1
|
Nyathi S, Rezende IM, Walter KS, Thongsripong P, Mutuku F, Ndenga B, Mbakaya JO, Aswani P, Musunzaji PS, Chebii PK, Maina PW, Mutuku PS, Ng'ang'a CM, Malumbo SL, Jembe Z, Vu DM, Mordecai EA, Bennett S, Andrews JR, LaBeaud AD. Molecular epidemiology and evolutionary characteristics of dengue virus 2 in East Africa. Nat Commun 2024; 15:7832. [PMID: 39244569 PMCID: PMC11380673 DOI: 10.1038/s41467-024-51018-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/25/2024] [Indexed: 09/09/2024] Open
Abstract
Despite the increasing burden of dengue, the regional emergence of the virus in Kenya has not been examined. This study investigates the genetic structure and regional spread of dengue virus-2 in Kenya. Viral RNA from acutely ill patients in Kenya was enriched and sequenced. Six new dengue-2 genomes were combined with 349 publicly available genomes and phylogenies used to infer gene flow between Kenya and other countries. Analyses indicate two dengue-2 Cosmopolitan genotype lineages circulating in Kenya, linked to recent outbreaks in coastal Kenya and Burkina Faso. Lineages circulating in Western, Southern, and Eastern Africa exhibiting similar evolutionary features are also reported. Phylogeography suggests importation of dengue-2 into Kenya from East and Southeast Asia and bidirectional geneflow. Additional lineages circulating in Africa are also imported from East and Southeast Asia. These findings underscore how intermittent importations from East and Southeast Asia drive dengue-2 circulation in Kenya and Africa more broadly.
Collapse
Affiliation(s)
- Sindiso Nyathi
- Department of Epidemiology and Population Health, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Izabela M Rezende
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Katharine S Walter
- Division of Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, University of Utah, Salt Lake City, UT, 84132, USA
| | - Panpim Thongsripong
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL, 32962, USA
| | - Francis Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | - Bryson Ndenga
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Joel O Mbakaya
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Peter Aswani
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Philip K Chebii
- Vector-borne Disease Unit, Msambweni Hospital, Msambweni, Kenya
| | | | - Paul S Mutuku
- Vector-borne Disease Unit, Msambweni Hospital, Msambweni, Kenya
| | | | - Said L Malumbo
- Vector-borne Disease Unit, Msambweni Hospital, Msambweni, Kenya
| | | | - David M Vu
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Shannon Bennett
- Department of Microbiology, California Academy of Sciences, 55 Music Concourse Drive, San Francisco, CA, 94118, USA
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - A Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Bos S, Zambrana JV, Duarte EM, Graber AL, Huffaker J, Montenegro C, Premkumar L, Gordon A, Balmaseda A, Harris E. Serotype-Specific Epidemiological Patterns of Inapparent versus Symptomatic Primary Dengue Virus Infections: A 17-year cohort study in Nicaragua. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.05.24305281. [PMID: 38633800 PMCID: PMC11023678 DOI: 10.1101/2024.04.05.24305281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Dengue is the most prevalent mosquito-borne viral disease and a major public health problem worldwide. Most primary infections with the four dengue virus serotypes (DENV1-4) are inapparent; nonetheless, whether the distribution of symptomatic versus inapparent infections by serotype varies remains unknown. Here, we present (1) the evaluation of a multiplex DENV1-4 envelope domain III multiplex microsphere-based assay (EDIII-MMBA) to serotype inapparent primary infections and (2) its application leveraging 17 years of prospective sample collection from the Nicaraguan Pediatric Dengue Cohort Study (PDCS). First, we evaluated the performance of the EDIII-MMBA with samples characterized by RT-PCR or focus reduction neutralization test. Next, we analyzed 46% (N=574) of total inapparent primary DENV infections in the PDCS with the EDIII-MMBA to evaluate the epidemiology of inapparent infections. Remaining infections were inferred using stochastic imputation, taking year and neighborhood into account. Infection incidence and percentage of inapparent, symptomatic, and severe infections were analyzed by serotype. The EDIII-MMBA demonstrated excellent overall accuracy (100%, 95.8-100%) for serotyping symptomatic and inapparent primary DENV infections when evaluated against gold-standard serotyping methods. We found that a significant majority of primary infections were inapparent, with DENV3 exhibiting the highest likelihood of symptomatic and severe primary infections (Pooled OR compared to DENV1 = 2.13, 95% CI 1.28-3.56, and 6.75, 2.01-22.62, respectively), whereas DENV2 was similar to DENV1 in both analyses. Significant within- and between-year variation in serotype distribution between symptomatic and inapparent infections and circulation of serotypes undetected in symptomatic cases were observed in multiple years. Our study indicates that case surveillance skews the perceived epidemiological footprint of DENV. We reveal a more complex and intricate pattern of serotype distribution in inapparent infections. The significant differences in infection outcomes by serotype emphasizes the need for vaccines with balanced immunogenicity and efficacy across serotypes.
Collapse
|
3
|
Tapias-Rivera J, Martínez-Vega RA, Román-Pérez S, Santos-Luna R, Amaya-Larios IY, Diaz-Quijano FA, Ramos-Castañeda J. Microclimate factors related to dengue virus burden clusters in two endemic towns of Mexico. PLoS One 2024; 19:e0302025. [PMID: 38843173 PMCID: PMC11156286 DOI: 10.1371/journal.pone.0302025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/26/2024] [Indexed: 06/09/2024] Open
Abstract
In dengue-endemic areas, transmission control is limited by the difficulty of achieving sufficient coverage and sustainability of interventions. To maximize the effectiveness of interventions, areas with higher transmission could be identified and prioritized. The aim was to identify burden clusters of Dengue virus (DENV) infection and evaluate their association with microclimatic factors in two endemic towns from southern Mexico. Information from a prospective population cohort study (2·5 years of follow-up) was used, microclimatic variables were calculated from satellite information, and a cross-sectional design was conducted to evaluate the relationship between the outcome and microclimatic variables in the five surveys. Spatial clustering was observed in specific geographic areas at different periods. Both, land surface temperature (aPR 0·945; IC95% 0·895-0·996) and soil humidity (aPR 3·018; IC95% 1·013-8·994), were independently associated with DENV burden clusters. These findings can help health authorities design focused dengue surveillance and control activities in dengue endemic areas.
Collapse
Affiliation(s)
- Johanna Tapias-Rivera
- Maestría en Investigación en Enfermedades Infecciosas, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga, Santander, Colombia
| | - Ruth Aralí Martínez-Vega
- Escuela de Medicina, Facultad de Ciencias Médicas y de la Salud, Instituto de Investigación Masira, Universidad de Santander, Bucaramanga, Santander, Colombia
| | - Susana Román-Pérez
- Centro de Investigación en Evaluación y Encuestas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | - Rene Santos-Luna
- Centro de Investigación en Evaluación y Encuestas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
| | | | - Fredi Alexander Diaz-Quijano
- Department of Epidemiology–Laboratório de Inferência Causal em Epidemiologia (LINCE-USP), School of Public Health, University of São Paulo, São Paulo, Brazil
| | - José Ramos-Castañeda
- Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Morelos, México
- Facultad de Ciencias de la Salud, Universidad Anahuac, Ciudad de México, México
| |
Collapse
|
4
|
Li X, Liao C, Wu J, Yi B, Zha R, Deng Q, Xu J, Guo C, Lu J. Distinct serum exosomal miRNA profiles detected in acute and asymptomatic dengue infections: A community-based study in Baiyun District, Guangzhou. Heliyon 2024; 10:e31546. [PMID: 38807894 PMCID: PMC11130723 DOI: 10.1016/j.heliyon.2024.e31546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Background In recent years, research on exosomal miRNAs has provided new insights into exploring the mechanism of viral infection and disease prevention. This study aimed to investigate the serum exosomal miRNA expression profile of dengue-infected individuals through a community survey of dengue virus (DENV) infection. Methods A seroprevalence study of 1253 healthy persons was first conducted to ascertain the DENV infection status in Baiyun District, Guangzhou. A total of 18 serum samples, including 6 healthy controls (HC), 6 asymptomatic DENV infections (AsymptDI), and 6 confirmed dengue fever patients (AcuteDI), were collected for exosome isolation and then sRNA sequencing. Through bioinformatics analysis, we discovered distinct serum exosomal miRNA profiles among the different groups and identified differentially expressed miRNAs (DEMs). These findings were further validated by qRT-PCR. Results The community survey of DENV infection indicated that the DENV IgG antibody positivity rate among the population was 11.97 % in the study area, with asymptomatic infected individuals accounting for 93.06 % of the anti-DENV IgG positives. The age and Guangzhou household registration were associated with DENV IgG antibody positivity by logistic regression analysis. Distinct miRNA profiles were observed between healthy individuals and DENV infections. A total of 1854 miRNAs were identified in 18 serum exosome samples from the initial analysis of the sequencing data. Comparative analysis revealed 23 DEMs comprising 5 upregulated and 18 downregulated miRNAs in the DENV-infected group (mergedDI). In comparison to AcuteDI, 18 upregulated miRNAs were identified in AsymptDI. Moreover, functional enrichment of the predicted target genes of DEMs indicated that these miRNAs were involved in biological processes and pathways related to cell adhesion, focal adhesion, endocytosis, and ECM-receptor interaction. Eight DEMs were validated by qRT-PCR. Conclusion The Baiyun District of Guangzhou exhibits a notable proportion of asymptomatic DENV infections as suggested in other research, highlighting the need for enhanced monitoring and screening of asymptomatic persons and the elderly. Differential miRNA expression among healthy, symptomatic and asymptomatic DENV-infected individuals suggests their potential as biomarkers for distinguishing DENV infection and offers new avenues of investigating the mechanisms underlying DENV asymptomatic infections.
Collapse
Affiliation(s)
- Xiaokang Li
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Conghui Liao
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiani Wu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Boyang Yi
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Renyun Zha
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qiang Deng
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jianhua Xu
- Guangzhou Baiyun District Center for Disease Control and Prevention, Guangzhou, 510445, China
| | - Cheng Guo
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiahai Lu
- School of Public Health, Sun Yat-Sen University, Guangzhou, 510080, China
- One Health Center of Excellence for Research & Training, Sun Yat-Sen University, Guangzhou, 510080, China
- National Medical Products Administration Key Laboratory for Quality Monitoring and Evaluation of Vaccines and Biological Products, Guangzhou, 510080, China
- Hainan Key Novel Thinktank “Hainan Medical University ‘One Health’ Research Center”, Haikou, 571199, China
- Research Institute of Sun Yat-Sen University in Shenzhen, Shenzhen, 518057, China
- Key Laboratory of Tropical Diseases Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, China
| |
Collapse
|
5
|
Kiener M, Shayegh N, Nyathi SV, Ndenga BA, Mutuku FM, LaBeaud AD. Low Rate of Asymptomatic Dengue Infection Detected in Coastal Kenya Using Pooled Polymerase Chain Reaction Testing. Am J Trop Med Hyg 2024; 110:738-740. [PMID: 38471167 PMCID: PMC10993852 DOI: 10.4269/ajtmh.23-0650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/24/2023] [Indexed: 03/14/2024] Open
Abstract
Asymptomatic dengue virus (DENV) infections have important public health implications but are challenging to identify. We performed a cross-sectional study of reverse transcription quantitative polymerase chain reaction on pooled sera of asymptomatic individuals from the south coast of Kenya at two time periods to identify cases of asymptomatic viremia. Among 2,460 samples tested in pools of 9 or 10, we found only one positive case (0.04% incidence). Although pooling of samples has the potential to be a cost-effective and time-efficient method for asymptomatic DENV detection, mass cross-sectional pooled testing may not provide accurate data on rates of asymptomatic infection, likely owing to a decrease in the sensitivity with pooling of samples, a short period of viremia, or testing in the absence of an outbreak.
Collapse
Affiliation(s)
- Melanie Kiener
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California
| | - Nader Shayegh
- Howard University College of Medicine, Washington, District of Columbia
| | - Sindiso Victor Nyathi
- Department of Medicine, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, California
| | | | | | - Angelle Desiree LaBeaud
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
6
|
Hanley KA, Cecilia H, Azar SR, Moehn BA, Gass JT, Oliveira da Silva NI, Yu W, Yun R, Althouse BM, Vasilakis N, Rossi SL. Trade-offs shaping transmission of sylvatic dengue and Zika viruses in monkey hosts. Nat Commun 2024; 15:2682. [PMID: 38538621 PMCID: PMC10973334 DOI: 10.1038/s41467-024-46810-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 03/08/2024] [Indexed: 04/04/2024] Open
Abstract
Mosquito-borne dengue (DENV) and Zika (ZIKV) viruses originated in Old World sylvatic (forest) cycles involving monkeys and canopy-living Aedes mosquitoes. Both viruses spilled over into human transmission and were translocated to the Americas, opening a path for spillback into Neotropical sylvatic cycles. Studies of the trade-offs that shape within-host dynamics and transmission of these viruses are lacking, hampering efforts to predict spillover and spillback. We infected a native, Asian host species (cynomolgus macaque) and a novel, American host species (squirrel monkey) with sylvatic strains of DENV-2 or ZIKV via mosquito bite. We then monitored aspects of viral replication (viremia), innate and adaptive immune response (natural killer (NK) cells and neutralizing antibodies, respectively), and transmission to mosquitoes. In both hosts, ZIKV reached high titers that translated into high transmission to mosquitoes; in contrast DENV-2 replicated to low levels and, unexpectedly, transmission occurred only when serum viremia was below or near the limit of detection. Our data reveal evidence of an immunologically-mediated trade-off between duration and magnitude of virus replication, as higher peak ZIKV titers are associated with shorter durations of viremia, and higher NK cell levels are associated with lower peak ZIKV titers and lower anti-DENV-2 antibody levels. Furthermore, patterns of transmission of each virus from a Neotropical monkey suggest that ZIKV has greater potential than DENV-2 to establish a sylvatic transmission cycle in the Americas.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA.
| | - Hélène Cecilia
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Sasha R Azar
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Tissue Engineering, Department of Surgery, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Brett A Moehn
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Jordan T Gass
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | | | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Ruimei Yun
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Benjamin M Althouse
- Department of Biology, New Mexico State University, Las Cruces, NM, 88003, USA
- Information School, University of Washington, Seattle, WA, 98105, USA
| | - Nikos Vasilakis
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Shannan L Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Center for Vector-Borne and Zoonotic Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX, 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| |
Collapse
|
7
|
de Wit MM, Dimas Martins A, Delecroix C, Heesterbeek H, ten Bosch QA. Mechanistic models for West Nile virus transmission: a systematic review of features, aims and parametrization. Proc Biol Sci 2024; 291:20232432. [PMID: 38471554 PMCID: PMC10932716 DOI: 10.1098/rspb.2023.2432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Mathematical models within the Ross-Macdonald framework increasingly play a role in our understanding of vector-borne disease dynamics and as tools for assessing scenarios to respond to emerging threats. These threats are typically characterized by a high degree of heterogeneity, introducing a range of possible complexities in models and challenges to maintain the link with empirical evidence. We systematically identified and analysed a total of 77 published papers presenting compartmental West Nile virus (WNV) models that use parameter values derived from empirical studies. Using a set of 15 criteria, we measured the dissimilarity compared with the Ross-Macdonald framework. We also retrieved the purpose and type of models and traced the empirical sources of their parameters. Our review highlights the increasing refinements in WNV models. Models for prediction included the highest number of refinements. We found uneven distributions of refinements and of evidence for parameter values. We identified several challenges in parametrizing such increasingly complex models. For parameters common to most models, we also synthesize the empirical evidence for their values and ranges. The study highlights the potential to improve the quality of WNV models and their applicability for policy by establishing closer collaboration between mathematical modelling and empirical work.
Collapse
Affiliation(s)
- Mariken M. de Wit
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Afonso Dimas Martins
- Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Clara Delecroix
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
- Department of Environmental Sciences, Wageningen University and Research, Wageningen, The Netherlands
| | - Hans Heesterbeek
- Department of Population Health Sciences, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Quirine A. ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
8
|
Kada S, Paz-Bailey G, Adams LE, Johansson MA. Age-specific case data reveal varying dengue transmission intensity in US states and territories. PLoS Negl Trop Dis 2024; 18:e0011143. [PMID: 38427702 PMCID: PMC10936865 DOI: 10.1371/journal.pntd.0011143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2024] [Accepted: 02/08/2024] [Indexed: 03/03/2024] Open
Abstract
Dengue viruses (DENV) are endemic in the US territories of Puerto Rico, American Samoa, and the US Virgin Islands, with focal outbreaks also reported in the states of Florida and Hawaii. However, little is known about the intensity of dengue virus transmission over time and how dengue viruses have shaped the level of immunity in these populations, despite the importance of understanding how and why levels of immunity against dengue may change over time. These changes need to be considered when responding to future outbreaks and enacting dengue management strategies, such as guiding vaccine deployment. We used catalytic models fitted to case surveillance data stratified by age from the ArboNET national arboviral surveillance system to reconstruct the history of recent dengue virus transmission in Puerto Rico, American Samoa, US Virgin Islands, Florida, Hawaii, and Guam. We estimated average annual transmission intensity (i.e., force of infection) of DENV between 2010 and 2019 and the level of seroprevalence by age group in each population. We compared models and found that assuming all reported cases are secondary infections generally fit the surveillance data better than assuming all cases are primary infections. Using the secondary case model, we found that force of infection was highly heterogeneous between jurisdictions and over time within jurisdictions, ranging from 0.00008 (95% CrI: 0.00002-0.0004) in Florida to 0.08 (95% CrI: 0.044-0.14) in American Samoa during the 2010-2019 period. For early 2020, we estimated that seropositivity in 10 year-olds ranged from 0.09% (0.02%-0.54%) in Florida to 56.3% (43.7%-69.3%) in American Samoa. In the absence of serological data, age-specific case notification data collected through routine surveillance combined with mathematical modeling are powerful tools to monitor arbovirus circulation, estimate the level of population immunity, and design dengue management strategies.
Collapse
Affiliation(s)
- Sarah Kada
- US Center for Disease Control and Prevention (CDC), Dengue Branch, San Juan, Puerto Rico
| | - Gabriela Paz-Bailey
- US Center for Disease Control and Prevention (CDC), Dengue Branch, San Juan, Puerto Rico
| | - Laura E. Adams
- US Center for Disease Control and Prevention (CDC), Dengue Branch, San Juan, Puerto Rico
| | - Michael A. Johansson
- US Center for Disease Control and Prevention (CDC), Dengue Branch, San Juan, Puerto Rico
| |
Collapse
|
9
|
Indu PS, Anish TS, Chintha S, Libu GK, Tony L, Siju NS, Sreekumar E, Santhoshkumar A, Aravind R, Saradadevi KL, Sunija S, Johnson J, Anupriya MG, Mathew T, Reena KJ, Meenakshy V, Namitha P, Kumar NP, Kumari R, Mohamed AJ, Nagpal B, Sarkar S, Sadanandan R, Velayudhan R. The burden of dengue and force of infection among children in Kerala, India; seroprevalence estimates from Government of Kerala-WHO Dengue study. THE LANCET REGIONAL HEALTH. SOUTHEAST ASIA 2024; 22:100337. [PMID: 38482148 PMCID: PMC10934323 DOI: 10.1016/j.lansea.2023.100337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 04/21/2024]
Abstract
Background Dengue shows high geographic heterogeneity within and across endemic countries. In the context of increasing burden and predicted outbreaks due to climate change, understanding the heterogeneity will enable us to develop region specific targeted interventions, including vaccination. World Health Organisation (WHO) suggests standard methodologies to study the burden and heterogeneity at national and subnational levels. Regional studies with robust and standard methodology to capture heterogeneity are scarce. We estimated the seroprevalence of dengue in children aged 9-12 years and the force of infection in Kerala, India, from where Zika cases also have been reported recently. Methods We conducted a school-based cross-sectional survey in 38 clusters; selected by stratified random sampling, representing rural, urban, high burden and low-burden administrative units. Validation of Indirect IgG ELISA was done by Plaque Reduction Neutralization Test (PRNT90) using the local isolates of all four serotypes. Force of infection (FOI) was estimated using the WHO-FOI calculator. We conducted a follow-up survey among a subsample of seronegative children, to estimate the rate of sero-conversion. Results Among 5236 children tested, 1521 were positive for anti-dengue IgG antibody. The overall seroprevalence in the state was 29% (95% CI 24.1-33.9). The validity corrected seroprevalence was 30.9% in the overall sample, 46.9% in Thiruvananthapuram, 26.9% in Kozhikkode and 24.9% in Kollam. Age-specific seroprevalence increased with age; 25.7% at 9 years, 29.5% at 10 years, 30.9% at 11 years and 33.9% at 12 years. Seroprevalence varied widely across clusters (16.1%-71.4%). The estimated force of infection was 3.3/100 person-years and the seroconversion rate was 4.8/100 person-years. 90% of children who tested positive were not aware of dengue infection. All the four serotypes were identified in PRNT and 40% of positive samples had antibodies against multiple serotypes. Interpretation The study validates the WHO methodology for dengue serosurveys and confirms its feasibility in a community setting. The overall seroprevalence in the 9-12 year age group is low to moderate in Kerala; there are regional variations; high burden and low burden clusters co-exist in the same districts. The actual burden of dengue exceeds the reported numbers. Heterogeneity in prevalence, the high proportion of inapparent dengue and the hyperendemic situation suggest the need for region-specific and targeted interventions, including vaccination. Funding World Health Organization.
Collapse
Affiliation(s)
- Pillaveetil Sathyadas Indu
- Department of Community Medicine, Govt Medical College, Thiruvananthapuram, Kerala University of Health Sciences, India
| | - Thekkumkara Surendran Anish
- Department of Community Medicine, Govt Medical College, Thiruvananthapuram, Kerala University of Health Sciences, India
| | - Sujatha Chintha
- Department of Community Medicine, Govt Medical College, Thiruvananthapuram, Kerala University of Health Sciences, India
| | - Gnanaseelan Kanakamma Libu
- Department of Community Medicine, Govt Medical College, Thiruvananthapuram, Kerala University of Health Sciences, India
| | - Lawrence Tony
- Department of Community Medicine, Govt Medical College, Thiruvananthapuram, Kerala University of Health Sciences, India
| | - Nalinakshan Sudha Siju
- Department of Community Medicine, Govt Medical College, Thiruvananthapuram, Kerala University of Health Sciences, India
| | - Easwaran Sreekumar
- Molecular Virology Laboratory, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, Kerala, India
- Institute of Advanced Virology (IAV), Bio 360 Life Sciences Park, Thonnakkal, Thiruvananthapuram, Kerala, India
| | - Asokan Santhoshkumar
- Department of Paediatrics, Govt Medical College, Thiruvananthapuram, Kerala University of Health Sciences, India
| | - Reghukumar Aravind
- Department of Infectious Diseases, Govt Medical College, Thiruvananthapuram, Kerala University of Health Sciences, India
| | | | | | | | | | | | | | | | - Premaletha Namitha
- Department of Community Medicine, Govt Medical College, Thiruvananthapuram, Kerala University of Health Sciences, India
| | | | | | | | | | | | | | - Raman Velayudhan
- Department of Control of Neglected Tropical Diseases, WHO, Geneva, Switzerland
| |
Collapse
|
10
|
Meyer AD, Guerrero SM, Dean NE, Anderson KB, Stoddard ST, Perkins TA. Model-based estimates of chikungunya epidemiological parameters and outbreak risk from varied data types. Epidemics 2023; 45:100721. [PMID: 37890441 DOI: 10.1016/j.epidem.2023.100721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Assessing the factors responsible for differences in outbreak severity for the same pathogen is a challenging task, since outbreak data are often incomplete and may vary in type across outbreaks (e.g., daily case counts, serology, cases per household). We propose that outbreaks described with varied data types can be directly compared by using those data to estimate a common set of epidemiological parameters. To demonstrate this for chikungunya virus (CHIKV), we developed a realistic model of CHIKV transmission, along with a Bayesian inference method that accommodates any type of outbreak data that can be simulated. The inference method makes use of the fact that all data types arise from the same transmission process, which is simulated by the model. We applied these tools to data from three real-world outbreaks of CHIKV in Italy, Cambodia, and Bangladesh to estimate nine model parameters. We found that these populations differed in several parameters, including pre-existing immunity and house-to-house differences in mosquito activity. These differences resulted in posterior predictions of local CHIKV transmission risk that varied nearly fourfold: 16% in Italy, 28% in Cambodia, and 62% in Bangladesh. Our inference method and model can be applied to improve understanding of the epidemiology of CHIKV and other pathogens for which outbreaks are described with varied data types.
Collapse
Affiliation(s)
- Alexander D Meyer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA.
| | | | - Natalie E Dean
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kathryn B Anderson
- Department of Microbiology and Immunology, The State University of New York (SUNY) Upstate Medical University, Syracuse, NY 13210, USA
| | - Steven T Stoddard
- Bavarian Nordic Inc., 6275 Nancy Ridge Drive Suite 110/120, San Diego, CA 92121, USA; Division of Health Promotion and Behavioral Sciences, School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
11
|
Henriques P, Rosa A, Caldeira-Araújo H, Soares P, Vigário AM. Flying under the radar - impact and factors influencing asymptomatic DENV infections. Front Cell Infect Microbiol 2023; 13:1284651. [PMID: 38076464 PMCID: PMC10704250 DOI: 10.3389/fcimb.2023.1284651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
The clinical outcome of DENV and other Flaviviruses infections represents a spectrum of severity that ranges from mild manifestations to severe disease, which can ultimately lead to death. Nonetheless, most of these infections result in an asymptomatic outcome that may play an important role in the persistent circulation of these viruses. Also, although little is known about the mechanisms that lead to these asymptomatic infections, they are likely the result of a complex interplay between viral and host factors. Specific characteristics of the infecting viral strain, such as its replicating efficiency, coupled with host factors, like gene expression of key molecules involved in the immune response or in the protection against disease, are among crucial factors to study. This review revisits recent data on factors that may contribute to the asymptomatic outcome of the world's widespread DENV, highlighting the importance of silent infections in the transmission of this pathogen and the immune status of the host.
Collapse
Affiliation(s)
- Paulo Henriques
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Alexandra Rosa
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
| | - Helena Caldeira-Araújo
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- CQM-Centro de Química da Madeira, Universidade da Madeira, Funchal, Portugal
| | - Pedro Soares
- Department of Biology, CBMA (Centre of Molecular and Environmental Biology), Braga, Portugal
- Department of Biology, Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Ana Margarida Vigário
- Projecto Medicina, Faculdade de Ciências da Vida, Universidade da Madeira, Funchal, Portugal
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
Alagarasu K, Tomar S, Patil J, Bachal R, More R, Bote M, Kakade M, Venkatesh V, Parashar D, Tandale BV. Seroprevalence of dengue virus infection in Pune City in India, 2019: A decadal change. J Infect Public Health 2023; 16:1830-1836. [PMID: 37742447 DOI: 10.1016/j.jiph.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 08/24/2023] [Indexed: 09/26/2023] Open
Abstract
BACKGROUND The burden of dengue infection needs to be monitored along with tracking of the changes in dengue virus (DENV) transmission intensity for vaccine introduction decisions. METHODS The seroprevalence of dengue was investigated in Pune City in India, in early 2019 using 1654 sera from apparently healthy human participants enrolled randomly through multistage cluster sampling. We used 797 retrospective human sera from late 2009 for comparison. All sera were assessed for the presence of dengue-specific IgG antibodies. A subset (n = 230) was tested for serotype-specific plaque reduction-neutralizing antibodies against all four serotypes. RESULTS The dengue IgG seroprevalence of 62.9% (95% CI 59.4-66.1) in 2009 increased to 88.4% (95% CI 86.8-89.8) in 2019. Age-stratified dengue seroprevalence revealed a gradual increase in IgG seropositivity from 70.1% in 0-9 years to 85.0% in 10-19 years. The annual probability of dengue infection estimated as a force of infection was 4.1 (95% CI 3.8-4.5) in 2009, which increased to 10.9 (95% CI 10.2-11.6) in 2019. Analysis of dengue serotype-specific neutralizing antibodies revealed DENV-3 as the dominant serotype. The age of exposure to at least one dengue serotype was reduced in 2019 over 2009. CONCLUSIONS There was a significant increase in the intensity of dengue virus transmission in Pune City over the decade. Since over 85% of the participants above nine years of age had exposure to DENV by 2019, dengue vaccine introduction can be considered. Moreover, such repeated serosurveys in different regions might inform about the readiness of the population for dengue vaccination.
Collapse
Affiliation(s)
- Kalichamy Alagarasu
- Dengue and chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India
| | - Shilpa Tomar
- Epidemiology Group, ICMR-National Institute of Virology, Pune 411021, India
| | - Jayashri Patil
- Dengue and chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India
| | - Rupali Bachal
- Dengue and chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India
| | - Reva More
- Dengue and chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India
| | - Minal Bote
- Dengue and chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India
| | - Mahadeo Kakade
- Dengue and chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India
| | - Vasanthy Venkatesh
- Epidemiology Group, ICMR-National Institute of Virology, Pune 411021, India
| | - Deepti Parashar
- Dengue and chikungunya Group, ICMR-National Institute of Virology, Pune 411001, India.
| | - Babasaheb V Tandale
- Epidemiology Group, ICMR-National Institute of Virology, Pune 411021, India.
| |
Collapse
|
13
|
Shaikh N, Swali P, Houben RMGJ. Asymptomatic but infectious - The silent driver of pathogen transmission. A pragmatic review. Epidemics 2023; 44:100704. [PMID: 37413887 PMCID: PMC10260263 DOI: 10.1016/j.epidem.2023.100704] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 05/29/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
Throughout 2020, COVID-19 interventions prioritised symptomatic individuals despite growing evidence of pre-symptomatic and asymptomatic transmission. From the pandemic we have learned that global health is slow to quantify asymptomatic disease transmission and slow to implement relevant interventions. While asymptomatic infectious periods exist for nearly all pathogens, it is frequently ignored during case finding, and there are limited research efforts to understand its potential to drive small scale outbreaks, epidemics and pandemics. We conducted a pragmatic review on 15 key pathogens including SARS-CoV-2 and Ebola to demonstrate substantial variation in terminology around asymptomatic infectious individuals, and varying proportions of asymptomatic amongst prevalent infectious cases (0-99 %) and their contribution to transmission (0-96 %). While no pattern was discernible by pathogen type (virus, bacteria, parasite) or mode of transmission (direct, indirect or mixed), there are multiple lessons to learn from previous and current control programmes. As found during the COVID-19 pandemic, overlooking asymptomatic infectious individuals can impede disease control. Improving our understanding of how asymptomatic individuals can drive epidemics can strengthen our efforts to control current pathogens, and improve our preparedness for when the next new pathogen emerges..
Collapse
Affiliation(s)
- Nabila Shaikh
- TB Modelling Group, TB Centre, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom; Sanofi Pasteur, 410 Thames Valley Park Drive, Reading RG6 1PT, United Kingdom.
| | - Pooja Swali
- Ancient Genomics Laboratory, The Francis Crick Institute, 1 Midland Road, London NW11AT, United Kingdom
| | - Rein M G J Houben
- TB Modelling Group, TB Centre, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London WC1E 7HT, United Kingdom
| |
Collapse
|
14
|
Asish PR, Dasgupta S, Rachel G, Bagepally BS, Girish Kumar CP. Global prevalence of asymptomatic dengue infections - a systematic review and meta-analysis. Int J Infect Dis 2023; 134:292-298. [PMID: 37463631 DOI: 10.1016/j.ijid.2023.07.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVES The burden of asymptomatic dengue infections is understudied. Therefore, we systematically reviewed the literature to estimate the global prevalence of asymptomatic dengue infections. METHODS We searched cross-sectional studies reporting the prevalence of asymptomatic dengue infections from PubMed, Scopus, and Embase. Prevalence of asymptomatic dengue infections was pooled and reported as proportions with a 95% confidence interval (CI). This systematic review protocol was a priori registered in The International Prospective Register of Systematic Reviews (Reg: No. CRD42020218446). RESULTS We included 41 studies with 131,953 cases in our analysis. The overall pooled prevalence of asymptomatic dengue infections was 59.26% (95% CI: 43.76-74.75, I2 = 99.93%), with 65.52% (95% CI: 38.73-92.32, I2 = 99.95%) during outbreaks and 30.78% (95% CI: 21.39-40.16, I2 = 98.78%) during non-outbreak periods. The pooled prevalence among the acutely infected individuals was 54.52% (95% CI: 17.73-46.76, I2 = 99.91%), whereas, among primary and secondary asymptomatic dengue infections, it was 65.36% (95% CI: 45.76-84.96, I2 = 98.82) and 48.99% (95% CI: 27.85-70.13, I2 = 99.08%) respectively. CONCLUSION The majority of dengue cases are asymptomatic and may play a significant role in disease transmission. Public health strategies aimed at dengue outbreak response and mitigation of disease burden should include early detection of asymptomatic cases.
Collapse
Affiliation(s)
| | | | - Gladys Rachel
- ICMR-National Institute of Epidemiology, Chennai, India
| | | | | |
Collapse
|
15
|
Lambrechts L, Reiner RC, Briesemeister MV, Barrera P, Long KC, Elson WH, Vizcarra A, Astete H, Bazan I, Siles C, Vilcarromero S, Leguia M, Kawiecki AB, Perkins TA, Lloyd AL, Waller LA, Kitron U, Jenkins SA, Hontz RD, Campbell WR, Carrington LB, Simmons CP, Ampuero JS, Vasquez G, Elder JP, Paz-Soldan VA, Vazquez-Prokopec GM, Rothman AL, Barker CM, Scott TW, Morrison AC. Direct mosquito feedings on dengue-2 virus-infected people reveal dynamics of human infectiousness. PLoS Negl Trop Dis 2023; 17:e0011593. [PMID: 37656759 PMCID: PMC10501553 DOI: 10.1371/journal.pntd.0011593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/14/2023] [Accepted: 08/14/2023] [Indexed: 09/03/2023] Open
Abstract
Dengue virus (DENV) transmission from humans to mosquitoes is a poorly documented, but critical component of DENV epidemiology. Magnitude of viremia is the primary determinant of successful human-to-mosquito DENV transmission. People with the same level of viremia, however, can vary in their infectiousness to mosquitoes as a function of other factors that remain to be elucidated. Here, we report on a field-based study in the city of Iquitos, Peru, where we conducted direct mosquito feedings on people naturally infected with DENV and that experienced mild illness. We also enrolled people naturally infected with Zika virus (ZIKV) after the introduction of ZIKV in Iquitos during the study period. Of the 54 study participants involved in direct mosquito feedings, 43 were infected with DENV-2, two with DENV-3, and nine with ZIKV. Our analysis excluded participants whose viremia was detectable at enrollment but undetectable at the time of mosquito feeding, which was the case for all participants with DENV-3 and ZIKV infections. We analyzed the probability of onward transmission during 50 feeding events involving 27 participants infected with DENV-2 based on the presence of infectious virus in mosquito saliva 7-16 days post blood meal. Transmission probability was positively associated with the level of viremia and duration of extrinsic incubation in the mosquito. In addition, transmission probability was influenced by the day of illness in a non-monotonic fashion; i.e., transmission probability increased until 2 days after symptom onset and decreased thereafter. We conclude that mildly ill DENV-infected humans with similar levels of viremia during the first two days after symptom onset will be most infectious to mosquitoes on the second day of their illness. Quantifying variation within and between people in their contribution to DENV transmission is essential to better understand the biological determinants of human infectiousness, parametrize epidemiological models, and improve disease surveillance and prevention strategies.
Collapse
Affiliation(s)
- Louis Lambrechts
- Institut Pasteur, Université Paris Cité, CNRS UMR2000, Insect-Virus Interactions Unit, Paris, France
| | - Robert C. Reiner
- University of Washington, Seattle, Washington, United States of America
| | - M. Veronica Briesemeister
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Patricia Barrera
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Kanya C. Long
- Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - William H. Elson
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Alfonso Vizcarra
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Helvio Astete
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
- Department of Entomology, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Isabel Bazan
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Crystyan Siles
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Stalin Vilcarromero
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Mariana Leguia
- Genomics Laboratory, Pontificia Universidad Católica del Peru, Lima, Peru
| | - Anna B. Kawiecki
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Alun L. Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Lance A. Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Sarah A. Jenkins
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Robert D. Hontz
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Wesley R. Campbell
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | | | - Cameron P. Simmons
- Institute for Vector-Borne Disease, Monash University, Clayton, Victoria, Australia
| | - J. Sonia Ampuero
- Virology and Emerging Infections Department, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - Gisella Vasquez
- Department of Entomology, United States Naval Medical Research Unit No. 6, Lima, Peru
| | - John P. Elder
- School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Valerie A. Paz-Soldan
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | | | - Alan L. Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| |
Collapse
|
16
|
De Santis O, Bouscaren N, Flahault A. Asymptomatic dengue infection rate: A systematic literature review. Heliyon 2023; 9:e20069. [PMID: 37809992 PMCID: PMC10559824 DOI: 10.1016/j.heliyon.2023.e20069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
Objectives Dengue infection is spreading worldwide. The clinical spectrum is broad and includes asymptomatic infections. This review provides an overview of the different proportions of asymptomatic infections described in epidemiological studies according to definitions, study designs, and detection methods. Methods Medline and Embase databases were searched without restriction of date or language. Studies were included if they reported data on the incidence or prevalence of asymptomatic dengue infections. The data were summarized and classified according to the definitions of the term 'asymptomatic'. Results A total of 74 studies were included. The mean proportion of asymptomatic infections among dengue-infected persons was 54% in 50 included studies. The prevalence of dengue infections detected in healthy persons was 0.2% in 24 included studies. The term 'asymptomatic' has been used to refer to 'clinically undetectable infection', but also to 'undiagnosed infection' or 'mild infection'. Only 8% were clinically undetectable laboratory-confirmed dengue infections. Conclusion The proportion of asymptomatic dengue infections varied greatly. Studies proving data on clinically undetectable laboratory-confirmed dengue infections were very few, but provided consistent results of low proportions of asymptomatic infections. These data challenge the assumption that the majority of dengue cases are asymptomatic.
Collapse
Affiliation(s)
- Olga De Santis
- Institute of Global Health, Faculty of Medicine, University of Geneva, 1202 Geneva, Switzerland
- Direction de la recherche, de l'innovation et de la coopération internationale, CHU de La Réunion, 97410, Saint-Pierre, France
| | - Nicolas Bouscaren
- Service de Santé Publique et Soutien à la Recherche, Inserm CIC1410, CHU de La Réunion, 97410 Saint-Pierre, France
| | - Antoine Flahault
- Institute of Global Health, Faculty of Medicine, University of Geneva, 1202 Geneva, Switzerland
| |
Collapse
|
17
|
Aguiar M, Anam V, Blyuss KB, Estadilla CDS, Guerrero BV, Knopoff D, Kooi BW, Mateus L, Srivastav AK, Steindorf V, Stollenwerk N. Prescriptive, descriptive or predictive models: What approach should be taken when empirical data is limited? Reply to comments on "Mathematical models for Dengue fever epidemiology: A 10-year systematic review". Phys Life Rev 2023; 46:56-64. [PMID: 37245453 DOI: 10.1016/j.plrev.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/07/2023] [Indexed: 05/30/2023]
Affiliation(s)
- Maíra Aguiar
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Vizda Anam
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | | | - Carlo Delfin S Estadilla
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Preventive Medicine and Public Health Department, University of the Basque Country (UPV/EHU), Leioa, Basque Country Spain
| | - Bruno V Guerrero
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Damián Knopoff
- Centro de Investigaciones y Estudios de Matemática CIEM, CONICET, Córdoba, Argentina; Intelligent Biodata SL, San Sebastián, Spain
| | - Bob W Kooi
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; VU University, Faculty of Science, De Boelelaan 1085, NL 1081, HV Amsterdam, the Netherlands
| | - Luís Mateus
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Akhil Kumar Srivastav
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Vanessa Steindorf
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Nico Stollenwerk
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| |
Collapse
|
18
|
Braun M, Andersen LK, Norton SA, Coates SJ. Dengue: updates for dermatologists on the world's fastest-growing vector-borne disease. Int J Dermatol 2023; 62:1110-1120. [PMID: 37306140 DOI: 10.1111/ijd.16739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 04/30/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023]
Abstract
Dengue is the world's fastest-growing vector borne disease and has significant epidemic potential in suitable climates. Recent disease models incorporating climate change scenarios predict geographic expansion across the globe, including parts of the United States and Europe. It will be increasingly important in the next decade for dermatologists to become familiar with dengue, as it commonly manifests with rashes, which can be used to aid diagnosis. In this review, we discuss dengue for general dermatologists, specifically focusing on its cutaneous manifestations, epidemiology, diagnosis, treatment, and prevention. As dengue continues to spread in both endemic and new locations, dermatologists may have a larger role in the timely diagnosis and management of this disease.
Collapse
Affiliation(s)
- Mitchell Braun
- Department of Dermatology, The University of California San Francisco, San Francisco, CA, USA
| | - Louise K Andersen
- Department of Dermatology, Aleris-Hamlet Private Hospital, Esbjerg, Denmark
| | - Scott A Norton
- Departments of Dermatology and Preventive Medicine & Biometrics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sarah J Coates
- Department of Dermatology, The University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
19
|
Espinosa MO, Andreo V, Paredes G, Leaplaza C, Heredia V, Periago MV, Abril M. Risk Stratification to Guide Prevention and Control Strategies for Arboviruses Transmitted by Aedes aegypti. Trop Med Infect Dis 2023; 8:362. [PMID: 37505658 PMCID: PMC10386430 DOI: 10.3390/tropicalmed8070362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/14/2023] [Accepted: 07/11/2023] [Indexed: 07/29/2023] Open
Abstract
Strategies for the prevention of arboviral diseases transmitted by Aedes aegypti have traditionally focused on vector control. This remains the same to this day, despite a lack of documented evidence on its efficacy due to a lack of coverage and sustainability. The continuous growth of urban areas and generally unplanned urbanization, which favor the presence of Ae. aegypti, demand resources, both material and human, as well as logistics to effectively lower the population's risk of infection. These considerations have motivated the development of tools to identify areas with a recurrent concentration of arboviral cases during an outbreak to be able to prioritize preventive actions and optimize available resources. This study explores the existence of spatial patterns of dengue incidence in the locality of Tartagal, in northeastern Argentina, during the outbreaks that occurred between 2010 and 2020. Approximately half (50.8%) of the cases recorded during this period were concentrated in 35.9% of the urban area. Additionally, an important overlap was found between hotspot areas of dengue and chikungunya (Kendall's W = 0.92; p-value < 0.001) during the 2016 outbreak. Moreover, 65.9% of the cases recorded in 2022 were geolocalized within the hotspot areas detected between 2010 and 2020. These results can be used to generate a risk map to implement timely preventive control strategies that prioritize these areas to reduce their vulnerability while optimizing the available resources and increasing the scope of action.
Collapse
Affiliation(s)
| | - Verónica Andreo
- Instituto de Altos Estudios Espaciales Mario Gulich, UNC-CONAE, Falda del Cañete, Córdoba X5187XAC, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - Gladys Paredes
- Hospital Juan Domingo Perón, Alberdi 855, Tartagal A4560AQI, Argentina
| | - Carlos Leaplaza
- Hospital Juan Domingo Perón, Alberdi 855, Tartagal A4560AQI, Argentina
| | - Viviana Heredia
- Hospital Juan Domingo Perón, Alberdi 855, Tartagal A4560AQI, Argentina
| | - María Victoria Periago
- Fundación Mundo Sano, Paraguay 1535, Buenos Aires C1061ABC, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina
| | - Marcelo Abril
- Fundación Mundo Sano, Paraguay 1535, Buenos Aires C1061ABC, Argentina
| |
Collapse
|
20
|
de Vasconcelos ASV, de Lima JS, Cardoso RTN. Multiobjective optimization to assess dengue control costs using a climate-dependent epidemiological model. Sci Rep 2023; 13:10271. [PMID: 37355697 PMCID: PMC10290689 DOI: 10.1038/s41598-023-36903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/12/2023] [Indexed: 06/26/2023] Open
Abstract
Arboviruses, diseases transmitted by arthropods, have become a significant challenge for public health managers. The World Health Organization highlights dengue as responsible for millions of infections worldwide annually. As there is no specific treatment for the disease and no free-of-charge vaccine for mass use in Brazil, the best option is the measures to combat the vector, the Aedes aegypti mosquito. Therefore, we proposed an epidemiological model dependent on temperature, precipitation, and humidity, considering symptomatic and asymptomatic dengue infections. Through computer simulations, we aimed to minimize the amount of insecticides and the social cost demanded to treat patients. We proposed a case study in which our model is fitted with real data from symptomatic dengue-infected humans in an epidemic year in a Brazilian city. Our multiobjective optimization model considers an additional control using larvicide, adulticide, and ultra-low volume spraying. The work's main contribution is studying the monetary cost of the actions to combat the vector demand versus the hospital cost per confirmed infected, comparing approaches with and without additional control. Results showed that the additional vector control measures are cheaper than the hospital treatment without the vector control would be.
Collapse
Affiliation(s)
- Amália Soares Vieira de Vasconcelos
- Postgraduate Program in Mathematical and Computational Modeling (PPGMMC), Federal Center for Technological Education-CEFET-MG, Av. Amazonas, 7675, Nova Gameleira, Belo Horizonte, Minas Gerais, 30510-000, Brazil.
| | - Josenildo Silva de Lima
- Postgraduate Program in Mathematical and Computational Modeling (PPGMMC), Federal Center for Technological Education-CEFET-MG, Av. Amazonas, 7675, Nova Gameleira, Belo Horizonte, Minas Gerais, 30510-000, Brazil
| | - Rodrigo Tomás Nogueira Cardoso
- Department of Mathematics, Federal Center for Technological Education-CEFET-MG, Av. Amazonas, 7675, Nova Gameleira, Belo Horizonte, Minas Gerais, 30510-000, Brazil
| |
Collapse
|
21
|
Chen KW, Chen TY, Wang ST, Hou TY, Wang SW, Young KC. Establishment of quantitative and recovery method for detection of dengue virus in wastewater with noncognate spike control. J Virol Methods 2023; 314:114687. [PMID: 36736703 DOI: 10.1016/j.jviromet.2023.114687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 02/04/2023]
Abstract
Wastewater-based epidemiology (WBE) represents an efficient approach for public pathogen surveillance as it provides early warning of disease outbreaks; however, it has not yet been applied to dengue virus (DENV), which might cause endemics via mosquito spread. In this study, a working platform was established to provide direct virus recovery and qPCR quantification from wastewater samples that were artificially loaded with target DENV serotypes I to IV and noncognate spike control viral particles. The results showed qPCR efficiencies of 91.2 %, 94.8 %, 92.6 % and 88.7 % for DENV I, II, III, and IV, respectively, and a broad working range over 6 orders of magnitude using the preferred primer sets. Next, the results revealed that the ultrafiltration method was superior to the skimmed milk flocculation method for recovering either DENV or control viral particles from wastewater. Finally, DENV-2 was loaded simultaneously with the noncognate spike control and could be recovered at comparable levels either in PBS or in wastewater, indicating the applicability of noncognate spike control particles to reflect the efficiency of experimental steps. In conclusion, our data suggest that DENV particles in wastewater could be recovered and quantitatively detected in absolute amounts, indicating the feasibility of DENV surveillance using the WBE approach.
Collapse
Affiliation(s)
- Kuan-Wei Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Yi Chen
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Sin-Tian Wang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Yu Hou
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shainn-Wei Wang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kung-Chia Young
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
22
|
Khan A, Bisanzio D, Mutuku F, Ndenga B, Grossi-Soyster EN, Jembe Z, Maina PW, Chebii PK, Ronga CO, Okuta V, LaBeaud AD. Spatiotemporal overlapping of dengue, chikungunya, and malaria infections in children in Kenya. BMC Infect Dis 2023; 23:183. [PMID: 36991340 PMCID: PMC10053720 DOI: 10.1186/s12879-023-08157-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Malaria, chikungunya virus (CHIKV), and dengue virus (DENV) are endemic causes of fever among children in Kenya. The risks of infection are multifactorial and may be influenced by built and social environments. The high resolution overlapping of these diseases and factors affecting their spatial heterogeneity has not been investigated in Kenya. From 2014-2018, we prospectively followed a cohort of children from four communities in both coastal and western Kenya. Overall, 9.8% were CHIKV seropositive, 5.5% were DENV seropositive, and 39.1% were malaria positive (3521 children tested). The spatial analysis identified hot-spots for all three diseases in each site and in multiple years. The results of the model showed that the risk of exposure was linked to demographics with common factors for the three diseases including the presence of litter, crowded households, and higher wealth in these communities. These insights are of high importance to improve surveillance and targeted control of mosquito-borne diseases in Kenya.
Collapse
Affiliation(s)
- Aslam Khan
- Stanford University School of Medicine, Stanford, CA, USA.
- Center for Academic Medicine, 453 Quarry Road, Palo Alto, CA, 94304, USA.
| | | | | | | | | | - Zainab Jembe
- Msambweni County Referral hospital, Msambweni, Kenya
| | | | | | | | | | | |
Collapse
|
23
|
Vazquez-Prokopec GM, Morrison AC, Paz-Soldan V, Stoddard ST, Koval W, Waller LA, Alex Perkins T, Lloyd AL, Astete H, Elder J, Scott TW, Kitron U. Inapparent infections shape the transmission heterogeneity of dengue. PNAS NEXUS 2023; 2:pgad024. [PMID: 36909820 PMCID: PMC10003742 DOI: 10.1093/pnasnexus/pgad024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 02/02/2023]
Abstract
Transmission heterogeneity, whereby a disproportionate fraction of pathogen transmission events result from a small number of individuals or geographic locations, is an inherent property of many, if not most, infectious disease systems. For vector-borne diseases, transmission heterogeneity is inferred from the distribution of the number of vectors per host, which could lead to significant bias in situations where vector abundance and transmission risk at the household do not correlate, as is the case with dengue virus (DENV). We used data from a contact tracing study to quantify the distribution of DENV acute infections within human activity spaces (AS), the collection of residential locations an individual routinely visits, and quantified measures of virus transmission heterogeneity from two consecutive dengue outbreaks (DENV-4 and DENV-2) that occurred in the city of Iquitos, Peru. Negative-binomial distributions and Pareto fractions showed evidence of strong overdispersion in the number of DENV infections by AS and identified super-spreading units (SSUs): i.e. AS where most infections occurred. Approximately 8% of AS were identified as SSUs, contributing to more than 50% of DENV infections. SSU occurrence was associated more with DENV-2 infection than with DENV-4, a predominance of inapparent infections (74% of all infections), households with high Aedes aegypti mosquito abundance, and high host susceptibility to the circulating DENV serotype. Marked heterogeneity in dengue case distribution, and the role of inapparent infections in defining it, highlight major challenges faced by reactive interventions if those transmission units contributing the most to transmission are not identified, prioritized, and effectively treated.
Collapse
Affiliation(s)
| | - Amy C Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Valerie Paz-Soldan
- Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Steven T Stoddard
- Division of Health Promotion & Behavioral Sciences, School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - William Koval
- Department of Biology, University of Chicago, Chicago, IL 60637, USA
| | - Lance A Waller
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - T Alex Perkins
- Department of Biology, University of Notre Dame, South Bend, IN 46556, USA
| | - Alun L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC 27607, USA
| | - Helvio Astete
- Virology Department, Naval Medical Research Unit-6, Iquitos 16003, Peru
| | - John Elder
- Division of Health Promotion & Behavioral Sciences, School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Thomas W Scott
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
24
|
Ashall J, Shah S, Biggs JR, Chang JNR, Jafari Y, Brady OJ, Mai HK, Lien LT, Do Thai H, Nguyen HAT, Anh DD, Iwasaki C, Kitamura N, Van Loock M, Herrera-Taracena G, Rasschaert F, Van Wesenbeeck L, Yoshida LM, Hafalla JCR, Hue S, Hibberd ML. A phylogenetic study of dengue virus in urban Vietnam shows long-term persistence of endemic strains. Virus Evol 2023; 9:vead012. [PMID: 36926448 PMCID: PMC10013730 DOI: 10.1093/ve/vead012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 10/31/2022] [Accepted: 02/15/2023] [Indexed: 02/17/2023] Open
Abstract
Dengue virus (DENV) causes repeated outbreaks of disease in endemic areas, with patterns of local transmission strongly influenced by seasonality, importation via human movement, immunity, and vector control efforts. An understanding of how each of these interacts to enable endemic transmission (continual circulation of local virus strains) is largely unknown. There are times of the year when no cases are reported, often for extended periods of time, perhaps wrongly implying the successful eradication of a local strain from that area. Individuals who presented at a clinic or hospital in four communes in Nha Trang, Vietnam, were initially tested for DENV antigen presence. Enrolled positive individuals then had their corresponding household members invited to participate, and those who enrolled were tested for DENV. The presence of viral nucleic acid in all samples was confirmed using quantitative polymerase chain reaction, and positive samples were then whole-genome sequenced using an amplicon and target enrichment library preparation techniques and Illumina MiSeq sequencing technology. Generated consensus genome sequences were then analysed using phylogenetic tree reconstruction to categorise sequences into clades with a common ancestor, enabling investigations of both viral clade persistence and introductions. Hypothetical introduction dates were additionally assessed using a molecular clock model that calculated the time to the most recent common ancestor (TMRCA). We obtained 511 DENV whole-genome sequences covering four serotypes and more than ten distinct viral clades. For five of these clades, we had sufficient data to show that the same viral lineage persisted for at least several months. We noted that some clades persisted longer than others during the sampling time, and by comparison with other published sequences from elsewhere in Vietnam and around the world, we saw that at least two different viral lineages were introduced into the population during the study period (April 2017-2019). Next, by inferring the TMRCA from the construction of molecular clock phylogenies, we predicted that two of the viral lineages had been present in the study population for over a decade. We observed five viral lineages co-circulating in Nha Trang from three DENV serotypes, with two likely to have remained as uninterrupted transmission chains for a decade. This suggests clade cryptic persistence in the area, even during periods of low reported incidence.
Collapse
Affiliation(s)
- James Ashall
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Sonal Shah
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Joseph R Biggs
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Jui-Ning R Chang
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Yalda Jafari
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Oliver J Brady
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Huynh Kim Mai
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Le Thuy Lien
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Hung Do Thai
- Department of Microbiology and Immunology, Pasteur Institute of Nha Trang, Xương Huân, Nha Trang, 650000, Vietnam
| | - Hien Anh Thi Nguyen
- National Institute of Hygiene and Epidemiology, 1 P. Yec Xanh, Phạm Đình Hổ, Hai Bà Trưng, Hà Nội, 100000, Vietnam
| | - Dang Duc Anh
- National Institute of Hygiene and Epidemiology, 1 P. Yec Xanh, Phạm Đình Hổ, Hai Bà Trưng, Hà Nội, 100000, Vietnam
| | - Chihiro Iwasaki
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Noriko Kitamura
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Marnix Van Loock
- Janssen R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B-2340, Belgium
| | - Guillermo Herrera-Taracena
- Janssen Global Public Health, Janssen Research & Development, LLC, 800 Ridgeview Drive, Horsham, PA 19044, USA
| | - Freya Rasschaert
- Janssen R&D, Janssen Pharmaceutica NV, Turnhoutseweg 30, Beerse B-2340, Belgium
| | | | - Lay-Myint Yoshida
- Paediatric Infectious Diseases Department, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
| | - Julius Clemence R Hafalla
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Stephane Hue
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
- Centre for the Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Martin L Hibberd
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| |
Collapse
|
25
|
Roster KO, Martinelli T, Connaughton C, Santillana M, Rodrigues FA. Estimating the impact of the COVID-19 pandemic on dengue in Brazil. RESEARCH SQUARE 2023:rs.3.rs-2548491. [PMID: 36798282 PMCID: PMC9934738 DOI: 10.21203/rs.3.rs-2548491/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Atypical dengue prevalence was observed in 2020 in many dengue-endemic countries, including Brazil. Evidence suggests that the pandemic disrupted not only dengue dynamics due to changes in mobility patterns, but also several aspects of dengue surveillance, such as care seeking behavior, care availability, and monitoring systems. However, we lack a clear understanding of the overall impact on dengue in different parts of the country as well as the role of individual causal drivers. In this study, we estimated the gap between expected and observed dengue cases in 2020 using an interrupted time series design with forecasts from a neural network and a structural Bayesian time series model. We also decomposed the gap into the impacts of climate conditions, pandemic-induced changes in reporting, human susceptibility, and human mobility. We find that there is considerable variation across the country in both overall pandemic impact on dengue and the relative importance of individual drivers. Increased understanding of the causal mechanisms driving the 2020 dengue season helps mitigate some of the data gaps caused by the COVID-19 pandemic and is critical to developing effective public health interventions to control dengue in the future.
Collapse
Affiliation(s)
- K. O. Roster
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, SP, Brazil
| | - T. Martinelli
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, SP, Brazil
| | - C. Connaughton
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
- London Mathematical Laboratory, London, United Kingdom
| | - M. Santillana
- Machine Intelligence Group for the Betterment of Health and the Environment, Network Science Institute, Northeastern University, Boston, MA, USA
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - F. A. Rodrigues
- Institute of Mathematics and Computer Science, University of São Paulo, São Carlos, SP, Brazil
| |
Collapse
|
26
|
Che-Mendoza A, González-Olvera G, Medina-Barreiro A, Arisqueta-Chablé C, Herrera-Bojórquez J, Bibiano-Marín W, Kirstein O, Vazquez-Prokopec GM, Manrique-Saide P. Residual efficacy of the neonicotinoid insecticide clothianidin against pyrethroid-resistant Aedes aegypti. PEST MANAGEMENT SCIENCE 2023; 79:638-644. [PMID: 36223080 PMCID: PMC9845138 DOI: 10.1002/ps.7231] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/06/2022] [Accepted: 10/12/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND Here we report the residual efficacy of the neonicotinoid insecticide clothianidin against pyrethroid-resistant Aedes aegypti. We first conducted a range-finding evaluation of clothianidin on three different substrates (wall, wood, cloth) using three doses (100, 300 and 600 mg a.i. m-2 ) and conducting World Health Organization (WHO) cone bioassays to assess acute (24 h) and delayed (up to 7 days) mortality. In experimental houses located in Merida (Mexico) and using free-flying pyrethroid-resistant Ae. aegypti females, we quantified the acute and delayed mortality after a 24-h exposure to the targeted indoor residual spraying (TIRS) of two clothianidin doses (100 and 300 mg a.i. m-2 ). RESULTS Range-finding studies with WHO cones showed low (<50%) acute mortality for all surfaces, doses and times post spraying. Delayed mortality was higher, with average values above or close to the 60% mark (and 95% confidence interval estimates crossing 80% for the 600 mg a.i. m-2 dose). In experimental houses, a similar low acute mortality was quantified (range of mortality across 12 months was 2-44% for 100 mg a.i. m-2 and 8-61% for 300 mg a.i/m2 ). However, delayed mortality showed a strong effect of clothianidin on free-flying Ae. aegypti, with values above 80% up to 7 months post-TIRS. CONCLUSION Novel residual insecticide molecules have a promising outlook for Ae. aegypti control and can contribute to the expansion and adoption of TIRS in urban areas. clothianidin can contribute to the control of resistant Ae. aegypti and provide residual control for up to 7 months after application. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- A Che-Mendoza
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Mexico
| | - G González-Olvera
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Mexico
| | - A Medina-Barreiro
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Mexico
| | - C Arisqueta-Chablé
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Mexico
| | - J Herrera-Bojórquez
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Mexico
| | - W Bibiano-Marín
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Mexico
| | - O Kirstein
- Department of Environmental Sciences, Emory University, Mathematics and Science Center, 400 Dowman Drive Ste: E530, Atlanta, GA 30322, USA
| | - GM Vazquez-Prokopec
- Department of Environmental Sciences, Emory University, Mathematics and Science Center, 400 Dowman Drive Ste: E530, Atlanta, GA 30322, USA
| | - P Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomologicos, Universidad Autonoma de Yucatan, Mexico
| |
Collapse
|
27
|
Sakamoto K, Yamauchi T, Kokaze A. Mathematical model estimation of dengue fever transmission risk from Southeast and South Asia into Japan between 2016 and 2018. Environ Health Prev Med 2023; 28:50. [PMID: 37690835 PMCID: PMC10495242 DOI: 10.1265/ehpm.22-00267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 07/28/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Dengue fever is a viral infection transmitted to humans through the bite of a mosquito infected with the dengue virus. Dengue is one of the most common infectious diseases in the world, and its incidence is rapidly increasing. We estimated the risk of dengue importation from endemic countries to Japan and the transmission risk within Japan using data collected between 2016 and 2018. METHODS We conducted simulations that included the number of reported dengue infections and travelers per month in ten countries in Southeast and South Asia. RESULTS The estimated importation risks for Japanese returnees and international travelers from each of the ten endemic countries was approximately 1.0 every month from 2016 to 2018. The autochthonous transmission risk in Japan from any target country was 1.0 from June to September yearly. The estimated number of Japanese dengue cases returning to Japan is approximately 25 times higher than that of imported cases reported in Japan. CONCLUSIONS The risk of dengue importation into Japan can be sufficiently high. Attention should be paid to autochthonous transmission spread between June and September when mosquitoes are active in Japan. Estimates of seasonal risk variation from each dengue virus-endemic country can be used to inform preventive and control measures for dengue in Japan.
Collapse
Affiliation(s)
- Ken Sakamoto
- Department of Hygiene, Public Health and Preventive Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Takenori Yamauchi
- Department of Hygiene, Public Health and Preventive Medicine, School of Medicine, Showa University, Tokyo, Japan
| | - Akatsuki Kokaze
- Department of Hygiene, Public Health and Preventive Medicine, School of Medicine, Showa University, Tokyo, Japan
| |
Collapse
|
28
|
Molecular surveillance of arboviruses circulation and co-infection during a large chikungunya virus outbreak in Thailand, October 2018 to February 2020. Sci Rep 2022; 12:22323. [PMID: 36566236 PMCID: PMC9789961 DOI: 10.1038/s41598-022-27028-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022] Open
Abstract
A large national outbreak of chikungunya virus (CHIKV) was recently reported in Thailand. While dengue virus (DENV) infection tends to occur year-round with an upsurge in the rainy season, Zika virus (ZIKV) also circulates in the country. The overlap in the distribution of these viruses increased the probability of co-infections during the heightened CHIKV activity. By examining 1806 patient serum samples submitted for CHIKV diagnostics from October 2018-February 2020 (511 CHIKV-negatives and 1295 CHIKV-positives), we used real-time reverse transcription-polymerase chain reaction to identify DENV and ZIKV individually. A total of 29 ZIKV and 36 DENV single-infections were identified. Interestingly, 13 co-infection cases were observed, of which 8 were CHIKV/DENV, 3 were CHIKV/ZIKV, and 2 were DENV/ZIKV. There were six DENV genotypes (13 DENV-1 genotype I, 10 DENV-2 Asian I, 10 DENV-2 Cosmopolitan, 6 DENV-3 genotype I, 2 DENV-3 genotype III, and 5 DENV-4 genotype I). Additionally, ZIKV strains identified in this study either clustered with strains previously circulating in Thailand and Singapore, or with strains previously reported in China, French Polynesia, and the Americas. Our findings reveal the co-infection and genetic diversity patterns of mosquito-borne viruses circulating in Thailand.
Collapse
|
29
|
Preventive residual insecticide applications successfully controlled Aedes aegypti in Yucatan, Mexico. Sci Rep 2022; 12:21998. [PMID: 36539478 PMCID: PMC9768150 DOI: 10.1038/s41598-022-26577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Insecticide-based approaches remain a key pillar for Aedes-borne virus (ABV, dengue, chikungunya, Zika) control, yet they are challenged by the limited effect of traditional outdoor insecticide campaigns responding to reported arboviral cases and by the emergence of insecticide resistance in mosquitoes. A three-arm Phase II unblinded entomological cluster randomized trial was conducted in Merida, Yucatan State, Mexico, to quantify the entomological impact of targeted indoor residual spraying (TIRS, application of residual insecticides in Ae. aegypti indoor resting sites) applied preventively 2 months before the beginning of the arbovirus transmission season. Trial arms involved the use of two insecticides with unrelated modes of action (Actellic 300CS, pirimiphos-methyl, and SumiShield 50WG, clothianidin) and a control arm where TIRS was not applied. Entomological impact was quantified by Prokopack adult collections performed indoors during 10 min per house. Regardless of the insecticide, conducting a preventive TIRS application led to significant reductions in indoor Ae. aegypti densities, which were maintained at the same levels as in the low arbovirus transmission period (Actellic 300CS reduced Ae. aegypti density up to 8 months, whereas SumiShield 50WG up to 6 months). The proportional reduction in Ae. aegypti abundance in treatment houses compared to control houses was 50-70% for Actellic 300CS and 43-63% for SumiShield 50WG. Total operational costs including insecticide ranged from US$4.2 to US$10.5 per house, depending on the insecticide cost. Conducting preventive residual insecticide applications can maintain Ae. aegypti densities at low levels year-round with important implications for preventing ABVs in the Americas and beyond.
Collapse
|
30
|
Achee NL, Perkins TA, Moore SM, Liu F, Sagara I, Van Hulle S, Ochomo EO, Gimnig JE, Tissera HA, Harvey SA, Monroe A, Morrison AC, Scott TW, Reiner RC, Grieco JP. Spatial repellents: The current roadmap to global recommendation of spatial repellents for public health use. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 3:100107. [PMID: 36590345 PMCID: PMC9801085 DOI: 10.1016/j.crpvbd.2022.100107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/18/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022]
Abstract
Spatial repellent (SR) products are envisioned to complement existing vector control methods through the continual release of volatile active ingredients (AI) providing: (i) protection against day-time and early-evening biting; (ii) protection in enclosed/semi-enclosed and peri-domestic spaces; (iii) various formulations to fit context-specific applications; and (iv) increased coverage over traditional control methods. SR product AIs also have demonstrated effect against insecticide-resistant vectors linked to malaria and Aedes-borne virus (ABV) transmission. Over the past two decades, key stakeholders, including World Health Organization (WHO) representatives, have met to discuss the role of SRs in reducing arthropod-borne diseases based on existing evidence. A key focus has been to establish a critical development path for SRs, including scientific, regulatory and social parameters that would constitute an outline for a SR target product profile, i.e. optimum product characteristics. The principal gap is the lack of epidemiological data demonstrating SR public health impact across a range of different ecological and epidemiological settings, to inform a WHO policy recommendation. Here we describe in brief trials that are designed to fulfill evidence needs for WHO assessment and initial projections of SR cost-effectiveness against malaria and dengue.
Collapse
Affiliation(s)
- Nicole L. Achee
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA,Corresponding author. Department of Biological Sciences, Eck Institute for Global Health, 239 Galvin Life Science Center, Notre Dame, IN, 46556, USA.
| | - T. Alex Perkins
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Sean M. Moore
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Fang Liu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, USA
| | - Issaka Sagara
- Malaria Research and Training Center (MRTC), Faculty of Medicine, Dentistry and Pharmacy at the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | | | - Eric O. Ochomo
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - John E. Gimnig
- Centers for Disease Control and Prevention, Division of Parasitic Diseases and Malaria, Atlanta, GA, USA
| | | | - Steven A. Harvey
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - April Monroe
- Johns Hopkins Center for Communication Programs, Baltimore, MD, USA
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, CA, USA
| | - Robert C. Reiner
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - John P. Grieco
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
31
|
Olajiga OM, Marin-Lopez A, Cardenas JC, Gutierrez-Silva LY, Gonzales-Pabon MU, Maldonado-Ruiz LP, Worges M, Fikrig E, Park Y, Londono-Renteria B. Aedes aegypti anti-salivary proteins IgG levels in a cohort of DENV-like symptoms subjects from a dengue-endemic region in Colombia. FRONTIERS IN EPIDEMIOLOGY 2022; 2:1002857. [PMID: 38455331 PMCID: PMC10910902 DOI: 10.3389/fepid.2022.1002857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/20/2022] [Indexed: 03/09/2024]
Abstract
Dengue fever, caused by the dengue virus (DENV), is currently a threat to about half of the world's population. DENV is mainly transmitted to the vertebrate host through the bite of a female Aedes mosquito while taking a blood meal. During this process, salivary proteins are introduced into the host skin and blood to facilitate blood acquisition. These salivary proteins modulate both local (skin) and systemic immune responses. Several salivary proteins have been identified as immunogenic inducing the production of antibodies with some of those proteins also displaying immunomodulatory properties enhancing arboviral infections. IgG antibody responses against salivary gland extracts of a diverse number of mosquitoes, as well as antibody responses against the Ae. aegypti peptide, Nterm-34 kDa, have been suggested as biomarkers of human exposure to mosquito bites while antibodies against AgBR1 and NeSt1 proteins have been investigated for their potential protective effect against Zika virus (ZIKV) and West Nile virus infections. Thus, we were interested in evaluating whether IgG antibodies against AgBR1, NeSt1, Nterm-34 kDa peptide, and SGE were associated with DENV infections and clinical characteristics. For this, we tested samples from volunteers living in a dengue fever endemic area in Colombia in 2019 for the presence of IgG antibodies against those salivary proteins and peptides using an ELISA test. Results from this pilot study suggest an involvement of antibody responses against salivary proteins in dengue disease progression.
Collapse
Affiliation(s)
- Olayinka M. Olajiga
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Alejandro Marin-Lopez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Jenny C. Cardenas
- Laboratorio Clínico, Hospital Local Los Patios, Los Patios, Colombia
| | | | | | | | - Matt Worges
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University of New Orleans, New Orleans, LA, United States
| | - Erol Fikrig
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, United States
| | - Berlin Londono-Renteria
- Department of Entomology, Kansas State University, Manhattan, KS, United States
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University of New Orleans, New Orleans, LA, United States
| |
Collapse
|
32
|
Lee WL, Gu X, Armas F, Leifels M, Wu F, Chandra F, Chua FJD, Syenina A, Chen H, Cheng D, Ooi EE, Wuertz S, Alm EJ, Thompson J. Monitoring human arboviral diseases through wastewater surveillance: Challenges, progress and future opportunities. WATER RESEARCH 2022; 223:118904. [PMID: 36007397 DOI: 10.1016/j.watres.2022.118904] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 05/21/2023]
Abstract
Arboviral diseases are caused by a group of viruses spread by the bite of infected arthropods. Amongst these, dengue, Zika, west nile fever and yellow fever cause the greatest economic and social impact. Arboviral epidemics have increased in frequency, magnitude and geographical extent over the past decades and are expected to continue increasing with climate change and expanding urbanisation. Arboviral prevalence is largely underestimated, as most infections are asymptomatic, nevertheless existing surveillance systems are based on passive reporting of loosely defined clinical syndromes with infrequent laboratory confirmation. Wastewater-based surveillance (WBS), which has been demonstrated to be useful for monitoring diseases with significant asymptomatic populations including COVID19 and polio, could be a useful complement to arboviral surveillance. We review the current state of knowledge and identify key factors that affect the feasibility of monitoring arboviral diseases by WBS to include viral shedding loads by infected persons, the persistence of shed arboviruses and the efficiency of their recovery from sewage. We provide a simple model on the volume of wastewater that needs to be processed for detection of arboviruses, in face of lower arboviral shedding rates. In all, this review serves to reflect on the key challenges that need to be addressed and overcome for successful implementation of arboviral WBS.
Collapse
Affiliation(s)
- Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Fuqing Wu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Disease, University of Texas School of Public Health, Houston, TX, USA
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Ayesa Syenina
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Eng Eong Ooi
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Janelle Thompson
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
33
|
Cecilia H, Vriens R, Wichgers Schreur PJ, de Wit MM, Métras R, Ezanno P, ten Bosch QA. Heterogeneity of Rift Valley fever virus transmission potential across livestock hosts, quantified through a model-based analysis of host viral load and vector infection. PLoS Comput Biol 2022; 18:e1010314. [PMID: 35867712 PMCID: PMC9348665 DOI: 10.1371/journal.pcbi.1010314] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 08/03/2022] [Accepted: 06/16/2022] [Indexed: 01/17/2023] Open
Abstract
Quantifying the variation of pathogens’ life history traits in multiple host systems is crucial to understand their transmission dynamics. It is particularly important for arthropod-borne viruses (arboviruses), which are prone to infecting several species of vertebrate hosts. Here, we focus on how host-pathogen interactions determine the ability of host species to transmit a virus to susceptible vectors upon a potentially infectious contact. Rift Valley fever (RVF) is a viral, vector-borne, zoonotic disease, chosen as a case study. The relative contributions of livestock species to RVFV transmission has not been previously quantified. To estimate their potential to transmit the virus over the course of their infection, we 1) fitted a within-host model to viral RNA and infectious virus measures, obtained daily from infected lambs, calves, and young goats, 2) estimated the relationship between vertebrate host infectious titers and probability to infect mosquitoes, and 3) estimated the net infectiousness of each host species over the duration of their infectious periods, taking into account different survival outcomes for lambs. Our results indicate that the efficiency of viral replication, along with the lifespan of infectious particles, could be sources of heterogeneity between hosts. Given available data on RVFV competent vectors, we found that, for similar infectious titers, infection rates in the Aedes genus were on average higher than in the Culex genus. Consequently, for Aedes-mediated infections, we estimated the net infectiousness of lambs to be 2.93 (median) and 3.65 times higher than that of calves and goats, respectively. In lambs, we estimated the overall infectiousness to be 1.93 times higher in individuals which eventually died from the infection than in those recovering. Beyond infectiousness, the relative contributions of host species to transmission depend on local ecological factors, including relative abundances and vector host-feeding preferences. Quantifying these contributions will ultimately help design efficient, targeted, surveillance and vaccination strategies. Viruses spread by mosquitoes present a major threat to animal and public health worldwide. When these pathogenic viruses can infect multiple species, controlling their spread becomes difficult. Rift Valley fever virus (RVFV) is such a virus. It spreads predominantly among ruminant livestock but can also spill over and cause severe disease in humans. Understanding which of these ruminant species are most important for the transmission of RVFV can help for effective control. One piece of this puzzle is to assess how effective infected animals are at transmitting RVFV to mosquitoes. To answer this question, we combine mathematical models with observations from experimental infections in cattle, sheep, and goats, and model changes in viremia over time within individuals. We then quantify the relationship between hosts’ viremia and the probability to infect mosquitoes. In combining these two analyses, we estimate the overall transmission potential of sheep, when in contact with mosquitoes, to be 3 to 5 times higher than that of goats and cattle. Further, sheep that experience a lethal infection have an even larger overall transmission potential. Once applied at the level of populations, with setting-specific herd composition and exposure to mosquitoes, these results will help unravel species’ role in RVF outbreaks.
Collapse
Affiliation(s)
- Hélène Cecilia
- INRAE, Oniris, BIOEPAR, Nantes, France
- * E-mail: (HC); (QAtB)
| | - Roosmarie Vriens
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Mariken M. de Wit
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
| | - Raphaëlle Métras
- Sorbonne Université, INSERM, Institut Pierre Louis d’Epidémiologie et de Santé Publique (IPLESP), Paris, France
| | | | - Quirine A. ten Bosch
- Quantitative Veterinary Epidemiology, Wageningen University and Research, Wageningen, The Netherlands
- * E-mail: (HC); (QAtB)
| |
Collapse
|
34
|
CHARACTERIZING TUBERCULOSIS PROGRESSION IN WILD MEERKATS (SURICATA SURICATTA) FROM FECAL SAMPLES AND CLINICAL SIGNS. J Wildl Dis 2022; 58:309-321. [PMID: 35255146 DOI: 10.7589/jwd-d-21-00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 11/03/2021] [Indexed: 11/20/2022]
Abstract
Tuberculosis (TB) is an increasing threat to wildlife, yet tracking its spread is challenging because infections often appear to be asymptomatic, and diagnostic tools such as blood tests can be invasive and resource intensive. Our understanding of TB biology in wildlife is therefore limited to a small number of well-studied species. Testing of fecal samples using PCR is a noninvasive method that has been used to detect Mycobacterium bovis shedding amongst badgers, yet its utility more broadly for TB monitoring in wildlife is unclear. We combined observation data of clinical signs with PCR testing of 388 fecal samples to characterize longitudinal dynamics of TB progression in 66 wild meerkats (Suricata suricatta) socially exposed to Mycobacterium suricattae between 2000 and 2018. Our specific objectives were 1) to test whether meerkat fecal samples can be used to monitor TB; 2) to characterize TB progression between three infection states (PCR-negative exposed, PCR-positive asymptomatic, and PCR positive with clinical signs); and 3) estimate individual heterogeneity in TB susceptibility, defined here as the time between TB exposure and detection, and survival after TB detection. We found that the TB detection probability once meerkats developed clinical signs was 13% (95% confidence interval 3-46%). Nevertheless, with an adapted test protocol of 10 PCR replicates per sample we detected hidden TB infections in 59% of meerkats before the onset of clinical signs. Meerkats became PCR positive approximately 14 mo after initial exposure, developed clinical signs approximately 1 yr after becoming PCR positive, and died within 5 mo of developing clinical signs. Individual variation in disease progression was high, with meerkats developing clinical signs from immediately after exposure to 3.4 yr later. Overall, our study generates novel insights into wildlife TB progression, and may help guide adapted management strategies for TB-susceptible wildlife populations.
Collapse
|
35
|
Aguiar M, Anam V, Blyuss KB, Estadilla CDS, Guerrero BV, Knopoff D, Kooi BW, Srivastav AK, Steindorf V, Stollenwerk N. Mathematical models for dengue fever epidemiology: A 10-year systematic review. Phys Life Rev 2022; 40:65-92. [PMID: 35219611 PMCID: PMC8845267 DOI: 10.1016/j.plrev.2022.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 01/11/2023]
Abstract
Mathematical models have a long history in epidemiological research, and as the COVID-19 pandemic progressed, research on mathematical modeling became imperative and very influential to understand the epidemiological dynamics of disease spreading. Mathematical models describing dengue fever epidemiological dynamics are found back from 1970. Dengue fever is a viral mosquito-borne infection caused by four antigenically related but distinct serotypes (DENV-1 to DENV-4). With 2.5 billion people at risk of acquiring the infection, it is a major international public health concern. Although most of the cases are asymptomatic or mild, the disease immunological response is complex, with severe disease linked to the antibody-dependent enhancement (ADE) - a disease augmentation phenomenon where pre-existing antibodies to previous dengue infection do not neutralize but rather enhance the new infection. Here, we present a 10-year systematic review on mathematical models for dengue fever epidemiology. Specifically, we review multi-strain frameworks describing host-to-host and vector-host transmission models and within-host models describing viral replication and the respective immune response. Following a detailed literature search in standard scientific databases, different mathematical models in terms of their scope, analytical approach and structural form, including model validation and parameter estimation using empirical data, are described and analyzed. Aiming to identify a consensus on infectious diseases modeling aspects that can contribute to public health authorities for disease control, we revise the current understanding of epidemiological and immunological factors influencing the transmission dynamics of dengue. This review provide insights on general features to be considered to model aspects of real-world public health problems, such as the current epidemiological scenario we are living in.
Collapse
Affiliation(s)
- Maíra Aguiar
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, Povo, Trento, 38123, Italy; Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Vizda Anam
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Konstantin B Blyuss
- VU University, Faculty of Science, De Boelelaan 1085, NL 1081, HV Amsterdam, the Netherlands
| | - Carlo Delfin S Estadilla
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Bruno V Guerrero
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Damián Knopoff
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Centro de Investigaciones y Estudios de Matemática CIEM, CONICET, Medina Allende s/n, Córdoba, 5000, Argentina
| | - Bob W Kooi
- University of Sussex, Department of Mathematics, Falmer, Brighton, UK
| | - Akhil Kumar Srivastav
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Vanessa Steindorf
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain
| | - Nico Stollenwerk
- Basque Center for Applied Mathematics, Alameda de Mazarredo 14, Bilbao, E-48009, Basque Country, Spain; Dipartimento di Matematica, Università degli Studi di Trento, Via Sommarive 14, Povo, Trento, 38123, Italy
| |
Collapse
|
36
|
Uncovering the Burden of Dengue in Africa: Considerations on Magnitude, Misdiagnosis, and Ancestry. Viruses 2022; 14:v14020233. [PMID: 35215827 PMCID: PMC8877195 DOI: 10.3390/v14020233] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/15/2022] [Accepted: 01/18/2022] [Indexed: 01/27/2023] Open
Abstract
Dengue is a re-emerging neglected disease of major public health importance. This review highlights important considerations for dengue disease in Africa, including epidemiology and underestimation of disease burden in African countries, issues with malaria misdiagnosis and co-infections, and potential evidence of genetic protection from severe dengue disease in populations of African descent. The findings indicate that dengue virus prevalence in African countries and populations may be more widespread than reported data suggests, and that the Aedes mosquito vectors appear to be increasing in dissemination and number. Changes in climate, population, and plastic pollution are expected to worsen the dengue situation in Africa. Dengue misdiagnosis is also a problem in Africa, especially due to the typical non-specific clinical presentation of dengue leading to misdiagnosis as malaria. Finally, research suggests that a protective genetic component against severe dengue exists in African descent populations, but further studies should be conducted to strengthen this association in various populations, taking into consideration socioeconomic factors that may contribute to these findings. The main takeaway is that Africa should not be overlooked when it comes to dengue, and more attention and resources should be devoted to this disease in Africa.
Collapse
|
37
|
Selvarajoo S, Liew JWK, Chua TH, Tan W, Zaki RA, Ngui R, Sulaiman WYW, Ong PS, Vythilingam I. Dengue surveillance using gravid oviposition sticky (GOS) trap and dengue non-structural 1 (NS1) antigen test in Malaysia: randomized controlled trial. Sci Rep 2022; 12:571. [PMID: 35022501 PMCID: PMC8755775 DOI: 10.1038/s41598-021-04643-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/29/2021] [Indexed: 11/09/2022] Open
Abstract
Dengue remains a major public threat and existing dengue control/surveillance programs lack sensitivity and proactivity. More efficient methods are needed. A cluster randomized controlled trial was conducted for 18 months to determine the efficacy of using a combination of gravid oviposition sticky (GOS) traps and dengue non-structural 1 (NS1) antigen for early surveillance of dengue among Aedes mosquito. Eight residential apartments were randomly assigned into intervention and control groups. GOS traps were placed at the intervention apartments weekly to trap Aedes mosquitoes and these tested for dengue NS1 antigen. When dengue-positive pool was detected, the community were notified and advised to execute protective measures. Fewer dengue cases were recorded in the intervention group than the control. Detection of NS1-positive mosquitoes was significantly associated with GOS Aedes index (rs = 0.68, P < 0.01) and occurrence of dengue cases (rs = 0.31, P < 0.01). Participants' knowledge, attitude, and practice (KAP) toward dengue control indicated significant improvement for knowledge (P < 0.01), practice (P < 0.01) and total scores (P < 0.01). Most respondents thought this surveillance method is good (81.2%) and supported its use nationwide. Thus, GOS trap and dengue NS1 antigen test can supplement the current dengue surveillance/control, in alignment with the advocated integrated vector management for reducing Aedes-borne diseases.
Collapse
Affiliation(s)
- Sivaneswari Selvarajoo
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jonathan Wee Kent Liew
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.,Enviromental Health Institute, National Environment Agency, Singapore, 569874, Singapore
| | - Tock H Chua
- Department of Pathobiology and Medical Diagnostics, Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Wing Tan
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rafdzah Ahmad Zaki
- Department of Social and Preventive Medicine, Faculty of Medicine, Centre for Epidemiology and Evidence Based Practice, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Romano Ngui
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Wan Yusoff Wan Sulaiman
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Poo Soon Ong
- Petaling Jaya City Council, 46675, Petaling Jaya, Selangor, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
38
|
Rashkov P, Kooi BW. Complexity of host-vector dynamics in a two-strain dengue model. JOURNAL OF BIOLOGICAL DYNAMICS 2021; 15:35-72. [PMID: 33357025 DOI: 10.1080/17513758.2020.1864038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
We introduce a compartmental host-vector model for dengue with two viral strains, temporary cross-immunity for the hosts, and possible secondary infections. We study the conditions on existence of endemic equilibria where one strain displaces the other or the two virus strains co-exist. Since the host and vector epidemiology follow different time scales, the model is described as a slow-fast system. We use the geometric singular perturbation technique to reduce the model dimension. We compare the behaviour of the full model with that of the model with a quasi-steady approximation for the vector dynamics. We also perform numerical bifurcation analysis with parameter values from the literature and compare the bifurcation structure to that of previous two-strain host-only models.
Collapse
Affiliation(s)
- Peter Rashkov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Bob W Kooi
- Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
刘 金, 李 晓, 王 海, 唐 时, 万 成. [Dengue virus E protein-based luciferase immunosorbent assay for detecting dengue virus IgG antibody]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1747-1751. [PMID: 34916204 PMCID: PMC8685698 DOI: 10.12122/j.issn.1673-4254.2021.11.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To establish a luciferase immunosorbent assay (DENV-LISA) based on dengue virus (DENV) E protein, a specific antigen of DENV, for detection of DENV IgG antibody. METHODS The fused expression plasmids of DENV1-E1 and DENV2-E2 with luciferase were constructed. The plasmids were transfected into 293T cells, and the fusion protein containing the specific antigen and luciferase was obtained for establishing DENV-LISA. The specificity and sensitivity of DENV-LISA were assessed and compared with those of commercial DENV IgG antibody detection kit (ELISA). RESULTS The established DENV-LISA had a positive detection rate of 32.4% and a specificity of 96.6%, showing a similar positive detection rate with the commercial ELISA kit (35.3%; P>0.05). DENV-LISA was capable of detecting positive samples with a 1: 6400 dilution with a high sensitivity. The test values of DENV-LISA did not differ significantly between plates or within plates in the same batch (P> 0.05), suggesting a good reproducibility of the test. CONCLUSION The luciferase immunosorbent assay based on DENV E protein has high specificity and sensitivity for detecting DENV IgG antibody, and can be used for early screening, surveillance and epidemiological investigation of DENV infection.
Collapse
Affiliation(s)
- 金月 刘
- />南方医科大学公共卫生学院,广东 广州 510515School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 晓霞 李
- />南方医科大学公共卫生学院,广东 广州 510515School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 海鹰 王
- />南方医科大学公共卫生学院,广东 广州 510515School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 时幸 唐
- />南方医科大学公共卫生学院,广东 广州 510515School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - 成松 万
- />南方医科大学公共卫生学院,广东 广州 510515School of Public Health, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
40
|
Katzelnick LC, Escoto AC, Huang AT, Garcia-Carreras B, Chowdhury N, Berry IM, Chavez C, Buchy P, Duong V, Dussart P, Gromowski G, Macareo L, Thaisomboonsuk B, Fernandez S, Smith DJ, Jarman R, Whitehead SS, Salje H, Cummings DA. Antigenic evolution of dengue viruses over 20 years. Science 2021; 374:999-1004. [PMID: 34793238 PMCID: PMC8693836 DOI: 10.1126/science.abk0058] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Infection with one of dengue viruses 1 to 4 (DENV1-4) induces protective antibodies against homotypic infection. However, a notable feature of dengue viruses is the ability to use preexisting heterotypic antibodies to infect Fcγ receptor–bearing immune cells, leading to higher viral load and immunopathological events that augment disease. We tracked the antigenic dynamics of each DENV serotype by using 1944 sequenced isolates from Bangkok, Thailand, between 1994 and 2014 (348 strains), in comparison with regional and global DENV antigenic diversity (64 strains). Over the course of 20 years, the Thailand DENV serotypes gradually evolved away from one another. However, for brief periods, the serotypes increased in similarity, with corresponding changes in epidemic magnitude. Antigenic evolution within a genotype involved a trade-off between two types of antigenic change (within-serotype and between-serotype), whereas genotype replacement resulted in antigenic change away from all serotypes. These findings provide insights into theorized dynamics in antigenic evolution.
Collapse
Affiliation(s)
- Leah C. Katzelnick
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Ana Coello Escoto
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Angkana T. Huang
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Bernardo Garcia-Carreras
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
| | - Nayeem Chowdhury
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
| | - Irina Maljkovic Berry
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Chris Chavez
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
| | - Philippe Buchy
- GlaxoSmithKline (GSK) Vaccines, 637421 Singapore, Singapore
| | - Veasna Duong
- Institut Pasteur in Cambodia, Réseau International des Instituts Pasteur, Phnom Penh 12201, Cambodia
| | - Philippe Dussart
- Institut Pasteur in Cambodia, Réseau International des Instituts Pasteur, Phnom Penh 12201, Cambodia
| | - Gregory Gromowski
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Louis Macareo
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Butsaya Thaisomboonsuk
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Derek J. Smith
- Department of Zoology, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Richard Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, 20910, United States
| | - Stephen S. Whitehead
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, United States
| | - Henrik Salje
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EJ, United Kingdom
| | - Derek A.T. Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL, 32611, United States
| |
Collapse
|
41
|
A pan-serotype dengue virus inhibitor targeting the NS3-NS4B interaction. Nature 2021; 598:504-509. [PMID: 34616043 DOI: 10.1038/s41586-021-03990-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/01/2021] [Indexed: 02/08/2023]
Abstract
Dengue virus causes approximately 96 million symptomatic infections annually, manifesting as dengue fever or occasionally as severe dengue1,2. There are no antiviral agents available to prevent or treat dengue. Here, we describe a highly potent dengue virus inhibitor (JNJ-A07) that exerts nanomolar to picomolar activity against a panel of 21 clinical isolates that represent the natural genetic diversity of known genotypes and serotypes. The molecule has a high barrier to resistance and prevents the formation of the viral replication complex by blocking the interaction between two viral proteins (NS3 and NS4B), thus revealing a previously undescribed mechanism of antiviral action. JNJ-A07 has a favourable pharmacokinetic profile that results in outstanding efficacy against dengue virus infection in mouse infection models. Delaying start of treatment until peak viraemia results in a rapid and significant reduction in viral load. An analogue is currently in further development.
Collapse
|
42
|
Park SL, Huang YJS, Lyons AC, Ayers VB, Hettenbach SM, McVey DS, Noronha LE, Burton KR, Hsu WW, Higgs S, Vanlandingham DL. Mosquito Saliva Modulates Japanese Encephalitis Virus Infection in Domestic Pigs. FRONTIERS IN VIROLOGY 2021. [DOI: 10.3389/fviro.2021.724016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Japanese encephalitis virus (JEV) is a mosquito-borne flavivirus that is the leading cause of pediatric viral encephalitis in Asia. Japanese encephalitis virus is transmitted by Culex species mosquitoes that also vector several zoonotic flaviviruses. Despite the knowledge that mosquito saliva contains molecules that may alter flavivirus pathogenesis, whether or not the deposition of viruses by infected mosquitoes has an impact on the kinetics and severity of JEV infection has not been thoroughly examined, especially in mammalian species involved in the enzootic transmission. Most JEV pathogenesis models were established using needle inoculation. Mouse models for West Nile (WNV) and dengue (DENV) viruses have shown that mosquito saliva can potentiate flavivirus infections and exacerbate disease symptoms. In this study, we determined the impact of mosquito salivary components on the pathogenesis of JEV in pigs, a species directly involved in its transmission cycle as an amplifying host. Interestingly, co-injection of JEV and salivary gland extract (SGE) collected from Culex quinquefasciatus produced milder febrile illness and shortened duration of nasal shedding but had no demonstrable impact on viremia and neuroinvasion. Our findings highlight that mosquito salivary components can differentially modulate the outcomes of flavivirus infections in amplifying hosts and in mouse models.
Collapse
|
43
|
Brady OJ, Kucharski AJ, Funk S, Jafari Y, Loock MV, Herrera-Taracena G, Menten J, Edmunds WJ, Sim S, Ng LC, Hué S, Hibberd ML. Case-area targeted interventions (CATI) for reactive dengue control: Modelling effectiveness of vector control and prophylactic drugs in Singapore. PLoS Negl Trop Dis 2021; 15:e0009562. [PMID: 34379641 PMCID: PMC8357181 DOI: 10.1371/journal.pntd.0009562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Targeting interventions to areas that have recently experienced cases of disease is one strategy to contain outbreaks of infectious disease. Such case-area targeted interventions (CATI) have become an increasingly popular approach for dengue control but there is little evidence to suggest how precisely targeted or how recent cases need to be, to mount an effective response. The growing interest in the development of prophylactic and therapeutic drugs for dengue has also given new relevance for CATI strategies to interrupt transmission or deliver early treatment. METHODS/PRINCIPAL FINDINGS Here we develop a patch-based mathematical model of spatial dengue spread and fit it to spatiotemporal datasets from Singapore. Simulations from this model suggest CATI strategies could be effective, particularly if used in lower density areas. To maximise effectiveness, increasing the size of the radius around an index case should be prioritised even if it results in delays in the intervention being applied. This is partially because large intervention radii ensure individuals receive multiple and regular rounds of drug dosing or vector control, and thus boost overall coverage. Given equivalent efficacy, CATIs using prophylactic drugs are predicted to be more effective than adult mosquito-killing vector control methods and may even offer the possibility of interrupting individual chains of transmission if rapidly deployed. CATI strategies quickly lose their effectiveness if baseline transmission increases or case detection rates fall. CONCLUSIONS/SIGNIFICANCE These results suggest CATI strategies can play an important role in dengue control but are likely to be most relevant for low transmission areas where high coverage of other non-reactive interventions already exists. Controlled field trials are needed to assess the field efficacy and practical constraints of large operational CATI strategies.
Collapse
Affiliation(s)
- Oliver J. Brady
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Adam J. Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Sebastian Funk
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Yalda Jafari
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Marnix Van Loock
- Janssen Global Public Health, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Guillermo Herrera-Taracena
- Janssen Global Public Health, Janssen Research & Development, LLC, Horsham, Pennsylvania, United States of America
| | - Joris Menten
- Quantitative Sciences, Janssen Pharmaceutica NV, Beerse, Belgium
| | - W. John Edmunds
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Shuzhen Sim
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Lee-Ching Ng
- Environmental Health Institute, National Environment Agency, Singapore, Singapore
| | - Stéphane Hué
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Public Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Martin L. Hibberd
- Department of Infection Biology, Faculty of Infectious Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
44
|
Laboratory Findings in Patients with Probable Dengue Diagnosis from an Endemic Area in Colombia in 2018. Viruses 2021; 13:v13071401. [PMID: 34372606 PMCID: PMC8310201 DOI: 10.3390/v13071401] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
As demonstrated with the novel coronavirus pandemic, rapid and accurate diagnosis is key to determine the clinical characteristic of a disease and to improve vaccine development. Once the infected person is identified, hematological findings may be used to predict disease outcome and offer the correct treatment. Rapid and accurate diagnosis and clinical parameters are pivotal to track infections during clinical trials and set protection status. This is also applicable for re-emerging diseases like dengue fever, which causes outbreaks in Asia and Latin America every 4 to 5 years. Some areas in the US are also endemic for the transmission of dengue virus (DENV), the causal agent of dengue fever. However, significant number of DENV infections in rural areas are diagnosed solely by clinical and hematological findings because of the lack of availability of ELISA or PCR-based tests or the infrastructure to implement them in the near future. Rapid diagnostic tests (RDT) are a less sensitive, yet they represent a timely way of detecting DENV infections. The purpose of this study was to determine whether there is an association between hematological findings and the probability for an NS1-based DENV RDT to detect the DENV NS1 antigen. We also aimed to describe the hematological parameters that are associated with the diagnosis through each test.
Collapse
|
45
|
Schaber KL, Morrison AC, Elson WH, Astete-Vega H, Córdova-López JJ, Ríos López EJ, Flores WLQ, Santillan ASV, Scott TW, Waller LA, Kitron U, Barker CM, Perkins TA, Rothman AL, Vazquez-Prokopec GM, Elder JP, Paz-Soldan VA. The impact of dengue illness on social distancing and caregiving behavior. PLoS Negl Trop Dis 2021; 15:e0009614. [PMID: 34280204 PMCID: PMC8354465 DOI: 10.1371/journal.pntd.0009614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/10/2021] [Accepted: 06/30/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Human mobility among residential locations can drive dengue virus (DENV) transmission dynamics. Recently, it was shown that individuals with symptomatic DENV infection exhibit significant changes in their mobility patterns, spending more time at home during illness. This change in mobility is predicted to increase the risk of acquiring infection for those living with or visiting the ill individual. It has yet to be considered, however, whether social contacts are also changing their mobility, either by socially distancing themselves from the infectious individual or increasing contact to help care for them. Social, or physical, distancing and caregiving could have diverse yet important impacts on DENV transmission dynamics; therefore, it is necessary to better understand the nature and frequency of these behaviors including their effect on mobility. METHODOLOGY AND PRINCIPAL FINDINGS Through community-based febrile illness surveillance and RT-PCR infection confirmation, 67 DENV positive (DENV+) residents were identified in the city of Iquitos, Peru. Using retrospective interviews, data were collected on visitors and home-based care received during the illness. While 15% of participants lost visitors during their illness, 22% gained visitors; overall, 32% of all individuals (particularly females) received visitors while symptomatic. Caregiving was common (90%), particularly caring by housemates (91%) and caring for children (98%). Twenty-eight percent of caregivers changed their behavior enough to have their work (and, likely, mobility patterns) affected. This was significantly more likely when caring for individuals with low "health-related quality of well-being" during illness (Fisher's Exact, p = 0.01). CONCLUSIONS/SIGNIFICANCE Our study demonstrates that social contacts of individuals with dengue modify their patterns of visitation and caregiving. The observed mobility changes could impact a susceptible individual's exposure to virus or a presymptomatic/clinically inapparent individual's contribution to onward transmission. Accounting for changes in social contact mobility is imperative in order to get a more accurate understanding of DENV transmission.
Collapse
Affiliation(s)
- Kathryn L. Schaber
- Program of Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia, United States of America
| | - Amy C. Morrison
- Department of Virology and Emerging Infections, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - William H. Elson
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Helvio Astete-Vega
- Department of Virology and Emerging Infections, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - Jhonny J. Córdova-López
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Esther Jennifer Ríos López
- Department of Virology and Emerging Infections, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | - W. Lorena Quiroz Flores
- Department of Virology and Emerging Infections, U.S. Naval Medical Research Unit No. 6, Lima and Iquitos, Peru
| | | | - Thomas W. Scott
- Department of Entomology and Nematology, University of California, Davis, California, United States of America
| | - Lance A. Waller
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - Christopher M. Barker
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, California, United States of America
| | - T. Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Alan L. Rothman
- Institute for Immunology and Informatics and Department of Cell and Molecular Biology, University of Rhode Island, Providence, Rhode Island, United States of America
| | - Gonzalo M. Vazquez-Prokopec
- Program of Population Biology, Ecology and Evolution, Emory University, Atlanta, Georgia, United States of America
- Department of Environmental Sciences, Emory University, Atlanta, Georgia, United States of America
| | - John P. Elder
- School of Public Health, San Diego State University, San Diego, California, United States of America
| | - Valerie A. Paz-Soldan
- Department of Global Community Health and Behavioral Sciences, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
46
|
Temperature, traveling, slums, and housing drive dengue transmission in a non-endemic metropolis. PLoS Negl Trop Dis 2021; 15:e0009465. [PMID: 34115753 PMCID: PMC8221794 DOI: 10.1371/journal.pntd.0009465] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 06/23/2021] [Accepted: 05/10/2021] [Indexed: 11/24/2022] Open
Abstract
Dengue is steadily increasing worldwide and expanding into higher latitudes. Current non-endemic areas are prone to become endemic soon. To improve understanding of dengue transmission in these settings, we assessed the spatiotemporal dynamics of the hitherto largest outbreak in the non-endemic metropolis of Buenos Aires, Argentina, based on detailed information on the 5,104 georeferenced cases registered during summer-autumn of 2016. The highly seasonal dengue transmission in Buenos Aires was modulated by temperature and triggered by imported cases coming from regions with ongoing outbreaks. However, local transmission was made possible and consolidated heterogeneously in the city due to housing and socioeconomic characteristics of the population, with 32.8% of autochthonous cases occurring in slums, which held only 6.4% of the city population. A hierarchical spatiotemporal model accounting for imperfect detection of cases showed that, outside slums, less-affluent neighborhoods of houses (vs. apartments) favored transmission. Global and local spatiotemporal point-pattern analyses demonstrated that most transmission occurred at or close to home. Additionally, based on these results, a point-pattern analysis was assessed for early identification of transmission foci during the outbreak while accounting for population spatial distribution. Altogether, our results reveal how social, physical, and biological processes shape dengue transmission in Buenos Aires and, likely, other non-endemic cities, and suggest multiple opportunities for control interventions. Dengue fever is mainly transmitted by a mosquito species that is highly urbanized, and lays eggs and develops mostly in artificial water containers. Dengue transmission is sustained year-round in most tropical regions of the world, but in many subtropical/temperate regions it occurs only in the warmest months. To improve understanding of dengue transmission in these regions, we analyzed one of the largest outbreaks in Buenos Aires city, a subtropical metropolis. Based on information on 5,104 georeferenced cases during summer-autumn 2016, we found that most transmission occurred in or near home, that slums had the highest risk of transmission, and that, outside slums, less-affluent neighborhoods of houses (vs. apartments) favored transmission. We showed that the cumulative effects of temperature over the previous few weeks set the temporal limits for transmission to occur, and that the outbreak was sparked by infected people arriving from regions with ongoing outbreaks. Additionally, we implemented a statistical method to identify transmission foci in real-time that improves targeting control interventions. Our results deepen the understanding of dengue transmission as a result of social, physical, and biological processes, and pose multiple opportunities for improving control of dengue and other mosquito-borne viruses such as Zika, chikungunya, and yellow fever.
Collapse
|
47
|
Gan SJ, Leong YQ, Bin Barhanuddin MFH, Wong ST, Wong SF, Mak JW, Ahmad RB. Dengue fever and insecticide resistance in Aedes mosquitoes in Southeast Asia: a review. Parasit Vectors 2021; 14:315. [PMID: 34112220 PMCID: PMC8194039 DOI: 10.1186/s13071-021-04785-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/11/2021] [Indexed: 12/26/2022] Open
Abstract
Dengue fever is the most important mosquito-borne viral disease in Southeast Asia. Insecticides remain the most effective vector control approach for Aedes mosquitoes. Four main classes of insecticides are widely used for mosquito control: organochlorines, organophosphates, pyrethroids and carbamates. Here, we review the distribution of dengue fever from 2000 to 2020 and its associated mortality in Southeast Asian countries, and we gather evidence on the trend of insecticide resistance and its distribution in these countries since 2000, summarising the mechanisms involved. The prevalence of resistance to these insecticides is increasing in Southeast Asia, and the mechanisms of resistance are reported to be associated with target site mutations, metabolic detoxification, reduced penetration of insecticides via the mosquito cuticle and behavioural changes of mosquitoes. Continuous monitoring of the status of resistance and searching for alternative control measures will be critical for minimising any unpredicted outbreaks and improving public health. This review also provides improved insights into the specific use of insecticides for effective control of mosquitoes in these dengue endemic countries. ![]()
Collapse
Affiliation(s)
- Soon Jian Gan
- International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Yong Qi Leong
- International Medical University, 57000, Kuala Lumpur, Malaysia.,Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | | | - Siew Tung Wong
- International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Shew Fung Wong
- International Medical University, 57000, Kuala Lumpur, Malaysia. .,Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Joon Wah Mak
- International Medical University, 57000, Kuala Lumpur, Malaysia.,Institute for Research, Development and Innovation (IRDI), International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Rohani Binti Ahmad
- Institute for Medical Research, Jalan Pahang, 50588, Kuala Lumpur, Malaysia
| |
Collapse
|
48
|
Kyaw AK, Ngwe Tun MM, Naing ST, Htwe TT, Mar TT, Khaing TM, Aung T, Aye KS, Thant KZ, Morita K. Inapparent dengue virus infection among students in Mandalay, Myanmar. Trans R Soc Trop Med Hyg 2021; 114:57-61. [PMID: 31638146 DOI: 10.1093/trstmh/trz071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 06/18/2019] [Accepted: 07/02/2019] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A school- and laboratory-based cross-sectional descriptive study was conducted to find out the burden of inapparent dengue virus (DENV) infection in Mandalay where DENV is endemic and there is circulation of all four DENV serotypes. METHODS A total of 420 students who had no history of fever and visited the hospital within 6 months were recruited from three monastic schools. Serum samples were collected and the DENV genome was checked by conventional one-step RT-PCR and anti-DENV IgM and IgG antibodies were determined. Inapparent dengue (DEN) infection is defined as individuals who were either RT-PCR-positive or anti-DENV IgM-positive with no clinical manifestations or mild symptoms, and which are not linked to a visit to a healthcare provider. RESULTS Among 420 students, 38 students (9.0%, 95% CI, 6.4 to 12.2) were confirmed as recent inapparent DEN infection. The DENV serotype-1 was detected in six students. Thirty-one out of 38 (81.6%) laboratory-confirmed inapparent DEN-infected students had primary infections and seven (18.4%) had secondary infections. CONCLUSION This study explored the prevalence of inapparent DEN infection rate in urban monastic schools in Mandalay and showed that the rate of primary infection among inapparent DENV-infected children was high.
Collapse
Affiliation(s)
- Aung Kyaw Kyaw
- Department of Medical Research, Pyin Oo Lwin Branch, Ward No (16), Near Anisakhan Airport, Pyin Oo Lwin, Mandalay Region, Myanmar, PO-05062
| | - Mya Myat Ngwe Tun
- Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto Nagasaki, Japan, PO 852-8523
| | - Shine Thura Naing
- Department of Medical Research, Pyin Oo Lwin Branch, Ward No (16), Near Anisakhan Airport, Pyin Oo Lwin, Mandalay Region, Myanmar, PO-05062
| | - Thein Thein Htwe
- Department of Medical Research, Pyin Oo Lwin Branch, Ward No (16), Near Anisakhan Airport, Pyin Oo Lwin, Mandalay Region, Myanmar, PO-05062
| | - Tu Tu Mar
- Department of Medical Research, Pyin Oo Lwin Branch, Ward No (16), Near Anisakhan Airport, Pyin Oo Lwin, Mandalay Region, Myanmar, PO-05062
| | - Tin Moe Khaing
- Department of Medical Research, Pyin Oo Lwin Branch, Ward No (16), Near Anisakhan Airport, Pyin Oo Lwin, Mandalay Region, Myanmar, PO-05062
| | - Thidar Aung
- Department of Medical Research, Pyin Oo Lwin Branch, Ward No (16), Near Anisakhan Airport, Pyin Oo Lwin, Mandalay Region, Myanmar, PO-05062
| | - Khin Saw Aye
- Department of Medical Research, Pyin Oo Lwin Branch, Ward No (16), Near Anisakhan Airport, Pyin Oo Lwin, Mandalay Region, Myanmar, PO-05062
| | - Kyaw Zin Thant
- Department of Medical Research, Pyin Oo Lwin Branch, Ward No (16), Near Anisakhan Airport, Pyin Oo Lwin, Mandalay Region, Myanmar, PO-05062
| | - Kouichi Morita
- Department of Medical Research, Pyin Oo Lwin Branch, Ward No (16), Near Anisakhan Airport, Pyin Oo Lwin, Mandalay Region, Myanmar, PO-05062
| |
Collapse
|
49
|
Lying in wait: the resurgence of dengue virus after the Zika epidemic in Brazil. Nat Commun 2021; 12:2619. [PMID: 33976183 PMCID: PMC8113494 DOI: 10.1038/s41467-021-22921-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/07/2021] [Indexed: 12/19/2022] Open
Abstract
After the Zika virus (ZIKV) epidemic in the Americas in 2016, both Zika and dengue incidence declined to record lows in many countries in 2017–2018, but in 2019 dengue resurged in Brazil, causing ~2.1 million cases. In this study we use epidemiological, climatological and genomic data to investigate dengue dynamics in recent years in Brazil. First, we estimate dengue virus force of infection (FOI) and model mosquito-borne transmission suitability since the early 2000s. Our estimates reveal that DENV transmission was low in 2017–2018, despite conditions being suitable for viral spread. Our study also shows a marked decline in dengue susceptibility between 2002 and 2019, which could explain the synchronous decline of dengue in the country, partially as a result of protective immunity from prior ZIKV and/or DENV infections. Furthermore, we performed phylogeographic analyses using 69 newly sequenced genomes of dengue virus serotype 1 and 2 from Brazil, and found that the outbreaks in 2018–2019 were caused by local DENV lineages that persisted for 5–10 years, circulating cryptically before and after the Zika epidemic. We hypothesize that DENV lineages may circulate at low transmission levels for many years, until local conditions are suitable for higher transmission, when they cause major outbreaks. Zika and dengue incidence in the Americas declined in 2017–2018, but dengue resurged in 2019 in Brazil. This study uses epidemiological, climatological and genomic data to show that the decline of dengue may be explained by protective immunity from pre-exposure to ZIKV and/or DENV in prior years.
Collapse
|
50
|
Abstract
Regional quarantine policies, in which a portion of a population surrounding infections is locked down, are an important tool to contain disease. However, jurisdictional governments-such as cities, counties, states, and countries-act with minimal coordination across borders. We show that a regional quarantine policy's effectiveness depends on whether 1) the network of interactions satisfies a growth balance condition, 2) infections have a short delay in detection, and 3) the government has control over and knowledge of the necessary parts of the network (no leakage of behaviors). As these conditions generally fail to be satisfied, especially when interactions cross borders, we show that substantial improvements are possible if governments are outward looking and proactive: triggering quarantines in reaction to neighbors' infection rates, in some cases even before infections are detected internally. We also show that even a few lax governments-those that wait for nontrivial internal infection rates before quarantining-impose substantial costs on the whole system. Our results illustrate the importance of understanding contagion across policy borders and offer a starting point in designing proactive policies for decentralized jurisdictions.
Collapse
|