1
|
Srivastava S, Jayaswal N, Kumar S, Rao GK, Budha RR, Mohanty A, Mehta R, Apostolopoulos V, Sah S, Bonilla-Aldana DK, Ulloque-Badaracco R, Rodriguez-Morales AJ. Targeting H3N2 influenza: advancements in treatment and vaccine strategies. Expert Rev Anti Infect Ther 2024. [PMID: 39688174 DOI: 10.1080/14787210.2024.2443920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/20/2024] [Accepted: 12/15/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION The emergence of the H3N2 influenza virus in 1968 marked a significant event as it crossed the species barrier. This shift led to a pandemic, resulting in the deaths of one million people globally and highlighting the virus's severe impact on older individuals due to antigenic drift. AREA COVERED This review comprehensively examines the virological characteristics, evolutionary trends, and global epidemiology of the Influenza A (H3N2) virus. It delves into vaccination strategies, antiviral interventions, and emerging diagnostic approaches. The impact of antigenic variation on vaccine design and effectiveness, seasonal outbreak patterns, and pandemic potential are explored. Additionally, the interplay between viral factors and host immune responses is assessed. Researchers are actively investigating innovative strategies to enhance vaccine efficacy against H3N2 mutations, such as precise antigenic material administration, controlled release patterns, understanding immune system mechanisms, and glycan engineering. EXPERT OPINION The ongoing mutational dynamics of the H3N2 virus necessitate regular vaccine updates, as advocated by the WHO. Research in the Western Pacific region underscores the need for heightened awareness and effective control strategies. Evaluating antiviral therapies and addressing drug resistance requires multidisciplinary approaches involving researchers, healthcare professionals, and policymakers. This comprehensive understanding of H3N2 is vital for improving public health interventions and preparing for future influenza challenges.
Collapse
Affiliation(s)
- Shriyansh Srivastava
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| | - Nandani Jayaswal
- Faculty of Pharmaceutical Sciences, Mahayogi Gorakhnath University Gorakhpur, Gorakhpur, UP, India
| | - Sachin Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, India
| | - Gsn Koteswara Rao
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM's NMIMS, Mumbai, India
| | | | - Aroop Mohanty
- Department of Clinical Microbiology, All India Institute of Medical Sciences, Gorakhpur, Uttar Pradesh, India
| | - Rachana Mehta
- Dr Lal PathLabs Nepal, Kathmandu, Nepal
- Clinical Microbiology, RDC, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
| | - Vasso Apostolopoulos
- Institute for Health and Sport, Victoria University, Melbourne, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC, Australia
| | - Sanjit Sah
- Department of Paediatrics, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Dr. D. Y. Patil Vidyapeeth, Pune, Maharashtra, India
- Department of Public Health Dentistry, Dr. D.Y. Patil Dental College and Hospital, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra, India
- SR Sanjeevani Hospital, Siraha, Nepal
| | | | | | - Alfonso J Rodriguez-Morales
- Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas-Institución Universitaria Visión de las Américas, Pereira, Colombia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| |
Collapse
|
2
|
Li C, Culhane MR, Schroeder DC, Cheeran MCJ, Galina Pantoja L, Jansen ML, Torremorell M. Quantifying the impact of vaccination on transmission and diversity of influenza A variants in pigs. J Virol 2024; 98:e0124524. [PMID: 39530665 DOI: 10.1128/jvi.01245-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Global evolutionary dynamics of influenza A virus (IAV) are fundamentally driven by the extent of virus diversity generated, transmitted, and shaped in individual hosts. How vaccination affects the degree of IAV genetic diversity that can be transmitted and expanded in pigs is unknown. To evaluate the effect of vaccination on the transmission of genetically distinct IAV variants and their diversity after transmission in pigs, we examined the whole genome of IAV recovered from the nasal cavities of pigs vaccinated with different influenza immunization regimens after being infected simultaneously by H1N1 and H3N2 IAVs using a seeder pig model. We found that the seeder pigs harbored more diversified virus populations than the contact pigs. Among contact pigs, H3N2 and H1N1 viruses recovered from pigs vaccinated with a single dose of an unmatched modified live vaccine generally accumulated more extensive genetic mutations than non-vaccinated pigs. Furthermore, the non-sterilizing immunity elicited by the single-dose-modified live vaccine may have exerted positive selection on H1 antigenic regions as we detected significantly higher nonsynonymous but lower synonymous evolutionary rates in H1 antigenic regions than non-antigenic regions. In addition, we observed that the vaccinated pigs shared significantly less proportion of H3N2 variants with seeder pigs than unvaccinated pigs. These results indicated that vaccination might reduce the impact of transmitted influenza variants on the overall diversity of IAV populations harbored in recipient pigs and that within-host genetic selection of IAV is more likely to occur in pigs vaccinated with improperly matched vaccines.IMPORTANCEUnderstanding how vaccination shapes the diversity of influenza variants that transmit and propagate among pigs is essential for designing effective IAV surveillance and control programs. Current knowledge about the transmission of IAV variants has primarily been explored in humans during natural infection. However, how immunity elicited by improperly matched vaccines affects the degree of IAV genetic diversity that can be transmitted and expanded in pigs at the whole-genome level is unknown. We analyzed IAV sequences from samples collected daily from experimentally infected pigs vaccinated with various protocols in a field-represented IAV co-infection model. We found that vaccine-induced non-sterilizing immunity might promote genetic variation on the IAV genome and drive positive selection at antigenic sites during infection. In addition, a smaller proportion of H3N2 viral variants were shared between seeder pigs and vaccinated pigs, suggesting the influence of vaccination on shaping the virus genomic diversity in recipient pigs during the transmission events.
Collapse
Affiliation(s)
- Chong Li
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Declan C Schroeder
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Maxim C-J Cheeran
- College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | | | | | | |
Collapse
|
3
|
Bendall EE, Zhu Y, Fitzsimmons WJ, Rolfes M, Mellis A, Halasa N, Martin ET, Grijalva CG, Talbot HK, Lauring AS. Influenza A virus within-host evolution and positive selection in a densely sampled household cohort over three seasons. Virus Evol 2024; 10:veae084. [PMID: 39444487 PMCID: PMC11498174 DOI: 10.1093/ve/veae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
While influenza A virus (IAV) antigenic drift has been documented globally, in experimental animal infections, and in immunocompromised hosts, positive selection has generally not been detected in acute infections. This is likely due to challenges in distinguishing selected rare mutations from sequencing error, a reliance on cross-sectional sampling, and/or the lack of formal tests of selection for individual sites. Here, we sequenced IAV populations from 346 serial, daily nasal swabs from 143 individuals collected over three influenza seasons in a household cohort. Viruses were sequenced in duplicate, and intrahost single nucleotide variants (iSNVs) were identified at a 0.5% frequency threshold. Within-host populations exhibited low diversity, with >75% mutations present at <2% frequency. Children (0-5 years) had marginally higher within-host evolutionary rates than adolescents (6-18 years) and adults (>18 years, 4.4 × 10-6 vs. 9.42 × 10-7 and 3.45 × 10-6, P < .001). Forty-five iSNVs had evidence of parallel evolution but were not over-represented in HA and NA. Several increased from minority to consensus level, with strong linkage among iSNVs across segments. A Wright-Fisher approximate Bayesian computational model identified positive selection at 23/256 loci (9%) in A(H3N2) specimens and 19/176 loci (11%) in A(H1N1)pdm09 specimens, and these were infrequently found in circulation. Overall, we found that within-host IAV populations were subject to genetic drift and purifying selection, with only subtle differences across seasons, subtypes, and age strata. Positive selection was rare and inconsistently detected.
Collapse
Affiliation(s)
- Emily E Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - William J Fitzsimmons
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, United States
| | - Melissa Rolfes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Alexandra Mellis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA 30333, United States
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - Emily T Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Carlos G Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - H Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN 37203, United States
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37203, United States
| | - Adam S Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI 48109, United States
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI 48109, United States
| |
Collapse
|
4
|
Henke D, Piedra FA, Avadhanula V, Doddapaneni H, Muzny DM, Menon VK, Hoffman KL, Ross MC, Javornik Cregeen SJ, Metcalf G, Gibbs RA, Petrosino JF, Piedra PA. Examining intra-host genetic variation of RSV by short read high-throughput sequencing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.17.541198. [PMID: 39282457 PMCID: PMC11398394 DOI: 10.1101/2023.05.17.541198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Every viral infection entails an evolving population of viral genomes. High-throughput sequencing technologies can be used to characterize such populations, but to date there are few published examples of such work. In addition, mixed sequencing data are sometimes used to infer properties of infecting genomes without discriminating between genome-derived reads and reads from the much more abundant, in the case of a typical active viral infection, transcripts. Here we apply capture probe-based short read high-throughput sequencing to nasal wash samples taken from a previously described group of adult hematopoietic cell transplant (HCT) recipients naturally infected with respiratory syncytial virus (RSV). We separately analyzed reads from genomes and transcripts for the levels and distribution of genetic variation by calculating per position Shannon entropies. Our analysis reveals a low level of genetic variation within the RSV infections analyzed here, but with interesting differences between genomes and transcripts in 1) average per sample Shannon entropies; 2) the genomic distribution of variation 'hotspots'; and 3) the genomic distribution of hotspots encoding alternative amino acids. In all, our results suggest the importance of separately analyzing reads from genomes and transcripts when interpreting high-throughput sequencing data for insight into intra-host viral genome replication, expression, and evolution.
Collapse
Affiliation(s)
- David Henke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Felipe-Andrés Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Vasanthi Avadhanula
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Harsha Doddapaneni
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Donna M. Muzny
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Vipin K. Menon
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kristi L. Hoffman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Matthew C. Ross
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Ginger Metcalf
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Richard A. Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Joseph F. Petrosino
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Pedro A. Piedra
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Bendall EE, Zhu Y, Fitzsimmons WJ, Rolfes M, Mellis A, Halasa N, Martin ET, Grijalva CG, Talbot HK, Lauring AS. Influenza A virus within-host evolution and positive selection in a densely sampled household cohort over three seasons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608152. [PMID: 39229225 PMCID: PMC11370358 DOI: 10.1101/2024.08.15.608152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
While influenza A virus (IAV) antigenic drift has been documented globally, in experimental animal infections, and in immunocompromised hosts, positive selection has generally not been detected in acute infections. This is likely due to challenges in distinguishing selected rare mutations from sequencing error, a reliance on cross-sectional sampling, and/or the lack of formal tests of selection for individual sites. Here, we sequenced IAV populations from 346 serial, daily nasal swabs from 143 individuals collected over three influenza seasons in a household cohort. Viruses were sequenced in duplicate, and intrahost single nucleotide variants (iSNV) were identified at a 0.5% frequency threshold. Within-host populations were subject to purifying selection with >75% mutations present at <2% frequency. Children (0-5 years) had marginally higher within-host evolutionary rates than adolescents (6-18 years) and adults (>18 years, 4.4×10-6 vs. 9.42×10-7 and 3.45×10-6, p <0.001). Forty-five iSNV had evidence of parallel evolution, but were not overrepresented in HA and NA. Several increased from minority to consensus level, with strong linkage among iSNV across segments. A Wright Fisher Approximate Bayesian Computational model identified positive selection at 23/256 loci (9%) in A(H3N2) specimens and 19/176 loci (11%) in A(H1N1)pdm09 specimens, and these were infrequently found in circulation. Overall, we found that within-host IAV populations were subject to purifying selection and genetic drift, with only subtle differences across seasons, subtypes, and age strata. Positive selection was rare and inconsistently detected.
Collapse
Affiliation(s)
- Emily E. Bendall
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Yuwei Zhu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Melissa Rolfes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Alexandra Mellis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA USA
| | - Natasha Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Emily T. Martin
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Carlos G. Grijalva
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
| | - H. Keipp Talbot
- Department of Health Policy, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam S. Lauring
- Department of Microbiology & Immunology, University of Michigan, Ann Arbor, MI, USA
- Division of Infectious Diseases, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
6
|
Martin MA, Berg N, Koelle K. Influenza A genomic diversity during human infections underscores the strength of genetic drift and the existence of tight transmission bottlenecks. Virus Evol 2024; 10:veae042. [PMID: 38883977 PMCID: PMC11179161 DOI: 10.1093/ve/veae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/06/2024] [Accepted: 05/21/2024] [Indexed: 06/18/2024] Open
Abstract
Influenza infections result in considerable public health and economic impacts each year. One of the contributing factors to the high annual incidence of human influenza is the virus's ability to evade acquired immunity through continual antigenic evolution. Understanding the evolutionary forces that act within and between hosts is therefore critical to interpreting past trends in influenza virus evolution and in predicting future ones. Several studies have analyzed longitudinal patterns of influenza A virus genetic diversity in natural human infections to assess the relative contributions of selection and genetic drift on within-host evolution. However, in these natural infections, within-host viral populations harbor very few single-nucleotide variants, limiting our resolution in understanding the forces acting on these populations in vivo. Furthermore, low levels of within-host viral genetic diversity limit the ability to infer the extent of drift across transmission events. Here, we propose to use influenza virus genomic diversity as an alternative signal to better understand within- and between-host patterns of viral evolution. Specifically, we focus on the dynamics of defective viral genomes (DVGs), which harbor large internal deletions in one or more of influenza virus's eight gene segments. Our longitudinal analyses of DVGs show that influenza A virus populations are highly dynamic within hosts, corroborating previous findings based on viral genetic diversity that point toward the importance of genetic drift in driving within-host viral evolution. Furthermore, our analysis of DVG populations across transmission pairs indicates that DVGs rarely appeared to be shared, indicating the presence of tight transmission bottlenecks. Our analyses demonstrate that viral genomic diversity can be used to complement analyses based on viral genetic diversity to reveal processes that drive viral evolution within and between hosts.
Collapse
Affiliation(s)
- Michael A Martin
- Department of Pathology, Johns Hopkins School of Medicine, 600 N. Wolfe Street, Baltimore, MD 21287, USA
- Graduate Program in Population Biology, Ecology, and Evolution, Emory University, 1462 Clifton Road NE, Atlanta, GA 30322, USA
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Nick Berg
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
- Department of Biochemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
- National Institute of Allergy and Infectious Diseases Laboratory of Viral Disease, National Institutes of Health, 33 North Drive, Bethesda, MD 20814, USA
| | - Katia Koelle
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), 1510 Clifton Road NE, Atlanta, GA 30322, USA
| |
Collapse
|
7
|
Sobel Leonard A, Mendoza L, McFarland AG, Marques AD, Everett JK, Moncla L, Bushman FD, Odom John AR, Hensley SE. Within-host influenza viral diversity in the pediatric population as a function of age, vaccine, and health status. Virus Evol 2024; 10:veae034. [PMID: 38859985 PMCID: PMC11163376 DOI: 10.1093/ve/veae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/23/2024] [Accepted: 04/22/2024] [Indexed: 06/12/2024] Open
Abstract
Seasonal influenza virus predominantly evolves through antigenic drift, marked by the accumulation of mutations at antigenic sites. Because of antigenic drift, influenza vaccines are frequently updated, though their efficacy may still be limited due to strain mismatches. Despite the high levels of viral diversity observed across populations, most human studies reveal limited intrahost diversity, leaving the origin of population-level viral diversity unclear. Previous studies show host characteristics, such as immunity, might affect within-host viral evolution. Here we investigate influenza A viral diversity in children aged between 6 months and 18 years. Influenza virus evolution in children is less well characterized than in adults, yet may be associated with higher levels of viral diversity given the lower level of pre-existing immunity and longer durations of infection in children. We obtained influenza isolates from banked influenza A-positive nasopharyngeal swabs collected at the Children's Hospital of Philadelphia during the 2017-18 influenza season. Using next-generation sequencing, we evaluated the population of influenza viruses present in each sample. We characterized within-host viral diversity using the number and frequency of intrahost single-nucleotide variants (iSNVs) detected in each sample. We related viral diversity to clinical metadata, including subjects' age, vaccination status, and comorbid conditions, as well as sample metadata such as virus strain and cycle threshold. Consistent with previous studies, most samples contained low levels of diversity with no clear association between the subjects' age, vaccine status, or health status. Further, there was no enrichment of iSNVs near known antigenic sites. Taken together, these findings are consistent with previous observations that the majority of intrahost influenza virus infection is characterized by low viral diversity without evidence of diversifying selection.
Collapse
Affiliation(s)
- Ashley Sobel Leonard
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Lydia Mendoza
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Alexander G McFarland
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Andrew D Marques
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - John K Everett
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Louise Moncla
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
| | - Frederic D Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Audrey R Odom John
- Division of Infectious Diseases, Children’s Hospital of Philadelphia, 3401 Civic Center Blvd., Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce St., Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| | - Scott E Hensley
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd., Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
VanInsberghe D, McBride DS, DaSilva J, Stark TJ, Lau MSY, Shepard SS, Barnes JR, Bowman AS, Lowen AC, Koelle K. Genetic drift and purifying selection shape within-host influenza A virus populations during natural swine infections. PLoS Pathog 2024; 20:e1012131. [PMID: 38626244 PMCID: PMC11051653 DOI: 10.1371/journal.ppat.1012131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/26/2024] [Accepted: 03/16/2024] [Indexed: 04/18/2024] Open
Abstract
Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype swine IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intrahost Single Nucleotide Variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.
Collapse
Affiliation(s)
- David VanInsberghe
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Dillon S. McBride
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Juliana DaSilva
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Thomas J. Stark
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Max S. Y. Lau
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Samuel S. Shepard
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - John R. Barnes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, United States of America
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, Georgia, United States of America
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR), Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
Farjo M, Koelle K, Martin MA, Gibson LL, Walden KKO, Rendon G, Fields CJ, Alnaji FG, Gallagher N, Luo CH, Mostafa HH, Manabe YC, Pekosz A, Smith RL, McManus DD, Brooke CB. Within-host evolutionary dynamics and tissue compartmentalization during acute SARS-CoV-2 infection. J Virol 2024; 98:e0161823. [PMID: 38174928 PMCID: PMC10805032 DOI: 10.1128/jvi.01618-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
The global evolution of SARS-CoV-2 depends in part upon the evolutionary dynamics within individual hosts with varying immune histories. To characterize the within-host evolution of acute SARS-CoV-2 infection, we sequenced saliva and nasal samples collected daily from vaccinated and unvaccinated individuals early during infection. We show that longitudinal sampling facilitates high-confidence genetic variant detection and reveals evolutionary dynamics missed by less-frequent sampling strategies. Within-host dynamics in both unvaccinated and vaccinated individuals appeared largely stochastic; however, in rare cases, minor genetic variants emerged to frequencies sufficient for forward transmission. Finally, we detected significant genetic compartmentalization of viral variants between saliva and nasal swab sample sites in many individuals. Altogether, these data provide a high-resolution profile of within-host SARS-CoV-2 evolutionary dynamics.IMPORTANCEWe detail the within-host evolutionary dynamics of SARS-CoV-2 during acute infection in 31 individuals using daily longitudinal sampling. We characterized patterns of mutational accumulation for unvaccinated and vaccinated individuals, and observed that temporal variant dynamics in both groups were largely stochastic. Comparison of paired nasal and saliva samples also revealed significant genetic compartmentalization between tissue environments in multiple individuals. Our results demonstrate how selection, genetic drift, and spatial compartmentalization all play important roles in shaping the within-host evolution of SARS-CoV-2 populations during acute infection.
Collapse
Affiliation(s)
- Mireille Farjo
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia, USA
| | - Michael A. Martin
- Department of Biology, Emory University, Atlanta, Georgia, USA
- Population Biology, Ecology, and Evolution Graduate Program, Emory University, Atlanta, Georgia, USA
| | - Laura L. Gibson
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Kimberly K. O. Walden
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Gloria Rendon
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Christopher J. Fields
- High-Performance Biological Computing at the Roy J. Carver Biotechnology Center, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Fadi G. Alnaji
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Nicholas Gallagher
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chun Huai Luo
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heba H. Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Yukari C. Manabe
- Division of Infectious Disease, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rebecca L. Smith
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - David D. McManus
- Division of Cardiology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Christopher B. Brooke
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
10
|
Domnich A, Orsi A, Signori A, Chironna M, Manini I, Napoli C, Rizzo C, Panatto D, Icardi G. Waning intra-season vaccine effectiveness against influenza A(H3N2) underlines the need for more durable protection. Expert Rev Vaccines 2024; 23:380-388. [PMID: 38494919 DOI: 10.1080/14760584.2024.2331073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND The question of whether influenza vaccine effectiveness (VE) wanes over the winter season is still open and some contradictory findings have been reported. This study investigated the possible decline in protection provided by the available influenza vaccines. RESEARCH DESIGN AND METHODS An individual-level pooled analysis of six test-negative case-control studies conducted in Italy between the 2018/2019 and 2022/2023 seasons was performed. Multivariable logistic regression analyses were performed to estimate weekly change in the odds of testing positive for influenza 14 days after vaccination. RESULTS Of 6490 patients included, 1633 tested positive for influenza. Each week that had elapsed since vaccination was associated with an increase in the odds of testing positive for any influenza (4.9%; 95% CI: 2.0-8.0%) and for A(H3N2) (6.5%; 95% CI: 2.9-10.3%). This decline in VE was, however, significant only in children and older adults. A similar increase in the odds of testing positive was seen when the dataset was restricted to vaccinees only. Conversely, VE waning was less evident for A(H1N1)pdm09 or B strains. CONCLUSIONS Significant waning of VE, especially against influenza A(H3N2), may be one of the factors associated with suboptimal end-of-season VE. Next-generation vaccines should provide more durable protection against A(H3N2).
Collapse
Affiliation(s)
- Alexander Domnich
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Andrea Orsi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Centre on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| | - Alessio Signori
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Maria Chironna
- Interdisciplinary Department of Medicine, University of Bari, Bari, Italy
| | - Ilaria Manini
- Interuniversity Research Centre on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | | | - Caterina Rizzo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Donatella Panatto
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Centre on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| | - Giancarlo Icardi
- Hygiene Unit, San Martino Policlinico Hospital - IRCCS for Oncology and Neurosciences, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
- Interuniversity Research Centre on Influenza and Other Transmissible Infections (CIRI-IT), Genoa, Italy
| |
Collapse
|
11
|
Holmes KE, VanInsberghe D, Ferreri LM, Elie B, Ganti K, Lee CY, Lowen AC. Viral expansion after transfer is a primary driver of influenza A virus transmission bottlenecks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.19.567585. [PMID: 38014182 PMCID: PMC10680852 DOI: 10.1101/2023.11.19.567585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
For many viruses, narrow bottlenecks acting during transmission sharply reduce genetic diversity in a recipient host relative to the donor. Since genetic diversity represents adaptive potential, such losses of diversity are though to limit the opportunity for viral populations to undergo antigenic change and other adaptive processes. Thus, a detailed picture of evolutionary dynamics during transmission is critical to understanding the forces driving viral evolution at an epidemiologic scale. To advance this understanding, we used a novel barcoded virus library and a guinea pig model of transmission to decipher where in the transmission process diversity is lost for influenza A viruses. In inoculated guinea pigs, we show that a high level of viral genetic diversity is maintained across time. Continuity in the barcodes detected furthermore indicates that stochastic effects are not pronounced within inoculated hosts. Importantly, in both aerosol-exposed and direct contact-exposed animals, we observed many barcodes at the earliest time point(s) positive for infectious virus, indicating robust transfer of diversity through the environment. This high viral diversity is short-lived, however, with a sharp decline seen 1-2 days after initiation of infection. Although major losses of diversity at transmission are well described for influenza A virus, our data indicate that events that occur following viral transfer and during the earliest stages of natural infection have a predominant role in this process. This finding suggests that immune selection may have greater opportunity to operate during influenza A transmission than previously recognized.
Collapse
Affiliation(s)
- Katie E. Holmes
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - David VanInsberghe
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lucas M. Ferreri
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Baptiste Elie
- MIVEGEC, CNRS, IRD, Université de Montpellier, Montpellier, France
| | - Ketaki Ganti
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Chung-Young Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Jung-gu, Daegu, Republic of Korea
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center of Excellence for Influenza Research and Response (CEIRR), Atlanta, GA, USA
| |
Collapse
|
12
|
Han AX, de Jong SPJ, Russell CA. Co-evolution of immunity and seasonal influenza viruses. Nat Rev Microbiol 2023; 21:805-817. [PMID: 37532870 DOI: 10.1038/s41579-023-00945-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Seasonal influenza viruses cause recurring global epidemics by continually evolving to escape host immunity. The viral constraints and host immune responses that limit and drive the evolution of these viruses are increasingly well understood. However, it remains unclear how most of these advances improve the capacity to reduce the impact of seasonal influenza viruses on human health. In this Review, we synthesize recent progress made in understanding the interplay between the evolution of immunity induced by previous infections or vaccination and the evolution of seasonal influenza viruses driven by the heterogeneous accumulation of antibody-mediated immunity in humans. We discuss the functional constraints that limit the evolution of the viruses, the within-host evolutionary processes that drive the emergence of new virus variants, as well as current and prospective options for influenza virus control, including the viral and immunological barriers that must be overcome to improve the effectiveness of vaccines and antiviral drugs.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Simon P J de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
- Department of Global Health, School of Public Health, Boston University, Boston, MA, USA.
| |
Collapse
|
13
|
Oyola S. Characterization of SARS-CoV-2 genetic evolution in vaccinated and non-vaccinated patients from the Kenyan population. RESEARCH SQUARE 2023:rs.3.rs-3457875. [PMID: 37961584 PMCID: PMC10635312 DOI: 10.21203/rs.3.rs-3457875/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Vaccination is a key control measure of COVID-19 by preventing severe effects of disease outcomes, reducing hospitalization rates and death, and increasing herd immunity. However, vaccination can affect the evolution and adaptation of SARS-CoV-2, largely through vaccine-induced immune pressure. Here we investigated the recombination events and single nucleotide polymorphisms (SNPs) on SARS-CoV-2 genome in non-vaccinated and vaccinated patients in the Kenyan population. We identified recombination hotspots in the S, N, and ORF1a/b genes and showed the genetic evolution landscape of SARS-CoV-2 by comparing within-wave and inter-wave recombination events from the beginning of the pandemic (June 2020) to (October 2022) in Kenya. An in-depth analysis of (SNPs) on the S, ORf1a/b, and N genes identified previously unreported mutations. We detected a minority variant in non-vaccinated patients in Kenya, that contained immune escape mutation S255F of the spike gene and showing a differential recombination pattern within the non-vaccinated patients. Detailed analysis of recombination between waves suggested an association between increased population immunity and declining risk of emergence of variants of concern. Overall, this work identified unique mutations in SARS-CoV-2 which could have significant implications for virus evolution, virulence, and immune escape.
Collapse
|
14
|
VanInsberghe D, McBride DS, DaSilva J, Stark TJ, Lau MS, Shepard SS, Barnes JR, Bowman AS, Lowen AC, Koelle K. Genetic drift and purifying selection shape within-host influenza A virus populations during natural swine infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.23.563581. [PMID: 37961583 PMCID: PMC10634741 DOI: 10.1101/2023.10.23.563581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Patterns of within-host influenza A virus (IAV) diversity and evolution have been described in natural human infections, but these patterns remain poorly characterized in non-human hosts. Elucidating these dynamics is important to better understand IAV biology and the evolutionary processes that govern spillover into humans. Here, we sampled an IAV outbreak in pigs during a week-long county fair to characterize viral diversity and evolution in this important reservoir host. Nasal wipes were collected on a daily basis from all pigs present at the fair, yielding up to 421 samples per day. Subtyping of PCR-positive samples revealed the co-circulation of H1N1 and H3N2 subtype IAVs. PCR-positive samples with robust Ct values were deep-sequenced, yielding 506 sequenced samples from a total of 253 pigs. Based on higher-depth re-sequenced data from a subset of these initially sequenced samples (260 samples from 168 pigs), we characterized patterns of within-host IAV genetic diversity and evolution. We find that IAV genetic diversity in single-subtype infected pigs is low, with the majority of intra-host single nucleotide variants (iSNVs) present at frequencies of <10%. The ratio of the number of nonsynonymous to the number of synonymous iSNVs is significantly lower than under the neutral expectation, indicating that purifying selection shapes patterns of within-host viral diversity in swine. The dynamic turnover of iSNVs and their pronounced frequency changes further indicate that genetic drift also plays an important role in shaping IAV populations within pigs. Taken together, our results highlight similarities in patterns of IAV genetic diversity and evolution between humans and swine, including the role of stochastic processes in shaping within-host IAV dynamics.
Collapse
Affiliation(s)
- David VanInsberghe
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
- Department of Biology, Emory University, Atlanta, GA, 30322
| | - Dillon S. McBride
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Juliana DaSilva
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - Thomas J. Stark
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - Max S.Y. Lau
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, 30322
| | - Samuel S. Shepard
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - John R. Barnes
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, GA
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210
| | - Anice C. Lowen
- Department of Microbiology and Immunology, Emory University, Atlanta, GA, 30322
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR)
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, 30322
- Emory Center of Excellence for Influenza Research and Response (Emory-CEIRR)
| |
Collapse
|
15
|
Wang M, Li H, Liu S, Ge L, Muhmood A, Liu D, Gan F, Liu Y, Chen X, Huang K. Lipopolysaccharide aggravates canine influenza a (H3N2) virus infection and lung damage via mTOR/autophagy in vivo and in vitro. Food Chem Toxicol 2023; 172:113597. [PMID: 36596444 DOI: 10.1016/j.fct.2022.113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 01/02/2023]
Abstract
Influenza A (H3N2) accounts for the majority of influenza worldwide and continues to challenge human health. Disturbance in the gut microbiota caused by many diseases leads to increased production of lipopolysaccharide (LPS), and LPS induces sepsis and conditions associated with local or systemic inflammation. However, to date, little attention has been paid to the potential impact of LPS on influenza A (H3N2) infection and the potential mechanism. Hence, in this study we used canine influenza A (H3N2) virus (CIV) as a model of influenza A virus to investigate the effect of low-dose of LPS on CIV replication and lung damage and explore the underlying mechanism in mice and A549 and HPAEpiC cells. The results showed that LPS (25 μg/kg) increased CIV infection and lung damage in mice, as indicated by pulmonary virus titer, viral NP levels, lung index, and pulmonary histopathology. LPS (1 μg/ml) also increased CIV replication in A549 cells as indicated by the above same parameters. Furthermore, low doses of LPS reduced CIV-induced p-mTOR protein expression and enhanced CIV-induced autophagy-related mRNA/protein expressions in vivo and in vitro. In addition, the use of the mTOR activator, MHY1485, reversed CIV-induced autophagy and CIV replication in A549 and HPAEpiC cells, respectively. siATG5 alleviated CIV replication exacerbated by LPS in the two lines. In conclusion, LPS aggravates CIV infection and lung damage via mTOR/autophagy.
Collapse
Affiliation(s)
- Mengmeng Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Haolei Li
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Shuiping Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Lei Ge
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Azhar Muhmood
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Dandan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Fang Gan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yunhuan Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Xingxiang Chen
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Kehe Huang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; Institute of Nutritional and Metabolic Disorders in Domestic Animals and Fowls, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China; MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
16
|
Li C, Culhane MR, Schroeder DC, Cheeran MCJ, Galina Pantoja L, Jansen ML, Torremorell M. Vaccination decreases the risk of influenza A virus reassortment but not genetic variation in pigs. eLife 2022; 11:78618. [PMID: 36052992 PMCID: PMC9439680 DOI: 10.7554/elife.78618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 08/10/2022] [Indexed: 11/29/2022] Open
Abstract
Although vaccination is broadly used in North American swine breeding herds, managing swine influenza is challenging primarily due to the continuous evolution of influenza A virus (IAV) and the ability of the virus to transmit among vaccinated pigs. Studies that have simultaneously assessed the impact of vaccination on the emergence of IAV reassortment and genetic variation in pigs are limited. Here, we directly sequenced 28 bronchoalveolar lavage fluid (BALF) samples collected from vaccinated and unvaccinated pigs co-infected with H1N1 and H3N2 IAV strains, and characterized 202 individual viral plaques recovered from 13 BALF samples. We identified 54 reassortant viruses that were grouped in 17 single and 16 mixed genotypes. Notably, we found that prime-boost vaccinated pigs had less reassortant viruses than nonvaccinated pigs, likely due to a reduction in the number of days pigs were co-infected with both challenge viruses. However, direct sequencing from BALF samples revealed limited impact of vaccination on viral variant frequency, evolutionary rates, and nucleotide diversity in any IAV coding regions. Overall, our results highlight the value of IAV vaccination not only at limiting virus replication in pigs but also at protecting public health by restricting the generation of novel reassortants with zoonotic and/or pandemic potential. Swine influenza A viruses cause severe illness among pigs and financial losses on pig farms worldwide. These viruses can also infect humans and have caused deadly human pandemics in the past. Influenza A viruses are dangerous because viruses can be transferred between humans, birds and pigs. These co-infections can allow the viruses to swap genetic material. Viral genetic exchanges can result in new virus strains that are more dangerous or that can infect other types of animals more easily. Farmers vaccinate their pigs to control the swine influenza A virus. The vaccines are regularly updated to match circulating virus strains. But the virus evolves rapidly to escape vaccine-induced immunity, and infections are common even in vaccinated pigs. Learning about how vaccination affects the evolution of influenza A viruses in pigs could help scientists prevent outbreaks on pig farms and avoid spillover pandemics in humans. Li et al. show that influenza A viruses are less likely to swap genetic material in vaccinated and boosted pigs than in unvaccinated animals. In the experiments, Li et al. collected swine influenza A samples from the lungs of pigs that had received different vaccination protocols. Next, Li et al. used next-generation sequencing to identify new mutations in the virus or genetic swaps among different strains. In pigs infected with both the H1N1 and H3N2 strains of influenza, the two viruses began trading genes within a week. But less genetic mixing occurred in vaccinated and boosted pigs because they spent less time infected with both viruses than in unvaccinated pigs. The vaccination status of the pig did not have much effect on how many new mutations occurred in the viruses. The experiments show that vaccinating and boosting pigs against influenza A viruses may protect against genetic swapping among influenza viruses. If future studies on pig farms confirm the results, the information gleaned from the study could help scientists improve farm vaccine protocols to further reduce influenza risks to animals and people.
Collapse
Affiliation(s)
- Chong Li
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | - Marie R Culhane
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | - Declan C Schroeder
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | - Maxim C-J Cheeran
- College of Veterinary Medicine, University of Minnesota, Saint Paul, United States
| | | | | | | |
Collapse
|
17
|
Van Poelvoorde LAE, Delcourt T, Vuylsteke M, De Keersmaecker SCJ, Thomas I, Van Gucht S, Saelens X, Roosens N, Vanneste K. A general approach to identify low-frequency variants within influenza samples collected during routine surveillance. Microb Genom 2022; 8. [PMID: 36169645 DOI: 10.1099/mgen.0.000867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza viruses exhibit considerable diversity between hosts. Additionally, different quasispecies can be found within the same host. High-throughput sequencing technologies can be used to sequence a patient-derived virus population at sufficient depths to identify low-frequency variants (LFV) present in a quasispecies, but many challenges remain for reliable LFV detection because of experimental errors introduced during sample preparation and sequencing. High genomic copy numbers and extensive sequencing depths are required to differentiate false positive from real LFV, especially at low allelic frequencies (AFs). This study proposes a general approach for identifying LFV in patient-derived samples obtained during routine surveillance. Firstly, validated thresholds were determined for LFV detection, whilst balancing both the cost and feasibility of reliable LFV detection in clinical samples. Using a genetically well-defined population of influenza A viruses, thresholds of at least 104 genomes per microlitre and AF of ≥5 % were established as detection limits. Secondly, a subset of 59 retained influenza A (H3N2) samples from the 2016-2017 Belgian influenza season was composed. Thirdly, as a proof of concept for the added value of LFV for routine influenza monitoring, potential associations between patient data and whole genome sequencing data were investigated. A significant association was found between a high prevalence of LFV and disease severity. This study provides a general methodology for influenza LFV detection, which can also be adopted by other national influenza reference centres and for other viruses such as SARS-CoV-2. Additionally, this study suggests that the current relevance of LFV for routine influenza surveillance programmes might be undervalued.
Collapse
Affiliation(s)
- Laura A E Van Poelvoorde
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium.,National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium.,Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Thomas Delcourt
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | | | | | - Isabelle Thomas
- National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Steven Van Gucht
- National Influenza Centre, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Xavier Saelens
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.,VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
| | - Nancy Roosens
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| | - Kevin Vanneste
- Transversal activities in Applied Genomics, Sciensano, Juliette Wytsmanstraat 14, Brussels, Belgium
| |
Collapse
|
18
|
Amato KA, Haddock LA, Braun KM, Meliopoulos V, Livingston B, Honce R, Schaack GA, Boehm E, Higgins CA, Barry GL, Koelle K, Schultz-Cherry S, Friedrich TC, Mehle A. Influenza A virus undergoes compartmentalized replication in vivo dominated by stochastic bottlenecks. Nat Commun 2022; 13:3416. [PMID: 35701424 PMCID: PMC9197827 DOI: 10.1038/s41467-022-31147-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 06/03/2022] [Indexed: 11/09/2022] Open
Abstract
Transmission of influenza A viruses (IAV) between hosts is subject to numerous physical and biological barriers that impose genetic bottlenecks, constraining viral diversity and adaptation. The bottlenecks within hosts and their potential impacts on evolutionary pathways taken during infection are poorly understood. To address this, we created highly diverse IAV libraries bearing molecular barcodes on two gene segments, enabling high-resolution tracking and quantification of unique virus lineages within hosts. Here we show that IAV infection in lungs is characterized by multiple within-host bottlenecks that result in "islands" of infection in lung lobes, each with genetically distinct populations. We perform site-specific inoculation of barcoded IAV in the upper respiratory tract of ferrets and track viral diversity as infection spreads to the trachea and lungs. We detect extensive compartmentalization of discrete populations within lung lobes. Bottleneck events and localized replication stochastically sample individual viruses from the upper respiratory tract or the trachea that become the dominant genotype in a particular lobe. These populations are shaped strongly by founder effects, with limited evidence for positive selection. The segregated sites of replication highlight the jackpot-style events that contribute to within-host influenza virus evolution and may account for low rates of intrahost adaptation.
Collapse
Affiliation(s)
- Katherine A Amato
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Luis A Haddock
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Katarina M Braun
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Victoria Meliopoulos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Brandi Livingston
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Rebekah Honce
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Grace A Schaack
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Emma Boehm
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Christina A Higgins
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Gabrielle L Barry
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, GA, 30322, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, 53706, USA
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53715, USA
| | - Andrew Mehle
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
19
|
Bull MB, Gu H, Ma FNL, Perera LP, Poon LLM, Valkenburg SA. Next-generation T cell-activating vaccination increases influenza virus mutation prevalence. SCIENCE ADVANCES 2022; 8:eabl5209. [PMID: 35385318 PMCID: PMC8986104 DOI: 10.1126/sciadv.abl5209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
To determine the potential for viral adaptation to T cell responses, we probed the full influenza virus genome by next-generation sequencing directly ex vivo from infected mice, in the context of an experimental T cell-based vaccine, an H5N1-based viral vectored vaccinia vaccine Wyeth/IL-15/5Flu, versus the current standard-of-care, seasonal inactivated influenza vaccine (IIV) and unvaccinated conditions. Wyeth/IL-15/5Flu vaccination was coincident with increased mutation incidence and frequency across the influenza genome; however, mutations were not enriched within T cell epitope regions, but high allele frequency mutations within conserved hemagglutinin stem regions and PB2 mammalian adaptive mutations arose. Depletion of CD4+ and CD8+ T cell subsets led to reduced frequency of mutants in vaccinated mice; therefore, vaccine-mediated T cell responses were important drivers of virus diversification. Our findings suggest that Wyeth/IL-15/5Flu does not generate T cell escape mutants but increases stochastic events for virus adaptation by stringent bottlenecks.
Collapse
Affiliation(s)
- Maireid B. Bull
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Haogao Gu
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Fionn N. L. Ma
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Liyanage P. Perera
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1374, USA
| | - Leo L. M. Poon
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Division of Public Health Laboratory Sciences, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Sophie A. Valkenburg
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Department of Microbiology and Immunology, at The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Li J, Du P, Yang L, Zhang J, Song C, Chen D, Song Y, Ding N, Hua M, Han K, Song R, Xie W, Chen Z, Wang X, Liu J, Xu Y, Gao G, Wang Q, Pu L, Di L, Li J, Yue J, Han J, Zhao X, Yan Y, Yu F, Wu AR, Zhang F, Gao YQ, Huang Y, Wang J, Zeng H, Chen C. Two-step fitness selection for intra-host variations in SARS-CoV-2. Cell Rep 2022; 38:110205. [PMID: 34982968 PMCID: PMC8674508 DOI: 10.1016/j.celrep.2021.110205] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/10/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
Spontaneous mutations introduce uncertainty into coronavirus disease 2019 (COVID-19) control procedures and vaccine development. Here, we perform a spatiotemporal analysis on intra-host single-nucleotide variants (iSNVs) in 402 clinical samples from 170 affected individuals, which reveals an increase in genetic diversity over time after symptom onset in individuals. Nonsynonymous mutations are overrepresented in the pool of iSNVs but underrepresented at the single-nucleotide polymorphism (SNP) level, suggesting a two-step fitness selection process: a large number of nonsynonymous substitutions are generated in the host (positive selection), and these substitutions tend to be unfixed as SNPs in the population (negative selection). Dynamic iSNV changes in subpopulations with different gender, age, illness severity, and viral shedding time displayed a varied fitness selection process among populations. Our study highlights that iSNVs provide a mutational pool shaping the rapid global evolution of the virus.
Collapse
Affiliation(s)
- Jiarui Li
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Pengcheng Du
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Lijiang Yang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China
| | - Ju Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Chuan Song
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Danying Chen
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Yangzi Song
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Nan Ding
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Mingxi Hua
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Kai Han
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Rui Song
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Wen Xie
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Zhihai Chen
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Xianbo Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Jingyuan Liu
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Yanli Xu
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Guiju Gao
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Qi Wang
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Lin Pu
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Lin Di
- Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jie Li
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China
| | - Jinglin Yue
- Peking University Ditan Teaching Hospital, Beijing 100015, China
| | - Junyan Han
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Xuesen Zhao
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Yonghong Yan
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China; Beijing Key Laboratory of Emerging Infectious Diseases, Beijing 100015, P. R. China
| | - Fengting Yu
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China
| | - Angela R Wu
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, P.R. China; Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Hong Kong SAR, P.R. China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing 100015, P. R. China.
| | - Yi Qin Gao
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen 518055, China.
| | - Yanyi Huang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Beijing Advanced Innovation Center for Genomics, Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Institute for Cell Analysis, Shenzhen Bay Laboratory, Shenzhen 518055, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing 100084, China; Chinese Institute for Brain Research, Beijing 102206, China.
| | - Hui Zeng
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| | - Chen Chen
- Biomedical Innovation Center, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, China.
| |
Collapse
|
21
|
Lipsitch M, Krammer F, Regev-Yochay G, Lustig Y, Balicer RD. SARS-CoV-2 breakthrough infections in vaccinated individuals: measurement, causes and impact. Nat Rev Immunol 2022; 22:57-65. [PMID: 34876702 PMCID: PMC8649989 DOI: 10.1038/s41577-021-00662-4] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2021] [Indexed: 02/04/2023]
Abstract
Breakthrough infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in fully vaccinated individuals are receiving intense scrutiny because of their importance in determining how long restrictions to control virus transmission will need to remain in place in highly vaccinated populations as well as in determining the need for additional vaccine doses or changes to the vaccine formulations and/or dosing intervals. Measurement of breakthrough infections is challenging outside of randomized, placebo-controlled, double-blind field trials. However, laboratory and observational studies are necessary to understand the impact of waning immunity, viral variants and other determinants of changing vaccine effectiveness against various levels of coronavirus disease 2019 (COVID-19) severity. Here, we describe the approaches being used to measure vaccine effectiveness and provide a synthesis of the burgeoning literature on the determinants of vaccine effectiveness and breakthrough rates. We argue that, rather than trying to tease apart the contributions of factors such as age, viral variants and time since vaccination, the rates of breakthrough infection are best seen as a consequence of the level of immunity at any moment in an individual, the variant to which that individual is exposed and the severity of disease being considered. We also address key open questions concerning the transition to endemicity, the potential need for altered vaccine formulations to track viral variants, the need to identify immune correlates of protection, and the public health challenges of using various tools to counter breakthrough infections, including boosters in an era of global vaccine shortages.
Collapse
Affiliation(s)
- Marc Lipsitch
- Center for Communicable Disease Dynamics, Department of Epidemiology and Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gili Regev-Yochay
- Infection Prevention & Control Unit, Sheba Medical Center, Ramat-Gan, Israel
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Lustig
- Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- The Central Virology Laboratory, Public Health Services, Ministry of Health, Sheba Medical Center, Tel-Hashomer, Israel
| | - Ran D Balicer
- Clalit Research Institute, Innovation Division, Clalit Health Services, Tel Aviv, Israel
- The School of Public Health, Faculty of Health Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| |
Collapse
|
22
|
Han AX, Felix Garza ZC, Welkers MRA, Vigeveno RM, Tran ND, Le TQM, Pham Quang T, Dang DT, Tran TNA, Ha MT, Nguyen TH, Le QT, Le TH, Hoang TBN, Chokephaibulkit K, Puthavathana P, Nguyen VVC, Nghiem MN, Nguyen VK, Dao TT, Tran TH, Wertheim HFL, Horby PW, Fox A, van Doorn HR, Eggink D, de Jong MD, Russell CA. Within-host evolutionary dynamics of seasonal and pandemic human influenza A viruses in young children. eLife 2021; 10:e68917. [PMID: 34342576 PMCID: PMC8382297 DOI: 10.7554/elife.68917] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/02/2021] [Indexed: 01/14/2023] Open
Abstract
The evolution of influenza viruses is fundamentally shaped by within-host processes. However, the within-host evolutionary dynamics of influenza viruses remain incompletely understood, in part because most studies have focused on infections in healthy adults based on single timepoint data. Here, we analyzed the within-host evolution of 82 longitudinally sampled individuals, mostly young children, infected with A/H1N1pdm09 or A/H3N2 viruses between 2007 and 2009. For A/H1N1pdm09 infections during the 2009 pandemic, nonsynonymous minority variants were more prevalent than synonymous ones. For A/H3N2 viruses in young children, early infection was dominated by purifying selection. As these infections progressed, nonsynonymous variants typically increased in frequency even when within-host virus titers decreased. Unlike the short-lived infections of adults where de novo within-host variants are rare, longer infections in young children allow for the maintenance of virus diversity via mutation-selection balance creating potentially important opportunities for within-host virus evolution.
Collapse
Affiliation(s)
- Alvin X Han
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - Zandra C Felix Garza
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - Matthijs RA Welkers
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - René M Vigeveno
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - Nhu Duong Tran
- National Institute of Hygiene and EpidemiologyHanoiViet Nam
| | | | | | | | | | | | | | | | - Thanh Hai Le
- Vietnam National Children's HospitalHanoiViet Nam
| | | | | | | | | | | | | | | | - Tinh Hien Tran
- Siriraj Hospital, Mahidol UniversityBangkokThailand
- Oxford University Clinical Research UnitHo Chi Minh cityViet Nam
| | - Heiman FL Wertheim
- Oxford University Clinical Research UnitHo Chi Minh cityViet Nam
- Radboud Medical Centre, Radboud UniversityNijmegenNetherlands
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
| | - Peter W Horby
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Oxford University Clinical Research UnitHanoiViet Nam
| | - Annette Fox
- Oxford University Clinical Research UnitHanoiViet Nam
- Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
- WHO Collaborating Centre for Reference and Research on InfluenzaMelbourneAustralia
| | - H Rogier van Doorn
- Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Oxford University Clinical Research UnitHanoiViet Nam
| | - Dirk Eggink
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
- Centre for Infectious Disease Control, National Institute for Public Health and the EnvironmentBilthovenNetherlands
| | - Menno D de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| | - Colin A Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical CenterAmsterdamNetherlands
| |
Collapse
|
23
|
Braun KM, Moreno GK, Wagner C, Accola MA, Rehrauer WM, Baker DA, Koelle K, O’Connor DH, Bedford T, Friedrich TC, Moncla LH. Acute SARS-CoV-2 infections harbor limited within-host diversity and transmit via tight transmission bottlenecks. PLoS Pathog 2021; 17:e1009849. [PMID: 34424945 PMCID: PMC8412271 DOI: 10.1371/journal.ppat.1009849] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/02/2021] [Accepted: 07/29/2021] [Indexed: 02/08/2023] Open
Abstract
The emergence of divergent SARS-CoV-2 lineages has raised concern that novel variants eliciting immune escape or the ability to displace circulating lineages could emerge within individual hosts. Though growing evidence suggests that novel variants arise during prolonged infections, most infections are acute. Understanding how efficiently variants emerge and transmit among acutely-infected hosts is therefore critical for predicting the pace of long-term SARS-CoV-2 evolution. To characterize how within-host diversity is generated and propagated, we combine extensive laboratory and bioinformatic controls with metrics of within- and between-host diversity to 133 SARS-CoV-2 genomes from acutely-infected individuals. We find that within-host diversity is low and transmission bottlenecks are narrow, with very few viruses founding most infections. Within-host variants are rarely transmitted, even among individuals within the same household, and are rarely detected along phylogenetically linked infections in the broader community. These findings suggest that most variation generated within-host is lost during transmission.
Collapse
Affiliation(s)
- Katarina M. Braun
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Gage K. Moreno
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Cassia Wagner
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Molly A. Accola
- University of Wisconsin School of Medicine and Public Health and the William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
| | - William M. Rehrauer
- University of Wisconsin School of Medicine and Public Health and the William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, United States of America
| | - David A. Baker
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Katia Koelle
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Trevor Bedford
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Louise H. Moncla
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
24
|
Barnard KN, Wasik BR, Alford BK, Hayward JJ, Weichert WS, Voorhees IEH, Holmes EC, Parrish CR. Sequence dynamics of three influenza A virus strains grown in different MDCK cell lines, including those expressing different sialic acid receptors. J Evol Biol 2021; 34:1878-1900. [PMID: 34114711 DOI: 10.1111/jeb.13890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 06/02/2021] [Accepted: 06/08/2021] [Indexed: 12/12/2022]
Abstract
Viruses are often cultured in cell lines for research and vaccine development, and those often differ from the natural hosts or tissues. Cell lines can also differ in the presence of virus receptors, such as the sialic acid (Sia) receptors used by influenza A viruses (IAV), which can vary in linkage (α2,3- or α2,6-linkage) and form (N-glycolylneuraminic acid [Neu5Gc] or N-acetylneuraminic acid [Neu5Ac]). The selective pressures resulting from passaging viruses in cell types with host-specific variations in viral receptors are still only partially understood. IAV are commonly cultured in MDCK cells which are both derived from canine kidney tubule epithelium and inherently heterogeneous. MDCK cells naturally present Neu5Ac and α2,3-linked Sia forms. Here, we examine natural MDCK variant lineages, as well as engineered variants that synthesize Neu5Gc and/or α2,6-linkages. We determined how viral genetic variation occurred within human H3N2, H1N1 pandemic and canine H3N2 IAV populations when serially passaged in MDCK cell lines that vary in cell type (MDCK-Type I or MDCK-Type II clones) and in Sia display. Deep sequencing of viral genomes showed small numbers of consensus-level mutations, mostly within the hemagglutinin (HA) gene. Both human IAV showed variants in the HA stem and the HA receptor-binding site of populations passaged in cells displaying Neu5Gc. Canine H3N2 showed variants near the receptor-binding site when passaged in cells displaying Neu5Gc or α2,6-linkages. Viruses replicated to low titres in MDCK-Type II cells, suggesting that not all cell types in heterogeneous MDCK cell populations are equally permissive to infection.
Collapse
Affiliation(s)
- Karen N Barnard
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA.,Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Brian R Wasik
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Brynn K Alford
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Jessica J Hayward
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Wendy S Weichert
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Ian E H Voorhees
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| | - Edward C Holmes
- Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Colin R Parrish
- Department of Microbiology and Immunology, College of Veterinary Medicine, Baker Institute for Animal Health, Cornell University, Ithaca, NY, USA
| |
Collapse
|
25
|
Quach C, Deeks S. La vaccination contre la COVID-19 : pourquoi allonger l'intervalle entre les doses? JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2021; 6:79-84. [PMID: 36341026 PMCID: PMC9608692 DOI: 10.3138/jammi-2021-0323.fr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 06/16/2023]
Abstract
Le 3 mars 2021, devant la morbidité et la mortalité continues causées par la maladie à coronavirus 2019 (COVID-19) et l’offre insuffisante de vaccins autorisés et disponibles contre la COVID-19 au Canada, le Comité consultatif national de l’immunisation a publié une forte recommandation préconisant un intervalle prolongé entre les doses des vaccins, afin d’optimiser le nombre de personnes protégées le plus rapidement possible. La recommandation du comité, qui a pris la forme d’une réponse rapide en raison de l’urgence de la situation, repose sur l’examen des données probantes, les principes immunologiques, l’expérience des vaccins, les études de modélisation et les principes d’éthique, d’équité, de faisabilité et d’acceptabilité. De nombreuses questions et inquiétudes ont été soulevées depuis. Le présent article vise à mieux expliquer les motifs de cette recommandation et à fournir aux dispensateurs de soins l’information dont ils ont besoin pour soutenir leurs patients pendant le déploiement de la vaccination.
Collapse
Affiliation(s)
- Caroline Quach
- Département de microbiologie, d’infectiologie et d’immunologie, Université de Montréal, Montréal (Québec) Canada
- Prévention et contrôle des infections, département clinique de médecine de laboratoire, CHU Sainte-Justine, Montréal (Québec) Canada
- Comité consultatif national de l’immunisation, Ottawa (Ontario) Canada
| | - Shelley Deeks
- Comité consultatif national de l’immunisation, Ottawa (Ontario) Canada
- Ministère de la Santé et du Mieux-être, Halifax (Nouvelle-Écosse) Canada
- École de santé publique Dalla Lana, Université de Toronto, Toronto (Ontario) Canada
| |
Collapse
|
26
|
Quach C, Deeks S. COVID-19 vaccination: Why extend the interval between doses? JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2021; 6:73-78. [PMID: 36341029 PMCID: PMC9608698 DOI: 10.3138/jammi-2021-0323] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/23/2020] [Indexed: 06/16/2023]
Abstract
On March 3, 2021, faced with ongoing morbidity and mortality from coronavirus disease 2019 (COVID-19) and insufficient supplies of authorized, available vaccines against COVID-19 in Canada, the National Advisory Committee on Immunization (NACI) issued a strong recommendation to allow for an extended interval between vaccine doses to maximize the number of people protected as quickly as possible. NACI's recommendation was released in the form of a rapid response because of the urgency of the situation and was based on a review of the evidence; principles of immunology; historical experience with vaccines; modelling studies; and consideration of ethics, equity, feasibility, and acceptability. Since then, many questions and concerns have been raised. This article aims to provide further explanation of the rationale for the decision and prepare health care providers with information they need as they support their patients in the vaccination rollout.
Collapse
Affiliation(s)
- Caroline Quach
- Department of Microbiology, Infectious Diseases & Immunology, University of Montreal, Montreal, Quebec, Canada
- Infection Prevention & Control, Department of Clinical Laboratory Medicine, CHU Sainte-Justine, Montreal, Quebec, Canada
- National Advisory Committee on Immunization, Ottawa, Ontario, Canada
| | - Shelley Deeks
- National Advisory Committee on Immunization, Ottawa, Ontario, Canada
- Department of Health and Wellness, Halifax, Nova Scotia
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
27
|
Cobey S, Larremore DB, Grad YH, Lipsitch M. Concerns about SARS-CoV-2 evolution should not hold back efforts to expand vaccination. Nat Rev Immunol 2021; 21:330-335. [PMID: 33795856 PMCID: PMC8014893 DOI: 10.1038/s41577-021-00544-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
When vaccines are in limited supply, expanding the number of people who receive some vaccine, such as by halving doses or increasing the interval between doses, can reduce disease and mortality compared with concentrating available vaccine doses in a subset of the population. A corollary of such dose-sparing strategies is that the vaccinated individuals may have less protective immunity. Concerns have been raised that expanding the fraction of the population with partial immunity to SARS-CoV-2 could increase selection for vaccine-escape variants, ultimately undermining vaccine effectiveness. We argue that, although this is possible, preliminary evidence instead suggests such strategies should slow the rate of viral escape from vaccine or naturally induced immunity. As long as vaccination provides some protection against escape variants, the corresponding reduction in prevalence and incidence should reduce the rate at which new variants are generated and the speed of adaptation. Because there is little evidence of efficient immune selection of SARS-CoV-2 during typical infections, these population-level effects are likely to dominate vaccine-induced evolution.
Collapse
Affiliation(s)
- Sarah Cobey
- Department of Ecology and Evolution, University of Chicago, Chicago, IL, USA.
| | - Daniel B Larremore
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Yonatan H Grad
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Marc Lipsitch
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
28
|
Pando R, Stern S, Nemet I, Glatman-Freedman A, Sefty H, Zuckerman NS, Drori Y, Friedman N, McCauley JW, Keinan-Boker L, Mendelson E, Daniels RS, Mandelboim M. Diversity in the Circulation of Influenza A(H3N2) Viruses in the Northern Hemisphere in the 2018-19 Season. Vaccines (Basel) 2021; 9:375. [PMID: 33924296 PMCID: PMC8069444 DOI: 10.3390/vaccines9040375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 11/23/2022] Open
Abstract
While vaccination is considered the most effective means to prevent influenza infection, its seasonal effectiveness varies, depending on the circulating influenza strains. Here, we characterized the circulation of influenza strains in October-2018 and March-2019 around the world. For this, we used nasopharyngeal samples collected from outpatient and hospitalized patients in Israel and data reported in ECDC, CDC, and WHO databases. Influenza A(H3N2) was dominant in Israel, while in Europe, Asia, and USA, A(H1N1)pdm09 virus circulated first, and then the A(H3N2) virus also appeared. Phylogenetic analysis indicated that A(H3N2) viruses circulating in Israel belonged to clade-3C.3a, while in Europe, Asia, and USA, A(H3N2) viruses belonged to subclade-3C.2a1, but were later replaced by clade-3C.3a viruses in USA. The vaccine A(H3N2) components of that year, A/Singapore/INFIMH-16-0019/2016-(H3N2)-like-viruses, belonged to clade-3C.2a1. The circulation of different influenza subtypes and clades of A(H3N2) viruses in a single season highlights the need for universal influenza vaccines.
Collapse
Affiliation(s)
- Rakefet Pando
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Ramat-Gan 52621, Israel; (R.P.); (A.G.-F.); (H.S.); (N.S.Z.); (L.K.-B.)
- Chaim Sheba Medical Center, Central Virology Laboratory, Ministry of Health, Ramat-Gan 52621, Israel; (S.S.); (I.N.); (Y.D.); (N.F.); (E.M.)
| | - Shahar Stern
- Chaim Sheba Medical Center, Central Virology Laboratory, Ministry of Health, Ramat-Gan 52621, Israel; (S.S.); (I.N.); (Y.D.); (N.F.); (E.M.)
| | - Ital Nemet
- Chaim Sheba Medical Center, Central Virology Laboratory, Ministry of Health, Ramat-Gan 52621, Israel; (S.S.); (I.N.); (Y.D.); (N.F.); (E.M.)
| | - Aharona Glatman-Freedman
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Ramat-Gan 52621, Israel; (R.P.); (A.G.-F.); (H.S.); (N.S.Z.); (L.K.-B.)
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, School of Public Health, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Hanna Sefty
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Ramat-Gan 52621, Israel; (R.P.); (A.G.-F.); (H.S.); (N.S.Z.); (L.K.-B.)
| | - Neta S. Zuckerman
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Ramat-Gan 52621, Israel; (R.P.); (A.G.-F.); (H.S.); (N.S.Z.); (L.K.-B.)
| | - Yaron Drori
- Chaim Sheba Medical Center, Central Virology Laboratory, Ministry of Health, Ramat-Gan 52621, Israel; (S.S.); (I.N.); (Y.D.); (N.F.); (E.M.)
| | - Nehemya Friedman
- Chaim Sheba Medical Center, Central Virology Laboratory, Ministry of Health, Ramat-Gan 52621, Israel; (S.S.); (I.N.); (Y.D.); (N.F.); (E.M.)
| | - John W. McCauley
- Worldwide Influenza Center, The Francis Crick Institute, London NW1 1AT, UK; (J.W.M.); (R.S.D.)
| | - Lital Keinan-Boker
- The Israel Center for Disease Control, Israel Ministry of Health, Tel-Hashomer, Ramat-Gan 52621, Israel; (R.P.); (A.G.-F.); (H.S.); (N.S.Z.); (L.K.-B.)
- School of Public Health, University of Haifa, Haifa 3498838, Israel
| | - Ella Mendelson
- Chaim Sheba Medical Center, Central Virology Laboratory, Ministry of Health, Ramat-Gan 52621, Israel; (S.S.); (I.N.); (Y.D.); (N.F.); (E.M.)
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, School of Public Health, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Rodney S. Daniels
- Worldwide Influenza Center, The Francis Crick Institute, London NW1 1AT, UK; (J.W.M.); (R.S.D.)
| | - Michal Mandelboim
- Chaim Sheba Medical Center, Central Virology Laboratory, Ministry of Health, Ramat-Gan 52621, Israel; (S.S.); (I.N.); (Y.D.); (N.F.); (E.M.)
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, School of Public Health, Tel-Aviv University, Tel-Aviv 6997801, Israel
| |
Collapse
|
29
|
Takayama I, Nguyen BG, Dao CX, Pham TT, Dang TQ, Truong PT, Do TV, Pham TTP, Fujisaki S, Odagiri T, Hasegawa H, Nakajima N. Next-Generation Sequencing Analysis of the Within-Host Genetic Diversity of Influenza A(H1N1)pdm09 Viruses in the Upper and Lower Respiratory Tracts of Patients with Severe Influenza. mSphere 2021; 6:e01043-20. [PMID: 33408229 PMCID: PMC7845592 DOI: 10.1128/msphere.01043-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023] Open
Abstract
The influenza A(H1N1)pdm09 virus emerged in April 2009 with an unusual incidence of severe disease and mortality, and currently circulates as a seasonal influenza virus. Previous studies using consensus viral genome sequencing data have overlooked the viral genomic and phenotypic diversity. Next-generation sequencing (NGS) may instead be used to characterize viral populations in an unbiased manner and to measure within-host genetic diversity. In this study, we used NGS analysis to investigate the within-host genetic diversity of influenza A(H1N1)pdm09 virus in the upper and lower respiratory samples from nine patients who were admitted to the intensive care unit (ICU). A total of 47 amino acid substitution positions were found to differ between the upper and lower respiratory tract samples from all patients. However, the D222G/N substitution in hemagglutinin (HA) protein was the only amino acid substitution common to multiple patients. Furthermore, the substitution was detected only in the six samples from the lower respiratory tract. Therefore, it is important to investigate influenza A(H1N1)pdm09 virus populations using multiple paired samples from the upper and lower respiratory tract to avoid overlooking potentially important substitutions, especially in patients with severe disease.IMPORTANCE The D222G/N substitution in the hemagglutinin (HA) protein of influenza A(H1N1)pdm09 virus has been reported to be associated with disease severity and mortality in numerous previous studies. In the present study, 75% of lower respiratory samples contained heterogeneous influenza populations that carried different amino acids at position 222 of the HA protein, whereas all upper respiratory samples only contained the wild-type 222D. These results suggest the influenza A(H1N1)pdm09 virus has diversified inside the host owing to differences in tissue specificity. In this study, the within-host genetic diversity of influenza A(H1N1)pdm09 virus was investigated for the first time using next-generation sequencing analysis of the viral whole-genome in samples extracted from the upper and lower respiratory tracts of patients with severe disease.
Collapse
Affiliation(s)
- Ikuyo Takayama
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | | | | | | | | | | | | | | | - Seiichiro Fujisaki
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takato Odagiri
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Noriko Nakajima
- Department of Pathology, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
30
|
Koel BF, Vigeveno RM, Pater M, Koekkoek SM, Han AX, Tuan HM, Anh TTN, Hung NT, Thinh LQ, Hai LT, Ngoc HTB, Chau NVV, Ngoc NM, Chokephaibulkit K, Puthavathana P, Kinh NV, Trinh T, Lee RTC, Maurer-Stroh S, Eggink D, Thanh TT, Tan LV, van Doorn HR, de Jong MD. Longitudinal sampling is required to maximize detection of intrahost A/H3N2 virus variants. Virus Evol 2020; 6:veaa088. [PMID: 33343927 PMCID: PMC7733607 DOI: 10.1093/ve/veaa088] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Seasonal human influenza viruses continually change antigenically to escape from neutralizing antibodies. It remains unclear how genetic variation in the intrahost virus population and selection at the level of individual hosts translates to the fast-paced evolution observed at the global level because emerging intrahost antigenic variants are rarely detected. We tracked intrahost variants in the hemagglutinin and neuraminidase surface proteins using longitudinally collected samples from 52 patients infected by A/H3N2 influenza virus, mostly young children, who received oseltamivir treatment. We identified emerging putative antigenic variants and oseltamivir-resistant variants, most of which remained detectable in samples collected at subsequent days, and identified variants that emerged intrahost immediately prior to increases in global rates. In contrast to most putative antigenic variants, oseltamivir-resistant variants rapidly increased to high frequencies in the virus population. Importantly, the majority of putative antigenic variants and oseltamivir-resistant variants were first detectable four or more days after onset of symptoms or start of treatment, respectively. Our observations demonstrate that de novo variants emerge, and may be positively selected, during the course of infection. Additionally, based on the 4–7 days post-treatment delay in emergence of oseltamivir-resistant variants in six out of the eight individuals with such variants, we find that limiting sample collection for routine surveillance and diagnostic testing to early timepoints after onset of symptoms can potentially preclude detection of emerging, positively selected variants.
Collapse
Affiliation(s)
- B F Koel
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - R M Vigeveno
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M Pater
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - S M Koekkoek
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A X Han
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | - N T Hung
- Children's Hospital 1, Ho Chi Minh City, Vietnam
| | - L Q Thinh
- Children's Hospital 1, Ho Chi Minh City, Vietnam
| | - L T Hai
- Vietnam National Children's Hospital, Hanoi, Vietnam
| | - H T B Ngoc
- Vietnam National Children's Hospital, Hanoi, Vietnam
| | - N V V Chau
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - N M Ngoc
- Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | | | | | - N V Kinh
- National Hospital of Tropical Diseases, Hanoi, Vietnam
| | - T Trinh
- National Hospital of Tropical Diseases, Hanoi, Vietnam
| | - R T C Lee
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore 138671 Singapore
| | - S Maurer-Stroh
- Bioinformatics Institute, Agency for Science Technology and Research, Singapore 138671 Singapore.,Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.,National Public Health Laboratory, National Centre for Infectious Diseases, Ministry of Health, Singapore 308442, Singapore
| | - D Eggink
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - T T Thanh
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - L V Tan
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - H R van Doorn
- Oxford University Clinical Research Unit, Hanoi, Vietnam.,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - M D de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
31
|
The Early Evolution of Oral Poliovirus Vaccine Is Shaped by Strong Positive Selection and Tight Transmission Bottlenecks. Cell Host Microbe 2020; 29:32-43.e4. [PMID: 33212020 PMCID: PMC7815045 DOI: 10.1016/j.chom.2020.10.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/12/2020] [Accepted: 10/26/2020] [Indexed: 01/06/2023]
Abstract
The emergence of circulating vaccine-derived polioviruses through evolution of the oral polio vaccine (OPV) poses a significant obstacle to polio eradication. Understanding the early genetic changes that occur as OPV evolves and transmits is important for preventing future outbreaks. Here, we use deep sequencing to define the evolutionary trajectories of type 2 OPV in a vaccine trial. By sequencing 497 longitudinal stool samples from 271 OPV2 recipients and household contacts, we were able to examine the extent of convergent evolution in vaccinated individuals and the amount of viral diversity that is transmitted. In addition to rapid reversion of key attenuating mutations, we identify strong selection at 19 sites across the genome. We find that a tight transmission bottleneck limits the onward transmission of these early adaptive mutations. Our results highlight the distinct evolutionary dynamics of live attenuated virus vaccines and have important implications for the success of next-generation OPV.
Collapse
|
32
|
Morris DH, Petrova VN, Rossine FW, Parker E, Grenfell BT, Neher RA, Levin SA, Russell CA. Asynchrony between virus diversity and antibody selection limits influenza virus evolution. eLife 2020; 9:e62105. [PMID: 33174838 PMCID: PMC7748417 DOI: 10.7554/elife.62105] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022] Open
Abstract
Seasonal influenza viruses create a persistent global disease burden by evolving to escape immunity induced by prior infections and vaccinations. New antigenic variants have a substantial selective advantage at the population level, but these variants are rarely selected within-host, even in previously immune individuals. Using a mathematical model, we show that the temporal asynchrony between within-host virus exponential growth and antibody-mediated selection could limit within-host antigenic evolution. If selection for new antigenic variants acts principally at the point of initial virus inoculation, where small virus populations encounter well-matched mucosal antibodies in previously-infected individuals, there can exist protection against reinfection that does not regularly produce observable new antigenic variants within individual infected hosts. Our results provide a theoretical explanation for how virus antigenic evolution can be highly selective at the global level but nearly neutral within-host. They also suggest new avenues for improving influenza control.
Collapse
MESH Headings
- Antibodies, Neutralizing/genetics
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Biological Evolution
- Genetic Variation/genetics
- Humans
- Influenza A Virus, H3N2 Subtype/genetics
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A virus/genetics
- Influenza A virus/immunology
- Influenza, Human/immunology
- Influenza, Human/transmission
- Influenza, Human/virology
- Models, Statistical
- Selection, Genetic/genetics
- Selection, Genetic/immunology
- Virion/genetics
- Virion/immunology
Collapse
Affiliation(s)
- Dylan H Morris
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Velislava N Petrova
- Department of Human Genetics, Wellcome Trust Sanger InstituteCambridgeUnited Kingdom
| | - Fernando W Rossine
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Edyth Parker
- Department of Veterinary Medicine, University of CambridgeCambridgeUnited Kingdom
- Department of Medical Microbiology, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| | - Bryan T Grenfell
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
- Fogarty International Center, National Institutes of HealthBethesdaUnited States
| | | | - Simon A Levin
- Department of Ecology & Evolutionary Biology, Princeton UniversityPrincetonUnited States
| | - Colin A Russell
- Department of Medical Microbiology, Academic Medical Center, University of AmsterdamAmsterdamNetherlands
| |
Collapse
|
33
|
Lumby CK, Zhao L, Breuer J, Illingworth CJR. A large effective population size for established within-host influenza virus infection. eLife 2020; 9:e56915. [PMID: 32773034 PMCID: PMC7431133 DOI: 10.7554/elife.56915] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/30/2020] [Indexed: 12/13/2022] Open
Abstract
Strains of the influenza virus form coherent global populations, yet exist at the level of single infections in individual hosts. The relationship between these scales is a critical topic for understanding viral evolution. Here we investigate the within-host relationship between selection and the stochastic effects of genetic drift, estimating an effective population size of infection Ne for influenza infection. Examining whole-genome sequence data describing a chronic case of influenza B in a severely immunocompromised child we infer an Ne of 2.5 × 107 (95% confidence range 1.0 × 107 to 9.0 × 107) suggesting that genetic drift is of minimal importance during an established influenza infection. Our result, supported by data from influenza A infection, suggests that positive selection during within-host infection is primarily limited by the typically short period of infection. Atypically long infections may have a disproportionate influence upon global patterns of viral evolution.
Collapse
Affiliation(s)
- Casper K Lumby
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Lei Zhao
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
| | - Judith Breuer
- Great Ormond Street HospitalLondonUnited Kingdom
- Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | - Christopher JR Illingworth
- Department of Genetics, University of CambridgeCambridgeUnited Kingdom
- Department of Applied Mathematics and Theoretical Physics, University of CambridgeCambridgeUnited Kingdom
- Department of Computer Science, Institute of Biotechnology, University of HelsinkiHelsinkiFinland
| |
Collapse
|
34
|
Johnson KEE, Ghedin E. Quantifying between-Host Transmission in Influenza Virus Infections. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a038422. [PMID: 31871239 DOI: 10.1101/cshperspect.a038422] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The error-prone replication and life cycle of influenza virus generate a diverse set of genetic variants. Transmission between hosts strictly limits both the number of virus particles and the genetic diversity of virus variants that reach a new host and establish an infection. This sharp reduction in the virus population at transmission--the transmission bottleneck--is significant to the evolution of influenza virus and to its epidemic and pandemic potential. This review describes transmission bottlenecks and their effect on the diversity and evolution of influenza virus. It also reviews the methods for calculating and predicting bottleneck sizes and highlights the host and viral determinants of influenza transmissibility.
Collapse
Affiliation(s)
- Katherine E E Johnson
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York 10003, USA
| | - Elodie Ghedin
- Center for Genomics and Systems Biology, Department of Biology, and Department of Epidemiology, College of Global Public Health, New York University, New York, New York 10003, USA
| |
Collapse
|
35
|
Häfner S. Streptococcal oddity: Article highlight based on "pspK acquisition contributes to the loss of capsule in pneumococci: molecular characterisation of non-encapsulated pneumococci" by Takeaki Wajima et al. Microbes Infect 2020; 22:392-396. [PMID: 32693303 DOI: 10.1016/j.micinf.2020.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Sophia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Lund Group, 2200 Copenhagen, Denmark.
| |
Collapse
|
36
|
Xia J, Adam DC, Moa A, Chughtai AA, Barr IG, Komadina N, MacIntyre CR. Comparative epidemiology, phylogenetics, and transmission patterns of severe influenza A/H3N2 in Australia from 2003 to 2017. Influenza Other Respir Viruses 2020; 14:700-709. [PMID: 32558378 PMCID: PMC7578330 DOI: 10.1111/irv.12772] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 05/15/2020] [Accepted: 05/15/2020] [Indexed: 12/30/2022] Open
Abstract
Background Over the last two decades, Australia has experienced four severe influenza seasons caused by a predominance of influenza A (A/H3N2): 2003, 2007, 2012, and 2017. Methods We compared the epidemiology, genetics, and transmission dynamics of severe A/H3N2 seasons in Australia from 2003 to 2017. Results Since 2003, the proportion of notifications in 0‐4 years old has decreased, while it has increased in the age group >80 years old (P < .001). The genetic diversity of circulating influenza A/H3N2 viruses has also increased over time with the number of single nucleotide polymorphisms significantly (P < .05) increasing. We also identified five residue positions within or near the receptor binding site of HA (144, 145, 159, 189, and 225) undergoing frequent mutations that are likely involved in significant antigenic drift and possibly severity. The Australian state of Victoria was identified as a frequent location for transmission either to or from other states and territories over the study years. The states of New South Wales and Queensland were also frequently implicated as locations of transmission to other states and territories but less so over the years. This indicates a stable but also changing dynamic of A/H3N2 circulation in Australia. Conclusion These results have important implications for future influenza surveillance and control policy in the country. Reasons for the change in age‐specific infection and increased genetic diversity of A/H3N2 viruses in recent years should be explored.
Collapse
Affiliation(s)
- Jing Xia
- Biosecurity Program, Kirby Institute, University of New South Wales, Sydney, NSW, Australia.,College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dillon C Adam
- Biosecurity Program, Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Aye Moa
- Biosecurity Program, Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Abrar A Chughtai
- School of Public Health and Community Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Doherty Institute, Melbourne, Vic., Australia.,Department of Microbiology and Immunology, Doherty Institute, University of Melbourne, Melbourne, Vic., Australia
| | - Naomi Komadina
- WHO Collaborating Centre for Reference and Research on Influenza (VIDRL), Doherty Institute, Melbourne, Vic., Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Vic., Australia
| | - C Raina MacIntyre
- Biosecurity Program, Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
37
|
Abstract
The evolutionary dynamics of a virus can differ within hosts and across populations. Studies of within-host evolution provide an important link between experimental studies of virus evolution and large-scale phylodynamic analyses. They can determine the extent to which global processes are recapitulated on local scales and how accurately experimental infections model natural ones. They may also inform epidemiologic models of disease spread and reveal how host-level dynamics contribute to a virus's evolution at a larger scale. Over the last decade, advances in viral sequencing have enabled detailed studies of viral genetic diversity within hosts. I review how within-host diversity is sampled, measured, and expressed, and how comparative studies of viral diversity can be leveraged to elucidate a virus's evolutionary dynamics. These concepts are illustrated with detailed reviews of recent research on the within-host evolution of influenza virus, dengue virus, and cytomegalovirus.
Collapse
Affiliation(s)
- Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, and Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA;
| |
Collapse
|
38
|
Ma Y, Liu K, Yin Y, Qin J, Zhou YH, Yang J, Li S, Poon LLM, Zhang C. The Phylodynamics of Seasonal Influenza A/H1N1pdm Virus in China Between 2009 and 2019. Front Microbiol 2020; 11:735. [PMID: 32457705 PMCID: PMC7228120 DOI: 10.3389/fmicb.2020.00735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/30/2020] [Indexed: 01/26/2023] Open
Abstract
Since its first introduction into China in 2009, influenza A/H1N1pdm virus has undergone a rapid expansion and replaced the classical seasonal A(H1N1) virus. To characterize the ongoing evolution and national transmission dynamics of this virus, we analyzed 335 complete genome, 1259 HA, and 1043 NA sequences of the A/H1N1pdm strains detected in China. We found that the dN/dS value and relative genetic diversity of the A/H1N1pdm virus experienced a decrease from 2009 to 2017, and then a rapid increase during 2018–2019. Importantly, elevated relative genetic diversity was observed in the A/H1N1pdm and the A/H3N2 viruses, as well as two lineages (Victoria and Yamagata) of influenza B virus during 2018–2019, suggesting the simultaneous changes of these viruses in terms of genetic diversity might be associated with the recent large outbreak of seasonal influenza epidemic in China during 2018–2019. Fifteen amino acid mutations were found to be fixed along the main trunks of both HA and NA phylogenetic trees, and some of them are located in the antigen binding site or the receptor binding site. A sequential accumulation of mutations relative to the 2009-vaccine strain was observed in the circulating A/H1N1pdm strains during 2009–2016, while a rapid accumulation of mutations relative to the 2015-vaccine strain appeared in the emerging variants in 2017 shortly after the release of the vaccine. Multiple introductions of the A/H1N1pdm lineages into China were observed during 2009–2019, and East China and South China were found to serve as two major epicenters responsible for the national migration of the virus. In summary, these data provide important insights into the understanding of the evolution, epidemiology and transmission of the A/H1N1pdm virus, and highlight the importance of strengthening influenza surveillance in East China and South China.
Collapse
Affiliation(s)
- Yingying Ma
- Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences: University of Chinese Academy of Sciences, Shanghai, China
| | - Kai Liu
- Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences: University of Chinese Academy of Sciences, Shanghai, China
| | - Yong Yin
- Department of Pulmonary, Shanghai Children's Medical Center Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianru Qin
- Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences: University of Chinese Academy of Sciences, Shanghai, China.,College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Yan-Heng Zhou
- Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences: University of Chinese Academy of Sciences, Shanghai, China
| | - Juan Yang
- Key Laboratory of Public Health Safety, Ministry of Education, Fudan University School of Public Health, Shanghai, China
| | - Shenwei Li
- Shanghai International Travel Healthcare Center, Shanghai, China
| | - Leo L M Poon
- School of Public Health, The University of Hong Kong, Hong Kong, China
| | - Chiyu Zhang
- Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences: University of Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
39
|
Abstract
Influenza viruses rapidly diversify within individual human infections. Several recent studies have deep-sequenced clinical influenza infections to identify viral variation within hosts, but it remains unclear how within-host mutations fare at the between-host scale. Here, we compare the genetic variation of H3N2 influenza within and between hosts to link viral evolutionary dynamics across scales. Synonymous sites evolve at similar rates at both scales, indicating that global evolution at these putatively neutral sites results from the accumulation of within-host variation. However, nonsynonymous mutations are depleted between hosts compared to within hosts, suggesting that selection purges many of the protein-altering changes that arise within hosts. The exception is at antigenic sites, where selection detectably favors nonsynonymous mutations at the global scale, but not within hosts. These results suggest that selection against deleterious mutations and selection for antigenic change are the main forces that act on within-host variants of influenza virus as they transmit and circulate between hosts.
Collapse
Affiliation(s)
- Katherine S Xue
- Department of Genome Sciences, University of Washington, Foege Building S-250, Box 3550653720 15th Ave NE, Seattle WA 98195-5065, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109-1024, USA.,Department of Biology, Stanford University, Stanford, CA, USA
| | - Jesse D Bloom
- Department of Genome Sciences, University of Washington, Foege Building S-250, Box 3550653720 15th Ave NE, Seattle WA 98195-5065, USA.,Basic Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, Seattle, WA 98109-1024, USA.,Howard Hughes Medical Institute, 1100 Fairview Ave N, Seattle, WA 98109-1024, USA
| |
Collapse
|
40
|
Valesano AL, Fitzsimmons WJ, McCrone JT, Petrie JG, Monto AS, Martin ET, Lauring AS. Influenza B Viruses Exhibit Lower Within-Host Diversity than Influenza A Viruses in Human Hosts. J Virol 2020; 94:e01710-19. [PMID: 31801858 PMCID: PMC7022338 DOI: 10.1128/jvi.01710-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 11/29/2019] [Indexed: 12/11/2022] Open
Abstract
Influenza B virus (IBV) undergoes seasonal antigenic drift more slowly than influenza A virus, but the reasons for this difference are unclear. While the evolutionary dynamics of influenza viruses play out globally, they are fundamentally driven by mutation, reassortment, drift, and selection at the level of individual hosts. These processes have recently been described for influenza A virus, but little is known about the evolutionary dynamics of IBV during individual infections and transmission events. Here, we define the within-host evolutionary dynamics of IBV by sequencing virus populations from naturally infected individuals enrolled in a prospective, community-based cohort over 8,176 person-seasons of observation. Through analysis of high depth-of-coverage sequencing data from samples from 91 individuals with influenza B, we find that IBV accumulates lower genetic diversity than previously observed for influenza A virus during acute infections. Consistent with studies of influenza A viruses, the within-host evolution of IBVs is characterized by purifying selection and the general absence of widespread positive selection of within-host variants. Analysis of shared genetic diversity across 15 sequence-validated transmission pairs suggests that IBV experiences a tight transmission bottleneck similar to that of influenza A virus. These patterns of local-scale evolution are consistent with the lower global evolutionary rate of IBV.IMPORTANCE The evolution of influenza virus is a significant public health problem and necessitates the annual evaluation of influenza vaccine formulation to keep pace with viral escape from herd immunity. Influenza B virus is a serious health concern for children, in particular, yet remains understudied compared to influenza A virus. Influenza B virus evolves more slowly than influenza A virus, but the factors underlying this are not completely understood. We studied how the within-host diversity of influenza B virus relates to its global evolution by sequencing viruses from a community-based cohort. We found that influenza B virus populations have lower within-host genetic diversity than influenza A virus and experience a tight genetic bottleneck during transmission. Our work provides insights into the varying dynamics of influenza viruses in human infection.
Collapse
Affiliation(s)
- Andrew L Valesano
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
| | - William J Fitzsimmons
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John T McCrone
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Joshua G Petrie
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Arnold S Monto
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Emily T Martin
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Adam S Lauring
- Division of Infectious Diseases, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Inter- Versus Intra-Host Sequence Diversity of pH1N1 and Associated Clinical Outcomes. Microorganisms 2020; 8:microorganisms8010133. [PMID: 31963512 PMCID: PMC7022955 DOI: 10.3390/microorganisms8010133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
The diversity of RNA viruses dictates their evolution in a particular host, community or environment. Here, we reported within- and between-host pH1N1virus diversity at consensus and sub-consensus levels over a three-year period (2015-2017) and its implications on disease severity. A total of 90 nasal samples positive for the pH1N1 virus were deep-sequenced and analyzed to detect low-frequency variants (LFVs) and haplotypes. Parallel evolution of LFVs was seen in the hemagglutinin (HA) gene across three scales: among patients (33%), across years (22%), and at global scale. Remarkably, investigating the emergence of LFVs at the consensus level demonstrated that within-host virus evolution recapitulates evolutionary dynamics seen at the global scale. Analysis of virus diversity at the HA haplotype level revealed the clustering of low-frequency haplotypes from early 2015 with dominant strains of 2016, indicating rapid haplotype evolution. Haplotype sharing was also noticed in all years, strongly suggesting haplotype transmission among patients infected during a specific influenza season. Finally, more than half of patients with severe symptoms harbored a larger number of haplotypes, mostly in patients under the age of five. Therefore, patient age, haplotype diversity, and the presence of certain LFVs should be considered when interpreting illness severity. In addition to its importance in understanding virus evolution, sub-consensus virus diversity together with whole genome sequencing is essential to explain variabilities in clinical outcomes that cannot be explained by either analysis alone.
Collapse
|
42
|
Xue KS, Bloom JD. Reconciling disparate estimates of viral genetic diversity during human influenza infections. Nat Genet 2020; 51:1298-1301. [PMID: 30804564 DOI: 10.1038/s41588-019-0349-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Katherine S Xue
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA.,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Jesse D Bloom
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA, USA. .,Department of Genome Sciences, University of Washington, Seattle, WA, USA. .,Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
43
|
Destras G, Pichon M, Simon B, Valette M, Escuret V, Bolze PA, Dubernard G, Gaucherand P, Lina B, Josset L. Impact of Pregnancy on Intra-Host Genetic Diversity of Influenza A Viruses in Hospitalised Women: A Retrospective Cohort Study. J Clin Med 2019; 8:jcm8111974. [PMID: 31739505 PMCID: PMC6912736 DOI: 10.3390/jcm8111974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Characterising dynamics of Influenza A Viruses (IAV) within-host evolution is an active field of research which may lead to a better understanding of viral pathogenesis. Using a pregnant mouse model, a study has recently suggested that immune modulation during pregnancy could promote the emergence of IAV quasispecies with increased virulence. Herein, we assess the clinical relevance of these findings in humans. We studied IAV intra-host diversity (ihD) in pregnant (n = 36) and non-pregnant (n = 23) women hospitalized in Lyon for IAV infection (01/2015–05/2018). Whole IAV genomes present in nasopharyngeal samples were sequenced in duplicate to analyze reproducible intra-host single nucleotide variants (ihSNV). Counts, relative frequencies and locations of ihSNV were used as indicators of ihD. The median ihSNV/kb counts per segment were between 0 and 1.3. There was >81% ihSNV at relative frequencies between 1–5% for H1N1 and >51% for H3N2 IAV. No significant difference was noted between pregnant and non-pregnant women when considering all or only non-synonymous ihSNV. Seven convergent non-synonymous ihSNV were found; none were significantly associated with pregnancy. These results suggest that modulation of the immune system during pregnancy in humans does not impact IAV ihD, in contrast to mice.
Collapse
Affiliation(s)
- Gregory Destras
- Virpath, INSERM U1111, CNRS UMR5308, International Center for Infectiology Research, ENS Lyon, Claude Bernard Lyon 1 University, 69008 Lyon, France; (G.D.); (M.P.); (V.E.); (B.L.)
- Virology Laboratory, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, Hospices Civils de Lyon, 69004 Lyon, France; (B.S.); (M.V.)
- Centre National des Virus des infections Respiratoires, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, 69004 Lyon, France
| | - Maxime Pichon
- Virpath, INSERM U1111, CNRS UMR5308, International Center for Infectiology Research, ENS Lyon, Claude Bernard Lyon 1 University, 69008 Lyon, France; (G.D.); (M.P.); (V.E.); (B.L.)
- Virology Laboratory, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, Hospices Civils de Lyon, 69004 Lyon, France; (B.S.); (M.V.)
- Centre National des Virus des infections Respiratoires, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, 69004 Lyon, France
| | - Bruno Simon
- Virology Laboratory, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, Hospices Civils de Lyon, 69004 Lyon, France; (B.S.); (M.V.)
| | - Martine Valette
- Virology Laboratory, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, Hospices Civils de Lyon, 69004 Lyon, France; (B.S.); (M.V.)
- Centre National des Virus des infections Respiratoires, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, 69004 Lyon, France
| | - Vanessa Escuret
- Virpath, INSERM U1111, CNRS UMR5308, International Center for Infectiology Research, ENS Lyon, Claude Bernard Lyon 1 University, 69008 Lyon, France; (G.D.); (M.P.); (V.E.); (B.L.)
- Virology Laboratory, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, Hospices Civils de Lyon, 69004 Lyon, France; (B.S.); (M.V.)
- Centre National des Virus des infections Respiratoires, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, 69004 Lyon, France
| | - Pierre-Adrien Bolze
- Service de Chirurgie Gynécologique et Oncologique—Obstétrique, Centre Hospitalier Lyon Sud, Hospices Civils de Lyon, 69310 Pierre-Bénite, France;
| | - Gil Dubernard
- Hospices Civils de Lyon, Service de Gynécologie et d’Obstétrique, Hôpital de la Croix Rousse, 69004 Lyon, France;
| | - Pascal Gaucherand
- Consultation Obstétrique, Groupement Hospitalier Est, Hospices Civils de Lyon, 69500 Bron, France;
| | - Bruno Lina
- Virpath, INSERM U1111, CNRS UMR5308, International Center for Infectiology Research, ENS Lyon, Claude Bernard Lyon 1 University, 69008 Lyon, France; (G.D.); (M.P.); (V.E.); (B.L.)
- Virology Laboratory, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, Hospices Civils de Lyon, 69004 Lyon, France; (B.S.); (M.V.)
- Centre National des Virus des infections Respiratoires, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, 69004 Lyon, France
| | - Laurence Josset
- Virpath, INSERM U1111, CNRS UMR5308, International Center for Infectiology Research, ENS Lyon, Claude Bernard Lyon 1 University, 69008 Lyon, France; (G.D.); (M.P.); (V.E.); (B.L.)
- Virology Laboratory, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, Hospices Civils de Lyon, 69004 Lyon, France; (B.S.); (M.V.)
- Centre National des Virus des infections Respiratoires, Infectious Agents Institute, CBN, Groupement Hospitalier Nord, 69004 Lyon, France
- Correspondence: ; Tel.: +33-(0)4-72-07-10-22
| |
Collapse
|
44
|
Świętoń E, Olszewska-Tomczyk M, Giza A, Śmietanka K. Evolution of H9N2 low pathogenic avian influenza virus during passages in chickens. INFECTION GENETICS AND EVOLUTION 2019; 75:103979. [PMID: 31351233 DOI: 10.1016/j.meegid.2019.103979] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/16/2022]
Abstract
The process of avian influenza virus (AIV) evolution in a new host was investigated in the experiment in which ten serial passages of a turkey-derived H9N2 AIV were carried out in specific pathogen free chickens (3 birds/group) inoculated by oculonasal route. Oropharyngeal swabs collected 3 days post infection were used for inoculation of birds in the next passage and subjected to analysis using deep sequencing. In total, eight mutations in the consensus sequence were found in the viral pool derived from the 10th passage: four mutations (2 in PB1 and 2 in HA) were present in the inoculum as minority variants while the other four (2 in NP, 1 in PA and 1 in HA) emerged during the passages in chickens. The detected fluctuations in the genetic heterogeneity of viral pools from consecutive passages were most likely attributed to the selective bottleneck. The genes known for bearing molecular determinants of the AIV host specificity (HA, PB2, PB1, PA) contributed most to the overall virus diversity. In some cases, a fast selection of the novel variant was noticed. For example, the amino-acid substitution N337K in the haemagglutinin (HA) cleavage site region detected in the 6th passage as low frequency variant had undergone rapid selection and became predominant in the 7th passage. Interestingly, detection of identical mutation in the field H9N2 isolates 1-year apart suggests that this substitution might provide the virus with a selective advantage. However, the role of specific mutations and their influence on the virus adaptation or fitness are mostly unknown and require further investigations.
Collapse
Affiliation(s)
- Edyta Świętoń
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland.
| | - Monika Olszewska-Tomczyk
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| | - Aleksandra Giza
- Department of Omics Analyses, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| | - Krzysztof Śmietanka
- Department of Poultry Diseases, National Veterinary Research Institute, Al. Partyzantów 57, 24-100 Puławy, Poland
| |
Collapse
|
45
|
Zhao L, Duffy S. Gauging genetic diversity of generalists: A test of genetic and ecological generalism with RNA virus experimental evolution. Virus Evol 2019; 5:vez019. [PMID: 31275611 PMCID: PMC6599687 DOI: 10.1093/ve/vez019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Generalist viruses, those with a comparatively larger host range, are considered more likely to emerge on new hosts. The potential to emerge in new hosts has been linked to viral genetic diversity, a measure of evolvability. However, there is no consensus on whether infecting a larger number of hosts leads to higher genetic diversity, or whether diversity is better maintained in a homogeneous environment, similar to the lifestyle of a specialist virus. Using experimental evolution with the RNA bacteriophage phi6, we directly tested whether genetic generalism (carrying an expanded host range mutation) or environmental generalism (growing on heterogeneous hosts) leads to viral populations with more genetic variation. Sixteen evolved viral lineages were deep sequenced to provide genetic evidence for population diversity. When evolved on a single host, specialist and generalist genotypes both maintained the same level of diversity (measured by the number of single nucleotide polymorphisms (SNPs) above 1%, P = 0.81). However, the generalist genotype evolved on a single host had higher SNP levels than generalist lineages under two heterogeneous host passaging schemes (P = 0.001, P < 0.001). RNA viruses’ response to selection in alternating hosts reduces standing genetic diversity compared to those evolving in a single host to which the virus is already well-adapted.
Collapse
Affiliation(s)
- Lele Zhao
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ, USA
| |
Collapse
|
46
|
Dyrdak R, Mastafa M, Hodcroft EB, Neher RA, Albert J. Intra- and interpatient evolution of enterovirus D68 analyzed by whole-genome deep sequencing. Virus Evol 2019; 5:vez007. [PMID: 31037220 PMCID: PMC6482344 DOI: 10.1093/ve/vez007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Worldwide outbreaks of enterovirus D68 (EV-D68) in 2014 and 2016 have caused serious respiratory and neurological disease. To investigate diversity, spread, and evolution of EV-D68 we performed near full-length deep sequencing in fifty-four samples obtained in Sweden during the 2014 and 2016 outbreaks. In most samples, intrapatient variability was low and dominated by rare synonymous variants, but three patients showed evidence of dual infections with distinct EV-D68 variants from the same subclade. Interpatient evolution showed a very strong temporal signal, with an evolutionary rate of 0.0039 ± 0.0001 substitutions per site and year. Phylogenetic trees reconstructed from the sequences suggest that EV-D68 was introduced into Stockholm several times during the 2016 outbreak. Putative neutralization targets in the BC and DE loops of the VP1 protein were slightly more diverse within-host and tended to undergo more frequent substitution than other genomic regions. However, evolution in these loops did not appear to have been driven the emergence of the 2016 B3-subclade directly from the 2014 B1-subclade. Instead, the most recent ancestor of both clades was dated to 2009. The study provides a comprehensive description of the intra- and interpatient evolution of EV-D68, including the first report of intrapatient diversity and dual infections. The new data along with publicly available EV-D68 sequences are included in an interactive phylodynamic analysis on nextstrain.org/enterovirus/d68 to facilitate timely EV-D68 tracking in the future.
Collapse
Affiliation(s)
- Robert Dyrdak
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Monika Mastafa
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| | - Emma B Hodcroft
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Richard A Neher
- Biozentrum, University of Basel, Basel, Switzerland.,Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jan Albert
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden.,Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
47
|
Whole Genome Sequencing of A(H3N2) Influenza Viruses Reveals Variants Associated with Severity during the 2016⁻2017 Season. Viruses 2019; 11:v11020108. [PMID: 30695992 PMCID: PMC6410005 DOI: 10.3390/v11020108] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022] Open
Abstract
Influenza viruses cause a remarkable disease burden and significant morbidity and mortality worldwide, and these impacts vary between seasons. To understand the mechanisms associated with these differences, a comprehensive approach is needed to characterize the impact of influenza genomic traits on the burden of disease. During 2016–2017, a year with severe A(H3N2), we sequenced 176 A(H3N2) influenza genomes using next generation sequencing (NGS) for routine surveillance of circulating influenza viruses collected via the French national influenza community-based surveillance network or from patients hospitalized in the intensive care units of the University Hospitals of Lyon, France. Taking into account confounding factors, sequencing and clinical data were used to identify genomic variants and quasispecies associated with influenza severity or vaccine failure. Several amino acid substitutions significantly associated with clinical traits were found, including NA V263I and NS1 K196E which were associated with severity and co-occurred only in viruses from the 3c.2a1 clade. Additionally, we observed that intra-host diversity as a whole and on a specific set of gene segments increased with severity. These results support the use of whole genome sequencing as a tool for the identification of genetic traits associated with severe influenza in the context of influenza surveillance.
Collapse
|
48
|
Braun KM, Friedrich TC. Influenza evolution with little host selection. Nat Ecol Evol 2019; 3:159-160. [PMID: 30617345 DOI: 10.1038/s41559-018-0782-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Katarina M Braun
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA
| | - Thomas C Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, WI, USA. .,Wisconsin National Primate Research Center, Madison, WI, USA.
| |
Collapse
|
49
|
Zhao L, Illingworth CJR. Measurements of intrahost viral diversity require an unbiased diversity metric. Virus Evol 2019; 5:vey041. [PMID: 30723551 PMCID: PMC6354029 DOI: 10.1093/ve/vey041] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Viruses exist within hosts at large population sizes and are subject to high rates of mutation. As such, viral populations exhibit considerable sequence diversity. A variety of summary statistics have been developed which describe, in a single number, the extent of diversity in a viral population; such measurements allow the diversities of different populations to be compared, and the effect of evolutionary forces on a population to be assessed. Here we highlight statistical artefacts underlying some common measures of sequence diversity, whereby variation in the depth of genome sequencing may substantially affect the extent of diversity measured in a viral population, making comparisons of population diversity invalid. Specifically, naive estimation of sequence entropy provides a systematically biased metric, a lower read depth being expected to produce a lower estimate of diversity. The number of polymorphic loci per kilobase of genome is more unpredictably affected by read depth, giving potentially flawed results at lower sequencing depths. We show that the nucleotide diversity statistic π provides an unbiased estimate of diversity in the sense that the expected value of the statistic is equal to the correct value of the property being measured. Our results are of importance for studies interpreting genome sequence data; we describe how diversity may be assessed in viral populations in a fair and unbiased manner.
Collapse
Affiliation(s)
- Lei Zhao
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
| | - Christopher J R Illingworth
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, UK
| |
Collapse
|
50
|
Rodrigo C, Luciani F. Dynamic interactions between RNA viruses and human hosts unravelled by a decade of next generation sequencing. Biochim Biophys Acta Gen Subj 2018; 1863:511-519. [PMID: 30528489 DOI: 10.1016/j.bbagen.2018.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 11/27/2018] [Accepted: 12/04/2018] [Indexed: 01/15/2023]
Abstract
BACKGROUND Next generation sequencing (NGS) methods have significantly contributed to a paradigm shift in genomic research for nearly a decade now. These methods have been useful in studying the dynamic interactions between RNA viruses and human hosts. SCOPE OF THE REVIEW In this review, we summarise and discuss key applications of NGS in studying the host - pathogen interactions in RNA viral infections of humans with examples. MAJOR CONCLUSIONS Use of NGS to study globally relevant RNA viral infections have revolutionized our understanding of the within host and between host evolution of these viruses. These methods have also been useful in clinical decision-making and in guiding biomedical research on vaccine design. GENERAL SIGNIFICANCE NGS has been instrumental in viral genomic studies in resolving within-host viral genomic variants and the distribution of nucleotide polymorphisms along the full-length of viral genomes in a high throughput, cost effective manner. In the future, novel advances such as long read, single molecule sequencing of viral genomes and simultaneous sequencing of host and pathogens may become the standard of practice in research and clinical settings. This will also bring on new challenges in big data analysis.
Collapse
Affiliation(s)
- Chaturaka Rodrigo
- School of Medical Sciences and Kirby Institute for Infection and Immunity, UNSW Australia, 2052, NSW, Australia
| | - Fabio Luciani
- School of Medical Sciences and Kirby Institute for Infection and Immunity, UNSW Australia, 2052, NSW, Australia.
| |
Collapse
|