery, without publication date restrictions. The selection was based on primary studies involving computational methods for antileishmanial drug repurposing. Information about methodologies, obtained data, and outcomes were extracted. After the full-text appraisal, 34 studies were included in this review. Molecular docking was the preferred method for evaluating repurposing candidates (n=25). Studies reported 154 unique ligands and 72 different targets, sterol 14-alpha demethylase and trypanothione reductase being the most frequently reported. In silico screening was able to correctly pinpoint some known active pharmaceutical classes and propose previously untested drugs. Fifteen drugs investigated in silico exhibited low micromolar inhibition (IC50 < 10 µM) of Leishmania spp. in vitro. In conclusion, several in silico repurposing candidates are yet to be investigated in vitro and in vivo. Future research could expand the number of targets screened and employ advanced methods to optimize drug selection, offering new starting points for treatment development. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Gustavo Scheiffer
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Karime Zeraik Abdalla Domingues
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Daniela Gorski
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Alexandre de Fátima Cobre
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Raul Edison Luna Lazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Helena Hiemisch Lobo Borba
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Luana Mota Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Roberto Pontarolo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| |
Collapse
|
7
|
Baber H, Aghajani A, Gallimore BH, Bethel C, Hyatt JG, King EFB, Price HP, Maciej-Hulme ML, Sari S, Winter A. Galactokinase-like protein from Leishmania donovani: Biochemical and structural characterization of a recombinant protein. Biochimie 2024; 223:31-40. [PMID: 38579894 DOI: 10.1016/j.biochi.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Leishmaniasis is a spectrum of conditions caused by infection with the protozoan Leishmania spp. parasites. Leishmaniasis is endemic in 98 countries around the world, and resistance to current anti-leishmanial drugs is rising. Our work has identified and characterised a previously unstudied galactokinase-like protein (GalK) in Leishmania donovani, which catalyses the MgATP-dependent phosphorylation of the C-1 hydroxyl group of d-galactose to galactose-1-phosphate. Here, we report the production of the catalytically active recombinant protein in E. coli, determination of its substrate specificity and kinetic constants, as well as analysis of its molecular envelope using in solution X-ray scattering. Our results reveal kinetic parameters in range with other galactokinases with an average apparent Km value of 76 μM for galactose, Vmax and apparent Kcat values with 4.46376 × 10-9 M/s and 0.021 s-1, respectively. Substantial substrate promiscuity was observed, with galactose being the preferred substrate, followed by mannose, fructose and GalNAc. LdGalK has a highly flexible protein structure suggestive of multiple conformational states in solution, which may be the key to its substrate promiscuity. Our data presents novel insights into the galactose salvaging pathway in Leishmania and positions this protein as a potential target for the development of pharmaceuticals seeking to interfere with parasite substrate metabolism.
Collapse
Affiliation(s)
- Hasana Baber
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Arega Aghajani
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - B Harold Gallimore
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Cassandra Bethel
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - James G Hyatt
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Elizabeth F B King
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Helen P Price
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Marissa L Maciej-Hulme
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK
| | - Suat Sari
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06100, Ankara, Turkey
| | - Anja Winter
- School of Life Sciences, Keele University, Huxley Building, Keele, Staffordshire, ST5 5BG, UK.
| |
Collapse
|
8
|
Chmelová Ľ, Záhonová K, Albanaz ATS, Hrebenyk L, Horváth A, Yurchenko V, Škodová-Sveráková I. Distribution and Functional Analysis of Isocitrate Dehydrogenases across Kinetoplastids. Genome Biol Evol 2024; 16:evae042. [PMID: 38447055 PMCID: PMC10946238 DOI: 10.1093/gbe/evae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024] Open
Abstract
Isocitrate dehydrogenase is an enzyme converting isocitrate to α-ketoglutarate in the canonical tricarboxylic acid (TCA) cycle. There are three different types of isocitrate dehydrogenase documented in eukaryotes. Our study points out the complex evolutionary history of isocitrate dehydrogenases across kinetoplastids, where the common ancestor of Trypanosomatidae and Bodonidae was equipped with two isoforms of the isocitrate dehydrogenase enzyme: the NADP+-dependent isocitrate dehydrogenase 1 with possibly dual localization in the cytosol and mitochondrion and NADP+-dependent mitochondrial isocitrate dehydrogenase 2. In the extant trypanosomatids, isocitrate dehydrogenase 1 is present only in a few species suggesting that it was lost upon separation of Trypanosoma spp. and replaced by the mainly NADP+-dependent cytosolic isocitrate dehydrogenase 3 of bacterial origin in all the derived lineages. In this study, we experimentally demonstrate that the omnipresent isocitrate dehydrogenase 2 has a dual localization in both mitochondrion and cytosol in at least four species that possess only this isoform. The apparent lack of the NAD+-dependent isocitrate dehydrogenase activity in trypanosomatid mitochondrion provides further support to the existence of the noncanonical TCA cycle across trypanosomatids and the bidirectional activity of isocitrate dehydrogenase 3 when operating with NADP+ cofactor instead of NAD+. This observation can be extended to all 17 species analyzed in this study, except for Leishmania mexicana, which showed only low isocitrate dehydrogenase activity in the cytosol. The variability in isocitrate oxidation capacity among species may reflect the distinct metabolic strategies and needs for reduced cofactors in particular environments.
Collapse
Affiliation(s)
- Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czechia
- Division of Infectious Diseases, Department of Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Amanda T S Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Liudmyla Hrebenyk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Anton Horváth
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| |
Collapse
|
9
|
Volpedo G, Oljuskin T, Cox B, Mercado Y, Askwith C, Azodi N, Bernier M, Nakhasi HL, Gannavaram S, Satoskar AR. Leishmania mexicana promotes pain-reducing metabolomic reprogramming in cutaneous lesions. iScience 2023; 26:108502. [PMID: 38125023 PMCID: PMC10730346 DOI: 10.1016/j.isci.2023.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is characterized by extensive skin lesions, which are usually painless despite being associated with extensive inflammation. The molecular mechanisms responsible for this analgesia have not been identified. Through untargeted metabolomics, we found enriched anti-nociceptive metabolic pathways in L. mexicana-infected mice. Purines were elevated in infected macrophages and at the lesion site during chronic infection. These purines have anti-inflammatory and analgesic properties by acting through adenosine receptors, inhibiting TRPV1 channels, and promoting IL-10 production. We also found arachidonic acid (AA) metabolism enriched in the ear lesions compared to the non-infected controls. AA is a metabolite of anandamide (AEA) and 2-arachidonoylglycerol (2-AG). These endocannabinoids act on cannabinoid receptors 1 and 2 and TRPV1 channels to exert anti-inflammatory and analgesic effects. Our study provides evidence of metabolic pathways upregulated during L. mexicana infection that may mediate anti-nociceptive effects experienced by CL patients and identifies macrophages as a source of these metabolites.
Collapse
Affiliation(s)
- Greta Volpedo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Timur Oljuskin
- Animal Parasitic Disease Lab, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Blake Cox
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Yulian Mercado
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Candice Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Nazli Azodi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Matthew Bernier
- Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Abhay R. Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
10
|
Tarannum A, Rodríguez-Almonacid CC, Salazar-Bravo J, Karamysheva ZN. Molecular Mechanisms of Persistence in Protozoan Parasites. Microorganisms 2023; 11:2248. [PMID: 37764092 PMCID: PMC10534552 DOI: 10.3390/microorganisms11092248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/31/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protozoan parasites are known for their remarkable capacity to persist within the bodies of vertebrate hosts, which frequently results in prolonged infections and the recurrence of diseases. Understanding the molecular mechanisms that underlie the event of persistence is of paramount significance to develop innovative therapeutic approaches, given that these pathways still need to be thoroughly elucidated. The present article provides a comprehensive overview of the latest developments in the investigation of protozoan persistence in vertebrate hosts. The focus is primarily on the function of persisters, their formation within the host, and the specific molecular interactions between host and parasite while they persist. Additionally, we examine the metabolomic, transcriptional, and translational changes that protozoan parasites undergo during persistence within vertebrate hosts, focusing on major parasites such as Plasmodium spp., Trypanosoma spp., Leishmania spp., and Toxoplasma spp. Key findings of our study suggest that protozoan parasites deploy several molecular and physiological strategies to evade the host immune surveillance and sustain their persistence. Furthermore, some parasites undergo stage differentiation, enabling them to acclimate to varying host environments and immune challenges. More often, stressors such as drug exposure were demonstrated to impact the formation of protozoan persisters significantly. Understanding the molecular mechanisms regulating the persistence of protozoan parasites in vertebrate hosts can reinvigorate our current insights into host-parasite interactions and facilitate the development of more efficacious disease therapeutics.
Collapse
Affiliation(s)
| | | | | | - Zemfira N. Karamysheva
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA; (A.T.); (C.C.R.-A.); (J.S.-B.)
| |
Collapse
|
11
|
Yuan D, Chen J, Zhao Z, Qin H. Metabolomics analysis of visceral leishmaniasis based on urine of golden hamsters. Parasit Vectors 2023; 16:304. [PMID: 37649093 PMCID: PMC10469881 DOI: 10.1186/s13071-023-05881-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Leishmaniasis is one of the most neglected tropical diseases and is spread mainly in impoverished regions of the world. Although many studies have focused on the host's response to Leishmania invasion, relatively less is known about the complex processes at the metabolic level, especially the metabolic alterations in the infected hosts. METHODS In this study, we conducted metabolomics analysis on the urine of golden hamsters in the presence or absence of visceral leishmaniasis (VL) using the ultra-performance liquid chromatography (UPLC) system tandem high-resolution mass spectrometer (HRMS). The metabolic characteristics of urine samples, along with the histopathological change and the parasite burden of liver and spleen tissues, were detected at 4 and 12 weeks post infection (WPI), respectively. RESULTS Amino acid metabolism was extensively affected at both stages of VL progression. Meanwhile, there were also distinct metabolic features at different stages. At 4 WPI, the significantly affected metabolic pathways involved alanine, aspartate and glutamate metabolism, the pentose phosphate pathway (PPP), histidine metabolism, tryptophan metabolism and tyrosine metabolism. At 12 WPI, the markedly enriched metabolic pathways were almost concentrated on amino acid metabolism, including tyrosine metabolism, taurine and hypotaurine metabolism and tryptophan metabolism. The dysregulated metabolites and metabolic pathways at 12 WPI were obviously less than those at 4 WPI. In addition, seven metabolites that were dysregulated at both stages through partial least squares-discriminant analysis (PLS-DA) and receiver-operating characteristic (ROC) tests were screened to be of diagnostic potential. The combination of these metabolites as a potential biomarker panel showed satisfactory performance in distinguishing infection groups from control groups as well as among different stages of infection. CONCLUSION Our findings could provide valuable information for further understanding of the host response to Leishmania infection from the aspect of the urine metabolome. The proposed urine biomarker panel could help in the development of a novel approach for the diagnosis and prognosis of VL.
Collapse
Affiliation(s)
- Dongmei Yuan
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Zhiwei Zhao
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Hanxiao Qin
- Clinical Trial Center, Chengdu Second People's Hospital, Chengdu, 610021, Sichuan, People's Republic of China.
| |
Collapse
|
12
|
Jin Y, Basu S, Feng M, Ning Y, Munasinghe I, Joachim AM, Li J, Madden R, Burks H, Gao P, Perera C, Werbovetz KA, Zhang K, Wang MZ. CYP5122A1 encodes an essential sterol C4-methyl oxidase in Leishmania donovani and determines the antileishmanial activity of antifungal azoles. RESEARCH SQUARE 2023:rs.3.rs-3185204. [PMID: 37546914 PMCID: PMC10402201 DOI: 10.21203/rs.3.rs-3185204/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Visceral leishmaniasis, caused by Leishmania donovani, is a life-threatening parasitic disease, but current antileishmanial drugs are limited and have severe drawbacks. There have been efforts to repurpose antifungal azole drugs for the treatment of Leishmania infection. Antifungal azoles are known to potently inhibit the activity of cytochrome P450 (CYP) 51 enzymes which are responsible for removing the C14α-methyl group of lanosterol, a key step in ergosterol biosynthesis in Leishmania. However, they exhibit varying degrees of antileishmanial activities in culture, suggesting the existence of unrecognized molecular targets for these compounds. Our previous study reveals that, in Leishmania, lanosterol undergoes parallel C4- and C14-demethylation reactions to form 4α,14α-dimethylzymosterol and T-MAS, respectively. In the current study, CYP5122A1 is identified as a sterol C4-methyl oxidase that catalyzes the sequential oxidation of lanosterol to form C4-oxidation metabolites. CYP5122A1 is essential for both L. donovani promastigotes in culture and intracellular amastigotes in infected mice. Overexpression of CYP5122A1 results in growth delay, differentiation defects, increased tolerance to stress, and altered expression of lipophosphoglycan and proteophosphoglycan. CYP5122A1 also helps to determine the antileishmanial effect of antifungal azoles in vitro. Dual inhibitors of CYP51 and CYP5122A1, e.g., clotrimazole and posaconazole, possess superior antileishmanial activity against L. donovani promastigotes whereas CYP51-selective inhibitors, e.g., fluconazole and voriconazole, have little effect on promastigote growth. Our findings uncover the critical biochemical and biological role of CYP5122A1 in L. donovani and provide an important foundation for developing new antileishmanial drugs by targeting both CYP enzymes.
Collapse
Affiliation(s)
- Yiru Jin
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mei Feng
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| | - Yu Ning
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Indeewara Munasinghe
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Arline M. Joachim
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Junan Li
- College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, USA
| | - Robert Madden
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Hannah Burks
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Philip Gao
- Protein Production Group, The University of Kansas, Lawrence, KS 66047, USA
| | - Chamani Perera
- Synthetic Chemical Biology Core Laboratory, The University of Kansas, Lawrence, KS 66047, USA
| | - Karl A. Werbovetz
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Michael Zhuo Wang
- Department of Pharmaceutical Chemistry, School of Pharmacy, The University of Kansas, Lawrence, KS 66047, USA
| |
Collapse
|
13
|
Basu S, Pawlowic MC, Hsu FF, Thomas G, Zhang K. Ethanolaminephosphate cytidylyltransferase is essential for survival, lipid homeostasis and stress tolerance in Leishmania major. PLoS Pathog 2023; 19:e1011112. [PMID: 37506172 PMCID: PMC10411802 DOI: 10.1371/journal.ppat.1011112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Glycerophospholipids including phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are vital components of biological membranes. Trypanosomatid parasites of the genus Leishmania can acquire PE and PC via de novo synthesis and the uptake/remodeling of host lipids. In this study, we investigated the ethanolaminephosphate cytidylyltransferase (EPCT) in Leishmania major, which is the causative agent for cutaneous leishmaniasis. EPCT is a key enzyme in the ethanolamine branch of the Kennedy pathway which is responsible for the de novo synthesis of PE. Our results demonstrate that L. major EPCT is a cytosolic protein capable of catalyzing the formation of CDP-ethanolamine from ethanolamine-phosphate and cytidine triphosphate. Genetic manipulation experiments indicate that EPCT is essential in both the promastigote and amastigote stages of L. major as the chromosomal null mutants cannot survive without the episomal expression of EPCT. This differs from our previous findings on the choline branch of the Kennedy pathway (responsible for PC synthesis) which is required only in promastigotes but not amastigotes. While episomal EPCT expression does not affect promastigote proliferation under normal conditions, it leads to reduced production of ethanolamine plasmalogen or plasmenylethanolamine, the dominant PE subtype in Leishmania. In addition, parasites with episomal EPCT exhibit heightened sensitivity to acidic pH and starvation stress, and significant reduction in virulence. In summary, our investigation demonstrates that proper regulation of EPCT expression is crucial for PE synthesis, stress response, and survival of Leishmania parasites throughout their life cycle.
Collapse
Affiliation(s)
- Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Mattie C. Pawlowic
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- Wellcome Centre for Anti-Infectives Research (WCAIR), Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Geoff Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
14
|
Fernández-García M, Mesquita I, Ferreira C, Araújo M, Saha B, Rey-Stolle MF, García A, Silvestre R, Barbas C. Leishmania donovani Induces Multiple Dynamic Responses in the Metabolome Associated with Amastigote Differentiation and Maturation Inside the Human Macrophage. J Proteome Res 2023. [PMID: 37339249 DOI: 10.1021/acs.jproteome.2c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Leishmania donovani infection of macrophages drives profound changes in the metabolism of both the host macrophage and the parasite, which undergoes different phases of development culminating in replication and propagation. However, the dynamics of this parasite-macrophage cometabolome are poorly understood. In this study, a multiplatform metabolomics pipeline combining untargeted, high-resolution CE-TOF/MS and LC-QTOF/MS with targeted LC-QqQ/MS was followed to characterize the metabolome alterations induced in L. donovani-infected human monocyte-derived macrophages from different donors at 12, 36, and 72 h post-infection. The set of alterations known to occur during Leishmania infection of macrophages, substantially expanded in this investigation, characterized the dynamics of the glycerophospholipid, sphingolipid, purine, pentose phosphate, glycolytic, TCA, and amino acid metabolism. Our results showed that only citrulline, arginine, and glutamine exhibited constant trends across all studied infection time points, while most metabolite alterations underwent a partial recovery during amastigote maturation. We determined a major metabolite response pointing to an early induction of sphingomyelinase and phospholipase activities and correlated with amino acid depletion. These data represent a comprehensive overview of the metabolome alterations occurring during promastigote-to-amastigote differentiation and maturation of L. donovani inside macrophages that contributes to our understanding of the relationship between L. donovani pathogenesis and metabolic dysregulation.
Collapse
Affiliation(s)
- Miguel Fernández-García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, España
- Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, España
| | - Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Carolina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Marta Araújo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Bhaskar Saha
- National Centre for Cell Science, 411007 Pune, India
| | - Ma Fernanda Rey-Stolle
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, España
| | - Antonia García
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, España
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4806-909 Braga/Guimarães, Portugal
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, España
| |
Collapse
|
15
|
Yoshinaga M, Niu G, Yoshinaga-Sakurai K, Nadar VS, Wang X, Rosen BP, Li J. Arsinothricin Inhibits Plasmodium falciparum Proliferation in Blood and Blocks Parasite Transmission to Mosquitoes. Microorganisms 2023; 11:1195. [PMID: 37317169 PMCID: PMC10222646 DOI: 10.3390/microorganisms11051195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
Malaria, caused by Plasmodium protozoal parasites, remains a leading cause of morbidity and mortality. The Plasmodium parasite has a complex life cycle, with asexual and sexual forms in humans and Anopheles mosquitoes. Most antimalarials target only the symptomatic asexual blood stage. However, to ensure malaria eradication, new drugs with efficacy at multiple stages of the life cycle are necessary. We previously demonstrated that arsinothricin (AST), a newly discovered organoarsenical natural product, is a potent broad-spectrum antibiotic that inhibits the growth of various prokaryotic pathogens. Here, we report that AST is an effective multi-stage antimalarial. AST is a nonproteinogenic amino acid analog of glutamate that inhibits prokaryotic glutamine synthetase (GS). Phylogenetic analysis shows that Plasmodium GS, which is expressed throughout all stages of the parasite life cycle, is more closely related to prokaryotic GS than eukaryotic GS. AST potently inhibits Plasmodium GS, while it is less effective on human GS. Notably, AST effectively inhibits both Plasmodium erythrocytic proliferation and parasite transmission to mosquitoes. In contrast, AST is relatively nontoxic to a number of human cell lines, suggesting that AST is selective against malaria pathogens, with little negative effect on the human host. We propose that AST is a promising lead compound for developing a new class of multi-stage antimalarials.
Collapse
Affiliation(s)
- Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Guodong Niu
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Kunie Yoshinaga-Sakurai
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Venkadesh S. Nadar
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Xiaohong Wang
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Jun Li
- Department of Biological Sciences, College of Arts, Sciences & Education, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
- Biomolecular Sciences Institute, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
16
|
Kashif M, Subbarao N. Identification of potential novel inhibitors against glutamine synthetase enzyme of Leishmania major by using computational tools. J Biomol Struct Dyn 2023; 41:13914-13922. [PMID: 36744549 DOI: 10.1080/07391102.2023.2175382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/28/2023] [Indexed: 02/07/2023]
Abstract
Glutamine Synthetase (GS) is functionally important in many pathogens, so its viability as a drug target has been widely investigated. We identified Leishmania major glutamine synthetase (Lm-GS) as an appealing target for developing potential leishmaniasis inhibitors. Comparative modeling, virtual screening, MD simulations along with MM-PBSA analyses were performed and two FDA approved compounds namely Chlortalidone (id ZINC00020253) and Ciprofloxacin (id ZINC00020220) were identified as potential inhibitor among the screened library. These compounds may be used as a lead molecule, although additional in vitro and in vivo testing is required to establish its anti-leishmanial effect. Hence, the goal of this study was to locate and identify certain medications that were previously FDA-approved for definite disorders and that might show anti-leishmanial effect. Due to GS's presence in additional Leishmania species, a novel medication docked with Lm-GS may have broad anti-leishmania efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Kashif
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Naidu Subbarao
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
17
|
Ballesteros-Casallas A, Quiroga C, Ortiz C, Benítez D, Denis PA, Figueroa D, Salas CO, Bertrand J, Tapia RA, Sánchez P, Miscione GP, Comini MA, Paulino M. Mode of action of p-quinone derivatives with trypanocidal activity studied by experimental and in silico models. Eur J Med Chem 2023; 246:114926. [PMID: 36508970 DOI: 10.1016/j.ejmech.2022.114926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
Abstract
Quinones are attractive pharmacological scaffolds for developing new agents for the treatment of different transmissible and non-transmissible human diseases due to their capacity to alter the cell redox homeostasis. The bioactivity and potential mode of action of 19 p-quinone derivatives fused to different aromatic rings (carbo or heterocycles) and harboring distinct substituents were investigated in infective Trypanosoma brucei brucei. All the compounds, except for a furanequinone (EC50=38 μM), proved to be similarly or even more potent (EC50 = 0.5-5.5 μM) than the clinical drug nifurtimox (EC50 = 5.3 μM). Three furanequinones and one thiazolequinone displayed a higher selectivity than nifurtimox. Two of these selective hits resulted potent inhibitors of T. cruzi proliferation (EC50=0.8-1.1 μM) but proved inactive against Leishmania infantum amastigotes. Most of the p-quinones induced a rapid and marked intracellular oxidation in T. b. brucei. DFT calculations on the oxidized quinone (Q), semiquinone (Q•-) and hydroquinone (QH2) suggest that all quinones have negative ΔG for the formation of Q•-. Qualitative and quantitative structure-activity relationship analyses in two or three dimensions of different electronic and biophysical descriptors of quinones and their corresponding bioactivities (killing potency and oxidative capacity) were performed. Charge distribution over the quinone ring carbons of Q and Q.- and the frontier orbitals energies of SUMO (Q.-) and LUMO (Q) correlate with their oxidative and trypanocidal activity. QSAR analysis also highlighted that both bromine substitution in the p-quinone ring and a bulky phenyl group attached to the furane and thiazole rings (which generates a negative charge due to the π electron system polarized by the nearby heteroatoms) are favorable for activity. By combining experimental and in silico procedures, this study disclosed important information about p-quinones that may help to rationally tune their electronic properties and biological activities.
Collapse
Affiliation(s)
- Andres Ballesteros-Casallas
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, Bogotá, 111711, Colombia; Bioinformatics Center, DETEMA Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay
| | - Cristina Quiroga
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Cecilia Ortiz
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Diego Benítez
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay
| | - Pablo A Denis
- Computational Nanotechnology, DETEMA Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay
| | - David Figueroa
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, Bogotá, 111711, Colombia
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Jeanluc Bertrand
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Ricardo A Tapia
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Patricio Sánchez
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, 6094411, Chile
| | - Gian Pietro Miscione
- COBO, Computational Bio-Organic Chemistry, Chemistry Department, Universidad de Los Andes, Carrera 1 18A-12, Bogotá, 111711, Colombia.
| | - Marcelo A Comini
- Laboratory Redox Biology of Trypanosomes, Institut Pasteur de Montevideo, Mataojo 2020, Montevideo, 11400, Uruguay.
| | - Margot Paulino
- Bioinformatics Center, DETEMA Department, Faculty of Chemistry, Universidad de la República, General Flores 2124, Montevideo, 11600, Uruguay.
| |
Collapse
|
18
|
Basu S, Pawlowic M, Hsu FF, Thomas G, Zhang K. Ethanolaminephosphate cytidyltransferase is essential for survival, lipid homeostasis and stress tolerance in Leishmania major. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.10.523530. [PMID: 36712124 PMCID: PMC9882048 DOI: 10.1101/2023.01.10.523530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Glycerophospholipids including phosphatidylethanolamine (PE) and phosphatidylcholine (PC) are vital components of biological membranes. Trypanosomatid parasites of the genus Leishmania can acquire PE and PC via de novo synthesis and the uptake/remodeling of host lipids. In this study, we investigated the ethanolaminephosphate cytidyltransferase (EPCT) in Leishmania major , which is the causative agent for cutaneous leishmaniasis. EPCT is a key enzyme in the ethanolamine branch of the Kennedy pathway which is responsible for the de novo synthesis of PE. Our results demonstrate that L. major EPCT is a cytosolic protein capable of catalyzing the formation of CDP-ethanolamine from ethanolamine-phosphate and cytidine triphosphate. Genetic manipulation experiments indicate that EPCT is essential in both the promastigote and amastigote stages of L. major as the chromosomal null mutants cannot survive without the episomal expression of EPCT. This differs from our previous findings on the choline branch of the Kennedy pathway (responsible for PC synthesis) which is required only in promastigotes but not amastigotes. While episomal EPCT expression does not affect promastigote proliferation under normal conditions, it leads to reduced production of ethanolamine plasmalogen or plasmenylethanolamine, the dominant PE subtype in Leishmania . In addition, parasites with epsiomal EPCT exhibit heightened sensitivity to acidic pH and starvation stress, and significant reduction in virulence. In summary, our investigation demonstrates that proper regulation of EPCT expression is crucial for PE synthesis, stress response, and survival of Leishmania parasites throughout their life cycle. AUTHOR SUMMARY In nature, Leishmania parasites alternate between fast replicating, extracellular promastigotes in sand fly gut and slow growing, intracellular amastigotes in macrophages. Previous studies suggest that promastigotes acquire most of their lipids via de novo synthesis whereas amastigotes rely on the uptake and remodeling of host lipids. Here we investigated the function of ethanolaminephosphate cytidyltransferase (EPCT) which catalyzes a key step in the de novo synthesis of phosphatidylethanolamine (PE) in Leishmania major . Results showed that EPCT is indispensable for both promastigotes and amastigotes, indicating that de novo PE synthesis is still needed at certain capacity for the intracellular form of Leishmania parasites. In addition, elevated EPCT expression alters overall PE synthesis and compromises parasite’s tolerance to adverse conditions and is deleterious to the growth of intracellular amastigotes. These findings provide new insight into how Leishmania acquire essential phospholipids and how disturbance of lipid metabolism can impact parasite fitness.
Collapse
Affiliation(s)
- Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Mattie Pawlowic
- Wellcome Centre for Anti-Infectives Research (WCAIR), Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid Research, Department of Internal Medicine, Washington University School of Medicine, 660S. Euclid Ave., Saint Louis, MO 63110, USA
| | - Geoff Thomas
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
19
|
Pacakova L, Harant K, Volf P, Lestinova T. Three types of Leishmania mexicana amastigotes: Proteome comparison by quantitative proteomic analysis. Front Cell Infect Microbiol 2022; 12:1022448. [DOI: 10.3389/fcimb.2022.1022448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
Leishmania is the unicellular parasite transmitted by phlebotomine sand fly bite. It exists in two different forms; extracellular promastigotes, occurring in the gut of sand flies, and intracellular, round-shaped amastigotes residing mainly in vertebrate macrophages. As amastigotes originating from infected animals are often present in insufficient quality and quantity, two alternative types of amastigotes were introduced for laboratory experiments: axenic amastigotes and amastigotes from macrophages infected in vitro. Nevertheless, there is very little information about the degree of similarity/difference among these three types of amastigotes on proteomic level, whose comparison is crucial for assessing the suitability of using alternative types of amastigotes in experiments. In this study, L. mexicana amastigotes obtained from lesion of infected BALB/c mice were proteomically compared with alternatively cultivated amastigotes (axenic and macrophage-derived ones). Amastigotes of all three types were isolated, individually treated and analysed by LC-MS/MS proteomic analysis with quantification using TMT10-plex isobaric labeling. Significant differences were observed in the abundance of metabolic enzymes, virulence factors and proteins involved in translation and condensation of DNA. The most pronounced differences were observed between axenic amastigotes and lesion-derived amastigotes, macrophage-derived amastigotes were mostly intermediate between axenic and lesion-derived ones.
Collapse
|
20
|
Clos J, Grünebast J, Holm M. Promastigote-to-Amastigote Conversion in Leishmania spp.-A Molecular View. Pathogens 2022; 11:1052. [PMID: 36145483 PMCID: PMC9503511 DOI: 10.3390/pathogens11091052] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022] Open
Abstract
A key factor in the successful infection of a mammalian host by Leishmania parasites is their conversion from extracellular motile promastigotes into intracellular amastigotes. We discuss the physical and chemical triggers that induce this conversion and the accompanying changes at the molecular level crucial for the survival of these intracellular parasites. Special emphasis is given to the reliance of these trypanosomatids on the post-transcriptional regulation of gene expression but also to the role played by protein kinases, chaperone proteins and proteolytic enzymes. Lastly, we offer a model to integrate the transduction of different stress signals for the induction of stage conversion.
Collapse
|
21
|
Al-Khalaifah HS. Major Molecular Factors Related to Leishmania Pathogenicity. Front Immunol 2022; 13:847797. [PMID: 35769465 PMCID: PMC9236557 DOI: 10.3389/fimmu.2022.847797] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a major health problem with 600k - 1M new cases worldwide and 1 billion at risk. It involves a wide range of clinical forms ranging from self-healing cutaneous lesions to systemic diseases that are fatal if not treated, depending on the species of Leishmania. Leishmania sp. are digenetic parasites that have two different morphological stages. Leishmania parasites possess a number of invasive/evasive and pathoantigenic determinants that seem to have critical roles in Leishmania infection of macrophages which leads to successful intracellular parasitism in the parasitophorous vacuoles. These determinants are traditionally known as “virulence factors”, and are considered to be good targets for developing specific inhibitors to attenuate virulence of Leishmania by gene deletions or modifications, thus causing infective, but non-pathogenic mutants for vaccination. Pathway of biosynthesis is critical for keeping the parasite viable and is important for drug designing against these parasites. These drugs are aimed to target enzymes that control these pathways. Accordingly, maintaining low level of parasitic infection and in some cases as a weapon to eradicate infection completely. The current paper focuses on several virulence factors as determinants of Leishmania pathogenicity, as well as the metabolites produced by Leishmania to secure its survival in the host.
Collapse
|
22
|
Christiansen C, Maus D, Hoppenz E, Murillo-León M, Hoffmann T, Scholz J, Melerowicz F, Steinfeldt T, Seeber F, Blume M. In vitro maturation of Toxoplasma gondii bradyzoites in human myotubes and their metabolomic characterization. Nat Commun 2022; 13:1168. [PMID: 35246532 PMCID: PMC8897399 DOI: 10.1038/s41467-022-28730-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/02/2022] [Indexed: 12/15/2022] Open
Abstract
The apicomplexan parasite Toxoplasma gondii forms bradyzoite-containing tissue cysts that cause chronic and drug-tolerant infections. However, current in vitro models do not allow long-term culture of these cysts to maturity. Here, we developed a human myotube-based in vitro culture model of functionally mature tissue cysts that are orally infectious to mice and tolerate exposure to a range of antibiotics and temperature stresses. Metabolomic characterization of purified cysts reveals global changes that comprise increased levels of amino acids and decreased abundance of nucleobase- and tricarboxylic acid cycle-associated metabolites. In contrast to fast replicating tachyzoite forms of T. gondii these tissue cysts tolerate exposure to the aconitase inhibitor sodium fluoroacetate. Direct access to persistent stages of T. gondii under defined cell culture conditions will be essential for the dissection of functionally important host-parasite interactions and drug evasion mechanisms. It will also facilitate the identification of new strategies for therapeutic intervention. Bradyzoites are a quiescent form of Toxoplasma gondii enclosed in cysts during chronic infections. Here, Christiansen et al. develop a human myotube-based in vitro culture model of cysts that are infectious to mice and characterize their metabolism in comparison to fast replicating tachyzoites.
Collapse
Affiliation(s)
- Céline Christiansen
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Deborah Maus
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Ellen Hoppenz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Mateo Murillo-León
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.,Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Tobias Hoffmann
- ZBS 4: Advanced Light and Electron Microscopy, Centre for Biological Threats and Special Pathogens 4, Robert Koch-Institute, 13353, Berlin, Germany
| | - Jana Scholz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Florian Melerowicz
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany
| | - Tobias Steinfeldt
- Institute of Virology, Medical Center University of Freiburg, 79104, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Frank Seeber
- FG 16: Mycotic and Parasitic Agents and Mycobacteria, Robert Koch-Institute, 13353, Berlin, Germany
| | - Martin Blume
- NG2: Metabolism of Microbial Pathogens, Robert Koch-Institute, 13353, Berlin, Germany.
| |
Collapse
|
23
|
Jara M, Barrett M, Maes I, Regnault C, Imamura H, Domagalska MA, Dujardin JC. Transcriptional Shift and Metabolic Adaptations during Leishmania Quiescence Using Stationary Phase and Drug Pressure as Models. Microorganisms 2022; 10:97. [PMID: 35056546 PMCID: PMC8781126 DOI: 10.3390/microorganisms10010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/28/2021] [Accepted: 12/30/2021] [Indexed: 11/16/2022] Open
Abstract
Microorganisms can adopt a quiescent physiological condition which acts as a survival strategy under unfavorable conditions. Quiescent cells are characterized by slow or non-proliferation and a deep downregulation of processes related to biosynthesis. Although quiescence has been described mostly in bacteria, this survival skill is widespread, including in eukaryotic microorganisms. In Leishmania, a digenetic parasitic protozoan that causes a major infectious disease, quiescence has been demonstrated, but the molecular and metabolic features enabling its maintenance are unknown. Here, we quantified the transcriptome and metabolome of Leishmania promastigotes and amastigotes where quiescence was induced in vitro either, through drug pressure or by stationary phase. Quiescent cells have a global and coordinated reduction in overall transcription, with levels dropping to as low as 0.4% of those in proliferating cells. However, a subset of transcripts did not follow this trend and were relatively upregulated in quiescent populations, including those encoding membrane components, such as amastins and GP63, or processes like autophagy. The metabolome followed a similar trend of overall downregulation albeit to a lesser magnitude than the transcriptome. It is noteworthy that among the commonly upregulated metabolites were those involved in carbon sources as an alternative to glucose. This first integrated two omics layers afford novel insight into cell regulation and show commonly modulated features across stimuli and stages.
Collapse
Affiliation(s)
- Marlene Jara
- Molecular Parasitology Unit, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium; (I.M.); (M.A.D.)
| | - Michael Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (M.B.); (C.R.)
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ilse Maes
- Molecular Parasitology Unit, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium; (I.M.); (M.A.D.)
| | - Clement Regnault
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; (M.B.); (C.R.)
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Hideo Imamura
- Centre for Medical Genetics, Universitair Ziekenhuis Brussel, 1090 Brussels, Belgium;
| | - Malgorzata Anna Domagalska
- Molecular Parasitology Unit, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium; (I.M.); (M.A.D.)
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Institute of Tropical Medicine Antwerp, 2000 Antwerp, Belgium; (I.M.); (M.A.D.)
- Department of Biomedical Sciences, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|
24
|
Qin H, Zhang J, Dong K, Chen D, Yuan D, Chen J. Metabolic characterization and biomarkers screening for visceral leishmaniasis in golden hamsters. Acta Trop 2022; 225:106222. [PMID: 34757045 DOI: 10.1016/j.actatropica.2021.106222] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/22/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022]
Abstract
A better understanding of the changes in metabolic molecules during visceral leishmaniasis (VL) is essential to develop new strategies for diagnosis and treatment. Previous metabolomics studies on Leishmania have increased our knowledge of leishmaniasis and its causative pathogen. As these studies were mainly carried out in vitro, to go further, we conducted this global metabolomics analysis on the serum of golden hamsters. Serum samples were detected over a time course of 2, 4, 8 and 12 weeks post infection. Our results revealed that under extensively disturbed metabolomes between the infection group and controls, glycerophospholipid (GPL) metabolism was most affected over the infection time, followed by α-linoleic acid metabolism and arachidonic acid metabolism. Within GPLs, phosphatidylcholine (PC) and phosphatidylethanolamine (PE) were found to be significantly increased, while their enzyme-catalysed metabolites lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE) showed no significant changes. Moreover, eight differential metabolites were selected. The ability of these metabolites to be used as a diagnostic biomarker panel was supported by receiver operating characteristic (ROC) analysis. Our findings revealed that GPL metabolism might play an important role in the response of the host to Leishmania infection. The metabolism of PC and PE might be crucial in the in vivo progression of VL. The panel of eight potential biomarkers might contribute to the diagnosis of VL.
Collapse
Affiliation(s)
- Hanxiao Qin
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jianhui Zhang
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kai Dong
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dali Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Dongmei Yuan
- Department of Human Anatomy, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| | - Jianping Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
25
|
Parreira de Aquino G, Mendes Gomes MA, Köpke Salinas R, Laranjeira-Silva MF. Lipid and fatty acid metabolism in trypanosomatids. MICROBIAL CELL 2021; 8:262-275. [PMID: 34782859 PMCID: PMC8561143 DOI: 10.15698/mic2021.11.764] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 12/18/2022]
Abstract
Trypanosomiases and leishmaniases are neglected tropical diseases that have been spreading to previously non-affected areas in recent years. Identification of new chemotherapeutics is needed as there are no vaccines and the currently available treatment options are highly toxic and often ineffective. The causative agents for these diseases are the protozoan parasites of the Trypanosomatidae family, and they alternate between invertebrate and vertebrate hosts during their life cycles. Hence, these parasites must be able to adapt to different environments and compete with their hosts for several essential compounds, such as amino acids, vitamins, ions, carbohydrates, and lipids. Among these nutrients, lipids and fatty acids (FAs) are essential for parasite survival. Trypanosomatids require massive amounts of FAs, and they can either synthesize FAs de novo or scavenge them from the host. Moreover, FAs are the major energy source during specific life cycle stages of T. brucei, T. cruzi, and Leishmania. Therefore, considering the distinctive features of FAs metabolism in trypanosomatids, these pathways could be exploited for the development of novel antiparasitic drugs. In this review, we highlight specific aspects of lipid and FA metabolism in the protozoan parasites T. brucei, T. cruzi, and Leishmania spp., as well as the pathways that have been explored for the development of new chemotherapies.
Collapse
Affiliation(s)
| | | | - Roberto Köpke Salinas
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
26
|
Volpedo G, Pacheco-Fernandez T, Bhattacharya P, Oljuskin T, Dey R, Gannavaram S, Satoskar AR, Nakhasi HL. Determinants of Innate Immunity in Visceral Leishmaniasis and Their Implication in Vaccine Development. Front Immunol 2021; 12:748325. [PMID: 34712235 PMCID: PMC8546207 DOI: 10.3389/fimmu.2021.748325] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/24/2021] [Indexed: 12/22/2022] Open
Abstract
Leishmaniasis is endemic to the tropical and subtropical regions of the world and is transmitted by the bite of an infected sand fly. The multifaceted interactions between Leishmania, the host innate immune cells, and the adaptive immunity determine the severity of pathogenesis and disease development. Leishmania parasites establish a chronic infection by subversion and attenuation of the microbicidal functions of phagocytic innate immune cells such as neutrophils, macrophages and dendritic cells (DCs). Other innate cells such as inflammatory monocytes, mast cells and NK cells, also contribute to resistance and/or susceptibility to Leishmania infection. In addition to the cytokine/chemokine signals from the innate immune cells, recent studies identified the subtle shifts in the metabolic pathways of the innate cells that activate distinct immune signal cascades. The nexus between metabolic pathways, epigenetic reprogramming and the immune signaling cascades that drive the divergent innate immune responses, remains to be fully understood in Leishmania pathogenesis. Further, development of safe and efficacious vaccines against Leishmaniasis requires a broader understanding of the early interactions between the parasites and innate immune cells. In this review we focus on the current understanding of the specific role of innate immune cells, the metabolomic and epigenetic reprogramming and immune regulation that occurs during visceral leishmaniasis, and the strategies used by the parasite to evade and modulate host immunity. We highlight how such pathways could be exploited in the development of safe and efficacious Leishmania vaccines.
Collapse
Affiliation(s)
- Greta Volpedo
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Thalia Pacheco-Fernandez
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Parna Bhattacharya
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Timur Oljuskin
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Ranadhir Dey
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Sreenivas Gannavaram
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| | - Abhay R Satoskar
- Departments of Pathology and Microbiology, Wexner Medical Center, The Ohio State University, Columbus, OH, United States
| | - Hira L Nakhasi
- Laboratory of Emerging Pathogens, Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, United States
| |
Collapse
|
27
|
Leishmania type II dehydrogenase is essential for parasite viability irrespective of the presence of an active complex I. Proc Natl Acad Sci U S A 2021; 118:2103803118. [PMID: 34654744 DOI: 10.1073/pnas.2103803118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2021] [Indexed: 11/18/2022] Open
Abstract
Type II NADH dehydrogenases (NDH2) are monotopic enzymes present in the external or internal face of the mitochondrial inner membrane that contribute to NADH/NAD+ balance by conveying electrons from NADH to ubiquinone without coupled proton translocation. Herein, we characterize the product of a gene present in all species of the human protozoan parasite Leishmania as a bona fide, matrix-oriented, type II NADH dehydrogenase. Within mitochondria, this respiratory activity concurs with that of type I NADH dehydrogenase (complex I) in some Leishmania species but not others. To query the significance of NDH2 in parasite physiology, we attempted its genetic disruption in two parasite species, exhibiting a silent (Leishmania infantum, Li) and a fully operational (Leishmania major, Lm) complex I. Strikingly, this analysis revealed that NDH2 abrogation is not tolerated by Leishmania, not even by complex I-expressing Lm species. Conversely, complex I is dispensable in both species, provided that NDH2 is sufficiently expressed. That a type II dehydrogenase is essential even in the presence of an active complex I places Leishmania NADH metabolism into an entirely unique perspective and suggests unexplored functions for NDH2 that span beyond its complex I-overlapping activities. Notably, by showing that the essential character of NDH2 extends to the disease-causing stage of Leishmania, we genetically validate NDH2-an enzyme without a counterpart in mammals-as a candidate target for leishmanicidal drugs.
Collapse
|
28
|
Zhuo TX, Wang Z, Song YY, Yan SW, Liu RD, Zhang X, Wang ZQ, Cui J. Characterization of a Novel Glutamine Synthetase From Trichinella spiralis and Its Participation in Larval Acid Resistance, Molting, and Development. Front Cell Dev Biol 2021; 9:729402. [PMID: 34616735 PMCID: PMC8488193 DOI: 10.3389/fcell.2021.729402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/24/2021] [Indexed: 12/29/2022] Open
Abstract
Trichinella spiralis is a major foodborne parasite worldwide. After the encapsulated muscle larvae (ML) in meat are ingested, the ML are liberated in the stomach of the host and activated into intestinal infectious larvae (IIL), which develop into adult worm after molting four times. A novel glutamine synthetase (TsGS) was identified from T. spiralis IIL at 10 h post-infection, but its biological role in T. spiralis life cycle is not clear. The aim of this study was to investigate the biological characteristics of TsGS and its functions in larval acid resistance, molting, and development. TsGS has a glutamine synthetase (GS) catalytic domain. Complete TsGS sequence was cloned and expressed in Escherichia coli BL21. rTsGS has good immunogenicity. qPCR and Western blotting showed that TsGS was highly expressed at IIL stage, and immunofluorescence revealed that TsGS was principally localized at the cuticle and intrauterine embryos of this nematode. rTsGS has enzymatic activity of natural GS to hydrolyze the substrate (Glu, ATP, and NH4+). Silencing of TsGS gene significantly reduced the IIL survival at pH 2.5, decreased the IIL burden, and impeded larval molting and development. The results demonstrated that TsGS participates in T. spiralis larval acid resistance, molting and development, and it might be a candidate vaccine target against Trichinella molting and development.
Collapse
Affiliation(s)
- Tong Xu Zhuo
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhen Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Yan Yan Song
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Shu Wei Yan
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Ruo Dan Liu
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Xi Zhang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Zhong Quan Wang
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| | - Jing Cui
- Department of Parasitology, Medical College, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Gomes MT, Paes-Vieira L, Gomes-Vieira AL, Cosentino-Gomes D, da Silva APP, Giarola NLL, Da Silva D, Sola-Penna M, Galina A, Meyer-Fernandes JR. 3-Bromopyruvate: A new strategy for inhibition of glycolytic enzymes in Leishmania amazonensis. Exp Parasitol 2021; 229:108154. [PMID: 34481863 DOI: 10.1016/j.exppara.2021.108154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/14/2021] [Accepted: 08/28/2021] [Indexed: 11/29/2022]
Abstract
The compound 3-bromopyruvate (3-BrPA) is well-known and studies from several researchers have demonstrated its involvement in tumorigenesis. It is an analogue of pyruvic acid that inhibits ATP synthesis by inhibiting enzymes from the glycolytic pathway and oxidative phosphorylation. In this work, we investigated the effect of 3-BrPA on energy metabolism of L. amazonensis. In order to verify the effect of 3-BrPA on L. amazonensis glycolysis, we measured the activity level of three glycolytic enzymes located at different points of the pathway: (i) glucose kinases, step 1, (ii) glyceraldehyde 3-phosphate dehydrogenase (GAPDH), step 6, and (iii) enolase, step 9. 3-BrPA, in a dose-dependent manner, significantly reduced the activity levels of all the enzymes. In addition, 3-BrPA treatment led to a reduction in the levels of phosphofruto-1-kinase (PFK) protein, suggesting that the mode of action of 3-BrPA involves the downregulation of some glycolytic enzymes. Measurement of ATP levels in promastigotes of L. amazonensis showed a significant reduction in ATP generation. The O2 consumption was also significantly inhibited in promastigotes, confirming the energy depletion effect of 3-BrPA. When 3-BrPA was added to the cells at the beginning of growth cycle, it significantly inhibited L. amazonensis proliferation in a dose-dependent manner. Furthermore, the ability to infect macrophages was reduced by approximately 50% when promastigotes were treated with 3-BrPA. Taken together, these studies corroborate with previous reports which suggest 3-BrPA as a potential drug against pathogenic microorganisms that are reliant on glucose catabolism for ATP supply.
Collapse
Affiliation(s)
- Marta Teixeira Gomes
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, IN, USA; Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Lisvane Paes-Vieira
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - André Luiz Gomes-Vieira
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Daniela Cosentino-Gomes
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Ana Paula Pereira da Silva
- Instituto de Química, Departamento de Bioquímica, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, Brazil
| | - Naira Ligia Lima Giarola
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Daniel Da Silva
- Laboratório de Enzimologia e Controle do Metabolismo, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mauro Sola-Penna
- Laboratório de Enzimologia e Controle do Metabolismo, Departamento de Biotecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Antonio Galina
- Laboratorio de Bioenergética e Fisiologia Mitocondrial, Programa de Bioquímica e Biofísica Celular, Instituto de Bioquímica Medica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
30
|
Gahura O, Hierro-Yap C, Zíková A. Redesigned and reversed: architectural and functional oddities of the trypanosomal ATP synthase. Parasitology 2021; 148:1151-1160. [PMID: 33551002 PMCID: PMC8311965 DOI: 10.1017/s0031182021000202] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022]
Abstract
Mitochondrial F-type adenosine triphosphate (ATP) synthases are commonly introduced as highly conserved membrane-embedded rotary machines generating the majority of cellular ATP. This simplified view neglects recently revealed striking compositional diversity of the enzyme and the fact that in specific life stages of some parasites, the physiological role of the enzyme is to maintain the mitochondrial membrane potential at the expense of ATP rather than to produce ATP. In addition, mitochondrial ATP synthases contribute indirectly to the organelle's other functions because they belong to major determinants of submitochondrial morphology. Here, we review current knowledge about the trypanosomal ATP synthase composition and architecture in the context of recent advances in the structural characterization of counterpart enzymes from several eukaryotic supergroups. We also discuss the physiological function of mitochondrial ATP synthases in three trypanosomatid parasites, Trypanosoma cruzi, Trypanosoma brucei and Leishmania, with a focus on their disease-causing life cycle stages. We highlight the reversed proton-pumping role of the ATP synthase in the T. brucei bloodstream form, the enzyme's potential link to the regulation of parasite's glycolysis and its role in generating mitochondrial membrane potential in the absence of mitochondrial DNA.
Collapse
Affiliation(s)
- Ondřej Gahura
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Carolina Hierro-Yap
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
| | - Alena Zíková
- Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice, 37005, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, České Budějovice, 37005, Czech Republic
| |
Collapse
|
31
|
Dumoulin PC, Burleigh BA. Metabolic flexibility in Trypanosoma cruzi amastigotes: implications for persistence and drug sensitivity. Curr Opin Microbiol 2021; 63:244-249. [PMID: 34455305 DOI: 10.1016/j.mib.2021.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 12/18/2022]
Abstract
Throughout their life cycle, parasitic organisms experience a variety of environmental conditions. To ensure persistence and transmission, some protozoan parasites are capable of adjusting their replication or converting to distinct life cycle stages. Trypanosoma cruzi is a 'generalist' parasite that is competent to infect various insect (triatomine) vectors and mammalian hosts. Within the mammalian host, T. cruzi replicates intracellularly as amastigotes and can persist for the lifetime of the host. The persistence of the parasites in tissues can lead to the development of Chagas disease. Recent work has identified growth plasticity and metabolic flexibility as aspects of amastigote biology that are important determinants of persistence in varied growth conditions and under drug pressure. A better understanding of the link between amastigote and host/tissue metabolism will aid in the development of new drugs or therapies that can limit disease pathology.
Collapse
Affiliation(s)
- Peter C Dumoulin
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States.
| | - Barbara A Burleigh
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, United States
| |
Collapse
|
32
|
Immune-metabolic interactions between Leishmania and macrophage host. Curr Opin Microbiol 2021; 63:231-237. [PMID: 34438164 DOI: 10.1016/j.mib.2021.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/12/2022]
Abstract
Manipulation of host metabolic fluxes by Leishmania represents a strategy to circumvent host immune response leading to long-term parasite survival and playing an important role in the pathology of infection. Specific Leishmania-dependent metabolic alterations in infected macrophages have been associated with resistance or susceptibility to infection. Thus, deciphering the multilevel interactions between metabolism and function on innate immune cells during infection offers considerable therapeutic or prophylactic promise. In this review, we provide an overview of recent literature highlighting Leishmania-macrophage interactions and discuss the potential of metabolic targeted therapies to shift the balance of dysfunctional, damaging, or non-productive responses to protective immune reactivity patterns towards pathogen elimination.
Collapse
|
33
|
Dias-Lopes G, Zabala-Peñafiel A, de Albuquerque-Melo BC, Souza-Silva F, Menaguali do Canto L, Cysne-Finkelstein L, Alves CR. Axenic amastigotes of Leishmania species as a suitable model for in vitro studies. Acta Trop 2021; 220:105956. [PMID: 33979642 DOI: 10.1016/j.actatropica.2021.105956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/26/2022]
Abstract
Leishmania spp. are etiological agents of infection diseases, which in some cases can be fatal. The main forms of their biological cycle, promastigotes and amastigotes, can be maintained in vitro. While promastigotes are easier to maintain, amastigotes are more complex and can be obtained through different ways, including infection assays of tissues or in vitro cells, and differentiation from promastigotes to axenic amastigotes. Several protocols have been proposed for in vitro differentiation for at least 12 Leishmania spp. of both subgenera, Leishmania and Viannia. In this review we propose a critical summary of axenic amastigotes induction, as well as the impact of these strategies on metabolic pathways and regulatory networks analyzed by omics approaches. The parameters used by different research groups show considerable variations in temperature, pH and induction stages, as highlighted here for Leishmania (Viannia) braziliensis. Therefore, a consensus on strategies for inducing amastigogenesis is necessary to improve accuracy and even define stage-specific biomarkers. In fact, the axenic amastigote model has contributed to elucidate several aspects of the parasite cycle, however, since it does not reproduce the intracellular environment, its use requires several precautions. In addition, we present a discussion about using axenic amastigotes for drug screening, suggesting the need of a more sensitive methodology to verify cell viability in these tests. Collectively, this review explores the advantages and limitations found in studies with axenic amastigotes, done for more than 30 years, and discuss the gaps that impair their use as a suitable model for in vitro studies.
Collapse
|
34
|
Metabolic stringent response in intracellular stages of Leishmania. Curr Opin Microbiol 2021; 63:126-132. [PMID: 34340099 DOI: 10.1016/j.mib.2021.07.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022]
Abstract
Leishmania are unusual in being able to survive long-term in the mature phagolysosome compartment of macrophages and other phagocytic cells in their mammalian hosts. Key to their survival in this niche, Leishmania amastigotes switch to a slow growth state and activate a stringent metabolic response. The stringent metabolic response may be triggered by multiple stresses and is associated with decreased metabolic fluxes, restricted use of sugars and fatty acids as carbon sources and increased dependence on metabolic homeostasis pathways. Heterogeneity in expression of the Leishmania stringent response occurs in vivo reflects temporal and spatial heterogeneity in lesion tissues and includes non-dividing dormant stages. This response underpins the capacity of these parasites to maintain long-term chronic infections and survive drug treatments.
Collapse
|
35
|
Zhang K. Balancing de novo synthesis and salvage of lipids by Leishmania amastigotes. Curr Opin Microbiol 2021; 63:98-103. [PMID: 34311265 PMCID: PMC8463422 DOI: 10.1016/j.mib.2021.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
Leishmania parasites replicate as flagellated, extracellular promastigotes in the sand fly vector and then differentiate into non-flagellated, intracellular amastigotes in the vertebrate host. Promastigotes rely on de novo synthesis to produce the majority of their lipids including glycerophospholipids, sterols and sphingolipids. In contrast, amastigotes acquire most of their lipids from the host although they retain some capacity for de novo synthesis. The switch from de novo synthesis to salvage reflects the transition of Leishmania from fast-replicating promastigotes to slow-growing, metabolically quiescent amastigotes. Future studies will reveal the uptake and remodeling of host lipids by amastigotes at the cellular and molecular levels. Blocking the lipid transfer from host to parasites may present a novel strategy to control Leishmania growth.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA.
| |
Collapse
|
36
|
Ralton JE, Sernee MF, McConville MJ. Evolution and function of carbohydrate reserve biosynthesis in parasitic protists. Trends Parasitol 2021; 37:988-1001. [PMID: 34266735 DOI: 10.1016/j.pt.2021.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/12/2021] [Accepted: 06/15/2021] [Indexed: 11/28/2022]
Abstract
Nearly all eukaryotic cells synthesize carbohydrate reserves, such as glycogen, starch, or low-molecular-weight oligosaccharides. However, a number of parasitic protists have lost this capacity while others have lost, and subsequently evolved, entirely new pathways. Recent studies suggest that retention, loss, or acquisition of these pathways in different protists is intimately linked to their lifestyle. In particular, parasites with carbohydrate reserves often establish long-lived chronic infections and/or produce environmental cysts, whereas loss of these pathways is associated with parasites that have highly proliferative and metabolically active life-cycle stages. The evolution of mannogen biosynthesis in Leishmania and related parasites indicates that these pathways have played a role in defining the host range and niches occupied by some protists.
Collapse
Affiliation(s)
- Julie E Ralton
- Department of Biochemistry and Pharmacology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia
| | - M Fleur Sernee
- Department of Biochemistry and Pharmacology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Pharmacology, University of Melbourne, Bio21 Institute of Molecular Science and Biotechnology, Parkville, Victoria 3010, Australia.
| |
Collapse
|
37
|
Serine proteases profiles of Leishmania (Viannia) braziliensis clinical isolates with distinct susceptibilities to antimony. Sci Rep 2021; 11:14234. [PMID: 34244581 PMCID: PMC8271011 DOI: 10.1038/s41598-021-93665-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/29/2021] [Indexed: 11/10/2022] Open
Abstract
Glucantime (SbV) is the first-line treatment against American Tegumentary Leishmaniasis. Resistance cases to this drug have been reported and related to host characteristics and parasite phenotypes. In this study, 12 Leishmania (Viannia) braziliensis isolates from patients that presented clinical cure (Responders—R) and relapse or therapeutic failure (Non-responders—NR) after treatment with antimony, were analyzed. These parasites were assessed by in vitro susceptibility to SbIII and SbV, serine proteases activity measured with substrate (z-FR-AMC) and specific inhibitors (TLCK, AEBSF and PMSF). In vitro susceptibility of axenic amastigotes to SbIII showed a significant difference between R and NR groups. The protease assays showed that TLCK inhibited almost 100% of activity in both axenic amastigotes and promastigotes while AEBSF inhibited around 70%, and PMSF showed lower inhibition of some isolates. Principal component and clustering analysis performed with these data yielded one homogeneous cluster with only NR isolates and three heterogeneous clusters with R and NR isolates. Additionally, differential expression of subtilisins (LbrM.13.0860 and LbrM.28.2570) and TXNPx (LbrM.15.1080) was evaluated in promastigotes and axenic amastigotes from both groups. The results showed a higher expression of LbrM.13.0860 and LbrM.15.1080 genes in axenic amastigotes, while LbrM.28.2570 gene had the lowest expression in all isolates, regardless of the parasite form. The data presented here show a phenotypic heterogeneity among the parasites, suggesting that exploration of in vitro phenotypes based on SbIII and serine proteases profiles can aid in the characterization of L. (V.) braziliensis clinical isolates.
Collapse
|
38
|
Parab AR, Thomas D, Lostracco-Johnson S, Siqueira-Neto JL, McKerrow JH, Dorrestein PC, McCall LI. Dysregulation of Glycerophosphocholines in the Cutaneous Lesion Caused by Leishmania major in Experimental Murine Models. Pathogens 2021; 10:593. [PMID: 34068119 PMCID: PMC8152770 DOI: 10.3390/pathogens10050593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 01/21/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is the most common disease form caused by a Leishmania parasite infection and considered a neglected tropical disease (NTD), affecting 700,000 to 1.2 million new cases per year in the world. Leishmania major is one of several different species of the Leishmania genus that can cause CL. Current CL treatments are limited by adverse effects and rising resistance. Studying disease metabolism at the site of infection can provide knowledge of new targets for host-targeted drug development. In this study, tissue samples were collected from mice infected in the ear or footpad with L. major and analyzed by untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS). Significant differences in overall metabolite profiles were noted in the ear at the site of the lesion. Interestingly, lesion-adjacent, macroscopically healthy sites also showed alterations in specific metabolites, including selected glycerophosphocholines (PCs). Host-derived PCs in the lower m/z range (m/z 200-799) showed an increase with infection in the ear at the lesion site, while those in the higher m/z range (m/z 800-899) were decreased with infection at the lesion site. Overall, our results expanded our understanding of the mechanisms of CL pathogenesis through host metabolism and may lead to new curative measures against infection with Leishmania.
Collapse
Affiliation(s)
- Adwaita R. Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA;
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
| | - Diane Thomas
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - Sharon Lostracco-Johnson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - Jair L. Siqueira-Neto
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - James H. McKerrow
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA; (D.T.); (S.L.-J.); (J.L.S.-N.); (J.H.M.); (P.C.D.)
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Collaborative Mass Spectrometry Innovation Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA;
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK 73019, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
39
|
Michels PAM, Villafraz O, Pineda E, Alencar MB, Cáceres AJ, Silber AM, Bringaud F. Carbohydrate metabolism in trypanosomatids: New insights revealing novel complexity, diversity and species-unique features. Exp Parasitol 2021; 224:108102. [PMID: 33775649 DOI: 10.1016/j.exppara.2021.108102] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 12/16/2022]
Abstract
The human pathogenic trypanosomatid species collectively called the "TriTryp parasites" - Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. - have complex life cycles, with each of these parasitic protists residing in a different niche during their successive developmental stages where they encounter diverse nutrients. Consequently, they adapt their metabolic network accordingly. Yet, throughout the life cycles, carbohydrate metabolism - involving the glycolytic, gluconeogenic and pentose-phosphate pathways - always plays a central role in the biology of these parasites, whether the available carbon and free energy sources are saccharides, amino acids or lipids. In this paper, we provide an updated review of the carbohydrate metabolism of the TriTryps, highlighting new data about this metabolic network, the interconnection of its pathways and the compartmentalisation of its enzymes within glycosomes, cytosol and mitochondrion. Differences in the expression of the branches of the metabolic network between the successive life-cycle stages of each of these parasitic trypanosomatids are discussed, as well as differences between them. Recent structural and kinetic studies have revealed unique regulatory mechanisms for some of the network's key enzymes with important species-specific variations. Furthermore, reports of multiple post-translational modifications of trypanosomal glycolytic enzymes suggest that additional mechanisms for stage- and/or environmental cues that regulate activity are operational in the parasites. The detailed comparison of the carbohydrate metabolism of the TriTryps has thus revealed multiple differences and a greater complexity, including for the reduced metabolic network in bloodstream-form T. brucei, than previously appreciated. Although these parasites are related, share many cytological and metabolic features and are grouped within a single taxonomic family, the differences highlighted in this review reflect their separate evolutionary tracks from a common ancestor to the extant organisms. These differences are indicative of their adaptation to the different insect vectors and niches occupied in their mammalian hosts.
Collapse
Affiliation(s)
- Paul A M Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| | - Oriana Villafraz
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Erika Pineda
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France
| | - Mayke B Alencar
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil
| | - Ana J Cáceres
- Laboratorio de Enzimología de Parásitos, Departamento de Biología, Facultad de Ciencias, Universidad de Los Andes, Mérida, 5101, Venezuela.
| | - Ariel M Silber
- Laboratory of Biochemistry of Tryps, Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, 05508-000, Brazil.
| | - Frédéric Bringaud
- Laboratoire de Microbiologie Fondamentale et Pathogénicité (MFP), Université de Bordeaux, CNRS UMR-5234, France.
| |
Collapse
|
40
|
Identification of Metabolically Quiescent Leishmania mexicana Parasites in Peripheral and Cured Dermal Granulomas Using Stable Isotope Tracing Imaging Mass Spectrometry. mBio 2021; 12:mBio.00129-21. [PMID: 33824211 PMCID: PMC8092208 DOI: 10.1128/mbio.00129-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Leishmania are sandfly-transmitted protists that induce granulomatous lesions in their mammalian host. Although infected host cells in these tissues can exist in different activation states, the extent to which intracellular parasites stages also exist in different growth or physiological states remains poorly defined. Here, we have mapped the spatial distribution of metabolically quiescent and active subpopulations of Leishmania mexicana in dermal granulomas in susceptible BALB/c mice, using in vivo heavy water labeling and ultra high-resolution imaging mass spectrometry. Quantitation of the rate of turnover of parasite and host-specific lipids at high spatial resolution, suggested that the granuloma core comprised mixed populations of metabolically active and quiescent parasites. Unexpectedly, a significant population of metabolically quiescent parasites was also identified in the surrounding collagen-rich, dermal mesothelium. Mesothelium-like tissues harboring quiescent parasites progressively replaced macrophage-rich granuloma tissues following treatment with the first-line drug, miltefosine. In contrast to the granulomatous tissue, neither the mesothelium nor newly deposited tissue sequestered miltefosine. These studies suggest that the presence of quiescent parasites in acute granulomatous tissues, together with the lack of miltefosine accumulation in cured lesion tissue, may contribute to drug failure and nonsterile cure.IMPORTANCE Many microbial pathogens switch between different growth and physiological states in vivo in order to adapt to local nutrient levels and host microbicidal responses. Heterogeneity in microbial growth and metabolism may also contribute to nongenetic mechanisms of drug resistance and drug failure. In this study, we have developed a new approach for measuring spatial heterogeneity in microbial metabolism in vivo using a combination of heavy water (2H2O) labeling and imaging mass spectrometry. Using this approach, we show that lesions contain a patchwork of metabolically distinct parasite populations, while the underlying dermal tissues contain a large population of metabolically quiescent parasites. Quiescent parasites also dominate drug-depleted tissues in healed animals, providing an explanation for failure of some first line drugs to completely eradicate parasites. This approach is broadly applicable to study the metabolic and growth dynamics in other host-pathogen interactions.
Collapse
|
41
|
Poulaki A, Piperaki ET, Voulgarelis M. Effects of Visceralising Leishmania on the Spleen, Liver, and Bone Marrow: A Pathophysiological Perspective. Microorganisms 2021; 9:microorganisms9040759. [PMID: 33916346 PMCID: PMC8066032 DOI: 10.3390/microorganisms9040759] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 01/29/2023] Open
Abstract
The leishmaniases constitute a group of parasitic diseases caused by species of the protozoan genus Leishmania. In humans it can present different clinical manifestations and are usually classified as cutaneous, mucocutaneous, and visceral (VL). Although the full range of parasite—host interactions remains unclear, recent advances are improving our comprehension of VL pathophysiology. In this review we explore the differences in VL immunobiology between the liver and the spleen, leading to contrasting infection outcomes in the two organs, specifically clearance of the parasite in the liver and failure of the spleen to contain the infection. Based on parasite biology and the mammalian immune response, we describe how hypoxia-inducible factor 1 (HIF1) and the PI3K/Akt pathway function as major determinants of the observed immune failure. We also summarize existing knowledge on pancytopenia in VL, as a direct effect of the parasite on bone marrow health and regenerative capacity. Finally, we speculate on the possible effect that manipulation by the parasite of the PI3K/Akt/HIF1 axis may have on the myelodysplastic (MDS) features observed in VL.
Collapse
Affiliation(s)
- Aikaterini Poulaki
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
| | - Evangelia-Theophano Piperaki
- Department of Microbiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece
- Correspondence: (E.-T.P.); (M.V.); Tel.: +30-210-7462136 (E.-T.P.); +30-210-7462647 (M.V.)
| | - Michael Voulgarelis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 115 27 Athens, Greece;
- Correspondence: (E.-T.P.); (M.V.); Tel.: +30-210-7462136 (E.-T.P.); +30-210-7462647 (M.V.)
| |
Collapse
|
42
|
Inacio JDF, Fonseca MS, Limaverde-Sousa G, Tomas AM, Castro H, Almeida-Amaral EE. Epigallocathechin- O-3-Gallate Inhibits Trypanothione Reductase of Leishmania infantum, Causing Alterations in Redox Balance and Leading to Parasite Death. Front Cell Infect Microbiol 2021; 11:640561. [PMID: 33842389 PMCID: PMC8027256 DOI: 10.3389/fcimb.2021.640561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/09/2021] [Indexed: 01/15/2023] Open
Abstract
Leishmania infantum is a protozoan parasite that causes a vector borne infectious disease in humans known as visceral leishmaniasis (VL). This pathology, also caused by L. donovani, presently impacts the health of 500,000 people worldwide, and is treated with outdated anti-parasitic drugs that suffer from poor treatment regimens, severe side effects, high cost and/or emergence of resistant parasites. In previous works we have disclosed the anti-Leishmania activity of (-)-Epigallocatechin 3-O-gallate (EGCG), a flavonoid compound present in green tea leaves. To date, the mechanism of action of EGCG against Leishmania remains unknown. This work aims to shed new light into the leishmanicidal mode of action of EGCG. Towards this goal, we first confirmed that EGCG inhibits L. infantum promastigote proliferation in a concentration-dependent manner. Second, we established that the leishmanicidal effect of EGCG was associated with i) mitochondria depolarization and ii) decreased concentration of intracellular ATP, and iii) increased concentration of intracellular H2O2. Third, we found that the leishmanicidal effect and the elevated H2O2 levels induced by of EGCG can be abolished by PEG-catalase, strongly suggesting that this flavonoid kills L. infantum promastigotes by disturbing their intracellular redox balance. Finally, we gathered in silico and in vitro evidence that EGCG binds to trypanothione reductase (TR), a central enzyme of the redox homeostasis of Leishmania, acting as a competitive inhibitor of its trypanothione substrate.
Collapse
Affiliation(s)
- Job D F Inacio
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Myslene S Fonseca
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Gabriel Limaverde-Sousa
- Laboratório de Esquistossomose Experimental, Instituto Osvaldo Cruz, Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| | - Ana M Tomas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Helena Castro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Elmo E Almeida-Amaral
- Laboratório de Bioquímica de Tripanosomatideos, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz - FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Parab AR, McCall LI. Tryp-ing Up Metabolism: Role of Metabolic Adaptations in Kinetoplastid Disease Pathogenesis. Infect Immun 2021; 89:e00644-20. [PMID: 33526564 PMCID: PMC8090971 DOI: 10.1128/iai.00644-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Today, more than a billion people-one-sixth of the world's population-are suffering from neglected tropical diseases. Human African trypanosomiasis, Chagas disease, and leishmaniasis are neglected tropical diseases caused by protozoan parasites belonging to the genera Trypanosoma and Leishmania About half a million people living in tropical and subtropical regions of the world are at risk of contracting one of these three infections. Kinetoplastids have complex life cycles with different morphologies and unique physiological requirements at each life cycle stage. This review covers the latest findings on metabolic pathways impacting disease pathogenesis of kinetoplastids within the mammalian host. Nutrient availability is a key factor shaping in vivo parasite metabolism; thus, kinetoplastids display significant metabolic flexibility. Proteomic and transcriptomic profiles show that intracellular trypanosomatids are able to switch to an energy-efficient metabolism within the mammalian host system. Host metabolic changes can also favor parasite persistence, and contribute to symptom development, in a location-specific fashion. Ultimately, targeted and untargeted metabolomics studies have been a valuable approach to elucidate the specific biochemical pathways affected by infection within the host, leading to translational drug development and diagnostic insights.
Collapse
Affiliation(s)
- Adwaita R Parab
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
44
|
Moitra S, Basu S, Pawlowic M, Hsu FF, Zhang K. De Novo Synthesis of Phosphatidylcholine Is Essential for the Promastigote But Not Amastigote Stage in Leishmania major. Front Cell Infect Microbiol 2021; 11:647870. [PMID: 33777852 PMCID: PMC7996062 DOI: 10.3389/fcimb.2021.647870] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Phosphatidylcholine (PC) is the most abundant type of phospholipids in eukaryotes constituting ~30% of total lipids in Leishmania. PC synthesis mainly occurs via the choline branch of the Kennedy pathway (choline ⇒ choline-phosphate ⇒ CDP-choline ⇒ PC) and the N-methylation of phosphatidylethanolamine (PE). In addition, Leishmania parasites can acquire PC and other lipids from the host or culture medium. In this study, we assessed the function and essentiality of choline ethanolamine phosphotransferase (CEPT) in Leishmania major which is responsible for the final step of the de novo synthesis of PC and PE. Our data indicate that CEPT is localized in the endoplasmic reticulum and possesses the activity to generate PC from CDP-choline and diacylglycerol. Targeted deletion of CEPT is only possible in the presence of an episomal CEPT gene in the promastigote stage of L. major. These chromosomal null parasites require the episomal expression of CEPT to survive in culture, confirming its essentiality during the promastigote stage. In contrast, during in vivo infection of BALB/c mice, these chromosomal null parasites appeared to lose the episomal copy of CEPT while maintaining normal levels of virulence, replication and cellular PC. Therefore, while the de novo synthesis of PC/PE is indispensable for the proliferation of promastigotes, intracellular amastigotes appear to acquire most of their lipids through salvage and remodeling.
Collapse
Affiliation(s)
- Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Somrita Basu
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Mattie Pawlowic
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Fong-Fu Hsu
- Mass Spectrometry Resource, Division of Endocrinology, Diabetes, Metabolism, and Lipid research, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
45
|
Mondal DK, Pal DS, Abbasi M, Datta R. Functional partnership between carbonic anhydrase and malic enzyme in promoting gluconeogenesis in
Leishmania major. FEBS J 2021; 288:4129-4152. [DOI: 10.1111/febs.15720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 11/29/2020] [Accepted: 01/15/2021] [Indexed: 12/24/2022]
Affiliation(s)
- Dipon Kumar Mondal
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Dhiman Sankar Pal
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Mazharul Abbasi
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| | - Rupak Datta
- Department of Biological Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur India
| |
Collapse
|
46
|
Kumar V, Ghosh S, Roy K, Pal C, Singh S. Deletion of Glutamine Synthetase Gene Disrupts the Survivability and Infectivity of Leishmania donovani. Front Cell Infect Microbiol 2021; 11:622266. [PMID: 33732662 PMCID: PMC7959746 DOI: 10.3389/fcimb.2021.622266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/25/2021] [Indexed: 12/24/2022] Open
Abstract
Glutamine synthetase (GS) is one of the most important metabolic enzymes which catalyzes ligation of glutamate and ammonia to form glutamine. Previous studies from our lab had revealed significant differences in parasite and host GS enzyme which warranted us to further work on its relevance in parasite. To analyze glutamine synthetase function in Leishmania, we generated GS overexpressors and knockout mutants and evaluated their ability to grow in vitro in monocyte differentiated macrophage and in vivo by infections in BALB/c mice. GS knocked out strain showed significant growth retardation with delayed cell cycle progression and morphological alteration. Null mutants exhibited attenuated infectivity both in in vitro and in vivo experiments and the effect was reverted back when infected with GS complemented parasites. This indicated that the alterations in phenotype observed were indeed due to GS knockout. GS knockout also made the parasite increasingly sensitive to Miltefosine. Detailed investigation of mode of parasite death upon Miltefosine treatment by dual staining with Annexin-V conjugated FITC and propidium iodide, pointed towards apoptotic or necrotic mode of cell death. This is the first report to confirm that GS is essential for the survivability and infectivity of Leishmania donovani, and can be exploited as a potential drug-target.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Sanhita Ghosh
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Kamalika Roy
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Chiranjib Pal
- Cellular Immunology and Experimental Therapeutics Laboratory, Department of Zoology, West Bengal State University, Barasat, India
| | - Sushma Singh
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Mohali, India
| |
Collapse
|
47
|
McCall LI. Quo vadis? Central Rules of Pathogen and Disease Tropism. Front Cell Infect Microbiol 2021; 11:640987. [PMID: 33718287 PMCID: PMC7947345 DOI: 10.3389/fcimb.2021.640987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 01/18/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding why certain people get sick and die while others recover or never become ill is a fundamental question in biomedical research. A key determinant of this process is pathogen and disease tropism: the locations that become infected (pathogen tropism), and the locations that become damaged (disease tropism). Identifying the factors that regulate tropism is essential to understand disease processes, but also to drive the development of new interventions. This review intersects research from across infectious diseases to define the central mediators of disease and pathogen tropism. This review also highlights methods of study, and translational implications. Overall, tropism is a central but under-appreciated aspect of infection pathogenesis which should be at the forefront when considering the development of new methods of intervention.
Collapse
Affiliation(s)
- Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK, United States
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, United States
| |
Collapse
|
48
|
Yu X, Feng G, Zhang Q, Cao J. From Metabolite to Metabolome: Metabolomics Applications in Plasmodium Research. Front Microbiol 2021; 11:626183. [PMID: 33505389 PMCID: PMC7829456 DOI: 10.3389/fmicb.2020.626183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 01/02/2023] Open
Abstract
Advances in research over the past few decades have greatly improved metabolomics-based approaches in studying parasite biology and disease etiology. This improves the investigation of varied metabolic requirements during life stages or when following transmission to their hosts, and fulfills the demand for improved diagnostics and precise therapeutics. Therefore, this review highlights the progress of metabolomics in malaria research, including metabolic mapping of Plasmodium vertebrate life cycle stages to investigate antimalarials mode of actions and underlying complex host-parasite interactions. Also, we discuss current limitations as well as make several practical suggestions for methodological improvements which could drive metabolomics progress for malaria from a comprehensive perspective.
Collapse
Affiliation(s)
- Xinyu Yu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Medical College of Soochow University, Suzhou, China
| | - Gaoqian Feng
- Burnet Institute, Melbourne, VIC, Australia.,Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Qingfeng Zhang
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Cao
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China.,Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
49
|
Giordana L, Nowicki C. Two phylogenetically divergent isocitrate dehydrogenases are encoded in Leishmania parasites. Molecular and functional characterization of Leishmania mexicana isoenzymes with specificity towards NAD + and NADP .. Mol Biochem Parasitol 2020; 240:111320. [PMID: 32980452 DOI: 10.1016/j.molbiopara.2020.111320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 10/23/2022]
Abstract
Leishmania parasites are of great relevance to public health because they are the causative agents of various long-term and health-threatening diseases in humans. Dependent on the manifestation, drugs either require difficult and lengthy administration, are toxic, expensive, not very effective or have lost efficacy due to the resistance developed by these pathogens against clinical treatments. The intermediary metabolism of Leishmania parasites is characterized by several unusual features, among which whether the Krebs cycle operates in a cyclic and/or in a non-cyclic mode is included. Our survey of the genomes of Leishmania species and monoxenous parasites such as those of the genera Crithidia and Leptomonas (http://www.tritrypdb.org) revealed that two genes encoding putative isocitrate dehydrogenases (IDHs) -with distantly related sequences- are strictly conserved among these parasites. Thus, in this study, we aimed to functionally characterize the two leishmanial IDH isoenzymes, for which we selected the genes LmxM10.0290 (Lmex_IDH-90) and LmxM32.2550 (Lmex_IDH-50) from L. mexicana. Phylogenetic analysis showed that Lmex_IDH-50 clustered with members of Subfamily I, which contains mainly archaeal and bacterial IDHs, and that Lmex_IDH-90 was a close relative of eukaryotic enzymes comprised within Subfamily II IDHs. 3-D homology modeling predicted that both IDHs exhibited the typical folding motifs recognized as canonical for prokaryotic and eukaryotic counterparts, respectively. Both IDH isoforms displayed dual subcellular localization, in the cytosol and the mitochondrion. Kinetic studies showed that Lmex_IDH-50 exclusively catalyzed the reduction of NAD+, while Lmex_IDH-90 solely used NADP+ as coenzyme. Besides, Lmex_IDH-50 differed from Lmex_IDH-90 by exhibiting a nearly 20-fold lower apparent Km value towards isocitrate (2.0 μM vs 43 μM). Our findings showed, for the first time, that the genus Leishmania differentiates not only from other trypanosomatids such as Trypanosoma cruzi and Trypanosoma brucei, but also from most living organisms, by exhibiting two functional homo-dimeric IDHs, highly specific towards NAD+ and NADP+, respectively. It is tempting to argue that any or both types of IDHs might be directly or indirectly linked to the Krebs cycle and/or to the de novo synthesis of glutamate. Our results about the biochemical and structural features of leishmanial IDHs show the relevance of deepening our knowledge of the metabolic processes in these pathogenic parasites to potentially identify new therapeutic targets.
Collapse
Affiliation(s)
- Lucila Giordana
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB-CONICET), Junín 956, C1113AAD, Buenos Aires, Argentina
| | - Cristina Nowicki
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica Biológica (IQUIFIB-CONICET), Junín 956, C1113AAD, Buenos Aires, Argentina.
| |
Collapse
|
50
|
Bodhale N, Ohms M, Ferreira C, Mesquita I, Mukherjee A, André S, Sarkar A, Estaquier J, Laskay T, Saha B, Silvestre R. Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection. Cytokine 2020; 147:155267. [PMID: 32917471 DOI: 10.1016/j.cyto.2020.155267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Leishmania, a protozoan parasite inflicting the complex of diseases called Leishmaniases, resides and replicates as amastigotes within mammalian macrophages. As macrophages are metabolically highly active and can generate free radicals that can destroy this parasite, Leishmania also devise strategies to modulate the host cell metabolism. However, the metabolic changes can also be influenced by the anti-leishmanial immune response mediated by cytokines. This bidirectional, dynamic and complex metabolic coupling established between Leishmania and its host is the result of a long co-evolutionary process. Due to the continuous alterations imposed by the host microenvironment, such metabolic coupling continues to be dynamically regulated. The constant pursuit and competition for nutrients in the host-Leishmania duet alter the host metabolic pathways with major consequences for its nutritional reserves, eventually affecting the phenotype and functionality of the host cell. Altered phenotype and functions of macrophages are particularly relevant to immune cells, as perturbed metabolic fluxes can crucially affect the activation, differentiation, and functions of host immune cells. All these changes can deterministically direct the outcome of an infection. Cytokines and metabolic fluxes can bidirectionally influence each other through molecular sensors and regulators to dictate the final infection outcome. Our studies along with those from others have now identified the metabolic nodes that can be targeted for therapy.
Collapse
Affiliation(s)
- Neelam Bodhale
- National Centre for Cell Science, 411007 Pune, India; Jagadis Bose National Science Talent Search (JBNSTS), Kolkata 700107 India
| | - Mareike Ohms
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck 23538, Germany
| | - Carolina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Sónia André
- INSERM U1124, Université Paris Descartes, 75006 Paris, France
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Jérôme Estaquier
- INSERM U1124, Université Paris Descartes, 75006 Paris, France; Centre de Recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck 23538, Germany
| | - Bhaskar Saha
- National Centre for Cell Science, 411007 Pune, India; Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|