1
|
Bensalel J, Gallego-Delgado J. Exploring adjunctive therapies for cerebral malaria. Front Cell Infect Microbiol 2024; 14:1347486. [PMID: 38410724 PMCID: PMC10895034 DOI: 10.3389/fcimb.2024.1347486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/17/2024] [Indexed: 02/28/2024] Open
Abstract
Cerebral malaria (CM) is one of the most severe complications of malaria infection characterized by coma and neurological effects. Despite standardized treatment of malaria infection with artemisinin-based combination therapies (ACT), the mortality rate is still high, and it primarily affects pediatric patients. ACT reduces parasitemia but fails to adequately target the pathogenic mechanisms underlying CM, including blood-brain-barrier (BBB) disruption, endothelial activation/dysfunction, and hyperinflammation. The need for adjunctive therapies to specifically treat this form of severe malaria is critical as hundreds of thousands of people continue to die each year from this disease. Here we present a summary of some potential promising therapeutic targets and treatments for CM, as well as some that have been tested and deemed ineffective or, in some cases, even deleterious. Further exploration into these therapeutic agents is warranted to assess the effectiveness of these potential treatments for CM patients.
Collapse
Affiliation(s)
- Johanna Bensalel
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY, United States
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, United States
| | - Julio Gallego-Delgado
- Ph.D. Program in Biology, The Graduate Center, The City University of New York, New York, NY, United States
- Department of Biological Sciences, Lehman College, City University of New York, New York, NY, United States
- Ph.D. Program in Biochemistry, The Graduate Center, The City University of New York, New York, NY, United States
| |
Collapse
|
2
|
Varo R, Crowley VM, Mucasse H, Sitoe A, Bramugy J, Serghides L, Weckman AM, Erice C, Bila R, Vitorino P, Mucasse C, Valente M, Ajanovic S, Balanza N, Zhong K, Derpsch Y, Gladstone M, Mayor A, Bassat Q, Kain KC. Adjunctive rosiglitazone treatment for severe pediatric malaria: A randomized placebo-controlled trial in Mozambican children. Int J Infect Dis 2024; 139:34-40. [PMID: 38013152 DOI: 10.1016/j.ijid.2023.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 11/29/2023] Open
Abstract
OBJECTIVES We tested the hypothesis that adjunctive rosiglitazone treatment would reduce levels of circulating angiopoietin-2 (Angpt-2) and improve outcomes of Mozambican children with severe malaria. METHODS A randomized, double-blind, placebo-controlled trial of rosiglitazone vs placebo as adjunctive treatment to artesunate in children with severe malaria was conducted. A 0.045 mg/kg/dose of rosiglitazone or matching placebo were administered, in addition to standard of malaria care, twice a day for 4 days. The primary endpoint was the rate of decline of Angpt-2 over 96 hours. Secondary outcomes included the longitudinal dynamics of angiopoietin-1 (Angpt-1) and the Angpt-2/Angpt-1 ratio over 96 hours, parasite clearance kinetics, clinical outcomes, and safety metrics. RESULTS Overall, 180 children were enrolled; 91 were assigned to rosiglitazone and 89 to placebo. Children who received rosiglitazone had a steeper rate of decline of Angpt-2 over the first 96 hours of hospitalization compared to children who received placebo; however, the trend was not significant (P = 0.28). A similar non-significant trend was observed for Angpt-1 (P = 0.65) and the Angpt-2/Angpt-1 ratio (P = 0.34). All other secondary and safety outcomes were similar between groups (P >0.05). CONCLUSION Adjunctive rosiglitazone at this dosage was safe and well tolerated but did not significantly affect the longitudinal kinetics of circulating Angpt-2.
Collapse
Affiliation(s)
- Rosauro Varo
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.
| | - Valerie M Crowley
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Humberto Mucasse
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Antonio Sitoe
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Justina Bramugy
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Lena Serghides
- Toronto General Research Institute (TGRI), University Health Network, Toronto, Canada; Women's College Research Institute, Women's College Hospital, Toronto, Canada; Department of Immunology and Institute of Medical Sciences University of Toronto, Toronto, Canada
| | - Andrea M Weckman
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Clara Erice
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Rubao Bila
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Pio Vitorino
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Campos Mucasse
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Marta Valente
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Sara Ajanovic
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
| | - Núria Balanza
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Kathleen Zhong
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Yiovanna Derpsch
- Department of Psychological Sciences, University of Liverpool, Liverpool, United Kingdom; School of Psychology, University of East Anglia, Norwich, United Kingdom
| | - Melissa Gladstone
- Department of Women's and Children's Health, Institute of Life Course and Medical Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Alfredo Mayor
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique; Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Medicine, University of Toronto, Toronto, Canada
| | - Quique Bassat
- ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique; Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain; Department of Medicine, University of Toronto, Toronto, Canada; ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain; Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Barcelona, Spain.
| | - Kevin C Kain
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada; Toronto General Research Institute (TGRI), University Health Network, Toronto, Canada; Tropical Diseases Unit, Division of Infectious Diseases, Department of Medicine, UHN-Toronto General Hospital, Toronto, Canada
| |
Collapse
|
3
|
Hadjilaou A, Brandi J, Riehn M, Friese MA, Jacobs T. Pathogenetic mechanisms and treatment targets in cerebral malaria. Nat Rev Neurol 2023; 19:688-709. [PMID: 37857843 DOI: 10.1038/s41582-023-00881-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2023] [Indexed: 10/21/2023]
Abstract
Malaria, the most prevalent mosquito-borne infectious disease worldwide, has accompanied humanity for millennia and remains an important public health issue despite advances in its prevention and treatment. Most infections are asymptomatic, but a small percentage of individuals with a heavy parasite burden develop severe malaria, a group of clinical syndromes attributable to organ dysfunction. Cerebral malaria is an infrequent but life-threatening complication of severe malaria that presents as an acute cerebrovascular encephalopathy characterized by unarousable coma. Despite effective antiparasite drug treatment, 20% of patients with cerebral malaria die from this disease, and many survivors of cerebral malaria have neurocognitive impairment. Thus, an important unmet clinical need is to rapidly identify people with malaria who are at risk of developing cerebral malaria and to develop preventive, adjunctive and neuroprotective treatments for cerebral malaria. This Review describes important advances in the understanding of cerebral malaria over the past two decades and discusses how these mechanistic insights could be translated into new therapies.
Collapse
Affiliation(s)
- Alexandros Hadjilaou
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany.
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.
| | - Johannes Brandi
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Mathias Riehn
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Jacobs
- Protozoen Immunologie, Bernhard-Nocht-Institut für Tropenmedizin (BNITM), Hamburg, Germany
| |
Collapse
|
4
|
Umumararungu T, Nkuranga JB, Habarurema G, Nyandwi JB, Mukazayire MJ, Mukiza J, Muganga R, Hahirwa I, Mpenda M, Katembezi AN, Olawode EO, Kayitare E, Kayumba PC. Recent developments in antimalarial drug discovery. Bioorg Med Chem 2023; 88-89:117339. [PMID: 37236020 DOI: 10.1016/j.bmc.2023.117339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
Although malaria remains a big burden to many countries that it threatens their socio-economic stability, particularly in the countries where malaria is endemic, there have been great efforts to eradicate this disease with both successes and failures. For example, there has been a great improvement in malaria prevention and treatment methods with a net reduction in infection and mortality rates. However, the disease remains a global threat in terms of the number of people affected because it is one of the infectious diseases that has the highest prevalence rate, especially in Africa where the deadly Plasmodium falciparum is still widely spread. Methods to fight malaria are being diversified, including the use of mosquito nets, the target candidate profiles (TCPs) and target product profiles (TPPs) of medicine for malarial venture (MMV) strategy, the search for newer and potent drugs that could reverse chloroquine resistance, and the use of adjuvants such as rosiglitazone and sevuparin. Although these adjuvants have no antiplasmodial activity, they can help to alleviate the effects which result from plasmodium invasion such as cytoadherence. The list of new antimalarial drugs under development is long, including the out of ordinary new drugs MMV048, CDRI-97/78 and INE963 from South Africa, India and Novartis, respectively.
Collapse
Affiliation(s)
- Théoneste Umumararungu
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda.
| | - Jean Bosco Nkuranga
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Gratien Habarurema
- Department of Chemistry, School of Science, College of Science and Technology, University of Rwanda, Rwanda
| | - Jean Baptiste Nyandwi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Marie Jeanne Mukazayire
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Janvier Mukiza
- Department of Mathematical Science and Physical Education, School of Education, College of Education, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Raymond Muganga
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Innocent Hahirwa
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Matabishi Mpenda
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Alain Nyirimigabo Katembezi
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda; Rwanda Food and Drugs Authority, Nyarutarama Plaza, KG 9 Avenue, Kigali, Rwanda
| | - Emmanuel Oladayo Olawode
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, 18301 N Miami Ave #1, Miami, FL 33169, USA
| | - Egide Kayitare
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| | - Pierre Claver Kayumba
- Department of Pharmacy, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Rwanda
| |
Collapse
|
5
|
Li J, Zhang T, Liu K, Hu G. Protective effects and mechanisms of Yi Qi Huo Xue Fang in cerebral ischemic stroke based on network pharmacology and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2023; 314:116611. [PMID: 37169318 DOI: 10.1016/j.jep.2023.116611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yi Qi Huo Xue Fang (YQHXF) is an effective formula for treating cerebral ischemic stroke (CIS). However, its active ingredients and mechanism of action remain unclear. AIM OF THE STUDY This study aimed to reveal the mechanism of action of YQHXF in the treatment of ischemic stroke based on network pharmacology and experimental validation. MATERIALS AND METHODS This study identified the chemical components in YQHXF and the components absorbed by rat serum based on UPLC-Q-TOF/MS technology and used network pharmacology to predict key candidate targets. A protein-protein-interaction (P-P-I) network was constructed using String 11.0 database and Cytoscape, and R software for gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. Finally, molecular docking combined with animal experiments was used to verify network pharmacology results. RESULTS This study identified and confirmed 36 chemical components of YQHXF and five chemical ingredients that were absorbed into the blood of rats and screened 66 key candidate targets. All targets in the P-P-I network were mainly related to inflammation and vascular processes. KEGG enrichment results revealed that these 66 key candidate targets were primarily involved in the "AGE-RAGE signaling pathway," "TNF-α signaling pathway, and "T cell receptor signaling pathway." Molecular docking results revealed that Prostaglandin-endoperoxidase synthase 2(PTGS-2), Nitric oxide synthase, endothelial (NOS3), and peroxisome proliferator-activated receptor gamma (PPARG) were more stably bound to their active ingredients. Animal experiments demonstrated that YQHXF promoted M2 polarization, inhibited M1 polarization in microglia, and promoted angiogenesis, which may be related to the PPARG pathway. CONCLUSION This study revealed the key active components and effective targets of YQHXF, identified the mechanism of action of YQHXF, laid the foundation for further research on YQHXF, and provided ideas for developing new drugs for CIS.
Collapse
Affiliation(s)
- Jiamin Li
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, China; Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Tiantian Zhang
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, China; Hunan University of Chinese Medicine, Changsha, 410208, China.
| | - Kan Liu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, China.
| | - Guoheng Hu
- The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, 410021, China; Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
6
|
Alves V, Araújo GR, Frases S. Off-label treatments as potential accelerators in the search for the ideal antifungal treatment of cryptococcosis. Future Microbiol 2023; 18:127-135. [PMID: 36688321 DOI: 10.2217/fmb-2022-0122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Cryptococcosis is an opportunistic mycosis that mainly affects immunosuppressed patients. The treatment is a combination of three antifungal agents: amphotericin B, 5-flucytosine and fluconazole. However, these drugs have many disadvantages, such as high nephrotoxicity, marketing bans in some countries and fungal resistance. One of the solutions to find possible new drugs is pharmacological repositioning. This work presents repositioned drugs as an alternative for new antifungal therapies for cryptococcosis. All the studies here were performed in vitro or in animal models, except for sertraline, which reached phase III in humans. There is still no pharmacological repositioning approval for cryptococcosis in humans, though this review shows the potential of repurposing as a rapid approach to finding new agents to treat cryptococcosis.
Collapse
Affiliation(s)
- Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941902, Brazil
| | - Glauber Rs Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941902, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, 21941902, Brazil
| |
Collapse
|
7
|
Akide Ndunge OB, Kilian N, Salman MM. Cerebral Malaria and Neuronal Implications of Plasmodium Falciparum Infection: From Mechanisms to Advanced Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202944. [PMID: 36300890 PMCID: PMC9798991 DOI: 10.1002/advs.202202944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/22/2022] [Indexed: 06/01/2023]
Abstract
Reorganization of host red blood cells by the malaria parasite Plasmodium falciparum enables their sequestration via attachment to the microvasculature. This artificially increases the dwelling time of the infected red blood cells within inner organs such as the brain, which can lead to cerebral malaria. Cerebral malaria is the deadliest complication patients infected with P. falciparum can experience and still remains a major public health concern despite effective antimalarial therapies. Here, the current understanding of the effect of P. falciparum cytoadherence and their secreted proteins on structural features of the human blood-brain barrier and their involvement in the pathogenesis of cerebral malaria are highlighted. Advanced 2D and 3D in vitro models are further assessed to study this devastating interaction between parasite and host. A better understanding of the molecular mechanisms leading to neuronal and cognitive deficits in cerebral malaria will be pivotal in devising new strategies to treat and prevent blood-brain barrier dysfunction and subsequent neurological damage in patients with cerebral malaria.
Collapse
Affiliation(s)
- Oscar Bate Akide Ndunge
- Department of Internal MedicineSection of Infectious DiseasesYale University School of Medicine300 Cedar StreetNew HavenCT06510USA
| | - Nicole Kilian
- Centre for Infectious Diseases, ParasitologyHeidelberg University HospitalIm Neuenheimer Feld 32469120HeidelbergGermany
| | - Mootaz M. Salman
- Department of PhysiologyAnatomy and GeneticsUniversity of OxfordOxfordOX1 3QUUK
- Kavli Institute for NanoScience DiscoveryUniversity of OxfordOxfordUK
- Oxford Parkinson's Disease CentreUniversity of OxfordOxfordUK
| |
Collapse
|
8
|
Tahamtan M, Aghaei I, Shabani M, Nazari A, Pooladvand V, Razavinasab M. Peroxisome proliferator-activated receptor-γ doesn't modify altered electrophysiological properties of the CA1 pyramidal neurons in a rat model of hepatic cirrhosis. Metab Brain Dis 2022; 37:2687-2697. [PMID: 35943675 DOI: 10.1007/s11011-022-01057-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/22/2022] [Indexed: 10/15/2022]
Abstract
Regarding the low quality of life due to the cognitive complications in the patients with hepatic cirrhosis (HC), the goal of this study was to examine the possible neuroprotective effect of pioglitazone (PIO) on the electrophysiological alterations of hippocampus, a major area of cognition, in the experimental model of bile duct ligation (BDL). We used adult male Wistar rats in the present study to perform BDL or sham surgery. Pioglitazone was administered in BDL rats two weeks after the surgery for the next continuous four weeks. The effects of pioglitazone on BDL-induced electrophysiological alterations of the CA1 pyramidal neurons in the hippocampus were evaluated by whole-cell patch clamp recordings. Our findings demonstrated that chronic administration of PIO could not reverse the electrophysiological changes in the CA1 pyramidal neurons of the hippocampus in BDL rats but could improve the hepatic dysfunction.Together, the results of this study suggest that PIO administration cannot counteract altered intrinsic properties of the hippocampal neurons which has been shown recently as an involved mechanism of the cognitive impairments in hepatic encephalopathy (HE).
Collapse
Affiliation(s)
- Mahshid Tahamtan
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iraj Aghaei
- Neuroscience Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shabani
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, 76198-13159, Kerman, Iran.
| | - Abbas Nazari
- Department of Biology, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Vahid Pooladvand
- Biochemical Department, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Moazamehosadat Razavinasab
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, 76198-13159, Kerman, Iran.
| |
Collapse
|
9
|
Song X, Wei W, Cheng W, Zhu H, Wang W, Dong H, Li J. Cerebral malaria induced by plasmodium falciparum: clinical features, pathogenesis, diagnosis, and treatment. Front Cell Infect Microbiol 2022; 12:939532. [PMID: 35959375 PMCID: PMC9359465 DOI: 10.3389/fcimb.2022.939532] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cerebral malaria (CM) caused by Plasmodium falciparum is a fatal neurological complication of malaria, resulting in coma and death, and even survivors may suffer long-term neurological sequelae. In sub-Saharan Africa, CM occurs mainly in children under five years of age. Although intravenous artesunate is considered the preferred treatment for CM, the clinical efficacy is still far from satisfactory. The neurological damage induced by CM is irreversible and lethal, and it is therefore of great significance to unravel the exact etiology of CM, which may be beneficial for the effective management of this severe disease. Here, we review the clinical characteristics, pathogenesis, diagnosis, and clinical therapy of CM, with the aim of providing insights into the development of novel tools for improved CM treatments.
Collapse
Affiliation(s)
- Xiaonan Song
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wei
- Beijing School of Chemistry and Bioengineering, University of Science and Technology Beijing, Beijing, China
| | - Weijia Cheng
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Huiyin Zhu
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
| | - Wei Wang
- Key Laboratory of National Health Commission on Technology for Parasitic Diseases Prevention and Control, Jiangsu Provincial Key Laboratory on Parasites and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, China
- *Correspondence: Wei Wang, ; Haifeng Dong, ; Jian Li,
| | - Haifeng Dong
- Guangdong Key Laboratory for Genome Stability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, School of Medicine, Shenzhen University, Shenzhen, China
- *Correspondence: Wei Wang, ; Haifeng Dong, ; Jian Li,
| | - Jian Li
- School of Basic Medical Sciences, Hubei University of Medicine, Shiyan, China
- *Correspondence: Wei Wang, ; Haifeng Dong, ; Jian Li,
| |
Collapse
|
10
|
Hellenthal KEM, Brabenec L, Wagner NM. Regulation and Dysregulation of Endothelial Permeability during Systemic Inflammation. Cells 2022; 11:cells11121935. [PMID: 35741064 PMCID: PMC9221661 DOI: 10.3390/cells11121935] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/14/2022] Open
Abstract
Systemic inflammation can be triggered by infection, surgery, trauma or burns. During systemic inflammation, an overshooting immune response induces tissue damage resulting in organ dysfunction and mortality. Endothelial cells make up the inner lining of all blood vessels and are critically involved in maintaining organ integrity by regulating tissue perfusion. Permeability of the endothelial monolayer is strictly controlled and highly organ-specific, forming continuous, fenestrated and discontinuous capillaries that orchestrate the extravasation of fluids, proteins and solutes to maintain organ homeostasis. In the physiological state, the endothelial barrier is maintained by the glycocalyx, extracellular matrix and intercellular junctions including adherens and tight junctions. As endothelial cells are constantly sensing and responding to the extracellular environment, their activation by inflammatory stimuli promotes a loss of endothelial barrier function, which has been identified as a hallmark of systemic inflammation, leading to tissue edema formation and hypotension and thus, is a key contributor to lethal outcomes. In this review, we provide a comprehensive summary of the major players, such as the angiopoietin-Tie2 signaling axis, adrenomedullin and vascular endothelial (VE-) cadherin, that substantially contribute to the regulation and dysregulation of endothelial permeability during systemic inflammation and elucidate treatment strategies targeting the preservation of vascular integrity.
Collapse
|
11
|
Rosa-Gonçalves P, Ribeiro-Gomes FL, Daniel-Ribeiro CT. Malaria Related Neurocognitive Deficits and Behavioral Alterations. Front Cell Infect Microbiol 2022; 12:829413. [PMID: 35281436 PMCID: PMC8904205 DOI: 10.3389/fcimb.2022.829413] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/31/2022] [Indexed: 01/29/2023] Open
Abstract
Typical of tropical and subtropical regions, malaria is caused by protozoa of the genus Plasmodium and is, still today, despite all efforts and advances in controlling the disease, a major issue of public health. Its clinical course can present either as the classic episodes of fever, sweating, chills and headache or as nonspecific symptoms of acute febrile syndromes and may evolve to severe forms. Survivors of cerebral malaria, the most severe and lethal complication of the disease, might develop neurological, cognitive and behavioral sequelae. This overview discusses the neurocognitive deficits and behavioral alterations resulting from human naturally acquired infections and murine experimental models of malaria. We highlighted recent reports of cognitive and behavioral sequelae of non-severe malaria, the most prevalent clinical form of the disease worldwide. These sequelae have gained more attention in recent years and therapies for them are required and demand advances in the understanding of neuropathogenesis. Recent studies using experimental murine models point to immunomodulation as a potential approach to prevent or revert neurocognitive sequelae of malaria.
Collapse
Affiliation(s)
- Pamela Rosa-Gonçalves
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
- Laboratório de Biologia, campus Duque de Caxias, Colégio Pedro II, Duque de Caxias, Brazil
- *Correspondence: Pamela Rosa-Gonçalves,
| | - Flávia Lima Ribeiro-Gomes
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz and Secretaria de Vigilância em Saúde, Ministério da Saúde, Rio de Janeiro, Brazil
| |
Collapse
|
12
|
Reis PA, Castro-Faria-Neto HC. Systemic Response to Infection Induces Long-Term Cognitive Decline: Neuroinflammation and Oxidative Stress as Therapeutical Targets. Front Neurosci 2022; 15:742158. [PMID: 35250433 PMCID: PMC8895724 DOI: 10.3389/fnins.2021.742158] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/31/2021] [Indexed: 12/29/2022] Open
Abstract
In response to pathogens or damage signs, the immune system is activated in order to eliminate the noxious stimuli. The inflammatory response to infectious diseases induces systemic events, including cytokine storm phenomenon, vascular dysfunction, and coagulopathy, that can lead to multiple-organ dysfunction. The central nervous system (CNS) is one of the major organs affected, and symptoms such as sickness behavior (depression and fever, among others), or even delirium, can be observed due to activation of endothelial and glial cells, leading to neuroinflammation. Several reports have been shown that, due to CNS alterations caused by neuroinflammation, some sequels can be developed in special cognitive decline. There is still no any treatment to avoid cognitive impairment, especially those developed due to systemic infectious diseases, but preclinical and clinical trials have pointed out controlling neuroinflammatory events to avoid the development of this sequel. In this minireview, we point to the possible mechanisms that triggers long-term cognitive decline, proposing the acute neuroinflammatory events as a potential therapeutical target to treat this sequel that has been associated to several infectious diseases, such as malaria, sepsis, and, more recently, the new SARS-Cov2 infection.
Collapse
Affiliation(s)
- Patricia Alves Reis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
- Biochemistry Department, Roberto Alcântara Gomes Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Brazil
- *Correspondence: Patricia Alves Reis,
| | | |
Collapse
|
13
|
Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther 2021; 6:407. [PMID: 34824200 PMCID: PMC8613465 DOI: 10.1038/s41392-021-00816-9] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection. Over decades, advanced understanding of host-microorganism interaction has gradually unmasked the genuine nature of sepsis, guiding toward new definition and novel therapeutic approaches. Diverse clinical manifestations and outcomes among infectious patients have suggested the heterogeneity of immunopathology, while systemic inflammatory responses and deteriorating organ function observed in critically ill patients imply the extensively hyperactivated cascades by the host defense system. From focusing on microorganism pathogenicity, research interests have turned toward the molecular basis of host responses. Though progress has been made regarding recognition and management of clinical sepsis, incidence and mortality rate remain high. Furthermore, clinical trials of therapeutics have failed to obtain promising results. As far as we know, there was no systematic review addressing sepsis-related molecular signaling pathways and intervention therapy in literature. Increasing studies have succeeded to confirm novel functions of involved signaling pathways and comment on efficacy of intervention therapies amid sepsis. However, few of these studies attempt to elucidate the underlining mechanism in progression of sepsis, while other failed to integrate preliminary findings and describe in a broader view. This review focuses on the important signaling pathways, potential molecular mechanism, and pathway-associated therapy in sepsis. Host-derived molecules interacting with activated cells possess pivotal role for sepsis pathogenesis by dynamic regulation of signaling pathways. Cross-talk and functions of these molecules are also discussed in detail. Lastly, potential novel therapeutic strategies precisely targeting on signaling pathways and molecules are mentioned.
Collapse
Affiliation(s)
- Yun-Yu Zhang
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Bo-Tao Ning
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
14
|
Tisnerat C, Dassonville-Klimpt A, Gosselet F, Sonnet P. Antimalarial drug discovery: from quinine to the most recent promising clinical drug candidates. Curr Med Chem 2021; 29:3326-3365. [PMID: 34344287 DOI: 10.2174/0929867328666210803152419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 11/22/2022]
Abstract
Malaria is a tropical threatening disease caused by Plasmodium parasites, resulting in 409,000 deaths in 2019. The delay of mortality and morbidity has been compounded by the widespread of drug resistant parasites from Southeast Asia since two decades. The emergence of artemisinin-resistant Plasmodium in Africa, where most cases are accounted, highlights the urgent need for new medicines. In this effort, the World Health Organization and Medicines for Malaria Venture joined to define clear goals for novel therapies and characterized the target candidate profile. This ongoing search for new treatments is based on imperative labor in medicinal chemistry which is summarized here with particular attention to hit-to-lead optimizations, key properties, and modes of action of these novel antimalarial drugs. This review, after presenting the current antimalarial chemotherapy, from quinine to the latest marketed drugs, focuses in particular on recent advances of the most promising antimalarial candidates in clinical and preclinical phases.
Collapse
Affiliation(s)
- Camille Tisnerat
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| | | | | | - Pascal Sonnet
- AGIR UR4294, UFR de Pharmacie, Université de Picardie Jules Verne, Amiens. France
| |
Collapse
|
15
|
Barbosa-Silva MC, Lima MN, Battaglini D, Robba C, Pelosi P, Rocco PRM, Maron-Gutierrez T. Infectious disease-associated encephalopathies. Crit Care 2021; 25:236. [PMID: 34229735 PMCID: PMC8259088 DOI: 10.1186/s13054-021-03659-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases may affect brain function and cause encephalopathy even when the pathogen does not directly infect the central nervous system, known as infectious disease-associated encephalopathy. The systemic inflammatory process may result in neuroinflammation, with glial cell activation and increased levels of cytokines, reduced neurotrophic factors, blood-brain barrier dysfunction, neurotransmitter metabolism imbalances, and neurotoxicity, and behavioral and cognitive impairments often occur in the late course. Even though infectious disease-associated encephalopathies may cause devastating neurologic and cognitive deficits, the concept of infectious disease-associated encephalopathies is still under-investigated; knowledge of the underlying mechanisms, which may be distinct from those of encephalopathies of non-infectious cause, is still limited. In this review, we focus on the pathophysiology of encephalopathies associated with peripheral (sepsis, malaria, influenza, and COVID-19), emerging therapeutic strategies, and the role of neuroinflammation.
Collapse
Affiliation(s)
- Maria C Barbosa-Silva
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Maiara N Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil
| | - Denise Battaglini
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
| | - Chiara Robba
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Paolo Pelosi
- Anesthesia and Intensive Care, San Martino Policlinico Hospital, IRCCS for Oncology and Neuroscience, Genoa, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil
| | - Tatiana Maron-Gutierrez
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Fiocruz, Av. Brasil, 4365, Pavilhão 108, sala 45, Manguinhos, Rio de Janeiro, RJ, 21040-360, Brazil.
- Rio de Janeiro Network on Neuroinflammation, Carlos Chagas Filho Foundation for Supporting Research in the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, Brazil.
- National Institute of Science and Technology on Neuroimmunomodulation, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Gouveia-Eufrasio L, Ribeiro NQ, Santos JRA, da Costa MC, Emídio ECP, de Freitas GJC, do Carmo PHF, Miranda BA, de Oliveira JCMD, da Silva LMV, Teixeira Leocádio VA, Randi Magalhães VC, Penido I, Pereira LS, Rabelo LF, de Almeida Faria FA, Teixeira Dutra MR, Aspahan M, de Paula L, da Silva DI, Tavares Melo MG, de Andrade Zambelli VA, Gomes Faraco AA, da Costa César I, Alves GP, da Cunha Melo LF, de Aguiar Peres NT, Santos DA. Randomized, phase 1/2, double-blind pioglitazone repositioning trial combined with antifungals for the treatment of cryptococcal meningitis - PIO study. Contemp Clin Trials Commun 2021; 22:100745. [PMID: 33997457 PMCID: PMC8099743 DOI: 10.1016/j.conctc.2021.100745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 10/14/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022] Open
Abstract
Background Cryptococcosis affects more than 220,000 patients/year, with high mortality even when the standard treatment [amphotericin B (AMB), 5-flucytosin (5-FC) and fluconazole] is used. AMB presents high toxicity and 5-FC is not currently available in Brazil. In a pre-clinical study, pioglitazone (PIO - an antidiabetic drug) decreased AMB toxicity and lead to an increased mice survival, reduced morbidity and fungal burden in brain and lungs. The aim of this trial is to evaluate the efficacy and safety of PIO combined with standard antifungal treatment for human cryptococcosis. Methods A phase 1/2, randomized, double blind, placebo-controlled trial will be performed with patients from Belo Horizonte, Brazil. They will be divided into three groups (placebo, PIO 15 mg/day or PIO 45 mg/day) and will receive an additional pill during the induction phase of cryptococcosis' treatment. Our hypothesis is that treated patients will have increased survival, so the primary outcome will be the mortality rate. Patients will be monitored for survival, side effects, fungal burden and inflammatory mediators in blood and cerebrospinal fluid. The follow up will occur for up 60 days. Conclusions We expect that PIO will be an adequate adjuvant to the standard cryptococcosis' treatment. Trial registration ICTRP/WHO (and International Clinical Trial Registry Plataform (ICTRP/WHO) (http://apps.who.int/trialsearch/Trial2.aspx?TrialID=RBR-9fv3f4), RBR-9fv3f4 (http://www.ensaiosclinicos.gov.br/rg/RBR-9fv3f4). UTN Number: U1111-1226-1535. Ethical approvement number: CAAE 17377019.0.0000.5149.
Collapse
Affiliation(s)
- Ludmila Gouveia-Eufrasio
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Noelly Queiroz Ribeiro
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | | | - Marliete Carvalho da Costa
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Elúzia Castro Peres Emídio
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Gustavo José Cota de Freitas
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Paulo Henrique Fonseca do Carmo
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Bárbara Alves Miranda
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - João Carlos Maia Dornelas de Oliveira
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lívia Mara Vitorino da Silva
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Victor Augusto Teixeira Leocádio
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Vanessa Caroline Randi Magalhães
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.,Eduardo de Menezes Hospital, Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, MG, Brazil
| | - Indiara Penido
- Eduardo de Menezes Hospital, Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, MG, Brazil
| | - Leonardo Soares Pereira
- Eduardo de Menezes Hospital, Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, MG, Brazil
| | - Lívia Frota Rabelo
- Eduardo de Menezes Hospital, Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, MG, Brazil
| | | | - Maria Rita Teixeira Dutra
- Eduardo de Menezes Hospital, Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, MG, Brazil
| | - Maíra Aspahan
- Eduardo de Menezes Hospital, Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, MG, Brazil
| | - Ludmila de Paula
- Eduardo de Menezes Hospital, Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, MG, Brazil
| | - Dirce Inês da Silva
- Eduardo de Menezes Hospital, Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, MG, Brazil
| | - Márcia Gregory Tavares Melo
- Eduardo de Menezes Hospital, Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, MG, Brazil
| | | | | | - Isabela da Costa César
- Departamento de produtos farmacêuticos, Faculdade de Farmácia da UFMG, Belo Horizonte, MG, Brazil
| | - Glauciene Prado Alves
- Eduardo de Menezes Hospital, Fundação Hospitalar do Estado de Minas Gerais (FHEMIG), Belo Horizonte, MG, Brazil
| | | | - Nalu Teixeira de Aguiar Peres
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Daniel Assis Santos
- Mycology Lab, Departamento de Microbiolgia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
17
|
Mita-Mendoza NK, Magallon-Tejada A, Parmar P, Furtado R, Aldrich M, Saidi A, Taylor T, Smith J, Seydel K, Daily JP. Dimethyl fumarate reduces TNF and Plasmodium falciparum induced brain endothelium activation in vitro. Malar J 2020; 19:376. [PMID: 33087130 PMCID: PMC7579885 DOI: 10.1186/s12936-020-03447-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 10/16/2020] [Indexed: 11/10/2022] Open
Abstract
Background Cerebral malaria (CM) is associated with morbidity and mortality despite the use of potent anti-malarial agents. Brain endothelial cell activation and dysfunction from oxidative and inflammatory host responses and products released by Plasmodium falciparum-infected erythrocytes (IE), are likely the major contributors to the encephalopathy, seizures, and brain swelling that are associated with CM. The development of adjunctive therapy to reduce the pathological consequences of host response pathways could improve outcomes. A potentially protective role of the nuclear factor E2-related factor 2 (NRF2) pathway, which serves as a therapeutic target in brain microvascular diseases and central nervous system (CNS) inflammatory diseases such as multiple sclerosis was tested to protect endothelial cells in an in vitro culture system subjected to tumour necrosis factor (TNF) or infected red blood cell exposure. NRF2 is a transcription factor that mediates anti-oxidant and anti-inflammatory responses. Methods To accurately reflect clinically relevant parasite biology a unique panel of parasite isolates derived from patients with stringently defined CM was developed. The effect of TNF and these parasite lines on primary human brain microvascular endothelial cell (HBMVEC) activation in an in vitro co-culture model was tested. HBMVEC activation was measured by cellular release of IL6 and nuclear translocation of NFκB. The transcriptional and functional effects of dimethyl fumarate (DMF), an FDA approved drug which induces the NRF2 pathway, on host and parasite induced HBMVEC activation was characterized. In addition, the effect of DMF on parasite binding to TNF stimulated HBMVEC in a semi-static binding assay was examined. Results Transcriptional profiling demonstrates that DMF upregulates the NRF2-Mediated Oxidative Stress Response, ErbB4 Signaling Pathway, Peroxisome Proliferator-activated Receptor (PPAR) Signaling and downregulates iNOS Signaling and the Neuroinflammation Signaling Pathway on TNF activated HBMVEC. The parasite lines derived from eight paediatric CM patients demonstrated increased binding to TNF activated HBMVEC and varied in their binding and activation of HBMVEC. Overall DMF reduced both TNF and CM derived parasite activation of HBMVEC. Conclusions These findings provide evidence that targeting the NRF2 pathway in TNF and parasite activated HBMVEC mediates multiple protective pathways and may represent a novel adjunctive therapy to improve infection outcomes in CM.
Collapse
Affiliation(s)
- Neida K Mita-Mendoza
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ariel Magallon-Tejada
- Seattle Biomedical Research Institute, Seattle, WA, USA.,Department of Research in Parasitology, Gorgas Memorial Research Institute for Health Studies, Panama City, Panama
| | - Priyanka Parmar
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Raquel Furtado
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Margaret Aldrich
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alex Saidi
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi
| | - Terrie Taylor
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Joe Smith
- Seattle Children's Research Institute, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| | - Karl Seydel
- Blantyre Malaria Project, University of Malawi College of Medicine, Blantyre 3, Malawi.,Department of Osteopathic Medical Specialties, College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA
| | - Johanna P Daily
- Department of Microbiology & Immunology and Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
18
|
Ngai M, Kain KC. Fever in returning travellers and migrants: disease severity markers to improve triage and management. J Travel Med 2020; 27:5490164. [PMID: 31095305 PMCID: PMC7520658 DOI: 10.1093/jtm/taz038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/09/2019] [Accepted: 05/09/2019] [Indexed: 11/12/2022]
Abstract
Pathogen-based rapid diagnostic tests (RDTs) can identify the presence or absence of infection, but do not indicate who will have a self-limited infection versus a life-threatening one. An RDT that incorporates disease severity markers could facilitate the triage and management of travellers and migrants presenting with fever.
Collapse
Affiliation(s)
- Michelle Ngai
- Sandra Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario M5G 1L7, Canada
| | - Kevin C Kain
- Sandra Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario M5G 1L7, Canada.,Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| |
Collapse
|
19
|
Varo R, Erice C, Johnson S, Bassat Q, Kain KC. Clinical trials to assess adjuvant therapeutics for severe malaria. Malar J 2020; 19:268. [PMID: 32709257 PMCID: PMC7382078 DOI: 10.1186/s12936-020-03340-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/17/2020] [Indexed: 01/07/2023] Open
Abstract
Despite potent anti-malarial treatment, mortality rates associated with severe falciparum malaria remain high. To attempt to improve outcome, several trials have assessed a variety of potential adjunctive therapeutics, however none to date has been shown to be beneficial. This may be due, at least partly, to the therapeutics chosen and clinical trial design used. Here, we highlight three themes that could facilitate the choice and evaluation of putative adjuvant interventions for severe malaria, paving the way for their assessment in randomized controlled trials. Most clinical trials of adjunctive therapeutics to date have been underpowered due to the large number of participants required to reach mortality endpoints, rendering these study designs challenging and expensive to conduct. These limitations may be mitigated by the use of risk-stratification of participants and application of surrogate endpoints. Appropriate surrogate endpoints include direct measures of pathways causally involved in the pathobiology of severe and fatal malaria, including markers of host immune and endothelial activation and microcirculatory dysfunction. We propose using circulating markers of these pathways to identify high-risk participants that would be most likely to benefit from adjunctive therapy, and further by adopting these biomarkers as surrogate endpoints; moreover, choosing interventions that target deleterious host immune responses that directly contribute to microcirculatory dysfunction, multi-organ dysfunction and death; and, finally, prioritizing where possible, drugs that act on these pathways that are already approved by the FDA, or other regulators, for other indications, and are known to be safe in target populations, including children. An emerging understanding of the critical role of the host response in severe malaria pathogenesis may facilitate both clinical trial design and the search of effective adjunctive therapeutics.
Collapse
Affiliation(s)
- Rosauro Varo
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique
| | - Clara Erice
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, ON, Canada
| | | | - Quique Bassat
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Manhiça, Mozambique.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Kevin C Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, ON, Canada. .,Department of Medicine, Division of Infectious Diseases, Tropical Disease Unit, University of Toronto, Toronto, Canada.
| |
Collapse
|
20
|
Schiess N, Villabona-Rueda A, Cottier KE, Huether K, Chipeta J, Stins MF. Pathophysiology and neurologic sequelae of cerebral malaria. Malar J 2020; 19:266. [PMID: 32703204 PMCID: PMC7376930 DOI: 10.1186/s12936-020-03336-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 07/13/2020] [Indexed: 12/14/2022] Open
Abstract
Cerebral malaria (CM), results from Plasmodium falciparum infection, and has a high mortality rate. CM survivors can retain life-long post CM sequelae, including seizures and neurocognitive deficits profoundly affecting their quality of life. As the Plasmodium parasite does not enter the brain, but resides inside erythrocytes and are confined to the lumen of the brain's vasculature, the neuropathogenesis leading to these neurologic sequelae is unclear and under-investigated. Interestingly, postmortem CM pathology differs in brain regions, such as the appearance of haemorragic punctae in white versus gray matter. Various host and parasite factors contribute to the risk of CM, including exposure at a young age, parasite- and host-related genetics, parasite sequestration and the extent of host inflammatory responses. Thus far, several proposed adjunctive treatments have not been successful in the treatment of CM but are highly needed. The region-specific CM neuro-pathogenesis leading to neurologic sequelae is intriguing, but not sufficiently addressed in research. More attention to this may lead to the development of effective adjunctive treatments to address CM neurologic sequelae.
Collapse
Affiliation(s)
- Nicoline Schiess
- Department of Neurology, Johns Hopkins School of Medicine, 600 N. Wolfe St., Meyer 6-113, Baltimore, MD, 21287, USA
| | - Andres Villabona-Rueda
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA
| | - Karissa E Cottier
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA.,BioIVT, 1450 South Rolling Road, Baltimore, MD, USA
| | | | - James Chipeta
- Department of Paediatrics, University Teaching Hospital, Nationalist Road, Lusaka, Zambia
| | - Monique F Stins
- Malaria Research Institute, Dept Molecular Microbiology Immunology, Johns Hopkins School of Public Health, 615 N Wolfe Street, Baltimore, MD, 21205, USA.
| |
Collapse
|
21
|
Vanka R, Nakka VP, Kumar SP, Baruah UK, Babu PP. Molecular targets in cerebral malaria for developing novel therapeutic strategies. Brain Res Bull 2020; 157:100-107. [PMID: 32006570 DOI: 10.1016/j.brainresbull.2020.01.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 10/25/2022]
Abstract
Cerebral malaria (CM) is the severe neurological complication associated with Plasmodium falciparum infection. In clinical settings CM is predominantly characterized by fever, epileptic seizures, and asexual forms of parasite on blood smears, coma and even death. Cognitive impairment in the children and adults even after survival is one of the striking consequences of CM. Poor diagnosis often leads to inappropriate malaria therapy which in turn progress into a severe form of disease. Activation of multiple cell death pathways such as Inflammation, oxidative stress, apoptosis and disruption of blood brain barrier (BBB) plays critical role in the pathogenesis of CM and secondary brain damage. Thus, understanding such mechanisms of neuronal cell death might help to identify potential molecular targets for CM. Mitigation strategies for mortality rate and long-term cognitive deficits caused by existing anti-malarial drugs still remains a valid research question to ask. In this review, we discuss in detail about critical neuronal cell death mechanisms and the overall significance of adjunctive therapy with recent trends, which provides better insight towards establishing newer therapeutic strategies for CM.
Collapse
Affiliation(s)
- Ravisankar Vanka
- Department of Pharmaceutics, Aditya Pharmacy College, Suramaplem, Gandepalli Mandal, East Godavari, Andhra Pradesh, 533437, India
| | - Venkata Prasuja Nakka
- Department of Biochemistry, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh, 522510, India
| | - Simhadri Praveen Kumar
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Uday Krishna Baruah
- Department of Pharmaceutics, JSS College of Pharmacy, Ooty, Tamil Nadu 643001, India
| | - Phanithi Prakash Babu
- Department of Biotechnology and Bioinformatics, School of life Sciences, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
22
|
Erice C, Kain KC. New insights into microvascular injury to inform enhanced diagnostics and therapeutics for severe malaria. Virulence 2019; 10:1034-1046. [PMID: 31775570 PMCID: PMC6930010 DOI: 10.1080/21505594.2019.1696621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/05/2019] [Accepted: 11/13/2019] [Indexed: 12/25/2022] Open
Abstract
Severe malaria (SM) has high mortality and morbidity rates despite treatment with potent antimalarials. Disease onset and outcome is dependent upon both parasite and host factors. Infected erythrocytes bind to host endothelium contributing to microvascular occlusion and dysregulated inflammatory and immune host responses, resulting in endothelial activation and microvascular damage. This review focuses on the mechanisms of host endothelial and microvascular injury. Only a small percentage of malaria infections (≤1%) progress to SM. Early recognition and treatment of SM can improve outcome, but we lack triage tools to identify SM early in the course of infection. Current point-of-care pathogen-based rapid diagnostic tests do not address this critical barrier. Immune and endothelial activation have been implicated in the pathobiology of SM. We hypothesize that measuring circulating mediators of these pathways at first clinical presentation will enable early triage and treatment of SM. Moreover, that host-based interventions that modulate these pathways will stabilize the microvasculature and improve clinical outcome over that of antimalarial therapy alone.
Collapse
Affiliation(s)
- Clara Erice
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
| | - Kevin C Kain
- Sandra-Rotman Centre for Global Health, Toronto General Research Institute, University Health Network-Toronto General Hospital, Toronto, Ontario, Canada
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
Changes in monocyte subsets are associated with clinical outcomes in severe malarial anaemia and cerebral malaria. Sci Rep 2019; 9:17545. [PMID: 31772386 PMCID: PMC6879635 DOI: 10.1038/s41598-019-52579-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/18/2019] [Indexed: 01/17/2023] Open
Abstract
Monocytes are plastic heterogeneous immune cells involved in host-parasite interactions critical for malaria pathogenesis. Human monocytes have been subdivided into three populations based on surface expression of CD14 and CD16. We hypothesised that proportions and phenotypes of circulating monocyte subsets can be markers of severity or fatality in children with malaria. To address this question, we compared monocytes sampled in children with uncomplicated malaria, severe malarial anaemia, or cerebral malaria. Flow cytometry was used to distinguish and phenotype monocyte subsets through CD14, CD16, CD36 and TLR2 expression. Data were first analysed by univariate analysis to evaluate their link to severity and death. Second, multinomial logistic regression was used to measure the specific effect of monocyte proportions and phenotypes on severity and death, after adjustments for other variables unrelated to monocytes. Multivariate analysis demonstrated that decreased percentages of non-classical monocytes were associated with death, suggesting that this monocyte subset has a role in resolving malaria. Using univariate analysis, we also showed that the role of non-classical monocytes involves a mostly anti-inflammatory profile and the expression of CD16. Further studies are needed to decipher the functions of this sub-population during severe malaria episodes, and understand the underlying mechanisms.
Collapse
|
24
|
Huang B, Huang S, Chen X, Liu XB, Wu Q, Wang Y, Li X, Li K, Gao H, Cen S, Lin R, Liu Z, Jin X. Activation of Mast Cells Promote Plasmodium berghei ANKA Infection in Murine Model. Front Cell Infect Microbiol 2019; 9:322. [PMID: 31552201 PMCID: PMC6747038 DOI: 10.3389/fcimb.2019.00322] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/27/2019] [Indexed: 12/12/2022] Open
Abstract
Malaria, a mosquito-borne infectious disease, is a severe health problem worldwide. As reported, some anti-malarial drugs with anti-parasitic properties also block mast cells (MCs) activities. It is hypothesized that MCs activity may be correlated with the pathogenesis of malaria. Thus, the role of MCs on malarial pathogenesis and the involved physiological action and pathways need to be further investigated. This study aimed to investigate the effect of MCs activation on malaria disease severity using KunMing mice with Plasmodium berghei ANKA (PbANKA) infection treated with MCs degranulator (compound 48/80, C48/80) or MCs stabilizer (disodium cromoglycate, DSCG). PbANKA infection caused a dramatic increase in MCs density and level of MCs degranulation in cervical lymph node (CLN) and skin. Compared with infected control, C48/80 treatment had shortened survival time, increased parasitemia, exacerbated liver inflammation and CLN hyperplasia, accompanied with increase in vascular leakage and leukocyte number. The infected mice with C48/80 treatment also elevated the release of CCL2, CXCL1, and MMP-9 from MCs in CLN and skin, and TNF-α, IFN-γ, CCR2, and CXCR2 mRNA expression in CLN and liver. In contrast, the infected mice treated with DSCG showed longer survival time, lower parasitemia, improved liver inflammation and CLN hyperplasia, followed by a decline of vascular leakage and leukocyte number. Decreased MCs-derived CCL2, CXCL1, and MMP-9 from CLN and skin, mRNA expression in CLN and liver (TNF-α, IFN-γ, CCR2, and CXCR2) were also observed in infected mice with DSCG treatment. Our data indicated that MCs activation may facilitate the pathogenesis of PbANKA infection.
Collapse
Affiliation(s)
- Bo Huang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China.,Department of Pathogen Biology and Immunology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Shiguang Huang
- School of Stomatology, Jinan University, Guangzhou, China
| | - Xiaoyan Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao Bo Liu
- Department of Pathogen Biology and Immunology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiang Wu
- Department of Pathogen Biology and Immunology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yongfei Wang
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xiaobo Li
- Department of Pathogen Biology and Immunology, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Kunning Li
- Lady Davis institute for Medical Research, Jewish General Hospital, McGill University, Montreal, QC, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Hongzhi Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shan Cen
- Department of Immunology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| | - Rongtuan Lin
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Zhenlong Liu
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, Canada
| | - Xiaobao Jin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
25
|
Ribeiro NQ, Santos APN, Emídio ECP, Costa MC, Freitas GJC, Carmo PHF, Silva MF, de Brito CB, de Souza DG, Paixão TA, Santos DA. Pioglitazone as an adjuvant of amphotericin B for the treatment of cryptococcosis. Int J Antimicrob Agents 2019; 54:301-308. [PMID: 31279153 DOI: 10.1016/j.ijantimicag.2019.06.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/25/2019] [Accepted: 06/28/2019] [Indexed: 01/12/2023]
Abstract
Approximately 180,000 people worldwide die from cryptococcosis each year, probably due to the ineffectiveness and toxicity of drugs currently available to treat the disease. Amphotericin B (AMB) is effective for killing the fungus, but has serious adverse effects linked to excessive production of reactive oxygen species which compromise renal function. Pioglitazone (PIO) is a peroxisome proliferator-activated receptor-γ agonist widely repositioned as an adjuvant of various drugs that have toxic effects due to its antioxidant and anti-inflammatory effects. This study evaluated PIO in combination with AMB for the treatment of cryptococcosis. PIO was found to reduce serum creatinine and glutamic-oxalacetic transaminase levels in mice treated with PIO+AMB. In vitro, PIO was able to control harmful oxidative bursts induced by AMB without compromising the antifungal effect. In vivo, PIO+AMB increased the survival rate compared with AMB alone, and improved the morbidity of the animals. PIO+AMB was more efficient than AMB alone for inhibiting fungal transmigration from the lungs to the brain, and killing yeasts that reached the central nervous system, avoiding the establishment of meningoencephalitis. In a phagocytosis assay, PIO did not influence the engulfment and fungicidal activity of macrophages induced by AMB, but reduced the oxidative bursts after the reduction of fungal burden, pointing to control of the pathogen without leading to excessive stress which can be damaging to the host. In conclusion, PIO+AMB was found to ameliorate cryptococcosis in a murine model, indicating that it is a promising therapeutic adjuvant for combating and controlling this fungal infection.
Collapse
Affiliation(s)
- Noelly Queiroz Ribeiro
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Anderson Philip Nonato Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elúzia Castro Peres Emídio
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marliete Carvalho Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gustavo José Cotta Freitas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Paulo Henrique Fonseca Carmo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Monique Ferreira Silva
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Bernardo de Brito
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniele Glória de Souza
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Tatiane Alves Paixão
- Departamento de Patologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel Assis Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
26
|
Tapajós R, Castro D, Melo G, Balogun S, James M, Pessoa R, Almeida A, Costa M, Pinto R, Albuquerque B, Monteiro W, Braga J, Lacerda M, Mourão MP. Malaria impact on cognitive function of children in a peri-urban community in the Brazilian Amazon. Malar J 2019; 18:173. [PMID: 31096985 PMCID: PMC6524266 DOI: 10.1186/s12936-019-2802-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 05/06/2019] [Indexed: 11/11/2023] Open
Abstract
Background In Latin America, where Plasmodium vivax malaria is more prevalent, it is known that this species plays an important role in the sustainability of transmission, and can have an impact on morbidity in terms of anaemia, nutritional status, and cognitive development in children. Methods The present study aimed to assess the impact of malaria infection on cognition of children in a peri-urban community in the Brazilian Amazon with moderate endemicity by applying Home Inventory and WPPSI-IV. A non-concurrent cohort study was designed and the cognitive, haematological, and nutritional profiles of the children were assessed. Children with documented malaria history were identified from official reported data. Results A total of 219 children aged between 2 and 7 years were enrolled. Although 205 (95%) children had normal birth weight, 177 (81%) were malnourished, and 35 (16%) had anaemia. Among the 100 (46%) children who experienced at least one episode of malaria, 89 (89%) children demonstrated low level of cognitive development. The findings showed that Plasmodium vivax malaria was an independent risk factor for low cognitive development. Conclusions In addition to the known economic impact of malaria in the Amazon region, the study highlights the deleterious effects P. vivax malaria has on the socio-cultural development of the population.
Collapse
Affiliation(s)
- Raquel Tapajós
- Fundação de Vigilância em Saúde do Amazonas, Manaus, Brazil.,Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Daniel Castro
- Fundação de Vigilância em Saúde do Amazonas, Manaus, Brazil.,Escola Nacional de Saúde Pública Sérgio Arouca, FIOCRUZ, Rio de Janeiro, Brazil
| | - Gisely Melo
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | | | | | - Rockson Pessoa
- Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Anne Almeida
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - Mônica Costa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil
| | - Rosemary Pinto
- Fundação de Vigilância em Saúde do Amazonas, Manaus, Brazil
| | | | - Wuelton Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| | - José Braga
- Escola Nacional de Saúde Pública Sérgio Arouca, FIOCRUZ, Rio de Janeiro, Brazil.,Instituto de Medicina Social, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcus Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil. .,Instituto Leônidas e Maria Deane, FIOCRUZ, Manaus, Brazil. .,Kent University, Kent, OH, USA.
| | - Maria Paula Mourão
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, Brazil.,Escola Superior de Ciências da Saúde, Universidade do Estado do Amazonas, Manaus, Brazil
| |
Collapse
|
27
|
Glennon EKK, Dankwa S, Smith JD, Kaushansky A. Opportunities for Host-targeted Therapies for Malaria. Trends Parasitol 2018; 34:843-860. [PMID: 30122551 PMCID: PMC6168423 DOI: 10.1016/j.pt.2018.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022]
Abstract
Despite the recent successes of artemisinin-based antimalarial drugs, many still die from severe malaria, and eradication efforts are hindered by the limited drugs currently available to target transmissible gametocyte parasites and liver-resident dormant Plasmodium vivax hypnozoites. Host-targeted therapy is a new direction for infectious disease drug development and aims to interfere with host molecules, pathways, or networks that are required for infection or that contribute to disease. Recent advances in our understanding of host pathways involved in parasite development and pathogenic mechanisms in severe malaria could facilitate the development of host-targeted interventions against Plasmodium infection and malaria disease. This review discusses new opportunities for host-targeted therapeutics for malaria and the potential to harness drug polypharmacology to simultaneously target multiple host pathways using a single drug intervention.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA; These authors made an equal contribution
| | - Selasi Dankwa
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; These authors made an equal contribution
| | - Joseph D Smith
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA
| | - Alexis Kaushansky
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA 98109, USA; Department of Global Health, University of Washington, Harris Hydraulics Laboratory, Box 357965, Seattle, WA 98195, USA.
| |
Collapse
|
28
|
Leligdowicz A, Richard-Greenblatt M, Wright J, Crowley VM, Kain KC. Endothelial Activation: The Ang/Tie Axis in Sepsis. Front Immunol 2018; 9:838. [PMID: 29740443 PMCID: PMC5928262 DOI: 10.3389/fimmu.2018.00838] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 04/05/2018] [Indexed: 12/21/2022] Open
Abstract
Sepsis, a dysregulated host response to infection that causes life-threatening organ dysfunction, is a highly heterogeneous syndrome with no specific treatment. Although sepsis can be caused by a wide variety of pathogenic organisms, endothelial dysfunction leading to vascular leak is a common mechanism of injury that contributes to the morbidity and mortality associated with the syndrome. Perturbations to the angiopoietin (Ang)/Tie2 axis cause endothelial cell activation and contribute to the pathogenesis of sepsis. In this review, we summarize how the Ang/Tie2 pathway is implicated in sepsis and describe its prognostic as well as therapeutic utility in life-threatening infections.
Collapse
Affiliation(s)
- Aleksandra Leligdowicz
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Melissa Richard-Greenblatt
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Julie Wright
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Valerie M Crowley
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| | - Kevin C Kain
- Sandra Rotman Centre for Global Health, University Health Network and University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Varo R, Crowley VM, Sitoe A, Madrid L, Serghides L, Kain KC, Bassat Q. Adjunctive therapy for severe malaria: a review and critical appraisal. Malar J 2018; 17:47. [PMID: 29361945 PMCID: PMC5781278 DOI: 10.1186/s12936-018-2195-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/19/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Despite recent efforts and successes in reducing the malaria burden globally, this infection still accounts for an estimated 212 million clinical cases, 2 million severe malaria cases, and approximately 429,000 deaths annually. Even with the routine use of effective anti-malarial drugs, the case fatality rate for severe malaria remains unacceptably high, with cerebral malaria being one of the most life-threatening complications. Up to one-third of cerebral malaria survivors are left with long-term cognitive and neurological deficits. From a population point of view, the decrease of malaria transmission may jeopardize the development of naturally acquired immunity against the infection, leading to fewer total cases, but potentially an increase in severe cases. The pathophysiology of severe and cerebral malaria is not completely understood, but both parasite and host determinants contribute to its onset and outcomes. Adjunctive therapy, based on modulating the host response to infection, could help to improve the outcomes achieved with specific anti-malarial therapy. RESULTS AND CONCLUSIONS In the last decades, several interventions targeting different pathways have been tested. However, none of these strategies have demonstrated clear beneficial effects, and some have shown deleterious outcomes. This review aims to summarize evidence from clinical trials testing different adjunctive therapy for severe and cerebral malaria in humans. It also highlights some preclinical studies which have evaluated novel strategies and other candidate therapeutics that may be evaluated in future clinical trials.
Collapse
Affiliation(s)
- Rosauro Varo
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique.
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain.
| | - Valerie M Crowley
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Antonio Sitoe
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique
| | - Lola Madrid
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain
| | - Lena Serghides
- Toronto General Research Institute (TGRI), University Health Network, Toronto, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Canada
- Department of Immunology and Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Kevin C Kain
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Tropical Diseases Unit, Division of Infectious Diseases, Department of Medicine, UHN-Toronto General Hospital, Toronto, ON, Canada
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça, Rua 12, vila da Manhiça, 1929, Maputo, Mozambique.
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain.
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.
| |
Collapse
|
30
|
Crowley VM, Ayi K, Lu Z, Liby KT, Sporn M, Kain KC. Synthetic oleanane triterpenoids enhance blood brain barrier integrity and improve survival in experimental cerebral malaria. Malar J 2017; 16:463. [PMID: 29137631 PMCID: PMC5686938 DOI: 10.1186/s12936-017-2109-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Accepted: 11/04/2017] [Indexed: 12/31/2022] Open
Abstract
Background Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection associated with high mortality and neurocognitive impairment in survivors. New anti-malarials and host-based adjunctive therapy may improve clinical outcome in CM. Synthetic oleanane triterpenoid (SO) compounds have shown efficacy in the treatment of diseases where inflammation and oxidative stress contribute to pathogenesis. Methods A derivative of the SO 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO), CDDO-ethyl amide (CDDO-EA) was investigated for the treatment of severe malaria in a pre-clinical model. CDDO-EA was evaluated in vivo as a monotherapy as well as adjunctive therapy with parenteral artesunate in the Plasmodium berghei strain ANKA experimental cerebral malaria (ECM) model. Results CDDO-EA alone improved outcome in ECM and, given as adjunctive therapy in combination with artesunate, it significantly improved outcome over artesunate alone (p = 0.009). Improved survival was associated with reduced inflammation, enhanced endothelial stability and blood–brain barrier integrity. Survival was improved even when administered late in the disease course after the onset of neurological symptoms. Conclusions These results indicate that SO are a new class of immunomodulatory drugs and support further studies investigating this class of agents as potential adjunctive therapy for severe malaria.
Collapse
Affiliation(s)
- Valerie M Crowley
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Kodjo Ayi
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Ziyue Lu
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Karen T Liby
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA
| | - Michael Sporn
- Department of Pharmacology, Dartmouth Medical School, Hanover, NH, USA
| | - Kevin C Kain
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada. .,Department of Medicine, University of Toronto, Toronto, ON, Canada. .,Tropical Diseases Unit, Division of Infectious Diseases, Department of Medicine, UHN-Toronto General Hospital, Toronto, ON, Canada.
| |
Collapse
|
31
|
A single rapamycin dose protects against late-stage experimental cerebral malaria via modulation of host immunity, endothelial activation and parasite sequestration. Malar J 2017; 16:455. [PMID: 29121917 PMCID: PMC5679345 DOI: 10.1186/s12936-017-2092-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/27/2017] [Indexed: 01/05/2023] Open
Abstract
Background Maladaptive immune responses during cerebral malaria (CM) result in high mortality despite opportune anti-malarial chemotherapy. Rapamycin, an FDA-approved immunomodulator, protects against experimental cerebral malaria (ECM) in mice through effects on the host. However, the potential for reduced adaptive immunity with chronic use, combined with an incomplete understanding of mechanisms underlying protection, limit translational potential as an adjunctive therapy in CM. Results The results presented herein demonstrate that a single dose of rapamycin, provided as late as day 4 or 5 post-infection, protected mice from ECM neuropathology and death through modulation of distinct host responses to infection. Rapamycin prevented parasite cytoadherence in peripheral organs, including white adipose tissue, via reduction of CD36 expression. Rapamycin also altered the splenic immune response by reducing the number of activated T cells with migratory phenotype, while increasing local cytotoxic T cell activation. Finally, rapamycin reduced brain endothelial ICAM-1 expression concomitant with reduced brain pathology. Together, these changes potentially contributed to increased parasite elimination while reducing CD8 T cell migration to the brain. Conclusions Rapamycin exerts pleotropic effects on host immunity, vascular activation and parasite sequestration that rescue mice from ECM, and thus support the potential clinical use of rapamycin as an adjunctive therapy in CM.
Collapse
|
32
|
Platt C, Coward RJ. Peroxisome proliferator activating receptor-γ and the podocyte. Nephrol Dial Transplant 2017; 32:423-433. [PMID: 27697843 DOI: 10.1093/ndt/gfw320] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 07/24/2016] [Indexed: 12/13/2022] Open
Abstract
Over the past two decades it has become clear that the glomerular podocyte is a key cell in preventing albuminuria, kidney failure and cardiovascular morbidity. Understanding the key pathways that protect the podocyte in times of glomerular stress, which can also be therapeutically manipulated, are highly attractive. In the following review we assess the evidence that the peroxisome proliferator activating receptor (PPAR) agonists are beneficial for podocyte and kidney function with a focus on PPAR-γ. We explain our current understanding of the mechanisms of action of these agonists and the evidence they are beneficial in diabetic and non-diabetic kidney disease. We also outline why these drugs have not been widely used for kidney disease in the past but they may be in the future.
Collapse
Affiliation(s)
| | - Richard J Coward
- Department of Paediatric Nephrology, Bristol Royal Hospital for Children, Bristol, United Kingdom
| |
Collapse
|
33
|
Sarr D, Cooper CA, Bracken TC, Martinez-Uribe O, Nagy T, Moore JM. Oxidative Stress: A Potential Therapeutic Target in Placental Malaria. Immunohorizons 2017; 1:29-41. [PMID: 28890952 DOI: 10.4049/immunohorizons.1700002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Placental malaria, characterized by sequestration of Plasmodium falciparum in the maternal placental blood space and associated inflammatory damage, contributes to poor birth outcomes and ~200,000 infant deaths annually. Specific mechanisms that contribute to placental damage and dysfunction during malaria are not completely understood. To investigate a potential role for oxidative stress, antioxidant genes and markers for oxidative damage were assessed by quantitative PCR and immunohistochemistry in Plasmodium chabaudi AS-infected pregnant mice. Widespread evidence of lipid peroxidation was observed and was associated with higher antioxidant gene expression in conceptuses of infected mice. To assess the extent to which this oxidative damage might contribute to poor birth outcomes and be amenable to therapeutic intervention, infected pregnant mice were treated with N-acetylcysteine, a free radical scavenger, or tempol, an intracellular superoxide dismutase mimetic. The results show that mice treated with N-acetylcysteine experienced malaria induced-pregnancy loss at the same rate as control animals and failed to mitigate placental oxidative damage. In contrast, tempol-treated mice exhibited subtle improvement in embryo survival at gestation day 12. Although lipid peroxidation was not consistently reduced in the placentas of these mice, it was inversely related to embryo viability. Moreover, reduced IFN-γ and CCL2 plasma levels in treated mice were associated with midgestational embryo viability. Thus, although oxidative stress is remarkable in placental malaria and its mitigation by antioxidant therapy may improve pregnancy outcomes, the underlying mechanistic basis and potential therapeutic strategies require additional investigation.
Collapse
Affiliation(s)
- Demba Sarr
- Center for Tropical and Emerging Global Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Tara C Bracken
- Center for Tropical and Emerging Global Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Omar Martinez-Uribe
- Center for Tropical and Emerging Global Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Tamas Nagy
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| | - Julie M Moore
- Center for Tropical and Emerging Global Diseases and Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602
| |
Collapse
|
34
|
Varo R, Crowley VM, Sitoe A, Madrid L, Serghides L, Bila R, Mucavele H, Mayor A, Bassat Q, Kain KC. Safety and tolerability of adjunctive rosiglitazone treatment for children with uncomplicated malaria. Malar J 2017; 16:215. [PMID: 28535809 PMCID: PMC5442675 DOI: 10.1186/s12936-017-1858-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/12/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Despite the widespread use and availability of rapidly acting anti-malarials, the fatality rate of severe malaria in sub-Saharan Africa remains high. Adjunctive therapies that target the host response to malaria infection may further decrease mortality over that of anti-malarial agents alone. Peroxisome proliferator-activated receptor-gamma agonists (e.g. rosiglitazone) have been shown to act on several pathways implicated in the pathogenesis of severe malaria and may improve clinical outcome as an adjunctive intervention. METHODS In this study, the safety and tolerability of adjunctive rosiglitazone in paediatric uncomplicated malaria infection was evaluated in Mozambique, as a prelude to its evaluation in a randomized controlled trial in paediatric severe malaria. The study was a prospective, randomized, double-blind, placebo-controlled, phase IIa trial of rosiglitazone (0.045 mg/kg/dose) twice daily for 4 days versus placebo as adjunctive treatment in addition to Mozambican standard of care (artemisinin combination therapy Coartem®) in children with uncomplicated malaria. The primary outcomes were tolerability and safety, including clinical, haematological, biochemical, and electrocardiographic evaluations. RESULTS Thirty children were enrolled: 20 were assigned to rosiglitazone and 10 to placebo. Rosiglitazone treatment did not induce hypoglycaemia nor significantly alter clinical, biochemical, haematological, or electrocardiographic parameters. CONCLUSIONS Adjunctive rosiglitazone was safe and well-tolerated in children with uncomplicated malaria, permitting the extension of its evaluation as adjunctive therapy for severe malaria. The trial is registered with Clinicaltrials.gov, NCT02694874.
Collapse
Affiliation(s)
- Rosauro Varo
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Rua 12, Vila da Manhiça, 1929, Maputo, Mozambique
| | - Valerie M Crowley
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada
| | - Antonio Sitoe
- Centro de Investigação em Saúde de Manhiça, Rua 12, Vila da Manhiça, 1929, Maputo, Mozambique
| | - Lola Madrid
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Rua 12, Vila da Manhiça, 1929, Maputo, Mozambique
| | - Lena Serghides
- Toronto General Research Institute (TGRI), University Health Network, Toronto, Canada.,Women's College Research Institute, Women's College Hospital, Toronto, Canada.,Department of Immunology and Institute of Medical Sciences University of Toronto, Toronto, Canada
| | - Rubao Bila
- Centro de Investigação em Saúde de Manhiça, Rua 12, Vila da Manhiça, 1929, Maputo, Mozambique
| | - Helio Mucavele
- Centro de Investigação em Saúde de Manhiça, Rua 12, Vila da Manhiça, 1929, Maputo, Mozambique
| | - Alfredo Mayor
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain.,Centro de Investigação em Saúde de Manhiça, Rua 12, Vila da Manhiça, 1929, Maputo, Mozambique
| | - Quique Bassat
- ISGlobal, Barcelona Institute for Global Health, Hospital Clínic, Universitat de Barcelona, Rosselló 132, 5th Floor, 08036, Barcelona, Spain. .,Centro de Investigação em Saúde de Manhiça, Rua 12, Vila da Manhiça, 1929, Maputo, Mozambique. .,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.
| | - Kevin C Kain
- S. A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, Toronto, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada.,Tropical Diseases Unit, Division of Infectious Diseases, Department of Medicine, UHN-Toronto General Hospital, Toronto, ON, Canada
| |
Collapse
|
35
|
Barker KR, Lu Z, Kim H, Zheng Y, Chen J, Conroy AL, Hawkes M, Cheng HS, Njock MS, Fish JE, Harlan JM, López JA, Liles WC, Kain KC. miR-155 Modifies Inflammation, Endothelial Activation and Blood-Brain Barrier Dysfunction in Cerebral Malaria. Mol Med 2017; 23:24-33. [PMID: 28182191 DOI: 10.2119/molmed.2016.00139] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 01/26/2017] [Indexed: 12/17/2022] Open
Abstract
miR-155 has been shown to participate in host response to infection and neuro-inflammation via negative regulation of blood-brain-barrier (BBB) integrity and T cell function. We hypothesized that miR-155 may contribute to the pathogenesis of cerebral malaria (CM). To test this hypothesis, we used a genetic approach to modulate miR-155 expression in an experimental model of cerebral malaria (ECM). In addition, an engineered endothelialized microvessel system and serum samples from Ugandan children with CM were used to examine an anti-miR-155 as a potential adjunctive therapeutic for severe malaria. Despite higher parasitemia, survival was significantly improved in miR-155-/- mice vs. wild-type littermate mice in ECM. Improved survival was associated with preservation of BBB integrity and reduced endothelial activation, despite increased levels of pro-inflammatory cytokines. Pre-treatment with antagomir-155 reduced vascular leak induced by human CM sera in an ex vivo endothelial microvessel model. These data provide evidence supporting a mechanistic role for miR-155 in host response to malaria via regulation of endothelial activation, microvascular leak and BBB dysfunction in CM.
Collapse
Affiliation(s)
- Kevin Richard Barker
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Ziyue Lu
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Hani Kim
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA, USA; Center of Cardiovascular Biology, Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, USA
| | - Junmei Chen
- Bloodworks Northwest Research Institute, Seattle, WA, USA
| | - Andrea L Conroy
- Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| | - Michael Hawkes
- Division of Infectious Diseases, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Henry S Cheng
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Makon-Sébastien Njock
- Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - Jason E Fish
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Toronto General Research Institute, University Health Network, Toronto, ON, Canada; Heart and Stroke Richard Lewar Centre of Excellence in Cardiovascular Research, Toronto, ON, Canada
| | - John M Harlan
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Jose A López
- Bloodworks Northwest Research Institute, Seattle, WA, USA.,Department of Medicine, University of Washington, Seattle, WA, USA
| | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Kevin C Kain
- Department of Laboratory Medicine and Pathobiology, University of Toronto, ON, Canada.,Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, and the Tropical Disease Unit, Department of Medicine, University of Toronto, ON, Canada
| |
Collapse
|
36
|
Brain-derived Neurotrophic Factor Is Associated With Disease Severity and Clinical Outcome in Ugandan Children Admitted to Hospital With Severe Malaria. Pediatr Infect Dis J 2017; 36:146-150. [PMID: 27798544 DOI: 10.1097/inf.0000000000001382] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Malaria remains a leading cause of childhood death and neurologic disability in sub-Saharan Africa. Here, we test the hypothesis that malaria-induced alterations to circulating brain-derived neurotrophic factor (BDNF) are associated with poor clinical outcomes in children with severe malaria. METHODS We quantified BDNF (by enzyme-linked immunosorbent assay) in plasma samples collected [at presentation (day 1), day 3 and day 14], during a prospective study of Ugandan children admitted to hospital with severe malaria (n = 179). RESULTS BDNF concentration at presentation (day 1) was lower in children with cerebral malaria (P < 0.01), coma (P < 0.01), Lambaréné Organ Dysfunction Score >1 (P < 0.05) and respiratory distress (P < 0.01). Higher BDNF concentration at presentation was associated with shorter time to coma recovery [hazard ratio = 1.655 (1.194-2.293); P = 0.002] and a reduced odds ratio of disability [0.50 (0.27-0.94); P = 0.047] and death [0.45 (0.22-0.92); P = 0.035]. BDNF concentration was lower on day 1 and increased in children surviving severe malaria (day 14; P < 0.0001). CONCLUSIONS Our findings provide the new evidence linking circulating BDNF with disease severity, coma recovery and clinical outcome in children with severe malaria.
Collapse
|
37
|
de Jong GM, Slager JJ, Verbon A, van Hellemond JJ, van Genderen PJJ. Systematic review of the role of angiopoietin-1 and angiopoietin-2 in Plasmodium species infections: biomarkers or therapeutic targets? Malar J 2016; 15:581. [PMID: 27905921 PMCID: PMC5134107 DOI: 10.1186/s12936-016-1624-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 11/19/2016] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Levels of both angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2) correlate with malaria disease severity and are proposed as biomarkers and possible therapeutic targets. To establish their role in malaria, a systematic review was performed of the literature on Ang-1 and Ang-2 with regard to their potential as biomarkers in malaria and discuss their possible place in adjuvant treatment regimens. METHODS Ten electronic databases were systematically searched to identify studies investigating Ang-1 and Ang-2 in human and murine malaria in both clinical and experimental settings. Information about the predictive value of Ang-1 and Ang-2 for disease severity and their regulatory changes in interventional studies were extracted. RESULTS Some 579 studies were screened; 26 were included for analysis. In all five studies that determined Ang-1 levels and in all 11 studies that determined Ang-2 in different disease severity states in falciparum malaria, a decline in Ang-1 and an increase of Ang-2 levels was associated with increasing disease severity. All nine studies that determined angiopoietin levels in Plasmodium falciparum patients to study their ability as biomarkers could distinguish between multiple disease severity states; the more the disease severity states differed, the better they could be distinguished. Five studies differentiating malaria survivors from non-survivors with Ang-2 as marker found an AUROC in a range of 0.71-0.83, which performed as well or better than lactate. Prophylactic administration of FTY720, rosiglitazone or inhalation of nitric oxide (NO) during malaria disease in mice resulted in an increase in Ang-1, a decrease in Ang-2 and an increased survival. For rosiglitazone, a decrease in Ang-2/Ang-1 ratio was observed after post-infection treatment in mice and humans with malaria, but for inhalation of NO, an effect on Ang-1 and survival was only observed in mice. CONCLUSION Both Ang-1 and Ang-2 levels correlate with and can distinguish between malaria disease severity states within the group of malaria-infected patients. However, distinct comparisons of disease severity states were made in distinct studies and not all distinctions made had clinical relevance. Changes in levels of Ang-1 and Ang-2 might also reflect treatment effectiveness and are promising therapeutic targets as part of multi-targeted therapy.
Collapse
Affiliation(s)
- Gerdie M. de Jong
- Institute for Tropical Diseases, Harbour Hospital, Haringvliet 2, Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Jasper J. Slager
- Institute for Tropical Diseases, Harbour Hospital, Haringvliet 2, Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | - Jaap J. van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, The Netherlands
| | | |
Collapse
|
38
|
Borges TKS, Alves ÉAR, Vasconcelos HAR, Carneiro FP, Nicola AM, Magalhães KG, Muniz-Junqueira MI. Differences in the modulation of reactive species, lipid bodies, cyclooxygenase-2, 5-lipoxygenase and PPAR-γ in cerebral malaria-susceptible and resistant mice. Immunobiology 2016; 222:604-619. [PMID: 27887739 DOI: 10.1016/j.imbio.2016.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 11/15/2016] [Indexed: 12/13/2022]
Abstract
Proinflammatory responses are associated with the severity of cerebral malaria. NO, H2O2, eicosanoid and PPAR-γ are involved in proinflammatory responses, but regulation of these factors is unclear in malaria. This work aimed to compare the expression of eicosanoid-forming-enzymes in cerebral malaria-susceptible CBA and C57BL/6 and -resistant BALB/c mice. Mice were infected with Plasmodium berghei ANKA, and the survival rates and parasitemia curves were assessed. On the sixth day post-infection, cyclooxygenase-2 and 5-lipoxygenase in brain sections were assessed by immunohistochemistry, and, NO, H2O2, lipid bodies, and PPAR-γ expression were assessed in peritoneal macrophages. The C57BL/6 had more severe disease with a lower survival time, higher parasitemia and lower production of plasmodicidal NO and H2O2 molecules than BALB/c. Enhanced COX-2 and 5-LOX expression were observed in brain tissue cells and vessels from C57BL/6 mice, and these mice expressed higher constitutive PPAR-γ levels. There was no translocation of PPAR-γ from cytoplasm to nucleus in macrophages from these mice. CBA mice had enhanced COX-2 expression in brain tissue cells and vessels and also lacked PPAR-γ cytoplasm-to-nucleus translocation. The resistant BALB/c mice presented higher survival time, lower parasitemia and higher NO and H2O2 production on the sixth day post-infection. These mice did not express either COX-2 or 5-LOX in brain tissue cells and vessels. Our data showed that besides the high parasite burden and lack of microbicidal molecules, an imbalance with high COX-2 and 5-LOX eicosanoid expression and a lack of regulatory PPAR-γ cytoplasm-to-nucleus translocation in macrophages were observed in mice that develop cerebral malaria.
Collapse
Affiliation(s)
- Tatiana K S Borges
- Laboratory of Cellular Immunology, Pathology, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil
| | - Érica A R Alves
- Laboratory of Cellular Immunology, Pathology, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil; Laboratory of Cellular and Molecular Immunology, René Rachou Research Center, Belo Horizonte, Minas Gerais 30.190.002 Brazil
| | - Henda A R Vasconcelos
- Laboratory of Cellular Immunology, Pathology, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil; National Direction of Public Health, Ministry of Health of the Republic of Angola, Luanda, Angola
| | - Fabiana P Carneiro
- Laboratory of Pathology, Pathology, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil
| | - André M Nicola
- Laboratory of Cellular Immunology, Pathology, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil
| | - Kelly G Magalhães
- Laboratory of Immunology and Inflammation, Department of Cellular Biology, Biology Institute, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil
| | - Maria Imaculada Muniz-Junqueira
- Laboratory of Cellular Immunology, Pathology, Faculty of Medicine, University of Brasilia, Campus Darcy Ribeiro, Brasilia, Distrito Federal 70.910.900, Brazil.
| |
Collapse
|
39
|
Brant F, Miranda AS, Esper L, Gualdrón-López M, Cisalpino D, de Souza DDG, Rachid MA, Tanowitz HB, Teixeira MM, Teixeira AL, Machado FS. Suppressor of cytokine signaling 2 modulates the immune response profile and development of experimental cerebral malaria. Brain Behav Immun 2016; 54:73-85. [PMID: 26765997 DOI: 10.1016/j.bbi.2016.01.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 12/23/2015] [Accepted: 01/04/2016] [Indexed: 11/18/2022] Open
Abstract
Plasmodium falciparum infection results in severe malaria in humans, affecting various organs, including the liver, spleen and brain, and resulting in high morbidity and mortality. The Plasmodium berghei ANKA (PbA) infection in mice closely recapitulates many aspects of human cerebral malaria (CM); thus, this model has been used to investigate the pathogenesis of CM. Suppressor of cytokine signaling 2 (SOCS2), an intracellular protein induced by cytokines and hormones, modulates the immune response, neural development, neurogenesis and neurotrophic pathways. However, the role of SOCS2 during CM remains unknown. SOCS2 knockout (SOCS2(-/-)) mice infected with PbA show an initial resistance to infection with reduced parasitemia and production of TNF, TGF-β, IL-12 and IL-17 in the brain. Interestingly, in the late phase of infection, SOCS2(-/-) mice display increased parasitemia and reduced Treg cell infiltration, associated with enhanced levels of Th1 and Th17 cells and related cytokines IL-17, IL-6, and TGF-β in the brain. A significant reduction in protective neurotrophic factors, such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF), was also observed. Moreover, the molecular alterations in the brain of infected SOCS2(-/-) mice were associated with anxiety-related behaviors and cognition impairment. Mechanistically, these results revealed enhanced nitric oxide (NO) production in PbA-infected SOCS2(-/-) mice, and the inhibition of NO synthesis through l-NAME led to a marked decrease in survival, the disruption of parasitemia control and more pronounced anxiety-like behavior. Treatment with l-NAME also shifted the levels of Th1, Th7 and Treg cells in the brains of infected SOCS2(-/-) mice to the background levels observed in infected WT, with remarkable exception of increased CD8(+)IFN(+) T cells and inflammatory monocytes. These results indicate that SOCS2 plays a dual role during PbA infection, being detrimental in the control of the parasite replication but crucial in the regulation of the immune response and production of neurotrophic factors. Here, we provided strong evidence of a critical relationship between SOCS2 and NO in the orchestration of the immune response and development of CM during PbA infection.
Collapse
Affiliation(s)
- Fatima Brant
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aline S Miranda
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lisia Esper
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Melisa Gualdrón-López
- Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Daniel Cisalpino
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Danielle da Gloria de Souza
- Department of Microbiology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Milene Alvarenga Rachid
- Department of Pathology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Herbert B Tanowitz
- Department of Pathology and Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mauro Martins Teixeira
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Antônio Lucio Teixeira
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fabiana Simão Machado
- Program in Health Sciences: Infectious Diseases and Tropical Medicine, School of Medicine, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Biochemistry and Immunology, Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
40
|
Glennon EKK, Adams LG, Hicks DR, Dehesh K, Luckhart S. Supplementation with Abscisic Acid Reduces Malaria Disease Severity and Parasite Transmission. Am J Trop Med Hyg 2016; 94:1266-75. [PMID: 27001761 DOI: 10.4269/ajtmh.15-0904] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/29/2016] [Indexed: 01/20/2023] Open
Abstract
Nearly half of the world's population is at risk for malaria. Increasing drug resistance has intensified the need for novel therapeutics, including treatments with intrinsic transmission-blocking properties. In this study, we demonstrate that the isoprenoid abscisic acid (ABA) modulates signaling in the mammalian host to reduce parasitemia and the formation of transmissible gametocytes and in the mosquito host to reduce parasite infection. Oral ABA supplementation in a mouse model of malaria was well tolerated and led to reduced pathology and enhanced gene expression in the liver and spleen consistent with infection recovery. Oral ABA supplementation also increased mouse plasma ABA to levels that can signal in the mosquito midgut upon blood ingestion. Accordingly, we showed that supplementation of a Plasmodium falciparum-infected blood meal with ABA increased expression of mosquito nitric oxide synthase and reduced infection prevalence in a nitric oxide-dependent manner. Identification of the mechanisms whereby ABA reduces parasite growth in mammals and mosquitoes could shed light on the balance of immunity and metabolism across eukaryotes and provide a strong foundation for clinical translation.
Collapse
Affiliation(s)
- Elizabeth K K Glennon
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| | - L Garry Adams
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| | - Derrick R Hicks
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| | - Katayoon Dehesh
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| | - Shirley Luckhart
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, California; Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas; Department of Plant Biology, University of California, Davis, Davis, California
| |
Collapse
|
41
|
McDonald CR, Tran V, Kain KC. Complement Activation in Placental Malaria. Front Microbiol 2015; 6:1460. [PMID: 26733992 PMCID: PMC4685051 DOI: 10.3389/fmicb.2015.01460] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 12/07/2015] [Indexed: 01/06/2023] Open
Abstract
Sixty percent of all pregnancies worldwide occur in malaria endemic regions. Pregnant women are at greater risk of malaria infection than their non-pregnant counterparts and have a higher risk of adverse birth outcomes including low birth weight resulting from intrauterine growth restriction and/or preterm birth. The complement system plays an essential role in placental and fetal development as well as the host innate immune response to malaria infection. Excessive or dysregulated complement activation has been associated with the pathobiology of severe malaria and with poor pregnancy outcomes, dependent and independent of infection. Here we review the role of complement in malaria and pregnancy and discuss its part in mediating altered placental angiogenesis, malaria-induced adverse birth outcomes, and disruptions to the in utero environment with possible consequences on fetal neurodevelopment. A detailed understanding of the mechanisms underlying adverse birth outcomes, and the impact of maternal malaria infection on fetal neurodevelopment, may lead to biomarkers to identify at-risk pregnancies and novel therapeutic interventions to prevent these complications.
Collapse
Affiliation(s)
- Chloe R McDonald
- Sandra Rotman Laboratories, Sandra Rotman Centre for Global Health, Toronto General Research Institute, University Health Network, TorontoON, Canada; Department of Global Health and Population, Harvard School of Public Health, BostonMA, USA
| | - Vanessa Tran
- Sandra Rotman Laboratories, Sandra Rotman Centre for Global Health, Toronto General Research Institute, University Health Network, Toronto ON, Canada
| | - Kevin C Kain
- Sandra Rotman Laboratories, Sandra Rotman Centre for Global Health, Toronto General Research Institute, University Health Network, TorontoON, Canada; Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, TorontoON, Canada
| |
Collapse
|
42
|
Deroost K, Pham TT, Opdenakker G, Van den Steen PE. The immunological balance between host and parasite in malaria. FEMS Microbiol Rev 2015; 40:208-57. [PMID: 26657789 DOI: 10.1093/femsre/fuv046] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
Coevolution of humans and malaria parasites has generated an intricate balance between the immune system of the host and virulence factors of the parasite, equilibrating maximal parasite transmission with limited host damage. Focusing on the blood stage of the disease, we discuss how the balance between anti-parasite immunity versus immunomodulatory and evasion mechanisms of the parasite may result in parasite clearance or chronic infection without major symptoms, whereas imbalances characterized by excessive parasite growth, exaggerated immune reactions or a combination of both cause severe pathology and death, which is detrimental for both parasite and host. A thorough understanding of the immunological balance of malaria and its relation to other physiological balances in the body is of crucial importance for developing effective interventions to reduce malaria-related morbidity and to diminish fatal outcomes due to severe complications. Therefore, we discuss in this review the detailed mechanisms of anti-malarial immunity, parasite virulence factors including immune evasion mechanisms and pathogenesis. Furthermore, we propose a comprehensive classification of malaria complications according to the different types of imbalances.
Collapse
Affiliation(s)
- Katrien Deroost
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium The Francis Crick Institute, Mill Hill Laboratory, London, NW71AA, UK
| | - Thao-Thy Pham
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| | - Philippe E Van den Steen
- Laboratory of Immunobiology, Rega Institute for Medical Research, KU Leuven - University of Leuven, 3000 Leuven, Belgium
| |
Collapse
|
43
|
Sahu PK, Satpathi S, Behera PK, Mishra SK, Mohanty S, Wassmer SC. Pathogenesis of cerebral malaria: new diagnostic tools, biomarkers, and therapeutic approaches. Front Cell Infect Microbiol 2015; 5:75. [PMID: 26579500 PMCID: PMC4621481 DOI: 10.3389/fcimb.2015.00075] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/05/2015] [Indexed: 12/28/2022] Open
Abstract
Cerebral malaria is a severe neuropathological complication of Plasmodium falciparum infection. It results in high mortality and post-recovery neuro-cognitive disorders in children, even after appropriate treatment with effective anti-parasitic drugs. While the complete landscape of the pathogenesis of cerebral malaria still remains to be elucidated, numerous innovative approaches have been developed in recent years in order to improve the early detection of this neurological syndrome and, subsequently, the clinical care of affected patients. In this review, we briefly summarize the current understanding of cerebral malaria pathogenesis, compile the array of new biomarkers and tools available for diagnosis and research, and describe the emerging therapeutic approaches to tackle this pathology effectively.
Collapse
Affiliation(s)
- Praveen K Sahu
- Center for the Study of Complex Malaria in India, Ispat General Hospital Rourkela, India
| | | | | | - Saroj K Mishra
- Center for the Study of Complex Malaria in India, Ispat General Hospital Rourkela, India
| | - Sanjib Mohanty
- Center for the Study of Complex Malaria in India, Ispat General Hospital Rourkela, India
| | - Samuel Crocodile Wassmer
- Department of Microbiology, New York University School of Medicine New York, NY, USA ; Department of Pathology, The University of Sydney Sydney, NSW, Australia
| |
Collapse
|
44
|
Liu J, Pan T, You X, Xu Y, Liang J, Limpanont Y, Sun X, Okanurak K, Zheng H, Wu Z, Lv Z. SjCa8, a calcium-binding protein from Schistosoma japonicum, inhibits cell migration and suppresses nitric oxide release of RAW264.7 macrophages. Parasit Vectors 2015; 8:513. [PMID: 26445908 PMCID: PMC4597762 DOI: 10.1186/s13071-015-1119-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 09/28/2015] [Indexed: 11/10/2022] Open
Abstract
Background Schistosomiasis is considered second only to malaria as the most devastating parasitic disease in tropical countries. Schistosome cercariae invade the host by penetrating the skin and migrate though the lungs and portal circulation to their final destination in the hepatic portal system and eventually the mesenteric veins. Previous studies have shown that the cytotoxic pathways that target schistosomulum in the lung-stage involve nitric oxide (NO) produced by macrophages. By contrast, skin-stage schistosomulas can evade clearance, indicating that they might be freed from macrophage NO-mediated cytotoxicity to achieve immune evasion; however, the critical molecules and mechanisms involved remain unknown. Methods Recombinant SjCa8 (rSjCa8), an 8-kDa calcium-binding protein that is stage-specifically expressed in cercaria and early skin-stage schistosomulas of Schistosoma japonicum, was incubated with mouse RAW264.7 macrophages. Effects on macrophage proliferation were determined using Cell Counting Kit-8. Next, transwell assay was carried out to further investigate the role of rSjCa8 in macrophage migration. The effects of rSjCa8 on macrophage apoptosis were evaluated using confocal microscopy and flow cytometry. Additional impacts of rSjCa8 on NO release by lipopolysaccharide (LPS)-stimulated macrophages as well as the underlying mechanisms were explored using fluorescent probe, nitric oxide signaling pathway microarray, quantitative real-time PCR, mutagenesis, and neutralizing antibody approaches. Results rSjCa8 exhibited a striking inhibitory effect on macrophage migration, but did not markedly increase cell proliferation or apoptosis. Additionally, rSjCa8 potently inhibited NO release by LPS-stimulated macrophages in a dose- and time-dependent manner, and the inhibitory mechanism was closely associated with intracellular Ca2+ levels, the up-regulation of catalase expression, and the down-regulation of the expression of 47 genes, including Myc, Gadd45a, Txnip, Fas, Sod2, Nos2, and Hmgb1. Vaccination with rSjCa8 increased NO concentration in the challenging skin area of infected mice and reduced the number of migrated schistosomula after skin penetration by cercariae. Conclusions Our findings indicate that SjCa8 might be a novel molecule that plays a critical role in immune evasion by S. japonicum cercaria during the process of skin penetration. The inhibitory impacts of rSjCa8 on macrophage migration and [Ca2+]i-dependent NO release suggest it might represent a novel vaccine candidate and chemotherapeutic target for the prevention and treatment of schistosomiasis. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1119-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ji Liu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Tong Pan
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Xu You
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yiyue Xu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Jinyi Liang
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Xi Sun
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Kamolnetr Okanurak
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Huanqin Zheng
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhongdao Wu
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Zhiyue Lv
- Zhongshan School of Medicine, Sun Yat-sen University, 74 2nd Zhongshan Road, Guangzhou, 510080, China. .,Key Laboratory for Tropical Diseases Control of Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
45
|
Endothelial-Leukocyte Interaction in Severe Malaria: Beyond the Brain. Mediators Inflamm 2015; 2015:168937. [PMID: 26491221 PMCID: PMC4605361 DOI: 10.1155/2015/168937] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 01/23/2023] Open
Abstract
Malaria is the most important parasitic disease worldwide, accounting for 1 million deaths each year. Severe malaria is a systemic illness characterized by dysfunction of brain tissue and of one or more peripheral organs as lungs and kidney. The most severe and most studied form of malaria is associated with cerebral complications due to capillary congestion and the adhesion of infected erythrocytes, platelets, and leukocytes to brain vasculature. Thus, leukocyte rolling and adhesion in the brain vascular bed during severe malaria is singular and distinct from other models of inflammation. The leukocyte/endothelium interaction and neutrophil accumulation are also observed in the lungs. However, lung interactions differ from brain interactions, likely due to differences in the blood-brain barrier and blood-air barrier tight junction composition of the brain and lung endothelium. Here, we review the importance of endothelial dysfunction and the mechanism of leukocyte/endothelium interaction during severe malaria. Furthermore, we hypothesize a possible use of adjunctive therapies to antimalarial drugs that target the interaction between the leukocytes and the endothelium.
Collapse
|
46
|
Carvalho LJDM, Moreira ADS, Daniel-Ribeiro CT, Martins YC. Vascular dysfunction as a target for adjuvant therapy in cerebral malaria. Mem Inst Oswaldo Cruz 2015; 109:577-88. [PMID: 25185000 PMCID: PMC4156451 DOI: 10.1590/0074-0276140061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/02/2014] [Indexed: 12/27/2022] Open
Abstract
Cerebral malaria (CM) is a life-threatening complication of Plasmodium
falciparum malaria that continues to be a major global health problem.
Brain vascular dysfunction is a main factor underlying the pathogenesis of CM and can
be a target for the development of adjuvant therapies for the disease. Vascular
occlusion by parasitised red blood cells and vasoconstriction/vascular dysfunction
results in impaired cerebral blood flow, ischaemia, hypoxia, acidosis and death. In
this review, we discuss the mechanisms of vascular dysfunction in CM and the roles of
low nitric oxide bioavailability, high levels of endothelin-1 and dysfunction of the
angiopoietin-Tie2 axis. We also discuss the usefulness and relevance of the murine
experimental model of CM by Plasmodium berghei ANKA to identify
mechanisms of disease and to screen potential therapeutic interventions.
Collapse
Affiliation(s)
| | - Aline da Silva Moreira
- Laboratório de Pesquisas em Malária, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, RJ, Brasil
| | | | - Yuri Chaves Martins
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
47
|
Dalton JE, Glover AC, Hoodless L, Lim EK, Beattie L, Kirby A, Kaye PM. The neurotrophic receptor Ntrk2 directs lymphoid tissue neovascularization during Leishmania donovani infection. PLoS Pathog 2015; 11:e1004681. [PMID: 25710496 PMCID: PMC4339582 DOI: 10.1371/journal.ppat.1004681] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 01/12/2015] [Indexed: 01/31/2023] Open
Abstract
The neurotrophic tyrosine kinase receptor type 2 (Ntrk2, also known as TrkB) and its ligands brain derived neurotrophic factor (Bdnf), neurotrophin-4 (NT-4/5), and neurotrophin-3 (NT-3) are known primarily for their multiple effects on neuronal differentiation and survival. Here, we provide evidence that Ntrk2 plays a role in the pathologic remodeling of the spleen that accompanies chronic infection. We show that in Leishmania donovani-infected mice, Ntrk2 is aberrantly expressed on splenic endothelial cells and that new maturing blood vessels within the white pulp are intimately associated with F4/80(hi)CD11b(lo)CD11c(+) macrophages that express Bdnf and NT-4/5 and have pro-angiogenic potential in vitro. Furthermore, administration of the small molecule Ntrk2 antagonist ANA-12 to infected mice significantly inhibited white pulp neovascularization but had no effect on red pulp vascular remodeling. We believe this to be the first evidence of the Ntrk2/neurotrophin pathway driving pathogen-induced vascular remodeling in lymphoid tissue. These studies highlight the therapeutic potential of modulating this pathway to inhibit pathological angiogenesis.
Collapse
Affiliation(s)
- Jane E. Dalton
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Amy C. Glover
- Jack Birch Unit, Department of Biology, University of York, York, United Kingdom
| | - Laura Hoodless
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Eng-Kiat Lim
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Lynette Beattie
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Alun Kirby
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
| | - Paul M. Kaye
- Centre for Immunology and Infection, Department of Biology and Hull York Medical School, University of York, York, United Kingdom
- * E-mail:
| |
Collapse
|
48
|
Cabrera A, Neculai D, Kain KC. CD36 and malaria: friends or foes? A decade of data provides some answers. Trends Parasitol 2014; 30:436-44. [PMID: 25113859 DOI: 10.1016/j.pt.2014.07.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 07/16/2014] [Accepted: 07/17/2014] [Indexed: 02/07/2023]
Abstract
The past 10 years have generated new insights into the complex interaction between CD36 (cluster of differentiation 36) and malaria. These range from the crystallization of the CD36 homolog, LIMPII (lysosomal integral membrane protein II), permitting modeling of CD36 and its binding to diverse ligands, to cell biology-based studies of CD36 and large population genetic studies assessing the association of CD36 polymorphisms and malarial disease severity. Collectively these lines of evidence indicate that a receptor other than CD36 is associated with severity. CD36 plays an important role in innate immunity and in the phagocytic uptake of multiple pathogens including malaria. CD36 polymorphisms lack association with severity, and isolates that cause severe disease primarily bind to endothelial protein C receptor (EPCR) rather than to CD36.
Collapse
Affiliation(s)
- Ana Cabrera
- Sandra Ann Rotman (SAR) Laboratories, SAR Centre, Toronto General Hospital, University Health Network, Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Dante Neculai
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kevin C Kain
- Sandra Ann Rotman (SAR) Laboratories, SAR Centre, Toronto General Hospital, University Health Network, Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|