1
|
Sonawala U, Beasley H, Thorpe P, Varypatakis K, Senatori B, Jones JT, Derevnina L, Eves-van den Akker S. A gene with a thousand alleles: The hyper-variable effectors of plant-parasitic nematodes. CELL GENOMICS 2024; 4:100580. [PMID: 38815588 PMCID: PMC11228951 DOI: 10.1016/j.xgen.2024.100580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/01/2024]
Abstract
Pathogens are engaged in a fierce evolutionary arms race with their host. The genes at the forefront of the engagement between kingdoms are often part of diverse and highly mutable gene families. Even in this context, we discovered unprecedented variation in the hyper-variable (HYP) effectors of plant-parasitic nematodes. HYP effectors are single-gene loci that potentially harbor thousands of alleles. Alleles vary in the organization, as well as the number, of motifs within a central hyper-variable domain (HVD). We dramatically expand the HYP repertoire of two plant-parasitic nematodes and define distinct species-specific "rules" underlying the apparently flawless genetic rearrangements. Finally, by analyzing the HYPs in 68 individual nematodes, we unexpectedly found that despite the huge number of alleles, most individuals are germline homozygous. These data support a mechanism of programmed genetic variation, termed HVD editing, where alterations are locus specific, strictly governed by rules, and theoretically produce thousands of variants without errors.
Collapse
Affiliation(s)
- Unnati Sonawala
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Helen Beasley
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - Peter Thorpe
- The Data Analysis Group, School of Life Sciences, University of Dundee, Dow St., Dundee DD1 5EH, UK
| | - Kyriakos Varypatakis
- Cell & Molecular Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Beatrice Senatori
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | - John T Jones
- Cell & Molecular Sciences Department, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK; School of Biology, University of St Andrews, North Haugh, St Andrews KY16 9ST, UK
| | - Lida Derevnina
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | |
Collapse
|
2
|
Dayi M. Evolution of parasitism genes in the plant parasitic nematodes. Sci Rep 2024; 14:3733. [PMID: 38355886 PMCID: PMC10866927 DOI: 10.1038/s41598-024-54330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/11/2024] [Indexed: 02/16/2024] Open
Abstract
The plant-parasitic nematodes are considered as one of the most destructive pests, from which the migratory and sedentary endoparasitic plant parasitic nematodes infect more than 4000 plant species and cause over $100 billion crop losses annually worldwide. These nematodes use multiple strategies to infect their host and to establish a successful parasitism inside the host such as cell-wall degradation enzymes, inhibition of host defense proteins, and molecular mimicry. In the present study, the main parasitism-associated gene families were identified and compared between the migratory and sedentary endoparasitic nematodes. The results showed that the migratory and sedentary endoparasitic nematodes share a core conserved parasitism mechanism established throughout the evolution of parasitism. However, genes involved in pectin degradation and hydrolase activity are rapidly evolving in the migratory endoparasitic nematodes. Additionally, cell-wall degrading enzymes such as GH45 cellulases and pectate lyase and peptidase and peptidase inhibitors were expanded in the migratory endoparasitic nematodes. The molecular mimicry mechanism was another key finding that differs between the endoparasitic and sedentary parasitic nematodes. The PL22 gene family, which is believed to play a significant role in the molecular mechanisms of nematode parasitism, has been found to be present exclusively in migratory endoparasitic nematodes. Phylogenetic analysis has suggested that it was de novo born in these nematodes. This discovery sheds new light on the molecular evolution of these parasites and has significant implications for our understanding of their biology and pathogenicity. This study contributes to our understanding of core parasitism mechanisms conserved throughout the nematodes and provides unique clues on the evolution of parasitism and the direction shaped by the host.
Collapse
Affiliation(s)
- Mehmet Dayi
- Forestry Vocational School, Düzce University, Konuralp Campus, 81620, Düzce, Turkey.
- Faculty of Medicine, University of Miyazaki, Miyazaki, Japan.
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8562, Japan.
| |
Collapse
|
3
|
Molloy B, Baum T, Eves-van den Akker S. Unlocking the development- and physiology-altering 'effector toolbox' of plant-parasitic nematodes. Trends Parasitol 2023; 39:732-738. [PMID: 37438213 DOI: 10.1016/j.pt.2023.06.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Plant parasites take advantage of host developmental plasticity to elicit profound developmental and physiological changes. In the case of plant-parasitic nematodes (PPNs), these changes can result in the development of new plant organs. Despite the importance of the development- and physiology-altering abilities of these parasites in pathology, research has historically focused on their abilities to suppress immunity. We argue that, given the dramatic changes involved in feeding site establishment, it is entirely possible that development- and physiology-altering abilities of PPNs may, in fact, dominate effector repertoires - highlighting the need for novel high-throughput screens for development- and physiology-altering 'tools'. Uncovering this portion of the nematode 'toolbox' can enable biotechnology, enhance crop protection, and shed light on fundamental host biology itself.
Collapse
Affiliation(s)
- Beth Molloy
- Department of Plant Sciences - Crop Science Centre, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Thomas Baum
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, USA
| | | |
Collapse
|
4
|
van Steenbrugge JJM, van den Elsen S, Holterman M, Lozano‐Torres J, Putker V, Thorpe P, Goverse A, Sterken M, Smant G, Helder J. Comparative genomics among cyst nematodes reveals distinct evolutionary histories among effector families and an irregular distribution of effector-associated promoter motifs. Mol Ecol 2023; 32:1515-1529. [PMID: 35560992 PMCID: PMC10946958 DOI: 10.1111/mec.16505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/26/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022]
Abstract
Potato cyst nematodes (PCNs), an umbrella term used for two species, Globodera pallida and G. rostochiensis, belong worldwide to the most harmful pathogens of potato. Pathotype-specific host plant resistances are essential for PCN control. However, the poor delineation of G. pallida pathotypes has hampered the efficient use of available host plant resistances. Long-read sequencing technology allowed us to generate a new reference genome of G. pallida population D383 and, as compared to the current reference, the new genome assembly is 42 times less fragmented. For comparison of diversification patterns of six effector families between G. pallida and G. rostochiensis, an additional reference genome was generated for an outgroup, the beet cyst nematode Heterodera schachtii (IRS population). Large evolutionary contrasts in effector family topologies were observed. While VAPs (venom allergen-like proteins) diversified before the split between the three cyst nematode species, the families GLAND5 and GLAND13 only expanded in PCNs after their separation from the genus Heterodera. Although DNA motifs in the promoter regions thought to be involved in the orchestration of effector expression ("DOG boxes") were present in all three cyst nematode species, their presence is not a necessity for dorsal gland-produced effectors. Notably, DOG box dosage was only loosely correlated with the expression level of individual effector variants. Comparison of the G. pallida genome with those of two other cyst nematodes underlined the fundamental differences in evolutionary history between effector families. Resequencing of PCN populations with different virulence characteristics will allow for the linking of these characteristics to the composition of the effector repertoire as well as for the mapping of PCN diversification patterns resulting from extreme anthropogenic range expansion.
Collapse
Affiliation(s)
| | - Sven van den Elsen
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Martijn Holterman
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
- SolyntaWageningenThe Netherlands
| | | | - Vera Putker
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Peter Thorpe
- School of Medicine, Medical & Biological SciencesUniversity of St. AndrewsSt AndrewsUK
| | - Aska Goverse
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Mark G. Sterken
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Geert Smant
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| | - Johannes Helder
- Laboratory of NematologyWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
5
|
Siddique S, Radakovic ZS, Hiltl C, Pellegrin C, Baum TJ, Beasley H, Bent AF, Chitambo O, Chopra D, Danchin EGJ, Grenier E, Habash SS, Hasan MS, Helder J, Hewezi T, Holbein J, Holterman M, Janakowski S, Koutsovoulos GD, Kranse OP, Lozano-Torres JL, Maier TR, Masonbrink RE, Mendy B, Riemer E, Sobczak M, Sonawala U, Sterken MG, Thorpe P, van Steenbrugge JJM, Zahid N, Grundler F, Eves-van den Akker S. The genome and lifestage-specific transcriptomes of a plant-parasitic nematode and its host reveal susceptibility genes involved in trans-kingdom synthesis of vitamin B5. Nat Commun 2022; 13:6190. [PMID: 36261416 PMCID: PMC9582021 DOI: 10.1038/s41467-022-33769-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Plant-parasitic nematodes are a major threat to crop production in all agricultural systems. The scarcity of classical resistance genes highlights a pressing need to find new ways to develop nematode-resistant germplasm. Here, we sequence and assemble a high-quality phased genome of the model cyst nematode Heterodera schachtii to provide a platform for the first system-wide dual analysis of host and parasite gene expression over time, covering all major parasitism stages. Analysis of the hologenome of the plant-nematode infection site identified metabolic pathways that were incomplete in the parasite but complemented by the host. Using a combination of bioinformatic, genetic, and biochemical approaches, we show that a highly atypical completion of vitamin B5 biosynthesis by the parasitic animal, putatively enabled by a horizontal gene transfer from a bacterium, is required for full pathogenicity. Knockout of either plant-encoded or now nematode-encoded steps in the pathway significantly reduces parasitic success. Our experiments establish a reference for cyst nematodes, further our understanding of the evolution of plant-parasitism by nematodes, and show that congruent differential expression of metabolic pathways in the infection hologenome represents a new way to find nematode susceptibility genes. The approach identifies genome-editing-amenable targets for future development of nematode-resistant crops.
Collapse
Affiliation(s)
- Shahid Siddique
- Department of Entomology and Nematology, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Zoran S Radakovic
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
- P.H. Petersen Saatzucht Lundsgaard GmbH, D-24977, Grundhof, Germany
| | - Clarissa Hiltl
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Clement Pellegrin
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Helen Beasley
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Oliver Chitambo
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Divykriti Chopra
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Etienne G J Danchin
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia-Antipolis, France
| | - Eric Grenier
- IGEPP, INRAE, Institut Agro, Université Rennes, 35650, Le Rheu, France
| | - Samer S Habash
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
- BASF Vegetable Seeds, Napoleonsweg 152, 6083, AB, Nunhem, The Netherlands
| | - M Shamim Hasan
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Julia Holbein
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Martijn Holterman
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
- Solynta, Dreijenlaan 2, 6703, HA, Wageningen, The Netherlands
| | - Sławomir Janakowski
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | | | - Olaf P Kranse
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Jose L Lozano-Torres
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Rick E Masonbrink
- Genome Informatics Facility, Iowa State University, Ames, IA, 50010, USA
| | - Badou Mendy
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Esther Riemer
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences (SGGW), Nowoursynowska 159, 02-787, Warsaw, Poland
| | - Unnati Sonawala
- The Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, CB2 3EA, UK
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Peter Thorpe
- Mackenzie Institute for Early Diagnosis, School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TF, UK
| | - Joris J M van Steenbrugge
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands
| | - Nageena Zahid
- Institute for Microbiology and Biotechnology, Rheinische Friedrich-Wilhelms-University of Bonn, Meckenheimer Allee 168, D-53115, Bonn, Germany
| | - Florian Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert- Kreiten-Straße 13, D-53115, Bonn, Germany.
| | | |
Collapse
|
6
|
Joshi I, Kohli D, Pal A, Chaudhury A, Sirohi A, Jain PK. Host delivered-RNAi of effector genes for imparting resistance against root-knot and cyst nematodes in plants. PHYSIOLOGICAL AND MOLECULAR PLANT PATHOLOGY 2022; 118:101802. [DOI: 10.1016/j.pmpp.2022.101802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
7
|
Niu Y, Xiao L, de Almeida-Engler J, Gheysen G, Peng D, Xiao X, Huang W, Wang G, Xiao Y. Morphological characterization reveals new insights into giant cell development of Meloidogyne graminicola on rice. PLANTA 2022; 255:70. [PMID: 35184234 PMCID: PMC8858295 DOI: 10.1007/s00425-022-03852-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Three types of nematode-feeding sites (NFSs) caused by M. graminicola on rice were suggested, and the NFS polarized expansion stops before the full NFS maturation that occurs at adult female stage. Root-knot nematodes, Meloidogyne spp., secrete effectors and recruit host genes to establish their feeding sites giant cells, ensuring their nutrient acquisition. There is still a limited understanding of the mechanism underlying giant cell development. Here, the three-dimensional structures of M. graminicola-caused nematode-feeding sites (NFSs) on rice as well as changes in morphological features and cytoplasm density of the giant cells (GCs) during nematode parasitism were reconstructed and characterized by confocal microscopy and the Fiji software. Characterization of morphological features showed that three types of M. graminicola-caused NFSs, type I-III, were detected during parasitism at the second juvenile (J2), the third juvenile (J3), the fourth juvenile (J4) and adult female stages. Type I is the majority at all stages and type II develops into type I at J3 stage marked by its longitudinal growth. Meanwhile, NFSs underwent polarized expansion, where the lateral and longitudinal expansion ceased at later parasitic J2 stage and the non-feeding J4 stage, respectively. The investigation of giant cell cytoplasm density indicates that it reaches a peak at the midpoint of early parasitic J2 and adult female stages. Our data suggest the formation of three types of NFSs caused by M. graminicola on rice and the NFS polarized expansion stopping before full NFS maturation, which provides unprecedented spatio-temporal characterization of development of giant cells caused by a root-knot nematode.
Collapse
Affiliation(s)
- Yongrui Niu
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liying Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | | | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, 9000, Ghent, Belgium
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Xueqiong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Gaofeng Wang
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yannong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Filipecki M, Żurczak M, Matuszkiewicz M, Święcicka M, Kurek W, Olszewski J, Koter MD, Lamont D, Sobczak M. Profiling the Proteome of Cyst Nematode-Induced Syncytia on Tomato Roots. Int J Mol Sci 2021; 22:ijms222212147. [PMID: 34830029 PMCID: PMC8625192 DOI: 10.3390/ijms222212147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cyst nematodes are important herbivorous pests in agriculture that obtain nutrients through specialized root structures termed syncytia. Syncytium initiation, development, and functioning are a research focus because syncytia are the primary interface for molecular interactions between the host plant and parasite. The small size and complex development (over approximately two weeks) of syncytia hinder precise analyses, therefore most studies have analyzed the transcriptome of infested whole-root systems or syncytia-containing root segments. Here, we describe an effective procedure to microdissect syncytia induced by Globodera rostochiensis from tomato roots and to analyze the syncytial proteome using mass spectrometry. As little as 15 mm2 of 10-µm-thick sections dissected from 30 syncytia enabled the identification of 100–200 proteins in each sample, indicating that mass-spectrometric methods currently in use achieved acceptable sensitivity for proteome profiling of microscopic samples of plant tissues (approximately 100 µg). Among the identified proteins, 48 were specifically detected in syncytia and 7 in uninfected roots. The occurrence of approximately 50% of these proteins in syncytia was not correlated with transcript abundance estimated by quantitative reverse-transcription PCR analysis. The functional categories of these proteins confirmed that protein turnover, stress responses, and intracellular trafficking are important components of the proteome dynamics of developing syncytia.
Collapse
Affiliation(s)
- Marcin Filipecki
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
- Correspondence: ; Tel.: +48-22-5932171
| | - Marek Żurczak
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
| | - Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
| | - Magdalena Święcicka
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ś.); (W.K.); (M.S.)
| | - Wojciech Kurek
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ś.); (W.K.); (M.S.)
| | - Jarosław Olszewski
- Veterinary Research Centre, Centre for Biomedicine Research, Centre for Regenerative Medicine, Department of Large Animal Diseases and Clinic, Institute for Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 100, 02-797 Warsaw, Poland;
| | - Marek Daniel Koter
- Department of Plant Genetics, Breeding and Biotechnology, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ż.); (M.M.); (M.D.K.)
| | - Douglas Lamont
- ‘FingerPrints’ Proteomics Facility, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK;
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Faculty of Biology and Biotechnology, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland; (M.Ś.); (W.K.); (M.S.)
| |
Collapse
|
9
|
Masonbrink RE, Maier TR, Hudson M, Severin A, Baum T. A chromosomal assembly of the soybean cyst nematode genome. Mol Ecol Resour 2021; 21:2407-2422. [PMID: 34036752 DOI: 10.1111/1755-0998.13432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/16/2021] [Accepted: 05/13/2021] [Indexed: 01/02/2023]
Abstract
The soybean cyst nematode (Heterodera glycines) is a sedentary plant parasite that exceeds billion USD annually in yield losses. This problem is exacerbated by H. glycines populations overcoming the limited sources of natural resistance in soybean and by the lack of effective and safe alternative treatments. Although there are genetic determinants that render soybeans resistant to nematode genotypes, resistant soybeans are increasingly ineffective because their multiyear usage has selected for virulent H. glycines populations. Successful H. glycines infection relies on the comprehensive re-engineering of soybean root cells into a syncytium, as well as the long-term suppression of host defences to ensure syncytial viability. At the forefront of these complex molecular interactions are effectors, the proteins secreted by H. glycines into host root tissues. The mechanisms that control genomic effector acquisition, diversification, and selection are important insights needed for the development of essential novel control strategies. As a foundation to obtain this understanding, we created a nine-scaffold, 158 Mb pseudomolecule assembly of the H. glycines genome using PacBio, Chicago, and Hi-C sequencing. A Mikado consensus gene prediction produced an annotation of 22,465 genes using short- and long-read expression data. To evaluate assembly and annotation quality, we cross-examined synteny among H. glycines assemblies, and compared BUSCO across related species. To describe the predicted proteins involved in H. glycines' secretory pathway, we contrasted expression between preparasitic and parasitic stages with functional gene information. Here, we present the results from our assembly and annotation of the H. glycines genome and contribute this resource to the scientific community.
Collapse
Affiliation(s)
- Rick E Masonbrink
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, USA
| | - Tom R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Matthew Hudson
- Department of Crop Sciences, University of Illinois, Urbana, IL, USA
| | - Andrew Severin
- Genome Informatics Facility, Office of Biotechnology, Iowa State University, Ames, IA, USA
| | - Thomas Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| |
Collapse
|
10
|
van Steenbrugge JJM, van den Elsen S, Holterman M, Sterken MG, Thorpe P, Goverse A, Smant G, Helder J. Comparative genomics of two inbred lines of the potato cyst nematode Globodera rostochiensis reveals disparate effector family-specific diversification patterns. BMC Genomics 2021; 22:611. [PMID: 34380421 PMCID: PMC8359618 DOI: 10.1186/s12864-021-07914-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Potato cyst nematodes belong to the most harmful pathogens in potato, and durable management of these parasites largely depends on host-plant resistances. These resistances are pathotype specific. The current Globodera rostochiensis pathotype scheme that defines five pathotypes (Ro1 - Ro5) is both fundamentally and practically of limited value. Hence, resistant potato varieties are used worldwide in a poorly informed manner. RESULTS We generated two novel reference genomes of G. rostochiensis inbred lines derived from a Ro1 and a Ro5 population. These genome sequences comprise 173 and 189 scaffolds respectively, marking a ≈ 24-fold reduction in fragmentation as compared to the current reference genome. We provide copy number variations for 19 effector families. Four dorsal gland effector families were investigated in more detail. SPRYSECs, known to be implicated in plant defence suppression, constitute by far the most diversified family studied herein with 60 and 99 variants in Ro1 and Ro5 distributed over 18 and 26 scaffolds. In contrast, CLEs, effectors involved in feeding site induction, show strong physical clustering. The 10 and 16 variants cluster on respectively 2 and 1 scaffolds. Given that pathotypes are defined by their effectoromes, we pinpoint the disparate nature of the contributing effector families in terms of sequence diversification and loss and gain of variants. CONCLUSIONS Two novel reference genomes allow for nearly complete inventories of effector diversification and physical organisation within and between pathotypes. Combined with insights we provide on effector family-specific diversification patterns, this constitutes a basis for an effectorome-based virulence scheme for this notorious pathogen.
Collapse
Affiliation(s)
| | - Sven van den Elsen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martijn Holterman
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands.,Solynta, Dreijenlaan 2, 6703 HA, Wageningen, The Netherlands
| | - Mark G Sterken
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Peter Thorpe
- School of Medicine, Medical & Biological Sciences, University of St. Andrews, North Haugh, St Andrews, United Kingdom
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
11
|
Eves-van den Akker S. Plant-nematode interactions. CURRENT OPINION IN PLANT BIOLOGY 2021; 62:102035. [PMID: 33784578 DOI: 10.1016/j.pbi.2021.102035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 05/27/2023]
Abstract
Plant-parasitic nematodes threaten food security in the developed and developing world. This review looks at the field through a wide lens, aiming to capture a breadth of recent landmark achievements that have changed our understanding of plant-nematode interactions in particular, and plant pathology in general. It recognises the importance of expanding existing paradigms in plant-pathology to encompass plant-nematode interactions and, at the same time, celebrates achievements that build on the uniqueness of the system. It highlights emerging areas of plant nematology. Finally, it argues that the accelerated progress of recent years is prophetic, and that cumulative advances in our understanding, coupled with technological advances in genetic engineering of plants and nematodes, promise to lift perennial constraints on the field and thereby further expedite progress.
Collapse
|
12
|
Dutta TK, Papolu PK, Singh D, Sreevathsa R, Rao U. Expression interference of a number of Heterodera avenae conserved genes perturbs nematode parasitic success in Triticum aestivum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110670. [PMID: 33218636 DOI: 10.1016/j.plantsci.2020.110670] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/01/2020] [Accepted: 09/06/2020] [Indexed: 05/26/2023]
Abstract
The cereal cyst nematode, Heterodera avenae is distributed worldwide and causes substantial damage in bread wheat, Triticum aestivum. This nematode is extremely difficult to manage because of its prolonged persistence as unhatched eggs encased in cysts. Due to its sustainable and target-specific nature, RNA interference (RNAi)-based strategy has gained unprecedented importance for pest control. To date, RNAi strategy has not been exploited to manage H. avenae in wheat. In the present study, 40 H. avenae target genes with different molecular function were rationally selected for in vitro soaking analysis in order to assess their susceptibility to RNAi. In contrast to target-specific downregulation of 18 genes, 7 genes were upregulated and 15 genes showed unaltered expression (although combinatorial soaking showed some of these genes are RNAi susceptible), suggesting that a few of the target genes were refractory or recalcitrant to RNAi. However, RNAi of 37 of these genes negatively altered nematode behavior in terms of reduced penetration, development and reproduction in wheat. Subsequently, wheat plants were transformed with seven H. avenae target genes (that showed greatest abrogation of nematode parasitic success) for host-induced gene silencing (HIGS) analysis. Transformed plants were molecularly characterized by PCR, RT-qPCR and Southern hybridization. Production of target gene-specific double- and single-stranded RNA (dsRNA/siRNA) was detected in transformed plants. Transgenic expression of galectin, cathepsin L, vap1, serpin, flp12, RanBPM and chitinase genes conferred 33.24-72.4 % reduction in H. avenae multiplication in T1 events with single copy ones exhibiting greatest reduction. A similar degree of resistance observed in T2 plants indicated the consistent HIGS effect in the subsequent generations. Intriguingly, cysts isolated from RNAi plants were of smaller size with translucent cuticle compared to normal size, dark brown control cysts, suggesting H. avenae developmental retardation due to HIGS. Our study reinforces the potential of HIGS to manage nematode problems in crop plant.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pradeep K Papolu
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Divya Singh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India.
| | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
13
|
Vieira P, Shao J, Vijayapalani P, Maier TR, Pellegrin C, Eves-van den Akker S, Baum TJ, Nemchinov LG. A new esophageal gland transcriptome reveals signatures of large scale de novo effector birth in the root lesion nematode Pratylenchus penetrans. BMC Genomics 2020; 21:738. [PMID: 33096989 PMCID: PMC7585316 DOI: 10.1186/s12864-020-07146-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The root lesion nematode Pratylenchus penetrans is a migratory plant-parasitic nematode responsible for economically important losses in a wide number of crops. Despite the importance of P. penetrans, the molecular mechanisms employed by this nematode to promote virulence remain largely unknown. RESULTS Here we generated a new and comprehensive esophageal glands-specific transcriptome library for P. penetrans. In-depth analysis of this transcriptome enabled a robust identification of a catalogue of 30 new candidate effector genes, which were experimentally validated in the esophageal glands by in situ hybridization. We further validated the expression of a multifaceted network of candidate effectors during the interaction with different plants. To advance our understanding of the "effectorome" of P. penetrans, we adopted a phylogenetic approach and compared the expanded effector repertoire of P. penetrans to the genome/transcriptome of other nematode species with similar or contrasting parasitism strategies. Our data allowed us to infer plausible evolutionary histories that shaped the effector repertoire of P. penetrans, as well as other close and distant plant-parasitic nematodes. Two remarkable trends were apparent: 1) large scale effector birth in the Pratylenchidae in general and P. penetrans in particular, and 2) large scale effector death in sedentary (endo) plant-parasitic nematodes. CONCLUSIONS Our study doubles the number of validated Pratylenchus penetrans effectors reported in the literature. The dramatic effector gene gain in P. penetrans could be related to the remarkable ability of this nematode to parasitize a large number of plants. Our data provide valuable insights into nematode parasitism and contribute towards basic understating of the adaptation of P. penetrans and other root lesion nematodes to specific host plants.
Collapse
Affiliation(s)
- Paulo Vieira
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, MD, 20705-2350, USA.
- School of Plant and Environmental Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Jonathan Shao
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, MD, 20705-2350, USA
| | | | - Thomas R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Clement Pellegrin
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | | | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Lev G Nemchinov
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, MD, 20705-2350, USA
| |
Collapse
|
14
|
Joshi I, Kumar A, Kohli D, Singh AK, Sirohi A, Subramaniam K, Chaudhury A, Jain PK. Conferring root-knot nematode resistance via host-delivered RNAi-mediated silencing of four Mi-msp genes in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110592. [PMID: 32771150 DOI: 10.1016/j.plantsci.2020.110592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 06/27/2020] [Accepted: 07/01/2020] [Indexed: 05/27/2023]
Abstract
The root-knot nematode (RKN) Meloidogyne incognita is considered one of the most damaging pests among phytonematodes. The majority of nematode oesophageal gland effector genes are indispensable in facilitating M. incognita parasitization of host plants. We report the effect of host-delivered RNAi (HD-RNAi) silencing of four selected M. incognita effector genes, namely, Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24, in Arabidopsis thaliana. Mi-msp5, Mi-msp18 and Mi-msp24, which are dorsal gland genes, were found to be maximally expressed in the adult female stage, whereas Mi-msp3, which is a sub-ventral gland gene, was maximally expressed in an earlier stage. In transgenic plants expressing dsRNA, the reduction in the number of galls on roots was 89 %, 78 %, 86 % and 89 % for the Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24 RNAi events, respectively. Moreover, gene transcript abundance was significantly reduced in RKN females feeding on dsRNA-expressing lines by up to 60 %, 84 %, 31 % and 61 % for Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24, respectively. Furthermore, the M. incognita reproduction factor was reduced up to 71-, 344-, 107- and 114-fold in Arabidopsis plants expressing Mi-msp3, Mi-msp5, Mi-msp18 and Mi-msp24 dsRNA constructs, respectively. This study provides a set of potential target genes to curb nematode infestation in economically important crops via the HD-RNAi approach.
Collapse
Affiliation(s)
- Ila Joshi
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India; Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Anil Kumar
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Deshika Kohli
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Ashish K Singh
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Anil Sirohi
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - K Subramaniam
- Department of Biotechnology, Indian Institute of Technology, Madras, India
| | - Ashok Chaudhury
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, Haryana, India
| | - Pradeep K Jain
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
15
|
Favery B, Dubreuil G, Chen MS, Giron D, Abad P. Gall-Inducing Parasites: Convergent and Conserved Strategies of Plant Manipulation by Insects and Nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:1-22. [PMID: 32853101 DOI: 10.1146/annurev-phyto-010820-012722] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Gall-inducing insects and nematodes engage in sophisticated interactions with their host plants. These parasites can induce major morphological and physiological changes in host roots, leaves, and other tissues. Sedentary endoparasitic nematodes, root-knot and cyst nematodes in particular, as well as gall-inducing and leaf-mining insects, manipulate plant development to form unique organs that provide them with food from feeding cells. Sometimes, infected tissues may undergo a developmental switch resulting in the formation of aberrant and spectacular structures (clubs or galls). We describe here the complex interactions between these plant-reprogramming sedentary endoparasites and their infected hosts, focusing on similarities between strategies of plant manipulation. We highlight progress in our understanding of the host plant response to infection and focus on the nematode and insect molecules secreted in planta. We suggest thatlooking at similarities may identify convergent and conserved strategies and shed light on the promise they hold for the development of new management strategies in agriculture and forestry.
Collapse
Affiliation(s)
- Bruno Favery
- INRAE, CNRS, Université Côte d'Azur, ISA, F-06600 Sophia-Antipolis, France;
| | - Géraldine Dubreuil
- Institut de Recherche sur la Biologie de l'Insecte, CNRS, Université de Tours, UMR 7261, 37200 Tours, France;
| | - Ming-Shun Chen
- USDA-ARS and Department of Entomology, Kansas State University, Manhattan, Kansas 66506, USA
| | - David Giron
- Institut de Recherche sur la Biologie de l'Insecte, CNRS, Université de Tours, UMR 7261, 37200 Tours, France;
| | - Pierre Abad
- INRAE, CNRS, Université Côte d'Azur, ISA, F-06600 Sophia-Antipolis, France;
| |
Collapse
|
16
|
Pokhare SS, Thorpe P, Hedley P, Morris J, Habash SS, Elashry A, Eves-van den Akker S, Grundler FMW, Jones JT. Signatures of adaptation to a monocot host in the plant-parasitic cyst nematode Heterodera sacchari. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1263-1274. [PMID: 32623778 DOI: 10.1111/tpj.14910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 06/18/2020] [Indexed: 05/03/2023]
Abstract
Interactions between plant-parasitic nematodes and their hosts are mediated by effectors, i.e. secreted proteins that manipulate the plant to the benefit of the pathogen. To understand the role of effectors in host adaptation in nematodes, we analysed the transcriptome of Heterodera sacchari, a cyst nematode parasite of rice (Oryza sativa) and sugarcane (Saccharum officinarum). A multi-gene phylogenetic analysis showed that H. sacchari and the cereal cyst nematode Heterodera avenae share a common evolutionary origin and that they evolved to parasitise monocot plants from a common dicot-parasitic ancestor. We compared the effector repertoires of H. sacchari with those of the dicot parasites Heterodera glycines and Globodera rostochiensis to understand the consequences of this transition. While, in general, effector repertoires are similar between the species, comparing effectors and non-effectors of H. sacchari and G. rostochiensis shows that effectors have accumulated more mutations than non-effectors. Although most effectors show conserved spatiotemporal expression profiles and likely function, some H. sacchari effectors are adapted to monocots. This is exemplified by the plant-peptide hormone mimics, the CLAVATA3/EMBRYO SURROUNDING REGION-like (CLE) effectors. Peptide hormones encoded by H. sacchari CLE effectors are more similar to those from rice than those from other plants, or those from other plant-parasitic nematodes. We experimentally validated the functional significance of these observations by demonstrating that CLE peptides encoded by H. sacchari induce a short root phenotype in rice, whereas those from a related dicot parasite do not. These data provide a functional example of effector evolution that co-occurred with the transition from a dicot-parasitic to a monocot-parasitic lifestyle.
Collapse
Affiliation(s)
- Somnath S Pokhare
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
- Crop Protection Division, ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Peter Thorpe
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Medicine, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| | - Pete Hedley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Jennifer Morris
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Samer S Habash
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | - Abdelnaser Elashry
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | | | - Florian M W Grundler
- Department of Molecular Phytomedicine, Institute of Crop Science and Resource Conservation, University of Bonn, Bonn, 53115, Germany
| | - John T Jones
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| |
Collapse
|
17
|
Vieira P, Gleason C. Plant-parasitic nematode effectors - insights into their diversity and new tools for their identification. CURRENT OPINION IN PLANT BIOLOGY 2019; 50:37-43. [PMID: 30921686 DOI: 10.1016/j.pbi.2019.02.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 05/20/2023]
Abstract
Plant-parasitic nematodes (PPNs) are a large group of obligate biotrophic pathogens that secrete molecules, called effectors, involved in parasitism. The majority of work in molecular phytonematology has focused on the root-knot and cyst nematodes, which are both sedentary endoparasitic nematodes. More recently, inexpensive sequencing technology has facilitated effector searches in PPNs with different parasitic lifestyles. Work in different PPN species suggests that effectors are diverse, and selection pressure from plant hosts has contributed to the presence of large, expanded effector gene families. The identification of promoter elements/motifs preceding effector gene sequences suggests that promoter analysis can computationally predict new putative effectors. However, until a method of genetic transformation is available for PPNs, work on characterizing effectors will be hindered.
Collapse
Affiliation(s)
- Paulo Vieira
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061, United States
| | - Cynthia Gleason
- Dept. of Plant Pathology, Washington State University, Pullman, WA 99164, United States.
| |
Collapse
|
18
|
Mejias J, Truong NM, Abad P, Favery B, Quentin M. Plant Proteins and Processes Targeted by Parasitic Nematode Effectors. FRONTIERS IN PLANT SCIENCE 2019; 10:970. [PMID: 31417587 PMCID: PMC6682612 DOI: 10.3389/fpls.2019.00970] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/11/2019] [Indexed: 05/17/2023]
Abstract
Sedentary endoparasitic nematodes, such as root-knot nematodes (RKN; Meloidogyne spp.) and cyst nematodes (CN; Heterodera spp. and Globodera spp.) cause considerable damage to agricultural crops. RKN and CN spend most of their life cycle in plant roots, in which they induce the formation of multinucleate hypertrophied feeding cells, called "giant cells" and "syncytia," respectively. The giant cells result from nuclear divisions of vascular cells without cytokinesis. They are surrounded by small dividing cells and they form a new organ within the root known as a root knot or gall. CN infection leads to the fusion of several root cells into a unique syncytium. These dramatically modified host cells act as metabolic sinks from which the nematode withdraws nutrients throughout its life, and they are thus essential for nematode development. Both RKN and CN secrete effector proteins that are synthesized in the oesophageal glands and delivered to the appropriate cell in the host plant via a syringe-like stylet, triggering the ontogenesis of the feeding structures. Within the plant cell or in the apoplast, effectors associate with specific host proteins, enabling them to hijack important processes for cell morphogenesis and physiology or immunity. Here, we review recent findings on the identification and functional characterization of plant targets of RKN and CN effectors. A better understanding of the molecular determinants of these biotrophic relationships would enable us to improve the yields of crops infected with parasitic nematodes and to expand our comprehension of root development.
Collapse
Affiliation(s)
| | | | | | | | - Michaël Quentin
- Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| |
Collapse
|
19
|
Sabeh M, Lord E, Grenier É, St-Arnaud M, Mimee B. What determines host specificity in hyperspecialized plant parasitic nematodes? BMC Genomics 2019; 20:457. [PMID: 31170914 PMCID: PMC6555003 DOI: 10.1186/s12864-019-5853-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background In hyperspecialized parasites, the ability to grow on a particular host relies on specific virulence factors called effectors. These excreted proteins are involved in the molecular mechanisms of parasitism and distinguish virulent pathogens from non-virulent related species. The potato cyst nematodes (PCN) Globodera rostochiensis and G. pallida are major plant-parasitic nematodes developing on numerous solanaceous species including potato. Their close relatives, G. tabacum and G. mexicana are stimulated by potato root diffusate but unable to establish a feeding site on this plant host. Results RNA sequencing was used to characterize transcriptomic differences among these four Globodera species and to identify genes associated with host specificity. We identified seven transcripts that were unique to PCN species, including a protein involved in ubiquitination. We also found 545 genes that were differentially expressed between PCN and non-PCN species, including 78 genes coding for effector proteins, which represent more than a 6-fold enrichment compared to the whole transcriptome. Gene polymorphism analysis identified 359 homozygous non-synonymous variants showing a strong evidence for selection in PCN species. Conclusions Overall, we demonstrated that the determinant of host specificity resides in the regulation of essential effector gene expression that could be under the control of a single or of very few regulatory genes. Such genes are therefore promising targets for the development of novel and more sustainable resistances against potato cyst nematodes. Electronic supplementary material The online version of this article (10.1186/s12864-019-5853-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael Sabeh
- St-Jean-sur-Richelieu Research and Development Center, Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, Quebec, Canada.,Biodiversity Center, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada
| | - Etienne Lord
- St-Jean-sur-Richelieu Research and Development Center, Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, Quebec, Canada
| | - Éric Grenier
- INRA, UMR1349 IGEPP (Institute of Genetics, Environment and Plant Protection), F-35653, Le Rheu, France
| | - Marc St-Arnaud
- Biodiversity Center, Institut de recherche en biologie végétale, Université de Montréal and Jardin botanique de Montréal, Montreal, Quebec, Canada
| | - Benjamin Mimee
- St-Jean-sur-Richelieu Research and Development Center, Agriculture and Agri-Food Canada, St-Jean-sur-Richelieu, Quebec, Canada.
| |
Collapse
|
20
|
Hu LJ, Wu XQ, Li HY, Zhao Q, Wang YC, Ye JR. An Effector, BxSapB1, Induces Cell Death and Contributes to Virulence in the Pine Wood Nematode Bursaphelenchus xylophilus. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:452-463. [PMID: 30351223 DOI: 10.1094/mpmi-10-18-0275-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The pine wood nematode (PWN) Bursaphelenchus xylophilus has caused serious damage to pine forests in China. Effectors secreted by phytonematodes play a role in host infection. We identified and characterized an effector, BxSapB1, based on the B. xylophilus transcriptome at the early stages of infection and the transient expression of proteins in Nicotiana benthamiana. BxSapB1 triggered cell death in N. benthamiana when secreted into the apoplast, and this effect was independent of N. benthamiana brassinosteroid-insensitive 1-associated kinase 1 (NbBAK1) and suppressor of BIR1-1 (NbSOBIR1). The signal peptide of BxSapB1 was proven to be functional in yeast using the yeast signal sequence trap system and BxSapB1 was strongly expressed in the subventral gland cells of B. xylophilus, as revealed by in-situ hybridization. In addition, based on local BLAST analysis, the BxSapB1 showed 100% identity to BUX.s00139.62, which was identified from the B. xylophilus secretome during Pinus thunbergii infection. BxSapB1 was upregulated in a highly virulent strain and downregulated in a weakly virulent strain of PWN at the early stages of infection. RNA interference assays showed that silencing BxSapB1 resulted in decreased expression of pathogenesis-related genes (PtPR-1b, PtPR-3, and PtPR-5) as well as delayed onset of symptoms in P. thunbergii infected by B. xylophilus. The combined data suggest that BxSapB1 can trigger cell death in N. benthamiana and that it contributes to the virulence in B. xylophilus during parasitic interaction.
Collapse
Affiliation(s)
- Long-Jiao Hu
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| | - Xiao-Qin Wu
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| | - Hai-Yang Li
- 3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qun Zhao
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| | - Yuan-Chao Wang
- 3 Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian-Ren Ye
- 1 Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- 2 Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University; and
| |
Collapse
|
21
|
Yang S, Dai Y, Chen Y, Yang J, Yang D, Liu Q, Jian H. A Novel G16B09-Like Effector From Heterodera avenae Suppresses Plant Defenses and Promotes Parasitism. FRONTIERS IN PLANT SCIENCE 2019; 10:66. [PMID: 30800135 PMCID: PMC6376208 DOI: 10.3389/fpls.2019.00066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/16/2019] [Indexed: 05/08/2023]
Abstract
Plant parasitic nematodes secrete effectors into host plant tissues to facilitate parasitism. In this study, we identified a G16B09-like effector protein family from the transcriptome of Heterodera avenae, and then verified that most of the members could suppress programmed cell death triggered by BAX in Nicotiana benthamiana. Ha18764, the most homologous to G16B09, was further characterized for its function. Our experimental evidence suggested that Ha18764 was specifically expressed in the dorsal gland and was dramatically upregulated in the J4 stage of nematode development. A Magnaporthe oryzae secretion system in barley showed that the signal peptide of Ha18764 had secretion activity to deliver mCherry into plant cells. Arabidopsis thaliana overexpressing Ha18764 or Hs18764 was more susceptible to Heterodera schachtii. In contrast, BSMV-based host-induced gene silencing (HIGS) targeting Ha18764 attenuated H. avenae parasitism and its reproduction in wheat plants. Transient expression of Ha18764 suppressed PsojNIP, Avr3a/R3a, RBP-1/Gpa2, and MAPK kinases (MKK1 and NPK1Nt)-related cell death in Nicotiana benthamiana. Co-expression assays indicated that Ha18764 also suppressed cell death triggered by four H. avenae putative cell-death-inducing effectors. Moreover, Ha18764 was also shown strong PTI suppression such as reducing the expression of plant defense-related genes, the burst of reactive oxygen species, and the deposition of cell wall callose. Together, our results indicate that Ha18764 promotes parasitism, probably by suppressing plant PTI and ETI signaling in the parasitic stages of H. avenae.
Collapse
Affiliation(s)
| | | | | | | | | | - Qian Liu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing, China
| | | |
Collapse
|
22
|
Lilley CJ, Maqbool A, Wu D, Yusup HB, Jones LM, Birch PRJ, Banfield MJ, Urwin PE, Eves-van den Akker S. Effector gene birth in plant parasitic nematodes: Neofunctionalization of a housekeeping glutathione synthetase gene. PLoS Genet 2018; 14:e1007310. [PMID: 29641602 PMCID: PMC5919673 DOI: 10.1371/journal.pgen.1007310] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 04/26/2018] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
Plant pathogens and parasites are a major threat to global food security. Plant parasitism has arisen four times independently within the phylum Nematoda, resulting in at least one parasite of every major food crop in the world. Some species within the most economically important order (Tylenchida) secrete proteins termed effectors into their host during infection to re-programme host development and immunity. The precise detail of how nematodes evolve new effectors is not clear. Here we reconstruct the evolutionary history of a novel effector gene family. We show that during the evolution of plant parasitism in the Tylenchida, the housekeeping glutathione synthetase (GS) gene was extensively replicated. New GS paralogues acquired multiple dorsal gland promoter elements, altered spatial expression to the secretory dorsal gland, altered temporal expression to primarily parasitic stages, and gained a signal peptide for secretion. The gene products are delivered into the host plant cell during infection, giving rise to "GS-like effectors". Remarkably, by solving the structure of GS-like effectors we show that during this process they have also diversified in biochemical activity, and likely represent the founding members of a novel class of GS-like enzyme. Our results demonstrate the re-purposing of an endogenous housekeeping gene to form a family of effectors with modified functions. We anticipate that our discovery will be a blueprint to understand the evolution of other plant-parasitic nematode effectors, and the foundation to uncover a novel enzymatic function.
Collapse
Affiliation(s)
- Catherine J. Lilley
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Abbas Maqbool
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Duqing Wu
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Hazijah B. Yusup
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Laura M. Jones
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Paul R. J. Birch
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Mark J. Banfield
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Peter E. Urwin
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sebastian Eves-van den Akker
- Dept. of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
23
|
Matuszkiewicz M, Sobczak M, Cabrera J, Escobar C, Karpiński S, Filipecki M. The Role of Programmed Cell Death Regulator LSD1 in Nematode-Induced Syncytium Formation. FRONTIERS IN PLANT SCIENCE 2018; 9:314. [PMID: 29616052 PMCID: PMC5868158 DOI: 10.3389/fpls.2018.00314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 02/23/2018] [Indexed: 05/29/2023]
Abstract
Cyst-forming plant-parasitic nematodes are common pests of many crops. They inject secretions into host cells to induce the developmental and metabolic reprogramming that leads to the formation of a syncytium, which is the sole food source for growing nematodes. As in other host-parasite models, avirulence leads to rapid and local programmed cell death (PCD) known as the hypersensitive response (HR), whereas in the case of virulence, PCD is still observed but is limited to only some cells. Several regulators of PCD were analyzed to understand the role of PCD in compatible plant-nematode interactions. Thus, Arabidopsis plants carrying recessive mutations in LESION SIMULATING DISEASE1 (LSD1) family genes were subjected to nematode infection assays with juveniles of Heterodera schachtii. LSD1 is a negative and conditional regulator of PCD, and fewer and smaller syncytia were induced in the roots of lsd1 mutants than in wild-type Col-0 plants. Mutation in LSD ONE LIKE2 (LOL2) revealed a pattern of susceptibility to H. schachtii antagonistic to lsd1. Syncytia induced on lsd1 roots compared to Col0 showed significantly retarded growth, modified cell wall structure, increased vesiculation, and some myelin-like bodies present at 7 and 12 days post-infection. To place these data in a wider context, RNA-sequencing analysis of infected and uninfected roots was conducted. During nematode infection, the number of transcripts with changed expression in lsd1 was approximately three times smaller than in wild-type plants (1440 vs. 4206 differentially expressed genes, respectively). LSD1-dependent PCD in roots is thus a highly regulated process in compatible plant-nematode interactions. Two genes identified in this analysis, coding for AUTOPHAGY-RELATED PROTEIN 8F and 8H were down-regulated in syncytia in the presence of LSD1 and showed an increased susceptibility to nematode infection contrasting with lsd1 phenotype. Our data indicate that molecular regulators belonging to the LSD1 family play an important role in precise balancing of diverse PCD players during syncytium development required for successful nematode parasitism.
Collapse
Affiliation(s)
- Mateusz Matuszkiewicz
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Miroslaw Sobczak
- Department of Botany, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Javier Cabrera
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Carolina Escobar
- Facultad de Ciencias Ambientales y Bioquímica, Universidad de Castilla-La Mancha, Toledo, Spain
| | - Stanislaw Karpiński
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| | - Marcin Filipecki
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences – SGGW, Warsaw, Poland
| |
Collapse
|
24
|
Vieira P, Maier TR, Eves‐van den Akker S, Howe DK, Zasada I, Baum TJ, Eisenback JD, Kamo K. Identification of candidate effector genes of Pratylenchus penetrans. MOLECULAR PLANT PATHOLOGY 2018; 19:1887-1907. [PMID: 29424950 PMCID: PMC6638058 DOI: 10.1111/mpp.12666] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 05/02/2023]
Abstract
Pratylenchus penetrans is one of the most important species of root lesion nematodes (RLNs) because of its detrimental and economic impact in a wide range of crops. Similar to other plant-parasitic nematodes (PPNs), P. penetrans harbours a significant number of secreted proteins that play key roles during parasitism. Here, we combined spatially and temporally resolved next-generation sequencing datasets of P. penetrans to select a list of candidate genes aimed at the identification of a panel of effector genes for this species. We determined the spatial expression of transcripts of 22 candidate effectors within the oesophageal glands of P. penetrans by in situ hybridization. These comprised homologues of known effectors of other PPNs with diverse putative functions, as well as novel pioneer effectors specific to RLNs. It is noteworthy that five of the pioneer effectors encode extremely proline-rich proteins. We then combined in situ localization of effectors with available genomic data to identify a non-coding motif enriched in promoter regions of a subset of P. penetrans effectors, and thus a putative hallmark of spatial expression. Expression profiling analyses of a subset of candidate effectors confirmed their expression during plant infection. Our current results provide the most comprehensive panel of effectors found for RLNs. Considering the damage caused by P. penetrans, this information provides valuable data to elucidate the mode of parasitism of this nematode and offers useful suggestions regarding the potential use of P. penetrans-specific target effector genes to control this important pathogen.
Collapse
Affiliation(s)
- Paulo Vieira
- Department of Plant Pathology, Physiology, and Weed ScienceVirginia TechBlacksburgVA 24061USA
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of AgricultureBeltsvilleMD 20705‐2350USA
| | - Thomas R. Maier
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | - Sebastian Eves‐van den Akker
- Department of Biological ChemistryJohn Innes Centre, Norwich Research ParkNorwich NR4 7UHUK
- School of Life SciencesUniversity of DundeeDundee DD1 5EHUK
| | - Dana K. Howe
- Department of Integrative BiologyOregon State UniversityCorvallisOR 97331USA
| | - Inga Zasada
- Horticultural Crops Research LaboratoryU.S. Department of AgricultureCorvallisOR 97330USA
| | - Thomas J. Baum
- Department of Plant Pathology and MicrobiologyIowa State UniversityAmesIA 50011USA
| | - Jonathan D. Eisenback
- Department of Plant Pathology, Physiology, and Weed ScienceVirginia TechBlacksburgVA 24061USA
| | - Kathryn Kamo
- Floral and Nursery Plants Research Unit, U.S. National Arboretum, U.S. Department of AgricultureBeltsvilleMD 20705‐2350USA
| |
Collapse
|
25
|
Gardner M, Dhroso A, Johnson N, Davis EL, Baum TJ, Korkin D, Mitchum MG. Novel global effector mining from the transcriptome of early life stages of the soybean cyst nematode Heterodera glycines. Sci Rep 2018; 8:2505. [PMID: 29410430 PMCID: PMC5802810 DOI: 10.1038/s41598-018-20536-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/12/2018] [Indexed: 11/08/2022] Open
Abstract
Soybean cyst nematode (SCN) Heterodera glycines is an obligate parasite that relies on the secretion of effector proteins to manipulate host cellular processes that favor the formation of a feeding site within host roots to ensure its survival. The sequence complexity and co-evolutionary forces acting upon these effectors remain unknown. Here we generated a de novo transcriptome assembly representing the early life stages of SCN in both a compatible and an incompatible host interaction to facilitate global effector mining efforts in the absence of an available annotated SCN genome. We then employed a dual effector prediction strategy coupling a newly developed nematode effector prediction tool, N-Preffector, with a traditional secreted protein prediction pipeline to uncover a suite of novel effector candidates. Our analysis distinguished between effectors that co-evolve with the host genotype and those conserved by the pathogen to maintain a core function in parasitism and demonstrated that alternative splicing is one mechanism used to diversify the effector pool. In addition, we confirmed the presence of viral and microbial inhabitants with molecular sequence information. This transcriptome represents the most comprehensive whole-nematode sequence currently available for SCN and can be used as a tool for annotation of expected genome assemblies.
Collapse
Affiliation(s)
- Michael Gardner
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA
| | - Andi Dhroso
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Nathan Johnson
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA
| | - Eric L Davis
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, USA
| | - Dmitry Korkin
- Department of Computer Science and Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, USA.
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, USA.
| |
Collapse
|
26
|
Cui JK, Peng H, Qiao F, Wang GF, Huang WK, Wu DQ, Peng D. Characterization of Putative Effectors from the Cereal Cyst Nematode Heterodera avenae. PHYTOPATHOLOGY 2018; 108:264-274. [PMID: 28945520 DOI: 10.1094/phyto-07-17-0226-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Few molecular details of effectors of Heterodera avenae parasitism are known. We performed a high-throughput sequencing analysis of the H. avenae transcriptome at five developmental stages. A total of 82,549 unigenes were ultimately obtained, and 747 transcripts showed best hits to genes putatively encoding carbohydrate-active enzymes in plant-parasitic nematodes that play an important role in the invasion process. A total of 1,480 unigenes were homologous to known phytonematode effectors, and 63 putative novel effectors were identified in the H. avenae transcriptomes. Twenty-three unigenes were analyzed by qRT-PCR and confirmed to be highly expressed during at least one developmental stage. For in situ hybridization, 17 of the 22 tested putative effectors were specifically expressed and located in the subventral gland cells, and five putative novel effectors were specifically expressed in the dorsal gland. Furthermore, 115 transcripts were found to have putative lethal RNA interference (RNAi) phenotypes. Three target genes with lethal RNAi phenotypes and two of the four tested putative effectors were associated with a decrease in the number of cysts through in vitro RNAi technology. These transcriptomic data lay a foundation for further studies of interactions of H. avenae with cereal and H. avenae parasitic control.
Collapse
Affiliation(s)
- Jiang-Kuan Cui
- First, second, third, fourth, fifth, sixth, and seventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; first author: College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; fourth author: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and sixth author: Center for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Huan Peng
- First, second, third, fourth, fifth, sixth, and seventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; first author: College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; fourth author: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and sixth author: Center for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Fen Qiao
- First, second, third, fourth, fifth, sixth, and seventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; first author: College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; fourth author: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and sixth author: Center for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Gao-Feng Wang
- First, second, third, fourth, fifth, sixth, and seventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; first author: College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; fourth author: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and sixth author: Center for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Wen-Kun Huang
- First, second, third, fourth, fifth, sixth, and seventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; first author: College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; fourth author: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and sixth author: Center for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Du-Qing Wu
- First, second, third, fourth, fifth, sixth, and seventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; first author: College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; fourth author: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and sixth author: Center for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Deliang Peng
- First, second, third, fourth, fifth, sixth, and seventh authors: State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; first author: College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China; fourth author: College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; and sixth author: Center for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
27
|
Hoysted GA, Bell CA, Lilley CJ, Urwin PE. Aphid Colonization Affects Potato Root Exudate Composition and the Hatching of a Soil Borne Pathogen. FRONTIERS IN PLANT SCIENCE 2018; 9:1278. [PMID: 30237805 PMCID: PMC6136236 DOI: 10.3389/fpls.2018.01278] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/15/2018] [Indexed: 05/20/2023]
Abstract
Plants suffer multiple, simultaneous biotic threats from both above and below ground. These pests and/or pathogens are commonly studied on an individual basis and the effects of above-ground pests on below-ground pathogens are poorly defined. Root exudates from potato plants (Solanum tuberosum L.) were analyzed to characterize the top-down plant-mediated interactions between a phloem-sucking herbivore (Myzus persicae) and a sedentary, endoparasitic nematode (Globodera pallida). Increasing inocula of the aphid, M. persicae, reduced the root mass of potato plants. Exudates collected from these roots induced significantly lower hatching of second-stage juveniles from G. pallida eggs over a 28-day period, than those from uninfested control plants. Inhibition of hatch was significantly positively correlated with size of aphid inoculum. Diminished hatching was partially recovered after treatment with root exudate from uninfested potato plants indicating that the effect on hatching is reversible but cannot be fully recovered. Glucose and fructose content was reduced in root exudates from aphid-infested potato plants compared to controls and these sugars were found to induce hatching of G. pallida, but not to the same degree as potato root exudates (PRE). Supplementing aphid-infested PRE with sugars did not recover the hatching potential of the treatment, suggesting that additional compounds play an important role in egg hatch. The first gene upregulated in the closely related potato cyst nematode Globodera rostochiensis post-exposure to host root exudate, Neprilysin-1, was confirmed to be upregulated in G. pallida cysts after exposure to PRE and was also upregulated by the sugar treatments. Significantly reduced upregulation of Gpa-nep-1 was observed in cysts treated with root exudates from potato plants infested with greater numbers of aphids. Our data suggest that aphid infestation of potato plants affects the composition of root exudates, with consequential effects on the hatching and gene expression of G. pallida eggs. This work shows that an above-ground pest can indirectly impact the rhizosphere and reveals secondary effects for control of an economically important below-ground pathogen.
Collapse
|
28
|
Bournaud C, Gillet FX, Murad AM, Bresso E, Albuquerque EVS, Grossi-de-Sá MF. Meloidogyne incognita PASSE-MURAILLE (MiPM) Gene Encodes a Cell-Penetrating Protein That Interacts With the CSN5 Subunit of the COP9 Signalosome. FRONTIERS IN PLANT SCIENCE 2018; 9:904. [PMID: 29997646 PMCID: PMC6029430 DOI: 10.3389/fpls.2018.00904] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/07/2018] [Indexed: 05/11/2023]
Abstract
The pathogenicity of phytonematodes relies on secreted virulence factors to rewire host cellular pathways for the benefits of the nematode. In the root-knot nematode (RKN) Meloidogyne incognita, thousands of predicted secreted proteins have been identified and are expected to interact with host proteins at different developmental stages of the parasite. Identifying the host targets will provide compelling evidence about the biological significance and molecular function of the predicted proteins. Here, we have focused on the hub protein CSN5, the fifth subunit of the pleiotropic and eukaryotic conserved COP9 signalosome (CSN), which is a regulatory component of the ubiquitin/proteasome system. We used affinity purification-mass spectrometry (AP-MS) to generate the interaction network of CSN5 in M. incognita-infected roots. We identified the complete CSN complex and other known CSN5 interaction partners in addition to unknown plant and M. incognita proteins. Among these, we described M. incognita PASSE-MURAILLE (MiPM), a small pioneer protein predicted to contain a secretory peptide that is up-regulated mostly in the J2 parasitic stage. We confirmed the CSN5-MiPM interaction, which occurs in the nucleus, by bimolecular fluorescence complementation (BiFC). Using MiPM as bait, a GST pull-down assay coupled with MS revealed some common protein partners between CSN5 and MiPM. We further showed by in silico and microscopic analyses that the recombinant purified MiPM protein enters the cells of Arabidopsis root tips in a non-infectious context. In further detail, the supercharged N-terminal tail of MiPM (NTT-MiPM) triggers an unknown host endocytosis pathway to penetrate the cell. The functional meaning of the CSN5-MiPM interaction in the M. incognita parasitism is discussed. Moreover, we propose that the cell-penetrating properties of some M. incognita secreted proteins might be a non-negligible mechanism for cell uptake, especially during the steps preceding the sedentary parasitic phase.
Collapse
Affiliation(s)
- Caroline Bournaud
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- *Correspondence: Caroline Bournaud
| | | | - André M. Murad
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
| | - Emmanuel Bresso
- Université de Lorraine, Centre National de la Recherche Scientifique, Inria, Laboratoire Lorrain de Recherche en Informatique et ses Applications, Nancy, France
| | | | - Maria F. Grossi-de-Sá
- Embrapa Genetic Resources and Biotechnology, Brasília, Brazil
- Post-Graduation Program in Genomic Science and Biotechnology, Universidade Católica de Brasília, Brasília, Brazil
- Maria F. Grossi-de-Sá
| |
Collapse
|
29
|
Ali MA, Azeem F, Li H, Bohlmann H. Smart Parasitic Nematodes Use Multifaceted Strategies to Parasitize Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1699. [PMID: 29046680 PMCID: PMC5632807 DOI: 10.3389/fpls.2017.01699] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 09/15/2017] [Indexed: 05/03/2023]
Abstract
Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS) and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants.
Collapse
Affiliation(s)
- Muhammad A. Ali
- Department of Plant Pathology, University of Agriculture Faisalabad, Faisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Hongjie Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Holger Bohlmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Vienna, Austria
| |
Collapse
|
30
|
Smiley RW, Dababat AA, Iqbal S, Jones MGK, Maafi ZT, Peng D, Subbotin SA, Waeyenberge L. Cereal Cyst Nematodes: A Complex and Destructive Group of Heterodera Species. PLANT DISEASE 2017; 101:1692-1720. [PMID: 30676930 DOI: 10.1094/pdis-03-17-0355-fe] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Small grain cereals have served as the basis for staple foods, beverages, and animal feed for thousands of years. Wheat, barley, oats, rye, triticale, rice, and others are rich in calories, proteins, carbohydrates, vitamins, and minerals. These cereals supply 20% of the calories consumed by people worldwide and are therefore a primary source of energy for humans and play a vital role in global food and nutrition security. Global production of small grains increased linearly from 1960 to 2005, and then began to decline. Further decline in production is projected to continue through 2050 while global demand for these grains is projected to increase by 1% per annum. Currently, wheat, barley, and oat production exceeds consumption in developed countries, while in developing countries the consumption rate is higher than production. An increasing demand for meat and livestock products is likely to compound the demand for cereals in developing countries. Current production levels and trends will not be sufficient to fulfill the projected global demand generated by increased populations. For wheat, global production will need to be increased by 60% to fulfill the estimated demand in 2050. Until recently, global wheat production increased mostly in response to development of improved cultivars and farming practices and technologies. Production is now limited by biotic and abiotic constraints, including diseases, nematodes, insect pests, weeds, and climate. Among these constraints, plant-parasitic nematodes alone are estimated to reduce production of all world crops by 10%. Cereal cyst nematodes (CCNs) are among the most important nematode pests that limit production of small grain cereals. Heavily invaded young plants are stunted and their lower leaves are often chlorotic, forming pale green patches in the field. Mature plants are also stunted, have a reduced number of tillers, and the roots are shallow and have a "bushy-knotted" appearance. CCNs comprise a number of closely-related species and are found in most regions where cereals are produced.
Collapse
Affiliation(s)
- Richard W Smiley
- Columbia Basin Agricultural Research Center, Oregon State University, Pendleton
| | - Abdelfattah A Dababat
- Soil Borne Pathogens Program, International Maize and Wheat Improvement Center (CIMMYT), Ankara, Turkey
| | - Sadia Iqbal
- School of Veterinary and Life Sciences,Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth
| | - Michael G K Jones
- School of Veterinary and Life Sciences,Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth
| | - Zahra Tanha Maafi
- Iranian Research Institute of Plant Protection, Agricultural Research Education and Extension Organization (AREEO), Tehran
| | - Deliang Peng
- Nematology Department, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing
| | - Sergei A Subbotin
- Plant Pest Diagnostics Center, California Department of Food and Agriculture, Sacramento; and Centre of Parasitology, A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow
| | - Lieven Waeyenberge
- Crop Protection Research Area, Plant Sciences Unit, Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke, Belgium
| |
Collapse
|
31
|
Kikuchi T, Eves-van den Akker S, Jones JT. Genome Evolution of Plant-Parasitic Nematodes. ANNUAL REVIEW OF PHYTOPATHOLOGY 2017; 55:333-354. [PMID: 28590877 DOI: 10.1146/annurev-phyto-080516-035434] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Plant parasitism has evolved independently on at least four separate occasions in the phylum Nematoda. The application of next-generation sequencing (NGS) to plant-parasitic nematodes has allowed a wide range of genome- or transcriptome-level comparisons, and these have identified genome adaptations that enable parasitism of plants. Current genome data suggest that horizontal gene transfer, gene family expansions, evolution of new genes that mediate interactions with the host, and parasitism-specific gene regulation are important adaptations that allow nematodes to parasitize plants. Sequencing of a larger number of nematode genomes, including plant parasites that show different modes of parasitism or that have evolved in currently unsampled clades, and using free-living taxa as comparators would allow more detailed analysis and a better understanding of the organization of key genes within the genomes. This would facilitate a more complete understanding of the way in which parasitism has shaped the genomes of plant-parasitic nematodes.
Collapse
Affiliation(s)
- Taisei Kikuchi
- Division of Parasitology, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan;
| | - Sebastian Eves-van den Akker
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, United Kingdom
- Department of Biological Chemistry, The John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, United Kingdom
- School of Biology, University of St. Andrews, North Haugh, St. Andrews, KY16 9TZ, United Kingdom
| |
Collapse
|
32
|
Shivakumara TN, Chaudhary S, Kamaraju D, Dutta TK, Papolu PK, Banakar P, Sreevathsa R, Singh B, Manjaiah KM, Rao U. Host-Induced Silencing of Two Pharyngeal Gland Genes Conferred Transcriptional Alteration of Cell Wall-Modifying Enzymes of Meloidogyne incognita vis-à-vis Perturbed Nematode Infectivity in Eggplant. FRONTIERS IN PLANT SCIENCE 2017; 8:473. [PMID: 28424727 PMCID: PMC5371666 DOI: 10.3389/fpls.2017.00473] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/17/2017] [Indexed: 05/19/2023]
Abstract
The complex parasitic strategy of Meloidogyne incognita appears to involve simultaneous expression of its pharyngeal gland-specific effector genes in order to colonize the host plants. Research reports related to effector crosstalk in phytonematodes for successful parasitism of the host tissue is yet underexplored. In view of this, we have used in planta effector screening approach to understand the possible interaction of pioneer genes (msp-18 and msp-20, putatively involved in late and early stage of M. incognita parasitism, respectively) with other unrelated effectors such as cell-wall modifying enzymes (CWMEs) in M. incognita. Host-induced gene silencing (HIGS) strategy was used to generate the transgenic eggplants expressing msp-18 and msp-20, independently. Putative transformants were characterized via qRT-PCR and Southern hybridization assay. SiRNAs specific to msp-18 and msp-20 were also detected in the transformants via Northern hybridization assay. Transgenic expression of the RNAi constructs of msp-18 and msp-20 genes resulted in 43.64-69.68% and 41.74-67.30% reduction in M. incognita multiplication encompassing 6 and 10 events, respectively. Additionally, transcriptional oscillation of CWMEs documented in the penetrating and developing nematodes suggested the possible interaction among CWMEs and pioneer genes. The rapid assimilation of plant-derived carbon by invading nematodes was also demonstrated using 14C isotope probing approach. Our data suggests that HIGS of msp-18 and msp-20, improves nematode resistance in eggplant by affecting the steady-state transcription level of CWME genes in invading nematodes, and safeguard the plant against nematode invasion at very early stage because nematodes may become the recipient of bioactive RNA species during the process of penetration into the plant root.
Collapse
Affiliation(s)
- Tagginahalli N. Shivakumara
- Division of Nematology, Indian Council of Agricultural Research – Indian Agricultural Research InstituteNew Delhi, India
| | - Sonam Chaudhary
- Division of Nematology, Indian Council of Agricultural Research – Indian Agricultural Research InstituteNew Delhi, India
| | - Divya Kamaraju
- Division of Nematology, Indian Council of Agricultural Research – Indian Agricultural Research InstituteNew Delhi, India
| | - Tushar K. Dutta
- Division of Nematology, Indian Council of Agricultural Research – Indian Agricultural Research InstituteNew Delhi, India
| | - Pradeep K. Papolu
- Division of Nematology, Indian Council of Agricultural Research – Indian Agricultural Research InstituteNew Delhi, India
| | - Prakash Banakar
- Division of Nematology, Indian Council of Agricultural Research – Indian Agricultural Research InstituteNew Delhi, India
| | - Rohini Sreevathsa
- Indian Council of Agricultural Research – National Research Centre on Plant BiotechnologyNew Delhi, India
| | - Bhupinder Singh
- Nuclear Research Laboratory, Indian Council of Agricultural Research – Indian Agricultural Research InstituteNew Delhi, India
| | - K. M. Manjaiah
- Division of Soil Science and Agricultural Chemistry, Indian Council of Agricultural Research – Indian Agricultural Research InstituteNew Delhi, India
| | - Uma Rao
- Division of Nematology, Indian Council of Agricultural Research – Indian Agricultural Research InstituteNew Delhi, India
| |
Collapse
|
33
|
Yang D, Chen C, Liu Q, Jian H. Comparative analysis of pre- and post-parasitic transcriptomes and mining pioneer effectors of Heterodera avenae. Cell Biosci 2017; 7:11. [PMID: 28289537 PMCID: PMC5309974 DOI: 10.1186/s13578-017-0138-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 02/06/2017] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The cereal cyst nematode (CCN, Heterodera avenae) is a devastating pathogen of wheat and barley crops in many countries. We aimed to prioritize genetic and molecular targets for H. avenae control via the powerful and integrative bioinformatics platform. RESULTS Here, we sequenced mRNA isolated from Chinese H. avenae at pre-parasitic (consisting of egg, J1 and hatched-J2) stages and post-parasitic (consisting of parasitic-J2, J3, J4 and adults) stages. Total 1,066,719 reads of whole life cycle transcriptomes were assembled into 10,811 contigs with N50 length of 1754 bp and 71,401 singletons. Comparative analyses of orthologous among H. avenae and 7 other nematodes with various life-styles revealed the significance and peculiarity of neurological system for sedentary phytonematode. KEGG pathway enrichment demonstrated active crosstalk events of nervous system at pre-parasitic stages, and 6 FMRFamide-like neuropeptides were verified to display an expression peak at the hatched-J2 stage in H. avenae. Furthermore, multiple approaches were undertaken to mine putative effectors and parasitism-specific genes. Notably, H. avenae might represent the first phytonematode reported to possess the pioneer effectors with RxLR motif and potential effectors with homologies to Ant-5/Ant-34. CONCLUSION Our work provides valuable resources for in-depth understanding the parasitism and pathogenicity of H. avenae, as well as developing new targets-oriented strategies on effective managements.
Collapse
Affiliation(s)
- Dan Yang
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Changlong Chen
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
- Institute of Crop Research, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Qian Liu
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| | - Heng Jian
- Department of Plant Pathology, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
34
|
Gleason C, Polzin F, Habash SS, Zhang L, Utermark J, Grundler FMW, Elashry A. Identification of Two Meloidogyne hapla Genes and an Investigation of Their Roles in the Plant-Nematode Interaction. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:101-112. [PMID: 28301312 DOI: 10.1094/mpmi-06-16-0107-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Root-knot nematodes are soil-borne pathogens that invade and establish feeding sites in plant roots. They have an extremely broad host range, including most vascular plants. During infection of a susceptible host, root-knot nematodes secrete molecules called effectors that help them establish an intimate interaction with the plant and, at the same time, allow them to evade or suppress plant immune responses. Despite the fact that Meloidogyne hapla is a significant pest on several food crops, no effectors have been characterized from this root-knot nematode species thus far. Using the published genome and proteome from M. hapla, we have identified and characterized two genes, MhTTL2 and Mh265. MhTTL2 encodes a predicted secreted protein containing a transthyretin-like protein domain. The expression of MhTTL2 was up-regulated during parasitic life stages of the nematode, and in situ hybridization showed that MhTTL2 was expressed in the amphids, suggesting it has a role in the nematode nervous system during parasitism. We also studied the gene Mh265. The Mh265 transcript was localized to the subventral esophageal glands. An upregulation in Mh265 expression coincided with the pre- and early-parasitic life stages of the nematode. When Mh265 was constitutively expressed in plants, it enhanced their susceptibility to nematodes. These transgenic plants were also compromised in flg22-induced callose deposition, suggesting the Mh265 is modulating plant basal immune responses.
Collapse
Affiliation(s)
- Cynthia Gleason
- 1 Georg August University, Albrecht von Haller Institute for Plant Sciences, Dept. of Molecular Biology and Physiology of Plants, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
- 2 Georg August University, Göttingen Center for Molecular Biosciences (GZMB), Dept. of Molecular Biology and Physiology of Plants, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
- 4 Washington State University, Plant Pathology Department, Pullman, WA 99164 U.S.A
| | - Frederik Polzin
- 1 Georg August University, Albrecht von Haller Institute for Plant Sciences, Dept. of Molecular Biology and Physiology of Plants, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Samer S Habash
- 3 University of Bonn, INRES Molecular Phytomedicine, Karlrobert-Kreiten str. 13, 53115 Bonn, Germany and Agricultural Research Centre, Agricultural Genetic Engineering Research Institute, 9 Gamaa st., Giza 12619, Egypt; and
| | - Lei Zhang
- 4 Washington State University, Plant Pathology Department, Pullman, WA 99164 U.S.A
| | - Jan Utermark
- 1 Georg August University, Albrecht von Haller Institute for Plant Sciences, Dept. of Molecular Biology and Physiology of Plants, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Florian M W Grundler
- 3 University of Bonn, INRES Molecular Phytomedicine, Karlrobert-Kreiten str. 13, 53115 Bonn, Germany and Agricultural Research Centre, Agricultural Genetic Engineering Research Institute, 9 Gamaa st., Giza 12619, Egypt; and
| | - Abdelnaser Elashry
- 3 University of Bonn, INRES Molecular Phytomedicine, Karlrobert-Kreiten str. 13, 53115 Bonn, Germany and Agricultural Research Centre, Agricultural Genetic Engineering Research Institute, 9 Gamaa st., Giza 12619, Egypt; and
| |
Collapse
|
35
|
Eves-van den Akker S, Birch PRJ. Opening the Effector Protein Toolbox for Plant-Parasitic Cyst Nematode Interactions. MOLECULAR PLANT 2016; 9:1451-1453. [PMID: 27693399 PMCID: PMC5106285 DOI: 10.1016/j.molp.2016.09.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 09/12/2016] [Accepted: 09/21/2016] [Indexed: 05/19/2023]
Affiliation(s)
- Sebastian Eves-van den Akker
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; The Department of Biological Chemistry, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Paul R J Birch
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
36
|
Liu J, Peng H, Cui J, Huang W, Kong L, Clarke JL, Jian H, Wang GL, Peng D. Molecular Characterization of A Novel Effector Expansin-like Protein from Heterodera avenae that Induces Cell Death in Nicotiana benthamiana. Sci Rep 2016; 6:35677. [PMID: 27808156 PMCID: PMC5093861 DOI: 10.1038/srep35677] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 10/04/2016] [Indexed: 11/09/2022] Open
Abstract
Cereal cyst nematodes are sedentary biotrophic endoparasites that maintain a complex interaction with their host plants. Nematode effector proteins are synthesized in the oesophageal glands and are secreted into plant tissues through the stylet. To understand the function of nematode effectors in parasitic plants, we cloned predicted effectors genes from Heterodera avenae and transiently expressed them in Nicotiana benthamiana. Infiltration assays showed that HaEXPB2, a predicted expansin-like protein, caused cell death in N. benthamiana. In situ hybridization showed that HaEXPB2 transcripts were localised within the subventral gland cells of the pre-parasitic second-stage nematode. HaEXPB2 had the highest expression levels in parasitic second-stage juveniles. Subcellular localization assays revealed that HaEXPB2 could be localized in the plant cell wall after H. avenae infection.This The cell wall localization was likely affected by its N-terminal and C-terminal regions. In addition, we found that HaEXPB2 bound to cellulose and its carbohydrate-binding domain was required for this binding. The infectivity of H. avenae was significantly reduced when HaEXPB2 was knocked down by RNA interference in vitro. This study indicates that HaEXPB2 may play an important role in the parasitism of H. avenae through targeting the host cell wall.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Key Laboratory of Plant Pathology of Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiangkuan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jihong Liu Clarke
- Plant Health and Biotechnology Division, Norwegian Institute of Bioeconomy Research, Høgskoleveien 7, 1430 Ås, Norway
| | - Heng Jian
- Key Laboratory of Plant Pathology of Ministry of Agriculture, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Guo Liang Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
37
|
Eves-Van Den Akker S, Lilley CJ, Yusup HB, Jones JT, Urwin PE. Functional C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone domains evolved de novo in the plant parasite Rotylenchulus reniformis. MOLECULAR PLANT PATHOLOGY 2016; 17:1265-75. [PMID: 26996971 PMCID: PMC5103176 DOI: 10.1111/mpp.12402] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Sedentary plant-parasitic nematodes (PPNs) induce and maintain an intimate relationship with their host, stimulating cells adjacent to root vascular tissue to re-differentiate into unique and metabolically active 'feeding sites'. The interaction between PPNs and their host is mediated by nematode effectors. We describe the discovery of a large and diverse family of effector genes, encoding C-TERMINALLY ENCODED PEPTIDE (CEP) plant hormone mimics (RrCEPs), in the syncytia-forming plant parasite Rotylenchulus reniformis. The particular attributes of RrCEPs distinguish them from all other CEPs, regardless of origin. Together with the distant phylogenetic relationship of R. reniformis to the only other CEP-encoding nematode genus identified to date (Meloidogyne), this suggests that CEPs probably evolved de novo in R. reniformis. We have characterized the first member of this large gene family (RrCEP1), demonstrating its significant up-regulation during the plant-nematode interaction and expression in the effector-producing pharyngeal gland cell. All internal CEP domains of multi-domain RrCEPs are followed by di-basic residues, suggesting a mechanism for cleavage. A synthetic peptide corresponding to RrCEP1 domain 1 is biologically active and capable of up-regulating plant nitrate transporter (AtNRT2.1) expression, whilst simultaneously reducing primary root elongation. When a non-CEP-containing, syncytia-forming PPN species (Heterodera schachtii) infects Arabidopsis in a CEP-rich environment, a smaller feeding site is produced. We hypothesize that CEPs of R. reniformis represent a two-fold adaptation to sustained biotrophy in this species: (i) increasing host nitrate uptake, whilst (ii) limiting the size of the syncytial feeding site produced.
Collapse
Affiliation(s)
- Sebastian Eves-Van Den Akker
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Hazijah B Yusup
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
- School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
38
|
Noon JB, Qi M, Sill DN, Muppirala U, Eves-van den Akker S, Maier TR, Dobbs D, Mitchum MG, Hewezi T, Baum TJ. A Plasmodium-like virulence effector of the soybean cyst nematode suppresses plant innate immunity. THE NEW PHYTOLOGIST 2016; 212:444-60. [PMID: 27265684 DOI: 10.1111/nph.14047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 05/04/2016] [Indexed: 05/19/2023]
Abstract
Heterodera glycines, the soybean cyst nematode, delivers effector proteins into soybean roots to initiate and maintain an obligate parasitic relationship. HgGLAND18 encodes a candidate H. glycines effector and is expressed throughout the infection process. We used a combination of molecular, genetic, bioinformatic and phylogenetic analyses to determine the role of HgGLAND18 during H. glycines infection. HgGLAND18 is necessary for pathogenicity in compatible interactions with soybean. The encoded effector strongly suppresses both basal and hypersensitive cell death innate immune responses, and immunosuppression requires the presence and coordination between multiple protein domains. The N-terminal domain in HgGLAND18 contains unique sequence similarity to domains of an immunosuppressive effector of Plasmodium spp., the malaria parasites. The Plasmodium effector domains functionally complement the loss of the N-terminal domain from HgGLAND18. In-depth sequence searches and phylogenetic analyses demonstrate convergent evolution between effectors from divergent parasites of plants and animals as the cause of sequence and functional similarity.
Collapse
Affiliation(s)
- Jason B Noon
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Mingsheng Qi
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Danielle N Sill
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Usha Muppirala
- Genome Informatics Facility, Iowa State University, Ames, IA, 50011, USA
| | | | - Thomas R Maier
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Drena Dobbs
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
39
|
Fosu-Nyarko J, Jones MGK. Advances in Understanding the Molecular Mechanisms of Root Lesion Nematode Host Interactions. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:253-78. [PMID: 27296144 DOI: 10.1146/annurev-phyto-080615-100257] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Root lesion nematodes (RLNs) are one of the most economically important groups of plant nematodes. As migratory endoparasites, their presence in roots is less obvious than infestations of sedentary endoparasites; nevertheless, in many instances, they are the major crop pests. With increasing molecular information on nematode parasitism, available data now reflect the differences and, in particular, similarities in lifestyle between migratory and sedentary endoparasites. Far from being unsophisticated compared with sedentary endoparasites, migratory endoparasites are exquisitely suited to their parasitic lifestyle. What they lack in effectors required for induction of permanent feeding sites, they make up for with their versatile host range and their ability to move and feed from new host roots and survive adverse conditions. In this review, we summarize the current molecular data available for RLNs and highlight differences and similarities in effectors and molecular mechanisms between migratory and sedentary endoparasitic nematodes.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, School of Veterinary and Life Sciences, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia; ,
| | - Michael G K Jones
- Plant Biotechnology Research Group, School of Veterinary and Life Sciences, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia; ,
| |
Collapse
|
40
|
Pogorelko G, Juvale PS, Rutter WB, Hewezi T, Hussey R, Davis EL, Mitchum MG, Baum TJ. A cyst nematode effector binds to diverse plant proteins, increases nematode susceptibility and affects root morphology. MOLECULAR PLANT PATHOLOGY 2016; 17:832-44. [PMID: 26575318 PMCID: PMC6638508 DOI: 10.1111/mpp.12330] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/08/2015] [Accepted: 10/09/2015] [Indexed: 05/20/2023]
Abstract
Cyst nematodes are plant-parasitic roundworms that are of significance in many cropping systems around the world. Cyst nematode infection is facilitated by effector proteins secreted from the nematode into the plant host. The cDNAs of the 25A01-like effector family are novel sequences that were isolated from the oesophageal gland cells of the soybean cyst nematode (Heterodera glycines). To aid functional characterization, we identified an orthologous member of this protein family (Hs25A01) from the closely related sugar beet cyst nematode H. schachtii, which infects Arabidopsis. Constitutive expression of the Hs25A01 CDS in Arabidopsis plants caused a small increase in root length, accompanied by up to a 22% increase in susceptibility to H. schachtii. A plant-expressed RNA interference (RNAi) construct targeting Hs25A01 transcripts in invading nematodes significantly reduced host susceptibility to H. schachtii. These data document that Hs25A01 has physiological functions in planta and a role in cyst nematode parasitism. In vivo and in vitro binding assays confirmed the specific interactions of Hs25A01 with an Arabidopsis F-box-containing protein, a chalcone synthase and the translation initiation factor eIF-2 β subunit (eIF-2bs), making these proteins probable candidates for involvement in the observed changes in plant growth and parasitism. A role of eIF-2bs in the mediation of Hs25A01 virulence function is further supported by the observation that two independent eIF-2bs Arabidopsis knock-out lines were significantly more susceptible to H. schachtii.
Collapse
Affiliation(s)
- Gennady Pogorelko
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Parijat S Juvale
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - William B Rutter
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66505, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA
| | - Richard Hussey
- Department of Plant Pathology, The University of Georgia, Athens, GA, 30602, USA
| | - Eric L Davis
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Melissa G Mitchum
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
41
|
Eves-van den Akker S, Laetsch DR, Thorpe P, Lilley CJ, Danchin EGJ, Da Rocha M, Rancurel C, Holroyd NE, Cotton JA, Szitenberg A, Grenier E, Montarry J, Mimee B, Duceppe MO, Boyes I, Marvin JMC, Jones LM, Yusup HB, Lafond-Lapalme J, Esquibet M, Sabeh M, Rott M, Overmars H, Finkers-Tomczak A, Smant G, Koutsovoulos G, Blok V, Mantelin S, Cock PJA, Phillips W, Henrissat B, Urwin PE, Blaxter M, Jones JT. The genome of the yellow potato cyst nematode, Globodera rostochiensis, reveals insights into the basis of parasitism and virulence. Genome Biol 2016; 17:124. [PMID: 27286965 PMCID: PMC4901422 DOI: 10.1186/s13059-016-0985-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 05/12/2016] [Indexed: 11/23/2022] Open
Abstract
Background The yellow potato cyst nematode, Globodera rostochiensis, is a devastating plant pathogen of global economic importance. This biotrophic parasite secretes effectors from pharyngeal glands, some of which were acquired by horizontal gene transfer, to manipulate host processes and promote parasitism. G. rostochiensis is classified into pathotypes with different plant resistance-breaking phenotypes. Results We generate a high quality genome assembly for G. rostochiensis pathotype Ro1, identify putative effectors and horizontal gene transfer events, map gene expression through the life cycle focusing on key parasitic transitions and sequence the genomes of eight populations including four additional pathotypes to identify variation. Horizontal gene transfer contributes 3.5 % of the predicted genes, of which approximately 8.5 % are deployed as effectors. Over one-third of all effector genes are clustered in 21 putative ‘effector islands’ in the genome. We identify a dorsal gland promoter element motif (termed DOG Box) present upstream in representatives from 26 out of 28 dorsal gland effector families, and predict a putative effector superset associated with this motif. We validate gland cell expression in two novel genes by in situ hybridisation and catalogue dorsal gland promoter element-containing effectors from available cyst nematode genomes. Comparison of effector diversity between pathotypes highlights correlation with plant resistance-breaking. Conclusions These G. rostochiensis genome resources will facilitate major advances in understanding nematode plant-parasitism. Dorsal gland promoter element-containing effectors are at the front line of the evolutionary arms race between plant and parasite and the ability to predict gland cell expression a priori promises rapid advances in understanding their roles and mechanisms of action. Electronic supplementary material The online version of this article (doi:10.1186/s13059-016-0985-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Dominik R Laetsch
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Peter Thorpe
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK
| | | | - Etienne G J Danchin
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Martine Da Rocha
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Corinne Rancurel
- INRA, University Nice Sophia Antipolis, CNRS, UMR 1355-7254 Institut Sophia Agrobiotech, 06900, Sophia Antipolis, France
| | - Nancy E Holroyd
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - James A Cotton
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - Amir Szitenberg
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Eric Grenier
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), 35653, Le Rheu, France
| | - Josselin Montarry
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), 35653, Le Rheu, France
| | - Benjamin Mimee
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Marc-Olivier Duceppe
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Ian Boyes
- Sidney Laboratory, Canadian Food Inspection Agency (CFIA), 8801 East Saanich Rd, Sidney, BC, V8L 1H3, Canada
| | | | - Laura M Jones
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Hazijah B Yusup
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Joël Lafond-Lapalme
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Magali Esquibet
- INRA, UMR1349 IGEPP (Institute for Genetics, Environment and Plant Protection), 35653, Le Rheu, France
| | - Michael Sabeh
- Agriculture and Agri-food Canada, Horticulture Research and Development Centre, 430 Bboul. Gouin, St-Jean-sur-Richelieu, Quebec, J3B 3E6, Canada
| | - Michael Rott
- Sidney Laboratory, Canadian Food Inspection Agency (CFIA), 8801 East Saanich Rd, Sidney, BC, V8L 1H3, Canada
| | - Hein Overmars
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Anna Finkers-Tomczak
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | - Geert Smant
- Laboratory of Nematology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708, PB, Wageningen, The Netherlands
| | | | - Vivian Blok
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Sophie Mantelin
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Peter J A Cock
- Information and Computational Sciences Group, James Hutton Institute, Dundee, UK
| | - Wendy Phillips
- USDA-ARS Horticultural Crops Research Laboratory, Corvallis, OR, USA
| | - Bernard Henrissat
- CNRS UMR 7257, INRA, USC 1408, Aix-Marseille University, AFMB, 13288, Marseille, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, James Hutton Institute, Dundee, DD2 5DA, UK.,School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| |
Collapse
|
42
|
Eves-van den Akker S, Lilley CJ, Reid A, Pickup J, Anderson E, Cock PJA, Blaxter M, Urwin PE, Jones JT, Blok VC. A metagenetic approach to determine the diversity and distribution of cyst nematodes at the level of the country, the field and the individual. Mol Ecol 2016; 24:5842-51. [PMID: 26607216 PMCID: PMC4981918 DOI: 10.1111/mec.13434] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 10/16/2015] [Accepted: 10/21/2015] [Indexed: 11/30/2022]
Abstract
Distinct populations of the potato cyst nematode (PCN) Globodera pallida exist in the UK that differ in their ability to overcome various sources of resistance. An efficient method for distinguishing between populations would enable pathogen‐informed cultivar choice in the field. Science and Advice for Scottish Agriculture (SASA) annually undertake national DNA diagnostic tests to determine the presence of PCN in potato seed and ware land by extracting DNA from soil floats. These DNA samples provide a unique resource for monitoring the distribution of PCN and further interrogation of the diversity within species. We identify a region of mitochondrial DNA descriptive of three main groups of G. pallida present in the UK and adopt a metagenetic approach to the sequencing and analysis of all SASA samples simultaneously. Using this approach, we describe the distribution of G. pallida mitotypes across Scotland with field‐scale resolution. Most fields contain a single mitotype, one‐fifth contain a mix of mitotypes, and less than 3% contain all three mitotypes. Within mixed fields, we were able to quantify the relative abundance of each mitotype across an order of magnitude. Local areas within mixed fields are dominated by certain mitotypes and indicate towards a complex underlying ‘pathoscape’. Finally, we assess mitotype distribution at the level of the individual cyst and provide evidence of ‘hybrids’. This study provides a method for accurate, quantitative and high‐throughput typing of up to one thousand fields simultaneously, while revealing novel insights into the national genetic variability of an economically important plant parasite.
Collapse
Affiliation(s)
- Sebastian Eves-van den Akker
- Division of Plant Sciences, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.,Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Alex Reid
- Science and Advice for Scottish Agriculture, Edinburgh, EH12 9FJ, UK
| | - Jon Pickup
- Science and Advice for Scottish Agriculture, Edinburgh, EH12 9FJ, UK
| | - Eric Anderson
- Scottish Agronomy Ltd, Arlary Farm, Milnathort, Kinross, KY13 9SJ, UK
| | - Peter J A Cock
- Information and Computational Sciences Group, Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Mark Blaxter
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH8 9YL, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - John T Jones
- Cell and Molecular Sciences Group, Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.,School of Biology, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| | - Vivian C Blok
- Cell and Molecular Sciences Group, Dundee Effector Consortium, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| |
Collapse
|
43
|
Rehman S, Gupta VK, Goyal AK. Identification and functional analysis of secreted effectors from phytoparasitic nematodes. BMC Microbiol 2016; 16:48. [PMID: 27001199 PMCID: PMC4802876 DOI: 10.1186/s12866-016-0632-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/22/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Plant parasitic nematodes develop an intimate and long-term feeding relationship with their host plants. They induce a multi-nucleate feeding site close to the vascular bundle in the roots of their host plant and remain sessile for the rest of their life. Nematode secretions, produced in the oesophageal glands and secreted through a hollow stylet into the host plant cytoplasm, are believed to play key role in pathogenesis. To combat these persistent pathogens, the identity and functional analysis of secreted effectors can serve as a key to devise durable control measures. In this review, we will recapitulate the knowledge over the identification and functional characterization of secreted nematode effector repertoire from phytoparasitic nematodes. RESEARCH Despite considerable efforts, the identity of genes encoding nematode secreted proteins has long been severely hampered because of their microscopic size, long generation time and obligate biotrophic nature. The methodologies such as bioinformatics, protein structure modeling, in situ hybridization microscopy, and protein-protein interaction have been used to identify and to attribute functions to the effectors. In addition, RNA interference (RNAi) has been instrumental to decipher the role of the genes encoding secreted effectors necessary for parasitism and genes attributed to normal development. Recent comparative and functional genomic approaches have accelerated the identification of effectors from phytoparasitic nematodes and offers opportunities to control these pathogens. CONCLUSION Plant parasitic nematodes pose a serious threat to global food security of various economically important crops. There is a wealth of genomic and transcriptomic information available on plant parasitic nematodes and comparative genomics has identified many effectors. Bioengineering crops with dsRNA of phytonematode genes can disrupt the life cycle of parasitic nematodes and therefore holds great promise to develop resistant crops against plant-parasitic nematodes.
Collapse
Affiliation(s)
- Sajid Rehman
- />International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat-Instituts-Morocco, P.O.Box 6299, Rabat, Morocco
| | - Vijai K. Gupta
- />National University of Ireland Galway, Galway, Ireland
| | - Aakash K. Goyal
- />International Center for Agriculture Research in the Dry Areas (ICARDA), Rabat-Instituts-Morocco, P.O.Box 6299, Rabat, Morocco
| |
Collapse
|
44
|
Peng H, Cui J, Long H, Huang W, Kong L, Liu S, He W, Hu X, Peng D. Novel Pectate Lyase Genes of Heterodera glycines Play Key Roles in the Early Stage of Parasitism. PLoS One 2016; 11:e0149959. [PMID: 26930215 PMCID: PMC4773153 DOI: 10.1371/journal.pone.0149959] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 02/08/2016] [Indexed: 11/19/2022] Open
Abstract
Pectate lyases are known to play a key role in pectin degradation by catalyzing the random cleavage of internal polymer linkages (endo-pectinases). In this paper, four novel cDNAs, designated Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7, that encode pectate lyases were cloned and characterized from the soybean cyst nematode, Heterodera glycines. The predicted protein sequences of HG-PEL-3, HG-PEL-4 and HG-PEL-6 differed significantly in both their amino acid sequences and their genomic structures from other pectate lyases of H. glycines (HG-PEL-1, HG-PEL-2 and HG-PEL-7). A phylogenetic study revealed that the pectate lyase proteins of H. glycines are clustered into distinct clades and have distinct numbers and positioning of introns, which suggests that the pectate lyase genes of H. glycines may have evolved from at least two ancestral genes. A Southern blot analysis revealed that multiple Hg-pel-6-like genes were present in the H. glycines genome. In situ hybridization showed that four novel pectate lyases (Hg-pel-3, Hg-pel-4, Hg-pel-6 and Hg-pel-7) were actively transcribed in the subventral esophageal gland cells. A semi-quantitative RT-PCR assay supported the finding that the expression of these genes was strong in the egg, pre-parasitic second-stage juvenile (J2) and early parasitic J2 stages and that it declined in further developmental stages of the nematode. This expression pattern suggests that these proteins play a role in the migratory phase of the nematode life cycle. Knocking down Hg-pel-6 using in vitro RNA interference resulted in a 46.9% reduction of the number of nematodes that invaded the plants and a 61.5% suppression of the development of H. glycines females within roots compared to the GFP-dsRNA control. Plant host-derived RNAi induced the silencing of the Hg-pel-6gene, which significantly reduced the nematode infection levels at 7 Days post inoculation (dpi). Similarly, this procedure reduced the number of female adults at 40 dpi, which suggests the important roles of this gene in the early stages of parasitism. Our combined data suggest that two types of pectate lyases are present in the H. glycines genome and may have different roles during infection.
Collapse
Affiliation(s)
- Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangkuan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haibo Long
- Key Laboratory of Pests Comprehensive Governance for Tropical crops, Ministry of Agriculture, P. R. China, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Science, Danzhou, China
| | - Wenkun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lingan Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shiming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenting He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianqi Hu
- The National Engineering Research Center of Agri-biodiversity Applied Technologies, Yunnan Agricultural University, Kunming, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
45
|
Fosu-Nyarko J, Nicol P, Naz F, Gill R, Jones MGK. Analysis of the Transcriptome of the Infective Stage of the Beet Cyst Nematode, H. schachtii. PLoS One 2016; 11:e0147511. [PMID: 26824923 PMCID: PMC4733053 DOI: 10.1371/journal.pone.0147511] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 01/05/2016] [Indexed: 01/08/2023] Open
Abstract
The beet cyst nematode, Heterodera schachtii, is a major root pest that significantly impacts the yield of sugar beet, brassicas and related species. There has been limited molecular characterisation of this important plant pathogen: to identify target genes for its control the transcriptome of the pre-parasitic J2 stage of H. schachtii was sequenced using Roche GS FLX. Ninety seven percent of reads (i.e., 387,668) with an average PHRED score > 22 were assembled with CAP3 and CLC Genomics Workbench into 37,345 and 47,263 contigs, respectively. The transcripts were annotated by comparing with gene and genomic sequences of other nematodes and annotated proteins on public databases. The annotated transcripts were much more similar to sequences of Heterodera glycines than to those of Globodera pallida and root knot nematodes (Meloidogyne spp.). Analysis of these transcripts showed that a subset of 2,918 transcripts was common to free-living and plant parasitic nematodes suggesting that this subset is involved in general nematode metabolism and development. A set of 148 contigs and 183 singletons encoding putative homologues of effectors previously characterised for plant parasitic nematodes were also identified: these are known to be important for parasitism of host plants during migration through tissues or feeding from cells or are thought to be involved in evasion or modulation of host defences. In addition, the presence of sequences from a nematode virus is suggested. The sequencing and annotation of this transcriptome significantly adds to the genetic data available for H. schachtii, and identifies genes primed to undertake required roles in the critical pre-parasitic and early post-parasitic J2 stages. These data provide new information for identifying potential gene targets for future protection of susceptible crops against H. schachtii.
Collapse
Affiliation(s)
- John Fosu-Nyarko
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- NemGenix Pty Ltd, Western Australian State Agricultural Biotechnology Centre, Murdoch University, Perth, Australia
- * E-mail: ; (JFN); (MGKJ)
| | - Paul Nicol
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Fareeha Naz
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Reetinder Gill
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Michael G. K. Jones
- Plant Biotechnology Research Group, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
- * E-mail: ; (JFN); (MGKJ)
| |
Collapse
|
46
|
Sidonskaya E, Schweighofer A, Shubchynskyy V, Kammerhofer N, Hofmann J, Wieczorek K, Meskiene I. Plant resistance against the parasitic nematode Heterodera schachtii is mediated by MPK3 and MPK6 kinases, which are controlled by the MAPK phosphatase AP2C1 in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:107-18. [PMID: 26438412 PMCID: PMC4682428 DOI: 10.1093/jxb/erv440] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant-parasitic cyst nematodes infect plants and form highly sophisticated feeding sites in roots. It is not known which plant cell signalling mechanisms trigger plant defence during the early stages of nematode parasitism. Mitogen-activated protein kinases (MAPKs) are central components of protein phosphorylation cascades transducing extracellular signals to plant defence responses. MAPK phosphatases control kinase activities and the signalling outcome. The involvement and the role of MPK3 and MPK6, as well as the MAPK phosphatase AP2C1, is demonstrated during parasitism of the beet cyst nematode Heterodera schachtii in Arabidopsis. Our data reveal notable activation patterns of plant MAPKs and the induction of AP2C1 suggesting the attenuation of defence signalling in plant cells during early nematode infection. It is demonstrated that the ap2c1 mutant that is lacking AP2C1 is more attractive but less susceptible to nematodes compared with the AP2C1-overexpressing line. This implies that the function of AP2C1 is a negative regulator of nematode-induced defence. By contrast, the enhanced susceptibility of mpk3 and mpk6 plants indicates a positive role of stress-activated MAPKs in plant immunity against nematodes. Evidence is provided that phosphatase AP2C1, as well as AP2C1-targeted MPK3 and MPK6, are important regulators of plant-nematode interaction, where the co-ordinated action of these signalling components ensures the timely activation of plant defence.
Collapse
Affiliation(s)
- Ekaterina Sidonskaya
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln on the Danube, Austria
| | - Alois Schweighofer
- Max F. Perutz Laboratories of the University and Medical University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria Institute of Biotechnology, University of Vilnius, Graiciuno 8, LT-02242 Vilnius, Lithuania
| | - Volodymyr Shubchynskyy
- Max F. Perutz Laboratories of the University and Medical University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria
| | - Nina Kammerhofer
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln on the Danube, Austria
| | - Julia Hofmann
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln on the Danube, Austria
| | - Krzysztof Wieczorek
- Division of Plant Protection, Department of Crop Sciences, University of Natural Resources and Life Sciences, Konrad-Lorenz-Straße 24, A-3430 Tulln on the Danube, Austria
| | - Irute Meskiene
- Max F. Perutz Laboratories of the University and Medical University of Vienna, Dr Bohr-Gasse 9, A-1030 Vienna, Austria Institute of Biotechnology, University of Vilnius, Graiciuno 8, LT-02242 Vilnius, Lithuania Department of Ecogenomics and Systems Biology, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
47
|
Diaz-Granados A, Petrescu AJ, Goverse A, Smant G. SPRYSEC Effectors: A Versatile Protein-Binding Platform to Disrupt Plant Innate Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1575. [PMID: 27812363 DOI: 10.3389/fpls.2015.01575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/06/2016] [Indexed: 05/22/2023]
Abstract
Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These roundworms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein-protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism.
Collapse
Affiliation(s)
| | - Andrei-José Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy Bucharest, Romania
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University Wageningen, Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen University Wageningen, Netherlands
| |
Collapse
|
48
|
Diaz-Granados A, Petrescu AJ, Goverse A, Smant G. SPRYSEC Effectors: A Versatile Protein-Binding Platform to Disrupt Plant Innate Immunity. FRONTIERS IN PLANT SCIENCE 2016; 7:1575. [PMID: 27812363 PMCID: PMC5071358 DOI: 10.3389/fpls.2016.01575] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 10/06/2016] [Indexed: 05/03/2023]
Abstract
Persistent infections by sedentary plant-parasitic nematodes are a major threat to important food crops all over the world. These roundworms manipulate host plant cell morphology and physiology to establish sophisticated feeding structures. Key modifications to plant cells during their transition into feeding structures are largely attributed to the activity of effectors secreted by the nematodes. The SPRYSEC effectors were initially identified in the potato cyst nematodes Globodera rostochiensis and G. pallida, and are characterized by a single SPRY domain, a non-catalytic domain present in modular proteins with different functions. The SPRY domain is wide-spread among eukaryotes and thought to be involved in mediating protein-protein interactions. Thus far, the SPRY domain is only reported as a functional domain in effectors of plant-parasitic nematodes, but not of other plant pathogens. SPRYSEC effectors have been implicated in both suppression and activation of plant immunity, but other possible roles in nematode virulence remain undefined. Here, we review the latest reports on the structure, function, and sequence diversity of SPRYSEC effectors, which provide support for a model featuring these effectors as a versatile protein-binding platform for the nematodes to target a wide range of host proteins during parasitism.
Collapse
Affiliation(s)
| | - Andrei-José Petrescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian AcademyBucharest, Romania
| | - Aska Goverse
- Laboratory of Nematology, Wageningen UniversityWageningen, Netherlands
| | - Geert Smant
- Laboratory of Nematology, Wageningen UniversityWageningen, Netherlands
- *Correspondence: Geert Smant,
| |
Collapse
|
49
|
Dutta TK, Banakar P, Rao U. The status of RNAi-based transgenic research in plant nematology. Front Microbiol 2015; 5:760. [PMID: 25628609 PMCID: PMC4290618 DOI: 10.3389/fmicb.2014.00760] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/12/2014] [Indexed: 11/13/2022] Open
Abstract
With the understanding of nematode-plant interactions at the molecular level, new avenues for engineering resistance have opened up, with RNA interference being one of them. Induction of RNAi by delivering double-stranded RNA (dsRNA) has been very successful in the model non-parasitic nematode, Caenorhabditis elegans, while in plant nematodes, dsRNA delivery has been accomplished by soaking nematodes with dsRNA solution mixed with synthetic neurostimulants. The success of in vitro RNAi of target genes has inspired the use of in planta delivery of dsRNA to feeding nematodes. The most convincing success of host-delivered RNAi has been achieved against root-knot nematodes. Plant-mediated RNAi has been shown to lead to the specific down-regulation of target genes in invading nematodes, which had a profound effect on nematode development. RNAi-based transgenics are advantageous as they do not produce any functional foreign proteins and target organisms in a sequence-specific manner. Although the development of RNAi-based transgenics against plant nematodes is still in the preliminary stage, they offer novel management strategy for the future.
Collapse
Affiliation(s)
- Tushar K. Dutta
- Division of Nematology, Indian Agricultural Research InstituteNew Delhi, India
| | | | | |
Collapse
|
50
|
Mitsumasu K, Seto Y, Yoshida S. Apoplastic interactions between plants and plant root intruders. FRONTIERS IN PLANT SCIENCE 2015; 6:617. [PMID: 26322059 PMCID: PMC4536382 DOI: 10.3389/fpls.2015.00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 07/27/2015] [Indexed: 05/06/2023]
Abstract
Numerous pathogenic or parasitic organisms attack plant roots to obtain nutrients, and the apoplast including the plant cell wall is where the plant cell meets such organisms. Root parasitic angiosperms and nematodes are two distinct types of plant root parasites but share some common features in their strategies for breaking into plant roots. Striga and Orobanche are obligate root parasitic angiosperms that cause devastating agricultural problems worldwide. Parasitic plants form an invasion organ called a haustorium, where plant cell wall degrading enzymes (PCWDEs) are highly expressed. Plant-parasitic nematodes are another type of agriculturally important plant root parasite. These nematodes breach the plant cell walls by protruding a sclerotized stylet from which PCWDEs are secreted. Responding to such parasitic invasion, host plants activate their own defense responses against parasites. Endoparasitic nematodes secrete apoplastic effectors to modulate host immune responses and to facilitate the formation of a feeding site. Apoplastic communication between hosts and parasitic plants also contributes to their interaction. Parasitic plant germination stimulants, strigolactones, are recently identified apoplastic signals that are transmitted over long distances from biosynthetic sites to functioning sites. Here, we discuss recent advances in understanding the importance of apoplastic signals and cell walls for plant-parasite interactions.
Collapse
Affiliation(s)
- Kanako Mitsumasu
- Graduate School of Science and Technology, Kumamoto University, Chuo-ku, Japan
| | - Yoshiya Seto
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Japan
| | - Satoko Yoshida
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- *Correspondence: Satoko Yoshida, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan,
| |
Collapse
|