1
|
Ariolli A, Canè M, Di Fede M, Tavarini S, Taddei AR, Buno KP, Delany I, Rossi Paccani S, Pezzicoli A. Modeling airway persistent infection of Moraxella catarrhalis and nontypeable Haemophilus influenzae by using human in vitro models. Front Cell Infect Microbiol 2024; 14:1397940. [PMID: 38751999 PMCID: PMC11094313 DOI: 10.3389/fcimb.2024.1397940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/18/2024] Open
Abstract
Non-typeable Haemophilus influenzae (NTHi) and Moraxella catarrhalis (Mcat) are two common respiratory tract pathogens often associated with acute exacerbations in Chronic Obstructive Pulmonary Disease (COPD) as well as with otitis media (OM) in children. Although there is evidence that these pathogens can adopt persistence mechanisms such as biofilm formation, the precise means through which they contribute to disease severity and chronicity remains incompletely understood, posing challenges for their effective eradication. The identification of potential vaccine candidates frequently entails the characterization of the host-pathogen interplay in vitro even though this approach is limited by the fact that conventional models do not permit long term bacterial infections. In the present work, by using air-liquid-interface (ALI) human airway in vitro models, we aimed to recreate COPD-related persistent bacterial infections. In particular, we explored an alternative use of the ALI system consisting in the assembly of an inverted epithelium grown on the basal part of a transwell membrane with the aim to enable the functionality of natural defense mechanisms such as mucociliary clearance and cellular extrusion that are usually hampered during conventional ALI infection experiments. The inversion of the epithelium did not affect tissue differentiation and considerably delayed NTHi or Mcat infection progression, allowing one to monitor host-pathogen interactions for up to three weeks. Notably, the use of these models, coupled with confocal and transmission electron microscopy, revealed unique features associated with NTHi and Mcat infection, highlighting persistence strategies including the formation of intracellular bacterial communities (IBCs) and surface-associated biofilm-like structures. Overall, this study demonstrates the possibility to perform long term host-pathogen investigations in vitro with the aim to define persistence mechanisms adopted by respiratory pathogens and individuate potential new vaccine targets.
Collapse
Affiliation(s)
- Andrea Ariolli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Martina Canè
- Department of Biology, University of Naples Federico II, Napoli, Italy
| | - Martina Di Fede
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | - Simona Tavarini
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | - Anna Rita Taddei
- Great Equipment Center-Section of Electron Microscopy, University of Tuscia, Viterbo, Italy
| | - Kevin Pete Buno
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | - Isabel Delany
- GlaxoSmithKline Vaccines s.r.l., Preclinical R&D, Siena, Italy
| | | | | |
Collapse
|
2
|
Fulte S, Atto B, McCarty A, Horn KJ, Redzic JS, Eisenmesser E, Yang M, Marsh RL, Tristram S, Clark SE. Heme sequestration by hemophilin from Haemophilus haemolyticus reduces respiratory tract colonization and infection with non-typeable Haemophilus influenzae. mSphere 2024; 9:e0000624. [PMID: 38380941 PMCID: PMC10964412 DOI: 10.1128/msphere.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/22/2024] Open
Abstract
Iron acquisition is a key feature dictating the success of pathogen colonization and infection. Pathogens scavenging iron from the host must contend with other members of the microbiome similarly competing for the limited pool of bioavailable iron, often in the form of heme. In this study, we identify a beneficial role for the heme-binding protein hemophilin (Hpl) produced by the non-pathogenic bacterium Haemophilus haemolyticus against its close relative, the opportunistic respiratory tract pathogen non-typeable Haemophilus influenzae (NTHi). Using a mouse model, we found that pre-exposure to H. haemolyticus significantly reduced NTHi colonization of the upper airway and impaired NTHi infection of the lungs in an Hpl-dependent manner. Further, treatment with recombinant Hpl was sufficient to decrease airway burdens of NTHi without exacerbating lung immunopathology or systemic inflammation. Instead, mucosal production of the neutrophil chemokine CXCL2, lung myeloperoxidase, and serum pro-inflammatory cytokines IL-6 and TNFα were lower in Hpl-treated mice. Mechanistically, H. haemolyticus suppressed NTHi growth and adherence to human respiratory tract epithelial cells through the expression of Hpl, and recombinant Hpl could recapitulate these effects. Together, these findings indicate that heme sequestration by non-pathogenic, Hpl-producing H. haemolyticus is protective against NTHi colonization and infection. IMPORTANCE The microbiome provides a critical layer of protection against infection with bacterial pathogens. This protection is accomplished through a variety of mechanisms, including interference with pathogen growth and adherence to host cells. In terms of immune defense, another way to prevent pathogens from establishing infections is by limiting the availability of nutrients, referred to as nutritional immunity. Restricting pathogen access to iron is a central component of this approach. Here, we uncovered an example where these two strategies intersect to impede infection with the respiratory tract bacterial pathogen Haemophilus influenzae. Specifically, we find that a non-pathogenic (commensal) bacterium closely related to H. influenzae called Haemophilus haemolyticus improves protection against H. influenzae by limiting the ability of this pathogen to access iron. These findings suggest that beneficial members of the microbiome improve protection against pathogen infection by effectively contributing to host nutritional immunity.
Collapse
Affiliation(s)
- Sam Fulte
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Brianna Atto
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Arianna McCarty
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kadi J. Horn
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, USA
| | - Michael Yang
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Robyn L. Marsh
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
- Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Stephen Tristram
- School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Sarah E. Clark
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
3
|
Rapún-Araiz B, Sorzabal-Bellido I, Asensio-López J, Lázaro-Díez M, Ariz M, Sobejano de la Merced C, Euba B, Fernández-Calvet A, Cortés-Domínguez I, Burgui S, Toledo-Arana A, Ortiz-de-Solórzano C, Garmendia J. In vitro modeling of polyclonal infection dynamics within the human airways by Haemophilus influenzae differential fluorescent labeling. Microbiol Spectr 2023; 11:e0099323. [PMID: 37795992 PMCID: PMC10714817 DOI: 10.1128/spectrum.00993-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/22/2023] [Indexed: 10/06/2023] Open
Abstract
IMPORTANCE Genomic diversity of nontypeable H. influenzae strains confers phenotypic heterogeneity. Multiple strains of H. influenzae can be simultaneously isolated from clinical specimens, but we lack detailed information about polyclonal infection dynamics by this pathogen. A long-term barrier to our understanding of this host-pathogen interplay is the lack of genetic tools for strain engineering and differential labeling. Here, we present a novel plasmid toolkit named pTBH (toolbox for Haemophilus), with standardized modules for fluorescent or bioluminescent labeling, adapted to H. influenzae requirements but designed to be versatile so it can be utilized in other bacterial species. We present detailed experimental and quantitative image analysis methods, together with proof-of-principle examples, and show the ample possibilities of 3D microscopy, combined with quantitative image analysis, to model H. influenzae polyclonal infection lifestyles and unravel the co-habitation and co-infection dynamics of this respiratory pathogen.
Collapse
Grants
- RTI2018-094494-B-C22 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- PDI2021-122409OB-C22 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- RTI2018-096369-B-I00 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- PID2021-125947OB-I00 Ministerio de Ciencia, Innovación y Universidades (MCIU)
- 875/2019 Sociedad Española de Neumología y Cirugía Torácica (SEPAR)
- PC150 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- PC136 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- PC151 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
- PC137 Dirección General de Industria, Energia y Proyectos Estrategicos S3, Gobierno de Navarra (Department of Industry of the Government of Navarra)
Collapse
Affiliation(s)
- Beatriz Rapún-Araiz
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
| | - Ioritz Sorzabal-Bellido
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Javier Asensio-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - María Lázaro-Díez
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
| | - Mikel Ariz
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Carlos Sobejano de la Merced
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Begoña Euba
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
| | - Ariadna Fernández-Calvet
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Ivan Cortés-Domínguez
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
| | - Saioa Burgui
- Asociación de la Industria Navarra (AIN)-Gobierno de Navarra, Cordovilla, Spain
| | - Alejandro Toledo-Arana
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Carlos Ortiz-de-Solórzano
- Laboratorio de Sistemas Microfisiológicos y Biología Cuantitativa, Programa de Ingeniería Biomédica, Centro de Investigación Médica Aplicada (CIMA), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Oncológicas (CIBERONC), Madrid, Spain
- Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
- Conexión Nanomedicina CSIC (NanomedCSIC), Mutilva, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
4
|
Dewan KK, Caulfield A, Su Y, Sedney CJ, Callender M, Masters J, Blas-Machado U, Harvill ET. Adaptive immune protection of the middle ears differs from that of the respiratory tract. Front Cell Infect Microbiol 2023; 13:1288057. [PMID: 38125908 PMCID: PMC10731285 DOI: 10.3389/fcimb.2023.1288057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 11/01/2023] [Indexed: 12/23/2023] Open
Abstract
The efficacy of the adaptive immune system in the middle ear (ME) is well established, but the mechanisms are not as well defined as those of gastrointestinal or respiratory tracts. While cellular elements of the adaptive response have been detected in the MEs following infections (or intranasal immunizations), their specific contributions to protecting the organ against reinfections are unknown. How immune protection mechanisms of the MEs compares with those in the adjacent and attached upper and lower respiratory airways remains unclear. To address these knowledge gaps, we used an established mouse respiratory infection model that we recently showed also involves ME infections. Bordetella bronchiseptica delivered to the external nares of mice in tiny numbers very efficiently infects the respiratory tract and ascends the Eustachian tube to colonize and infect the MEs, where it causes severe but acute inflammation resembling human acute otitis media (AOM). Since this AOM naturally resolves, we here examine the immunological mechanisms that clear infection and protect against subsequent infection, to guide efforts to induce protective immunity in the ME. Our results show that once the MEs are cleared of a primary B. bronchiseptica infection, the convalescent organ is strongly protected from reinfection by the pathogen despite its persistence in the upper respiratory tract, suggesting important immunological differences in these adjacent and connected organs. CD4+ and CD8+ T cells trafficked to the MEs following infection and were necessary to robustly protect against secondary challenge. Intranasal vaccination with heat killed B. bronchiseptica conferred robust protection against infection to the MEs, even though the nasopharynx itself was only partially protected. These data establish the MEs as discrete effector sites of adaptive immunity and shows that effective protection in the MEs and the respiratory tract is significantly different. This model system allows the dissection of immunological mechanisms that can prevent bacteria in the nasopharynx from ascending the ET to colonize the ME.
Collapse
Affiliation(s)
- Kalyan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Amanda Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Yang Su
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Colleen J. Sedney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Maiya Callender
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Jillian Masters
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Uriel Blas-Machado
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
5
|
Baker JM, Baba-Dikwa A, Shah R, Lea S, Singh D. Gallium protoporphyrin as an antimicrobial for non-typeable Haemophilus influenzae in COPD patients. Life Sci 2022; 305:120794. [PMID: 35835251 DOI: 10.1016/j.lfs.2022.120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022]
Abstract
AIMS Colonisation with non-typeable Haemophilus influenzae (NTHi) is common in COPD. Iron is required by bacteria for nutrition. Gallium is imported into bacteria using iron import proteins. Gallium cannot fulfill key metabolic functions, causing bactericidal effects. We tested the efficacy of gallium compounds as antimicrobials against NTHi in hemin rich conditions, and their ability to reduce NTHi induced pro-inflammatory responses in macrophages. MAIN METHODS NTHi was cultured with the free iron analogue gallium nitrate (GaN) and heme iron analogue gallium protoporphyrin (GaPP) (0.5-4 μM; 24 h). Growth of NTHi reference strain (NCTC 12699) and 6 clinical isolates from COPD patients (including antibiotic resistant isolates) was assessed by optical density, and viability by Miles Misra. Monocyte derived macrophages (MDMs) were treated with GaPP before/after NTHi exposure. Viable intracellular NTHi was assessed by gentamicin protection assay. GaN or GaPP was added to NTHi cultures prior to culture with MDMs. Cytokine gene expression (qPCR) and protein secretion (ELISA) were measured. KEY FINDINGS NTHi growth and viability were reduced by GaPP but not GaN. GaPP inhibited growth of COPD isolates (4 μM: 87 % reduction). GaPP reduced intracellular viability of NTHi in macrophage infection models. MDM cytokine gene expression and protein secretion (TNF-α, IL-6 and CXCL8) in response to NTHi was reduced (82, 66 and 86 % for gene expression) when cultured with GaPP 4 μM. SIGNIFICANCE GaPP is an effective antimicrobial for NTHi while GaN showed no effect on growth or viability. Culture of NTHi with GaPP also reduced the pro-inflammatory cytokine response in MDMs.
Collapse
Affiliation(s)
- James M Baker
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| | - Aisha Baba-Dikwa
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Rajesh Shah
- Department of Thoracic Surgery, Manchester University Hospital NHS Foundation Trust, Manchester, UK
| | - Simon Lea
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK; Medicines Evaluation Unit, Manchester University NHS Foundation Trust, Manchester, UK
| |
Collapse
|
6
|
Tony-Odigie A, Wilke L, Boutin S, Dalpke AH, Yi B. Commensal Bacteria in the Cystic Fibrosis Airway Microbiome Reduce P. aeruginosa Induced Inflammation. Front Cell Infect Microbiol 2022; 12:824101. [PMID: 35174108 PMCID: PMC8842722 DOI: 10.3389/fcimb.2022.824101] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 01/12/2022] [Indexed: 12/13/2022] Open
Abstract
Chronic Pseudomonas aeruginosa infections play an important role in the progress of lung disease in patients suffering from cystic fibrosis (CF). Recent studies indicate that polymicrobial microbiome profiles in the airway are associated with less inflammation. Thus, the hypothesis was raised that certain commensal bacteria might protect the host from inflammation. We therefore performed a screening study with commensals isolated from CF airway microbiome samples to identify potential beneficial commensals. We isolated more than 80 aerobic or facultative anaerobic commensal strains, including strains from genera Streptococcus, Neisseria, Actinomyces, Corynebacterium, Dermabacter, Micrococcus and Rothia. Through a screening experiment of co-infection in human epithelial cell lines, we identified multiple commensal strains, especially strains belonging to Streptococcus mitis, that reduced P. aeruginosa triggered inflammatory responses. The results were confirmed by co-infection experiments in ex-vivo precision cut lung slices (PCLS) from mice. The underlying mechanisms of the complex host-pathogen-commensal crosstalk were investigated from both the host and the bacterial sides with a focus on S. mitis. Transcriptome changes in the host in response to co-infection and mono-infection were evaluated, and the results indicated that several signalling pathways mediating inflammatory responses were downregulated by co-infection with S. mitis and P. aeruginosa compared to P. aeruginosa mono-infection, such as neutrophil extracellular trap formation. The genomic differences among S. mitis strains with and without protective effects were investigated by whole genome sequencing, revealing genes only present in the S. mitis strains showing protective effects. In summary, through both in vitro and ex vivo studies, we could identify a variety of commensal strains that may reduce host inflammatory responses induced by P. aeruginosa infection. These findings support the hypothesis that CF airway commensals may protect the host from inflammation.
Collapse
Affiliation(s)
- Andrew Tony-Odigie
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Leonie Wilke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sébastien Boutin
- Translational Lung Research Center (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University of Heidelberg, Heidelberg, Germany
| | - Alexander H. Dalpke
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Buqing Yi
- Institute of Medical Microbiology and Virology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- *Correspondence: Buqing Yi,
| |
Collapse
|
7
|
The intracellular phase of extracellular respiratory tract bacterial pathogens and its role on pathogen-host interactions during infection. Curr Opin Infect Dis 2021; 34:197-205. [PMID: 33899754 DOI: 10.1097/qco.0000000000000727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW An initial intracellular phase of usually extracellular bacterial pathogens displays an important strategy to hide from the host's immune system and antibiotics therapy. It helps the bacteria, including bacterial pathogens of airway diseases, to persist and eventually switch to a typical extracellular infection. Several infectious diseases of the lung are life-threatening and their control is impeded by intracellular persistence of pathogens. Thus, molecular adaptations of the pathogens to this niche but also the host's response and potential targets to interfere are of relevance. Here we discuss examples of historically considered extracellular pathogens of the respiratory airway where the intracellular survival and proliferation is well documented, including infections by Staphylococcus aureus, Bordetella pertussis, Haemophilus influenzae, Pseudomonas aeruginosa, and others. RECENT FINDINGS Current studies focus on bacterial factors contributing to adhesion, iron acquisition, and intracellular survival as well as ways to target them for combatting the bacterial infections. SUMMARY The investigation of common and specific mechanisms of pathogenesis and persistence of these bacteria in the host may contribute to future investigations and identifications of relevant factors and/or bacterial mechanisms to be blocked to treat or improve prevention strategies.
Collapse
|
8
|
Moreno CR, Ramires JAF, Lotufo PA, Soeiro AM, Oliveira LMDS, Ikegami RN, Kawakami JT, Pereira JDJ, Reis MM, Higuchi MDL. Morphomolecular Characterization of Serum Nanovesicles From Microbiomes Differentiates Stable and Infarcted Atherosclerotic Patients. Front Cardiovasc Med 2021; 8:694851. [PMID: 34422924 PMCID: PMC8375156 DOI: 10.3389/fcvm.2021.694851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/08/2021] [Indexed: 12/19/2022] Open
Abstract
Microbial communities are considered decisive for maintaining a healthy situation or for determining diseases. Acute myocardial infarction (AMI) is an important complication of atherosclerosis caused by the rupture of atheroma plaques containing proinflammatory cytokines, reactive oxygen species, oxidized low-density lipoproteins (oxLDL), damaged proteins, lipids, and DNA, a microenvironment compatible with a pathogenic microbial community. Previously, we found that archaeal DNA-positive infectious microvesicles (iMVs) were detected in vulnerable plaques and in the sera of Chagas disease patients with heart failure. Now, we characterize and quantify the levels of serum microbiome extracellular vesicles through their size and content using morphomolecular techniques to differentiate clinical outcomes in coronary artery disease (CAD). We detected increased numbers of large iMVs (0.8–1.34 nm) with highly negative surface charge that were positive for archaeal DNA, Mycoplasma pneumoniae antigens and MMP9 in the sera of severe AMI patients, strongly favoring our hypothesis that pathogenic archaea may play a role in the worst outcomes of atherosclerosis. The highest numbers of EVs <100 nm (exosomes) and MVs from 100 to 200 nm in the stable atherosclerotic and control healthy groups compared with the AMI groups were indicative that these EVs are protective, entrapping and degrading infectious antigens and active MMP9 and protect against the development of plaque rupture. Conclusion: A microbiome with pathogenic archaea is associated with high numbers of serum iMVs in AMI with the worst prognosis. This pioneering work demonstrates that the morphomolecular characterization and quantification of iEVs in serum may constitute a promising serum prognostic biomarker in CAD.
Collapse
Affiliation(s)
- Camila Rodrigues Moreno
- Laboratorio de Patologia Cardiaca, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - José Antonio Franchini Ramires
- Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Alexandre Matos Soeiro
- Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luanda Mara da Silva Oliveira
- Laboratório de Investigação em Dermatologia e Imunodeficiências - LIM56, Departamento de Dermatologia, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Renata Nishiyama Ikegami
- Laboratorio de Patologia Cardiaca, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Joyce Tiyeko Kawakami
- Laboratorio de Patologia Cardiaca, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jaqueline de Jesus Pereira
- Laboratorio de Patologia Cardiaca, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcia Martins Reis
- Laboratorio de Patologia Cardiaca, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Maria de Lourdes Higuchi
- Laboratorio de Patologia Cardiaca, Instituto do Coracao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
López-López N, Gil-Campillo C, Díez-Martínez R, Garmendia J. Learning from -omics strategies applied to uncover Haemophilus influenzae host-pathogen interactions: Current status and perspectives. Comput Struct Biotechnol J 2021; 19:3042-3050. [PMID: 34136102 PMCID: PMC8178019 DOI: 10.1016/j.csbj.2021.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 11/15/2022] Open
Abstract
Haemophilus influenzae has contributed to key bacterial genome sequencing hallmarks, as being not only the first bacterium to be genome-sequenced, but also starring the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, and pioneering Tn-seq methodologies. Over the years, the phenomenal and constantly evolving development of -omic technologies applied to a whole range of biological questions of clinical relevance in the H. influenzae-host interplay, has greatly moved forward our understanding of this human-adapted pathogen, responsible for multiple acute and chronic infections of the respiratory tract. In this way, essential genes, virulence factors, pathoadaptive traits, and multi-layer gene expression regulatory networks with both genomic and epigenomic complexity levels are being elucidated. Likewise, the unstoppable increasing whole genome sequencing information underpinning H. influenzae great genomic plasticity, mainly when referring to non-capsulated strains, poses major challenges to understand the genomic basis of clinically relevant phenotypes and even more, to clearly highlight potential targets of clinical interest for diagnostic, therapeutic or vaccine development. We review here how genomic, transcriptomic, proteomic and metabolomic-based approaches are great contributors to our current understanding of the interactions between H. influenzae and the human airways, and point possible strategies to maximize their usefulness in the context of biomedical research and clinical needs on this human-adapted bacterial pathogen.
Collapse
Affiliation(s)
- Nahikari López-López
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | - Celia Gil-Campillo
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain
| | | | - Junkal Garmendia
- Instituto de Agrobiotecnología, Consejo Superior de Investigaciones Científicas (IdAB-CSIC)-Gobierno de Navarra, Mutilva, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
10
|
Continuous Microevolution Accelerates Disease Progression during Sequential Episodes of Infection. Cell Rep 2021; 30:2978-2988.e3. [PMID: 32130901 PMCID: PMC7137071 DOI: 10.1016/j.celrep.2020.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 12/04/2022] Open
Abstract
Bacteria adapt to dynamic changes in the host during chronic and recurrent infections. Bacterial microevolution is one type of adaptation that imparts a selective advantage. We hypothesize that recurrent episodes of disease promote microevolution through genetic mutations that modulate disease severity. We use a pre-clinical model of otitis media (OM) to determine the potential role for microevolution of nontypeable Haemophilus influenzae (NTHI) during sequential episodes of disease. Whole genome sequencing reveals microevolution of hemoglobin binding and lipooligosaccharide (LOS) biosynthesis genes, suggesting that adaptation of these systems is critical for infection. These OM-adapted strains promote increased biofilm formation, inflammation, stromal fibrosis, and an increased propensity to form intracellular bacterial communities (IBCs). Remarkably, IBCs remain for at least one month following clinical resolution of infection, suggesting an intracellular reservoir as a nidus for recurrent OM. Additional approaches for therapeutic design tailored to combat this burdensome disease will arise from these studies. Harrison et al. develop a sequential model of otitis media (OM) to investigate microevolution through genetic mutations that modulate disease severity. OM-adapted strains promote increased biofilm, inflammation, stromal fibrosis, and intracellular bacterial community (IBC) development. IBCs remain one month following clinical resolution of infection, suggesting a nidus for recurrent OM.
Collapse
|
11
|
Poh WP, Kicic A, Lester SE, Nguyen PT, Bakaletz LO, Reynolds PN, Hodge S, Roscioli E. COPD-Related Modification to the Airway Epithelium Permits Intracellular Residence of Nontypeable Haemophilus influenzae and May Be Potentiated by Macrolide Arrest of Autophagy. Int J Chron Obstruct Pulmon Dis 2020; 15:1253-1260. [PMID: 32581530 PMCID: PMC7279738 DOI: 10.2147/copd.s245819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/30/2020] [Indexed: 11/23/2022] Open
Abstract
Introduction COPD is an inflammatory airway pathology associated with recurrent infection by nontypeable Haemophilus influenzae (NTHi) that is not effectively managed by macrolide antibiotic therapy. We hypothesised that NTHi is able to reside intracellularly within COPD-derived airway epithelial cells (AEC), and that the factors contained in cigarette smoke when coupled with exposure to erythromycin or azithromycin arrest autophagy, the principle mechanism responsible for clearing intracellular bacteria (called "xenophagy"). Methods Cultures of bronchial airway epithelial cells derived from control and COPD participants were differentiated at an air-liquid interface and exposed to macrolide antibiotics, 10% cigarette smoke-extract (CSE) and NTHi. Markers of autophagic flux and intracellular NTHi were assessed using Western blot analysis and transmission electron microscopy. Results AEC treated with macrolide antibiotics or 10% CSE exhibited a block in autophagic flux as evidenced by a concomitant increase in LC3-II and Sequestosome abundance (vs control; both P < 0.01). While control AEC showed no clear evidence of intracellular NTHi, COPD-derived cultures exhibited abundant NTHi within the cytoplasm. Further, intracellular NTHi that were encapsulated within vesicles propagated from the apical epithelial layer to the basal cell layer. Discussion Taken together, our findings indicate that COPD, cigarette smoke and macrolide antibiotics potentiate the susceptibility to persistent intracellular NTHi. A major mechanism for this is arresting normal autophagic flux in airway epithelial cells. Hence, structural modifications that mitigate this off-target effect of macrolides have significant potential to clear intracellular NTHi and thereby reduce the influence of this pathogen in the airways afflicted by COPD.
Collapse
Affiliation(s)
- Wee-Peng Poh
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- Telethon Kids Institute, Centre for Health Research, The University of Western Australia, Nedlands 6009, Western Australia, Australia.,Occupation and Environment, School of Public Health, Curtin University, Perth 6845, Western Australia, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands 6009, Western Australia, Australia.,Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands 6009, Western Australia, Australia.,Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, The University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Susan E Lester
- Department of Rheumatology, The Queen Elizabeth Hospital, Woodville, SA, Australia
| | - Phan T Nguyen
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Lauren O Bakaletz
- Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital and the Ohio State University College of Medicine, Columbus, OH, USA
| | - Paul N Reynolds
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Sandra Hodge
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Medicine, The University of Adelaide, Adelaide, SA, Australia
| | - Eugene Roscioli
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA, Australia.,Department of Medicine, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
12
|
Thornton RB, Hakansson A, Hood DW, Nokso-Koivisto J, Preciado D, Riesbeck K, Richmond PC, Su YC, Swords WE, Brockman KL. Panel 7 - Pathogenesis of otitis media - a review of the literature between 2015 and 2019. Int J Pediatr Otorhinolaryngol 2020; 130 Suppl 1:109838. [PMID: 31879085 PMCID: PMC7062565 DOI: 10.1016/j.ijporl.2019.109838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To perform a comprehensive review of the literature from July 2015 to June 2019 on the pathogenesis of otitis media. Bacteria, viruses and the role of the microbiome as well as the host response are discussed. Directions for future research are also suggested. DATA SOURCES PubMed database of the National Library of Medicine. REVIEW METHODS PubMed was searched for any papers pertaining to OM pathogenesis between July 2015 and June 2019. If in English, abstracts were assessed individually for their relevance and included in the report. Members of the panel drafted the report based on these searches and on new data presented at the 20th International Symposium on Recent Advances in Otitis Media. CONCLUSIONS The main themes that arose in OM pathogenesis were around the need for symptomatic viral infections to develop disease. Different populations potentially having different mechanisms of pathogenesis. Novel bacterial otopathogens are emerging and need to be monitored. Animal models need to continue to be developed and used to understand disease pathogenesis. IMPLICATIONS FOR PRACTICE The findings in the pathogenesis panel have several implications for both research and clinical practice. The most urgent areas appear to be to continue monitoring the emergence of novel otopathogens, and the need to develop prevention and preventative therapies that do not rely on antibiotics and protect against the development of the initial OM episode.
Collapse
Affiliation(s)
- R B Thornton
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, Perth, Western Australia, Australia; School of Biomedical Sciences, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia
| | - A Hakansson
- Experimental Infection Medicine, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - D W Hood
- MRC Harwell Institute, Mammalian Genetics Unit, Harwell Campus, Oxfordshire, OX11 0RD, UK
| | - J Nokso-Koivisto
- Department of Otorhinolaryngology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - D Preciado
- Sheikh Zayed Center for Pediatric Surgical Innovation, Children's National Health System, Washington, DC, USA; Division of Pediatric Otolaryngology, Children's National Health System, Washington, DC, USA
| | - K Riesbeck
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - P C Richmond
- School of Medicine, Division of Paediatrics, Faculty Health and Medical Science, University of Western Australia, Perth, Western Australia, Australia; Perth Children's Hospital, Perth, Western Australia, Australia
| | - Y C Su
- Clinical Microbiology, Dept. of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - W E Swords
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - K L Brockman
- Department of Microbiology & Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
13
|
Harrison A, Hardison RL, Wallace RM, Fitch J, Heimlich DR, Bryan MO, Dubois L, John-Williams LS, Sebra RP, White P, Moseley MA, Thompson JW, Justice SS, Mason KM. Reprioritization of biofilm metabolism is associated with nutrient adaptation and long-term survival of Haemophilus influenzae. NPJ Biofilms Microbiomes 2019; 5:33. [PMID: 31700653 PMCID: PMC6831627 DOI: 10.1038/s41522-019-0105-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/03/2019] [Indexed: 01/14/2023] Open
Abstract
Nontypeable Haemophilus influenzae (NTHI) is a human-restricted pathogen with an essential requirement for heme-iron acquisition. We previously demonstrated that microevolution of NTHI promotes stationary phase survival in response to transient heme-iron restriction. In this study, we examine the metabolic contributions to biofilm formation using this evolved NTHI strain, RM33. Quantitative analyses identified 29 proteins, 55 transcripts, and 31 metabolites that significantly changed within in vitro biofilms formed by RM33. The synthesis of all enzymes within the tryptophan and glycogen pathways was significantly increased in biofilms formed by RM33 compared with the parental strain. In addition, increases were observed in metabolite transport, adhesin production, and DNA metabolism. Furthermore, we observed pyruvate as a pivotal point in the metabolic pathways associated with changes in cAMP phosphodiesterase activity during biofilm formation. Taken together, changes in central metabolism combined with increased stores of nutrients may serve to counterbalance nutrient sequestration.
Collapse
Affiliation(s)
- Alistair Harrison
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Rachael L. Hardison
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Rachel M. Wallace
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - James Fitch
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Steve and Cindy Rasmussen Institute for Genomic Medicine, 575 Children’s Crossroad, Columbus, OH 43215 USA
| | - Derek R. Heimlich
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Meghan O’ Bryan
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Laura Dubois
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Lisa St. John-Williams
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Robert P. Sebra
- Icahn School of Medicine at Mount Sinai, Icahn Institute and Department of Genetics & Genomic Sciences, 1 Gustave L. Levy Place, New York, NY 10029 USA
| | - Peter White
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, The Steve and Cindy Rasmussen Institute for Genomic Medicine, 575 Children’s Crossroad, Columbus, OH 43215 USA
| | - M. Arthur Moseley
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - J. Will Thompson
- Duke Proteomics and Metabolomics Core Facility, Duke Center for Genomic and Computational Biology, Duke University, 701 West Main Street, Durham, NC 27701 USA
| | - Sheryl S. Justice
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
- Infectious Diseases Institute, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205 USA
| | - Kevin M. Mason
- The Abigail Wexner Research Institute at Nationwide Children’s Hospital, Center for Microbial Pathogenesis, 700 Children’s Drive, Columbus, OH 43205 USA
- Infectious Diseases Institute, The Ohio State University College of Medicine, 700 Children’s Drive, Columbus, OH 43205 USA
| |
Collapse
|
14
|
Lee J, Leichtle A, Zuckerman E, Pak K, Spriggs M, Wasserman SI, Kurabi A. NOD1/NOD2-mediated recognition of non-typeable Haemophilus influenzae activates innate immunity during otitis media. Innate Immun 2019; 25:503-512. [PMID: 31474163 PMCID: PMC6900663 DOI: 10.1177/1753425919872266] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pathogen recognition following infection in mammals depends mainly on TLRs and
NLRs. Herein, we evaluate the role of NOD1 and NOD2 signaling in the
inflammatory responses of the middle ear (ME) mucosa and leukocytes recruitment
to infection site during otitis media (OM). OM is a common pediatric disease
with prevalent repercussions on hearing health. While many risk factors have
been implicated to OM proneness, immunity and the triggering of inflammation are
central to OM pathology. We observed that many genes encoding members of the NOD
leucine-rich repeat and their downstream adaptor/effector molecules were
strongly regulated during the course of OM. When compared to wild type C57BL/6
mice, NOD1- and NOD2-deficient mice were susceptible to prolonged OM infection
by non-typeable Haemophilus influenza. NOD1-deficient mice
appeared to have reduced macrophage enlistment with a delayed inflammatory
response by neutrophils and prolonged mucosal hyperplasia, whereas NOD2
knockouts exhibited an overall reduction in the number of leukocytes recruited
to the ME, leading to delayed bacterial clearance. Altogether, these data show
that the NODs play a role in the pathogenesis and recovery of OM and reinforce
the importance of innate immune signaling in the protective host response.
Collapse
Affiliation(s)
- Jasmine Lee
- Department of Surgery, University of California San Diego, USA
| | - Anke Leichtle
- Department of Surgery, University of California San Diego, USA.,Department of Otolaryngology, University of Lübeck, Germany
| | - Emily Zuckerman
- Department of Surgery, University of California San Diego, USA
| | - Kwang Pak
- Department of Surgery, University of California San Diego, USA.,San Diego Veterans Administration Healthcare System, La Jolla, CA, USA
| | - Meghan Spriggs
- Department of Surgery, University of California San Diego, USA
| | | | - Arwa Kurabi
- Department of Surgery, University of California San Diego, USA.,San Diego Veterans Administration Healthcare System, La Jolla, CA, USA
| |
Collapse
|
15
|
Yang S, Yin Y, Xu W, Zhang X, Gao Y, Liao H, Hu X, Wang J, Wang H. Type I interferon induced by DNA of nontypeable Haemophilus influenza modulates inflammatory cytokine profile to promote susceptibility to this bacterium. Int Immunopharmacol 2019; 74:105710. [PMID: 31255879 DOI: 10.1016/j.intimp.2019.105710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 12/18/2022]
Abstract
Type I interferon (IFN) is indispensable for antiviral immunity, but its role in bacterial infections is controversial and not fully described. Nontypeable Haemophilus influenzae (NTHi) is one of the most common bacterial pathogens in patients with chronic obstructive pulmonary disease (COPD). NTHi-DNA activates type I IFN production in macrophages, but the function of type I IFN in host-pathogen interactions, in the context of NTHi infection, is still unclear. Here, we showed that type I IFN, induced by NTHi-DNA, restrained bacterial killing in vitro and promoted COPD development in vivo in response to NTHi. Mice deficient for type I IFN receptor (IFNAR) exhibited improved resistance to NTHi infection. Moreover, similar to exogenous IFN-β, NTHi-DNA-induced type I IFN increased the production of IL-6, IL-1β, IL-12 and CXCL10 via p38 MAPK activation. Our findings demonstrated that NTHi-DNA-induced type I IFN signaling played a negative role in host defense against NTHi infection and identified potential targets for future therapeutic management of COPD.
Collapse
Affiliation(s)
- Shenghui Yang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Wenchun Xu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Yue Gao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hongyi Liao
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Xuexue Hu
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Jian Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Hong Wang
- Key Laboratory of Diagnostic Medicine Designated by the Ministry of Education, Chongqing Medical University, Chongqing, China; School of Laboratory Medicine, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
16
|
Richard KL, Kelley BR, Johnson JG. Heme Uptake and Utilization by Gram-Negative Bacterial Pathogens. Front Cell Infect Microbiol 2019; 9:81. [PMID: 30984629 PMCID: PMC6449446 DOI: 10.3389/fcimb.2019.00081] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
Iron is a transition metal utilized by nearly all forms of life for essential cellular processes, such as DNA synthesis and cellular respiration. During infection by bacterial pathogens, the host utilizes various strategies to sequester iron in a process termed, nutritional immunity. To circumvent these defenses, Gram-negative pathogens have evolved numerous mechanisms to obtain iron from heme. In this review we outline the systems that exist in several Gram-negative pathogens that are associated with heme transport and utilization, beginning with hemolysis and concluding with heme degradation. In addition, Gram-negative pathogens must also closely regulate the intracellular concentrations of iron and heme, since high levels of iron can lead to the generation of toxic reactive oxygen species. As such, we also provide several examples of regulatory pathways that control heme utilization, showing that co-regulation with other cellular processes is complex and often not completely understood.
Collapse
Affiliation(s)
- Kaylie L Richard
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Brittni R Kelley
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| | - Jeremiah G Johnson
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
17
|
Higuchi MDL, Kawakami JT, Ikegami RN, Reis MM, Pereira JDJ, Ianni BM, Buck P, Oliveira LMDS, Santos MHH, Hajjar LA, Bocchi EA. Archaea Symbiont of T. cruzi Infection May Explain Heart Failure in Chagas Disease. Front Cell Infect Microbiol 2018; 8:412. [PMID: 30519544 PMCID: PMC6259288 DOI: 10.3389/fcimb.2018.00412] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/06/2018] [Indexed: 12/20/2022] Open
Abstract
Background: Archaeal genes present in Trypanosoma cruzi may represent symbionts that would explain development of heart failure in 30% of Chagas disease patients. Extracellular vesicles in peripheral blood, called exosomes (< 0.1 μm) or microvesicles (>0.1 μm), present in larger numbers in heart failure, were analyzed to determine whether they are derived from archaea in heart failure Chagas disease. Methods: Exosomes and microvesicles in serum supernatant from 3 groups were analyzed: heart failure Chagas disease (N = 26), asymptomatic indeterminate form (N = 21) and healthy non-chagasic control (N = 16). Samples were quantified with transmission electron microscopy, flow cytometer immunolabeled with anti-archaemetzincin-1 antibody (AMZ 1, archaea collagenase) and probe anti-archaeal DNA and zymography to determine AMZ1 (Archaeal metalloproteinase) activity. Results: Indeterminate form patients had higher median numbers of exosomes/case vs. heart failure patients (58.5 vs. 25.5, P < 0.001), higher exosome content of AMZ1 antigens (2.0 vs. 0.0; P < 0.001), and lower archaeal DNA content (0.2 vs. 1.5, P = 0.02). A positive correlation between exosomes and AMZ1 content was seen in indeterminate form (r = 0.5, P < 0.001), but not in heart failure patients (r = 0.002, P = 0.98). Higher free archaeal DNA (63.0 vs. 11.1, P < 0.001) in correlation with exosome numbers (r = 0.66, P = 0.01) was seen in heart failure but not in indeterminate form (r = 0.29, P = 0.10). Flow cytometer showed higher numbers of AMZ1 microvesicles in indeterminate form (64 vs. 36, P = 0.02) and higher archaeal DNA microvesicles in heart failure (8.1 vs. 0.9, P < 0.001). Zymography showed strong% collagenase activity in HF group, mild activity in IF compared to non-chagasic healthy group (121 ± 14, 106 ± 13 and 100; P < 0.001). Conclusions: Numerous exosomes, possibly removing and degrading abnormal AMZ1 collagenase, are associated with indeterminate form. Archaeal microvesicles and their exosomes, possibly associated with release of archaeal AMZ1 in heart failure, are future candidates of heart failure biomarkers if confirmed in larger series, and the therapeutic focus in the treatment of Chagas disease.
Collapse
Affiliation(s)
- Maria de Lourdes Higuchi
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Joyce T Kawakami
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Renata N Ikegami
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marcia M Reis
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jaqueline de Jesus Pereira
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Barbara M Ianni
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Paula Buck
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Luanda Mara da Silva Oliveira
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Marilia H H Santos
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Ludhmila A Hajjar
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Edimar A Bocchi
- Instituto do Coraçao, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|