1
|
Cissé OH, Ma L, Kovacs JA. Retracing the evolution of Pneumocystis species, with a focus on the human pathogen Pneumocystis jirovecii. Microbiol Mol Biol Rev 2024; 88:e0020222. [PMID: 38587383 PMCID: PMC11332345 DOI: 10.1128/mmbr.00202-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024] Open
Abstract
SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.
Collapse
Affiliation(s)
- Ousmane H. Cissé
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Liang Ma
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph A. Kovacs
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Kottom TJ, Carmona EM, Limper AH. Characterization of the Pneumocystis jirovecii and Pneumocystis murina phosphoglucomutases (Pgm2s): a potential target for Pneumocystis therapy. Antimicrob Agents Chemother 2024; 68:e0075623. [PMID: 38259086 PMCID: PMC10916394 DOI: 10.1128/aac.00756-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/03/2023] [Indexed: 01/24/2024] Open
Abstract
Pneumocystis cyst life forms contain abundant β-glucan carbohydrates, synthesized using β-1,3 and β-1,6 glucan synthase enzymes and the donor uridine diphosphate (UDP)-glucose. In yeast, phosphoglucomutase (PGM) plays a crucial role in carbohydrate metabolism by interconverting glucose 1-phosphate and glucose 6-phosphate, a vital step in UDP pools for β-glucan cell wall formation. This pathway has not yet been defined in Pneumocystis. Herein, we surveyed the Pneumocystis jirovecii and Pneumocystis murina genomes, which predicted a homolog of the Saccharomyces cerevisiae major PGM enzyme. Furthermore, we show that PjPgm2p and PmPgm2p function similarly to the yeast counterpart. When both Pneumocystis pgm2 homologs are heterologously expressed in S. cerevisiae pgm2Δ cells, both genes can restore growth and sedimentation rates to wild-type levels. Additionally, we demonstrate that yeast pgm2Δ cell lysates expressing the two Pneumocystis pgm2 transcripts individually can restore PGM activities significantly altered in the yeast pgm2Δ strain. The addition of lithium, a competitive inhibitor of yeast PGM activity, significantly reduces PGM activity. Next, we tested the effects of lithium on P. murina viability ex vivo and found the compound displays significant anti-Pneumocystis activity. Finally, we demonstrate that a para-aryl derivative (ISFP10) with known inhibitory activity against the Aspergillus fumigatus PGM protein and exhibiting 50-fold selectivity over the human PGM enzyme homolog can also significantly reduce Pmpgm2 activity in vitro. Collectively, our data genetically and functionally validate phosphoglucomutases in both P. jirovecii and P. murina and suggest the potential of this protein as a selective therapeutic target for individuals with Pneumocystis pneumonia.
Collapse
Affiliation(s)
- Theodore J. Kottom
- Department of Medicine, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Eva M. Carmona
- Department of Medicine, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Andrew H. Limper
- Department of Medicine, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
- Department of Biochemistry, Thoracic Diseases Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
3
|
Meier CS, Pagni M, Richard S, Mühlethaler K, Almeida JMGCF, Nevez G, Cushion MT, Calderón EJ, Hauser PM. Fungal antigenic variation using mosaicism and reassortment of subtelomeric genes' repertoires. Nat Commun 2023; 14:7026. [PMID: 37919276 PMCID: PMC10622565 DOI: 10.1038/s41467-023-42685-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023] Open
Abstract
Surface antigenic variation is crucial for major pathogens that infect humans. To escape the immune system, they exploit various mechanisms. Understanding these mechanisms is important to better prevent and fight the deadly diseases caused. Those used by the fungus Pneumocystis jirovecii that causes life-threatening pneumonia in immunocompromised individuals remain poorly understood. Here, though this fungus is currently not cultivable, our detailed analysis of the subtelomeric sequence motifs and genes encoding surface proteins suggests that the system involves the reassortment of the repertoire of ca. 80 non-expressed genes present in each strain, from which single genes are retrieved for mutually exclusive expression. Dispersion of the new repertoires, supposedly by healthy carrier individuals, appears very efficient because identical alleles are observed in patients from different countries. Our observations reveal a unique strategy of antigenic variation. They also highlight the possible role in genome rearrangements of small imperfect mirror sequences forming DNA triplexes.
Collapse
Affiliation(s)
- Caroline S Meier
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Sophie Richard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Konrad Mühlethaler
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - João M G C F Almeida
- UCIBIO, Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Gilles Nevez
- Laboratoire de Parasitologie et Mycologie, Hôpital de La Cavale Blanche, CHU de Brest, Brest, France
- Infections respiratoires fongiques (IFR), Université d'Angers, Université de Brest, Brest, France
| | - Melanie T Cushion
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, 45267, USA
- Cincinnati VAMC, Medical Research Service, Cincinnati, OH, 45220, USA
| | - Enrique J Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocίo/Consejo Superior de Investigaciones Cientίficas/Universidad de Sevilla, Seville, Spain
- Centro de Investigación Biomédica en Red de Epidemiologίa y Salud Pública, Servicio de Medicina Interna, Hospital Universitario Virgen del Rocίo, Departamento de Medicina, Facultad de Medicina, Seville, Spain
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
4
|
Cushion MT, Ashbaugh A, Sayson SG, Mosley C, Hauser PM. Anidulafungin Treatment Blocks the Sexual Cycle of Pneumocystis murina and Prevents Growth and Survival without Rescue by an Alternative Mode of Replication. Microbiol Spectr 2022; 10:e0290622. [PMID: 36287071 PMCID: PMC9769855 DOI: 10.1128/spectrum.02906-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/27/2022] [Indexed: 01/09/2023] Open
Abstract
The proposed life cycle of fungi in the genus Pneumocystis has typically included both an asexual cycle via binary fission and a sexual cycle. Until recently, the strategy used for sexual replication was largely unknown, but genomic and functional assays now support a mode known as primary homothallism (self-fertilization). The question of whether an asexual cycle contributes to the growth of these fungi remains. Treatment of Pneumocystis pneumonia in immunosuppressed rodent models with the class of drugs known as echinocandins is challenging the historical concept of asexual replication. The echinocandins target 1,3-β-D-glucan (BG) synthesis resulting in death for most fungi. Because Pneumocystis species have both non-BG expressing life cycle stages (trophic forms) and BG-expressing asci, treatment with anidulafungin and caspofungin resulted in elimination of asci, with large numbers of non-BG expressing organisms remaining in the lungs. Transcriptional analyses of anidulafungin treated Pneumocystis murina-infected lungs indicated that these agents were blocking the sexual cycle. In the present study, we explored whether there was an asexual or alternative method of replication that could rescue P. murina survival and growth in the context of anidulafungin treatment. The effects of anidulafungin treatment on early events in the sexual cycle were investigated by RT-qPCR targeting specific mating genes, including mam2, map3, matMi, matPi, and matMc. Results from the in vivo and gene expression studies clearly indicated there was no rescue by an asexual cycle, supporting these fungi's reliance on the sexual cycle for survival and growth. Dysregulation of mating-associated genes showed that anidulafungin induced effects early in the mating process. IMPORTANCE The concept of a sexually obligate fungus is unique among human fungal pathogens. This reliance can be exploited for drug development and here we show a proof of principle for this unusual target. Most human fungal pathogens eschew the mammalian environment with its battery of immune responses. Pneumocystis appear to have evolved to survive in such an environment, perhaps by using sexual replication to help in DNA repair and to introduce genetic variation in its major surface antigen family because the lung is the primary environment of these pathogens. The concept of primary homothallism fits well into its chosen ecosystem, with ready mating partners expressing both mating type receptors, and a sexual cycle that can introduce beneficial genetic variation without the need for outbreeding.
Collapse
Affiliation(s)
- Melanie T. Cushion
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Alan Ashbaugh
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Steven G. Sayson
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Christopher Mosley
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, Ohio, USA
| | - Philippe M. Hauser
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Hauser PM, Almeida JMGCF, Richard S, Meier CS. Cell Fusion May Be Involved in the Homothallic Mating of Pneumocystis Species. mBio 2022; 13:e0085922. [PMID: 35726921 PMCID: PMC9426428 DOI: 10.1128/mbio.00859-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Pneumocystis species are obligate fungal biotrophs that colonize the lungs of mammals. They cause deadly pneumonia in immunocompromised hosts. The sexual phase seems obligate during their life cycle and essential for survival because it is believed to ensure proliferation and transmission between hosts. Here, we consider if the sexual phase is initiated by the fusion of two cells or by nucleus duplication in order to generate diploid cells that can undergo meiosis. The juxtaposition of the nucleus-associated organelles of pairs of cells with fused cytoplasmic membranes demonstrated that cell fusion can occur. Nevertheless, the frequency of cell fusion remains to be determined, and it cannot be excluded that both cell fusion and nucleus duplication are used to ensure the occurrence of the essential sexual phase. In vitro culturing of these fungi is a major milestone that could clarify the issue.
Collapse
Affiliation(s)
- Philippe M. Hauser
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joao M. G. C. F. Almeida
- UCIBIO—REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
| | - Sophie Richard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Caroline S. Meier
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
6
|
Vera C, Rueda ZV. Transmission and Colonization of Pneumocystis jirovecii. J Fungi (Basel) 2021; 7:jof7110979. [PMID: 34829266 PMCID: PMC8622989 DOI: 10.3390/jof7110979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Pneumocystis spp. was discovered in 1909 and was classified as a fungus in 1988. The species that infects humans is called P. jirovecii and important characteristics of its genome have recently been discovered. Important advances have been made to understand P. jirovecii, including aspects of its biology, evolution, lifecycle, and pathogenesis; it is now considered that the main route of transmission is airborne and that the infectious form is the asci (cyst), but it is unclear whether there is transmission by direct contact or droplet spread. On the other hand, P. jirovecii has been detected in respiratory secretions of hosts without causing disease, which has been termed asymptomatic carrier status or colonization (frequency in immunocompetent patients: 0–65%, pregnancy: 15.5%, children: 0–100%, HIV-positive patients: 20–69%, cystic fibrosis: 1–22%, and COPD: 16–55%). This article briefly describes the history of its discovery and the nomenclature of Pneumocystis spp., recently uncovered characteristics of its genome, and what research has been done on the transmission and colonization of P. jirovecii. Based on the literature, the authors of this review propose a hypothetical natural history of P. jirovecii infection in humans.
Collapse
Affiliation(s)
- Cristian Vera
- Grupo de Investigación en Salud Pública, Research Department, Facultad de Medicina, Universidad Pontificia Bolivariana, Medellín 050031, Colombia
- Correspondence:
| | - Zulma Vanessa Rueda
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg RT3, Colombia;
| |
Collapse
|
7
|
Detection of Cytokines and Collectins in Bronchoalveolar Fluid Samples of Patients Infected with Histoplasma capsulatum and Pneumocystis jirovecii. J Fungi (Basel) 2021; 7:jof7110938. [PMID: 34829225 PMCID: PMC8623738 DOI: 10.3390/jof7110938] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
Histoplasmosis and pneumocystosis co-infections have been reported mainly in immunocompromised humans and in wild animals. The immunological response to each fungal infection has been described primarily using animal models; however, the host response to concomitant infection is unknown. The present work aimed to evaluate the pulmonary immunological response of patients with pneumonia caused either by Histoplasma capsulatum, Pneumocystis jirovecii, or their co-infection. We analyzed the pulmonary collectin and cytokine patterns of 131 bronchoalveolar lavage samples, which included HIV and non-HIV patients infected with H. capsulatum, P. jirovecii, or both fungi, as well as healthy volunteers and HIV patients without the studied fungal infections. Our results showed an increased production of the surfactant protein-A (SP-A) in non-HIV patients with H. capsulatum infection, contrasting with HIV patients (p < 0.05). Significant differences in median values of SP-A, IL-1β, TNF-α, IFN-γ, IL-18, IL-17A, IL-33, IL-13, and CXCL8 were found among all the groups studied, suggesting that these cytokines play a role in the local inflammatory processes of histoplasmosis and pneumocystosis. Interestingly, non-HIV patients with co-infection and pneumocystosis alone showed lower levels of SP-A, IL-1β, TNF-α, IFN-γ, IL-18, IL-17A, and IL-23 than histoplasmosis patients, suggesting an immunomodulatory ability of P. jirovecii over H. capsulatum response.
Collapse
|
8
|
Cushion MT, Ashbaugh A. The Long-Acting Echinocandin, Rezafungin, Prevents Pneumocystis Pneumonia and Eliminates Pneumocystis from the Lungs in Prophylaxis and Murine Treatment Models. J Fungi (Basel) 2021; 7:jof7090747. [PMID: 34575785 PMCID: PMC8468546 DOI: 10.3390/jof7090747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 01/20/2023] Open
Abstract
Rezafungin is a novel echinocandin in Phase 3 development for prevention of invasive fungal disease caused by Candida spp., Aspergillus spp. and Pneumocystis jirovecii in blood and marrow transplantation patients. For such patients, standard antifungal prophylaxis currently comprises an azole for Candida and Aspergillus plus trimethoprim-sulfamethoxazole (TMP-SMX) for Pneumocystis pneumonia (PCP) despite drug-drug-interactions and intolerability that may limit their use, thus, alternatives are desirable. Rezafungin demonstrates a favorable safety profile and pharmacokinetic properties that allow for once-weekly dosing in addition, to antifungal activity against these predominant pathogens. Herein, the in vivo effects of rezafungin against Pneumocystis murina pneumonia were evaluated in immunosuppressed mouse models of prophylaxis and treatment using microscopy and qPCR assessments. In the prophylaxis model, immunosuppressed mice inoculated with P. murina were administered TMP-SMX (50/250 mg/kg 1×/week or 3×/week), caspofungin (5 mg/kg 3×/week), rezafungin (20 mg/kg, 1×/week or 3×/week; 5 mg/kg, 3×/week) intraperitoneally for 2, 4, 6 and 8 weeks, then immunosuppressed for an additional 6 weeks. Rezafungin administered for 4 weeks prevented P. murina from developing infection after rezafungin was discontinued. In the treatment model, immunosuppressed mice with P. murina pneumonia were treated with rezafungin 20 mg/kg 3×/week intraperitoneally for 2, 4, 6 and 8 weeks. Treatment with rezafungin for 8 weeks resulted in elimination of P. murina. Collectively, these studies showed that rezafungin could both prevent infection and eliminate P. murina from the lungs of mice. These findings support the obligate role of sexual reproduction for survival and growth of Pneumocystis spp. and warrant further investigation for treatment of P. jirovecii pneumonia in humans.
Collapse
Affiliation(s)
- Melanie T. Cushion
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
- Cincinnati VAMC, Medical Research Service, Cincinnati, OH 45220, USA
- Correspondence:
| | - Alan Ashbaugh
- Department of Internal Medicine, Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
- Cincinnati VAMC, Medical Research Service, Cincinnati, OH 45220, USA
| |
Collapse
|
9
|
Schmid-Siegert E, Richard S, Luraschi A, Mühlethaler K, Pagni M, Hauser PM. Expression Pattern of the Pneumocystis jirovecii Major Surface Glycoprotein Superfamily in Patients with Pneumonia. J Infect Dis 2021; 223:310-318. [PMID: 32561915 DOI: 10.1093/infdis/jiaa342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/11/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The human pathogen Pneumocystis jirovecii harbors 6 families of major surface glycoproteins (MSGs) encoded by a single gene superfamily. MSGs are presumably responsible for antigenic variation and adhesion to host cells. The genomic organization suggests that a single member of family I is expressed at a given time per cell, whereas members of the other families are simultaneously expressed. METHODS We analyzed RNA sequences expressed in several clinical samples, using specific weighted profiles for sorting of reads and calling of single-nucleotide variants to estimate the diversity of the expressed genes. RESULTS A number of different isoforms of at least 4 MSG families were expressed simultaneously, including isoforms of family I, for which confirmation was obtained in the wet laboratory. CONCLUSION These observations suggest that every single P. jirovecii population is made of individual cells with distinct surface properties. Our results enhance our understanding of the unique antigenic variation system and cell surface structure of P. jirovecii.
Collapse
Affiliation(s)
| | - Sophie Richard
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Amanda Luraschi
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Konrad Mühlethaler
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Marco Pagni
- Vital-IT Group, SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Philippe M Hauser
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
10
|
Tisdale-Macioce N, Green J, Perl AKT, Ashbaugh A, Wiederhold NP, Patterson TF, Cushion MT. The Promise of Lung Organoids for Growth and Investigation of Pneumocystis Species. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:740845. [PMID: 37744131 PMCID: PMC10512221 DOI: 10.3389/ffunb.2021.740845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/06/2021] [Indexed: 09/26/2023]
Abstract
Pneumocystis species (spp.) are host-obligate fungal parasites that colonize and propagate almost exclusively in the alveolar lumen within the lungs of mammals where they can cause a lethal pneumonia. The emergence of this pneumonia in non-HIV infected persons caused by Pneumocystis jirovecii (PjP), illustrates the continued importance of and the need to understand its associated pathologies and to develop new therapies and preventative strategies. In the proposed life cycle, Pneumocystis spp. attach to alveolar type 1 epithelial cells (AEC1) and prevent gas exchange. This process among other mechanisms of Pneumocystis spp. pathogenesis is challenging to observe in real time due to the absence of a continuous ex vivo or in vitro culture system. The study presented here provides a proof-of-concept for the development of murine lung organoids that mimic the lung alveolar sacs expressing alveolar epithelial type 1 cells (AEC1) and alveolar type 2 epithelial cells (AEC2). Use of these 3-dimensional organoids should facilitate studies of a multitude of unanswered questions and serve as an improved means to screen new anti- PjP agents.
Collapse
Affiliation(s)
- Nikeya Tisdale-Macioce
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Jenna Green
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Anne-Karina T. Perl
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, The Perinatal Institute and Section of Neonatology, Cincinnati, OH, United States
| | - Alan Ashbaugh
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Nathan P. Wiederhold
- Department of Pathology, The University of Texas Health Science Center, San Antonio, TX, United States
| | - Thomas F. Patterson
- Department of Medicine, The University of Texas Health Science Center, San Antonio, TX, United States
- Section of Infectious Diseases, South Texas Veterans Health Care System, San Antonio, TX, United States
| | - Melanie T. Cushion
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
11
|
Abstract
Pneumocystis species colonize mammalian lungs and cause deadly pneumonia if the immune system of the host weakens. Each species presents a specificity for a single mammalian host species. Pneumocystis jirovecii infects humans and provokes pneumonia, which is among the most frequent invasive fungal infections. The lack of in vitro culture methods for these fungi complicates their study. Recently, high-throughput sequencing technologies followed by comparative genomics have allowed a better understanding of the mechanisms involved in the sexuality of Pneumocystis organisms. The structure of their mating-type locus corresponding to a fusion of two loci, Plus and Minus, and the concomitant expression of the three mating-type genes revealed that their mode of sexual reproduction is primarily homothallism. This mode is favored by microbial pathogens and involves a single self-compatible mating type that can enter into the sexual cycle on its own. Pneumocystis sexuality is obligatory within the host's lungs during pneumonia in adults, primary infection in children, and possibly colonization. This sexuality participates in cell proliferation, airborne transmission to new hosts, and probably antigenic variation, processes that are crucial to ensure the survival of the fungus. Thus, sexuality is central in the Pneumocystis life cycle. The obligate biotrophic parasitism with obligate sexuality of Pneumocystis is unique among fungi pathogenic to humans. Pneumocystis organisms are similar to the plant fungal obligate biotrophs that complete their entire life cycle within their hosts, including sex, and that are also difficult to grow in vitro.
Collapse
|
12
|
Cushion MT, Tisdale-Macioce N, Sayson SG, Porollo A. The Persistent Challenge of Pneumocystis Growth Outside the Mammalian Lung: Past and Future Approaches. Front Microbiol 2021; 12:681474. [PMID: 34093506 PMCID: PMC8174303 DOI: 10.3389/fmicb.2021.681474] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
The pathogenic fungi in the genus, Pneumocystis, have eluded attempts to continuously grow them in an ex vivo cultivation system. New data from transcriptomic and genomic sequencing studies have identified a myriad of absent metabolic pathways, helping to define their host obligate nature. These nutrients, factors, and co-factors are acquired from their mammalian host and provide clues to further supplementation of existing media formulations. Likewise, a new appreciation of the pivotal role for the sexual cycle in the survival and dissemination of the infection suggests that Pneumocystis species are obligated to undergo mating and sexual reproduction in their life cycle with a questionable role for an asexual cycle. The lack of ascus formation in any previous cultivation attempts may explain the failure to identify a sustainable system. Many characteristics of these ascomycetes suggest a biotrophic existence within the lungs of the mammalian hosts. In the present review, previous attempts at growing these fungi ex vivo are summarized. The significance of their life cycle is considered, and a list of potential supplements based on the genomic and transcriptomic studies is presented. State of the art technologies such as metabolomics, organoids, lung-on-a chip, and air lift cultures are discussed as potential growth systems.
Collapse
Affiliation(s)
- Melanie T. Cushion
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Nikeya Tisdale-Macioce
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Steven G. Sayson
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Medical Research Service, Cincinnati Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Aleksey Porollo
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Center for Autoimmune Genomics and Etiology, Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
13
|
Nevez G, Hauser PM, Le Gal S. Pneumocystis jirovecii. Trends Microbiol 2020; 28:1034-1035. [DOI: 10.1016/j.tim.2020.03.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/25/2020] [Indexed: 11/28/2022]
|
14
|
Min K, Neiman AM, Konopka JB. Fungal Pathogens: Shape-Shifting Invaders. Trends Microbiol 2020; 28:922-933. [PMID: 32474010 DOI: 10.1016/j.tim.2020.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/24/2020] [Accepted: 05/05/2020] [Indexed: 12/11/2022]
Abstract
Fungal infections are on the rise due to new medical procedures that have increased the number of immune compromised patients, antibacterial antibiotics that disrupt the microbiome, and increased use of indwelling medical devices that provide sites for biofilm formation. Key to understanding the mechanisms of pathogenesis is to determine how fungal morphology impacts virulence strategies. For example, small budding cells use very different strategies to disseminate compared with long hyphal filaments. Furthermore, cell morphology must be monitored in the host, as many fungal pathogens change their shape to disseminate into new areas, acquire nutrients, and avoid attack by the immune system. This review describes the shape-shifting alterations in morphogenesis of human fungal pathogens and how they influence virulence strategies.
Collapse
Affiliation(s)
- Kyunghun Min
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | - Aaron M Neiman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| | - James B Konopka
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
15
|
Abstract
Environmental exposure has a significant impact on human health. While some airborne fungi can cause life-threatening infections, the impact of environment on fungal spore dispersal and transmission is poorly understood. The democratization of shotgun metagenomics allows us to explore important questions about fungal propagation. We focus on Pneumocystis, a genus of host-specific fungi that infect mammals via airborne particles. In humans, Pneumocystis jirovecii causes lethal infections in immunocompromised patients if untreated, although its environmental reservoir and transmission route remain unclear. Environmental exposure has a significant impact on human health. While some airborne fungi can cause life-threatening infections, the impact of environment on fungal spore dispersal and transmission is poorly understood. The democratization of shotgun metagenomics allows us to explore important questions about fungal propagation. We focus on Pneumocystis, a genus of host-specific fungi that infect mammals via airborne particles. In humans, Pneumocystis jirovecii causes lethal infections in immunocompromised patients if untreated, although its environmental reservoir and transmission route remain unclear. Here, we attempt to clarify, by analyzing human exposome metagenomic data sets, whether humans are exposed to different Pneumocystis species present in the air but only P. jirovecii cells are able to replicate or whether they are selectively exposed to P. jirovecii. Our analysis supports the latter hypothesis, which is consistent with a local transmission model. These data also suggest that healthy carriers are a major driver for the transmission.
Collapse
|
16
|
Abstract
Genetic variation is a necessity of all biological systems. Viruses use all known mechanisms of variation; mutation, several forms of recombination, and segment reassortment in the case of viruses with a segmented genome. These processes are intimately connected with the replicative machineries of viruses, as well as with fundamental physical-chemical properties of nucleotides when acting as template or substrate residues. Recombination has been viewed as a means to rescue viable genomes from unfit parents or to produce large modifications for the exploration of phenotypic novelty. All types of genetic variation can act conjointly as blind processes to provide the raw materials for adaptation to the changing environments in which viruses must replicate. A distinction is made between mechanistically unavoidable and evolutionarily relevant mutation and recombination.
Collapse
|
17
|
Expression and Immunostaining Analyses Suggest that Pneumocystis Primary Homothallism Involves Trophic Cells Displaying Both Plus and Minus Pheromone Receptors. mBio 2019; 10:mBio.01145-19. [PMID: 31289178 PMCID: PMC6747714 DOI: 10.1128/mbio.01145-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The fungi belonging to the genus Pneumocystis may cause severe pneumonia in immunocompromised humans, a disease that can be fatal if not treated. This disease is nowadays one of the most frequent invasive fungal infections worldwide. Whole-genome sequencing revealed that the sexuality of these fungi involves a single partner that can self-fertilize. Here, we report that two receptors recognizing specifically excreted pheromones are involved in this self-fertility within infected human lungs. Using fluorescent antibodies binding specifically to these receptors, we observed that most often, the fungal cells display both receptors at their surface. These pheromone-receptor systems might play a role in mate recognition and/or postfertilization events. They constitute an integral part of the Pneumocystis obligate sexuality within human lungs, a cycle that is necessary for the dissemination of the fungus to new individuals. The genus Pneumocystis encompasses fungal species that colonize mammals’ lungs with host specificity. Should the host immune system weaken, the fungal species can cause severe pneumonia. The life cycle of these pathogens is poorly known, mainly because an in vitro culture method has not been established. Both asexual and sexual cycles would occur. Trophic cells, the predominant forms during infection, could multiply asexually but also enter into a sexual cycle. Comparative genomics revealed a single mating type locus, including plus and minus genes, suggesting that primary homothallism involving self-fertility of each strain is the mode of reproduction of Pneumocystis species. We identified and analyzed the expression of the mam2 and map3 genes encoding the receptors for plus and minus pheromones using reverse transcriptase PCR, in both infected mice and bronchoalveolar lavage fluid samples from patients with Pneumocystis pneumonia. Both receptors were most often concomitantly expressed during infection, revealing that both pheromone-receptor systems are involved in the sexual cycle. The map3 transcripts were subject to alternative splicing. Using immunostaining, we investigated the presence of the pheromone receptors at the surfaces of Pneumocystis cells from a patient. The staining tools were first assessed in Saccharomyces cerevisiae displaying the Pneumocystis receptors at their cellular surface. Both receptors were present at the surfaces of the vast majority of the cells that were likely trophic forms. The receptors might have a role in mate recognition and/or postfertilization events. Their presence at the cell surface might facilitate outbreeding versus inbreeding of self-fertile strains.
Collapse
|
18
|
Carreto-Binaghi LE, Morales-Villarreal FR, García-de la Torre G, Vite-Garín T, Ramirez JA, Aliouat EM, Martínez-Orozco JA, Taylor ML. Histoplasma capsulatum and Pneumocystis jirovecii coinfection in hospitalized HIV and non-HIV patients from a tertiary care hospital in Mexico. Int J Infect Dis 2019; 86:65-72. [PMID: 31207386 DOI: 10.1016/j.ijid.2019.06.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Histoplasma capsulatum and Pneumocystis jirovecii are respiratory fungal pathogens that principally cause pulmonary disease. Coinfection with both pathogens is scarcely reported. This study detected this coinfection using specific molecular methods for each fungus in the bronchoalveolar lavage (BAL) of patients from a tertiary care hospital. MATERIALS AND METHODS BAL samples from 289 hospitalized patients were screened by PCR with specific markers for H. capsulatum (Hcp100) and P. jirovecii (mtLSUrRNA and mtSSUrRNA). The presence of these pathogens was confirmed by the generated sequences for each marker. The clinical and laboratory data for the patients were analyzed using statistical software. RESULTS The PCR findings separated three groups of patients, where the first was represented by 60 (20.8%) histoplasmosis patients, the second by 45 (15.6%) patients with pneumocystosis, and the last group by 12 (4.2%) patients with coinfection. High similarity among the generated sequences of each species was demonstrated by BLASTn and neighbor-joining algorithms. The estimated prevalence of H. capsulatum and P. jirovecii coinfection was higher in HIV patients.
Collapse
Affiliation(s)
- Laura E Carreto-Binaghi
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, Mexico; Departamento de Investigación en Microbiología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas" (INER), CDMX, 14080, Mexico.
| | | | | | - Tania Vite-Garín
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, Mexico.
| | - Jose-Antonio Ramirez
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, Mexico.
| | - El-Moukhtar Aliouat
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Lille, France.
| | | | - Maria-Lucia Taylor
- Laboratorio de Inmunología de Hongos, Unidad de Micología, Departamento de Microbiología-Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), CDMX, 04510, Mexico.
| |
Collapse
|
19
|
Is the unique camouflage strategy of Pneumocystis associated with its particular niche within host lungs? PLoS Pathog 2019; 15:e1007480. [PMID: 30677096 PMCID: PMC6345417 DOI: 10.1371/journal.ppat.1007480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|