1
|
Merten EM, Sears JD, Leisner TM, Hardy PB, Ghoshal A, Hossain MA, Asressu KH, Brown PJ, Tse EG, Stashko MA, Li K, Norris-Drouin JL, Herring LE, Mordant AL, Webb TS, Mills CA, Barker NK, Streblow ZJ, Perveen S, Arrowsmith CH, Couñago RM, Arnold JJ, Cameron CE, Streblow DN, Moorman NJ, Heise MT, Willson TM, Popov KI, Pearce KH. Identification of a cell-active chikungunya virus nsP2 protease inhibitor using a covalent fragment-based screening approach. Proc Natl Acad Sci U S A 2024; 121:e2409166121. [PMID: 39388272 PMCID: PMC11494320 DOI: 10.1073/pnas.2409166121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV nonstructural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow-up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a kinact /KI of 6.4 × 103 M-1s-1. LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity in proteomic experiments or against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the identification and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic.
Collapse
Affiliation(s)
- Eric M. Merten
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - John D. Sears
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Tina M. Leisner
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - P. Brian Hardy
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Anirban Ghoshal
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Mohammad Anwar Hossain
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kesatebrhan Haile Asressu
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Peter J. Brown
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Edwin G. Tse
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Michael A. Stashko
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kelin Li
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Jacqueline L. Norris-Drouin
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Laura E. Herring
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Angie L. Mordant
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Thomas S. Webb
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Christine A. Mills
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Natalie K. Barker
- Proteomics Core Facility, Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Zachary J. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR97006
| | - Sumera Perveen
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Cheryl H. Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, ONM5G 1L7, Canada
| | - Rafael Miguez Couñago
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Center of Medicinal Chemistry, Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP13083-886, Brazil
| | - Jamie J. Arnold
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Craig E. Cameron
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR97006
| | - Nathaniel J. Moorman
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Mark T. Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Timothy M. Willson
- Structural Genomics Consortium, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Konstantin I. Popov
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Kenneth H. Pearce
- Eshelman School of Pharmacy, Center for Integrative Chemical Biology and Drug Discovery, Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
- Lineberger Comprehensive Cancer Center, Molecular Therapeutics Research Program, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| |
Collapse
|
2
|
Metibemu DS, Adeyinka OS, Falode J, Crown O, Ogungbe IV. Inhibitors of the Structural and Nonstructural Proteins of Alphaviruses. ACS Infect Dis 2024; 10:2507-2524. [PMID: 38992989 DOI: 10.1021/acsinfecdis.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
The Alphavirus genus includes viruses that cause encephalitis due to neuroinvasion and viruses that cause arthritis due to acute and chronic inflammation. There is no approved therapeutic for alphavirus infections, but significant efforts are ongoing, more so in recent years, to develop vaccines and therapeutics for alphavirus infections. This review article highlights some of the major advances made so far to identify small molecules that can selectively target the structural and the nonstructural proteins in alphaviruses with the expectation that persistent investigation of an increasingly expanding chemical space through a variety of structure-based design and high-throughput screening strategies will yield candidate drugs for clinical studies. While most of the works discussed are still in the early discovery to lead optimization stages, promising avenues remain for drug development against this family of viruses.
Collapse
Affiliation(s)
- Damilohun Samuel Metibemu
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Olawale Samuel Adeyinka
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - John Falode
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Olamide Crown
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| | - Ifedayo Victor Ogungbe
- Chemistry and Biotechnology Science and Engineering Programs, The University of Alabama in Huntsville, 301 Sparkman Drive, Huntsville, Alabama 35899, United States
| |
Collapse
|
3
|
Rasmussen L, Sanders S, Sosa M, McKellip S, Nebane NM, Martinez-Gzegozewska Y, Reece A, Ruiz P, Manuvakhova A, Zhai L, Warren B, Curry A, Zeng Q, Bostwick JR, Vinson PN. A high-throughput response to the SARS-CoV-2 pandemic. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2024; 29:100160. [PMID: 38761981 DOI: 10.1016/j.slasd.2024.100160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Four years after the beginning of the COVID-19 pandemic, it is important to reflect on the events that have occurred during that time and the knowledge that has been gained. The response to the pandemic was rapid and highly resourced; it was also built upon a foundation of decades of federally funded basic and applied research. Laboratories in government, pharmaceutical, academic, and non-profit institutions all played roles in advancing pre-2020 discoveries to produce clinical treatments. This perspective provides a summary of how the development of high-throughput screening methods in a biosafety level 3 (BSL-3) environment at Southern Research Institute (SR) contributed to pandemic response efforts. The challenges encountered are described, including those of a technical nature as well as those of working under the pressures of an unpredictable virus and pandemic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ling Zhai
- Southern Research, Birmingham, AL, USA
| | | | | | | | | | | |
Collapse
|
4
|
Merten EM, Sears JD, Leisner TM, Hardy PB, Ghoshal A, Hossain MA, Asressu KH, Brown PJ, Stashko MA, Herring L, Mordant AL, Webb TS, Mills CA, Barker NK, Streblow ZJ, Perveen S, Arrowsmith C, Arnold JJ, Cameron CE, Streblow DN, Moorman NJ, Heise M, Willson TM, Popov K, Pearce KH. Discovery of a cell-active chikungunya virus nsP2 protease inhibitor using a covalent fragment-based screening approach. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.22.586341. [PMID: 38562906 PMCID: PMC10983941 DOI: 10.1101/2024.03.22.586341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that has been responsible for numerous large-scale outbreaks in the last twenty years. Currently, there are no FDA-approved therapeutics for any alphavirus infection. CHIKV non-structural protein 2 (nsP2), which contains a cysteine protease domain, is essential for viral replication, making it an attractive target for a drug discovery campaign. Here, we optimized a CHIKV nsP2 protease (nsP2pro) biochemical assay for the screening of a 6,120-compound cysteine-directed covalent fragment library. Using a 50% inhibition threshold, we identified 153 hits (2.5% hit rate). In dose-response follow up, RA-0002034, a covalent fragment that contains a vinyl sulfone warhead, inhibited CHIKV nsP2pro with an IC 50 of 58 ± 17 nM, and further analysis with time-dependent inhibition studies yielded a k inact /K I of 6.4 x 10 3 M -1 s -1 . LC-MS/MS analysis determined that RA-0002034 covalently modified the catalytic cysteine in a site-specific manner. Additionally, RA-0002034 showed no significant off-target reactivity against a panel of cysteine proteases. In addition to the potent biochemical inhibition of CHIKV nsP2pro activity and exceptional selectivity, RA-0002034 was tested in cellular models of alphavirus infection and effectively inhibited viral replication of both CHIKV and related alphaviruses. This study highlights the discovery and characterization of the chemical probe RA-0002034 as a promising hit compound from covalent fragment-based screening for development toward a CHIKV or pan-alphavirus therapeutic. Significance Statement Chikungunya virus is one of the most prominent and widespread alphaviruses and has caused explosive outbreaks of arthritic disease. Currently, there are no FDA-approved drugs to treat disease caused by chikungunya virus or any other alphavirus-caused infection. Here, we report the discovery of a covalent small molecule inhibitor of chikungunya virus nsP2 protease activity and viral replication of four diverse alphaviruses. This finding highlights the utility of covalent fragment screening for inhibitor discovery and represents a starting point towards the development of alphavirus therapeutics targeting nsP2 protease.
Collapse
|
5
|
Marques RE, Shimizu JF, Nogueira ML, Vasilakis N. Current challenges in the discovery of treatments against Mayaro fever. Expert Opin Ther Targets 2024; 28:345-356. [PMID: 38714500 PMCID: PMC11189740 DOI: 10.1080/14728222.2024.2351504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/01/2024] [Indexed: 05/10/2024]
Abstract
INTRODUCTION Mayaro fever is an emerging viral disease that manifests as an acute febrile illness. The disease is self-limiting, however joint pain can persist for months leading to chronic arthralgia. There is no specific treatment available, which ultimately leads to socioeconomic losses in populations at risk as well as strains to the public health systems. AREAS COVERED We reviewed the candidate treatments proposed for Mayaro virus (MAYV) infection and disease, including antiviral compounds targeting viral or host mechanisms, and pathways involved in disease development and pathogenicity. We assessed compound screening technologies and experimental infection models used in these studies and indicated the advantages and limitations of available technologies and intended therapeutic strategies. EXPERT OPINION Although several compounds have been suggested as candidate treatments against MAYV infection, notably those with antiviral activity, most compounds were assessed only in vitro. Compounds rarely progress toin vivo or preclinical studies, and such difficulty may be associated with limited experimental models. MAYV biology is largely inferred from related alphaviruses and reflected by few studies focusing on target proteins or mechanisms of action for MAYV. Therapeutic strategies targeting pathogenic inflammatory responses have shown potential against MAYV-induced disease in vivo, which might reduce long-term sequelae.
Collapse
Affiliation(s)
- Rafael Elias Marques
- Brazilian Biosciences National Laboratory – LNBio, Brazilian Center for Research in Energy and Materials – CNPEM, Campinas, São Paulo, Brazil
| | - Jacqueline Farinha Shimizu
- Brazilian Biosciences National Laboratory – LNBio, Brazilian Center for Research in Energy and Materials – CNPEM, Campinas, São Paulo, Brazil
| | - Maurício Lacerda Nogueira
- Faculdade de Medicina de São Jose do Rio Preto - FAMERP, São Jose do Rio Preto, São Paulo, Brazil
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| | - Nikos Vasilakis
- University of Texas Medical Branch at Galveston, Galveston, Texas, USA
| |
Collapse
|
6
|
Cao X, Yang D, Parvathareddy J, Chu YK, Kim EJ, Fitz-Henley JN, Li X, Lukka PB, Parmar KR, Temrikar ZH, Dhole P, Adcock RS, Gabbard J, Bansal S, Lee J, Zalduondo L, Hayes E, Stabenow J, Meibohm B, Fitzpatrick EA, Bailey K, Campos RK, Julander JG, Rossi SL, Chung D, Jonsson CB, Golden JE. Efficacy of a brain-penetrant antiviral in lethal Venezuelan and eastern equine encephalitis mouse models. Sci Transl Med 2023; 15:eabl9344. [PMID: 37043558 DOI: 10.1126/scitranslmed.abl9344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/24/2023] [Indexed: 04/14/2023]
Abstract
Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV, respectively) are mosquito-borne, neuroinvasive human pathogens for which no FDA-approved therapeutic exists. Besides the biothreat posed by these viruses when aerosolized, arthropod transmission presents serious health risks to humans, as demonstrated by the 2019 outbreak of EEE disease in the United States that resulted in 38 confirmed cases, 19 deaths, and neurological effects in survivors. Here, we describe the discovery of a 2-pyrrolidinoquinazolinone scaffold, efficiently synthesized in two to five steps, whose structural optimization resulted in profound antiviral activity. The lead quinazolinone, BDGR-49, potently reduced cellular VEEV and EEEV titers by >7 log at 1 μM and exhibited suitable intravenous and oral pharmacokinetic profiles in BALB/c mice to achieve excellent brain exposure. Outstanding in vivo efficacy was observed in several lethal, subcutaneous infection mouse models using an 8-day dosing regimen. Prophylactically administered BDGR-49 at 25 mg kg-1 per day fully protected against a 10× LD50 VEEV Trinidad donkey (TrD) challenge in BALB/c mice. Similarly, we observed 70% protection when 10× LD50 EEEV FL93-939-infected C57BL/6 mice were treated prophylactically with BDGR-49 at 50 mg kg-1 per day. Last, we observed 100% therapeutic efficacy when mice, challenged with 10× LD50 VEEV TrD, were dosed at 48 hours after infection with BDGR-49 at 25 mg kg-1 per day. Mouse brain viral titers at 96 hours after infection were reduced to values near the limit of detection. Collectively, these results underscore the substantial development potential of a well-tolerated, brain-penetrant lead compound that shows promise in preventing and treating encephalitic alphavirus disease.
Collapse
Affiliation(s)
- Xufeng Cao
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Dong Yang
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jyothi Parvathareddy
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Yong-Kyu Chu
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Eun Jung Kim
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jhewelle N Fitz-Henley
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Xiaoyu Li
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Pradeep B Lukka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Keyur R Parmar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Zaid H Temrikar
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Priya Dhole
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Robert Scott Adcock
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jon Gabbard
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shruti Bansal
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jasper Lee
- Departments of Microbiology, Immunology, Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Lillian Zalduondo
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ernestine Hayes
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer Stabenow
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Elizabeth A Fitzpatrick
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Departments of Microbiology, Immunology, Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kevin Bailey
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Rafael K Campos
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Justin G Julander
- Institute for Antiviral Research, Utah State University, Logan, UT 84322, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Donghoon Chung
- Center for Predictive Medicine, Department of Microbiology Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Colleen B Jonsson
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Departments of Microbiology, Immunology, Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jennifer E Golden
- School of Pharmacy, Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Targeting the alphavirus virus replication process for antiviral development. Antiviral Res 2023; 210:105494. [PMID: 36574906 DOI: 10.1016/j.antiviral.2022.105494] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022]
Abstract
Many alphaviruses, including chikungunya virus (CHIKV) are known human pathogens that lack specific and effective antivirals or vaccines available. The upstream portion of the positive-sense single-stranded RNA genome of alphaviruses encodes four nonstructural proteins: nsP1 to nsP4. They are expressed and autoprocessed to nonstructural proteins which assemble into a replication complex (RC) playing multiple essential roles on viral RNA replication and communication with the host components. The assembly of alphavirus RC and its RNA genome initiates the membrane-derived ultrastructure known as spherule which facilitates viral RNA synthesis protected from host immune responses. Recent advances in the molecular understanding of the high-resolution CHIKV RC heteromeric ultrastructure have provided new insights into the viral replication process. Hence, alphavirus RC presents as an ideal multi-enzyme target for the development of structure-based antiviral drugs. Moreover, the alphavirus RC has therapeutic potential in the form of self-amplifying RNA technology against both infectious and non-infectious diseases.
Collapse
|
8
|
Skidmore AM, Bradfute SB. The life cycle of the alphaviruses: From an antiviral perspective. Antiviral Res 2023; 209:105476. [PMID: 36436722 PMCID: PMC9840710 DOI: 10.1016/j.antiviral.2022.105476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The alphaviruses are a widely distributed group of positive-sense, single stranded, RNA viruses. These viruses are largely arthropod-borne and can be found on all populated continents. These viruses cause significant human disease, and recently have begun to spread into new populations, such as the expansion of Chikungunya virus into southern Europe and the Caribbean, where it has established itself as endemic. The study of alphaviruses is an active and expanding field, due to their impacts on human health, their effects on agriculture, and the threat that some pose as potential agents of biological warfare and terrorism. In this systematic review we will summarize both historic knowledge in the field as well as recently published data that has potential to shift current theories in how alphaviruses are able to function. This review is comprehensive, covering all parts of the alphaviral life cycle as well as a brief overview of their pathology and the current state of research in regards to vaccines and therapeutics for alphaviral disease.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3245, Albuquerque, NM, 87131, USA.
| | - Steven B Bradfute
- Center for Global Health, Department of Internal Medicine, University of New Mexico Health Sciences Center, 915 Camino de Salud, IDTC Room 3330A, Albuquerque, NM, 87131, USA.
| |
Collapse
|
9
|
Kehn-Hall K, Bradfute SB. Understanding host responses to equine encephalitis virus infection: implications for therapeutic development. Expert Rev Anti Infect Ther 2022; 20:1551-1566. [PMID: 36305549 DOI: 10.1080/14787210.2022.2141224] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV) are mosquito-borne New World alphaviruses that cause encephalitis in equids and humans. These viruses can cause severe disease and death, as well as long-term severe neurological symptoms in survivors. Despite the pathogenesis and weaponization of these viruses, there are no approved therapeutics for treating infection. AREAS COVERED In this review, we describe the molecular pathogenesis of these viruses, discuss host-pathogen interactions needed for viral replication, and highlight new avenues for drug development with a focus on host-targeted approaches. EXPERT OPINION Current approaches have yielded some promising therapeutics, but additional emphasis should be placed on advanced development of existing small molecules and pursuit of pan-encephalitic alphavirus drugs. More research should be conducted on EEEV and WEEV, given their high lethality rates.
Collapse
Affiliation(s)
- Kylene Kehn-Hall
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA.,Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, USA
| | - Steven B Bradfute
- Department of Internal Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
10
|
Connors W, DeKorte R, Lucas SCC, Gopalsamy A, Ziegler RE. Synthesis of Benzothiazinones from Benzoyl Thiocarbamates: Application to Clinical Candidates for Tuberculosis Treatment. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- William Connors
- AstraZeneca Pharmaceuticals LP Medicinal Chemistry UNITED STATES
| | - Ryan DeKorte
- AstraZeneca Pharmaceuticals LP Medicinal Chemistry UNITED STATES
| | | | | | - Robert E Ziegler
- AstraZeneca Medicinal Chemistry 35 Gatehouse Drive 02451 Waltham UNITED STATES
| |
Collapse
|
11
|
Kafai NM, Diamond MS, Fox JM. Distinct Cellular Tropism and Immune Responses to Alphavirus Infection. Annu Rev Immunol 2022; 40:615-649. [PMID: 35134315 DOI: 10.1146/annurev-immunol-101220-014952] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alphaviruses are emerging and reemerging viruses that cause disease syndromes ranging from incapacitating arthritis to potentially fatal encephalitis. While infection by arthritogenic and encephalitic alphaviruses results in distinct clinical manifestations, both virus groups induce robust innate and adaptive immune responses. However, differences in cellular tropism, type I interferon induction, immune cell recruitment, and B and T cell responses result in differential disease progression and outcome. In this review, we discuss aspects of immune responses that contribute to protective or pathogenic outcomes after alphavirus infection. Expected final online publication date for the Annual Review of Immunology, Volume 40 is April 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natasha M Kafai
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA; , .,Department of Pathology and Immunology, Washington University in St. Louis, St. Louis, Missouri, USA.,Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Julie M Fox
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA;
| |
Collapse
|
12
|
Optimization of 4-Anilinoquinolines as Dengue Virus Inhibitors. Molecules 2021; 26:molecules26237338. [PMID: 34885921 PMCID: PMC8659069 DOI: 10.3390/molecules26237338] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Emerging viral infections, including those caused by dengue virus (DENV) and Venezuelan Equine Encephalitis virus (VEEV), pose a significant global health challenge. Here, we report the preparation and screening of a series of 4-anilinoquinoline libraries targeting DENV and VEEV. This effort generated a series of lead compounds, each occupying a distinct chemical space, including 3-((6-bromoquinolin-4-yl)amino)phenol (12), 6-bromo-N-(5-fluoro-1H-indazol-6-yl)quinolin-4-amine (50) and 6-((6-bromoquinolin-4-yl)amino)isoindolin-1-one (52), with EC50 values of 0.63–0.69 µM for DENV infection. These compound libraries demonstrated very limited toxicity with CC50 values greater than 10 µM in almost all cases. Additionally, the lead compounds were screened for activity against VEEV and demonstrated activity in the low single-digit micromolar range, with 50 and 52 demonstrating EC50s of 2.3 µM and 3.6 µM, respectively. The promising results presented here highlight the potential to further refine this series in order to develop a clinical compound against DENV, VEEV, and potentially other emerging viral threats.
Collapse
|
13
|
Abstract
Alphaviruses are positive-strand RNA viruses, typically transmitted by mosquitoes between vertebrate hosts. They encode four essential replication proteins, the non-structural proteins nsP1-4, which possess the enzymatic activities of RNA capping, RNA helicase, site-specific protease, ADP-ribosyl removal and RNA polymerase. Alphaviruses have been key models in the study of membrane-associated RNA replication, which is a conserved feature among the positive-strand RNA viruses of animals and plants. We review new structural and functional information on the nsPs and their interaction with host proteins and membranes, as well as with viral RNA sequences. The dodecameric ring structure of nsP1 is likely to be one of the evolutionary innovations that facilitated the success of the progenitors of current positive-strand RNA viruses.
Collapse
Affiliation(s)
- Tero Ahola
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Gerald McInerney
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
14
|
Identification of Quinolinones as Antivirals against Venezuelan Equine Encephalitis Virus. Antimicrob Agents Chemother 2021; 65:e0024421. [PMID: 34152810 DOI: 10.1128/aac.00244-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a reemerging alphavirus that can cause encephalitis resulting in severe human morbidity and mortality. Using a high-throughput cell-based screen, we identified a quinolinone compound that protected against VEEV-induced cytopathic effects. Analysis of viral replication in cells identified several quinolinone compounds with potent inhibitory activity against vaccine and virulent strains of VEEV. These quinolinones also displayed inhibitory activity against additional alphaviruses, such as Mayaro virus and Ross River virus, although the potency was greatly reduced. Time-of-addition studies indicated that these compounds inhibit the early-to-mid stage of viral replication. Deep sequencing and reverse genetics studies identified two unique resistance mutations in the nsP2 gene (Y102S/C; stalk domain) that conferred VEEV resistance on this chemical series. Moreover, introduction of a K102Y mutation into the nsP2 gene enhanced the sensitivity of chikungunya virus (CHIKV) to this chemical series. Computational modeling of CHIKV and VEEV nsP2 identified a highly probable docking alignment for the quinolinone compounds that require a tyrosine residue at position 102 within the helicase stalk domain. These studies identified a class of compounds with antiviral activity against VEEV and other alphaviruses and provide further evidence that therapeutics targeting nsP2 may be useful against alphavirus infection.
Collapse
|
15
|
Shechter S, Thomas DR, Jans DA. Application of In Silico and HTS Approaches to Identify Nuclear Import Inhibitors for Venezuelan Equine Encephalitis Virus Capsid Protein: A Case Study. Front Chem 2020; 8:573121. [PMID: 33505952 PMCID: PMC7832173 DOI: 10.3389/fchem.2020.573121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/12/2020] [Indexed: 01/16/2023] Open
Abstract
The development of new drugs is costly and time-consuming, with estimates of over $US1 billion and 15 years for a product to reach the market. As understanding of the molecular basis of disease improves, various approaches have been used to target specific molecular interactions in the search for effective drugs. These include high-throughput screening (HTS) for novel drug identification and computer-aided drug design (CADD) to assess the properties of putative drugs before experimental work begins. We have applied conventional HTS and CADD approaches to the problem of identifying antiviral compounds to limit infection by Venezuelan equine encephalitis virus (VEEV). Nuclear targeting of the VEEV capsid (CP) protein through interaction with the host nuclear import machinery has been shown to be essential for viral pathogenicity, with viruses incapable of this interaction being greatly attenuated. Our previous conventional HTS and in silico structure-based drug design (SBDD) screens were successful in identifying novel inhibitors of CP interaction with the host nuclear import machinery, thus providing a unique opportunity to assess the relative value of the two screening approaches directly. This focused review compares and contrasts the two screening approaches, together with the properties of the inhibitors identified, as a case study for parallel use of the two approaches to identify antivirals. The utility of SBDD screens, especially when used in parallel with traditional HTS, in identifying agents of interest to target the host-pathogen interface is highlighted.
Collapse
Affiliation(s)
- Sharon Shechter
- Shechter Computational Solutions, Andover, MA, United States.,Department of Chemistry, College of Sciences, University of Massachusetts Lowell, Lowell, MA, United States
| | - David R Thomas
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Biomedical Discovery Institute, Monash University, Monash, VIC, Australia
| | - David A Jans
- Nuclear Signalling Laboratory, Department of Biochemistry and Molecular Biology, Biomedical Discovery Institute, Monash University, Monash, VIC, Australia
| |
Collapse
|
16
|
Lee J, Parvathareddy J, Yang D, Bansal S, O'Connell K, Golden JE, Jonsson CB. Emergence and Magnitude of ML336 Resistance in Venezuelan Equine Encephalitis Virus Depend on the Microenvironment. J Virol 2020; 94:e00317-20. [PMID: 32878897 PMCID: PMC7592223 DOI: 10.1128/jvi.00317-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a New World Alphavirus that can cause neurological disease and death in humans and equines following transmission from infected mosquitoes. Despite the continued epidemic threat of VEEV, and its potential use as a bioterrorism agent, there are no FDA-approved antivirals or vaccines for treatment or prevention. Previously, we reported the discovery of a small molecule, ML336, with potent antiviral activity against VEEV. To further explore the population-level resistance profiles of ML336, we developed a whole-genome next-generation sequencing (NGS) approach to examine single nucleotide polymorphisms (SNPs) from virus passaged in dose escalation studies in a nonhuman primate kidney epithelial and a human astrocyte cell line, Vero 76 and SVGA, respectively. We passaged VEEV TC-83 in these two cell lines over seven concentrations of ML336, starting at 50 nM. NGS revealed several prominent mutations in the nonstructural protein (nsP) 3 and nsP4 genes that emerged consistently in these two distinct in vitro environments-notably, a mutation at Q210 in nsP4. Several of these mutations were stable following passaging in the absence of ML336 in Vero 76 cells. Network analyses showed that the trajectory of resistance differed between Vero and SVGA. Moreover, the penetration of SNPs was lower in SVGA. In conclusion, we show that the microenvironment influenced the SNP profile of VEEV TC-83. Understanding the dynamics of resistance in VEEV against newly developed antiviral compounds will guide the design of optimal drug candidates and dosing regimens for minimizing the emergence of resistant viruses.IMPORTANCE RNA viruses, including Venezuelan equine encephalitis virus (VEEV), have high mutation rates that allow for rapid adaptation to selective pressures in their environment. Antiviral compounds exert one such pressure on virus populations during infections. Next-generation sequencing allows for examination of viruses at the population level, which enables tracking of low levels of single-nucleotide polymorphisms in the population over time. Therefore, the timing and extent of the emergence of resistance to antivirals can be tracked and assessed. We show here that in VEEV, the trajectory and penetration of antiviral resistance reflected the microenvironment in which the virus population replicates. In summary, we show the diversity of VEEV within a single population under antiviral pressure and two distinct cell types, and we show that population dynamics in these viruses can be examined to better understand how they evolve over time.
Collapse
Affiliation(s)
- Jasper Lee
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jyothi Parvathareddy
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Dong Yang
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Shruti Bansal
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Kathryn O'Connell
- Laboratory Animal Care Unit, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Jennifer E Golden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Colleen B Jonsson
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee, USA
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
17
|
Saikh KU, Morazzani EM, Piper AE, Bakken RR, Glass PJ. A small molecule inhibitor of MyD88 exhibits broad spectrum antiviral activity by up regulation of type I interferon. Antiviral Res 2020; 181:104854. [PMID: 32621945 DOI: 10.1016/j.antiviral.2020.104854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 01/04/2023]
Abstract
Recent studies highlight that infection with Coxsackievirus B3, Venezuelan equine encephalitis virus (VEEV), Marburg virus, or stimulation using poly I:C (dsRNA), upregulates the signaling adaptor protein MyD88 and impairs the host antiviral type I interferon (IFN) responses. In contrast, MyD88 deficiency (MyD88-/-) increases the type I IFN and survivability of mice implying that MyD88 up regulation limits the type I IFN response. Reasoning that MyD88 inhibition in a virus-like manner may increase type I IFN responses, our studies revealed lipopolysaccharide stimulation of U937 cells or poly I:C stimulation of HEK293-TLR3, THP1 or U87 cells in the presence of a previously reported MyD88 inhibitor (compound 4210) augmented IFN-β and RANTES production. Consistent with these results, overexpression of MyD88 decreased IFN-β, whereas MyD88 inhibition rescued IFN-β production concomitant with increased IRF3 phosphorylation, suggesting IRF-mediated downstream signaling to the IFN-β response. Further, compound 4210 treatment inhibited MyD88 interaction with IRF3/IRF7 indicating that MyD88 restricts type I IFN signaling through sequestration of IRF3/IRF7. In cell based infection assays, compound 4210 treatment suppressed replication of VEEV, Eastern equine encephalitis virus, Ebola virus (EBOV), Rift Valley Fever virus, Lassa virus, and Dengue virus with IC50 values ranging from 11 to 42 μM. Notably, administration of compound 4210 improved survival, weight change, and clinical disease scores in mice following challenge with VEEV TC-83 and EBOV. Collectively, these results provide evidence that viral infections responsive to MyD88 inhibition lead to activation of IRF3/IRF7 and promoted a type I IFN response, thus, raising the prospect of an approach of host-directed antiviral therapy.
Collapse
Affiliation(s)
- Kamal U Saikh
- Department of Bacterial Immunology, Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA.
| | - Elaine M Morazzani
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Ashley E Piper
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Russell R Bakken
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| | - Pamela J Glass
- Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA
| |
Collapse
|
18
|
Skidmore AM, Adcock RS, Jonsson CB, Golden JE, Chung DH. Benzamidine ML336 inhibits plus and minus strand RNA synthesis of Venezuelan equine encephalitis virus without affecting host RNA production. Antiviral Res 2020; 174:104674. [PMID: 31816348 PMCID: PMC6935354 DOI: 10.1016/j.antiviral.2019.104674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Abstract
Venezuelan equine encephalitis virus (VEEV) is an alphavirus that is endemic to the Americas. VEEV outbreaks occur periodically and cause encephalitis in both humans and equids. There are currently no therapeutics or vaccines for treatment of VEEV in humans. Our group has previously reported on the development of a benzamidine VEEV inhibitor, ML336, which shows potent antiviral activity in both in vitro and in vivo models of infection. In cell culture experiments, ML336 inhibits viral RNA synthesis when added 2-4 h post-infection, and mutations conferring resistance occur within the viral nonstructural proteins (nsP2 and nsP4). We hypothesized that ML336 targets an activity of the viral replicase complex and inhibits viral RNA synthesis. To test this hypothesis, we employed various biochemical and cellular assays. Using structural analogues of ML336, we demonstrate that the cellular antiviral activity of these compounds correlates with their inhibition of viral RNA synthesis. For instance, the IC50 of ML336 for VEEV RNA synthesis inhibition was determined as 1.1 nM, indicating potent anti-RNA synthesis activity in the low nanomolar range. While ML336 efficiently inhibited VEEV RNA synthesis, a much weaker effect was observed against the Old World alphavirus Chikungunya virus (IC50 > 4 μM), agreeing with previous data from a cell based assay. Using a tritium incorporation assay, we demonstrated that there was no significant inhibition of cellular transcription. With a combination of fluorography, strand-specific qRT-PCR, and tritium incorporation, we demonstrated that ML336 inhibits the synthesis of the positive sense genomic, negative sense template, and subgenomic RNAs of VEEV. Based on these results, we propose that the mechanism of action for this class of antiviral compounds is inhibition of viral RNA synthesis through interaction with the viral replicase complex.
Collapse
Affiliation(s)
- Andrew M Skidmore
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Room 642 C, Louisville, KY, USA.
| | - Robert S Adcock
- Center of Predictive Medicine, University of Louisville, 505 South Hancock St, Room 617, Louisville, KY, USA.
| | - Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Ave, Room 810 B, Memphis, TN, USA.
| | - Jennifer E Golden
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Dr, Room 7123, Madison, WI, USA.
| | - Dong-Hoon Chung
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Room 642 C, Louisville, KY, USA; Center of Predictive Medicine, University of Louisville, 505 South Hancock St, Room 617, Louisville, KY, USA.
| |
Collapse
|
19
|
Nguyen TH, Haese NN, Madadi N, Sarkar S, Bonin K, Streblow CE, Taft-Benz S, Tower NA, Rasmussen L, Bostwick R, Augelli-Szafran CE, Suto MJ, Morrison TE, DeFilippis V, Heise MT, Streblow DN, Pathak AK. Studies on Dibenzylamines as Inhibitors of Venezuelan Equine Encephalitis Virus. ACS Infect Dis 2019; 5:2014-2028. [PMID: 31257853 DOI: 10.1021/acsinfecdis.9b00035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Alphaviruses are arthropod-transmitted members of the Togaviridae family that can cause severe disease in humans, including debilitating arthralgia and severe neurological complications. Currently, there are no approved vaccines or antiviral therapies directed against the alphaviruses, and care is limited to treating disease symptoms. A phenotypic cell-based high-throughput screen was performed to identify small molecules that inhibit the replication of Venezuelan Equine Encephalitis Virus (VEEV). The compound, 1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-N-(3-fluoro-4-methoxybenzyl)ethan-1-amine (1), was identified as a highly active, potent inhibitor of VEEV with an effective concentration for 90% inhibition of virus (EC90) of 0.89 μM and 7.49 log reduction in virus titers at 10 μM concentration. These data suggest that further investigation of compound 1 as an antiviral therapeutic against VEEV, and perhaps other alphaviruses, is warranted. Experiments suggested that the antiviral activity of compound 1 is directed at an early step in the VEEV replication cycle by blocking viral RNA and protein synthesis.
Collapse
Affiliation(s)
- Theresa H. Nguyen
- Chemistry Department, Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Nicole N. Haese
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, United States
| | - Nikhil Madadi
- Chemistry Department, Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Kiley Bonin
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, United States
| | - Cassilyn E. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, United States
| | - Sharon Taft-Benz
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Nichole A. Tower
- High-Throughput Screening Center, Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Lynn Rasmussen
- High-Throughput Screening Center, Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Robert Bostwick
- High-Throughput Screening Center, Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Corinne E. Augelli-Szafran
- Chemistry Department, Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Mark J. Suto
- Chemistry Department, Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, 12800 E. 19th Avenue, Aurora, Colorado 80045, United States
| | - Victor DeFilippis
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, United States
| | - Mark T. Heise
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599, United States
| | - Daniel N. Streblow
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, Oregon 97006, United States
| | - Ashish K. Pathak
- Chemistry Department, Drug Discovery Division, Southern Research, 2000 Ninth Avenue South, Birmingham, Alabama 35205, United States
| |
Collapse
|
20
|
Jaffett VA, Nerurkar A, Cao X, Guzei IA, Golden JE. Telescoped synthesis of C3-functionalized (E)-arylamidines using Ugi-Mumm and regiospecific quinazolinone rearrangements. Org Biomol Chem 2019; 17:3118-3128. [PMID: 30730519 DOI: 10.1039/c9ob00073a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An efficient four-step, six-transformation protocol was developed to afford bioactive N-alkyl- or N-arylamide (E)-arylamidines featuring strategic amidine C3 modifications which were inaccessible or low yielding by previous methods. This synthetic approach, exemplified with 24 amidines and requiring only a single purification, highlights a multicomponent Ugi-Mumm rearrangement to afford highly diversified quinazolinones which undergo regiospecific rearrangement to afford new amidines. The method extensively broadens the structural scope of this new class of trisubstituted amidines and demonstrates the tolerance of regional C3 amidine steric bulk, visualized with X-ray crystallographic analysis.
Collapse
Affiliation(s)
- Victor A Jaffett
- Department of Chemistry, University of Wisconsin, 1101 University Ave., Madison, WI 53706, USA.
| | | | | | | | | |
Collapse
|
21
|
Jonsson CB, Cao X, Lee J, Gabbard JD, Chu YK, Fitzpatrick EA, Julander J, Chung DH, Stabenow J, Golden JE. Efficacy of a ML336 derivative against Venezuelan and eastern equine encephalitis viruses. Antiviral Res 2019; 167:25-34. [PMID: 30970271 DOI: 10.1016/j.antiviral.2019.04.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 02/08/2023]
Abstract
Currently, there are no licensed human vaccines or antivirals for treatment of or prevention from infection with encephalitic alphaviruses. Because epidemics are sporadic and unpredictable, and endemic disease is common but rarely diagnosed, it is difficult to identify all populations requiring vaccination; thus, an effective post-exposure treatment method is needed to interrupt ongoing outbreaks. To address this public health need, we have continued development of ML336 to deliver a molecule with prophylactic and therapeutic potential that could be relevant for use in natural epidemics or deliberate release scenario for Venezuelan equine encephalitis virus (VEEV). We report findings from in vitro assessments of four analogs of ML336, and in vivo screening of three of these new derivatives, BDGR-4, BDGR-69 and BDGR-70. The optimal dosing for maximal protection was observed at 12.5 mg/kg/day, twice daily for 8 days. BDGR-4 was tested further for prophylactic and therapeutic efficacy in mice challenged with VEEV Trinidad Donkey (TrD). Mice challenged with VEEV TrD showed 100% and 90% protection from lethal disease when treated at 24 and 48 h post-infection, respectively. We also measured 90% protection for BDGR-4 in mice challenged with Eastern equine encephalitis virus. In additional assessments of BDGR-4 in mice alone, we observed no appreciable toxicity as evaluated by clinical chemistry indicators up to a dose of 25 mg/kg/day over 4 days. In these same mice, we observed no induction of interferon. Lastly, the resistance of VEEV to BDGR-4 was evaluated by next-generation sequencing which revealed specific mutations in nsP4, the viral polymerase.
Collapse
Affiliation(s)
- Colleen B Jonsson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN, 38103, USA.
| | - Xufeng Cao
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, 53705-2222, USA
| | - Jasper Lee
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN, 38103, USA
| | - Jon D Gabbard
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, 40202, USA
| | - Yong-Kyu Chu
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, 40202, USA
| | - Elizabeth A Fitzpatrick
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, 858 Madison Avenue, Memphis, TN, 38103, USA
| | - Justin Julander
- Institute for Antiviral Research, Animal, Dairy, and Veterinary Sciences Department, 5600 Old Main Hill, Utah State University, Logan, UT, 84322-5600, USA
| | - Dong-Hoon Chung
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY, 40202, USA; Department of Microbiology and Immunology, University of Louisville, Louisville, KY, 40202, USA
| | - Jennifer Stabenow
- Regional Biocontainment Laboratory, University of Tennessee Health Science Center, 901 Madison Avenue, Memphis, TN, 38103, USA
| | - Jennifer E Golden
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, WI, 53705-2222, USA.
| |
Collapse
|
22
|
New World alphavirus protein interactomes from a therapeutic perspective. Antiviral Res 2019; 163:125-139. [PMID: 30695702 DOI: 10.1016/j.antiviral.2019.01.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/18/2019] [Accepted: 01/23/2019] [Indexed: 12/30/2022]
Abstract
The New World alphaviruses, Venezuelan, eastern and western equine encephalitis viruses (VEEV, EEEV, and WEEV), are important human pathogens due to their ability to cause varying levels of morbidity and mortality in humans. There is also concern about VEEV and EEEV being used as bioweapons. Currently, a FDA-approved antiviral is lacking for New World alphaviruses. In this review, the function of each viral protein is discussed with an emphasis on how these functions can be targeted by therapeutics. Both direct acting antivirals as well as inhibitors that impact host protein interactions with viral proteins are described. Non-structural protein 3 (nsP3), capsid, and E2 proteins have garnered attention in recent years, whereas little is known regarding host protein interactions of the other viral proteins and is an important avenue for future study.
Collapse
|
23
|
Ferreira-Ramos AS, Li C, Eydoux C, Contreras JM, Morice C, Quérat G, Gigante A, Pérez Pérez MJ, Jung ML, Canard B, Guillemot JC, Decroly E, Coutard B. Approved drugs screening against the nsP1 capping enzyme of Venezuelan equine encephalitis virus using an immuno-based assay. Antiviral Res 2019; 163:59-69. [PMID: 30639438 DOI: 10.1016/j.antiviral.2019.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/28/2018] [Accepted: 01/09/2019] [Indexed: 12/25/2022]
Abstract
Alphaviruses such as the Venezuelan equine encephalitis virus (VEEV) are important human emerging pathogens transmitted by mosquitoes. They possess a unique viral mRNA capping mechanism catalyzed by the viral non-structural protein nsP1, which is essential for virus replication. The alphaviruses capping starts by the methylation of a GTP molecule by the N7-guanine methyltransferase (MTase) activity; nsP1 then forms a covalent link with m7GMP releasing pyrophosphate (GT reaction) and the m7GMP is next transferred onto the 5'-diphosphate end of the viral mRNA to form a cap-0 structure. The cap-0 structure decreases the detection of foreign viral RNAs, prevents RNA degradation by cellular exonucleases, and promotes viral RNA translation into proteins. Additionally, reverse-genetic studies have demonstrated that viruses mutated in nsP1 catalytic residues are both impaired towards replication and attenuated. The nsP1 protein is thus considered an attractive antiviral target for drug discovery. We have previously demonstrated that the guanylylation of VEEV nsP1 can be monitored by Western blot analysis using an antibody recognizing the cap structure. In this study, we developed a high throughput ELISA screening assay to monitor the GT reaction through m7GMP-nsP1 adduct quantitation. This assay was validated using known nsP1 inhibitors before screening 1220 approved compounds. 18 compounds inhibiting the nsP1 guanylylation were identified, and their IC50 determined. Compounds from two series were further characterized and shown to inhibit the nsP1 MTase activity. Conversely, these compounds barely inhibited a cellular MTase demonstrating their specificity towards nsP1. Analogues search and SAR were also initiated to identify the active pharmacophore features. Altogether the results show that this HT enzyme-based assay is a convenient way to select potent and specific hit compounds targeting the viral mRNA capping of Alphaviruses.
Collapse
Affiliation(s)
| | - Changqing Li
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Cécilia Eydoux
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | | | - Gilles Quérat
- Unité des Virus Emergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France
| | - Alba Gigante
- Instituto de Química Médica (IQM, CSIC), Madrid, Spain
| | | | | | - Bruno Canard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | | | - Etienne Decroly
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France
| | - Bruno Coutard
- Aix Marseille Université, CNRS, AFMB UMR 7257, Marseille, France; Unité des Virus Emergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France.
| |
Collapse
|
24
|
LaBauve AE, Rinker TE, Noureddine A, Serda RE, Howe JY, Sherman MB, Rasley A, Brinker CJ, Sasaki DY, Negrete OA. Lipid-Coated Mesoporous Silica Nanoparticles for the Delivery of the ML336 Antiviral to Inhibit Encephalitic Alphavirus Infection. Sci Rep 2018; 8:13990. [PMID: 30228359 PMCID: PMC6143628 DOI: 10.1038/s41598-018-32033-w] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 08/29/2018] [Indexed: 11/09/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) poses a major public health risk due to its amenability for use as a bioterrorism agent and its severe health consequences in humans. ML336 is a recently developed chemical inhibitor of VEEV, shown to effectively reduce VEEV infection in vitro and in vivo. However, its limited solubility and stability could hinder its clinical translation. To overcome these limitations, lipid-coated mesoporous silica nanoparticles (LC-MSNs) were employed. The large surface area of the MSN core promotes hydrophobic drug loading while the liposome coating retains the drug and enables enhanced circulation time and biocompatibility, providing an ideal ML336 delivery platform. LC-MSNs loaded 20 ± 3.4 μg ML336/mg LC-MSN and released 6.6 ± 1.3 μg/mg ML336 over 24 hours. ML336-loaded LC-MSNs significantly inhibited VEEV in vitro in a dose-dependent manner as compared to unloaded LC-MSNs controls. Moreover, cell-based studies suggested that additional release of ML336 occurs after endocytosis. In vivo safety studies were conducted in mice, and LC-MSNs were not toxic when dosed at 0.11 g LC-MSNs/kg/day for four days. ML336-loaded LC-MSNs showed significant reduction of brain viral titer in VEEV infected mice compared to PBS controls. Overall, these results highlight the utility of LC-MSNs as drug delivery vehicles to treat VEEV.
Collapse
Affiliation(s)
- Annette E LaBauve
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA, USA
| | - Torri E Rinker
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA, USA
| | - Achraf Noureddine
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM, USA.,Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA.,Center for Micro-Engineered Materials, Advanced Materials Laboratory, Albuquerque, NM, USA
| | - Rita E Serda
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM, USA.,Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA.,Center for Micro-Engineered Materials, Advanced Materials Laboratory, Albuquerque, NM, USA
| | - Jane Y Howe
- Hitachi High Technologies America Inc., Clarksburg, MD, USA
| | - Michael B Sherman
- Sealy Center for Structural Biology & Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Amy Rasley
- Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - C Jeffery Brinker
- Advanced Materials Laboratory, Sandia National Laboratories, Albuquerque, NM, USA.,Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM, USA.,Center for Micro-Engineered Materials, Advanced Materials Laboratory, Albuquerque, NM, USA
| | - Darryl Y Sasaki
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA, USA
| | - Oscar A Negrete
- Department of Biotechnology and Bioengineering, Sandia National Laboratories, Livermore, CA, USA.
| |
Collapse
|
25
|
Lundberg L, Brahms A, Hooper I, Carey B, Lin SC, Dahal B, Narayanan A, Kehn-Hall K. Repurposed FDA-Approved drug sorafenib reduces replication of Venezuelan equine encephalitis virus and other alphaviruses. Antiviral Res 2018; 157:57-67. [PMID: 29981794 DOI: 10.1016/j.antiviral.2018.07.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/30/2018] [Accepted: 07/02/2018] [Indexed: 12/12/2022]
Abstract
The New World alphaviruses -Venezuelan, eastern, and western equine encephalitis viruses (VEEV, EEEV, and WEEV respectively) - cause a febrile disease that is often lethal in equines and children and leads to long-term neurological sequelae in survivors. Endemic to the Americas, epizootic outbreaks of the three viruses occur sporadically in the continental United States. All three viruses aerosolize readily, replicate to high titers in cell culture, and have low infectious doses. Additionally, there are no FDA-approved vaccines or therapeutics for human use. To address the therapeutic gap, a high throughput assay utilizing a luciferase reporter virus, TC83-luc, was performed to screen a library of commercially available, FDA-approved drugs for antiviral activity. From a group of twenty compounds found to significantly decrease luminescence, the carcinoma therapeutic sorafenib inhibited replication of VEEV-TC83 and TrD in vitro. Additionally, sorafenib inhibited replication of EEEV and two Old World alphaviruses, Sindbis virus and chikungunya virus, at 8 and 16 h post-infection. Sorafenib caused no toxicity in Vero cells, and coupled with a low EC50 value, yielded a selectivity index of >19. Mechanism of actions studies suggest that sorafenib inhibited viral translation through dephosphorylation of several key proteins, including eIF4E and p70S6K, leading to a reduction in viral protein production and overall viral replication.
Collapse
Affiliation(s)
- Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Ashwini Brahms
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Idris Hooper
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Brian Carey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Shih-Chao Lin
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Bibha Dahal
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
26
|
Ching KC, F P Ng L, Chai CLL. A compendium of small molecule direct-acting and host-targeting inhibitors as therapies against alphaviruses. J Antimicrob Chemother 2018; 72:2973-2989. [PMID: 28981632 PMCID: PMC7110243 DOI: 10.1093/jac/dkx224] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses were amongst the first arboviruses to be isolated, characterized and assigned a taxonomic status. They are globally widespread, infecting a large variety of terrestrial animals, birds, insects and even fish. Moreover, they are capable of surviving and circulating in both sylvatic and urban environments, causing considerable human morbidity and mortality. The re-emergence of Chikungunya virus (CHIKV) in almost every part of the world has caused alarm to many health agencies throughout the world. The mosquito vector for this virus, Aedes, is globally distributed in tropical and temperate regions and capable of thriving in both rural and urban landscapes, giving the opportunity for CHIKV to continue expanding into new geographical regions. Despite the importance of alphaviruses as human pathogens, there is currently no targeted antiviral treatment available for alphavirus infection. This mini-review discusses some of the major features in the replication cycle of alphaviruses, highlighting the key viral targets and host components that participate in alphavirus replication and the molecular functions that were used in drug design. Together with describing the importance of these targets, we review the various direct-acting and host-targeting inhibitors, specifically small molecules that have been discovered and developed as potential therapeutics as well as their reported in vitro and in vivo efficacies.
Collapse
Affiliation(s)
- Kuan-Chieh Ching
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456.,Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543
| | - Lisa F P Ng
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, Immunos Building, #04-06, Singapore 138648.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Block MD6, Centre for Translational Medicine, 14 Medical Drive, #14-01T, Singapore 117599.,Institute of Infection and Global Health, University of Liverpool, Ronald Ross Building, 8 West Derby Street, Liverpool L697BE, UK
| | - Christina L L Chai
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences, #05-01, 28 Medical Drive, Singapore 117456.,Department of Pharmacy, Faculty of Science, National University of Singapore, Block S4A, Level 3, 18 Science Drive 4, Singapore 117543
| |
Collapse
|
27
|
β-d- N 4-Hydroxycytidine Is a Potent Anti-alphavirus Compound That Induces a High Level of Mutations in the Viral Genome. J Virol 2018; 92:JVI.01965-17. [PMID: 29167335 DOI: 10.1128/jvi.01965-17] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 11/20/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a representative member of the New World alphaviruses. It is transmitted by mosquito vectors and causes highly debilitating disease in humans, equids, and other vertebrate hosts. Despite a continuous public health threat, very few compounds with anti-VEEV activity in cell culture and in mouse models have been identified to date, and rapid development of virus resistance to some of them has been recorded. In this study, we investigated the possibility of using a modified nucleoside analog, β-d-N 4-hydroxycytidine (NHC), as an anti-VEEV agent and defined the mechanism of its anti-VEEV activity. The results demonstrate that NHC is a very potent antiviral agent. It affects both the release of genome RNA-containing VEE virions and their infectivity. Both of these antiviral activities are determined by the NHC-induced accumulation of mutations in virus-specific RNAs. The antiviral effect is most prominent when NHC is applied early in the infectious process, during the amplification of negative- and positive-strand RNAs in infected cells. Most importantly, only a low-level resistance of VEEV to NHC can be developed, and it requires acquisition and cooperative function of more than one mutation in nsP4. These adaptive mutations are closely located in the same segment of nsP4. Our data suggest that NHC is more potent than ribavirin as an anti-VEEV agent and likely can be used to treat other alphavirus infections.IMPORTANCE Venezuelan equine encephalitis virus (VEEV) can cause widespread epidemics among humans and domestic animals. VEEV infections result in severe meningoencephalitis and long-term sequelae. No approved therapeutics exist for treatment of VEEV infections. Our study demonstrates that β-d-N 4-hydroxycytidine (NHC) is a very potent anti-VEEV compound, with the 50% effective concentration being below 1 μM. The mechanism of NHC antiviral activity is based on induction of high mutation rates in the viral genome. Accordingly, NHC treatment affects both the rates of particle release and the particle infectivity. Most importantly, in contrast to most of the anti-alphavirus drugs that are under development, resistance of VEEV to NHC develops very inefficiently. Even low levels of resistance require acquisition of multiple mutations in the gene of the VEEV-specific RNA-dependent RNA polymerase nsP4.
Collapse
|
28
|
Adcock RS, Chu YK, Golden JE, Chung DH. Evaluation of anti-Zika virus activities of broad-spectrum antivirals and NIH clinical collection compounds using a cell-based, high-throughput screen assay. Antiviral Res 2016; 138:47-56. [PMID: 27919709 DOI: 10.1016/j.antiviral.2016.11.018] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/26/2016] [Indexed: 11/27/2022]
Abstract
Recent studies have clearly underscored the association between Zika virus (ZIKV) and severe neurological diseases such as microcephaly and Guillain-Barre syndrome. Given the historical complacency surrounding this virus, however, no significant antiviral screenings have been performed to specifically target ZIKV. As a result, there is an urgent need for a validated screening method and strategy that is focused on highlighting potential anti-ZIKV inhibitors that can be further advanced via rigorous validation and optimization. To address this critical gap, we sought to test whether a cell-based assay that measures protection from the ZIKV-induced cytopathic effect could serve as a high-throughput screen assay for discovering novel anti-ZIKV inhibitors. Employing this approach, we tested the anti-ZIKV activity of previously known broad-spectrum antiviral compounds and discovered several compounds (e.g., NITD008, SaliPhe, and CID 91632869) with anti-ZIKV activity. Interestingly, while GTP synthesis inhibitors (e.g., ribavirin or mycophenolic acid) were too toxic or showed no anti-ZIKV activity (EC50 > 50 μM), ZIKV was highly susceptible to pyrimidine synthesis inhibitors (e.g., brequinar) in the assay. We amended the assay into a high-throughput screen (HTS)-compatible 384-well format and then screened the NIH Clinical Compound Collection library, which includes a total of 727 compounds organized, using an 8-point dose response format with two Zika virus strains (MR766 and PRVABC59, a recent human isolate). The screen discovered 6-azauridine and finasteride as potential anti-ZIKV inhibitors with EC50 levels of 3.18 and 9.85 μM for MR766, respectively. We further characterized the anti-ZIKV activity of 6-azauridine and several pyrimidine synthesis inhibitors such as brequinar in various secondary assays including an antiviral spectrum test within flaviviruses and alphaviruses, Western blot (protein), real-time PCR (RNA), and plaque reduction assays (progeny virus). From these assays, we discovered that brequinar has potent anti-ZIKV activity. Our results show that a broad anti-ZIKV screen of compound libraries with our CPE-based HTS assay will reveal multiple chemotypes that could be pursued as lead compounds for therapies to treat ZIKV-associated diseases or as molecular probes to study the biology of the ZIKV replication mechanism.
Collapse
Affiliation(s)
- Robert S Adcock
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, KY, USA
| | - Yong-Kyu Chu
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, KY, USA
| | - Jennifer E Golden
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Dong-Hoon Chung
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, KY, USA; Department of Microbiology and Immunology, School of Medicine, University of Louisville, KY, USA.
| |
Collapse
|
29
|
Discovery of a Broad-Spectrum Antiviral Compound That Inhibits Pyrimidine Biosynthesis and Establishes a Type 1 Interferon-Independent Antiviral State. Antimicrob Agents Chemother 2016; 60:4552-62. [PMID: 27185801 DOI: 10.1128/aac.00282-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/03/2016] [Indexed: 12/19/2022] Open
Abstract
Viral emergence and reemergence underscore the importance of developing efficacious, broad-spectrum antivirals. Here, we report the discovery of tetrahydrobenzothiazole-based compound 1, a novel, broad-spectrum antiviral lead that was optimized from a hit compound derived from a cytopathic effect (CPE)-based antiviral screen using Venezuelan equine encephalitis virus. Compound 1 showed antiviral activity against a broad range of RNA viruses, including alphaviruses, flaviviruses, influenza virus, and ebolavirus. Mechanism-of-action studies with metabolomics and molecular approaches revealed that the compound inhibits host pyrimidine synthesis and establishes an antiviral state by inducing a variety of interferon-stimulated genes (ISGs). Notably, the induction of the ISGs by compound 1 was independent of the production of type 1 interferons. The antiviral activity of compound 1 was cell type dependent with a robust effect observed in human cell lines and no observed antiviral effect in mouse cell lines. Herein, we disclose tetrahydrobenzothiazole compound 1 as a novel lead for the development of a broad-spectrum, antiviral therapeutic and as a molecular probe to study the mechanism of the induction of ISGs that are independent of type 1 interferons.
Collapse
|
30
|
Large-Scale Screening and Identification of Novel Ebola Virus and Marburg Virus Entry Inhibitors. Antimicrob Agents Chemother 2016; 60:4471-81. [PMID: 27161622 DOI: 10.1128/aac.00543-16] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 04/29/2016] [Indexed: 12/19/2022] Open
Abstract
Filoviruses are highly infectious, and no FDA-approved drug therapy for filovirus infection is available. Most work to find a treatment has involved only a few strains of Ebola virus and testing of relatively small drug libraries or compounds that have shown efficacy against other virus types. Here we report the findings of a high-throughput screening of 319,855 small molecules from the Molecular Libraries Small Molecule Repository library for their activities against Marburg virus and Ebola virus. Nine of the most potent, novel compounds that blocked infection by both viruses were analyzed in detail for their mechanisms of action. The compounds inhibited known key steps in the Ebola virus infection mechanism by blocking either cell surface attachment, macropinocytosis-mediated uptake, or endosomal trafficking. To date, very few specific inhibitors of macropinocytosis have been reported. The 2 novel macropinocytosis inhibitors are more potent inhibitors of Ebola virus infection and less toxic than ethylisopropylamiloride, one commonly accepted macropinocytosis inhibitor. Each compound blocked infection of primary human macrophages, indicating their potential to be developed as new antifiloviral therapies.
Collapse
|
31
|
Hu X, Compton JR, Leary DH, Olson MA, Lee MS, Cheung J, Ye W, Ferrer M, Southall N, Jadhav A, Morazzani EM, Glass PJ, Marugan J, Legler PM. Kinetic, Mutational, and Structural Studies of the Venezuelan Equine Encephalitis Virus Nonstructural Protein 2 Cysteine Protease. Biochemistry 2016; 55:3007-19. [PMID: 27030368 DOI: 10.1021/acs.biochem.5b00992] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The Venezuelan equine encephalitis virus (VEEV) nonstructural protein 2 (nsP2) cysteine protease (EC 3.4.22.-) is essential for viral replication and is involved in the cytopathic effects (CPE) of the virus. The VEEV nsP2 protease is a member of MEROPS Clan CN and characteristically contains a papain-like protease linked to an S-adenosyl-l-methionine-dependent RNA methyltransferase (SAM MTase) domain. The protease contains an alternative active site motif, (475)NVCWAK(480), which differs from papain's (CGS(25)CWAFS), and the enzyme lacks a transition state-stabilizing residue homologous to Gln-19 in papain. To understand the roles of conserved residues in catalysis, we determined the structure of the free enzyme and the first structure of an inhibitor-bound alphaviral protease. The peptide-like E64d inhibitor was found to bind beneath a β-hairpin at the interface of the SAM MTase and protease domains. His-546 adopted a conformation that differed from that found in the free enzyme; one or both of the conformers may assist in leaving group departure of either the amine or Cys thiolate during the catalytic cycle. Interestingly, E64c (200 μM), the carboxylic acid form of the E64d ester, did not inhibit the nsP2 protease. To identify key residues involved in substrate binding, a number of mutants were analyzed. Mutation of the motif residue, N475A, led to a 24-fold reduction in kcat/Km, and the conformation of this residue did not change after inhibition. N475 forms a hydrogen bond with R662 in the SAM MTase domain, and the R662A and R662K mutations both led to 16-fold decreases in kcat/Km. N475 forms the base of the P1 binding site and likely orients the substrate for nucleophilic attack or plays a role in product release. An Asn homologous to N475 is similarly found in coronaviral papain-like proteases (PLpro) of the Severe Acute Respiratory Syndrome (SARS) virus and Middle East Respiratory Syndrome (MERS) virus. Mutation of another motif residue, K480A, led to a 9-fold decrease in kcat and kcat/Km. K480 likely enhances the nucleophilicity of the Cys. Consistent with our substrate-bound models, the SAM MTase domain K706A mutation increased Km 4.5-fold to 500 μM. Within the β-hairpin, the N545A mutation slightly but not significantly increased kcat and Km. The structures and identified active site residues may facilitate the discovery of protease inhibitors with antiviral activity.
Collapse
Affiliation(s)
- Xin Hu
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Rockville, Maryland 20850, United States
| | | | - Dagmar H Leary
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory , Washington, D.C. 20375, United States
| | - Mark A Olson
- United States Army Medical Research Institute of Infectious Diseases , Frederick, Maryland 21702, United States
| | - Michael S Lee
- United States Army Medical Research Institute of Infectious Diseases , Frederick, Maryland 21702, United States
| | - Jonah Cheung
- New York Structural Biology Center , New York, New York 10027, United States
| | - Wenjuan Ye
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Rockville, Maryland 20850, United States
| | - Mark Ferrer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Rockville, Maryland 20850, United States
| | - Noel Southall
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Rockville, Maryland 20850, United States
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Rockville, Maryland 20850, United States
| | - Elaine M Morazzani
- United States Army Medical Research Institute of Infectious Diseases , Frederick, Maryland 21702, United States
| | - Pamela J Glass
- United States Army Medical Research Institute of Infectious Diseases , Frederick, Maryland 21702, United States
| | - Juan Marugan
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences , Rockville, Maryland 20850, United States
| | - Patricia M Legler
- Center for Bio/molecular Science and Engineering, U.S. Naval Research Laboratory , Washington, D.C. 20375, United States
| |
Collapse
|
32
|
Phosphorylation of Single Stranded RNA Virus Proteins and Potential for Novel Therapeutic Strategies. Viruses 2015; 7:5257-73. [PMID: 26473910 PMCID: PMC4632380 DOI: 10.3390/v7102872] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 09/23/2015] [Accepted: 09/29/2015] [Indexed: 12/31/2022] Open
Abstract
Post translational modification of proteins is a critical requirement that regulates function. Among the diverse kinds of protein post translational modifications, phosphorylation plays essential roles in protein folding, protein:protein interactions, signal transduction, intracellular localization, transcription regulation, cell cycle progression, survival and apoptosis. Protein phosphorylation is also essential for many intracellular pathogens to establish a productive infection cycle. Preservation of protein phosphorylation moieties in pathogens in a manner that mirrors the host components underscores the co-evolutionary trajectory of pathogens and hosts, and sheds light on how successful pathogens have usurped, either in part or as a whole, the host enzymatic machinery. Phosphorylation of viral proteins for many acute RNA viruses including Flaviviruses and Alphaviruses has been demonstrated to be critical for protein functionality. This review focuses on phosphorylation modifications that have been documented to occur on viral proteins with emphasis on acutely infectious, single stranded RNA viruses. The review additionally explores the possibility of repurposing Food and Drug Administration (FDA) approved inhibitors as antivirals for the treatment of acute RNA viral infections.
Collapse
|
33
|
mRNA Capping by Venezuelan Equine Encephalitis Virus nsP1: Functional Characterization and Implications for Antiviral Research. J Virol 2015; 89:8292-303. [PMID: 26041283 DOI: 10.1128/jvi.00599-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/19/2015] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Alphaviruses are known to possess a unique viral mRNA capping mechanism involving the viral nonstructural protein nsP1. This enzyme harbors methyltransferase (MTase) and nsP1 guanylylation (GT) activities catalyzing the transfer of the methyl group from S-adenosylmethionine (AdoMet) to the N7 position of a GTP molecule followed by the formation of an m(7)GMP-nsP1 adduct. Subsequent transfer of m(7)GMP onto the 5' end of the viral mRNA has not been demonstrated in vitro yet. Here we report the biochemical characterization of Venezuelan equine encephalitis virus (VEEV) nsP1. We have developed enzymatic assays uncoupling the different reactions steps catalyzed by nsP1. The MTase and GT reaction activities were followed using a nonhydrolyzable GTP (GIDP) substrate and an original Western blot assay using anti-m3G/m(7)G-cap monoclonal antibody, respectively. The GT reaction is stimulated by S-adenosyl-l-homocysteine (Ado-Hcy), the product of the preceding MTase reaction, and metallic ions. The covalent linking between nsP1 and m(7)GMP involves a phosphamide bond between the nucleotide and a histidine residue. Final guanylyltransfer onto RNA was observed for the first time with an alphavirus nsP1 using a 5'-diphosphate RNA oligonucleotide whose sequence corresponds to the 5' end of the viral genome. Alanine scanning mutagenesis of residues H37, H45, D63, E118, Y285, D354, R365, N369, and N375 revealed their respective roles in MT and GT reactions. Finally, the inhibitory effects of sinefungin, aurintricarboxylic acid (ATA), and ribavirin triphosphate on MTase and capping reactions were investigated, providing possible avenues for antiviral research. IMPORTANCE Emergence or reemergence of alphaviruses represents a serious health concern, and the elucidation of their replication mechanisms is a prerequisite for the development of specific inhibitors targeting viral enzymes. In particular, alphaviruses are able, through an original reaction sequence, to add to their mRNA a cap required for their protection against cellular nucleases and initiation of viral proteins translation. In this study, the capping of a 5' diphosphate synthetic RNA mimicking the 5' end of an alphavirus mRNA was observed in vitro for the first time. The different steps for this capping are performed by the nonstructural protein 1 (nsP1). Reference compounds known to target the viral capping inhibited nsP1 enzymatic functions, highlighting the value of this enzyme in antiviral development.
Collapse
|
34
|
Matharu D, Flaherty DP, Simpson DS, Schroeder CE, Chung D, Yan D, Noah J, Jonsson CB, White EL, Aubé J, Plemper R, Severson WE, Golden JE. Optimization of potent and selective quinazolinediones: inhibitors of respiratory syncytial virus that block RNA-dependent RNA-polymerase complex activity. J Med Chem 2014; 57:10314-28. [PMID: 25399509 PMCID: PMC4281105 DOI: 10.1021/jm500902x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Indexed: 12/12/2022]
Abstract
A quinazolinedione-derived screening hit 2 was discovered with cellular antiviral activity against respiratory syncytial virus (CPE EC50 = 2.1 μM), moderate efficacy in reducing viral progeny (4.2 log at 10 μM), and marginal cytotoxic liability (selectivity index, SI ∼ 24). Scaffold optimization delivered analogs with improved potency and selectivity profiles. Most notable were compounds 15 and 19 (EC50 = 300-500 nM, CC50 > 50 μM, SI > 100), which significantly reduced viral titer (>400,000-fold), and several analogs were shown to block the activity of the RNA-dependent RNA-polymerase complex of RSV.
Collapse
Affiliation(s)
- Daljit
S. Matharu
- University
of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Daniel P. Flaherty
- University
of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Denise S. Simpson
- University
of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Chad E. Schroeder
- University
of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Donghoon Chung
- Center
for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky 40202, United States
- Southern
Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Dan Yan
- Institute
for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - James
W. Noah
- Southern
Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Colleen B. Jonsson
- Center
for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky 40202, United States
- Southern
Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - E. Lucile White
- Southern
Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Jeffrey Aubé
- University
of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| | - Richard
K. Plemper
- Institute
for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30303, United States
| | - William E. Severson
- Center
for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, Kentucky 40202, United States
- Southern
Research Specialized Biocontainment Screening Center, Southern Research Institute, Birmingham, Alabama 35205, United States
| | - Jennifer E. Golden
- University
of Kansas Specialized Chemistry Center, University of Kansas, Lawrence, Kansas 66047, United States
| |
Collapse
|
35
|
Taylor A, Herrero LJ, Rudd PA, Mahalingam S. Mouse models of alphavirus-induced inflammatory disease. J Gen Virol 2014; 96:221-238. [PMID: 25351726 DOI: 10.1099/vir.0.071282-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Part of the Togaviridae family, alphaviruses are arthropod-borne viruses that are widely distributed throughout the globe. Alphaviruses are able to infect a variety of vertebrate hosts, but in humans, infection can result in extensive morbidity and mortality. Symptomatic infection can manifest as fever, an erythematous rash and/or significant inflammatory pathologies such as arthritis and encephalitis. Recent overwhelming outbreaks of alphaviral disease have highlighted the void in our understanding of alphavirus pathogenesis and the re-emergence of alphaviruses has given new impetus to anti-alphaviral drug design. In this review, the development of viable mouse models of Old Word and New World alphaviruses is examined. How mouse models that best replicate human disease have been used to elucidate the immunopathology of alphavirus pathogenesis and trial novel therapeutic discoveries is also discussed.
Collapse
Affiliation(s)
- Adam Taylor
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Penny A Rudd
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| | - Suresh Mahalingam
- Institute for Glycomics, Griffith University, Gold Coast Campus, QLD, Australia
| |
Collapse
|
36
|
Schroeder CE, Yao T, Sotsky J, Smith RA, Roy S, Chu YK, Guo H, Tower NA, Noah JW, McKellip S, Sosa M, Rasmussen L, Smith LH, White EL, Aubé J, Jonsson CB, Chung D, Golden JE. Development of (E)-2-((1,4-dimethylpiperazin-2-ylidene)amino)-5-nitro-N-phenylbenzamide, ML336: Novel 2-amidinophenylbenzamides as potent inhibitors of venezuelan equine encephalitis virus. J Med Chem 2014; 57:8608-21. [PMID: 25244572 PMCID: PMC4207539 DOI: 10.1021/jm501203v] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
![]()
Venezuelan equine encephalitis virus
(VEEV) is an emerging pathogenic
alphavirus that can cause significant disease in humans. Given the
absence of therapeutic options available and the significance of VEEV
as a weaponized agent, an optimization effort was initiated around
a quinazolinone screening hit 1 with promising cellular
antiviral activity (EC50 = 0.8 μM), limited cytotoxic
liability (CC50 > 50 μM), and modest in vitro
efficacy
in reducing viral progeny (63-fold at 5 μM). Scaffold optimization
revealed a novel rearrangement affording amidines, specifically compound 45, which was found to potently inhibit several VEEV strains
in the low nanomolar range without cytotoxicity (EC50 =
0.02–0.04 μM, CC50 > 50 μM) while
limiting
in vitro viral replication (EC90 = 0.17 μM). Brain
exposure was observed in mice with 45. Significant protection
was observed in VEEV-infected mice at 5 mg kg–1 day–1 and viral replication appeared to be inhibited through
interference of viral nonstructural proteins.
Collapse
Affiliation(s)
- Chad E Schroeder
- University of Kansas Specialized Chemistry Center , Lawrence, Kansas 66049, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|