1
|
Kim J, Song CH. Stress Granules in Infectious Disease: Cellular Principles and Dynamic Roles in Immunity and Organelles. Int J Mol Sci 2024; 25:12950. [PMID: 39684660 DOI: 10.3390/ijms252312950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Stress granules (SGs) are membrane-less aggregates that form in response to various cellular stimuli through a process called liquid-liquid phase separation (LLPS). Stimuli such as heat shock, osmotic stress, oxidative stress, and infections can induce the formation of SGs, which play crucial roles in regulating gene expression to help cells adapt to stress conditions. Various mRNAs and proteins are aggregated into SGs, particularly those associated with the protein translation machinery, which are frequently found in SGs. When induced by infections, SGs modulate immune cell activity, supporting the cellular response against infection. The roles of SGs differ in viral versus microbial infections, and depending on the type of immune cell involved, SGs function differently in response to infection. In this review, we summarize our current understanding of the implication of SGs in immunity and cellular organelles in the context of infectious diseases. Importantly, we explore insights into the regulatory functions of SGs in the context of host cells under infection.
Collapse
Affiliation(s)
- Jaewhan Kim
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Chang-Hwa Song
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
2
|
Mao S, Liu ZY, Liu ZY, Liu P, Lin LC, Zhang Y, Yang JJ, Zhao JY, Tao H. Phase separation of epigenetic landscape in cardiovascular diseases. Biomed Pharmacother 2024; 181:117654. [PMID: 39522265 DOI: 10.1016/j.biopha.2024.117654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
The pathogenesis of cardiovascular diseases (CVDs) is intricate, with liquid-liquid phase separation (LLPS) considered a crucial regulatory mechanism. Epigenetics is closely intertwined with cardiovascular diseases, involving mechanisms such as DNA methylation, histone modifications, and non-coding RNAs (ncRNAs) that play pivotal roles in cardiovascular disease progression and regression. It is known that specific proteins and mRNAs associated with epigenetic modifications exhibit LLPS characteristics, influencing cardiovascular diseases. Consequently, targeting epigenetic modifications to modulate LLPS emerges as a promising strategy for cardiovascular diseases treatment. This review delves into the regulatory impact of liquid-liquid phase separation on cardiovascular diseases, with a specific focus on the epigenetic landscape. The current study sought to investigate the relationship between epigenetic landscape and phase separation in cardiovascular diseases development, as well as their therapeutic implications.
Collapse
Affiliation(s)
- Sui Mao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhen-Yu Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Peng Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
3
|
Glon D, Léonardon B, Guillemot A, Albertini A, Lagaudrière-Gesbert C, Gaudin Y. Biomolecular condensates with liquid properties formed during viral infections. Microbes Infect 2024; 26:105402. [PMID: 39127089 DOI: 10.1016/j.micinf.2024.105402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/10/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
During a viral infection, several membraneless compartments with liquid properties are formed. They can be of viral origin concentrating viral proteins and nucleic acids, and harboring essential stages of the viral cycle, or of cellular origin containing components involved in innate immunity. This is a paradigm shift in our understanding of viral replication and the interaction between viruses and innate cellular immunity.
Collapse
Affiliation(s)
- Damien Glon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Benjamin Léonardon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Ariane Guillemot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Aurélie Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Kawaguchi N, Itakura Y, Intaruck K, Ariizumi T, Harada M, Inoue S, Maeda K, Ito N, Hall WW, Sawa H, Orba Y, Sasaki M. Reverse genetic approaches allowing the characterization of the rabies virus street strain belonging to the SEA4 subclade. Sci Rep 2024; 14:18509. [PMID: 39122768 PMCID: PMC11316049 DOI: 10.1038/s41598-024-69613-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
Rabies virus (RABV) is the causative agent of rabies, a lethal neurological disease in mammals. RABV strains can be classified into fixed strains (laboratory strains) and street strains (field/clinical strains), which have different properties including cell tropism and neuroinvasiveness. RABV Toyohashi strain is a street strain isolated in Japan from an imported case which had been bitten by rabid dog in the Philippines. In order to facilitate molecular studies of RABV, we established a reverse genetics (RG) system for the study of the Toyohashi strain. The recombinant virus was obtained from a cDNA clone of Toyohashi strain and exhibited similar growth efficiency as the original virus in cultured cell lines. Both the original and recombinant strains showed similar pathogenicity with high neuroinvasiveness in mice, and the infected mice developed a long and inconsistent incubation period, which is characteristic of street strains. We also generated a recombinant Toyohashi strain expressing viral phosphoprotein (P protein) fused with the fluorescent protein mCherry, and tracked the intracellular dynamics of the viral P protein using live-cell imaging. The presented reverse genetics system for Toyohashi strain will be a useful tool to explore the fundamental molecular mechanisms of the replication of RABV street strains.
Collapse
Affiliation(s)
- Nijiho Kawaguchi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yukari Itakura
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Kittiya Intaruck
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Takuma Ariizumi
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Michiko Harada
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satoshi Inoue
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ken Maeda
- Department of Veterinary Science, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoto Ito
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - William W Hall
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- National Virus Reference Laboratory, School of Medicine, University College of Dublin, Dublin, Ireland
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
| | - Hirofumi Sawa
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Global Virus Network, Baltimore, MD, USA
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
- International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
- One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan.
- Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan.
| |
Collapse
|
5
|
Yoneyama M, Kato H, Fujita T. Physiological functions of RIG-I-like receptors. Immunity 2024; 57:731-751. [PMID: 38599168 DOI: 10.1016/j.immuni.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 04/12/2024]
Abstract
RIG-I-like receptors (RLRs) are crucial for pathogen detection and triggering immune responses and have immense physiological importance. In this review, we first summarize the interferon system and innate immunity, which constitute primary and secondary responses. Next, the molecular structure of RLRs and the mechanism of sensing non-self RNA are described. Usually, self RNA is refractory to the RLR; however, there are underlying host mechanisms that prevent immune reactions. Studies have revealed that the regulatory mechanisms of RLRs involve covalent molecular modifications, association with regulatory factors, and subcellular localization. Viruses have evolved to acquire antagonistic RLR functions to escape the host immune reactions. Finally, the pathologies caused by the malfunction of RLR signaling are described.
Collapse
Affiliation(s)
- Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan; Division of Pandemic and Post-disaster Infectious Diseases, Research Institute of Disaster Medicine, Chiba University, Chiba, Japan
| | - Hiroki Kato
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Takashi Fujita
- Institute of Cardiovascular Immunology, Medical Faculty, University Hospital Bonn, University of Bonn, Bonn, Germany; Laboratory of Regulatory Information, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
| |
Collapse
|
6
|
Gao H, Gao X, Liu X, Luo Y, Zhong J, Liu J, Yan L, Wang H, Gong L, Zhang G, Zheng Z, Sun Y. African swine fever virus maintains de novo global cellular protein synthesis and inhibits stress granules formation via dephosphorylating eIF2α. Vet Microbiol 2024; 290:109988. [PMID: 38244395 DOI: 10.1016/j.vetmic.2024.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/22/2024]
Abstract
African swine fever virus (ASFV) has caused enormous economic losses since its first reported detection, and there is still no effective vaccines or drug treatment. During infection, viruses may employ various strategies, such as regulating the host endoplasmic reticulum stress/unfolded protein response or the formation of stress granules (SGs), to form an optimal environment for virus replication. However, how ASFV infection regulates host endoplasmic reticulum stress, eIF2α-regulated protein synthesis, and the formation of SGs remains unclear. Here, we evaluated the activation of ER stress and its three downstream axes during ASFV infection and identified a powerful dephosphorylation of eIF2α by ASFV ex vivo. This strong dephosphorylation property could maintain the efficiency of eIF2α-mediated de novo global protein synthesis, thus ensuring efficient viral protein synthesis at early stage. In addition, the powerful dephosphorylation of eIF2α by ASFV upon infection could also inhibit the formation of SGs induced by sodium arsenite. In addition, a specific eIF2α dephosphorylation inhibitor, salubrinal, could partially counteract ASFV-mediated eIF2α dephosphorylation and inhibit viral replication. Our results provide new insights into the areas of ASFV`s escape from host immunity and hijacking of the host protein translation system.
Collapse
Affiliation(s)
- Han Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Xiaopeng Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Xing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Yizhuo Luo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Jianhao Zhong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Jing Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Luling Yan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Heng Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Lang Gong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China
| | - Guihong Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China
| | - Zezhong Zheng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China.
| | - Yankuo Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; African Swine Fever Regional Laboratory of China (Guangzhou), Guangzhou 510642, China; Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming 525000, China; Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou 510000, China.
| |
Collapse
|
7
|
Martin EW, Iserman C, Olety B, Mitrea DM, Klein IA. Biomolecular Condensates as Novel Antiviral Targets. J Mol Biol 2024; 436:168380. [PMID: 38061626 DOI: 10.1016/j.jmb.2023.168380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023]
Abstract
Viral infections pose a significant health risk worldwide. There is a pressing need for more effective antiviral drugs to combat emerging novel viruses and the reemergence of previously controlled viruses. Biomolecular condensates are crucial for viral replication and are promising targets for novel antiviral therapies. Herein, we review the role of biomolecular condensates in the viral replication cycle and discuss novel strategies to leverage condensate biology for antiviral drug discovery. Biomolecular condensates may also provide an opportunity to develop antivirals that are broad-spectrum or less prone to acquired drug resistance.
Collapse
|
8
|
Li L, Wang J, Zhong X, Jiang Y, Pei G, Yang X, Zhang K, Shen S, Jin X, Sun G, Su C, Chen S, Yin H. ADP-Hep-Induced Liquid Phase Condensation of TIFA-TRAF6 Activates ALPK1/TIFA-Dependent Innate Immune Responses. RESEARCH (WASHINGTON, D.C.) 2024; 7:0315. [PMID: 38357697 PMCID: PMC10865109 DOI: 10.34133/research.0315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
The ALPK1 (alpha-kinase 1)-TIFA (TRAF-interacting protein with fork head-associated domain)-TRAF6 signaling pathway plays a pivotal role in regulating inflammatory processes, with TIFA and TRAF6 serving as key molecules in this cascade. Despite its significance, the functional mechanism of TIFA-TRAF6 remains incompletely understood. In this study, we unveil that TIFA undergoes liquid-liquid phase separation (LLPS) induced by ALPK1 in response to adenosine diphosphate (ADP)-β-D-manno-heptose (ADP-Hep) recognition. The phase separation of TIFA is primarily driven by ALPK1, the pT9-FHA domain, and the intrinsically disordered region segment. Simultaneously, TRAF6 exhibits phase separation during ADP-Hep-induced inflammation, a phenomenon observed consistently across various inflammatory signal pathways. Moreover, TRAF6 is recruited within the TIFA condensates, facilitating lysine (K) 63-linked polyubiquitin chain synthesis. The subsequent recruitment, enrichment, and activation of downstream effectors within these condensates contribute to robust inflammatory signal transduction. Utilizing a novel chemical probe (compound 22), our analysis demonstrates that the activation of the ALPK1-TIFA-TRAF6 signaling pathway in response to small molecules necessitates the phase separation of TIFA. In summary, our findings reveal TIFA as a sensor for upstream signals, initiating the LLPS of itself and downstream proteins. This process results in the formation of membraneless condensates within the ALPK1-TIFA-TRAF6 pathway, suggesting potential applications in therapeutic biotechnology development.
Collapse
Affiliation(s)
- Liping Li
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- Department of Cancer Research, Institute of Medicinal Biotechnology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jia Wang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology,
Peking University, Beijing, China
| | - Xincheng Zhong
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Yaoyao Jiang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- School of Life Sciences,
Tsinghua University, Beijing, 100084, China
| | - Xikang Yang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Kaixiang Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Siqi Shen
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Xue Jin
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Gaoge Sun
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Chaofei Su
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| | - Shuzhen Chen
- Department of Cancer Research, Institute of Medicinal Biotechnology,
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hang Yin
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Institute for Precision Medicine, Tsinghua-Peking Center for Life Sciences, Key Laboratory of Bioorganic Phosphorous chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
| |
Collapse
|
9
|
Redding A, Grabocka E. Stress granules and hormetic adaptation of cancer. Trends Cancer 2023; 9:995-1005. [PMID: 37704502 PMCID: PMC10843007 DOI: 10.1016/j.trecan.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 09/15/2023]
Abstract
Cell stress is inherent to cancer and a key driver of tumorigenesis. Recent studies have proposed that cell stress promotes tumorigenesis through non-membranous organelles known as stress granules (SGs). While the biology of SGs is an emerging field, all studies to date point to the enhanced ability of cancer cells to form SGs compared with normal cells, a heightened dependence on SGs for survival under adverse conditions and for chemotherapy resistance, and the dependence of tumors on SGs for growth. Why cancer cells become dependent on SGs and how SGs promote tumorigenesis remain to be elucidated. Here, we attempt to provide a framework for answering these questions by framing SGs as a hormetic response to tumor-associated stress stimuli.
Collapse
Affiliation(s)
- Alexandra Redding
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Elda Grabocka
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
| |
Collapse
|
10
|
Wang Z, Zhang C, Fan C, Liu Y. Post-translational modifications in stress granule and their implications in neurodegenerative diseases. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194989. [PMID: 37751804 DOI: 10.1016/j.bbagrm.2023.194989] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/21/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023]
Abstract
Stress granules (SGs) arise as formations of mRNAs and proteins in response to translation initiation inhibition during stress. These dynamic compartments adopt a fluidic nature through liquid-liquid phase separation (LLPS), exhibiting a composition subject to constant change within cellular contexts. Research has unveiled an array of post-translational modifications (PTMs) occurring on SG proteins, intricately orchestrating SG dynamics. In the realm of neurodegenerative diseases, pathological mutant proteins congregate into insoluble aggregates alongside numerous SG proteins, manifesting resilience against disassembly. Specific PTMs conspicuously label these aggregates, designating them for subsequent degradation. The strategic manipulation of aberrant SGs via PTMs emerges as a promising avenue for therapeutic intervention. This review discerns recent strides in comprehending the impact of PTMs on LLPS behavior and the assembly/disassembly kinetics of SGs. By delving into the roles of PTMs in governing SG dynamics, we augment our cognizance of the molecular underpinnings of neurodegeneration. Furthermore, we offer invaluable insights into potential targets for therapeutic intervention in neurodegenerative afflictions, encompassing conditions like amyotrophic lateral sclerosis and frontotemporal dementia.
Collapse
Affiliation(s)
- Zhangshun Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chen'ang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chengyu Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanfen Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
11
|
He S, Gou H, Zhou Y, Wu C, Ren X, Wu X, Guan G, Jin B, Huang J, Jin Z, Zhao T. The SARS-CoV-2 nucleocapsid protein suppresses innate immunity by remodeling stress granules to atypical foci. FASEB J 2023; 37:e23269. [PMID: 37889852 DOI: 10.1096/fj.202201973rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Viruses deploy multiple strategies to suppress the host innate immune response to facilitate viral replication and pathogenesis. Typical G3BP1+ stress granules (SGs) are usually formed in host cells after virus infection to restrain viral translation and to stimulate innate immunity. Thus, viruses have evolved various mechanisms to inhibit SGs or to repurpose SG components such as G3BP1. Previous studies showed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection inhibited host immunity during the early stage of COVID-19. However, the precise mechanism is not yet well understood. Here we showed that the SARS-CoV-2 nucleocapsid (SARS2-N) protein suppressed the double-stranded RNA (dsRNA)-induced innate immune response, concomitant with inhibition of SGs and the induction of atypical SARS2-N+ /G3BP1+ foci (N+ foci). The SARS2-N protein-induced formation of N+ foci was dependent on the ability of its ITFG motif to hijack G3BP1, which contributed to suppress the innate immune response. Importantly, SARS2-N protein facilitated viral replication by inducing the formation of N+ foci. Viral mutations within SARS2-N protein that impair the formation of N+ foci are associated with the inability of the SARS2-N protein to suppress the immune response. Taken together, our study has revealed a novel mechanism by which SARS-CoV-2 suppresses the innate immune response via induction of atypical N+ foci. We think that this is a critical strategy for viral pathogenesis and has potential therapeutic implications.
Collapse
Affiliation(s)
- Su He
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Hongwei Gou
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Yulin Zhou
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Chunxiu Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Xinxin Ren
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Xiajunpeng Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Guanwen Guan
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Boxing Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Jinhua Huang
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| | - Zhigang Jin
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
| | - Tiejun Zhao
- College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang, China
- School of Medicine, Hangzhou City University, Hangzhou, Zhejiang, China
| |
Collapse
|
12
|
Lo R, Gonçalves-Carneiro D. Sensing nucleotide composition in virus RNA. Biosci Rep 2023; 43:BSR20230372. [PMID: 37606964 PMCID: PMC10500230 DOI: 10.1042/bsr20230372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023] Open
Abstract
Nucleotide composition plays a crucial role in the structure, function and recognition of RNA molecules. During infection, virus RNA is exposed to multiple endogenous proteins that detect local or global compositional biases and interfere with virus replication. Recent advancements in RNA:protein mapping technologies have enabled the identification of general RNA-binding preferences in the human proteome at basal level and in the context of virus infection. In this review, we explore how cellular proteins recognise nucleotide composition in virus RNA and the impact these interactions have on virus replication. Protein-binding G-rich and C-rich sequences are common examples of how host factors detect and limit infection, and, in contrast, viruses may have evolved to purge their genomes from such motifs. We also give examples of how human RNA-binding proteins inhibit virus replication, not only by destabilising virus RNA, but also by interfering with viral protein translation and genome encapsidation. Understanding the interplay between cellular proteins and virus RNA composition can provide insights into host-virus interactions and uncover potential targets for antiviral strategies.
Collapse
Affiliation(s)
- Raymon Lo
- Imperial College London, Department of Infectious Disease, Imperial College London, London, U.K
| | | |
Collapse
|
13
|
Rademacher DJ, Bello AI, May JP. CASC3 Biomolecular Condensates Restrict Turnip Crinkle Virus by Limiting Host Factor Availability. J Mol Biol 2023; 435:167956. [PMID: 36642157 PMCID: PMC10338645 DOI: 10.1016/j.jmb.2023.167956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/15/2022] [Accepted: 01/07/2023] [Indexed: 01/15/2023]
Abstract
The exon-junction complex (EJC) plays a role in post-transcriptional gene regulation and exerts antiviral activity towards several positive-strand RNA viruses. However, the spectrum of RNA viruses that are targeted by the EJC or the underlying mechanisms are not well understood. EJC components from Arabidopsis thaliana were screened for antiviral activity towards Turnip crinkle virus (TCV, Tombusviridae). Overexpression of the accessory EJC component CASC3 inhibited TCV accumulation > 10-fold in Nicotiana benthamiana while knock-down of endogenous CASC3 resulted in a > 4-fold increase in TCV accumulation. CASC3 forms cytoplasmic condensates and deletion of the conserved SELOR domain reduced condensate size 7-fold and significantly decreased antiviral activity towards TCV. Mass spectrometry of CASC3 complexes did not identify endogenous stress granule or P-body markers and CASC3 failed to co-localize with an aggresome-specific dye suggesting that CASC3 condensates are distinct from well-established membraneless compartments. Mass spectrometry and bimolecular fluorescence complementation assays revealed that CASC3 sequesters Heat shock protein 70 (Hsp70-1) and Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), two host factors with roles in tombusvirus replication. Overexpression of Hsp70-1 or GAPDH reduced the antiviral activity of CASC3 2.1-fold and 2.8-fold, respectively, and suggests that CASC3 inhibits TCV by limiting host factor availability. Unrelated Tobacco mosaic virus (TMV) also depends on Hsp70-1 and CASC3 overexpression restricted TMV accumulation 4-fold and demonstrates that CASC3 antiviral activity is not TCV-specific. Like CASC3, Auxin response factor 19 (ARF19) forms poorly dynamic condensates but ARF19 overexpression failed to inhibit TCV accumulation and suggests that CASC3 has antiviral activities that are not ubiquitous among cytoplasmic condensates.
Collapse
Affiliation(s)
- Dana J Rademacher
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA
| | - Abudu I Bello
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA
| | - Jared P May
- Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, 5009 Rockhill Road, Kansas City, MO 64110, USA.
| |
Collapse
|
14
|
Li T, Li X, Wang X, Chen X, Zhao G, Liu C, Bao M, Song J, Li J, Huang L, Rong J, Tian K, Deng J, Zhu J, Cai X, Bu Z, Zheng J, Weng C. African swine fever virus pS273R antagonizes stress granule formation by cleaving the nucleating protein G3BP1 to facilitate viral replication. J Biol Chem 2023; 299:104844. [PMID: 37209818 PMCID: PMC10404608 DOI: 10.1016/j.jbc.2023.104844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Cytoplasmic stress granules (SGs) are generally triggered by stress-induced translation arrest for storing mRNAs. Recently, it has been shown that SGs are regulated by different stimulators including viral infection, which is involved in the antiviral activity of host cells to limit viral propagation. To survive, several viruses have been reported to execute various strategies, such as modulating SG formation, to create optimal surroundings for viral replication. African swine fever virus (ASFV) is one of the most notorious pathogens in the global pig industry. However, the interplay between ASFV infection and SG formation remains largely unknown. In this study, we found that ASFV infection inhibited SG formation. Through SG inhibitory screening, we found that several ASFV-encoded proteins are involved in inhibition of SG formation. Among them, an ASFV S273R protein (pS273R), the only cysteine protease encoded by the ASFV genome, significantly affected SG formation. ASFV pS273R interacted with G3BP1 (Ras-GTPase-activating protein [SH3 domain] binding protein 1), a vital nucleating protein of SG formation. Furthermore, we found that ASFV pS273R cleaved G3BP1 at the G140-F141 to produce two fragments (G3BP1-N1-140 and G3BP1-C141-456). Interestingly, both the pS273R-cleaved fragments of G3BP1 lost the ability to induce SG formation and antiviral activity. Taken together, our finding reveals that the proteolytic cleavage of G3BP1 by ASFV pS273R is a novel mechanism by which ASFV counteracts host stress and innate antiviral responses.
Collapse
Affiliation(s)
- Tingting Li
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Xuewen Li
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China; College of Life Sciences, Yangtze University, Jingzhou, China
| | - Xiao Wang
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Xin Chen
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Gaihong Zhao
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Chuanxia Liu
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Miaofei Bao
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Jie Song
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Jiangnan Li
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Li Huang
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China
| | - Jun Rong
- College of Life Sciences, Yangtze University, Jingzhou, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, China
| | - Junhua Deng
- Luoyang Putai Biotechnology Co, Ltd, Luoyang, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xuehui Cai
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhigao Bu
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jun Zheng
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China.
| | - Changjiang Weng
- Division of Fundamental Immunology, State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin, China.
| |
Collapse
|
15
|
Zhang X, Sridharan S, Zagoriy I, Eugster Oegema C, Ching C, Pflaesterer T, Fung HKH, Becher I, Poser I, Müller CW, Hyman AA, Savitski MM, Mahamid J. Molecular mechanisms of stress-induced reactivation in mumps virus condensates. Cell 2023; 186:1877-1894.e27. [PMID: 37116470 PMCID: PMC10156176 DOI: 10.1016/j.cell.2023.03.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 09/21/2022] [Accepted: 03/14/2023] [Indexed: 04/30/2023]
Abstract
Negative-stranded RNA viruses can establish long-term persistent infection in the form of large intracellular inclusions in the human host and cause chronic diseases. Here, we uncover how cellular stress disrupts the metastable host-virus equilibrium in persistent infection and induces viral replication in a culture model of mumps virus. Using a combination of cell biology, whole-cell proteomics, and cryo-electron tomography, we show that persistent viral replication factories are dynamic condensates and identify the largely disordered viral phosphoprotein as a driver of their assembly. Upon stress, increased phosphorylation of the phosphoprotein at its interaction interface with the viral polymerase coincides with the formation of a stable replication complex. By obtaining atomic models for the authentic mumps virus nucleocapsid, we elucidate a concomitant conformational change that exposes the viral genome to its replication machinery. These events constitute a stress-mediated switch within viral condensates that provide an environment to support upregulation of viral replication.
Collapse
Affiliation(s)
- Xiaojie Zhang
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Sindhuja Sridharan
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Ievgeniia Zagoriy
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Christina Eugster Oegema
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Cyan Ching
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Tim Pflaesterer
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Herman K H Fung
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Ina Poser
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Christoph W Müller
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Julia Mahamid
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany; Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117 Heidelberg, Germany.
| |
Collapse
|
16
|
Becker N, Maisner A. Nipah Virus Impairs Autocrine IFN Signaling by Sequestering STAT1 and STAT2 into Inclusion Bodies. Viruses 2023; 15:554. [PMID: 36851768 PMCID: PMC9967463 DOI: 10.3390/v15020554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 02/19/2023] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic paramyxovirus that causes fatal infections in humans. As with most disease-causing viruses, the pathogenic potential of NiV is linked to its ability to block antiviral responses, e.g., by antagonizing IFN signaling through blocking STAT proteins. One of the STAT1/2-binding proteins of NiV is the phosphoprotein (P), but its functional role in IFN antagonism in a full viral context is not well defined. As NiV P is required for genome replication and specifically accumulates in cytosolic inclusion bodies (IBs) of infected cells, we hypothesized that this compartmentalization might play a role in P-mediated IFN antagonism. Supporting this notion, we show here that NiV can inhibit IFN-dependent antiviral signaling via a NiV P-dependent sequestration of STAT1 and STAT2 into viral IBs. Consequently, the phosphorylation/activation and nuclear translocation of STAT proteins in response to IFN is limited, as indicated by the lack of nuclear pSTAT in NiV-infected cells. Blocking autocrine IFN signaling by sequestering STAT proteins in IBs is a not yet described mechanism by which NiV could block antiviral gene expression and provides the first evidence that cytosolic NiV IBs may play a functional role in IFN antagonism.
Collapse
Affiliation(s)
| | - Andrea Maisner
- Institute of Virology, Philipps University Marburg, Hans-Meerwein-Str. 2, 35043 Marburg, Germany
| |
Collapse
|
17
|
Jin L, Matsuyama M, Sullivan HA, Zhu M, Lavin TK, Hou Y, Lea NE, Pruner MT, Dam Ferdínez ML, Wickersham IR. "Self-inactivating" rabies viruses are susceptible to loss of their intended attenuating modification. Proc Natl Acad Sci U S A 2023; 120:e2023481120. [PMID: 37053554 PMCID: PMC9963760 DOI: 10.1073/pnas.2023481120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/29/2022] [Indexed: 02/09/2023] Open
Abstract
Monosynaptic tracing using rabies virus is an important technique in neuroscience, allowing brain-wide labeling of neurons directly presynaptic to a targeted neuronal population. A 2017 article reported the development of a noncytotoxic version-a major advance-based on attenuating the rabies virus by the addition of a destabilization domain to the C terminus of a viral protein. However, this modification did not appear to hinder the ability of the virus to spread between neurons. We analyzed two viruses provided by the authors and show here that both were mutants that had lost the intended modification, explaining the paper's paradoxical results. We then made a virus that actually did have the intended modification in at least the majority of virions and found that it did not spread efficiently under the conditions described in the original paper, namely, without an exogenous protease being expressed in order to remove the destabilization domain. We found that it did spread when the protease was supplied, although this also appeared to result in the deaths of most source cells by 3 wk postinjection. We conclude that the new approach is not robust but that it could become a viable technique given further optimization and validation.
Collapse
Affiliation(s)
- Lei Jin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Makoto Matsuyama
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Heather A. Sullivan
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Mulangma Zhu
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Thomas K. Lavin
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - YuanYuan Hou
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Nicholas E. Lea
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Maxwell T. Pruner
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - María Lucía Dam Ferdínez
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Ian R. Wickersham
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
18
|
Scrima N, Le Bars R, Nevers Q, Glon D, Chevreux G, Civas A, Blondel D, Lagaudrière-Gesbert C, Gaudin Y. Rabies virus P protein binds to TBK1 and interferes with the formation of innate immunity-related liquid condensates. Cell Rep 2023; 42:111949. [PMID: 36640307 DOI: 10.1016/j.celrep.2022.111949] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 07/27/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023] Open
Abstract
Viruses must overcome the interferon-mediated antiviral response to replicate and propagate into their host. Rabies virus (RABV) phosphoprotein P is known to inhibit interferon induction. Here, using a global mass spectrometry approach, we show that RABV P binds to TBK1, a kinase located at the crossroads of many interferon induction pathways, resulting in innate immunity inhibition. Mutations of TBK1 phosphorylation sites abolish P binding. Importantly, we demonstrate that upon RABV infection or detection of dsRNA by innate immunity sensors, TBK1 and its adaptor proteins NAP1 and SINTBAD form dynamic cytoplasmic condensates that have liquid properties. These condensates can form larger aggregates having ring-like structures in which NAP1 and TBK1 exhibit locally restricted movement. P binding to TBK1 interferes with the formation of these structures. This work demonstrates that proteins of the signaling pathway leading to interferon induction transiently form liquid organelles that can be targeted by viruses.
Collapse
Affiliation(s)
- Nathalie Scrima
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Romain Le Bars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Damien Glon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | | | - Ahmet Civas
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Danielle Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France.
| |
Collapse
|
19
|
Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int J Mol Sci 2023; 24:ijms24032151. [PMID: 36768473 PMCID: PMC9917183 DOI: 10.3390/ijms24032151] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.
Collapse
|
20
|
Guan Y, Wang Y, Fu X, Bai G, Li X, Mao J, Yan Y, Hu L. Multiple functions of stress granules in viral infection at a glance. Front Microbiol 2023; 14:1138864. [PMID: 36937261 PMCID: PMC10014870 DOI: 10.3389/fmicb.2023.1138864] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 03/05/2023] Open
Abstract
Stress granules (SGs) are distinct RNA granules induced by various stresses, which are evolutionarily conserved across species. In general, SGs act as a conservative and essential self-protection mechanism during stress responses. Viruses have a long evolutionary history and viral infections can trigger a series of cellular stress responses, which may interact with SG formation. Targeting SGs is believed as one of the critical and conservative measures for viruses to tackle the inhibition of host cells. In this systematic review, we have summarized the role of SGs in viral infection and categorized their relationships into three tables, with a particular focus on Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. Moreover, we have outlined several kinds of drugs targeting SGs according to different pathways, most of which are potentially effective against SARS-CoV-2. We believe this review would offer a new view for the researchers and clinicians to attempt to develop more efficacious treatments for virus infection, particularly for the treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Yuelin Guan
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Wang
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xudong Fu
- Center of Stem Cell and Regenerative Medicine, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, Zhejiang, China
| | - Guannan Bai
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xue Li
- Department of Big Data in Health Science School of Public Health and The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jianhua Mao
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yongbin Yan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- *Correspondence: Yongbin Yan,
| | - Lidan Hu
- The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Lidan Hu,
| |
Collapse
|
21
|
Brownsword MJ, Locker N. A little less aggregation a little more replication: Viral manipulation of stress granules. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1741. [PMID: 35709333 PMCID: PMC10078398 DOI: 10.1002/wrna.1741] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 01/31/2023]
Abstract
Recent exciting studies have uncovered how membrane-less organelles, also known as biocondensates, are providing cells with rapid response pathways, allowing them to re-organize their cellular contents and adapt to stressful conditions. Their assembly is driven by the phase separation of their RNAs and intrinsically disordered protein components into condensed foci. Among these, stress granules (SGs) are dynamic cytoplasmic biocondensates that form in response to many stresses, including activation of the integrated stress response or viral infections. SGs sit at the crossroads between antiviral signaling and translation because they concentrate signaling proteins and components of the innate immune response, in addition to translation machinery and stalled mRNAs. Consequently, they have been proposed to contribute to antiviral activities, and therefore are targeted by viral countermeasures. Equally, SGs components can be commandeered by viruses for their own efficient replication. Phase separation processes are an important component of the viral life cycle, for example, driving the assembly of replication factories or inclusion bodies. Therefore, in this review, we will outline the recent understanding of this complex interplay and tug of war between viruses, SGs, and their components. This article is categorized under: RNA in Disease and Development > RNA in Disease Translation > Regulation RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Matthew J. Brownsword
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and MedicineUniversity of SurreyGuildfordSurreyUK
| |
Collapse
|
22
|
Nevers Q, Scrima N, Glon D, Le Bars R, Decombe A, Garnier N, Ouldali M, Lagaudrière-Gesbert C, Blondel D, Albertini A, Gaudin Y. Properties of rabies virus phosphoprotein and nucleoprotein biocondensates formed in vitro and in cellulo. PLoS Pathog 2022; 18:e1011022. [PMID: 36480574 PMCID: PMC9767369 DOI: 10.1371/journal.ppat.1011022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 12/20/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Rabies virus (RABV) transcription and replication take place within viral factories having liquid properties, called Negri bodies (NBs), that are formed by liquid-liquid phase separation (LLPS). The co-expression of RABV nucleoprotein (N) and phosphoprotein (P) in mammalian cells is sufficient to induce the formation of cytoplasmic biocondensates having properties that are like those of NBs. This cellular minimal system was previously used to identify P domains that are essential for biocondensates formation. Here, we constructed fluorescent versions of N and analyzed by FRAP their dynamics inside the biocondensates formed in this minimal system as well as in NBs of RABV-infected cells using FRAP. The behavior of N appears to be different of P as there was no fluorescence recovery of N proteins after photobleaching. We also identified arginine residues as well as two exposed loops of N involved in condensates formation. Corresponding N mutants exhibited distinct phenotypes in infected cells ranging from co-localization with NBs to exclusion from them associated with a dominant-negative effect on infection. We also demonstrated that in vitro, in crowded environments, purified P as well as purified N0-P complex (in which N is RNA-free) form liquid condensates. We identified P domains required for LLPS in this acellular system. P condensates were shown to associate with liposomes, concentrate RNA, and undergo a liquid-gel transition upon ageing. Conversely, N0-P droplets were disrupted upon incubation with RNA. Taken together, our data emphasize the central role of P in NBs formation and reveal some physicochemical features of P and N0-P droplets relevant for explaining NBs properties such as their envelopment by cellular membranes at late stages of infection and nucleocapsids ejections from the viral factories.
Collapse
Affiliation(s)
- Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nathalie Scrima
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Damien Glon
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Romain Le Bars
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Alice Decombe
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nathalie Garnier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Malika Ouldali
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Danielle Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
- * E-mail:
| |
Collapse
|
23
|
Wu C, Holehouse AS, Leung DW, Amarasinghe GK, Dutch RE. Liquid Phase Partitioning in Virus Replication: Observations and Opportunities. Annu Rev Virol 2022; 9:285-306. [PMID: 35709511 PMCID: PMC11331907 DOI: 10.1146/annurev-virology-093020-013659] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses frequently carry out replication in specialized compartments within cells. The effect of these structures on virus replication is poorly understood. Recent research supports phase separation as a foundational principle for organization of cellular components with the potential to influence viral replication. In this review, phase separation is described in the context of formation of viral replication centers, with an emphasis on the nonsegmented negative-strand RNA viruses. Consideration is given to the interplay between phase separation and the critical processes of viral transcription and genome replication, and the role of these regions in pathogen-host interactions is discussed. Finally, critical questions that must be addressed to fully understand how phase separation influences viral replication and the viral life cycle are presented, along with information about new approaches that could be used to make important breakthroughs in this emerging field.
Collapse
Affiliation(s)
- Chao Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Center for Science and Engineering Living Systems, Washington University, St. Louis, Missouri, USA
| | - Daisy W Leung
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Gaya K Amarasinghe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rebecca Ellis Dutch
- Department of Molecular and Cellular Biochemistry, University of Kentucky, College of Medicine, Lexington, Kentucky, USA;
| |
Collapse
|
24
|
The Amino Acid at Position 95 in the Matrix Protein of Rabies Virus Is Involved in Antiviral Stress Granule Formation in Infected Cells. J Virol 2022; 96:e0081022. [PMID: 36069552 PMCID: PMC9517722 DOI: 10.1128/jvi.00810-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stress granules (SGs) are dynamic structures that store cytosolic messenger ribonucleoproteins. SGs have recently been shown to serve as a platform for activating antiviral innate immunity; however, several pathogenic viruses suppress SG formation to evade innate immunity. In this study, we investigated the relationship between rabies virus (RABV) virulence and SG formation, using viral strains with different levels of virulence. We found that the virulent Nishigahara strain did not induce SG formation, but its avirulent offshoot, the Ni-CE strain, strongly induced SG formation. Furthermore, we demonstrated that the amino acid at position 95 in the RABV matrix protein (M95), a pathogenic determinant for the Nishigahara strain, plays a key role in inhibiting SG formation, followed by protein kinase R (PKR)-dependent phosphorylation of the α subunit of eukaryotic initiation factor 2α (eIF2α). M95 was also implicated in the accumulation of RIG-I, a viral RNA sensor protein, in SGs and in the subsequent acceleration of interferon induction. Taken together, our findings strongly suggest that M95-related inhibition of SG formation contributes to the pathogenesis of RABV by allowing the virus to evade the innate immune responses of the host. IMPORTANCE Rabies virus (RABV) is a neglected zoonotic pathogen that causes lethal infections in almost all mammalian hosts, including humans. Recently, RABV has been reported to induce intracellular formation of stress granules (SGs), also known as platforms that activate innate immune responses. However, the relationship between SG formation capacity and pathogenicity of RABV has remained unclear. In this study, by comparing two RABV strains with completely different levels of virulence, we found that the amino acid mutation from valine to alanine at position 95 of matrix protein (M95), which is known to be one of the amino acid mutations that determine the difference in virulence between the strains, plays a major role in SG formation. Importantly, M95 was involved in the accumulation of RIG-I in SGs and in promoting interferon induction. These findings are the first report of the effect of a single amino acid substitution associated with SGs on viral virulence.
Collapse
|
25
|
Sun M, Wu S, Kang S, Liao J, Zhang L, Xu Z, Chen H, Xu L, Zhang X, Qin Q, Wei J. Critical Roles of G3BP1 in Red-Spotted Grouper Nervous Necrosis Virus-Induced Stress Granule Formation and Viral Replication in Orange-Spotted Grouper (Epinephelus coioides). Front Immunol 2022; 13:931534. [PMID: 35935992 PMCID: PMC9354888 DOI: 10.3389/fimmu.2022.931534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/22/2022] [Indexed: 11/13/2022] Open
Abstract
Viral infection causes changes in the internal environment of host cells, and a series of stress responses are generated to respond to these changes and help the cell survive. Stress granule (SG) formation is a type of cellular stress response that inhibits viral replication. However, the relationship between red-spotted grouper nervous necrosis virus (RGNNV) infection and SGs, and the roles of the SG marker protein RAS GTPase-activating protein (SH3 domain)-binding protein 1 (G3BP1) in viral infection remain unclear. In this study, RGNNV infection induced grouper spleen (GS) cells to produce SGs. The SGs particles co-located with the classic SG marker protein eIF3η, and some SGs depolymerized under treatment with the translation inhibitor, cycloheximide (CHX). In addition, when the four kinases of the eukaryotic translation initiation factor 2α (eIF2α)-dependent pathway were inhibited, knockdown of HRI and GCN2 with small interfering RNAs and inhibition of PKR with 2-aminopurine had little effect on the formation of SGs, but the PERK inhibitor significantly inhibited the formation of SGs and decreased the phosphorylation of eIF2α. G3BP1 of Epinephelus coioides (named as EcG3BP1) encodes 495 amino acids with a predicted molecular weight of 54.12 kDa and 65.9% homology with humans. Overexpression of EcG3BP1 inhibited the replication of RGNNV in vitro by up-regulating the interferon and inflammatory response, whereas knockdown of EcG3BP1 promoted the replication of RGNNV. These results provide a better understanding of the relationship between SGs and viral infection in fish.
Collapse
Affiliation(s)
- Mengshi Sun
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Siting Wu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaozhu Kang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Jiaming Liao
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Luhao Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Zhuqing Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Hong Chen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Linting Xu
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Xin Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- *Correspondence: Jingguang Wei, ; Qiwei Qin,
| | - Jingguang Wei
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Jingguang Wei, ; Qiwei Qin,
| |
Collapse
|
26
|
Abstract
Viruses have evolved diverse strategies to hijack the cellular gene expression system for their replication. The poly(A) binding proteins (PABPs), a family of critical gene expression factors, are viruses' common targets. PABPs act not only as a translation factor but also as a key factor of mRNA metabolism. During viral infections, the activities of PABPs are manipulated by various viruses, subverting the host translation machinery or evading the cellular antiviral defense mechanism. Viruses harness PABPs by modifying their stability, complex formation with other translation initiation factors, or subcellular localization to promote viral mRNAs translation while shutting off or competing with host protein synthesis. For the past decade, many studies have demonstrated the PABPs' roles during viral infection. This review summarizes a comprehensive perspective of PABPs' roles during viral infection and how viruses evade host antiviral defense through the manipulations of PABPs.
Collapse
Affiliation(s)
- Jie Gao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Wei Hu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Alberta, Canada
| |
Collapse
|
27
|
Interferon Inhibition Enhances the Pilot-Scale Production of Rabies Virus in Human Diploid MRC-5 Cells. Viruses 2021; 14:v14010049. [PMID: 35062253 PMCID: PMC8779192 DOI: 10.3390/v14010049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 12/21/2022] Open
Abstract
Inactivated vaccines based on cell culture are very useful in the prevention and control of many diseases. The most popular strategy for the production of inactivated vaccines is based on monkey-derived Vero cells, which results in high productivity of the virus but has a certain carcinogenic risk due to non-human DNA contamination. Since human diploid cells, such as MRC-5 cells, can produce a safer vaccine, efforts to develop a strategy for inactivated vaccine production using these cells have been investigated using MRC-5 cells. However, most viruses do not replicate efficiently in MRC-5 cells. In this study, we found that rabies virus (RABV) infection activated a robust interferon (IFN)-β response in MRC-5 cells but almost none in Vero cells, suggesting that the IFN response could be a key limiting factor for virus production. Treatment of the MRC-5 cells with IFN inhibitors increased RABV titers by 10-fold. Additionally, the RABV titer yield was improved five-fold when using IFN receptor 1 (IFNAR1) antibodies. As such, we established a stable IFNAR1-deficient MRC-5 cell line (MRC-5IFNAR1−), which increased RABV production by 6.5-fold compared to normal MRC-5 cells. Furthermore, in a pilot-scale production in 1500 square centimeter spinner flasks, utilization of the MRC-5IFNAR1− cell line or the addition of IFN inhibitors to MRC cells increased RABV production by 10-fold or four-fold, respectively. Thus, we successfully established a human diploid cell-based pilot scale virus production platform via inhibition of IFN response for rabies vaccines, which could also be used for other inactivated virus vaccine production.
Collapse
|
28
|
Somasekharan SP, Gleave M. SARS-CoV-2 nucleocapsid protein interacts with immunoregulators and stress granules and phase separates to form liquid droplets. FEBS Lett 2021; 595:2872-2896. [PMID: 34780058 PMCID: PMC8652540 DOI: 10.1002/1873-3468.14229] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/16/2022]
Abstract
The current work investigated SARS‐CoV‐2 Nucleocapsid (NCAP or N protein) interactors in A549 human lung cancer cells using a SILAC‐based mass spectrometry approach. NCAP interactors included proteins of the stress granule (SG) machinery and immunoregulators. NCAP showed specific interaction with the SG proteins G3BP1, G3BP2, YTHDF3, USP10 and PKR, and translocated to SGs following oxidative stress and heat shock. Treatment of recombinant NCAP with RNA isolated from A549 cells exposed to oxidative stress‐stimulated NCAP to undergo liquid–liquid phase separation (LLPS). RNA degradation using RNase A treatment completely blocked the LLPS property of NCAP as well as its SG association. The RNA intercalator mitoxantrone also disrupted NCAP assembly in vitro and in cells. This study provides insight into the biological processes and biophysical properties of the SARS‐CoV‐2 NCAP.
Collapse
Affiliation(s)
- Syam Prakash Somasekharan
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| | - Martin Gleave
- Department of Urologic Sciences, Faculty of Medicine, Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
29
|
Insights into the SARS-CoV-2-Mediated Alteration in the Stress Granule Protein Regulatory Networks in Humans. Pathogens 2021; 10:pathogens10111459. [PMID: 34832615 PMCID: PMC8624858 DOI: 10.3390/pathogens10111459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/06/2021] [Indexed: 12/15/2022] Open
Abstract
The rapidly and constantly evolving coronavirus, SARS-CoV-2, imposes a great threat to human health causing severe lung disease and significant mortality. Cytoplasmic stress granules (SGs) exert anti-viral activities due to their involvement in translation inhibition and innate immune signaling. SARS-CoV-2 sequesters important SG nucleator proteins and impairs SG formation, thus evading the host response for efficient viral replication. However, the significance of SGs in COVID-19 infection remains elusive. In this study, we utilize a protein-protein interaction network approach to systematically dissect the crosstalk of human post-translational regulatory networks governed by SG proteins due to SARS-CoV-2 infection. We uncovered that 116 human SG proteins directly interact with SARS-CoV-2 proteins and are involved in 430 different brain disorders including COVID-19. Further, we performed gene set enrichment analysis to identify the drugs against three important key SG proteins (DYNC1H1, DCTN1, and LMNA) and also looked for potential microRNAs (miRNAs) targeting these proteins. We identified bexarotene as a potential drug molecule and miRNAs, hsa-miR-615-3p, hsa-miR-221-3p, and hsa-miR-124-3p as potential candidates for the treatment of COVID-19 and associated manifestations.
Collapse
|
30
|
Ali N, Prasad K, AlAsmari AF, Alharbi M, Rashid S, Kumar V. Genomics-guided targeting of stress granule proteins G3BP1/2 to inhibit SARS-CoV-2 propagation. Int J Biol Macromol 2021; 190:636-648. [PMID: 34517025 PMCID: PMC8431879 DOI: 10.1016/j.ijbiomac.2021.09.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/07/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
SARS-CoV-2 nucleocapsid (N) protein undergoes RNA-induced phase separation (LLPS) and sequesters the host key stress granule (SG) proteins, Ras-GTPase-activating protein SH3-domain-binding protein 1 and 2 (G3BP1 and G3BP2) to inhibit SG formation. This will allow viral packaging and propagation in host cells. Based on a genomic-guided meta-analysis, here we identify upstream regulatory elements modulating the expression of G3BP1 and G3BP2 (collectively called G3BP1/2). Using this strategy, we have identified FOXA1, YY1, SYK, E2F-1, and TGFBR2 as activators and SIN3A, SRF, and AKT-1 as repressors of G3BP1/2 genes. Panels of the activators and repressors were then used to identify drugs that change their gene expression signatures. Two drugs, imatinib, and decitabine have been identified as putative modulators of G3BP1/2 genes and their regulators, suggesting their role as COVID-19 mitigation agents. Molecular docking analysis suggests that both drugs bind to G3BP1/2 with a much higher affinity than the SARS-CoV-2 N protein. This study reports imatinib and decitabine as candidate drugs against N protein and G3BP1/2 protein.
Collapse
Affiliation(s)
- Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kartikay Prasad
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India
| | - Abdullah F AlAsmari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Summya Rashid
- Department of Pharmacology & Toxicology, College of Pharmacy Girls Section, Prince Sattam Bin AbdulAziz University, Al kharj 11942, Saudi Arabia
| | - Vijay Kumar
- Amity Institute of Neuropsychology & Neurosciences, Amity University, Noida, UP 201303, India.
| |
Collapse
|
31
|
Almutairy BK, Alshetaili A, Anwer MK, Ali N. In silico identification of MicroRNAs targeting the key nucleator of stress granules, G3BP: Promising therapeutics for SARS-CoV-2 infection. Saudi J Biol Sci 2021; 28:7499-7504. [PMID: 34456603 PMCID: PMC8381622 DOI: 10.1016/j.sjbs.2021.08.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/03/2021] [Accepted: 08/16/2021] [Indexed: 11/05/2022] Open
Abstract
Stress granules (SGs) are non-membrane ribonucleoprotein condensates formed in response to environmental stress conditions via liquid–liquid phase separation (LLPS). SGs are involved in the pathogenesis of aging and aging-associated diseases, cancers, viral infection, and several other diseases. GTPase-activating protein (SH3 domain)-binding protein 1 and 2 (G3BP1/2) is a key component and commonly used marker of SGs. Recent studies have shown that SARS-CoV-2 nucleocapsid protein via sequestration of G3BPs inhibits SGs formation in the host cells. In this study, we have identified putative miRNAs targeting G3BP in search of modulators of the G3BP expression. These miRNAs could be considered as new therapeutic targets against COVID-19 infection via the regulation of SG assembly and dynamics.
Collapse
Affiliation(s)
- Bjad K Almutairy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Md Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, 11942, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
32
|
Function of Host Protein Staufen1 in Rabies Virus Replication. Viruses 2021; 13:v13081426. [PMID: 34452292 PMCID: PMC8402631 DOI: 10.3390/v13081426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 12/14/2022] Open
Abstract
Rabies virus is a highly neurophilic negative-strand RNA virus with high lethality and remains a huge public health problem in developing countries to date. The double-stranded RNA-binding protein Staufen1 (STAU1) has multiple functions in RNA virus replication, transcription, and translation. However, its function in RABV infection and its mechanism of action are not clear. In this study, we investigated the role of host factor STAU1 in RABV infection of SH-SY-5Y cells. Immunofluorescence, TCID50 titers, confocal microscopy, quantitative real-time PCR and Western blotting were carried out to determine the molecular function and subcellular distribution of STAU1 in these cell lines. Expression of STAU1 in SH-SY-5Y cells was down-regulated by RNA interference or up-regulated by transfection of eukaryotic expression vectors. The results showed that N proficiently colocalized with STAU1 in SH-SY-5Y at 36 h post-infection, and the expression level of STAU1 was also proportional to the time of infection. Down-regulation of STAU1 expression increased the number of Negri body-like structures, enhanced viral replication, and a caused 10-fold increase in viral titers. Meanwhile, N protein and G protein mRNA levels also accumulated gradually with increasing infection time, which implied that STAU1 inhibited rabies virus infection of SH-SY-5Y cells in vitro. In conclusion, our results provide important clues for the detailed replication mechanism of rabies virus and the discovery of therapeutic targets.
Collapse
|
33
|
Dolnik O, Gerresheim GK, Biedenkopf N. New Perspectives on the Biogenesis of Viral Inclusion Bodies in Negative-Sense RNA Virus Infections. Cells 2021; 10:cells10061460. [PMID: 34200781 PMCID: PMC8230417 DOI: 10.3390/cells10061460] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/06/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Infections by negative strand RNA viruses (NSVs) induce the formation of viral inclusion bodies (IBs) in the host cell that segregate viral as well as cellular proteins to enable efficient viral replication. The induction of those membrane-less viral compartments leads inevitably to structural remodeling of the cellular architecture. Recent studies suggested that viral IBs have properties of biomolecular condensates (or liquid organelles), as have previously been shown for other membrane-less cellular compartments like stress granules or P-bodies. Biomolecular condensates are highly dynamic structures formed by liquid-liquid phase separation (LLPS). Key drivers for LLPS in cells are multivalent protein:protein and protein:RNA interactions leading to specialized areas in the cell that recruit molecules with similar properties, while other non-similar molecules are excluded. These typical features of cellular biomolecular condensates are also a common characteristic in the biogenesis of viral inclusion bodies. Viral IBs are predominantly induced by the expression of the viral nucleoprotein (N, NP) and phosphoprotein (P); both are characterized by a special protein architecture containing multiple disordered regions and RNA-binding domains that contribute to different protein functions. P keeps N soluble after expression to allow a concerted binding of N to the viral RNA. This results in the encapsidation of the viral genome by N, while P acts additionally as a cofactor for the viral polymerase, enabling viral transcription and replication. Here, we will review the formation and function of those viral inclusion bodies upon infection with NSVs with respect to their nature as biomolecular condensates.
Collapse
|
34
|
Lashkevich KA, Dmitriev SE. mRNA Targeting, Transport and Local Translation in Eukaryotic Cells: From the Classical View to a Diversity of New Concepts. Mol Biol 2021; 55:507-537. [PMID: 34092811 PMCID: PMC8164833 DOI: 10.1134/s0026893321030080] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 02/26/2021] [Accepted: 03/12/2021] [Indexed: 12/28/2022]
Abstract
Spatial organization of protein biosynthesis in the eukaryotic cell has been studied for more than fifty years, thus many facts have already been included in textbooks. According to the classical view, mRNA transcripts encoding secreted and transmembrane proteins are translated by ribosomes associated with endoplasmic reticulum membranes, while soluble cytoplasmic proteins are synthesized on free polysomes. However, in the last few years, new data has emerged, revealing selective translation of mRNA on mitochondria and plastids, in proximity to peroxisomes and endosomes, in various granules and at the cytoskeleton (actin network, vimentin intermediate filaments, microtubules and centrosomes). There are also long-standing debates about the possibility of protein synthesis in the nucleus. Localized translation can be determined by targeting signals in the synthesized protein, nucleotide sequences in the mRNA itself, or both. With RNA-binding proteins, many transcripts can be assembled into specific RNA condensates and form RNP particles, which may be transported by molecular motors to the sites of active translation, form granules and provoke liquid-liquid phase separation in the cytoplasm, both under normal conditions and during cell stress. The translation of some mRNAs occurs in specialized "translation factories," assemblysomes, transperons and other structures necessary for the correct folding of proteins, interaction with functional partners and formation of oligomeric complexes. Intracellular localization of mRNA has a significant impact on the efficiency of its translation and presumably determines its response to cellular stress. Compartmentalization of mRNAs and the translation machinery also plays an important role in viral infections. Many viruses provoke the formation of specific intracellular structures, virus factories, for the production of their proteins. Here we review the current concepts of the molecular mechanisms of transport, selective localization and local translation of cellular and viral mRNAs, their effects on protein targeting and topogenesis, and on the regulation of protein biosynthesis in different compartments of the eukaryotic cell. Special attention is paid to new systems biology approaches, providing new cues to the study of localized translation.
Collapse
Affiliation(s)
- Kseniya A Lashkevich
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, 119234 Moscow, Russia.,Faculty of Bioengineering and Bioinformatics, Moscow State University, 119234 Moscow, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
35
|
Rabies: Presentation, case management and therapy. J Neurol Sci 2021; 424:117413. [PMID: 33812240 DOI: 10.1016/j.jns.2021.117413] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 02/26/2021] [Accepted: 03/22/2021] [Indexed: 11/23/2022]
Abstract
Several Lyssaviruses are known to be a causative agent of rabies and rabies like syndrome. There are no proven effective treatment strategies for symptomatic rabies patient. Risk of infection from dog variant of rabies virus is highest with deep bite reaching muscular layer and much higher when compared to scratch. Failure of viral eradication at the central nervous system (CNS) is partly due to inadequate immune response. Favipiravir selectively inhibit viral RNA polymerase and has been shown to reduce rabies replication in neuronal cell and mouse model system. Endocannabinoid system has emerged as an important regulator for CNS integrity, cell fate and may serve as an important novel neuroprotective agent. Cannabinoid may be able to regulate the impaired homeostasis induced by rabies virus by promoting infected cell survival and promote complete autophagy in infected cell.
Collapse
|
36
|
Onomoto K, Onoguchi K, Yoneyama M. Regulation of RIG-I-like receptor-mediated signaling: interaction between host and viral factors. Cell Mol Immunol 2021; 18:539-555. [PMID: 33462384 PMCID: PMC7812568 DOI: 10.1038/s41423-020-00602-7] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/17/2020] [Indexed: 01/31/2023] Open
Abstract
Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) are RNA sensor molecules that play essential roles in innate antiviral immunity. Among the three RLRs encoded by the human genome, RIG-I and melanoma differentiation-associated gene 5, which contain N-terminal caspase recruitment domains, are activated upon the detection of viral RNAs in the cytoplasm of virus-infected cells. Activated RLRs induce downstream signaling via their interactions with mitochondrial antiviral signaling proteins and activate the production of type I and III interferons and inflammatory cytokines. Recent studies have shown that RLR-mediated signaling is regulated by interactions with endogenous RNAs and host proteins, such as those involved in stress responses and posttranslational modifications. Since RLR-mediated cytokine production is also involved in the regulation of acquired immunity, the deregulation of RLR-mediated signaling is associated with autoimmune and autoinflammatory disorders. Moreover, RLR-mediated signaling might be involved in the aberrant cytokine production observed in coronavirus disease 2019. Since the discovery of RLRs in 2004, significant progress has been made in understanding the mechanisms underlying the activation and regulation of RLR-mediated signaling pathways. Here, we review the recent advances in the understanding of regulated RNA recognition and signal activation by RLRs, focusing on the interactions between various host and viral factors.
Collapse
Affiliation(s)
- Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Kazuhide Onoguchi
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, 1-8-1, Inohana, Chuo-ku, Chiba, 260-8673, Japan.
| |
Collapse
|
37
|
Etibor TA, Yamauchi Y, Amorim MJ. Liquid Biomolecular Condensates and Viral Lifecycles: Review and Perspectives. Viruses 2021; 13:366. [PMID: 33669141 PMCID: PMC7996568 DOI: 10.3390/v13030366] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
Viruses are highly dependent on the host they infect. Their dependence triggers processes of virus-host co-adaptation, enabling viruses to explore host resources whilst escaping immunity. Scientists have tackled viral-host interplay at differing levels of complexity-in individual hosts, organs, tissues and cells-and seminal studies advanced our understanding about viral lifecycles, intra- or inter-species transmission, and means to control infections. Recently, it emerged as important to address the physical properties of the materials in biological systems; membrane-bound organelles are only one of many ways to separate molecules from the cellular milieu. By achieving a type of compartmentalization lacking membranes known as biomolecular condensates, biological systems developed alternative mechanisms of controlling reactions. The identification that many biological condensates display liquid properties led to the proposal that liquid-liquid phase separation (LLPS) drives their formation. The concept of LLPS is a paradigm shift in cellular structure and organization. There is an unprecedented momentum to revisit long-standing questions in virology and to explore novel antiviral strategies. In the first part of this review, we focus on the state-of-the-art about biomolecular condensates. In the second part, we capture what is known about RNA virus-phase biology and discuss future perspectives of this emerging field in virology.
Collapse
Affiliation(s)
- Temitope Akhigbe Etibor
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| | - Yohei Yamauchi
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TL, UK;
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal;
| |
Collapse
|
38
|
Su JM, Wilson MZ, Samuel CE, Ma D. Formation and Function of Liquid-Like Viral Factories in Negative-Sense Single-Stranded RNA Virus Infections. Viruses 2021; 13:126. [PMID: 33477448 PMCID: PMC7835873 DOI: 10.3390/v13010126] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Liquid-liquid phase separation (LLPS) represents a major physiochemical principle to organize intracellular membrane-less structures. Studies with non-segmented negative-sense (NNS) RNA viruses have uncovered a key role of LLPS in the formation of viral inclusion bodies (IBs), sites of viral protein concentration in the cytoplasm of infected cells. These studies further reveal the structural and functional complexity of viral IB factories and provide a foundation for their future research. Herein, we review the literature leading to the discovery of LLPS-driven formation of IBs in NNS RNA virus-infected cells and the identification of viral scaffold components involved, and then outline important questions and challenges for IB assembly and disassembly. We discuss the functional implications of LLPS in the life cycle of NNS RNA viruses and host responses to infection. Finally, we speculate on the potential mechanisms underlying IB maturation, a phenomenon relevant to many human diseases.
Collapse
Affiliation(s)
| | | | | | - Dzwokai Ma
- Department of Molecular, Cellular and Developmental Biology & Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA; (J.M.S.); (M.Z.W.); (C.E.S.)
| |
Collapse
|
39
|
Perdikari TM, Murthy AC, Ryan VH, Watters S, Naik MT, Fawzi NL. SARS-CoV-2 nucleocapsid protein phase-separates with RNA and with human hnRNPs. EMBO J 2020; 39:e106478. [PMID: 33200826 PMCID: PMC7737613 DOI: 10.15252/embj.2020106478] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Tightly packed complexes of nucleocapsid protein and genomic RNA form the core of viruses and assemble within viral factories, dynamic compartments formed within the host cells associated with human stress granules. Here, we test the possibility that the multivalent RNA-binding nucleocapsid protein (N) from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) condenses with RNA via liquid-liquid phase separation (LLPS) and that N protein can be recruited in phase-separated forms of human RNA-binding proteins associated with SG formation. Robust LLPS with RNA requires two intrinsically disordered regions (IDRs), the N-terminal IDR and central-linker IDR, as well as the folded C-terminal oligomerization domain, while the folded N-terminal domain and the C-terminal IDR are not required. N protein phase separation is induced by addition of non-specific RNA. In addition, N partitions in vitro into phase-separated forms of full-length human hnRNPs (TDP-43, FUS, hnRNPA2) and their low-complexity domains (LCs). These results provide a potential mechanism for the role of N in SARS-CoV-2 viral genome packing and in host-protein co-opting necessary for viral replication and infectivity.
Collapse
Affiliation(s)
| | - Anastasia C Murthy
- Molecular BiologyCell Biology & Biochemistry Graduate ProgramBrown UniversityProvidenceRIUSA
| | - Veronica H Ryan
- Neuroscience Graduate ProgramBrown UniversityProvidenceRIUSA
| | - Scott Watters
- Department of Molecular Pharmacology, Physiology, and BiotechnologyBrown UniversityProvidenceRIUSA
| | - Mandar T Naik
- Department of Molecular Pharmacology, Physiology, and BiotechnologyBrown UniversityProvidenceRIUSA
| | - Nicolas L Fawzi
- Department of Molecular Pharmacology, Physiology, and BiotechnologyBrown UniversityProvidenceRIUSA
- Robert J. and Nancy D. Carney Institute for Brain ScienceBrown UniversityProvidenceRIUSA
| |
Collapse
|
40
|
Nevers Q, Albertini AA, Lagaudrière-Gesbert C, Gaudin Y. Negri bodies and other virus membrane-less replication compartments. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118831. [PMID: 32835749 PMCID: PMC7442162 DOI: 10.1016/j.bbamcr.2020.118831] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/14/2020] [Accepted: 08/14/2020] [Indexed: 12/25/2022]
Abstract
Viruses reshape the organization of the cell interior to achieve different steps of their cellular cycle. Particularly, viral replication and assembly often take place in viral factories where specific viral and cellular proteins as well as nucleic acids concentrate. Viral factories can be either membrane-delimited or devoid of any cellular membranes. In the latter case, they are referred as membrane-less replication compartments. The most emblematic ones are the Negri bodies, which are inclusion bodies that constitute the hallmark of rabies virus infection. Interestingly, Negri bodies and several other viral replication compartments have been shown to arise from a liquid-liquid phase separation process and, thus, constitute a new class of liquid organelles. This is a paradigm shift in the field of virus replication. Here, we review the different aspects of membrane-less virus replication compartments with a focus on the Mononegavirales order and discuss their interactions with the host cell machineries and the cytoskeleton. We particularly examine the interplay between viral factories and the cellular innate immune response, of which several components also form membrane-less condensates in infected cells.
Collapse
Affiliation(s)
- Quentin Nevers
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Aurélie A Albertini
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cécile Lagaudrière-Gesbert
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Yves Gaudin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France.
| |
Collapse
|
41
|
Zhang X, Mahamid J. Addressing the challenge of in situ structural studies of RNP granules in light of emerging opportunities. Curr Opin Struct Biol 2020; 65:149-158. [DOI: 10.1016/j.sbi.2020.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/01/2020] [Accepted: 06/16/2020] [Indexed: 01/23/2023]
|
42
|
Brocca S, Grandori R, Longhi S, Uversky V. Liquid-Liquid Phase Separation by Intrinsically Disordered Protein Regions of Viruses: Roles in Viral Life Cycle and Control of Virus-Host Interactions. Int J Mol Sci 2020; 21:E9045. [PMID: 33260713 PMCID: PMC7730420 DOI: 10.3390/ijms21239045] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) are unable to adopt a unique 3D structure under physiological conditions and thus exist as highly dynamic conformational ensembles. IDPs are ubiquitous and widely spread in the protein realm. In the last decade, compelling experimental evidence has been gathered, pointing to the ability of IDPs and intrinsically disordered regions (IDRs) to undergo liquid-liquid phase separation (LLPS), a phenomenon driving the formation of membrane-less organelles (MLOs). These biological condensates play a critical role in the spatio-temporal organization of the cell, where they exert a multitude of key biological functions, ranging from transcriptional regulation and silencing to control of signal transduction networks. After introducing IDPs and LLPS, we herein survey available data on LLPS by IDPs/IDRs of viral origin and discuss their functional implications. We distinguish LLPS associated with viral replication and trafficking of viral components, from the LLPS-mediated interference of viruses with host cell functions. We discuss emerging evidence on the ability of plant virus proteins to interfere with the regulation of MLOs of the host and propose that bacteriophages can interfere with bacterial LLPS, as well. We conclude by discussing how LLPS could be targeted to treat phase separation-associated diseases, including viral infections.
Collapse
Affiliation(s)
- Stefania Brocca
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milano, Italy
| | - Sonia Longhi
- Laboratoire Architecture et Fonction des Macromolécules Biologiques (AFMB), Aix-Marseille University and CNRS, 13288 Marseille, France
| | - Vladimir Uversky
- Department of Molecular Medicine, Byrd Alzheimer’s Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33601, USA
- Laboratory of New Methods in Biology, Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, 142290 Pushchino, Russia
| |
Collapse
|
43
|
Jobe F, Simpson J, Hawes P, Guzman E, Bailey D. Respiratory Syncytial Virus Sequesters NF-κB Subunit p65 to Cytoplasmic Inclusion Bodies To Inhibit Innate Immune Signaling. J Virol 2020; 94:JVI.01380-20. [PMID: 32878896 PMCID: PMC7592213 DOI: 10.1128/jvi.01380-20] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/28/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses routinely employ strategies to prevent the activation of innate immune signaling in infected cells. Respiratory syncytial virus (RSV) is no exception, as it encodes two accessory proteins (NS1 and NS2) which are well established to block interferon signaling. However, RSV-encoded mechanisms for inhibiting NF-κB signaling are less well characterized. In this study, we identified RSV-mediated antagonism of this pathway, independent of the NS1 and NS2 proteins and indeed distinct from other known viral mechanisms of NF-κB inhibition. In both human and bovine RSV-infected cells, we demonstrated that the p65 subunit of NF-κB is rerouted to perinuclear puncta in the cytoplasm, which are synonymous with viral inclusion bodies (IBs), the site for viral RNA replication. Captured p65 was unable to translocate to the nucleus or transactivate a NF-κB reporter following tumor necrosis factor alpha (TNF-α) stimulation, confirming the immune-antagonistic nature of this sequestration. Subsequently, we used correlative light electron microscopy (CLEM) to colocalize the RSV N protein and p65 within bovine RSV (bRSV) IBs, which are granular, membraneless regions of cytoplasm with liquid organelle-like properties. Additional characterization of bRSV IBs indicated that although they are likely formed by liquid-liquid phase separation (LLPS), they have a differential sensitivity to hypotonic shock proportional to their size. Together, these data identify a novel mechanism for viral antagonism of innate immune signaling which relies on sequestration of the NF-κB subunit p65 to a biomolecular condensate-a mechanism conserved across the Orthopneumovirus genus and not host-cell specific. More generally, they provide additional evidence that RNA virus IBs are important immunomodulatory complexes within infected cells.IMPORTANCE Many viruses replicate almost entirely in the cytoplasm of infected cells; however, how these pathogens are able to compartmentalize their life cycle to provide favorable conditions for replication and to avoid the litany of antiviral detection mechanisms in the cytoplasm remains relatively uncharacterized. In this manuscript, we show that bovine respiratory syncytial virus (bRSV), which infects cattle, does this by generating inclusion bodies in the cytoplasm of infected cells. We confirm that both bRSV and human RSV viral RNA replication takes place in these inclusion bodies, likely meaning these organelles are a functionally conserved feature of this group of viruses (the orthopneumoviruses). Importantly, we also showed that these organelles are able to capture important innate immune transcription factors (in this case NF-KB), blocking the normal signaling processes that tell the nucleus the cell is infected, which may help us to understand how these viruses cause disease.
Collapse
Affiliation(s)
| | | | - Philippa Hawes
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| | - Efrain Guzman
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| | - Dalan Bailey
- The Pirbright Institute, Guildford, Surrey, United Kingdom
| |
Collapse
|
44
|
Salin P, Blondel D, Kerkerian-Le Goff L, Coulon P. Golgi staining-like retrograde labeling of brain circuits using rabies virus: Focus onto the striatonigral neurons. J Neurosci Methods 2020; 344:108872. [PMID: 32693000 DOI: 10.1016/j.jneumeth.2020.108872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND The introduction of viral transneuronal tracers in the toolbox of neural tract-tracing methods has been an important addition in the field of connectomics for deciphering circuit-level architecture of the nervous system. One of the added values of viral compared to conventional retrograde tracers, in particular of rabies virus, is to provide a Golgi staining-like view of the infected neurons, revealing the thin dendritic arborizations and the spines that are major post-synaptic seats of neuronal connections. NEWMETHOD Here, we comparatively illustrate the characteristics of the labeling obtained in the same model system, the basal ganglia circuitry, by different retrograde viral tracing approaches, using the Bartha strain of pseudorabies virus, the SAD and CVS strains of rabies virus and by the conventional retrograde tracer cholera toxin B. To best contrast the differences in the capacity of these tracers to reveal the dendritic morphology in details, we focused on one population of first-order infected neurons in the striatum, which exhibit high spine density, after tracer injection in the substantia nigra. RESULTS AND CONCLUSION None of the viruses tested allowed to detect as many neurons as with cholera toxin B, but the SAD and CVS strains of rabies virus had the advantage of enabling detailed Golgi-like visualisation of the dendritic trees, the best numerical detection being offered by the transneuronal rCVS-N2c-P-mCherry while poor labeling was provided by rCVS-N2c-M-GFP. Results also suggest that, besides different viral properties, technical issues about constructs and detection methods contribute to apparently different efficiencies among the viral approaches.
Collapse
Affiliation(s)
- P Salin
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | - D Blondel
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette Cedex, France
| | | | - P Coulon
- Institut de Neurosciences de la Timone, Aix-Marseille Université and CNRS, Marseille, France
| |
Collapse
|
45
|
Respiratory Syncytial Virus and Human Metapneumovirus Infections in Three-Dimensional Human Airway Tissues Expose an Interesting Dichotomy in Viral Replication, Spread, and Inhibition by Neutralizing Antibodies. J Virol 2020; 94:JVI.01068-20. [PMID: 32759319 DOI: 10.1128/jvi.01068-20] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022] Open
Abstract
Respiratory syncytial virus (RSV) and human metapneumovirus (HMPV) are two of the leading causes of respiratory infections in children and elderly and immunocompromised patients worldwide. There is no approved treatment for HMPV and only one prophylactic treatment against RSV, palivizumab, for high-risk infants. Better understanding of the viral lifecycles in a more relevant model system may help identify novel therapeutic targets. By utilizing three-dimensional (3-D) human airway tissues to examine viral infection in a physiologically relevant model system, we showed that RSV infects and spreads more efficiently than HMPV, with the latter requiring higher multiplicities of infection (MOIs) to yield similar levels of infection. Apical ciliated cells were the target for both viruses, but RSV apical release was significantly more efficient than HMPV. In RSV- or HMPV-infected cells, cytosolic inclusion bodies containing the nucleoprotein, phosphoprotein, and respective viral genomic RNA were clearly observed in human airway epithelial (HAE) culture. In HMPV-infected cells, actin-based filamentous extensions were more common (35.8%) than those found in RSV-infected cells (4.4%). Interestingly, neither RSV nor HMPV formed syncytia in HAE tissues. Palivizumab and nirsevimab effectively inhibited entry and spread of RSV in HAE tissues, with nirsevimab displaying significantly higher potency than palivizumab. In contrast, 54G10 completely inhibited HMPV entry but only modestly reduced viral spread, suggesting HMPV may use alternative mechanisms for spread. These results represent the first comparative analysis of infection by the two pneumoviruses in a physiologically relevant model, demonstrating an interesting dichotomy in the mechanisms of infection, spread, and consequent inhibition of the viral lifecycles by neutralizing monoclonal antibodies.IMPORTANCE Respiratory syncytial virus and human metapneumovirus are leading causes of respiratory illness worldwide, but limited treatment options are available. To better target these viruses, we examined key aspects of the viral life cycle in three-dimensional (3-D) human airway tissues. Both viruses establish efficient infection through the apical surface, but efficient spread and apical release were seen for respiratory syncytial virus (RSV) but not human metapneumovirus (HMPV). Both viruses form inclusion bodies, minimally composed of nucleoprotein (N), phosphoprotein (P), and viral RNA (vRNA), indicating that these structures are critical for replication in this more physiological model. HMPV formed significantly more long, filamentous actin-based extensions in human airway epithelial (HAE) tissues than RSV, suggesting HMPV may promote cell-to-cell spread via these extensions. Lastly, RSV entry and spread were fully inhibited by neutralizing antibodies palivizumab and the novel nirsevimab. In contrast, while HMPV entry was fully inhibited by 54G10, a neutralizing antibody, spread was only modestly reduced, further supporting a cell-to-cell spread mechanism.
Collapse
|
46
|
Wen W, Zhao Q, Yin M, Qin L, Hu J, Chen H, Li X, Qian P. Seneca Valley Virus 3C Protease Inhibits Stress Granule Formation by Disrupting eIF4GI-G3BP1 Interaction. Front Immunol 2020; 11:577838. [PMID: 33133097 PMCID: PMC7550656 DOI: 10.3389/fimmu.2020.577838] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
Stress granules (SGs) are the sites of mRNA storage and related to the regulation of mRNA translation, which are dynamic structures in response to various environmental stresses and viral infections. Seneca Valley virus (SVV), an oncolytic RNA virus belonging to Picornaviridae family, can cause vesicular disease (VD) indistinguished from foot-and-mouth disease (FMD) and other pig VDs. In this study, we found that SVV induced SG formation in the early stage of infection in a PKR-eIF2α dependent manner, as demonstrated by the recruitment of marker proteins of G3BP1 and eIF4GI. Surprisingly, we found that downregulating SG marker proteins TIA1 or G3BP1, or expressing an eIF2α non-phosphorylatable mutant inhibited SG formation, but this inhibition of transient SG formation had no significant effect on SVV propagation. Depletion of G3BP1 significantly attenuated the activation of NF-κB signaling pathway. In addition, we found that SVV inhibited SG formation at the late stage of infection and 3C protease was essential for the inhibition depending on its enzyme activity. Furthermore, we also found that 3C protease blocked the SG formation by disrupting eIF4GI-G3BP1 interaction. Overall, our results demonstrate that SVV induces transient SG formation in an eIF2α phosphorylation and PKR-dependent manner, and that 3C protease inhibits SG formation by interfering eIF4GI-G3BP1 interaction.
Collapse
Affiliation(s)
- Wei Wen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Qiongqiong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Mengge Yin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Liuxing Qin
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Junjie Hu
- Hubei Colorectal Cancer Clinical Research Center, Hubei Cancer Hospital, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Xiangmin Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| | - Ping Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture of the People's Republic of China, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology of the People's Republic of China, Wuhan, China
| |
Collapse
|
47
|
Eiermann N, Haneke K, Sun Z, Stoecklin G, Ruggieri A. Dance with the Devil: Stress Granules and Signaling in Antiviral Responses. Viruses 2020; 12:v12090984. [PMID: 32899736 PMCID: PMC7552005 DOI: 10.3390/v12090984] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023] Open
Abstract
Cells have evolved highly specialized sentinels that detect viral infection and elicit an antiviral response. Among these, the stress-sensing protein kinase R, which is activated by double-stranded RNA, mediates suppression of the host translation machinery as a strategy to limit viral replication. Non-translating mRNAs rapidly condensate by phase separation into cytosolic stress granules, together with numerous RNA-binding proteins and components of signal transduction pathways. Growing evidence suggests that the integrated stress response, and stress granules in particular, contribute to antiviral defense. This review summarizes the current understanding of how stress and innate immune signaling act in concert to mount an effective response against virus infection, with a particular focus on the potential role of stress granules in the coordination of antiviral signaling cascades.
Collapse
Affiliation(s)
- Nina Eiermann
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Katharina Haneke
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Zhaozhi Sun
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
| | - Georg Stoecklin
- Division of Biochemistry, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany; (N.E.); (K.H.); (G.S.)
| | - Alessia Ruggieri
- Department of Infectious Diseases, Molecular Virology, Center for Integrative Infectious Disease Research (CIID), University of Heidelberg, 69120 Heidelberg, Germany;
- Correspondence:
| |
Collapse
|
48
|
Functional Mammalian Amyloids and Amyloid-Like Proteins. Life (Basel) 2020; 10:life10090156. [PMID: 32825636 PMCID: PMC7555005 DOI: 10.3390/life10090156] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloids are highly ordered fibrous cross-β protein aggregates that are notorious primarily because of association with a variety of incurable human and animal diseases (termed amyloidoses), including Alzheimer’s disease (AD), Parkinson’s disease (PD), type 2 diabetes (T2D), and prion diseases. Some amyloid-associated diseases, in particular T2D and AD, are widespread and affect hundreds of millions of people all over the world. However, recently it has become evident that many amyloids, termed “functional amyloids,” are involved in various activities that are beneficial to organisms. Functional amyloids were discovered in diverse taxa, ranging from bacteria to mammals. These amyloids are involved in vital biological functions such as long-term memory, storage of peptide hormones and scaffolding melanin polymerization in animals, substrate attachment, and biofilm formation in bacteria and fungi, etc. Thus, amyloids undoubtedly are playing important roles in biological and pathological processes. This review is focused on functional amyloids in mammals and summarizes approaches used for identifying new potentially amyloidogenic proteins and domains.
Collapse
|
49
|
Miyake T, Farley CM, Neubauer BE, Beddow TP, Hoenen T, Engel DA. Ebola Virus Inclusion Body Formation and RNA Synthesis Are Controlled by a Novel Domain of Nucleoprotein Interacting with VP35. J Virol 2020; 94:e02100-19. [PMID: 32493824 PMCID: PMC7394894 DOI: 10.1128/jvi.02100-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/24/2020] [Indexed: 12/15/2022] Open
Abstract
Ebola virus (EBOV) inclusion bodies (IBs) are cytoplasmic sites of nucleocapsid formation and RNA replication, housing key steps in the virus life cycle that warrant further investigation. During infection, IBs display dynamic properties regarding their size and location. The contents of IBs also must transition prior to further viral maturation, assembly, and release, implying additional steps in IB function. Interestingly, the expression of the viral nucleoprotein (NP) alone is sufficient for the generation of IBs, indicating that it plays an important role in IB formation during infection. In addition to NP, other components of the nucleocapsid localize to IBs, including VP35, VP24, VP30, and the RNA polymerase L. We previously defined and solved the crystal structure of the C-terminal domain of NP (NP-Ct), but its role in virus replication remained unclear. Here, we show that NP-Ct is necessary for IB formation when NP is expressed alone. Interestingly, we find that NP-Ct is also required for the production of infectious virus-like particles (VLPs), and that defective VLPs with NP-Ct deletions are significantly reduced in viral RNA content. Furthermore, coexpression of the nucleocapsid component VP35 overcomes deletion of NP-Ct in triggering IB formation, demonstrating a functional interaction between the two proteins. Of all the EBOV proteins, only VP35 is able to overcome the defect in IB formation caused by the deletion of NP-Ct. This effect is mediated by a novel protein-protein interaction between VP35 and NP that controls both regulation of IB formation and RNA replication itself and that is mediated by a newly identified functional domain of NP, the central domain.IMPORTANCE Inclusion bodies (IBs) are cytoplasmic sites of RNA synthesis for a variety of negative-sense RNA viruses, including Ebola virus. In addition to housing important steps in the viral life cycle, IBs protect new viral RNA from innate immune attack and contain specific host proteins whose function is under study. A key viral factor in Ebola virus IB formation is the nucleoprotein, NP, which also is important in RNA encapsidation and synthesis. In this study, we have identified two domains of NP that control inclusion body formation. One of these, the central domain (CD), interacts with viral protein VP35 to control both inclusion body formation and RNA synthesis. The other is the NP C-terminal domain (NP-Ct), whose function has not previously been reported. These findings contribute to a model in which NP and its interactions with VP35 link the establishment of IBs to the synthesis of viral RNA.
Collapse
Affiliation(s)
- Tsuyoshi Miyake
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Charlotte M Farley
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Benjamin E Neubauer
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas P Beddow
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald-Insel Riems, Germany
| | - Daniel A Engel
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| |
Collapse
|
50
|
Davies KA, Chadwick B, Hewson R, Fontana J, Mankouri J, Barr JN. The RNA Replication Site of Tula Orthohantavirus Resides within a Remodelled Golgi Network. Cells 2020; 9:cells9071569. [PMID: 32605035 PMCID: PMC7408811 DOI: 10.3390/cells9071569] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/20/2022] Open
Abstract
The family Hantaviridae within the Bunyavirales order comprises tri-segmented negative sense RNA viruses, many of which are rodent-borne emerging pathogens associated with fatal human disease. In contrast, hantavirus infection of corresponding rodent hosts results in inapparent or latent infections, which can be recapitulated in cultured cells that become persistently infected. In this study, we used Tula virus (TULV) to investigate the location of hantavirus replication during early, peak and persistent phases of infection, over a 30-day time course. Using immunofluorescent (IF) microscopy, we showed that the TULV nucleocapsid protein (NP) is distributed within both punctate and filamentous structures, with the latter increasing in size as the infection progresses. Transmission electron microscopy of TULV-infected cell sections revealed these filamentous structures comprised aligned clusters of filament bundles. The filamentous NP-associated structures increasingly co-localized with the Golgi and with the stress granule marker TIA-1 over the infection time course, suggesting a redistribution of these cellular organelles. The analysis of the intracellular distribution of TULV RNAs using fluorescent in-situ hybridization revealed that both genomic and mRNAs co-localized with Golgi-associated filamentous compartments that were positive for TIA. These results show that TULV induces a dramatic reorganization of the intracellular environment, including the establishment of TULV RNA synthesis factories in re-modelled Golgi compartments.
Collapse
Affiliation(s)
- Katherine A. Davies
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (K.A.D.); (B.C.); (J.F.); (J.M.)
| | - Benjamin Chadwick
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (K.A.D.); (B.C.); (J.F.); (J.M.)
| | - Roger Hewson
- National Infection Service, Public Health England, Porton Down, Salisbury SP4 0JG, UK;
| | - Juan Fontana
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (K.A.D.); (B.C.); (J.F.); (J.M.)
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (K.A.D.); (B.C.); (J.F.); (J.M.)
| | - John N. Barr
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK; (K.A.D.); (B.C.); (J.F.); (J.M.)
- Correspondence: ; Tel.: +44-113-3438069
| |
Collapse
|