1
|
Kang HM, Chu J, Yoo IH, Yoo IY, Shin JI, Seo MR, Chung YJ, Jung SH, Park YJ. Epidemiology of Nontyphoidal Salmonella Infections in Korean Children and Genetic Factors Associated with Extra-intestinal Invasion: A Whole-genome Sequencing Analysis. Ann Lab Med 2025; 45:312-321. [PMID: 40189223 PMCID: PMC11996685 DOI: 10.3343/alm.2024.0378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/09/2024] [Accepted: 03/04/2025] [Indexed: 04/12/2025] Open
Abstract
Background Understanding the virulence and pathogenicity of invasive nontyphoidal Salmonella (iNTS) in children may support timely treatment and enable closer monitoring of chronic infections. iNTS epidemiology in Asia remains inadequately described. We analyzed the genetic diversity and virulence genes associated with extra-intestinal invasion in Korean children. Methods Salmonella isolates from children <18 yrs of age diagnosed with moderate-to-severe salmonellosis between January 2019 and December 2021 were subjected to antibiotic susceptibility testing and whole-genome sequencing. Results In total, 58 cases were included. We identified 20 serotypes, the most prevalent being Salmonella Enteritidis (N=21), followed by Infantis (N=6), I 4,[5],12:i:- (N=5), and Bareilly (N=5). Extra-intestinal invasion occurred in 12 (20.7%) cases involving Salmonella Oranienburg (2/2), Give (1/1), Javiana (1/1), Paratyphi B var. L(+) tartrate+ (1/1), Schwarzengrund (1/1), Singapore (1/1), Montevideo (1/2), Saintpaul (1/2), I 4:b:- (1/2), Infantis (1/6), and Enteritidis (1/21). While the numbers of total virulence genes and genes belonging to major virulence categories did not significantly differ between iNTS and non-iNTS, several genetic factors, including Salmonella pathogenicity island (SPI)-1 (P =0.039), SPI-2 (P =0.020), SPI-5 (P =0.014), SPI-13 (P =0.010), cytolethal distending toxin-related genes (P =1.4×10-4), fepC (P =0.021), and tcpC (P =0.040) were more frequent in invasive isolates. Conclusions Salmonella Enteritidis-ST11 predominated in infections among Korean children, but invasive isolates were rare. Early detection of genetic factors associated with extra-intestinal invasion will be helpful for prompt and appropriate treatment.
Collapse
Affiliation(s)
- Hyun Mi Kang
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jiyon Chu
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Korea
| | - In Hyuk Yoo
- Department of Pediatrics, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - In Young Yoo
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jeong-Ih Shin
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Korea
- Catholic Research Institute for Human Genome Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | - Yeun-Jun Chung
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Korea
- Catholic Research Institute for Human Genome Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung-Hyun Jung
- Department of Medical Sciences, Graduate School of The Catholic University of Korea, Seoul, Korea
- Catholic Research Institute for Human Genome Polymorphism, Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Department of Biochemistry, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Yeon Joon Park
- Department of Laboratory Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
2
|
Lopez-Chiloeches M, Frisan T. Combined In Situ Transcriptomic and Immunofluorescence to Assess the Effects on DNA Damage and Innate Immune Responses Induced by Bacterial Genotoxin in In Vivo Models. Methods Mol Biol 2025; 2906:149-175. [PMID: 40082355 DOI: 10.1007/978-1-0716-4426-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Understanding complex pathophysiological processes involves studying intercellular responses and phenotypes within the organ microenvironment, preserving the spatial tissue architecture. This chapter explores a practical and cost-effective method for combining techniques such as in situ immunostaining and transcriptomics analysis. These protocols are adaptable to various mRNA targets, antibodies, tissue types, and tissue fixation appealing to a wide scientific community. We demonstrate their application in studying the host response to infection with a Salmonella enterica strain producing a toxin that induces DNA breaks. Specifically, we assessed the: (i) innate immune response to DNA breaks; (ii) co-detection of Salmonella mRNA fljB with the DNA damage marker γH2AX; (iii) co-detection of mRNAs for the cell cycle arrest marker p16INK4A and the proinflammatory and anti-inflammatory cytokines, Il6 and Il10, respectively. Considering that DNA damage is one of the leading causes of oncogene- and stress-induced-senescence, these protocols can be suitable to assess the cytokine profile associated with cellular phenotype and types of DNA damage of senescent cells in situ.
Collapse
Affiliation(s)
- Maria Lopez-Chiloeches
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
3
|
Gartly SC, Barretto LAF, Côté ACMT, Kosowan ZA, Fowler CC. A novel phospholipase A2 is a core component of the typhoid toxin genetic islet. J Biol Chem 2024; 300:107758. [PMID: 39260696 PMCID: PMC11525133 DOI: 10.1016/j.jbc.2024.107758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Salmonella Typhi, the cause of typhoid fever, is a bacterial pathogen of substantial global importance. Typhoid toxin is a secreted AB-type toxin that is a key S. Typhi virulence factor encoded within a 5-gene genetic islet. Four genes in this islet have well-defined roles in typhoid toxin biology; however, the function of the fifth gene is unknown. Here, we investigate the function of this gene, which we name ttaP. We show that ttaP is cotranscribed with the typhoid toxin subunit cdtB, and we perform genomic analyses that indicate that TtaP is very highly conserved in typhoid toxin islets found in diverse salmonellae. We show that TtaP is a distant homolog of group XIV secreted phospholipase A2 (PLA2) enzymes, and experimentally demonstrate that TtaP is a bona fide PLA2. Sequence and structural analyses indicate that TtaP differs substantially from characterized PLA2s, and thus represents a novel class of PLA2. Secretion assays revealed that TtaP is neither cosecreted with typhoid toxin, nor is it required for toxin secretion. Although TtaP is a phospholipase that remains associated with the S. Typhi cell, assays that probed for altered cell envelope integrity failed to identify any differences between WT S. Typhi and a ttaP deletion strain. Collectively, this study identifies a biochemical activity for the lone uncharacterized typhoid toxin islet gene and lays the groundwork for exploring how this gene factors into S. Typhi pathogenesis. This study further identifies a novel class of PLA2, enzymes that have a wide range of industrial applications.
Collapse
Affiliation(s)
- Sarah C Gartly
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Luke A F Barretto
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Zach A Kosowan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Casey C Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Wang BX, Leshchiner D, Luo L, Tuncel M, Hokamp K, Hinton JCD, Monack DM. High-throughput fitness experiments reveal specific vulnerabilities of human-adapted Salmonella during stress and infection. Nat Genet 2024; 56:1288-1299. [PMID: 38831009 PMCID: PMC11176087 DOI: 10.1038/s41588-024-01779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Salmonella enterica is comprised of genetically distinct 'serovars' that together provide an intriguing model for exploring the genetic basis of pathogen evolution. Although the genomes of numerous Salmonella isolates with broad variations in host range and human disease manifestations have been sequenced, the functional links between genetic and phenotypic differences among these serovars remain poorly understood. Here, we conduct high-throughput functional genomics on both generalist (Typhimurium) and human-restricted (Typhi and Paratyphi A) Salmonella at unprecedented scale in the study of this enteric pathogen. Using a comprehensive systems biology approach, we identify gene networks with serovar-specific fitness effects across 25 host-associated stresses encountered at key stages of human infection. By experimentally perturbing these networks, we characterize previously undescribed pseudogenes in human-adapted Salmonella. Overall, this work highlights specific vulnerabilities encoded within human-restricted Salmonella that are linked to the degradation of their genomes, shedding light into the evolution of this enteric pathogen.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lijuan Luo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miles Tuncel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
5
|
Lopez Chiloeches M, Bergonzini A, Martin OCB, Bergstein N, Erttmann SF, Aung KM, Gekara NO, Avila Cariño JF, Pateras IS, Frisan T. Genotoxin-producing Salmonella enterica induces tissue-specific types of DNA damage and DNA damage response outcomes. Front Immunol 2024; 14:1270449. [PMID: 38274797 PMCID: PMC10808668 DOI: 10.3389/fimmu.2023.1270449] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Typhoid toxin-expressing Salmonella enterica causes DNA damage in the intestinal mucosa in vivo, activating the DNA damage response (DDR) in the absence of inflammation. To understand whether the tissue microenvironment constrains the infection outcome, we compared the immune response and DDR patterns in the colon and liver of mice infected with a genotoxigenic strain or its isogenic control strain. Methods In situ spatial transcriptomic and immunofluorescence have been used to assess DNA damage makers, activation of the DDR, innate immunity markers in a multiparametric analysis. Result The presence of the typhoid toxin protected from colonic bacteria-induced inflammation, despite nuclear localization of p53, enhanced co-expression of type-I interferons (IfnbI) and the inflammasome sensor Aim2, both classic features of DNA-break-induced DDR activation. These effects were not observed in the livers of either infected group. Instead, in this tissue, the inflammatory response and DDR were associated with high oxidative stress-induced DNA damage. Conclusions Our work highlights the relevance of the tissue microenvironment in enabling the typhoid toxin to suppress the host inflammatory response in vivo.
Collapse
Affiliation(s)
- Maria Lopez Chiloeches
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| | - Anna Bergonzini
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| | - Océane C. B. Martin
- Biological and Medical Sciences Department, University Bordeaux, Centre National de la Recherche Scientifique (CNRS), Institut de Biochimie et Génétique Cellulaires (IBGC), Unité Mixte de Recherche (UMR) 5095, Bordeaux, France
| | - Nicole Bergstein
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| | - Saskia F. Erttmann
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
- Infection Oncology Unit, Institute of Clinical Molecular Biology, Christian-Albrechts University of Kiel, Kiel, Germany
| | - Kyaw Min Aung
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Nelson O. Gekara
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
- Institute of Medical Microbiology and Hygiene, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Javier F. Avila Cariño
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| | - Ioannis S. Pateras
- Second Department of Pathology, “Attikon” University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR) Umeå University, Umeå, Sweden
| |
Collapse
|
6
|
Meiring JE, Khanam F, Basnyat B, Charles RC, Crump JA, Debellut F, Holt KE, Kariuki S, Mugisha E, Neuzil KM, Parry CM, Pitzer VE, Pollard AJ, Qadri F, Gordon MA. Typhoid fever. Nat Rev Dis Primers 2023; 9:71. [PMID: 38097589 DOI: 10.1038/s41572-023-00480-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 12/18/2023]
Abstract
Typhoid fever is an invasive bacterial disease associated with bloodstream infection that causes a high burden of disease in Africa and Asia. Typhoid primarily affects individuals ranging from infants through to young adults. The causative organism, Salmonella enterica subsp. enterica serovar Typhi is transmitted via the faecal-oral route, crossing the intestinal epithelium and disseminating to systemic and intracellular sites, causing an undifferentiated febrile illness. Blood culture remains the practical reference standard for diagnosis of typhoid fever, where culture testing is available, but novel diagnostic modalities are an important priority under investigation. Since 2017, remarkable progress has been made in defining the global burden of both typhoid fever and antimicrobial resistance; in understanding disease pathogenesis and immunological protection through the use of controlled human infection; and in advancing effective vaccination programmes through strategic multipartner collaboration and targeted clinical trials in multiple high-incidence priority settings. This Primer thus offers a timely update of progress and perspective on future priorities for the global scientific community.
Collapse
Affiliation(s)
- James E Meiring
- Division of Clinical Medicine, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi
| | - Farhana Khanam
- International Centre for Diarrhoel Disease Research, Dhaka, Bangladesh
| | - Buddha Basnyat
- Oxford University Clinical Research Unit, Kathmandu, Nepal
| | - Richelle C Charles
- Massachusetts General Hospital, Harvard Medical School, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - John A Crump
- Centre for International Health, University of Otago, Dunedin, New Zealand
| | | | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Emmanuel Mugisha
- Center for Vaccine Innovation and Access, PATH, Seattle, WA, USA
| | - Kathleen M Neuzil
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christopher M Parry
- Department of Clinical Sciences and Education, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, UK
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases and Public Health Modelling Unit, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Firdausi Qadri
- International Centre for Diarrhoel Disease Research, Dhaka, Bangladesh
| | - Melita A Gordon
- Malawi-Liverpool-Wellcome Programme, Blantyre, Malawi.
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.
| |
Collapse
|
7
|
Chen Z, Guan D, Wang Z, Li X, Dong S, Huang J, Zhou W. Microbiota in cancer: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2023; 4:e417. [PMID: 37937304 PMCID: PMC10626288 DOI: 10.1002/mco2.417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
The diverse bacterial populations within the symbiotic microbiota play a pivotal role in both health and disease. Microbiota modulates critical aspects of tumor biology including cell proliferation, invasion, and metastasis. This regulation occurs through mechanisms like enhancing genomic damage, hindering gene repair, activating aberrant cell signaling pathways, influencing tumor cell metabolism, promoting revascularization, and remodeling the tumor immune microenvironment. These microbiota-mediated effects significantly impact overall survival and the recurrence of tumors after surgery by affecting the efficacy of chemoradiotherapy. Moreover, leveraging the microbiota for the development of biovectors, probiotics, prebiotics, and synbiotics, in addition to utilizing antibiotics, dietary adjustments, defensins, oncolytic virotherapy, and fecal microbiota transplantation, offers promising alternatives for cancer treatment. Nonetheless, due to the extensive and diverse nature of the microbiota, along with tumor heterogeneity, the molecular mechanisms underlying the role of microbiota in cancer remain a subject of intense debate. In this context, we refocus on various cancers, delving into the molecular signaling pathways associated with the microbiota and its derivatives, the reshaping of the tumor microenvironmental matrix, and the impact on tolerance to tumor treatments such as chemotherapy and radiotherapy. This exploration aims to shed light on novel perspectives and potential applications in the field.
Collapse
Affiliation(s)
- Zhou Chen
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Defeng Guan
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Zhengfeng Wang
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Xin Li
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Shi Dong
- The Second Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| | - Junjun Huang
- The First Hospital of Lanzhou UniversityLanzhouGansuChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouGansuChina
- The Department of General SurgeryLanzhou University Second HospitalLanzhouGansuChina
| |
Collapse
|
8
|
Brown PI, Ojiakor A, Chemello AJ, Fowler CC. The diverse landscape of AB5-type toxins. ENGINEERING MICROBIOLOGY 2023; 3:100104. [PMID: 39628907 PMCID: PMC11610972 DOI: 10.1016/j.engmic.2023.100104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/25/2023] [Accepted: 06/17/2023] [Indexed: 12/06/2024]
Abstract
AB5-type toxins are a group of secreted protein toxins that are central virulence factors for bacterial pathogens such as Shigella dysenteriae, Vibrio cholerae, Bordetella pertussis, and certain lineages of pathogenic Escherichia coli and Salmonella enterica. AB5 toxins are composed of an active (A) subunit that manipulates host cell biology in complex with a pentameric binding/delivery (B) subunit that mediates the toxin's entry into host cells and its subsequent intracellular trafficking. Broadly speaking, all known AB5-type toxins adopt similar structural architectures and employ similar mechanisms of binding, entering and trafficking within host cells. Despite this, there is a remarkable amount of diversity amongst AB5-type toxins; this includes different toxin families with unrelated activities, as well as variation within families that can have profound functional consequences. In this review, we discuss the diversity that exists amongst characterized AB5-type toxins, with an emphasis on the genetic and functional variability within AB5 toxin families, how this may have evolved, and its impact on human disease.
Collapse
Affiliation(s)
- Paris I. Brown
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Adaobi Ojiakor
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Antonio J. Chemello
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G2E9, Canada
| |
Collapse
|
9
|
ElGhazaly M, Collins MO, Ibler AEM, Humphreys D. Typhoid toxin hijacks Wnt5a to establish host senescence and Salmonella infection. Cell Rep 2023; 42:113181. [PMID: 37792529 DOI: 10.1016/j.celrep.2023.113181] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 06/15/2023] [Accepted: 09/13/2023] [Indexed: 10/06/2023] Open
Abstract
Damage to our genome causes acute senescence in mammalian cells, which undergo growth arrest and release a senescence-associated secretory phenotype (SASP) that propagates the stress response to bystander cells. Thus, acute senescence is a powerful tumor suppressor. Salmonella enterica hijacks senescence through its typhoid toxin, which usurps unidentified factors in the stress secretome of senescent cells to mediate intracellular infections. Here, transcriptomics of toxin-induced senescent cells (TxSCs) and proteomics of their secretome identify the factors as Wnt5a, INHBA, and GDF15. Wnt5a establishes a positive feedback loop, driving INHBA and GDF15 expression. In fibroblasts, Wnt5a and INHBA mediate autocrine senescence in TxSCs and paracrine senescence in naive cells. Wnt5a synergizes with GDF15 to increase Salmonella invasion. Intestinal TxSCs undergo apoptosis without Wnt5a, which is required for establishing intestinal TxSCs. The study reveals how an innate defense against cancer is co-opted by a bacterial pathogen to cause widespread damage and mediate infections.
Collapse
Affiliation(s)
- Mohamed ElGhazaly
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Mark O Collins
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Angela E M Ibler
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK
| | - Daniel Humphreys
- School of Biosciences, University of Sheffield, Sheffield, South Yorkshire S10 2TN, UK.
| |
Collapse
|
10
|
Oliveira M, Cunha E, Tavares L, Serrano I. P. aeruginosa interactions with other microbes in biofilms during co-infection. AIMS Microbiol 2023; 9:612-646. [PMID: 38173971 PMCID: PMC10758579 DOI: 10.3934/microbiol.2023032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/10/2023] [Accepted: 07/26/2023] [Indexed: 01/05/2024] Open
Abstract
This review addresses the topic of biofilms, including their development and the interaction between different counterparts. There is evidence that various diseases, such as cystic fibrosis, otitis media, diabetic foot wound infections, and certain cancers, are promoted and aggravated by the presence of polymicrobial biofilms. Biofilms are composed by heterogeneous communities of microorganisms protected by a matrix of polysaccharides. The different types of interactions between microorganisms gives rise to an increased resistance to antimicrobials and to the host's defense mechanisms, with the consequent worsening of disease symptoms. Therefore, infections caused by polymicrobial biofilms affecting different human organs and systems will be discussed, as well as the role of the interactions between the gram-negative bacteria Pseudomonas aeruginosa, which is at the base of major polymicrobial infections, and other bacteria, fungi, and viruses in the establishment of human infections and diseases. Considering that polymicrobial biofilms are key to bacterial pathogenicity, it is fundamental to evaluate which microbes are involved in a certain disease to convey an appropriate and efficacious antimicrobial therapy.
Collapse
Affiliation(s)
- Manuela Oliveira
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Eva Cunha
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Luís Tavares
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| | - Isa Serrano
- CIISA—Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisboa, Portugal
| |
Collapse
|
11
|
Wang BX, Butler DS, Hamblin M, Monack DM. One species, different diseases: the unique molecular mechanisms that underlie the pathogenesis of typhoidal Salmonella infections. Curr Opin Microbiol 2023; 72:102262. [PMID: 36640585 PMCID: PMC10023398 DOI: 10.1016/j.mib.2022.102262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023]
Abstract
Salmonella enterica is one of the most widespread bacterial pathogens found worldwide, resulting in approximately 100 million infections and over 200 000 deaths per year. Salmonella isolates, termed 'serovars', can largely be classified as either nontyphoidal or typhoidal Salmonella, which differ in regard to disease manifestation and host tropism. Nontyphoidal Salmonella causes gastroenteritis in many hosts, while typhoidal Salmonella is human-restricted and causes typhoid fever, a systemic disease with a mortality rate of up to 30% without treatment. There has been considerable interest in understanding how different Salmonella serovars cause different diseases, but the molecular details that underlie these infections have not yet been fully characterized, especially in the case of typhoidal Salmonella. In this review, we highlight the current state of research into understanding the pathogenesis of both nontyphoidal and typhoidal Salmonella, with a specific interest in serovar-specific traits that allow human-adapted strains of Salmonella to cause enteric fever. Overall, a more detailed molecular understanding of how different Salmonella isolates infect humans will provide critical insights into how we can eradicate these dangerous enteric pathogens.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Daniel Sc Butler
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Meagan Hamblin
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Denise M Monack
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
12
|
Liu B, Zhang X, Ding X, Bin P, Zhu G. The vertical transmission of Salmonella Enteritidis in a One-Health context. One Health 2022; 16:100469. [PMID: 36507074 PMCID: PMC9731862 DOI: 10.1016/j.onehlt.2022.100469] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/07/2022] Open
Abstract
Salmonella enterica serovar Enteritidis (S. Enteritidis, SE) is a foodborne zoonotic pathogen, causing economic losses in animal husbandry and large numbers of human deaths and critically threatening economic development and public health. Human infection with SE has complex transmission routes, involving the environment, animal reservoirs, and water in a One-Health context. Food-producing animals, particularly poultry and livestock, are regarded as the most common sources of SE infection in humans. However, there is little known about the vertical transmission of SE in a One-Health context. In this review, we analyze the ecological significance of SE in a One-Health context. Importantly, we focus on the difference in vertical transmission of SE in poultry, livestock, and humans. We introduce the transmission pathway, describe the immune mechanisms, and discuss the models that could be used for studying the vertical transmission of SE and the strategy that prevention and control for vertical transmission of SE into the future from a One-Health perspective. Together, considering the vertical transmission of SE, it is helpful to provide important insights into the control and decontamination pathways of SE in animal husbandry and enhance knowledge about the prevention of fetal infection in human pregnancy.
Collapse
Affiliation(s)
- Baobao Liu
- College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China,Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xiaojie Zhang
- College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China,Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Xueyan Ding
- College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China,Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Peng Bin
- College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China,Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China,Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou 225009, China,Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China,Corresponding author at: College of Veterinary Medicine (Institute of comparative medicine), Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
13
|
Ojiakor A, Gibbs RN, Chen Z, Gao X, Fowler CC. The evolutionary diversification of the Salmonella artAB toxin locus. Front Microbiol 2022; 13:1016438. [PMID: 36504768 PMCID: PMC9732031 DOI: 10.3389/fmicb.2022.1016438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/07/2022] [Indexed: 11/27/2022] Open
Abstract
Salmonella enterica is a diverse species of bacterial pathogens comprised of >2,500 serovars with variable host ranges and virulence properties. Accumulating evidence indicates that two AB5-type toxins, typhoid toxin and ArtAB toxin, contribute to the more severe virulence properties of the Salmonella strains that encode them. It was recently discovered that there are two distinct types of artAB-like genetic elements in Salmonella: those that encode ArtAB toxins (artAB elements) and those in which the artA gene is degraded and the ArtB homolog, dubbed PltC, serves as an alternative delivery subunit for typhoid toxin (pltC elements). Here, we take a multifaceted approach to explore the evolutionary diversification of artAB-like genetic elements in Salmonella. We identify 7 subtypes of ArtAB toxins and 4 different PltC sequence groups that are distributed throughout the Salmonella genus. Both artAB and pltC are encoded within numerous diverse prophages, indicating a central role for phages in their evolutionary diversification. Genetic and structural analyses revealed features that distinguish pltC elements from artAB and identified evolutionary adaptations that enable PltC to efficiently engage typhoid toxin A subunits. For both pltC and artAB, we find that the sequences of the B subunits are especially variable, particularly amongst amino acid residues that fine tune the chemical environment of their glycan binding pockets. This study provides a framework to delineate the remarkably complex collection of Salmonella artAB/pltC-like genetic elements and provides a window into the mechanisms of evolution for AB5-type toxins.
Collapse
Affiliation(s)
- Adaobi Ojiakor
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rachel N. Gibbs
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Zhe Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Xiang Gao
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China,School of Life Sciences, Shandong University, Qingdao, China
| | - Casey C. Fowler
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada,*Correspondence: Casey C. Fowler,
| |
Collapse
|
14
|
Troha K, Ayres JS. Cooperative defenses during enteropathogenic infection. Curr Opin Microbiol 2022; 65:123-130. [PMID: 34847524 PMCID: PMC8818259 DOI: 10.1016/j.mib.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
During their co-evolution with pathogens, hosts acquired defensive health strategies that allow them to maintain their health or promote recovery when challenged with infections. The cooperative defense system is a largely unexplored branch of these evolved defense strategies. Cooperative defenses limit physiological damage and promote health without having a negative impact on a pathogen's ability to survive and replicate within the host. Here, we review recent discoveries in the new field of cooperative defenses using the model pathogens Citrobacter rodentium and Salmonella enterica. We discuss not only host-encoded but also pathogen-encoded mechanisms of cooperative defenses. Cooperative defenses remain an untapped resource in clinical medicine. With a global pandemic exacerbated by a lack of vaccine access and a worldwide rise in antibiotic resistance, the study of cooperative defenses offers an opportunity to safeguard health in the face of pathogenic infection.
Collapse
Affiliation(s)
- Katia Troha
- Molecular and Systems Physiology Lab, Gene Expression Lab, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Janelle S. Ayres
- Molecular and Systems Physiology Lab, Gene Expression Lab, Nomis Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA,Correspondence:
| |
Collapse
|
15
|
López-Gómez M, García de Santiago B, Delgado-López PD, Malmierca E, González-Olmedo J, Gómez-Raposo C, Sandoval C, Ruiz-Seco P, Escribano N, Gómez-Cerezo JF, Casado E. Gastrointestinal tumors and infectious agents: A wide field to explore. World J Meta-Anal 2021; 9:505-521. [DOI: 10.13105/wjma.v9.i6.505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/26/2021] [Accepted: 12/23/2021] [Indexed: 02/06/2023] Open
Abstract
Infection is currently one of the main contributors to carcinogenesis. In fact, the International Agency for Research on Cancer has categorized eleven biological agents as group I carcinogens. It is estimated that around 16% of the 12.7 million new cancers diagnosed in 2008 were attributable to infectious agents. Although underdeveloped regions carry the highest incidence rates, about 7.4% of infection-related cancer cases occur in developed areas. Physicians are increasingly aware of the potential carcinogenic role of common virus like the Human Papilloma virus in cervical cancer, or the hepatitis B and C viruses in hepatocarcinoma. However, the carcinogenic role of several other infectious agents is less recognized. Given that gastrointestinal malignancies carry an overall poor prognosis, a better understanding of the carcinogenic mechanisms triggered by infectious agents is key to decrease the rate of cancer related deaths. Preventive measures directed to such infections would ideally impact survival. In this paper we review the main pathogenic mechanisms related to the development of gastrointestinal malignancies induced by infectious microorganisms and other pathogens which are currently under investigation.
Collapse
Affiliation(s)
- Miriam López-Gómez
- Medical Oncology Department. Precision Oncology Laboratory, Infanta Sofía University Hospital, San Sebastián de los Reyes 28231, Madrid, Spain
| | - Belén García de Santiago
- Pharmacy Department, Infanta Sofia University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | | | - Eduardo Malmierca
- Internal Medicine Department, Infanta Sofía University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | - Jesús González-Olmedo
- Medical Oncology Department, Infanta Sofia University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | - César Gómez-Raposo
- Medical Oncology Department, Infanta Sofia University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | - Carmen Sandoval
- Medical Oncology Department, Infanta Sofia University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | - Pilar Ruiz-Seco
- Internal Medicine Department, Infanta Sofía University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | - Nora Escribano
- Intensive Care Unit, Jiménez Díaz Foundation, Madrid 28040, Madrid, Spain
| | - Jorge Francisco Gómez-Cerezo
- Internal Medicine Department, Infanta Sofía University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| | - Enrique Casado
- Medical Oncology Department, Infanta Sofia University Hospital, San Sebastián de los Reyes 28703, Madrid, Spain
| |
Collapse
|
16
|
Khatun S, Appidi T, Rengan AK. The role played by bacterial infections in the onset and metastasis of cancer. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100078. [PMID: 34841367 PMCID: PMC8610348 DOI: 10.1016/j.crmicr.2021.100078] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/04/2021] [Accepted: 10/24/2021] [Indexed: 02/09/2023] Open
Abstract
Understanding various responses of cells towards change in their external environment, presence of other species and is important in identifying and correlating the mechanisms leading to malignant transformations and cancer development. Although uncovering and comprehending the association between bacteria and cancer is highly challenging, it promises excellent perspectives and approaches for successful cancer therapy. This review introduces various bacterial species, their virulence factors, and their role in cell transformations leading to cancer (particularly gastric, oral, colon, and breast cancer). Bacterial dysbiosis permutates host cells, causes inflammation, and results in tumorigenesis. This review explored bacterial-mediated host cell transformation causing chronic inflammation, immune receptor hyperactivation/absconding immune recognition, and genomic instability. Bacterial infections downregulate E-cadherin, leading to loosening of epithelial tight junction polarity and triggers metastasis. In addition to understanding the role of bacterial infections in cancer development, we have also reviewed the application of bacteria for cancer therapy. The emergence of bacteriotherapy combined with conventional therapies led to new and effective ways of overcoming challenges associated with available treatments. This review discusses the application of bacterial minicells, microswimmers, and outer cell membrane vesicles (OMV) for drug delivery applications.
Collapse
Affiliation(s)
- Sajmina Khatun
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Tejaswini Appidi
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| | - Aravind Kumar Rengan
- Department of Biomedical Engineering, IIT Hyderabad, Kandi, Sangareddy 502284, Telangana, India
| |
Collapse
|
17
|
Bacteria-Cancer Interface: Awaiting the Perfect Storm. Pathogens 2021; 10:pathogens10101321. [PMID: 34684270 PMCID: PMC8540461 DOI: 10.3390/pathogens10101321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 12/15/2022] Open
Abstract
Epidemiological evidence reveal a very close association of malignancies with chronic inflammation as a result of persistent bacterial infection. Recently, more studies have provided experimental evidence for an etiological role of bacterial factors disposing infected tissue towards carcinoma. When healthy cells accumulate genomic insults resulting in DNA damage, they may sustain proliferative signalling, resist apoptotic signals, evade growth suppressors, enable replicative immortality, and induce angiogenesis, thus boosting active invasion and metastasis. Moreover, these cells must be able to deregulate cellular energetics and have the ability to evade immune destruction. How bacterial infection leads to mutations and enriches a tumour-promoting inflammatory response or micro-environment is still not clear. In this review we showcase well-studied bacteria and their virulence factors that are tightly associated with carcinoma and the various mechanisms and pathways that could have carcinogenic properties.
Collapse
|
18
|
Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. Microbiome and cancer. Cancer Cell 2021; 39:1317-1341. [PMID: 34506740 DOI: 10.1016/j.ccell.2021.08.006] [Citation(s) in RCA: 290] [Impact Index Per Article: 72.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/05/2021] [Accepted: 08/13/2021] [Indexed: 12/14/2022]
Abstract
The human microbiome constitutes a complex multikingdom community that symbiotically interacts with the host across multiple body sites. Host-microbiome interactions impact multiple physiological processes and a variety of multifactorial disease conditions. In the past decade, microbiome communities have been suggested to influence the development, progression, metastasis formation, and treatment response of multiple cancer types. While causal evidence of microbial impacts on cancer biology is only beginning to be unraveled, enhanced molecular understanding of such cancer-modulating interactions and impacts on cancer treatment are considered of major scientific importance and clinical relevance. In this review, we describe the molecular pathogenic mechanisms shared throughout microbial niches that contribute to the initiation and progression of cancer. We highlight advances, limitations, challenges, and prospects in understanding how the microbiome may causally impact cancer and its treatment responsiveness, and how microorganisms or their secreted bioactive metabolites may be potentially harnessed and targeted as precision cancer therapeutics.
Collapse
Affiliation(s)
- Nyssa Cullin
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Camila Azevedo Antunes
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Ravid Straussman
- Department of Molecular Cell Biology, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel
| | - Christoph K Stein-Thoeringer
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| | - Eran Elinav
- Microbiome and Cancer Division, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 7610001 Rehovot, Israel.
| |
Collapse
|
19
|
Zhou M, Shi Q, Zhang X, Mei L, Ye Y, Fang C, Shang S. Salmonella enterica subsp. diarizonae Harboring ST233, ST1263, and ST1845 in Children. Front Cell Infect Microbiol 2021; 11:727811. [PMID: 34490148 PMCID: PMC8417408 DOI: 10.3389/fcimb.2021.727811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/02/2021] [Indexed: 01/18/2023] Open
Abstract
Objective This study aims to analyze the molecular epidemiology, resistance, and pathogenicity of Salmonella enterica subsp. diarizonae isolated from children. Methods Whole genome sequencing was carried out, and molecular serotypes, sequence types, resistance genes, and virulence genes of S. enterica subsp. diarizonae isolates were analyzed. Antimicrobial susceptibility test was determined by commercialized microdilution method. Results A total of three isolates of S. enterica subsp. diarizonae were isolated during 2015 to 2020. The molecular serotypes of the three strains were 61:c:z35, 61:l,v:1,5,7:[z57], and 65:k:z, respectively, and the sequence types were ST1845, ST233, and ST1263. All the three isolates were susceptible to ceftriaxone, ceftazidime, cefepime, amoxycillin/clavulanic acid, piperacillin/tazobactam, ertapenem, imipenem, levofloxacin, and trimethoprim/sulfamethoxazole. No other resistant gene was detected except aac(6')-Iaa. There were no resistant plasmids detected in all the three isolates. A total of 76 genes were present in all isolates, containing 49 genes of Type III Secretion System (T3SS) mediated by SPI-1and SPI-2, 13 genes of adherence (type 1 fimbriae, Agf, and MisL-related genes), 11 genes of iron uptake (Yersiniabactin), two genes of magnesium uptake, and one gene of typhoid toxin(cdtB). Conclusion The serotypes and sequence types of S. enterica subsp. diarizonae isolates were rarely reported in children; all the S. enterica subsp. diarizonae isolates were susceptible to detected antibiotics; T3SS, adherence, iron uptake, magnesium uptake, and typhoid toxin were responsible for pathogenicity of the S. enterica subsp. diarizonae isolates in children.
Collapse
Affiliation(s)
- Mingming Zhou
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Qiucheng Shi
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiucai Zhang
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lingling Mei
- Microbiological Laboratory, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yihua Ye
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Chao Fang
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Shiqiang Shang
- Department of Clinical Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
20
|
Chronic exposure to Cytolethal Distending Toxin (CDT) promotes a cGAS-dependent type I interferon response. Cell Mol Life Sci 2021; 78:6319-6335. [PMID: 34308492 PMCID: PMC8429409 DOI: 10.1007/s00018-021-03902-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 06/18/2021] [Accepted: 07/16/2021] [Indexed: 12/17/2022]
Abstract
The Cytolethal Distending Toxin (CDT) is a bacterial genotoxin produced by pathogenic bacteria causing major foodborne diseases worldwide. CDT activates the DNA Damage Response and modulates the host immune response, but the precise relationship between these outcomes has not been addressed so far. Here, we show that chronic exposure to CDT in HeLa cells or mouse embryonic fibroblasts promotes a strong type I interferon (IFN) response that depends on the cytoplasmic DNA sensor cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS) through the recognition of micronuclei. Indeed, despite active cell cycle checkpoints and in contrast to other DNA damaging agents, cells exposed to CDT reach mitosis where they accumulate massive DNA damage, resulting in chromosome fragmentation and micronucleus formation in daughter cells. These mitotic phenotypes are observed with CDT from various origins and in cancer or normal cell lines. Finally, we show that CDT exposure in immortalized normal colonic epithelial cells is associated to cGAS protein loss and low type I IFN response, implying that CDT immunomodulatory function may vary depending on tissue and cell type. Thus, our results establish a direct link between CDT-induced DNA damage, genetic instability and the cellular immune response that may be relevant in the context of natural infection associated to chronic inflammation or carcinogenesis.
Collapse
|
21
|
Molecular determinants of peaceful coexistence versus invasiveness of non-Typhoidal Salmonella: Implications in long-term side-effects. Mol Aspects Med 2021; 81:100997. [PMID: 34311996 DOI: 10.1016/j.mam.2021.100997] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 07/02/2021] [Accepted: 07/16/2021] [Indexed: 01/28/2023]
Abstract
The genus Salmonella represents a wide range of strains including Typhoidal and Non-Typhoidal Salmonella (NTS) isolates that exhibit illnesses of varied pathophysiologies. The more frequent NTS ensues a self-limiting enterocolitis with rare occasions of bacteremia or systemic infections. These self-limiting Salmonella strains are capable of subverting and dampening the host immune system to achieve a more prolonged survival inside the host system thus leading to chronic manifestations. Notably, emergence of new invasive NTS isolates known as invasive Non-Typhoidal Salmonella (iNTS) have worsened the disease burden significantly in some parts of the world. NTS strains adapt to attain persister phenotype intracellularly and cause relapsing infections. These chronic infections, in susceptible hosts, are also capable of causing diseases like IBS, IBD, reactive arthritis, gallbladder cancer and colorectal cancer. The present understanding of molecular mechanism of how these chronic infections are manifested is quite limited. The current work is an effort to review the prevailing knowledge emanating from a large volume of research focusing on various forms of NTS infections including those that cause localized, systemic and persistent disease. The review will further dwell into the understanding of how this pathogen contributes to the associated long term sequelae.
Collapse
|
22
|
Morgan RN, Saleh SE, Farrag HA, Aboulwafa MM. Bacterial cyclomodulins: types and roles in carcinogenesis. Crit Rev Microbiol 2021; 48:42-66. [PMID: 34265231 DOI: 10.1080/1040841x.2021.1944052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Various studies confirmed that bacterial infections contribute to carcinogenesis through the excessive accumulation of reactive oxygen species (ROS) and the expression of toxins that disrupt the cell cycle phases, cellular regulatory mechanisms and stimulate the production of tumorigenic inflammatory mediators. These toxins mimic carcinogens which act upon key cellular targets and result in mutations and genotoxicities. The cyclomodulins are bacterial toxins that incur cell cycle modulating effects rendering the expressing bacterial species of high carcinogenic potentiality. They are either cellular proliferating or cell cycle arrest cyclomodulins. Notably, cyclomodulins expressing bacterial species have been linked to different human carcinomas. For instance, Escherichia coli species producing the colibactin were highly prevalent among colorectal carcinoma patients, CagA+ Helicobacter pylori species were associated with MALT lymphomas and gastric carcinomas and Salmonella species producing CdtB were linked to hepatobiliary carcinomas. These species stimulated the overgrowth of pre-existing carcinomas and induced hyperplasia in in vivo animal models suggesting a role for the cyclomodulins in carcinogenesis. Wherefore, the prevalence and mode of action of these toxins were the focus of many researchers and studies. This review discusses different types of bacterial cyclomodulins highlighting their mode of action and possible role in carcinogenesis.
Collapse
Affiliation(s)
- Radwa N Morgan
- Drug radiation research Department, Egyptian Atomic Energy Authority (EAEA), National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt
| | - Sarra E Saleh
- Faculty of Pharmacy, Microbiology and Immunology Department, Ain Shams University, Cairo, Egypt
| | - Hala A Farrag
- Drug radiation research Department, Egyptian Atomic Energy Authority (EAEA), National Center for Radiation Research and Technology (NCRRT), Cairo, Egypt
| | - Mohammad M Aboulwafa
- Faculty of Pharmacy, Microbiology and Immunology Department, Ain Shams University, Cairo, Egypt.,Faculty of Pharmacy, King Salman International University, Ras-Sedr, Egypt
| |
Collapse
|
23
|
Lopez Chiloeches M, Bergonzini A, Frisan T. Bacterial Toxins Are a Never-Ending Source of Surprises: From Natural Born Killers to Negotiators. Toxins (Basel) 2021; 13:426. [PMID: 34204481 PMCID: PMC8235270 DOI: 10.3390/toxins13060426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/07/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The idea that bacterial toxins are not only killers but also execute more sophisticated roles during bacteria-host interactions by acting as negotiators has been highlighted in the past decades. Depending on the toxin, its cellular target and mode of action, the final regulatory outcome can be different. In this review, we have focused on two families of bacterial toxins: genotoxins and pore-forming toxins, which have different modes of action but share the ability to modulate the host's immune responses, independently of their capacity to directly kill immune cells. We have addressed their immuno-suppressive effects with the perspective that these may help bacteria to avoid clearance by the host's immune response and, concomitantly, limit detrimental immunopathology. These are optimal conditions for the establishment of a persistent infection, eventually promoting asymptomatic carriers. This immunomodulatory effect can be achieved with different strategies such as suppression of pro-inflammatory cytokines, re-polarization of the immune response from a pro-inflammatory to a tolerogenic state, and bacterial fitness modulation to favour tissue colonization while preventing bacteraemia. An imbalance in each of those effects can lead to disease due to either uncontrolled bacterial proliferation/invasion, immunopathology, or both.
Collapse
Affiliation(s)
| | | | - Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden; (M.L.C.); (A.B.)
| |
Collapse
|
24
|
Mathiasen SL, Gall-Mas L, Pateras IS, Theodorou SDP, Namini MRJ, Hansen MB, Martin OCB, Vadivel CK, Ntostoglou K, Butter D, Givskov M, Geisler C, Akbar AN, Gorgoulis VG, Frisan T, Ødum N, Krejsgaard T. Bacterial genotoxins induce T cell senescence. Cell Rep 2021; 35:109220. [PMID: 34107253 DOI: 10.1016/j.celrep.2021.109220] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 02/16/2021] [Accepted: 05/14/2021] [Indexed: 12/11/2022] Open
Abstract
Several types of pathogenic bacteria produce genotoxins that induce DNA damage in host cells. Accumulating evidence suggests that a central function of these genotoxins is to dysregulate the host's immune response, but the underlying mechanisms remain unclear. To address this issue, we investigated the effects of the most widely expressed bacterial genotoxin, the cytolethal distending toxin (CDT), on T cells-the key mediators of adaptive immunity. We show that CDT induces premature senescence in activated CD4 T cells in vitro and provide evidence suggesting that infection with genotoxin-producing bacteria promotes T cell senescence in vivo. Moreover, we demonstrate that genotoxin-induced senescent CD4 T cells assume a senescence-associated secretory phenotype (SASP) which, at least partly, is orchestrated by the ATM-p38 signaling axis. These findings provide insight into the immunomodulatory properties of bacterial genotoxins and uncover a putative link between bacterial infections and T cell senescence.
Collapse
Affiliation(s)
- Sarah L Mathiasen
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Laura Gall-Mas
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Ioannis S Pateras
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Sofia D P Theodorou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Martin R J Namini
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten B Hansen
- Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark
| | - Océane C B Martin
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Chella Krishna Vadivel
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Konstantinos Ntostoglou
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece
| | - Deborah Butter
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Michael Givskov
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Carsten Geisler
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Arne N Akbar
- Division of Medicine, University College London, London WC1E 6JF, UK
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, School of Medicine, National Kapodistrian University of Athens, 11527 Athens, Greece; Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece; Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M13 9PL, UK
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden; Department of Molecular Biology and Umeå Center for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
| | - Niels Ødum
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Thorbjørn Krejsgaard
- LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
25
|
Martin OCB, Bergonzini A, Lopez Chiloeches M, Paparouna E, Butter D, Theodorou SDP, Haykal MM, Boutet-Robinet E, Tebaldi T, Wakeham A, Rhen M, Gorgoulis VG, Mak T, Pateras IS, Frisan T. Influence of the microenvironment on modulation of the host response by typhoid toxin. Cell Rep 2021; 35:108931. [PMID: 33826883 DOI: 10.1016/j.celrep.2021.108931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/28/2020] [Accepted: 03/11/2021] [Indexed: 01/10/2023] Open
Abstract
Bacterial genotoxins cause DNA damage in eukaryotic cells, resulting in activation of the DNA damage response (DDR) in vitro. These toxins are produced by Gram-negative bacteria, enriched in the microbiota of inflammatory bowel disease (IBD) and colorectal cancer (CRC) patients. However, their role in infection remains poorly characterized. We address the role of typhoid toxin in modulation of the host-microbial interaction in health and disease. Infection with a genotoxigenic Salmonella protects mice from intestinal inflammation. We show that the presence of an active genotoxin promotes DNA fragmentation and senescence in vivo, which is uncoupled from an inflammatory response and unexpectedly associated with induction of an anti-inflammatory environment. The anti-inflammatory response is lost when infection occurs in mice with acute colitis. These data highlight a complex context-dependent crosstalk between bacterial-genotoxin-induced DDR and the host immune response, underlining an unexpected role for bacterial genotoxins.
Collapse
Affiliation(s)
- Océane C B Martin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Bergonzini
- Department of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Maria Lopez Chiloeches
- Department of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| | - Eleni Paparouna
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Deborah Butter
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Sofia D P Theodorou
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria M Haykal
- Université Paris-Saclay, Institut Gustave Roussy, Inserm U981, Biomarqueurs prédictifs et nouvelles stratégies thérapeutiques en oncologie, 94800 Villejuif, France
| | - Elisa Boutet-Robinet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Toma Tebaldi
- Center for Biomedical Data Science, Yale School of Medicine, New Haven, CT, USA
| | - Andrew Wakeham
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, University of Toronto, Toronto, ON, Canada
| | - Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Vassilis G Gorgoulis
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Biomedical Research Foundation, Academy of Athens, Athens, Greece; Institute for Cancer Sciences, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Manchester Centre for Cellular Metabolism, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Tak Mak
- The Campbell Family Institute for Breast Cancer Research, Princess Margaret Hospital, University of Toronto, Toronto, ON, Canada
| | - Ioannis S Pateras
- Department of Histology and Embryology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden; Department of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden.
| |
Collapse
|
26
|
Johns MS, Petrelli NJ. Microbiome and colorectal cancer: A review of the past, present, and future. Surg Oncol 2021; 37:101560. [PMID: 33848761 DOI: 10.1016/j.suronc.2021.101560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 03/28/2021] [Indexed: 12/27/2022]
Abstract
The gastrointestinal tract is home to diverse and abundant microorganisms, collectively referred to as the microbiome. This ecosystem typically contains trillions of microbial cells that play an important role in regulation of human health. The microbiome has been implicated in host immunity, nutrient absorption, digestion, and metabolism. In recent years, researchers have shown that alteration of the microbiome is associated with disease development, such as obesity, inflammatory bowel disease, and cancer. This review discusses the five decades of research into the human microbiome and the development of colorectal cancer - the historical context including experiments that sparked interest, the explosion of research that has occurred in the last decade, and finally the future of testing and treatment.
Collapse
Affiliation(s)
- Michael S Johns
- Department of Surgical Oncology, Helen F. Graham Cancer Center, ChristianaCare, Newark, DE, USA.
| | - Nicholas J Petrelli
- Department of Surgical Oncology, Helen F. Graham Cancer Center, ChristianaCare, Newark, DE, USA
| |
Collapse
|
27
|
Harrell JE, Hahn MM, D'Souza SJ, Vasicek EM, Sandala JL, Gunn JS, McLachlan JB. Salmonella Biofilm Formation, Chronic Infection, and Immunity Within the Intestine and Hepatobiliary Tract. Front Cell Infect Microbiol 2021; 10:624622. [PMID: 33604308 PMCID: PMC7885405 DOI: 10.3389/fcimb.2020.624622] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/17/2020] [Indexed: 12/12/2022] Open
Abstract
Within the species of Salmonella enterica, there is significant diversity represented among the numerous subspecies and serovars. Collectively, these account for microbes with variable host ranges, from common plant and animal colonizers to extremely pathogenic and human-specific serovars. Despite these differences, many Salmonella species find commonality in the ability to form biofilms and the ability to cause acute, latent, or chronic disease. The exact outcome of infection depends on many factors such as the growth state of Salmonella, the environmental conditions encountered at the time of infection, as well as the infected host and immune response elicited. Here, we review the numerous biofilm lifestyles of Salmonella (on biotic and abiotic surfaces) and how the production of extracellular polymeric substances not only enhances long-term persistence outside the host but also is an essential function in chronic human infections. Furthermore, careful consideration is made for the events during initial infection that allow for gut transcytosis which, in conjunction with host immune functions, often determine the progression of disease. Both typhoidal and non-typhoidal salmonellae can cause chronic and/or secondary infections, thus the adaptive immune responses to both types of bacteria are discussed with particular attention to the differences between Salmonella Typhi, Salmonella Typhimurium, and invasive non-typhoidal Salmonella that can result in differential immune responses. Finally, while strides have been made in our understanding of immunity to Salmonella in the lymphoid organs, fewer definitive studies exist for intestinal and hepatobiliary immunity. By examining our current knowledge and what remains to be determined, we provide insight into new directions in the field of Salmonella immunity, particularly as it relates to chronic infection.
Collapse
Affiliation(s)
- Jaikin E Harrell
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Mark M Hahn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Shaina J D'Souza
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| | - Erin M Vasicek
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - Jenna L Sandala
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| | - John S Gunn
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States.,Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - James B McLachlan
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
28
|
Caveney NA, Serapio-Palacios A, Woodward SE, Bozorgmehr T, Caballero G, Vuckovic M, Deng W, Finlay BB, Strynadka NCJ. Structural and Cellular Insights into the l,d-Transpeptidase YcbB as a Therapeutic Target in Citrobacter rodentium, Salmonella Typhimurium, and Salmonella Typhi Infections. Antimicrob Agents Chemother 2021; 65:e01592-20. [PMID: 33139287 PMCID: PMC7849009 DOI: 10.1128/aac.01592-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
The bacterial cell wall plays a key role in viability and is an important drug target. The cell wall is made of elongated polymers that are cross-linked to one another to form a load-bearing mesh. An alternative cell wall cross-linking mechanism used by the l,d-transpeptidase YcbB has been implicated in the stress-regulated roles of β-lactam resistance, outer membrane defect rescue, and typhoid toxin release. The role for this stress-linked cross-linking in the context of a host infection was unclear. Here, we resolve the crystallographic structures of both Salmonella Typhi YcbB and Citrobacter rodentium YcbB acylated with ertapenem that delineate the conserved structural characteristics of YcbB. In parallel, we show that the general involvement of YcbB in peptidoglycan reinforcement under conditions of bacterial outer envelope stress does not play a significant role in acute infections of mice by C. rodentium and S Typhimurium. Cumulatively, in this work we provide a foundation for the development of novel YcbB-specific antibacterial therapeutics to assist in treatment of increasingly drug-resistant S Typhi infections.
Collapse
Affiliation(s)
- N A Caveney
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - A Serapio-Palacios
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - S E Woodward
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - T Bozorgmehr
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - G Caballero
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - M Vuckovic
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| | - W Deng
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - B B Finlay
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - N C J Strynadka
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- The Centre for Blood Research, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
29
|
Abstract
While previous reports had suggested that the typhoid toxin (TT) could potentially use ArtB as an alternate binding subunit, this was thought to play a minor role in the evolution and biology of the toxin. In this study, we establish that both TT genes and artB are widespread among Salmonella enterica subsp. enterica, suggesting that TT likely plays a broader role in Salmonella virulence that extends beyond its proposed role in typhoid fever. Salmonella enterica encodes a wide array of virulence factors. One novel virulence factor, an A2B5 toxin known as the typhoid toxin (TT), was recently identified among a variety of S. enterica serovars. While past studies have shown that some serovars encode both the TT (active subunits CdtB and PltA and binding subunit PltB) and a second binding subunit (ArtB), these serovars were thought to be the exception. Here, we show that genes encoding the TT are detected in more than 100 serovars representing distinct phylogenetic lineages of S. enterica subsp. enterica, although clade B and section Typhi are significantly more likely to encode TT genes than serovars from other clades. Furthermore, we show that 81% of these TT-positive serovars also encode artB, suggesting that the cooccurrence of both toxin binding subunits is considerably more common than previously thought. A combination of in silico modeling, bacterial two-hybrid system screening, and tandem affinity purification (TAP) of toxin subunits suggests that ArtB and PltB interact in vitro, at least under some growth conditions. While different growth conditions yielded slightly higher transcript abundances of artB and pltB, both genes had their highest relative transcript abundances when Salmonella was grown under low-Mg2+ conditions, suggesting that ArtB and PltB may compete for inclusion in the TT. Together, our results suggest that ArtB likely plays an important and previously underappreciated role in the biology of the TT produced by typhoidal and nontyphoidal Salmonella. IMPORTANCE While previous reports had suggested that the typhoid toxin (TT) could potentially use ArtB as an alternate binding subunit, this was thought to play a minor role in the evolution and biology of the toxin. In this study, we establish that both TT genes and artB are widespread among Salmonella enterica subsp. enterica, suggesting that TT likely plays a broader role in Salmonella virulence that extends beyond its proposed role in typhoid fever. Furthermore, our data suggest the selective maintenance of both toxin binding subunits, which may compete for inclusion in the holotoxin. Last, our data support the importance of characterizing diverse nontyphoidal Salmonella (NTS) serovars, as the presence of classically defined typhoidal virulence factors among NTS serovars continues to challenge the typhoid-nontyphoid Salmonella paradigm.
Collapse
|
30
|
Frisan T. Co- and polymicrobial infections in the gut mucosa: The host-microbiota-pathogen perspective. Cell Microbiol 2020; 23:e13279. [PMID: 33040471 PMCID: PMC7900980 DOI: 10.1111/cmi.13279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/03/2020] [Accepted: 10/07/2020] [Indexed: 02/06/2023]
Abstract
Infections in humans occur in the context of complex niches where the pathogen interacts with both the host microenvironment and immune response, and the symbiotic microbial community. The polymicrobial nature of many human infections adds a further layer of complexity. The effect of co‐ or polymicrobial infections can result in enhanced severity due to pathogens cooperative interaction or reduced morbidity because one of the pathogens affects the fitness of the other(s). In this review, the concept of co‐infections and polymicrobial interactions in the context of the intestinal mucosa is discussed, focusing on the interplay between the host, the microbiota and the pathogenic organisms. Specifically, we will examine examples of pathogen‐cooperative versus ‐antagonistic behaviour during co‐ and polymicrobial infections. We discuss: the infection‐induced modulation of the host microenvironment and immune responses; the direct modulation of the microorganism's fitness; the potentiation of inflammatory/carcinogenic conditions by polymicrobial biofilms; and the promotion of co‐infections by microbial‐induced DNA damage. Open questions in this very exciting field are also highlighted.
Collapse
Affiliation(s)
- Teresa Frisan
- Department of Molecular Biology and Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
Abstract
Bacterial infections are increasingly being recognized as risk factors for the development of adenocarcinomas. The strong epidemiological evidence linking Helicobacter pylori infection to stomach cancer has paved the way to the demonstration that bacterial infections cause DNA damage in the host cells, initiating transformation. In this regard, the role of bacterial genotoxins has become more relevant. Salmonella enterica serovars Typhi and Paratyphi A have been clinically associated with gallbladder cancer. By harnessing the stem cell potential of cells from healthy human gallbladder explant, we regenerated and propagated the epithelium of this organ in vitro and used these cultures to model S. Paratyphi A infection. This study demonstrates the importance of the typhoid toxin, encoded only by these specific serovars, in causing genomic instability in healthy gallbladder cells, posing intoxicated cells at risk of malignant transformation. Carcinoma of the gallbladder (GBC) is the most frequent tumor of the biliary tract. Despite epidemiological studies showing a correlation between chronic infection with Salmonella enterica Typhi/Paratyphi A and GBC, the underlying molecular mechanisms of this fatal connection are still uncertain. The murine serovar Salmonella Typhimurium has been shown to promote transformation of genetically predisposed cells by driving mitogenic signaling. However, insights from this strain remain limited as it lacks the typhoid toxin produced by the human serovars Typhi and Paratyphi A. In particular, the CdtB subunit of the typhoid toxin directly induces DNA breaks in host cells, likely promoting transformation. To assess the underlying principles of transformation, we used gallbladder organoids as an infection model for Salmonella Paratyphi A. In this model, bacteria can invade epithelial cells, and we observed host cell DNA damage. The induction of DNA double-strand breaks after infection depended on the typhoid toxin CdtB subunit and extended to neighboring, non-infected cells. By cultivating the organoid derived cells into polarized monolayers in air-liquid interphase, we could extend the duration of the infection, and we observed an initial arrest of the cell cycle that does not depend on the typhoid toxin. Non-infected intoxicated cells instead continued to proliferate despite the DNA damage. Our study highlights the importance of the typhoid toxin in causing genomic instability and corroborates the epidemiological link between Salmonella infection and GBC.
Collapse
|
32
|
Humphreys D, ElGhazaly M, Frisan T. Senescence and Host-Pathogen Interactions. Cells 2020; 9:cells9071747. [PMID: 32708331 PMCID: PMC7409240 DOI: 10.3390/cells9071747] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Damage to our genomes triggers cellular senescence characterised by stable cell cycle arrest and a pro-inflammatory secretome that prevents the unrestricted growth of cells with pathological potential. In this way, senescence can be considered a powerful innate defence against cancer and viral infection. However, damage accumulated during ageing increases the number of senescent cells and this contributes to the chronic inflammation and deregulation of the immune function, which increases susceptibility to infectious disease in ageing organisms. Bacterial and viral pathogens are masters of exploiting weak points to establish infection and cause devastating diseases. This review considers the emerging importance of senescence in the host-pathogen interaction: we discuss the pathogen exploitation of ageing cells and senescence as a novel hijack target of bacterial pathogens that deploys senescence-inducing toxins to promote infection. The persistent induction of senescence by pathogens, mediated directly through virulence determinants or indirectly through inflammation and chronic infection, also contributes to age-related pathologies such as cancer. This review highlights the dichotomous role of senescence in infection: an innate defence that is exploited by pathogens to cause disease.
Collapse
Affiliation(s)
- Daniel Humphreys
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
- Correspondence: (D.H.); (T.F.)
| | - Mohamed ElGhazaly
- Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK;
| | - Teresa Frisan
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, 901 87 Umeå, Sweden
- Correspondence: (D.H.); (T.F.)
| |
Collapse
|
33
|
Martin OC, Frisan T. Bacterial Genotoxin-Induced DNA Damage and Modulation of the Host Immune Microenvironment. Toxins (Basel) 2020; 12:E63. [PMID: 31973033 PMCID: PMC7076804 DOI: 10.3390/toxins12020063] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/14/2020] [Accepted: 01/18/2020] [Indexed: 01/10/2023] Open
Abstract
: Bacterial genotoxins (BTGX) induce DNA damage, which results in senescence or apoptosis of the target cells if not properly repaired. Three BTGXs have been identified: the cytolethal distending toxin (CDT) family produced by several Gram-negative bacteria, the typhoid toxin produced by several Salmonella enterica serovars, and colibactin, a peptide-polyketide, produced mainly by the phylogenetic group B2 Escherichia coli. The cellular responses induced by BTGXs resemble those of well-characterized carcinogenic agents, and several lines of evidence indicate that bacteria carrying genotoxin genes can contribute to tumor development under specific circumstances. Given their unusual mode of action, it is still enigmatic why these effectors have been acquired by microbes and what is their role in the context of the biology of the producing bacterium, since it is unlikely that their primary purpose is to induce/promote cancer in the mammalian host. In this review, we will discuss the possibility that the DNA damage induced by BTGX modulates the host immune response, acting as immunomodulator, leading to the establishment of a suitable niche for the producing bacterium. We will further highlight open questions that remain to be solved regarding the biology of this unusual family of bacterial toxins.
Collapse
Affiliation(s)
- Océane C.B. Martin
- Univ. Bordeaux, INSERM, UMR1053 Bordeaux Research in Translational Oncology, BaRITOn, 33320 Bordeaux, France;
| | - Teresa Frisan
- Department of Cell and Molecular Biology Karolinska Institutet, 17177 Stockholm, Sweden
- Umeå Center for Microbial Research (UCMR), Umeå University, 90187 Umeå, Sweden
- Department of Molecular Biology, Umeå University, 90187 Umeå, Sweden
| |
Collapse
|
34
|
Azimi T, Zamirnasta M, Sani MA, Soltan Dallal MM, Nasser A. Molecular Mechanisms of Salmonella Effector Proteins: A Comprehensive Review. Infect Drug Resist 2020; 13:11-26. [PMID: 32021316 PMCID: PMC6954085 DOI: 10.2147/idr.s230604] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 12/20/2019] [Indexed: 12/27/2022] Open
Abstract
Salmonella can be categorized into many serotypes, which are specific to known hosts or broadhosts. It makes no difference which one of the serotypes would penetrate the gastrointestinal tract because they all face similar obstacles such as mucus and microbiome. However, following their penetration, some species remain in the gastrointestinal tract; yet, others spread to another organ like gallbladder. Salmonella is required to alter the immune response to sustain its intracellular life. Changing the host response requires particular effector proteins and vehicles to translocate them. To this end, a categorized gene called Salmonella pathogenicity island (SPI) was developed; genes like Salmonella pathogenicity island encode aggressive or modulating proteins. Initially, Salmonella needs to be attached and stabilized via adhesin factor, without which no further steps can be taken. In this review, an attempt has been made to elaborate on each factor attached to the host cell or to modulating and aggressive proteins that evade immune systems. This review includes four sections: (A) attachment factors or T3SS- independent entrance, (B) effector proteins or T3SS-dependent entrance, (c) regulation of invasive genes, and (D) regulation of immune responses.
Collapse
Affiliation(s)
- Taher Azimi
- Pediatric Infections Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Students Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Zamirnasta
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
| | - Mahmood Alizadeh Sani
- Food Safety and Hygiene Division, Environmental health Department, School of Public Health, Tehran University of medical sciences, Tehran, Iran
- Students Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahmad Nasser
- Clinical Microbiology Research Center, Ilam University of Medical Science, Ilam, Iran
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Medical Microbiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| |
Collapse
|
35
|
The Four Horsemen in Colon Cancer. JOURNAL OF ONCOLOGY 2019; 2019:5636272. [PMID: 31662752 PMCID: PMC6791268 DOI: 10.1155/2019/5636272] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023]
Abstract
Worldwide, neoplasms of the gastrointestinal tract have a very high incidence and mortality. Among these, colorectal cancer, which includes colon and rectum malignancies, representing both highest incidence and mortality. While gallbladder cancer, another neoplasm associated to gastrointestinal tract occurs less frequently. Genetic factors, inflammation and nutrition are important risk factors associated with colorectal cancer development. Likewise, pathogenic microorganisms inducing intestinal dysbiosis have become an important scope to determine the role of bacterial infection on tumorigenesis. Interestingly, in human biopsies of different types of gastrointestinal tract cancer, the presence of different bacterial strains, such as Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis and Salmonella enterica have been detected, and it has been considered as a high-risk factor to cancer development. Therefore, pathogens infection could contribute to neoplastic development through different mechanisms; including intestinal dysbiosis, inflammation, evasion of tumoral immune response and activation of pro-tumoral signaling pathways, such as β catenin. Here, we have reviewed the suggested bacterial molecular mechanisms and their possible role on development and progression of gastrointestinal neoplasms, focusing mainly on colon neoplasms, where the bacteria Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis and Salmonella enterica infect.
Collapse
|
36
|
Ibler AEM, ElGhazaly M, Naylor KL, Bulgakova NA, F El-Khamisy S, Humphreys D. Typhoid toxin exhausts the RPA response to DNA replication stress driving senescence and Salmonella infection. Nat Commun 2019; 10:4040. [PMID: 31492859 PMCID: PMC6731267 DOI: 10.1038/s41467-019-12064-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 08/15/2019] [Indexed: 01/10/2023] Open
Abstract
Salmonella Typhi activates the host DNA damage response through the typhoid toxin, facilitating typhoid symptoms and chronic infections. Here we reveal a non-canonical DNA damage response, which we call RING (response induced by a genotoxin), characterized by accumulation of phosphorylated histone H2AX (γH2AX) at the nuclear periphery. RING is the result of persistent DNA damage mediated by toxin nuclease activity and is characterized by hyperphosphorylation of RPA, a sensor of single-stranded DNA (ssDNA) and DNA replication stress. The toxin overloads the RPA pathway with ssDNA substrate, causing RPA exhaustion and senescence. Senescence is also induced by canonical γΗ2ΑΧ foci revealing distinct mechanisms. Senescence is transmitted to non-intoxicated bystander cells by an unidentified senescence-associated secreted factor that enhances Salmonella infections. Thus, our work uncovers a mechanism by which genotoxic Salmonella exhausts the RPA response by inducing ssDNA formation, driving host cell senescence and facilitating infection.
Collapse
Affiliation(s)
- Angela E M Ibler
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge, CB2 1QP, UK
| | - Mohamed ElGhazaly
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kathryn L Naylor
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Natalia A Bulgakova
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sherif F El-Khamisy
- The Healthy Life Span Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
- Center of Genomics, Zewail City of Science and Technology, Giza, Egypt
| | - Daniel Humphreys
- Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
37
|
Martin OCB, Bergonzini A, D'Amico F, Chen P, Shay JW, Dupuy J, Svensson M, Masucci MG, Frisan T. Infection with genotoxin-producing Salmonella enterica synergises with loss of the tumour suppressor APC in promoting genomic instability via the PI3K pathway in colonic epithelial cells. Cell Microbiol 2019; 21:e13099. [PMID: 31414579 PMCID: PMC6899655 DOI: 10.1111/cmi.13099] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/16/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
Several commensal and pathogenic Gram‐negative bacteria produce DNA‐damaging toxins that are considered bona fide carcinogenic agents. The microbiota of colorectal cancer (CRC) patients is enriched in genotoxin‐producing bacteria, but their role in the pathogenesis of CRC is poorly understood. The adenomatous polyposis coli (APC) gene is mutated in familial adenomatous polyposis and in the majority of sporadic CRCs. We investigated whether the loss of APC alters the response of colonic epithelial cells to infection by Salmonella enterica, the only genotoxin‐producing bacterium associated with cancer in humans. Using 2D and organotypic 3D cultures, we found that APC deficiency was associated with sustained activation of the DNA damage response, reduced capacity to repair different types of damage, including DNA breaks and oxidative damage, and failure to induce cell cycle arrest. The reduced DNA repair capacity and inability to activate adequate checkpoint responses was associated with increased genomic instability in APC‐deficient cells exposed to the genotoxic bacterium. Inhibition of the checkpoint response was dependent on activation of the phosphatidylinositol 3‐kinase pathway. These findings highlight the synergistic effect of the loss of APC and infection with genotoxin‐producing bacteria in promoting a microenvironment conducive to malignant transformation.
Collapse
Affiliation(s)
- Océane C B Martin
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Bergonzini
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Federica D'Amico
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Puran Chen
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jerry W Shay
- Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jacques Dupuy
- INRA, ToxAlim (Research Centre in Food Toxicology), INRA, ENVT, INP-Purpan, UPS, Université de Toulouse, Toulouse, France
| | - Mattias Svensson
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria G Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
38
|
Cheng RA, Wiedmann M. The ADP-Ribosylating Toxins of Salmonella. Toxins (Basel) 2019; 11:E416. [PMID: 31315299 PMCID: PMC6669713 DOI: 10.3390/toxins11070416] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/22/2022] Open
Abstract
A number of pathogenic bacteria utilize toxins to mediate disease in a susceptible host. The foodborne pathogen Salmonella is one of the most important and well-studied bacterial pathogens. Recently, whole genome sequence characterizations revealed the presence of multiple novel ADP-ribosylating toxins encoded by a variety of Salmonella serovars. In this review, we discuss both the classical (SpvB) and novel (typhoid toxin, ArtAB, and SboC/SeoC) ADP-ribosylating toxins of Salmonella, including the structure and function of these toxins and our current understanding of their contributions to virulence.
Collapse
Affiliation(s)
- Rachel A Cheng
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA.
| | - Martin Wiedmann
- Department of Food Science, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
39
|
Gibani MM, Jones E, Barton A, Jin C, Meek J, Camara S, Galal U, Heinz E, Rosenberg-Hasson Y, Obermoser G, Jones C, Campbell D, Black C, Thomaides-Brears H, Darlow C, Dold C, Silva-Reyes L, Blackwell L, Lara-Tejero M, Jiao X, Stack G, Blohmke CJ, Hill J, Angus B, Dougan G, Galán J, Pollard AJ. Investigation of the role of typhoid toxin in acute typhoid fever in a human challenge model. Nat Med 2019; 25:1082-1088. [PMID: 31270506 PMCID: PMC6892374 DOI: 10.1038/s41591-019-0505-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/30/2019] [Indexed: 11/09/2022]
Abstract
Salmonella Typhi is a human host-restricted pathogen that is responsible for typhoid fever in approximately 10.9 million people annually1. The typhoid toxin is postulated to have a central role in disease pathogenesis, the establishment of chronic infection and human host restriction2–6. However, its precise role in typhoid disease in humans is not fully defined. We studied the role of typhoid toxin in acute infection using a randomized, double-blind S. Typhi human challenge model7. Forty healthy volunteers were randomized (1:1) to oral challenge with 104 colony-forming units of wild-type or an isogenic typhoid toxin deletion mutant (TN) of S. Typhi. We observed no significant difference in the rate of typhoid infection (fever ≥38 °C for ≥12 h and/or S. Typhi bacteremia) between participants challenged with wild-type or TN S. Typhi (15 out of 21 (71%) versus 15 out of 19 (79%); P = 0.58). The duration of bacteremia was significantly longer in participants challenged with the TN strain compared with wild-type (47.6 hours (28.9–97.0) versus 30.3(3.6–49.4); P ≤ 0.001). The clinical syndrome was otherwise indistinguishable between wild-type and TN groups. These data suggest that the typhoid toxin is not required for infection and the development of early typhoid fever symptoms within the context of a human challenge model. Further clinical data are required to assess the role of typhoid toxin in severe disease or the establishment of bacterial carriage. Typhoid toxin is not essential for the pathogenesis of typhoid fever in healthy humans challenged with Salmonella Typhi.
Collapse
Affiliation(s)
- Malick M Gibani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK. .,Department of Medicine, Imperial College London, London, UK.
| | - Elizabeth Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Amber Barton
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Celina Jin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Juliette Meek
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Susana Camara
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Ushma Galal
- Nuffield Department of Primary Care Health Sciences, Clinical Trials Unit, University of Oxford, Oxford, UK
| | - Eva Heinz
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Yael Rosenberg-Hasson
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Gerlinde Obermoser
- Human Immune Monitoring Center, Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, CA, USA
| | - Claire Jones
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Danielle Campbell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Charlotte Black
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Helena Thomaides-Brears
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Christopher Darlow
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Laura Silva-Reyes
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Luke Blackwell
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Maria Lara-Tejero
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Xuyao Jiao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Gabrielle Stack
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Christoph J Blohmke
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jennifer Hill
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Brian Angus
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Gordon Dougan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK.,Department of Medicine, University of Cambridge, Hinxton, UK
| | - Jorge Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
40
|
Rhen M. Salmonella and Reactive Oxygen Species: A Love-Hate Relationship. J Innate Immun 2019; 11:216-226. [PMID: 30943492 DOI: 10.1159/000496370] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica represents an enterobacterial species including numerous serovars that cause infections at, or initiated at, the intestinal epithelium. Many serovars also act as facultative intracellular pathogens with a tropism for phagocytic cells. These bacteria not only survive in phagocytes but also undergo de facto replication therein. Phagocytes, through the activities of phagocyte NADPH-dependent oxidase and inducible nitric oxide synthase, are very proficient in converting molecular oxygen to reactive oxygen (ROS) and nitrogen species (RNS). These compounds represent highly efficient effectors of the innate immune defense. Salmonella is by no means resistant to these effectors, which may stand in contrast to the host niches chosen. To cope with this paradox, these bacteria rely on an array of detoxification and repair systems. Combination these systems allows for a high enough tolerance to ROS and RNS to enable establishment of infection. In addition, salmonella possesses protein factors that have the potential to dampen the infection-associated inflammation, which evidently results in a reduced exposure to ROS and RNS. This review attempts to summarize the activities and strategies by which salmonella tries to cope with ROS and RNS and how the bacterium can make use of these innate defense factors.
Collapse
Affiliation(s)
- Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden, .,Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden, .,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden,
| |
Collapse
|
41
|
Johnson R, Mylona E, Frankel G. TyphoidalSalmonella: Distinctive virulence factors and pathogenesis. Cell Microbiol 2018; 20:e12939. [DOI: 10.1111/cmi.12939] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/06/2018] [Accepted: 07/13/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Rebecca Johnson
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| | - Elli Mylona
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| | - Gad Frankel
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences; Imperial College London; London UK
| |
Collapse
|
42
|
Delgado-Suárez EJ, Selem-Mojica N, Ortiz-López R, Gebreyes WA, Allard MW, Barona-Gómez F, Rubio-Lozano MS. Whole genome sequencing reveals widespread distribution of typhoidal toxin genes and VirB/D4 plasmids in bovine-associated nontyphoidal Salmonella. Sci Rep 2018; 8:9864. [PMID: 29959369 PMCID: PMC6026178 DOI: 10.1038/s41598-018-28169-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 05/23/2018] [Indexed: 01/23/2023] Open
Abstract
Nontyphoidal Salmonella (NTS) is a common pathogen in food-producing animals and a public health concern worldwide. Various NTS serovars may be present in apparently healthy animals. This could result in carcass contamination during the slaughter process leading to human exposure. While most genomic research has focused on Salmonella pathogenesis, little is known on the factors associated with subclinical infections and environmental persistence. We report here the widespread distribution of typhoidal toxin genes (i. e. the cdtB islet, hlyE, taiA), among NTS strains from a beef slaughter operation (n = 39) and from epidemiologically unconnected ground beef (n = 20). These genes were present in 76% of the strains, regardless of serovar, isolation source or geographical location. Moreover, strains that predominated in the slaughterhouse carry plasmid-borne type IV secretion systems (T4SS), which have been linked to persistent infections in numerous pathogens. Population genomics supports clonal dissemination of NTS along the food production chain, highlighting its role as reservoir of genetic variability in the environment. Overall, the study provides a thorough characterization of serovar diversity and genomic features of beef-associated NTS in Mexico. Furthermore, it reveals how common genetic factors could partially explain the emergence and persistence of certain NTS serovars in the beef industry.
Collapse
Affiliation(s)
- Enrique Jesús Delgado-Suárez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico.
| | - Nelly Selem-Mojica
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, 36821, Mexico
| | - Rocío Ortiz-López
- Centro de Investigación y Desarrollo en Ciencias de la Salud, Universidad Autónoma de Nuevo León, Monterrey, 66460, Mexico
- Tecnológico de Monterrey, School of Medicine and Health Sciences, Monterrey, 64710, Mexico
| | | | - Marc W Allard
- Office of Regulatory Science, Center for Food Safety and Applied Nutrition, U. S. Food and Drug Administration, College Park, 20740, USA
| | - Francisco Barona-Gómez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav-IPN, Irapuato, 36821, Mexico.
| | - María Salud Rubio-Lozano
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, 04510, Mexico
| |
Collapse
|
43
|
Hiyoshi H, Tiffany CR, Bronner DN, Bäumler AJ. Typhoidal Salmonella serovars: ecological opportunity and the evolution of a new pathovar. FEMS Microbiol Rev 2018; 42:527-541. [DOI: 10.1093/femsre/fuy024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 05/19/2018] [Indexed: 12/20/2022] Open
Affiliation(s)
- Hirotaka Hiyoshi
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Connor R Tiffany
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Denise N Bronner
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| | - Andreas J Bäumler
- Department of Medial Microbiology and Immunology, School of Medicine, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
44
|
The Typhoid Toxin Produced by the Nontyphoidal Salmonella enterica Serotype Javiana Is Required for Induction of a DNA Damage Response In Vitro and Systemic Spread In Vivo. mBio 2018; 9:mBio.00467-18. [PMID: 29588404 PMCID: PMC5874915 DOI: 10.1128/mbio.00467-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Salmonella cytolethal distending toxin (S-CDT), first described as the “typhoid toxin” in Salmonella enterica subsp. enterica serotype Typhi, induces DNA damage in eukaryotic cells. Recent studies have shown that more than 40 nontyphoidal Salmonella (NTS) serotypes carry genes that encode S-CDT, yet very little is known about the activity, function, and role of S-CDT in NTS. Here we show that deletion of genes encoding the binding subunit (pltB) and a bacteriophage muramidase predicted to play a role in toxin export (ttsA) does not abolish toxin activity in the S-CDT-positive NTS Salmonella enterica subsp. enterica serotype Javiana. However, S. Javiana strains harboring deletions of both pltB and its homolog artB, had a complete loss of S-CDT activity, suggesting that S. Javiana carries genes encoding two variants of the binding subunit. S-CDT-mediated DNA damage, as determined by phosphorylation of histone 2AX (H2AX), producing phosphorylated H2AX (γH2AX), was restricted to epithelial cells in S and G2/M phases of the cell cycle and did not result in apoptosis or cell death. Compared to mice infected with a ΔcdtB strain, mice infected with wild-type S. Javiana had significantly higher levels of S. Javiana in the liver, but not in the spleen, ileum, or cecum. Overall, we show that production of active S-CDT by NTS serotype S. Javiana requires different genes (cdtB, pltA, and either pltB or artB) for expression of biologically active toxin than those reported for S-CDT production by S. Typhi (cdtB, pltA, pltB, and ttsA). However, as in S. Typhi, NTS S-CDT influences the outcome of infection both in vitro and in vivo. Nontyphoidal Salmonella (NTS) are a major cause of bacterial food-borne illness worldwide; however, our understanding of virulence mechanisms that determine the outcome and severity of nontyphoidal salmonellosis is incompletely understood. Here we show that S-CDT produced by NTS plays a significant role in the outcome of infection both in vitro and in vivo, highlighting S-CDT as an important virulence factor for nontyphoidal Salmonella serotypes. Our data also contribute novel information about the function of S-CDT, as S-CDT-mediated DNA damage occurs only during certain phases of the cell cycle, and the resulting damage does not induce cell death as assessed using a propidium iodide exclusion assay. Importantly, our data support that, despite having genetically similar S-CDT operons, NTS serotype S. Javiana has different genetic requirements than S. Typhi, for the production and export of active S-CDT.
Collapse
|
45
|
Maroccia Z, Loizzo S, Travaglione S, Frank C, Fabbri A, Fiorentini C. New therapeutics from Nature: The odd case of the bacterial cytotoxic necrotizing factor 1. Biomed Pharmacother 2018; 101:929-937. [PMID: 29635902 DOI: 10.1016/j.biopha.2018.02.140] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 02/19/2018] [Accepted: 02/26/2018] [Indexed: 12/13/2022] Open
Abstract
Natural products may represent a rich source of new drugs. The enthusiasm toward this topic has recently been fueled by the 2015 Nobel Prize in Physiology or Medicine, awarded for the discovery of avermectin and artemisinin, natural products from Bacteria and Plantae, respectively, which have targeted one of the major global health issues, the parasitic diseases. Specifically, bacteria either living in the environment or colonizing our body may produce compounds of unexpected biomedical value with the potentiality to be employed as therapeutic drugs. In this review, the fascinating history of CNF1, a protein toxin produced by pathogenic strains of Escherichia coli, is divulged. Even if produced by bacteria responsible for a variety of diseases, CNF1 can behave as a promising benefactor to mankind. By modulating the Rho GTPases, this bacterial product plays a key role in organizing the actin cytoskeleton, enhancing synaptic plasticity and brain energy level, rescuing cognitive deficits, reducing glioma growth in experimental animals. These abilities strongly suggest the need to proceed with the studies on this odd drug in order to pave the way toward clinical trials.
Collapse
Affiliation(s)
- Zaira Maroccia
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Stefano Loizzo
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Sara Travaglione
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Claudio Frank
- Italian Centre for Rare Diseases, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Alessia Fabbri
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy
| | - Carla Fiorentini
- Italian Centre for Global Health, Istituto Superiore di Sanità, viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
46
|
Białas A, Zess EK, De la Concepcion JC, Franceschetti M, Pennington HG, Yoshida K, Upson JL, Chanclud E, Wu CH, Langner T, Maqbool A, Varden FA, Derevnina L, Belhaj K, Fujisaki K, Saitoh H, Terauchi R, Banfield MJ, Kamoun S. Lessons in Effector and NLR Biology of Plant-Microbe Systems. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:34-45. [PMID: 29144205 DOI: 10.1101/171223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A diversity of plant-associated organisms secrete effectors-proteins and metabolites that modulate plant physiology to favor host infection and colonization. However, effectors can also activate plant immune receptors, notably nucleotide-binding domain and leucine-rich repeat region (NLR)-containing proteins, enabling plants to fight off invading organisms. This interplay between effectors, their host targets, and the matching immune receptors is shaped by intricate molecular mechanisms and exceptionally dynamic coevolution. In this article, we focus on three effectors, AVR-Pik, AVR-Pia, and AVR-Pii, from the rice blast fungus Magnaporthe oryzae (syn. Pyricularia oryzae), and their corresponding rice NLR immune receptors, Pik, Pia, and Pii, to highlight general concepts of plant-microbe interactions. We draw 12 lessons in effector and NLR biology that have emerged from studying these three little effectors and are broadly applicable to other plant-microbe systems.
Collapse
Affiliation(s)
- Aleksandra Białas
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Erin K Zess
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | | | - Marina Franceschetti
- 2 Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Helen G Pennington
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Kentaro Yoshida
- 3 Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Jessica L Upson
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Emilie Chanclud
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Chih-Hang Wu
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Thorsten Langner
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Abbas Maqbool
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Freya A Varden
- 2 Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Lida Derevnina
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Khaoula Belhaj
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| | - Koki Fujisaki
- 4 Iwate Biotechnology Research Center, Kitakami, Iwate, Japan; and
| | - Hiromasa Saitoh
- 4 Iwate Biotechnology Research Center, Kitakami, Iwate, Japan; and
- 5 Department of Molecular Microbiology, Tokyo University of Agriculture, Tokyo, Japan
| | - Ryohei Terauchi
- 3 Graduate School of Agricultural Science, Kobe University, Kobe, Japan
- 4 Iwate Biotechnology Research Center, Kitakami, Iwate, Japan; and
| | - Mark J Banfield
- 2 Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Sophien Kamoun
- 1 The Sainsbury Laboratory, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
47
|
Di Domenico EG, Cavallo I, Pontone M, Toma L, Ensoli F. Biofilm Producing Salmonella Typhi: Chronic Colonization and Development of Gallbladder Cancer. Int J Mol Sci 2017; 18:ijms18091887. [PMID: 28858232 PMCID: PMC5618536 DOI: 10.3390/ijms18091887] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 08/29/2017] [Accepted: 08/30/2017] [Indexed: 01/05/2023] Open
Abstract
Salmonella enterica subspecies enterica serovar Typhi is the aetiological agent of typhoid or enteric fever. In a subset of individuals, S. Typhi colonizes the gallbladder causing an asymptomatic chronic infection. Nonetheless, these asymptomatic carriers provide a reservoir for further spreading of the disease. Epidemiological studies performed in regions where S. Typhi is endemic, revealed that the majority of chronically infected carriers also harbour gallstones, which in turn, have been indicated as a primary predisposing factor for the onset of gallbladder cancer (GC). It is now well recognised, that S. Typhi produces a typhoid toxin with a carcinogenic potential, that induces DNA damage and cell cycle alterations in intoxicated cells. In addition, biofilm production by S. Typhi may represent a key factor for the promotion of a persistent infection in the gallbladder, thus sustaining a chronic local inflammatory response and exposing the epithelium to repeated damage caused by carcinogenic toxins. This review aims to highlight the putative connection between the chronic colonization by highly pathogenic strains of S. Typhi capable of combining biofilm and toxin production and the onset of GC. Considering the high risk of GC associated with the asymptomatic carrier status, the rapid identification and profiling of biofilm production by S. Typhi strains would be key for effective therapeutic management and cancer prevention.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Martina Pontone
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Luigi Toma
- Infectious Disease Consultant, Regina Elena National Cancer Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology, San Gallicano Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), 00144 Rome, Italy.
| |
Collapse
|
48
|
AKT2 suppresses pro-survival autophagy triggered by DNA double-strand breaks in colorectal cancer cells. Cell Death Dis 2017; 8:e3019. [PMID: 28837154 PMCID: PMC5596597 DOI: 10.1038/cddis.2017.418] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 12/12/2022]
Abstract
DNA double-strand breaks (DSBs) are critical DNA lesions, which threaten genome stability and cell survival. DSBs are directly induced by ionizing radiation (IR) and radiomimetic agents, including the cytolethal distending toxin (CDT). This bacterial genotoxin harbors a unique DNase-I-like endonuclease activity. Here we studied the role of DSBs induced by CDT and IR as a trigger of autophagy, which is a cellular degradation process involved in cell homeostasis, genome protection and cancer. The regulatory mechanisms of DSB-induced autophagy were analyzed, focusing on the ATM-p53-mediated DNA damage response and AKT signaling in colorectal cancer cells. We show that treatment of cells with CDT or IR increased the levels of the autophagy marker LC3B-II. Consistently, an enhanced formation of autophagosomes and a decrease of the autophagy substrate p62 were observed. Both CDT and IR concomitantly suppressed mTOR signaling and stimulated the autophagic flux. DSBs were demonstrated as the primary trigger of autophagy using a DNase I-defective CDT mutant, which neither induced DSBs nor autophagy. Genetic abrogation of p53 and inhibition of ATM signaling impaired the autophagic flux as revealed by LC3B-II accumulation and reduced formation of autophagic vesicles. Blocking of DSB-induced apoptotic cell death by the pan-caspase inhibitor Z-VAD stimulated autophagy. In line with this, pharmacological inhibition of autophagy increased cell death, while ATG5 knockdown did not affect cell death after DSB induction. Interestingly, both IR and CDT caused AKT activation, which repressed DSB-triggered autophagy independent of the cellular DNA-PK status. Further knockdown and pharmacological inhibitor experiments provided evidence that the negative autophagy regulation was largely attributable to AKT2. Finally, we show that upregulation of CDT-induced autophagy upon AKT inhibition resulted in lower apoptosis and increased cell viability. Collectively, the findings demonstrate that DSBs trigger pro-survival autophagy in an ATM- and p53-dependent manner, which is curtailed by AKT2 signaling.
Collapse
|
49
|
Abstract
Salmonella enterica subspecies enterica includes several serovars infecting both humans and other animals and leading to typhoid fever or gastroenteritis. The high prevalence of associated morbidity and mortality, together with an increased emergence of multidrug-resistant strains, is a current global health issue that has prompted the development of vaccination strategies that confer protection against most serovars. Currently available systemic vaccine approaches have major limitations, including a reduced effectiveness in young children and a lack of cross-protection among different strains. Having studied host-pathogen interactions, microbiologists and immunologists argue in favor of topical gastrointestinal administration for improvement in vaccine efficacy. Here, recent advances in this field are summarized, including mechanisms of bacterial uptake at the intestinal epithelium, the assessment of protective host immunity, and improved animal models that closely mimic infection in humans. The pros and cons of existing vaccines are presented, along with recent progress made with novel formulations. Finally, new candidate antigens and their relevance in the refined design of anti-Salmonella vaccines are discussed, along with antigen vectorization strategies such as nanoparticles or secretory immunoglobulins, with a focus on potentiating mucosal vaccine efficacy.
Collapse
|
50
|
Fowler CC, Chang SJ, Gao X, Geiger T, Stack G, Galán JE. Emerging insights into the biology of typhoid toxin. Curr Opin Microbiol 2017; 35:70-77. [PMID: 28213043 DOI: 10.1016/j.mib.2017.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/25/2022]
Abstract
Typhoid toxin is a unique A2B5 exotoxin and an important virulence factor for Salmonella Typhi, the cause of typhoid fever. In the decade since its initial discovery, great strides have been made in deciphering the unusual biological program of this toxin, which is fundamentally different from related toxins in many ways. Purified typhoid toxin administered to laboratory animals causes many of the symptoms of typhoid fever, suggesting that typhoid toxin is a central factor in this disease. Further advances in understanding the biology of this toxin will help guide the development of badly needed diagnostics and therapeutic interventions that target this toxin to detect, prevent or treat typhoid fever.
Collapse
Affiliation(s)
- Casey C Fowler
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, United States
| | - Shu-Jung Chang
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, United States
| | - Xiang Gao
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, United States
| | - Tobias Geiger
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, United States
| | - Gabrielle Stack
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, United States
| | - Jorge E Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536, United States.
| |
Collapse
|