1
|
Mosalmanzadeh N, Pence BD. Oxidized Low-Density Lipoprotein and Its Role in Immunometabolism. Int J Mol Sci 2024; 25:11386. [PMID: 39518939 PMCID: PMC11545486 DOI: 10.3390/ijms252111386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
Modified cholesterols such as oxidized low-density lipoprotein (OxLDL) contribute to atherosclerosis and other disorders through the promotion of foam cell formation and inflammation. In recent years, it has become evident that immune cell responses to inflammatory molecules such as OxLDLs depend on cellular metabolic functions. This review examines the known effects of OxLDL on immunometabolism and immune cell responses in atherosclerosis and several other diseases. We additionally provide context on the relationship between OxLDL and aging/senescence and identify gaps in the literature and our current understanding in these areas.
Collapse
Affiliation(s)
| | - Brandt D. Pence
- College of Health Sciences and Center for Nutraceutical and Dietary Supplement Research, University of Memphis, Memphis, TN 38111, USA
| |
Collapse
|
2
|
AlSaeed H, Haider MJA, Alzaid F, Al-Mulla F, Ahmad R, Al-Rashed F. PPARdelta: A key modulator in the pathogenesis of diabetes mellitus and Mycobacterium tuberculosis co-morbidity. iScience 2024; 27:110046. [PMID: 38989454 PMCID: PMC11233913 DOI: 10.1016/j.isci.2024.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 02/20/2024] [Accepted: 05/17/2024] [Indexed: 07/12/2024] Open
Abstract
The interplay between lipid metabolism and immune response in macrophages plays a pivotal role in various infectious diseases, notably tuberculosis (TB). Herein, we illuminate the modulatory effect of heat-killed Mycobacterium tuberculosis (HKMT) on macrophage lipid metabolism and its implications on the inflammatory cascade. Our findings demonstrate that HKMT potently activates the lipid scavenger receptor, CD36, instigating lipid accumulation. While CD36 inhibition mitigated lipid increase, it unexpectedly exacerbated the inflammatory response. Intriguingly, this paradoxical effect was linked to an upregulation of PPARδ. Functional analyses employing PPARδ modulation revealed its central role in regulating both lipid dynamics and inflammation, suggesting it as a potential therapeutic target. Moreover, primary monocytic cells from diabetic individuals, a demographic at amplified risk of TB, exhibited heightened PPARδ expression and inflammation, further underscoring its pathological relevance. Targeting PPARδ in these cells effectively dampened the inflammatory response, offering a promising therapeutic avenue against TB.
Collapse
Affiliation(s)
- Halemah AlSaeed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, Dasman, Kuwait, PO BOX 1180, Dasman 15462, State of Kuwait
| | - Mohammed J A Haider
- Department of Biological Sciences, Faculty of Science, Kuwait University, PO BOX 5969, Safat 13060, State of Kuwait
| | - Fawaz Alzaid
- Bioenergetics Department, Dasman Diabetes Institute, Kuwait City 15462, Kuwait
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, 75015 Paris, France
| | - Fahd Al-Mulla
- Genetics and Bioinformatics Department, Dasman Diabetes Institute, Kuwait, Kuwait
| | - Rasheed Ahmad
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, Dasman, Kuwait, PO BOX 1180, Dasman 15462, State of Kuwait
| | - Fatema Al-Rashed
- Immunology and Microbiology Department, Dasman Diabetes Institute, Al-Soor Street, Dasman, Kuwait, PO BOX 1180, Dasman 15462, State of Kuwait
| |
Collapse
|
3
|
Zhang K, Mishra A, Jagannath C. New insight into arginine and tryptophan metabolism in macrophage activation during tuberculosis. Front Immunol 2024; 15:1363938. [PMID: 38605962 PMCID: PMC11008464 DOI: 10.3389/fimmu.2024.1363938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Arginine and tryptophan are pivotal in orchestrating cytokine-driven macrophage polarization and immune activation. Specifically, interferon-gamma (IFN-γ) stimulates inducible nitric oxide synthase (iNOS) expression), leading to the conversion of arginine into citrulline and nitric oxide (NO), while Interleukin-4 (IL4) promotes arginase activation, shifting arginine metabolism toward ornithine. Concomitantly, IFN-γ triggers indoleamine 2,3-dioxygenase 1 (IDO1) and Interleukin-4 induced 1 (IL4i1), resulting in the conversion of tryptophan into kynurenine and indole-3-pyruvic acid. These metabolic pathways are tightly regulated by NAD+-dependent sirtuin proteins, with Sirt2 and Sirt5 playing integral roles. In this review, we present novel insights that augment our understanding of the metabolic pathways of arginine and tryptophan following Mycobacterium tuberculosis infection, particularly their relevance in macrophage responses. Additionally, we discuss arginine methylation and demethylation and the role of Sirt2 and Sirt5 in regulating tryptophan metabolism and arginine metabolism, potentially driving macrophage polarization.
Collapse
Affiliation(s)
- Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Abhishek Mishra
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Weill-Cornell Medicine, Houston, TX, United States
| |
Collapse
|
4
|
Zhao L, Fan K, Sun X, Li W, Qin F, Shi L, Gao F, Zheng C. Host-directed therapy against mycobacterium tuberculosis infections with diabetes mellitus. Front Immunol 2024; 14:1305325. [PMID: 38259491 PMCID: PMC10800548 DOI: 10.3389/fimmu.2023.1305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Tuberculosis (TB) is caused by the bacterial pathogen Mycobacterium tuberculosis (MTB) and is one of the principal reasons for mortality and morbidity worldwide. Currently, recommended anti-tuberculosis drugs include isoniazid, rifampicin, ethambutol, and pyrazinamide. TB treatment is lengthy and inflicted with severe side-effects, including reduced patient compliance with treatment and promotion of drug-resistant strains. TB is also prone to other concomitant diseases such as diabetes and HIV. These drug-resistant and complex co-morbid characteristics increase the complexity of treating MTB. Host-directed therapy (HDT), which effectively eliminates MTB and minimizes inflammatory tissue damage, primarily by targeting the immune system, is currently an attractive complementary approach. The drugs used for HDT are repositioned drugs in actual clinical practice with relative safety and efficacy assurance. HDT is a potentially effective therapeutic intervention for the treatment of MTB and diabetic MTB, and can compensate for the shortcomings of current TB therapies, including the reduction of drug resistance and modulation of immune response. Here, we summarize the state-of-the-art roles and mechanisms of HDT in immune modulation and treatment of MTB, with a special focus on the role of HDT in diabetic MTB, to emphasize the potential of HDT in controlling MTB infection.
Collapse
Affiliation(s)
- Li Zhao
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Ke Fan
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Xuezhi Sun
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Wei Li
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Fenfen Qin
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Liwen Shi
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| | - Feng Gao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunlan Zheng
- Department of Tuberculosis III, Wuhan Pulmonary Hospital, Wuhan, Hubei, China
| |
Collapse
|
5
|
Zihad SNK, Sifat N, Islam MA, Monjur-Al-Hossain A, Sikdar KYK, Sarker MMR, Shilpi JA, Uddin SJ. Role of pattern recognition receptors in sensing Mycobacterium tuberculosis. Heliyon 2023; 9:e20636. [PMID: 37842564 PMCID: PMC10570006 DOI: 10.1016/j.heliyon.2023.e20636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis is one of the major invasive intracellular pathogens causing most deaths by a single infectious agent. The interaction between host immune cells and this pathogen is the focal point of the disease, Tuberculosis. Host immune cells not only mount the protective action against this pathogen but also serve as the primary niche for growth. Thus, recognition of this pathogen by host immune cells and following signaling cascades are key dictators of the disease state. Immune cells, mainly belonging to myeloid cell lineage, recognize a wide variety of Mycobacterium tuberculosis ligands ranging from carbohydrate and lipids to proteins to nucleic acids by different membrane-bound and soluble pattern recognition receptors. Simultaneous interaction between different host receptors and pathogen ligands leads to immune-inflammatory response as well as contributes to virulence. This review summarizes the contribution of pattern recognition receptors of host immune cells in recognizing Mycobacterium tuberculosis and subsequent initiation of signaling pathways to provide the molecular insight of the specific Mtb ligands interacting with specific PRR, key adaptor molecules of the downstream signaling pathways and the resultant effector functions which will aid in identifying novel drug targets, and developing novel drugs and adjuvants.
Collapse
Affiliation(s)
| | - Nazifa Sifat
- Department of Pharmacy, ASA University of Bangladesh, Dhaka, 1207, Bangladesh
| | | | | | | | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, 1205, Bangladesh
- Department of Pharmacy, Gono University, Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
6
|
Sakr HF, Sirasanagandla SR, Das S, Bima AI, Elsamanoudy AZ. Insulin Resistance and Hypertension: Mechanisms Involved and Modifying Factors for Effective Glucose Control. Biomedicines 2023; 11:2271. [PMID: 37626767 PMCID: PMC10452601 DOI: 10.3390/biomedicines11082271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/18/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Factors such as aging, an unhealthy lifestyle with decreased physical activity, snacking, a standard Western diet, and smoking contribute to raising blood pressure to a dangerous level, increasing the risk of coronary artery disease and heart failure. Atherosclerosis, or aging of the blood vessels, is a physiological process that has accelerated in the last decades by the overconsumption of carbohydrates as the primary sources of caloric intake, resulting in increased triglycerides and VLDL-cholesterol and insulin spikes. Classically, medications ranging from beta blockers to angiotensin II blockers and even calcium channel blockers were used alone or in combination with lifestyle modifications as management tools in modern medicine to control arterial blood pressure. However, it is not easy to control blood pressure or the associated complications. A low-carbohydrate, high-fat (LCHF) diet can reduce glucose and insulin spikes, improve insulin sensitivity, and lessen atherosclerosis risk factors. We reviewed articles describing the etiology of insulin resistance (IR) and its impact on arterial blood pressure from databases including PubMed, PubMed Central, and Google Scholar. We discuss how the LCHF diet is beneficial to maintaining arterial blood pressure at normal levels, slowing down the progression of atherosclerosis, and reducing the use of antihypertensive medications. The mechanisms involved in IR associated with hypertension are also highlighted.
Collapse
Affiliation(s)
- Hussein F. Sakr
- Department of Physiology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman
| | - Srinivasa Rao Sirasanagandla
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; (S.R.S.); (S.D.)
| | - Srijit Das
- Department of Human and Clinical Anatomy, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat 123, Oman; (S.R.S.); (S.D.)
| | - Abdulhadi I. Bima
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.Z.E.)
| | - Ayman Z. Elsamanoudy
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21465, Saudi Arabia; (A.I.B.); (A.Z.E.)
| |
Collapse
|
7
|
Wei ZY, Wang ZX, Li JH, Wen YS, Gao D, Xia SY, Li YN, Pan XB, Liu YS, Jin YY, Chen JH. Host A-to-I RNA editing signatures in intracellular bacterial and single-strand RNA viral infections. Front Immunol 2023; 14:1121096. [PMID: 37081881 PMCID: PMC10112020 DOI: 10.3389/fimmu.2023.1121096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/13/2023] [Indexed: 04/07/2023] Open
Abstract
BackgroundMicrobial infection is accompanied by remodeling of the host transcriptome. Involvement of A-to-I RNA editing has been reported during viral infection but remains to be elucidated during intracellular bacterial infections.ResultsHerein we analyzed A-to-I RNA editing during intracellular bacterial infections based on 18 RNA-Seq datasets of 210 mouse samples involving 7 tissue types and 8 intracellular bacterial pathogens (IBPs), and identified a consensus signature of RNA editing for IBP infections, mainly involving neutrophil-mediated innate immunity and lipid metabolism. Further comparison of host RNA editing patterns revealed remarkable similarities between pneumonia caused by IBPs and single-strand RNA (ssRNA) viruses, such as altered editing enzyme expression, editing site numbers, and levels. In addition, functional enrichment analysis of genes with RNA editing highlighted that the Rab GTPase family played a common and vital role in the host immune response to IBP and ssRNA viral infections, which was indicated by the consistent up-regulated RNA editing of Ras-related protein Rab27a. Nevertheless, dramatic differences between IBP and viral infections were also observed, and clearly distinguished the two types of intracellular infections.ConclusionOur study showed transcriptome-wide host A-to-I RNA editing alteration during IBP and ssRNA viral infections. By identifying and comparing consensus signatures of host A-to-I RNA editing, our analysis implicates the importance of host A-to-I RNA editing during these infections and provides new insights into the diagnosis and treatment of infectious diseases.
Collapse
Affiliation(s)
- Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Zhi-Xin Wang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Jia-Huan Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yan-Shuo Wen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Di Gao
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Shou-Yue Xia
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yu-Ning Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Xu-Bin Pan
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
| | - Yan-Shan Liu
- Department of Pediatric Laboratory, Wuxi Children’s Hospital, Wuxi, Jiangsu, China
| | - Yun-Yun Jin
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- *Correspondence: Jian-Huan Chen, ; Yun-Yun Jin,
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, Jiangsu, China
- Jiangnan University Brain Institute, Wuxi, Jiangsu, China
- *Correspondence: Jian-Huan Chen, ; Yun-Yun Jin,
| |
Collapse
|
8
|
Marcu DTM, Adam CA, Mitu F, Cumpat C, Aursulesei Onofrei V, Zabara ML, Burlacu A, Crisan Dabija R. Cardiovascular Involvement in Tuberculosis: From Pathophysiology to Diagnosis and Complications-A Narrative Review. Diagnostics (Basel) 2023; 13:432. [PMID: 36766543 PMCID: PMC9914020 DOI: 10.3390/diagnostics13030432] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Although primarily a lung disease, extra-pulmonary tuberculosis (TB) can affect any organ or system. Of these, cardiovascular complications associated with disease or drug toxicity significantly worsen the prognosis. Approximately 60% of patients with TB have a cardiovascular disease, the most common associated pathological entities being pericarditis, myocarditis, and coronary artery disease. We searched the electronic databases PubMed, MEDLINE, and EMBASE for studies that evaluated the impact of TB on the cardiovascular system, from pathophysiological mechanisms to clinical and paraclinical diagnosis of cardiovascular involvement as well as the management of cardiotoxicity associated with antituberculosis medication. The occurrence of pericarditis in all its forms and the possibility of developing constrictive pericarditis, the association of concomitant myocarditis with severe systolic dysfunction and complication with acute heart failure phenomena, and the long-term development of aortic aneurysms with risk of complications, as well as drug-induced toxicity, pose complex additional problems in the management of patients with TB. In the era of multidisciplinarity and polymedication, evidence-based medicine provides various tools that facilitate an integrative management that allows early diagnosis and treatment of cardiac pathologies associated with TB.
Collapse
Affiliation(s)
- Dragos Traian Marius Marcu
- Department of Medical Specialties (I and III) and Surgical Specialties, Grigore T. Popa University of Medicine and Pharmacy, University Street No. 16, 700115 Iaşi, Romania
- Clinical Hospital of Pneumophthisiology Iași, Doctor Iosif Cihac Street no 30, 700115 Iasi, Romania
| | - Cristina Andreea Adam
- Department of Medical Specialties (I and III) and Surgical Specialties, Grigore T. Popa University of Medicine and Pharmacy, University Street No. 16, 700115 Iaşi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
| | - Florin Mitu
- Department of Medical Specialties (I and III) and Surgical Specialties, Grigore T. Popa University of Medicine and Pharmacy, University Street No. 16, 700115 Iaşi, Romania
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
- Academy of Medical Sciences, Ion C. Brătianu Boulevard No 1, 030167 Bucharest, Romania
- Academy of Romanian Scientists, Dimitrie Mangeron Boulevard No. 433, 700050 Iasi, Romania
| | - Carmen Cumpat
- Clinical Rehabilitation Hospital, Cardiovascular Rehabilitation Clinic, Pantelimon Halipa Street No. 14, 700661 Iasi, Romania
- Department of Management, Alexandru Ioan Cuza University, Carol I Boulevard, 700506 Iasi, Romania
| | - Viviana Aursulesei Onofrei
- Department of Medical Specialties (I and III) and Surgical Specialties, Grigore T. Popa University of Medicine and Pharmacy, University Street No. 16, 700115 Iaşi, Romania
- St. Spiridon Clinical Emergency Hospital, Independence Boulevard No. 1, 700111 Iasi, Romania
| | - Mihai Lucian Zabara
- Department of Medical Specialties (I and III) and Surgical Specialties, Grigore T. Popa University of Medicine and Pharmacy, University Street No. 16, 700115 Iaşi, Romania
| | - Alexandru Burlacu
- Department of Medical Specialties (I and III) and Surgical Specialties, Grigore T. Popa University of Medicine and Pharmacy, University Street No. 16, 700115 Iaşi, Romania
- Institute of Cardiovascular Diseases George I.M. Georgescu, 700503 Iasi, Romania
| | - Radu Crisan Dabija
- Department of Medical Specialties (I and III) and Surgical Specialties, Grigore T. Popa University of Medicine and Pharmacy, University Street No. 16, 700115 Iaşi, Romania
- Clinical Hospital of Pneumophthisiology Iași, Doctor Iosif Cihac Street no 30, 700115 Iasi, Romania
| |
Collapse
|
9
|
Ssekamatte P, Sande OJ, van Crevel R, Biraro IA. Immunologic, metabolic and genetic impact of diabetes on tuberculosis susceptibility. Front Immunol 2023; 14:1122255. [PMID: 36756113 PMCID: PMC9899803 DOI: 10.3389/fimmu.2023.1122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/12/2023] [Indexed: 01/24/2023] Open
Abstract
Due to the increasing prevalence of diabetes mellitus (DM) globally, the interaction between DM and major global diseases like tuberculosis (TB) is of great public health significance, with evidence of DM having about a three-fold risk for TB disease. TB defense may be impacted by diabetes-related effects on immunity, metabolism, and gene transcription. An update on the epidemiological aspects of DM and TB, and the recent trends in understanding the DM-associated immunologic, metabolic, and genetic mechanisms of susceptibility to TB will be discussed in this review. This review highlights gaps in the incomplete understanding of the mechanisms that may relate to TB susceptibility in type 2 DM (T2DM). Understanding these three main domains regarding mechanisms of TB susceptibility in T2DM patients can help us build practical treatment plans to lessen the combined burden of the diseases in rampant areas.
Collapse
Affiliation(s)
- Phillip Ssekamatte
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Irene Andia Biraro
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
10
|
Development of a Method for Producing oxLDL: Characterization of Their Effects on HPV-Positive Head and Neck Cancer Cells. Int J Mol Sci 2022; 23:ijms232012552. [PMID: 36293405 PMCID: PMC9604222 DOI: 10.3390/ijms232012552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular diseases (CVD) and cancers are the two main causes of death worldwide. The initiation and progression of atherosclerosis is, in large part, caused by oxidized low-density lipoproteins (oxLDL); interestingly, oxLDL may also play a role in cancer cell metabolism and migration. As oxLDL are generally obtained by tedious ultracentrifugation procedures, “home-made” oxLDL were obtained by (i) applying a purification kit to isolate LDL and VLDL from human plasma; (ii) isolating LDL from VLDL by gel permeation chromatography (GPC); and (iii) oxidating LDL through CuSO4 incubation. On three HPV-positive head and neck cancer cells (HNCC) (93VU-147T, UM-SCC47, and UPCI-SCC154), cell migration was assessed using Boyden chambers, the Wnt/ß-catenin pathway was analyzed by Western Blotting, and the expression of two oxLDL receptors, LOX-1 and CD36, in response to oxLDL exposure, was analysed by immunofluorescence. Our data indicate: (a) a non-significant difference between reference and “home-made” oxLDL; (b) a decreased migration, parallel to an inhibition of the ß-catenin pathway; and (c) an increase of CD36 and LOX-1 expression in all HNCC. In conclusion, we successfully produced oxLDL. Our results demonstrate a decrease in HNCC migration after oxLDL exposure, and an increased expression of LOX-1 and CD36 associated with lipid uptake.
Collapse
|
11
|
Rezende L, Couto NFD, Fernandes-Braga W, Epshtein Y, Alvarez-Leite JI, Levitan I, Andrade LDO. OxLDL induces membrane structure rearrangement leading to biomechanics alteration and migration deficiency in macrophage. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - BIOMEMBRANES 2022; 1864:183951. [PMID: 35504320 DOI: 10.1016/j.bbamem.2022.183951] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 04/20/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
Cholesterol sequestration from plasma membrane has been shown to induce lipid packing disruption, causing actin cytoskeleton reorganization and polymerization, increasing cell stiffness and inducing lysosomal exocytosis in non-professional phagocytes. Similarly, oxidized form of low-density lipoprotein (oxLDL) has also been shown to disrupt lipid organization and packing in endothelial cells, leading to biomechanics alterations that interfere with membrane injury and repair. For macrophages, much is known about oxLDL effects in cell activation, cytokine production and foam cell formation. However, little is known about its impact in the organization of macrophage membrane structured domains and cellular mechanics, the focus of the present study. Treatment of bone marrow-derived macrophages (BMDM) with oxLDL not only altered membrane structure, and potentially the distribution of raft domains, but also induced actin rearrangement, diffuse integrin distribution and cell shrinkage, similarly to observed upon treatment of these cells with MβCD. Those alterations led to decreased migration efficiency. For both treatments, higher co-localization of actin cytoskeleton and GM1 was observed, indicating a similar mechanism of action involving raft-like domain dynamics. Lastly, like MβCD treatment, oxLDL also induced lysosomal spreading in BMDM. We propose that OxLDL induced re-organization of membrane/cytoskeleton complex in macrophages can be attributed to the insertion of oxysterols into the membrane, which lead to changes in lipid organization and disruption of membrane structure, similar to the effect of cholesterol depletion by MβCD treatment. These results indicate that oxLDL can induce physical alterations in the complex membrane/cytoskeleton of macrophages, leading to significant biomechanical changes that compromise cell behavior.
Collapse
Affiliation(s)
- Luisa Rezende
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natalia Fernanda Do Couto
- Department of Morphology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil; Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | - Weslley Fernandes-Braga
- Department of Biochemistry and Immunology/Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Yulia Epshtein
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | | | - Irena Levitan
- Department of Medicine, University of Illinois at Chicago, Chicago, USA
| | | |
Collapse
|
12
|
The Azithromycin Pro-Drug CSY5669 Boosts Bacterial Killing While Attenuating Lung Inflammation Associated with Pneumonia Caused by Methicillin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2022; 66:e0229821. [PMID: 35972289 PMCID: PMC9487537 DOI: 10.1128/aac.02298-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Antibiotic resistance is a major problem, with methicillin-resistant Staphylococcus aureus (MRSA) being a prototypical example in surgical and community-acquired infections. S. aureus, like many pathogens, is immune evasive and able to multiply within host immune cells. Consequently, compounds that aid host immunity (e.g., by stimulating the host-mediated killing of pathogens) are appealing alternatives or adjuncts to classical antibiotics. Azithromycin is both an antibacterial and an immunomodulatory drug that accumulates in immune cells. We set out to improve the immunomodulatory properties of azithromycin by coupling the immune activators, nitric oxide and acetate, to its core structure. This new compound, designated CSY5669, enhanced the intracellular killing of MRSA by 45% ± 20% in monocyte-derived macrophages and by 55% ± 15% in peripheral blood leukocytes, compared with untreated controls. CSY5669-treated peripheral blood leukocytes produced fewer proinflammatory cytokines, while in both monocyte-derived macrophages and peripheral blood leukocytes, phagocytosis, ROS production, and degranulation were unaffected. In mice with MRSA pneumonia, CSY5669 treatment reduced inflammation, lung pathology and vascular leakage with doses as low as 0.01 μmol/kg p.o. CSY5669 had diminished direct in vitro antibacterial properties compared with azithromycin. Also, CSY5669 was immunomodulatory at concentrations well below 1% of the minimum inhibitory concentration, which would minimize selection for macrolide-resistant bacteria if it were to be used as a host-directed therapy. This study highlights the potential of CSY5669 as a possible adjunctive therapy in pneumonia caused by MRSA, as CSY5669 could enhance bacterial eradication while simultaneously limiting inflammation-associated pathology.
Collapse
|
13
|
Al-Sayyar A, Hulme KD, Thibaut R, Bayry J, Sheedy FJ, Short KR, Alzaid F. Respiratory Tract Infections in Diabetes - Lessons From Tuberculosis and Influenza to Guide Understanding of COVID-19 Severity. Front Endocrinol (Lausanne) 2022; 13:919223. [PMID: 35957811 PMCID: PMC9363013 DOI: 10.3389/fendo.2022.919223] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Patients with type-2 diabetes (T2D) are more likely to develop severe respiratory tract infections. Such susceptibility has gained increasing attention since the global spread of Coronavirus Disease 2019 (COVID-19) in early 2020. The earliest reports marked T2D as an important risk-factor for severe forms of disease and mortality across all adult age groups. Several mechanisms have been proposed for this increased susceptibility, including pre-existing immune dysfunction, a lack of metabolic flexibility due to insulin resistance, inadequate dietary quality or adverse interactions with antidiabetic treatments or common comorbidities. Some mechanisms that predispose patients with T2D to severe COVID-19 may indeed be shared with other previously characterized respiratory tract infections. Accordingly, in this review, we give an overview of response to Influenza A virus and to Mycobacterium tuberculosis (Mtb) infections. Similar risk factors and mechanisms are discussed between the two conditions and in the case of COVID-19. Lastly, we address emerging approaches to address research needs in infection and metabolic disease, and perspectives with regards to deployment or repositioning of metabolically active therapeutics.
Collapse
Affiliation(s)
| | - Katina D. Hulme
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ronan Thibaut
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| | - Jagadeesh Bayry
- Department of Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad, India
| | | | - Kirsty R. Short
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD, Australia
| | - Fawaz Alzaid
- Dasman Diabetes Institute, Dasman, Kuwait
- Institut Necker Enfants Malades (INEM), Institut National de la Santé et de la Recherche Médicale (INSERM) U1151/CNRS UMRS8253, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris Cité, Paris, France
| |
Collapse
|
14
|
Kilinç G, Walburg KV, Franken KLMC, Valkenburg ML, Aubry A, Haks MC, Saris A, Ottenhoff THM. Development of Human Cell-Based In Vitro Infection Models to Determine the Intracellular Survival of Mycobacterium avium. Front Cell Infect Microbiol 2022; 12:872361. [PMID: 35811670 PMCID: PMC9263196 DOI: 10.3389/fcimb.2022.872361] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/24/2022] [Indexed: 11/21/2022] Open
Abstract
The Mycobacterium avium (Mav) complex accounts for more than 80% of all pulmonary diseases caused by non-tuberculous mycobacteria (NTM) infections, which have an alarming increase in prevalence and vary in different regions, currently reaching 0.3–9.8 per 100,000 individuals. Poor clinical outcomes, as a result of increasing microbial drug resistance and low treatment adherence due to drug-toxicities, emphasize the need for more effective treatments. Identification of more effective treatments, however, appears to be difficult, which may be due to the intracellular life of NTM and concomitant altered drug sensitivity that is not taken into account using traditional drug susceptibility testing screenings. We therefore developed human cell-based in vitro Mav infection models using the human MelJuSo cell line as well as primary human macrophages and a fluorescently labeled Mav strain. By testing a range of multiplicity of infection (MOI) and using flow cytometry and colony-forming unit (CFU) analysis, we found that an MOI of 10 was the most suitable for Mav infection in primary human macrophages, whereas an MOI of 50 was required to achieve similar results in MelJuSo cells. Moreover, by monitoring intracellular bacterial loads over time, the macrophages were shown to be capable of controlling the infection, while MelJuSo cells failed to do so. When comparing the MGIT system with the classical CFU counting assay to determine intracellular bacterial loads, MGIT appeared as a less labor-intensive, more precise, and more objective alternative. Next, using our macrophage Mav infection models, the drug efficacy of the first-line drug rifampicin and the more recently discovered bedaquiline on intracellular bacteria was compared to the activity on extracellular bacteria. The efficacy of the antibiotics inhibiting bacterial growth was significantly lower against intracellular bacteria compared to extracellular bacteria. This finding emphasizes the crucial role of the host cell during infection and drug susceptibility and highlights the usefulness of the models. Taken together, the human cell-based Mav infection models are reliable tools to determine the intracellular loads of Mav, which will enable researchers to investigate host–pathogen interactions and to evaluate the efficacy of (host-directed) therapeutic strategies against Mav.
Collapse
Affiliation(s)
- Gül Kilinç
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kimberley V. Walburg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Kees L. M. C. Franken
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Merel L. Valkenburg
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Alexandra Aubry
- Sorbonne Université, INSERM, Centre d’Immunologie et des Maladies Infectieuses, U1135, AP-HP, Hôpital Pitié-Salpêtrière, Centre National de Référence des Mycobactéries et de la Résistance des Mycobactéries aux Antituberculeux, Paris, France
| | - Mariëlle C. Haks
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | - Anno Saris
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
- *Correspondence: Anno Saris, ; orcid.org/0000-0003-0493-9501
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
15
|
Modulation of Dyslipidemia Markers Apo B/Apo A and Triglycerides/HDL-Cholesterol Ratios by Low-Carbohydrate High-Fat Diet in a Rat Model of Metabolic Syndrome. Nutrients 2022; 14:nu14091903. [PMID: 35565871 PMCID: PMC9102123 DOI: 10.3390/nu14091903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Metabolic syndrome (MetS) risks cardiovascular diseases due to its associated Dyslipidemia. It is proposed that a low-carbohydrate, high-fat (LCHF) diet positively ameliorates the MetS and reverses insulin resistance. Therefore, we aimed to investigate the protecting effect of the LCHF diet on MetS-associated Dyslipidemia in an experimental animal model. Forty male Sprague-Dawley rats were divided into four groups (10/group): the control group, dexamethasone-induced MetS (DEX) (250 µg/kg/day), LCHF-fed MetS group (DEX + LCHF), and High-Carbohydrate-Low-Fat-fed MetS group (DEX + HCLF). At the end of the four-week experiment, fasting glucose, insulin, lipid profile (LDL-C, HDL-C, Triglyceride), oxidized-LDL, and small dense-LDL using the ELISA technique were estimated. HOMA-IR, Apo B/Apo A1 ratio, and TG/HDL were calculated. Moreover, histological examination of the liver by H & E and Sudan III stain was carried out. In the DEX group, rats showed a significant (p < 0.05) increase in the HOMA-IR, atherogenic parameters, such as s-LDL, OX-LDL, Apo B/Apo A1 ratio, and TG/HDL. The LCHF diet significantly improved the parameters of Dyslipidemia (p < 0.05) by decreasing the Apo B/Apo A1 and TG/HDL-C ratios. Decreased steatosis in LCHF-fed rats compared to HCLF was also revealed. In conclusion, the LCHF diet ameliorates MetS-associated Dyslipidemia, as noted from biochemical results and histological examination.
Collapse
|
16
|
Gao J, Li C, Li W, Chen H, Fu Y, Yi Z. Increased UBE2L6 regulated by type 1 interferon as potential marker in TB. J Cell Mol Med 2021; 25:11232-11243. [PMID: 34773365 PMCID: PMC8650027 DOI: 10.1111/jcmm.17046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/07/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
The aim of this study is to identify potential biomarker of tuberculosis (TB) and determine its function. Differentially expressed mRNAs(DEGs) were selected from a blood database GSE101805, and then, 30 key genes were screened using STING, Cytoscape and further functionally enriched. We then found that only 6 of 13 genes related to ubiquitination (the first in the functional enrichment) were increased significantly. ROC analysis showed that UBE2L6, among 6 genes, had the highest diagnostic value, and then, we found that it also had mild value in differential diagnosis. Moreover, our analysis showed that UBE2L6 may be upregulated by type I interferon, which was further confirmed by us. In addition, we also found that UBE2L6 inhibits the apoptosis of Mycobacterium tuberculosis(Mtb)infected macrophages. Subsequently, we discovered that miR-146a-5p, which may target UBE2L6, is reduced in peripheral blood mononuclear cells (PBMC) and plasma of TB, and it also had certain diagnostic efficiency(AUC=0.791). In brief, we demonstrated that UBE2L6 as well as miR-146a-5p is a potential biomarker for TB and UBE2L6,which may also plays important role in TB by, at least, modulating Mtb-infected macrophage apoptosis.
Collapse
Affiliation(s)
- Jiao Gao
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Chonghui Li
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Wenjing Li
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Haotian Chen
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| | - Yurong Fu
- School of Basic Medicine, Weifang Medical University, Weifang, China
| | - Zhengjun Yi
- School of Medical Laboratory, Weifang Medical University, Weifang, China
| |
Collapse
|
17
|
Hoffman D, Tevet Y, Trzebanski S, Rosenberg G, Vainman L, Solomon A, Hen-Avivi S, Ben-Moshe NB, Avraham R. A non-classical monocyte-derived macrophage subset provides a splenic replication niche for intracellular Salmonella. Immunity 2021; 54:2712-2723.e6. [PMID: 34788598 PMCID: PMC8691386 DOI: 10.1016/j.immuni.2021.10.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/27/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022]
Abstract
Interactions between intracellular bacteria and mononuclear phagocytes give rise to diverse cellular phenotypes that may determine the outcome of infection. Recent advances in single-cell RNA sequencing (scRNA-seq) have identified multiple subsets within the mononuclear population, but implications to their function during infection are limited. Here, we surveyed the mononuclear niche of intracellular Salmonella Typhimurium (S.Tm) during early systemic infection in mice. We described eclipse-like growth kinetics in the spleen, with a first phase of bacterial control mediated by tissue-resident red-pulp macrophages. A second phase involved extensive bacterial replication within a macrophage population characterized by CD9 expression. We demonstrated that CD9+ macrophages induced pathways for detoxificating oxidized lipids, that may be utilized by intracellular S.Tm. We established that CD9+ macrophages originated from non-classical monocytes (NCM), and NCM-depleted mice were more resistant to S.Tm infection. Our study defines macrophage subset-specific host-pathogen interactions that determine early infection dynamics and infection outcome of the entire organism. At early stages, Salmonella kinetics follows an eclipse-like dynamics CD9 Macs are an intracellular replication niche for Salmonella during eclipse CD9 Macs derive from non-classical monocytes and induce pathways to detoxify oxLDL CD9 Macs depletion reduces Salmonella infection and prolongs mice survival
Collapse
Affiliation(s)
- Dotan Hoffman
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yaara Tevet
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sébastien Trzebanski
- Department of Immunology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Gili Rosenberg
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Leia Vainman
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Aryeh Solomon
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Shelly Hen-Avivi
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Noa Bossel Ben-Moshe
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Roi Avraham
- Department of Biological Regulation, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
18
|
Baumer Y, McCurdy SG, Boisvert WA. Formation and Cellular Impact of Cholesterol Crystals in Health and Disease. Adv Biol (Weinh) 2021; 5:e2100638. [PMID: 34590446 PMCID: PMC11055929 DOI: 10.1002/adbi.202100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/20/2021] [Indexed: 11/10/2022]
Abstract
Cholesterol crystals (CCs) were first discovered in atherosclerotic plaque tissue in the early 1900 and have since been observed and implicated in many diseases and conditions, including myocardial infarction, abdominal aortic aneurism, kidney disease, ocular diseases, and even central nervous system anomalies. Despite the widespread involvement of CCs in many pathologies, the mechanisms involved in their formation and their role in various diseases are still not fully understood. Current knowledge concerning the formation of CCs, as well as the molecular pathways activated upon cellular exposure to CCs, will be explored in this review. As CC formation is tightly associated with lipid metabolism, the role of cellular lipid homeostasis in the formation of CCs is highlighted, including the role of lysosomes. In addition, cellular pathways and processes known to be affected by CCs are described. In particular, CC-induced activation of the inflammasome and production of reactive oxygen species, along with the role of CCs in complement-mediated inflammation is discussed. Moreover, the clinical manifestation of embolized CCs is described with a focus on renal and skin diseases associated with CC embolism. Lastly, potential therapeutic measures that target either the formation of CCs or their impact on different cell types and tissues are highlighted.
Collapse
Affiliation(s)
- Yvonne Baumer
- Social Determinants of Obesity and Cardiovascular Risk Laboratory, National Heart, Lung, and Blood Institute, Building 10, 10 Center Drive, Bethesda, MD 20814, USA
| | - Sara G. McCurdy
- Dept. of Medicine, University of California San Diego, 9500 Gilman Street, La Jolla, CA 92093, USA
| | - William A. Boisvert
- Center for Cardiovascular Research, University of Hawaii, 651 Ilalo Street, Honolulu, HI 96813, USA
| |
Collapse
|
19
|
Llibre A, Dedicoat M, Burel JG, Demangel C, O’Shea MK, Mauro C. Host Immune-Metabolic Adaptations Upon Mycobacterial Infections and Associated Co-Morbidities. Front Immunol 2021; 12:747387. [PMID: 34630426 PMCID: PMC8495197 DOI: 10.3389/fimmu.2021.747387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/08/2021] [Indexed: 12/14/2022] Open
Abstract
Mycobacterial diseases are a major public health challenge. Their causative agents include, in order of impact, members of the Mycobacterium tuberculosis complex (causing tuberculosis), Mycobacterium leprae (causing leprosy), and non-tuberculous mycobacterial pathogens including Mycobacterium ulcerans. Macrophages are mycobacterial targets and they play an essential role in the host immune response to mycobacteria. This review aims to provide a comprehensive understanding of the immune-metabolic adaptations of the macrophage to mycobacterial infections. This metabolic rewiring involves changes in glycolysis and oxidative metabolism, as well as in the use of fatty acids and that of metals such as iron, zinc and copper. The macrophage metabolic adaptations result in changes in intracellular metabolites, which can post-translationally modify proteins including histones, with potential for shaping the epigenetic landscape. This review will also cover how critical tuberculosis co-morbidities such as smoking, diabetes and HIV infection shape host metabolic responses and impact disease outcome. Finally, we will explore how the immune-metabolic knowledge gained in the last decades can be harnessed towards the design of novel diagnostic and therapeutic tools, as well as vaccines.
Collapse
Affiliation(s)
- Alba Llibre
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Martin Dedicoat
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Julie G. Burel
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Caroline Demangel
- Immunobiology of Infection Unit, Institut Pasteur, INSERM U1224, Paris, France
| | - Matthew K. O’Shea
- Department of Infectious Diseases, Heartlands Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Claudio Mauro
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
20
|
Lin JJ, Liu XH, Xia L, Feng YL, Xi XH, Lu SH. A Niemann-pick C1 disease child with BCG-itis: a case report and analysis. BMC Pediatr 2021; 21:218. [PMID: 33947371 PMCID: PMC8094597 DOI: 10.1186/s12887-021-02671-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
Background Niemann-Pick C disease is a rare autosomal recessive lysosomal lipid storage disorder. Some primary immunodeficiency diseases patients developed regional disease or disseminated disease after vaccinating BCG. It is unclear whether NPC gene deficiency is associated with Mycobacteria infection. Case presentation We report and discuss a case of a child who presented at the age of 6 months with NPC1 and BCG-itis. The patient was treated with Miglustat and the symptom of lymphadenopathy was improved. Conclusions We reasonably speculate that NPC1 is a susceptibility gene of Mtb infection and mainly affects innate immunity. Once diagnosed, the infant should not be vaccinated with BCG and early treated.
Collapse
Affiliation(s)
- Jing-Jing Lin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xu-Hui Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Lu Xia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yan-Ling Feng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xiu-Hong Xi
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shui-Hua Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
DiNardo AR, Nishiguchi T, Grimm SL, Schlesinger LS, Graviss EA, Cirillo JD, Coarfa C, Mandalakas AM, Heyckendorf J, Kaufmann SHE, Lange C, Netea MG, Van Crevel R. Tuberculosis endotypes to guide stratified host-directed therapy. MED 2021; 2:217-232. [PMID: 34693385 DOI: 10.1016/j.medj.2020.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
There is hope that host-directed therapy (HDT) for Tuberculosis (TB) can either shorten treatment duration, help cure drug resistant disease or limit the immunopathology. Many candidate HDT drugs have been proposed, however solid evidence only exists for a few select patient groups. The clinical presentation of TB is variable, with differences in severity, tissue pathology, and bacillary burden. TB clinical phenotypes likely determine the potential benefit of HDT. Underlying TB clinical phenotypes, there are TB "endotypes," defined as distinct molecular profiles, with specific metabolic, epigenetic, transcriptional, and immune phenotypes. TB endotypes can be characterized by either immunodeficiency or pathologic excessive inflammation. Additional factors, like comorbidities (HIV, diabetes, helminth infection), structural lung disease or Mycobacterial virulence also drive TB endotypes. Precise disease phenotyping, combined with in-depth immunologic and molecular profiling and multimodal omics integration, can identify TB endotypes, guide endotype-specific HDT, and improve TB outcomes, similar to advances in cancer medicine.
Collapse
Affiliation(s)
- Andrew R DiNardo
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Tomoki Nishiguchi
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Sandra L Grimm
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | | | - Edward A Graviss
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Jeffrey D Cirillo
- Department of Microbial and Molecular Pathogenesis, Texas A&M College of Medicine, Bryan, TX, USA
| | - Cristian Coarfa
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.,Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Anna M Mandalakas
- The Global Tuberculosis Program, Texas Children's Hospital, Immigrant and Global Health, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Jan Heyckendorf
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany.,Respiratory Medicine & International Health, University of Lübeck, Lü beck, Germany
| | - Stefan H E Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany.,Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA.,Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, 37077 Gö ttingen, Germany
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, Borstel, Germany.,German Center for Infection Research (DZIF) Clinical Tuberculosis Unit, Borstel, Germany.,Respiratory Medicine & International Health, University of Lübeck, Lü beck, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands.,Department of Immunology and Metabolism, Life & Medical Sciences Institute, University of Bonn, 53115 Bonn, Germany
| | - Reinout Van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
22
|
Sheedy FJ, Divangahi M. Targeting immunometabolism in host defence against Mycobacterium tuberculosis. Immunology 2021; 162:145-159. [PMID: 33020911 PMCID: PMC7808148 DOI: 10.1111/imm.13276] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
In the face of ineffective vaccines, increasing antibiotic resistance and the decline in new antibacterial drugs in the pipeline, tuberculosis (TB) still remains pandemic. Exposure to Mycobacterium tuberculosis (Mtb), which causes TB, results in either direct elimination of the pathogen, most likely by the innate immune system, or infection and containment that requires both innate and adaptive immunity to form the granuloma. Host defence strategies against infectious diseases are comprised of both host resistance, which is the ability of the host to prevent invasion or to eliminate the pathogen, and disease tolerance, which is defined by limiting the collateral tissue damage. In this review, we aim to examine the metabolic demands of the immune cells involved in both host resistance and disease tolerance, chiefly the macrophage and T-lymphocyte. We will further discuss how baseline metabolic heterogeneity and inflammation-driven metabolic reprogramming during infection are linked to their key immune functions containing mycobacterial growth and instructing protective immunity. Targeting key players in immune cellular metabolism may provide a novel opportunity for treatments at different stages of TB disease.
Collapse
Affiliation(s)
- Frederick J. Sheedy
- School of Biochemistry & ImmunologyTrinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - Maziar Divangahi
- Meakins‐Christie LaboratoriesDepartment of MedicineDepartment of PathologyDepartment of Microbiology & ImmunologyMcGill University Health CentreMcGill International TB CentreMcGill UniversityMontrealQuebecCanada
| |
Collapse
|
23
|
Kinsella RL, Zhu DX, Harrison GA, Mayer Bridwell AE, Prusa J, Chavez SM, Stallings CL. Perspectives and Advances in the Understanding of Tuberculosis. ANNUAL REVIEW OF PATHOLOGY 2021; 16:377-408. [PMID: 33497258 DOI: 10.1146/annurev-pathol-042120-032916] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a leading cause of death due to infection in humans. To more effectively combat this pandemic, many aspects of TB control must be developed, including better point of care diagnostics, shorter and safer drug regimens, and a protective vaccine. To address all these areas of need, better understanding of the pathogen, host responses, and clinical manifestations of the disease is required. Recently, the application of cutting-edge technologies to the study of Mtb pathogenesis has resulted in significant advances in basic biology, vaccine development, and antibiotic discovery. This leaves us in an exciting era of Mtb research in which our understanding of this deadly infection is improving at a faster rate than ever, and renews hope in our fight to end TB. In this review, we reflect on what is known regarding Mtb pathogenesis, highlighting recent breakthroughs that will provide leverage for the next leaps forward in the field.
Collapse
Affiliation(s)
- Rachel L Kinsella
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Dennis X Zhu
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Gregory A Harrison
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Anne E Mayer Bridwell
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Jerome Prusa
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Sthefany M Chavez
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| | - Christina L Stallings
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri 63110, USA;
| |
Collapse
|
24
|
Paik S, Jo EK. An Interplay Between Autophagy and Immunometabolism for Host Defense Against Mycobacterial Infection. Front Immunol 2020; 11:603951. [PMID: 33262773 PMCID: PMC7688515 DOI: 10.3389/fimmu.2020.603951] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/16/2020] [Indexed: 12/15/2022] Open
Abstract
Autophagy, an intracellular catabolic pathway featuring lysosomal degradation, is a central component of the host immune defense against various infections including Mycobacterium tuberculosis (Mtb), the pathogen that causes tuberculosis. Mtb can evade the autophagic defense and drive immunometabolic remodeling of host phagocytes. Co-regulation of the autophagic and metabolic pathways may play a pivotal role in shaping the innate immune defense and inflammation during Mtb infection. Two principal metabolic sensors, AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) kinase, function together to control the autophagy and immunometabolism that coordinate the anti-mycobacterial immune defense. Here, we discuss our current understanding of the interplay between autophagy and immunometabolism in terms of combating intracellular Mtb, and how AMPK-mTOR signaling regulates antibacterial autophagy in terms of Mtb infection. We describe several autophagy-targeting agents that promote host antimicrobial defenses by regulating the AMPK-mTOR axis. A better understanding of the crosstalk between immunometabolism and autophagy, both of which are involved in host defense, is crucial for the development of innovative targeted therapies for tuberculosis.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, South Korea.,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
25
|
Hackett EE, Sheedy FJ. An Army Marches on Its Stomach: Metabolic Intermediates as Antimicrobial Mediators in Mycobacterium tuberculosis Infection. Front Cell Infect Microbiol 2020; 10:446. [PMID: 32984072 PMCID: PMC7477320 DOI: 10.3389/fcimb.2020.00446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The cells of the immune system are reliant on their metabolic state to launch effective responses to combat mycobacterial infections. The bioenergetic profile of the cell determines the molecular fuels and metabolites available to the host, as well as to the bacterial invader. How cells utilize the nutrients in their microenvironment—including glucose, lipids and amino acids—to sustain their functions and produce antimicrobial metabolites, and how mycobacteria exploit this to evade the immune system is of great interest. Changes in flux through metabolic pathways alters the intermediate metabolites present. These intermediates are beginning to be recognized as key modulators of immune signaling as well as direct antimicrobial effectors, and their impact on tuberculosis infection is becoming apparent. A better understanding of how metabolism impacts immunity to Mycobacterium tuberculosis and how it is regulated and thus can be manipulated will open the potential for novel therapeutic interventions and vaccination strategies.
Collapse
Affiliation(s)
- Emer E Hackett
- Macrophage Homeostasis, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Frederick J Sheedy
- Macrophage Homeostasis, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
26
|
Agarwal P, Combes TW, Shojaee-Moradie F, Fielding B, Gordon S, Mizrahi V, Martinez FO. Foam Cells Control Mycobacterium tuberculosis Infection. Front Microbiol 2020; 11:1394. [PMID: 32754123 PMCID: PMC7381311 DOI: 10.3389/fmicb.2020.01394] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 05/29/2020] [Indexed: 12/27/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) infects macrophages and macrophage-derived foam cells, a hallmark of granulomata in tuberculous lesions. We analyzed the effects of lipid accumulation in human primary macrophages and quantified strong triglyceride and phospholipid remodeling which depended on the dietary fatty acid used for the assay. The enrichment of >70% in triglyceride and phospholipids can alter cell membrane properties, signaling and phagocytosis in macrophages. In conventional macrophage cultures, cells are heterogeneous, small or large macrophages. In foam cells, a third population of 30% of cells with increased granularity can be detected. We found that foam cell formation is heterogenous and that lipid accumulation and foam cell formation reduces the phagocytosis of Mtb. Under the conditions tested, cell death was highly prevalent in macrophages, whereas foam cells were largely protected from this effect. Foam cells also supported slower Mtb replication, yet this had no discernible impact on the intracellular efficacy of four different antitubercular drugs. Foam cell formation had a significant impact in the inflammatory potential of the cells. TNF-α, IL-1β, and prototypical chemokines were increased. The ratio of inflammatory IL-1β, TNF-α, and IL-6 vs. anti-inflammatory IL-10 was significantly higher in response to Mtb vs. LPS, and was increased in foam cells compared to macrophages, suggestive of increased pro-inflammatory properties. Cytokine production correlated with NF-κB activation in our models. We conclude that foam cell formation reduces the host cell avidity for, and phagocytosis of, Mtb while protecting the cells from death. This protective effect is associated with enhanced inflammatory potential of foam cells and restricted intracellular growth of Mtb.
Collapse
Affiliation(s)
- Pooja Agarwal
- South African Medical Research Council/National Health Laboratory Service/University of Cape Town, Molecular Mycobacteriology Research Unit, Division of Medical Microbiology, Department of Pathology, Department of Science and Innovation/National Research Foundation, Centre of Excellence for Biomedical TB Research and Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Theo W Combes
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | | | - Barbara Fielding
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Siamon Gordon
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City, Taiwan.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Valerie Mizrahi
- South African Medical Research Council/National Health Laboratory Service/University of Cape Town, Molecular Mycobacteriology Research Unit, Division of Medical Microbiology, Department of Pathology, Department of Science and Innovation/National Research Foundation, Centre of Excellence for Biomedical TB Research and Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Fernando O Martinez
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
27
|
Shim D, Kim H, Shin SJ. Mycobacterium tuberculosis Infection-Driven Foamy Macrophages and Their Implications in Tuberculosis Control as Targets for Host-Directed Therapy. Front Immunol 2020; 11:910. [PMID: 32477367 PMCID: PMC7235167 DOI: 10.3389/fimmu.2020.00910] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/20/2020] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) is a leading cause of death worldwide following infection with Mycobacterium tuberculosis (Mtb), with 1.5 million deaths from this disease reported in 2018. Once the bacilli are inhaled, alveolar and interstitial macrophages become infected with Mtb and differentiate into lipid-laden foamy macrophages leading to lung inflammation. Thus, the presence of lipid-laden foamy macrophages is the hallmark of TB granuloma; these Mtb-infected foamy macrophages are the major niche for Mtb survival. The fate of TB pathogenesis is likely determined by the altered function of Mtb-infected macrophages, which initiate and mediate TB-related lung inflammation. As Mtb-infected foamy macrophages play central roles in the pathogenesis of Mtb, they may be important in the development of host-directed therapy against TB. Here, we summarize and discuss the current understanding of the alterations in alveolar and interstitial macrophages in the regulation of Mtb infection-induced immune responses. Metabolic reprogramming of lipid-laden foamy macrophages following Mtb infection or virulence factors are also summarized. Furthermore, we review the therapeutic interventions targeting immune responses and metabolic pathways, from in vitro, in vivo, and clinical studies. This review will further our understanding of the Mtb-infected foamy macrophages, which are both the major Mtb niche and therapeutic targets against TB.
Collapse
Affiliation(s)
- Dahee Shim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Department of Life Science, Research Institute for Natural Sciences, College of Natural Sciences, Hanyang University, Seoul, South Korea
| | - Hagyu Kim
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 Program for Leading Universities and Students (PLUS) Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
28
|
Analyzing the impact of Mycobacterium tuberculosis infection on primary human macrophages by combined exploratory and targeted metabolomics. Sci Rep 2020; 10:7085. [PMID: 32341411 PMCID: PMC7184630 DOI: 10.1038/s41598-020-62911-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/17/2020] [Indexed: 12/15/2022] Open
Abstract
The pathogenic success of Mycobacterium tuberculosis (Mtb) is tightly linked to its ability to recalibrate host metabolic processes in infected host macrophages. Since changes in cellular metabolic intermediates or pathways also affect macrophage function in response to pathogens, we sought to analyse specific metabolic alterations induced by Mtb infection. Stimulation of macrophages with Mtb lysate or lipopolysaccharide (LPS) induced a relative increase in glycolysis versus oxidative phosphorylation. Cellular metabolomics revealed that Mtb infection induced a distinct metabolic profile compared to LPS in both M1 and M2 macrophages. Specifically, Mtb infection resulted in elevated intracellular levels of nicotinamide adenine dinucleotide (NAD+), creatine, creatine phosphate and glutathione compared to uninfected control macrophages. Correspondingly, RNA-sequencing datasets showed altered gene expression of key metabolic enzymes involved in NAD+, creatine, glucose and glutamine metabolism (e.g NAMPT, SLC6A8, HK2) in Mtb-infected M2 macrophages. These findings demonstrate clear modulation of host macrophage metabolic pathways by Mtb infection.
Collapse
|
29
|
Liu Y, Huan W, Wu J, Zou S, Qu L. IGFBP6 Is Downregulated in Unstable Carotid Atherosclerotic Plaques According to an Integrated Bioinformatics Analysis and Experimental Verification. J Atheroscler Thromb 2020; 27:1068-1085. [PMID: 32037372 PMCID: PMC7585910 DOI: 10.5551/jat.52993] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aims: To investigate the differentially expressed genes (DEGs) and molecular interaction in unstable atherosclerotic carotid plaques. Methods: Gene expression datasets GSE41571, GSE118481, and E-MTAB-2055 were analyzed. Co-regulated DEGs in at least two datasets were analyzed with the enrichment of Gene Ontology Biological Process (GO-BP), Kyoto Encyclopedia of Genes and Genomes (KEGG), protein-protein interaction (PPI) networks, interrelationships between miRNAs/transcriptional factors, and their target genes and drug-gene interactions. The expression of notable DEGs in human carotid artery plaques and plasma was further identified. Results: The GO-BP enrichment analysis revealed that genes associated with inflammatory response, and extracellular matrix organization were altered. The KEGG enrichment analysis revealed that upregulated DEGs were enriched in the tuberculous, lysosomal, and chemokine signaling pathways, whereas downregulated genes were enriched in the focal adhesion and PI3K/Akt signaling pathway. Collagen type I alpha 2 chain (COL1A2), adenylate cyclase 3 (ADCY3), C-X-C motif chemokine receptor 4 (CXCR4), and TYRO protein tyrosine kinase binding protein (TYROBP) might play crucial roles in the PPI networks. In drug–gene interactions, colony-stimulating factor-1 receptor had the most drug interactions. Insulin-like growth factor binding protein 6 (IGFBP6) was markedly downregulated in unstable human carotid plaques and plasma. Under a receiver operating characteristic curve analysis, plasma IGFBP6 had a significant discriminatory power (AUC, 0.894; 95% CI, 0.810–0.977), with a cutoff value of 142.08 ng/mL. Conclusions: The genes COL1A2, ADCY3, CXCR4, and TYROBP are promising targets for the prevention of unstable carotid plaque formation. IGFBP6 may be an important biomarker for predicting vulnerable plaques.
Collapse
Affiliation(s)
- Yandong Liu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Second Military Medical University
| | - Wei Huan
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Second Military Medical University
| | - Jianjin Wu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Second Military Medical University
| | - Sili Zou
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Second Military Medical University
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital Affiliated to the Second Military Medical University
| |
Collapse
|
30
|
Bo M, Arru G, Niegowska M, Erre GL, Manchia PA, Sechi LA. Association between Lipoprotein Levels and Humoral Reactivity to Mycobacterium avium subsp. paratuberculosis in Multiple Sclerosis, Type 1 Diabetes Mellitus and Rheumatoid Arthritis. Microorganisms 2019; 7:E423. [PMID: 31597322 PMCID: PMC6843567 DOI: 10.3390/microorganisms7100423] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 09/30/2019] [Accepted: 10/02/2019] [Indexed: 01/12/2023] Open
Abstract
Environmental factors such as bacterial infections may play an important role in the development of autoimmune diseases. Mycobacterium avium subsp. paratuberculosis (MAP) is an obligate pathogen of ruminants able to use the host's cholesterol for survival into macrophages and has been associated with multiple sclerosis (MS), type 1 diabetes (T1DM) and rheumatoid arthritis (RA) through a molecular mimicry mechanism. Here, we aimed at investigating the correlation between humoral reactivity against MAP and serum lipoprotein levels in subjects at T1DM risk (rT1DM) grouped by geographical background and in patients affected by MS or RA. Our results showed significant differences in HDL, LDL/VLDL and Total Cholesterol (TC) levels between patients and healthy controls (p < 0.0001). Patients positive to anti-MAP Abs (MAP+) had lower HDL levels in comparison with Abs negative (MAP-) subjects, while opposite trends were found for LDL/VLDL concentrations (p < 0.05). TC levels varied between MAP+ and MAP- patients in all three assessed diseases. These findings suggest the implication of anti-MAP Abs in fluctuations of lipoprotein levels highlighting a possible link with cardiovascular disease. Further studies will be needed to confirm these results in larger groups.
Collapse
Affiliation(s)
- Marco Bo
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
| | - Giannina Arru
- Department of Clinical, Surgical and Experimental Medicine, Neurological Clinic, University of Sassari, Viale San Pietro 8, 07100 Sassari, Italy.
| | - Magdalena Niegowska
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
| | - Gian Luca Erre
- Department of Clinical and Experimental Medicine, Azienda Ospedaliero-Universitaria di Sassari, UOC di Reumatologia, Viale San Pietro 8, 07100 Sassari, Italy.
| | | | - Leonardo A Sechi
- Department of Biomedical Sciences, Section of Microbiology and Virology, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy.
| |
Collapse
|
31
|
Segura-Cerda CA, López-Romero W, Flores-Valdez MA. Changes in Host Response to Mycobacterium tuberculosis Infection Associated With Type 2 Diabetes: Beyond Hyperglycemia. Front Cell Infect Microbiol 2019; 9:342. [PMID: 31637222 PMCID: PMC6787561 DOI: 10.3389/fcimb.2019.00342] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022] Open
Abstract
Tuberculosis (TB) remains as the first cause of death among infectious diseases worldwide. Global incidence of tuberculosis is in part coincident with incidence of type 2 diabetes (T2D). Incidence of T2D is recognized as a high-risk factor that may contribute to tuberculosis dissemination. However, mechanisms which favor infection under T2D are just starting to emerge. Here, we first discuss the evidences that are available to support a metabolic connection between TB and T2D. Then, we analyze the evidences of metabolic changes which occur during T2D gathered thus far for its influence on susceptibility to M. tuberculosis infection and TB progression, such as hyperglycemia, increase of 1AC levels, increase of triglycerides levels, reduction of HDL-cholesterol levels, increased concentration of lipoproteins, and modification of the activity of some hormones related to the control of metabolic homeostasis. Finally, we recognize possible advantages of metabolic management of immunity to develop new strategies for treatment, diagnosis, and prevention of tuberculosis.
Collapse
Affiliation(s)
- Cristian Alfredo Segura-Cerda
- Doctorado en Farmacología, Universidad de Guadalajara, Guadalajara, Mexico.,Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Wendy López-Romero
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| | - Mario Alberto Flores-Valdez
- Biotecnología Médica y Farmacéutica, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara, Mexico
| |
Collapse
|
32
|
Willemsen L, Neele AE, van der Velden S, Prange KHM, den Toom M, van Roomen CPAA, Reiche ME, Griffith GR, Gijbels MJJ, Lutgens E, de Winther MPJ. Peritoneal macrophages have an impaired immune response in obesity which can be reversed by subsequent weight loss. BMJ Open Diabetes Res Care 2019; 7:e000751. [PMID: 31798899 PMCID: PMC6861071 DOI: 10.1136/bmjdrc-2019-000751] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/24/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Obesity is recognized as a risk factor for various microbial infections. The immune system, which is affected by obesity, plays an important role in the pathophysiology of these infections and other obesity-related comorbidities. Weight loss is considered the most obvious treatment for obesity. However, multiple studies suggest that the comorbidities of obesity may persist after weight loss. Deregulation of immune cells including adipose tissue macrophages of obese individuals has been extensively studied, but how obesity and subsequent weight loss affect immune cell function outside adipose tissue is not well defined. RESEARCH DESIGN AND METHODS Here we investigated the phenotype of non-adipose tissue macrophages by transcriptional characterization of thioglycollate-elicited peritoneal macrophages (PM) from mice with diet-induced obesity and type 2 diabetes (T2D). Subsequently, we defined the characteristics of PMs after weight loss and mimicked a bacterial infection by exposing PMs to lipopolysaccharide. RESULTS AND CONCLUSIONS In contrast to the proinflammatory phenotype of adipose tissue macrophages in obesity and T2D, we found a deactivated state of PMs in obesity and T2D. Weight loss could reverse this deactivated macrophage phenotype. Anti-inflammatory characteristics of these non-adipose macrophages may explain why patients with obesity and T2D have an impaired immune response against pathogens. Our data also suggest that losing weight restores macrophage function and thus contributes to the reduction of immune-related comorbidities in patients.
Collapse
MESH Headings
- Animals
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/immunology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/therapy
- Diet, High-Fat
- Dietary Fats/pharmacology
- Immunity, Cellular/drug effects
- Immunity, Cellular/physiology
- Insulin Resistance/physiology
- Macrophage Activation/drug effects
- Macrophage Activation/physiology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/immunology
- Macrophages, Peritoneal/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Obesity/complications
- Obesity/immunology
- Obesity/pathology
- Obesity/therapy
- Weight Loss/immunology
- Weight Loss/physiology
Collapse
Affiliation(s)
- Lisa Willemsen
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annette E Neele
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Saskia van der Velden
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Koen H M Prange
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Myrthe den Toom
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Cindy P A A van Roomen
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Myrthe E Reiche
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Guillermo R Griffith
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Marion J J Gijbels
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Departments of Pathology and Molecular Genetics, CARIM School for Cardiovascular Diseases and GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Esther Lutgens
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University Munich, Munich, Germany
| | - Menno P J de Winther
- Experimental Vascular Biology, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences (ACS), Amsterdam UMC-Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Institute for Cardiovascular Prevention (IPEK), Ludwig Maximilians University Munich, Munich, Germany
| |
Collapse
|