1
|
Malone M, Maeyama A, Ogden N, Perry KN, Kramer A, Bates C, Marble C, Orlando R, Rausch A, Smeraldi C, Lowey C, Fees B, Dyson HJ, Dorrell M, Kast-Woelbern H, Jansma AL. The effect of phosphorylation efficiency on the oncogenic properties of the protein E7 from high-risk HPV. Virus Res 2024; 348:199446. [PMID: 39127239 PMCID: PMC11375142 DOI: 10.1016/j.virusres.2024.199446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
The Human papillomavirus (HPV) causes tumors in part by hijacking the host cell cycle and forcing uncontrolled cellular division. While there are >200 genotypes of HPV, 15 are classified as high-risk and have been shown to transform infected cells and contribute to tumor formation. The remaining low-risk genotypes are not considered oncogenic and result in benign skin lesions. In high-risk HPV, the oncoprotein E7 contributes to the dysregulation of cell cycle regulatory mechanisms. High-risk E7 is phosphorylated in cells at two conserved serine residues by Casein Kinase 2 (CK2) and this phosphorylation event increases binding affinity for cellular proteins such as the tumor suppressor retinoblastoma (pRb). While low-risk E7 possesses similar serine residues, it is phosphorylated to a lesser degree in cells and has decreased binding capabilities. When E7 binding affinity is decreased, it is less able to facilitate complex interactions between proteins and therefore has less capability to dysregulate the cell cycle. By comparing E7 protein sequences from both low- and high-risk HPV variants and using site-directed mutagenesis combined with NMR spectroscopy and cell-based assays, we demonstrate that the presence of two key nonpolar valine residues within the CK2 recognition sequence, present in low-risk E7, reduces serine phosphorylation efficiency relative to high-risk E7. This results in significant loss of the ability of E7 to degrade the retinoblastoma tumor suppressor protein, thus also reducing the ability of E7 to increase cellular proliferation and reduce senescence. This provides additional insight into the differential E7-mediated outcomes when cells are infected with high-risk verses low-risk HPV. Understanding these oncogenic differences may be important to developing targeted treatment options for HPV-induced cancers.
Collapse
Affiliation(s)
- Madison Malone
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Ava Maeyama
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Naomi Ogden
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Kayla N Perry
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Andrew Kramer
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Caleb Bates
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Camryn Marble
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Ryan Orlando
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Amy Rausch
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Caleb Smeraldi
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Connor Lowey
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Bronson Fees
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - H Jane Dyson
- Department of Integrative Structural and Computational Biology and Skaggs Institute of Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, 92037, CA, USA
| | - Michael Dorrell
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA
| | - Heidi Kast-Woelbern
- Department of Biology, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA.
| | - Ariane L Jansma
- Department of Chemistry, Point Loma Nazarene University, 3900 Lomaland Drive, San Diego, 92126, CA, USA.
| |
Collapse
|
2
|
Kala M, Babok S, Mikhailava N, Piirsoo M, Piirsoo A. The POU-HD TFs impede the replication efficiency of several human papillomavirus genomes. Virol J 2024; 21:54. [PMID: 38444021 PMCID: PMC10916165 DOI: 10.1186/s12985-024-02334-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
Human papillomavirus (HPV) is a double-stranded DNA virus that infects cutaneous and mucosal epithelial cells. HPV replication initiates at the origin (ori), located within a noncoding region near the major early promoter. Only two viral proteins, E1 and E2, are essential for replication, with the host cell contributing other necessary factors. However, the role of host cell proteins in regulating HPV replication remains poorly understood. While several binding sites for cellular transcription factors (TFs), such as POU-HD proteins, have been mapped in the regulatory region, their functional importance is unclear. Some POU-HD TFs have been shown to influence replication in a system where E1 and E2 are provided exogenously. In this study, we investigated the impact of several POU-HD TFs on the replication of the HPV5, HPV11, and HPV18 genomes in U2OS cells and human primary keratinocytes. We demonstrated that OCT1, OCT6, BRN5A, and SKN1A are expressed in HPV host cells and that their overexpression inhibits HPV genome replication, whereas knocking down OCT1 had a positive effect. Using the replication-deficient HPV18-E1- genome, we demonstrated that OCT1-mediated inhibition of HPV replication involves modulation of HPV early promoters controlling E1 and E2 expression. Moreover, using Oct6 mutants deficient either in DNA binding or transcriptional regulation, we showed that the inhibition of HPV18 replication is solely dependent on Oct6's DNA binding activity. Our study highlights the complex regulatory roles of POU-HD factors in the HPV replication.
Collapse
Affiliation(s)
- Martin Kala
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sofiya Babok
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Nika Mikhailava
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Marko Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
3
|
Duncan CL, Gunosewoyo H, Mocerino M, Payne AD. Small Molecule Inhibitors of Human Papillomavirus: A Review of Research from 1997 to 2021. Curr Med Chem 2024; 31:5308-5350. [PMID: 37448363 DOI: 10.2174/0929867331666230713165407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/14/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Human papillomavirus (HPV) infections are the cause of warts, lesions and cancer, with different types of HPV causing different symptoms. HPV infections are the primary cause of cervical cancer. There are over 220 different types of HPV, and only nine of these can currently be vaccinated. There is a need to treat these viral infections without just treating the symptoms of the infection, as is currently the main method. There is a wide range of small molecules that have been used to inhibit various stages of the HPV infectious cycle. This review examined 132 small molecules from 121 studies that specifically target aspects of HPV infections. HPV DNA encodes for six early genes (E1 to E7, skipping E3) and two late genes (L1 and L2). According to the results, these targets for small molecule inhibitors fall into three categories: those targeting E1 and E2, targeting E6 and E7 and, finally, targeting L1 and L2. Inhibitors of E6 and E7 are the most widely studied targets, with the majority of HPV inhibition in this area. While compounds targeting both E1/E2 and E6/E7 have made it to clinical trials, there has been no significant advancement on the topic.
Collapse
Affiliation(s)
- Caitlin L Duncan
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Hendra Gunosewoyo
- Curtin Medical School, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Mauro Mocerino
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| | - Alan D Payne
- School of Molecular and Life Sciences, Curtin University, GPO Box U1987, Perth, WA, 6845, Australia
| |
Collapse
|
4
|
Laanemets A, Babok S, Piirsoo A. Characterization and comparative analysis of phosphorylation patterns in HPV18 and HPV11 E1 helicases: Implications for viral genome replication. Virology 2023; 587:109853. [PMID: 37523977 DOI: 10.1016/j.virol.2023.109853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
The genome of human papillomaviruses (HPVs) encodes the E1 replication factor, whose biological activities are regulated by cellular protein kinases. Here, the phosphorylation pattern of the E1 helicase of oncogenic mucosotropic HPV18 was investigated both in vitro and in vivo. Four serine residues located in a short peptide within a localization regulatory region were found to be phosphorylated in both experimental settings. We demonstrate that this peptide is targeted in vitro by various protein kinases, including CK2, PKA, and CKD2/cyclin A/B/E complexes. Through point mutagenesis, we show that phosphorylation of this region is essential for E1 subcellular localization, the interaction of E1 with the E2 protein, and replication of the HPV18 genome. Furthermore, we demonstrate the functional conservation of this phosphorylation across the E1 proteins of the low-risk mucosotropic HPV11 and high-risk cutaneotropic HPV5. These findings provide deeper insights into the phosphorylation-mediated regulation of biological activities of the E1 protein.
Collapse
Affiliation(s)
| | - Sofiya Babok
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
5
|
Ye J, Zheng L, He Y, Qi X. Human papillomavirus associated cervical lesion: pathogenesis and therapeutic interventions. MedComm (Beijing) 2023; 4:e368. [PMID: 37719443 PMCID: PMC10501338 DOI: 10.1002/mco2.368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023] Open
Abstract
Human papillomavirus (HPV) is the most prevalent sexually transmitted virus globally. Persistent high-risk HPV infection can result in cervical precancerous lesions and cervical cancer, with 70% of cervical cancer cases associated with high-risk types HPV16 and 18. HPV infection imposes a significant financial and psychological burden. Therefore, studying methods to eradicate HPV infection and halt the progression of precancerous lesions remains crucial. This review comprehensively explores the mechanisms underlying HPV-related cervical lesions, including the viral life cycle, immune factors, epithelial cell malignant transformation, and host and environmental contributing factors. Additionally, we provide a comprehensive overview of treatment methods for HPV-related cervical precancerous lesions and cervical cancer. Our focus is on immunotherapy, encompassing HPV therapeutic vaccines, immune checkpoint inhibitors, and advanced adoptive T cell therapy. Furthermore, we summarize the commonly employed drugs and other nonsurgical treatments currently utilized in clinical practice for managing HPV infection and associated cervical lesions. Gene editing technology is currently undergoing clinical research and, although not yet employed officially in clinical treatment of cervical lesions, numerous preclinical studies have substantiated its efficacy. Therefore, it holds promise as a precise treatment strategy for HPV-related cervical lesions.
Collapse
Affiliation(s)
- Jiatian Ye
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Lan Zheng
- Department of Pathology and Lab MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yuedong He
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| | - Xiaorong Qi
- Department of Gynecology and ObstetricsKey Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
6
|
Lototskaja E, Liblekas L, Piirsoo M, Laaneväli A, Ibragimov R, Piirsoo A. Phosphorylation of E2 Serine Residue 402 Is Required for the Transcription and Replication of the HPV5 Genome. J Virol 2023; 97:e0064323. [PMID: 37272841 PMCID: PMC10308906 DOI: 10.1128/jvi.00643-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 05/13/2023] [Indexed: 06/06/2023] Open
Abstract
Cutaneous human papillomavirus type 5 (HPV5) belongs to the supposedly oncogenic β-HPVs associated with specific types of skin and oral cavity cancers. Three viral proteins, namely, helicase E1 and transcription factors E2 and E8^E2, are master regulators of the viral life cycle. HPV5 E2 is a transcriptional activator that also participates in the E1-dependent replication and nuclear retention of the viral genome, whereas E8^E2 counterbalances the activity of E2 and inhibits HPV transcription and replication. In the present study, we demonstrate that the HPV5 E2 protein is extensively phosphorylated by cellular protein kinases, and serine residue 402 (S402) is the highest scoring phosphoacceptor site. This residue is located within a motif conserved among many β-HPVs and in the oncogenic HPV31 α-type. Using the nonphosphorylatable and phosphomimetic mutants, we demonstrate that phosphorylation of the E2 S402 residue is required for the transcription and replication of the HPV5 genome in U2OS cells and human primary keratinocytes. Mechanistically, the E2-S402-phopshodeficient protein is unable to trigger viral gene transcription and has an impaired ability to support E1-dependent replication, but the respective E8^E2-S213 mutant displays no phenotype. However, phosphorylation of the E2 S402 residue has no impact on the E2 stability, subcellular localization, self-assembly, DNA-binding capacity, and affinity to the E1 and BRD4 proteins. Further studies are needed to identify the protein kinase(s) responsible for this phosphorylation. IMPORTANCE Human papillomavirus type 5 (HPV5) may play a role in the development of specific types of cutaneous and head and neck cancers. The persistence of the HPV genome in host cells depends on the activity of its proteins, namely, a helicase E1 and transcription/replication factor E2. The latter also facilitates the attachment of episomal viral genomes to host cell chromosomes. In the present study, we show that the HPV5 E2 protein is extensively phosphorylated by host cell protein kinases, and we identify serine residue 402 as the highest scoring phosphoacceptor site of E2. We demonstrate that the replication of the HPV5 genome may be blocked by a single point mutation that prevents phosphorylation of this serine residue and switches off the transcriptional activity of the E2 protein. The present study contributes to a better understanding of β-HPV5 replication and its regulation by host cell protein kinases.
Collapse
Affiliation(s)
| | - Lisett Liblekas
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Marko Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | - Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
7
|
Human Papillomavirus 16 E2 Interaction with TopBP1 Is Required for E2 and Viral Genome Stability during the Viral Life Cycle. J Virol 2023; 97:e0006323. [PMID: 36840558 PMCID: PMC10062148 DOI: 10.1128/jvi.00063-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023] Open
Abstract
CK2 phosphorylation of HPV16 E2 at serine 23 promotes interaction with TopBP1, and this interaction is important for E2 plasmid segregation function. Here, we demonstrate that the E2-TopBP1 interaction is critical for E2 and viral genome stability during the viral life cycle. Introduction of the S23A mutation into the HPV16 genome results in a loss of E2 expression and viral genome integration during organotypic rafting. Coculture of N/Tert-1+E2-S23A cells with J2 fibroblasts results in E2-S23A degradation via the proteasome; wild-type E2 is not degraded. TopBP1 siRNA treatment of N/Tert-1+E2-WT cells results in E2 degradation only in the presence of J2 cells demonstrating the critical role for TopBP1 in maintaining E2 stability. The CK2 inhibitor CX4945 promotes E2-WT degradation in the presence of fibroblasts as it disrupts E2-TopBP1 interaction. siRNA targeting SIRT1 rescues E2-S23A stability in N/Tert-1 cells treated with J2 fibroblasts, with an increased E2-S23A acetylation. The results demonstrate that the E2-TopBP1 interaction is critical during the viral life cycle as it prevents fibroblast stimulated SIRT1 mediated deacetylation of E2 that promotes protein degradation. This means that the E2-TopBP1 complex maintains E2 and viral genome stability and that disruption of this complex can promote viral genome integration. Finally, we demonstrate that HPV11 E2 also interacts with TopBP1 and that this interaction is critical for HPV11 E2 stability in the presence of J2 cells. Treatment of N/Tert-1 + 11E2-WT cells with CX4945 results in 11E2 degradation. Therefore, CK2 inhibition is a therapeutic strategy for alleviating HPV11 diseases, including juvenile respiratory papillomatosis. IMPORTANCE Human papillomaviruses are pathogens that cause a host of diseases ranging from benign warts to cancers. There are no therapeutics available for combating these diseases that directly target viral proteins or processes; therefore, we must enhance our understanding of HPV life cycles to assist with identifying novel treatments. In this report, we demonstrate that HPV16 and HPV11 E2 protein expression is dependent upon TopBP1 interaction in keratinocytes interacting with fibroblasts, which recapitulate stromal interactions in culture. The degradation of 16E2 promotes HPV16 genome integration; therefore, the E2-TopBP1 interaction is critical during the viral life cycle. We demonstrate that the CK2 inhibitor CX4945 disrupts HPV11 interaction with TopBP1 and destabilizes HPV11 E2 protein in the presence of J2 fibroblasts; we propose that CX4945 could alleviate HPV11 disease burden.
Collapse
|
8
|
Protein Kinase CK2 and Epstein-Barr Virus. Biomedicines 2023; 11:biomedicines11020358. [PMID: 36830895 PMCID: PMC9953236 DOI: 10.3390/biomedicines11020358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Protein kinase CK2 is a pleiotropic protein kinase, which phosphorylates a number of cellular and viral proteins. Thereby, this kinase is implicated in the regulation of cellular signaling, controlling of cell proliferation, apoptosis, angiogenesis, immune response, migration and invasion. In general, viruses use host signaling mechanisms for the replication of their genome as well as for cell transformation leading to cancer. Therefore, it is not surprising that CK2 also plays a role in controlling viral infection and the generation of cancer cells. Epstein-Barr virus (EBV) lytically infects epithelial cells of the oropharynx and B cells. These latently infected B cells subsequently become resting memory B cells when passing the germinal center. Importantly, EBV is responsible for the generation of tumors such as Burkitt's lymphoma. EBV was one of the first human viruses, which was connected to CK2 in the early nineties of the last century. The present review shows that protein kinase CK2 phosphorylates EBV encoded proteins as well as cellular proteins, which are implicated in the lytic and persistent infection and in EBV-induced neoplastic transformation. EBV-encoded and CK2-phosphorylated proteins together with CK2-phosphorylated cellular signaling proteins have the potential to provide efficient virus replication and cell transformation. Since there are powerful inhibitors known for CK2 kinase activity, CK2 might become an attractive target for the inhibition of EBV replication and cell transformation.
Collapse
|
9
|
Prabhakar AT, James CD, Fontan CT, Otoa R, Wang X, Bristol ML, Hill RD, Dubey A, Morgan IM. Human papillomavirus 16 E2 interaction with TopBP1 is required for E2 and viral genome stability during the viral life cycle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.11.523702. [PMID: 36712128 PMCID: PMC9882167 DOI: 10.1101/2023.01.11.523702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CK2 phosphorylation of HPV16 E2 at serine 23 promotes interaction with TopBP1, and this interaction is important for E2 plasmid segregation function. Here we demonstrate that the E2-TopBP1 interaction is critical for E2 and viral genome stability during the viral life cycle. Introduction of the S23A mutation into the HPV16 genome results in a loss of E2 expression and viral genome integration during organotypic rafting. Co-culture of N/Tert-1+E2-S23A cells with J2 fibroblasts results in E2-S23A degradation via the proteasome, wild-type E2 is not degraded. TopBP1 siRNA treatment of N/Tert-1+E2-WT cells results in E2 degradation only in the presence of J2 cells demonstrating the critical role for TopBP1 in maintaining E2 stability. The CK2 inhibitor CX4945 promotes E2-WT degradation in the presence of fibroblasts as it disrupts E2-TopBP1 interaction. siRNA targeting SIRT1 rescues E2-S23A stability in N/Tert-1 cells treated with J2 fibroblasts, with an increased E2-S23A acetylation. The results demonstrate that the E2-TopBP1 interaction is critical during the viral life cycle as it prevents fibroblast stimulated SIRT1 mediated deacetylation of E2 that promotes protein degradation. This means that the E2-TopBP1 complex maintains E2 and viral genome stability and that disruption of this complex can promote viral genome integration. Finally, we demonstrate that HPV11 E2 also interacts with TopBP1 and that this interaction is critical for HPV11 E2 stability in the presence of J2 cells. Treatment of N/Tert-1+11E2-WT cells with CX4945 results in 11E2 degradation. Therefore, CK2 inhibition is a therapeutic strategy for alleviating HPV11 diseases, including juvenile respiratory papillomatosis. Importance Human papillomaviruses are pathogens that cause a host of diseases ranging from benign warts to cancers. There are no therapeutics available for combating these diseases that directly target viral proteins or processes, therefore we must enhance our understanding of HPV life cycles to assist with identifying novel treatments. In this report, we demonstrate that HPV16 and HPV11 E2 protein expression is dependent upon TopBP1 interaction in keratinocytes interacting with fibroblasts, which recapitulate stromal interactions in culture. The degradation of 16E2 promotes HPV16 genome integration, therefore the E2-TopBP1 interaction is critical during the viral life cycle. We demonstrate that the CK2 inhibitor CX4945 disrupts HPV11 interaction with TopBP1 and destabilizes HPV11 E2 protein in the presence of J2 fibroblasts; we propose that CX4945 could alleviate HPV11 disease burden.
Collapse
|
10
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
Ramón AC, Basukala O, Massimi P, Thomas M, Perera Y, Banks L, Perea SE. CIGB-300 Peptide Targets the CK2 Phospho-Acceptor Domain on Human Papillomavirus E7 and Disrupts the Retinoblastoma (RB) Complex in Cervical Cancer Cells. Viruses 2022; 14:v14081681. [PMID: 36016303 PMCID: PMC9414295 DOI: 10.3390/v14081681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/18/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022] Open
Abstract
CIGB-300 is a clinical-grade anti-Protein Kinase CK2 peptide, binding both its substrate’s phospho-acceptor site and the CK2α catalytic subunit. The cyclic p15 inhibitory domain of CIGB-300 was initially selected in a phage display library screen for its ability to bind the CK2 phospho-acceptor domain ofHPV-16 E7. However, the actual role of this targeting in CIGB-300 antitumoral mechanism remains unexplored. Here, we investigated the physical interaction of CIGB-300 with HPV-E7 and its impact on CK2-mediated phosphorylation. Hence, we studied the relevance of targeting E7 phosphorylation for the cytotoxic effect induced by CIGB-300. Finally, co-immunoprecipitation experiments followed by western blotting were performed to study the impact of the peptide on the E7–pRB interaction. Interestingly, we found a clear binding of CIGB-300 to the N terminal region of E7 proteins of the HPV-16 type. Accordingly, the in vivo physical interaction of the peptide with HPV-16 E7 reduced CK2-mediated phosphorylation of E7, as well as its binding to the tumor suppressor pRB. However, the targeting of E7 phosphorylation by CIGB-300 seemed to be dispensable for the induction of cell death in HPV-18 cervical cancer-derived C4-1 cells. These findings unveil novel molecular clues to the means by which CIGB-300 triggers cell death in cervical cancer cells.
Collapse
Affiliation(s)
- Ailyn C. Ramón
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (Y.P.)
| | - Om Basukala
- Tumor Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy; (O.B.); (P.M.); (M.T.)
| | - Paola Massimi
- Tumor Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy; (O.B.); (P.M.); (M.T.)
| | - Miranda Thomas
- Tumor Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy; (O.B.); (P.M.); (M.T.)
| | - Yasser Perera
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (Y.P.)
- China-Cuba Biotechnology Joint Innovation Center (CCBJIC), Yongzhou Zhong Gu Biotechnology Co., Ltd., Lengshuitan District, Yongzhou 425000, China
| | - Lawrence. Banks
- Tumor Virology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, 34149 Trieste, Italy; (O.B.); (P.M.); (M.T.)
- Correspondence: (L.B.); (S.E.P.)
| | - Silvio E. Perea
- Molecular Oncology Group, Department of Pharmaceuticals, Biomedical Research Division, Center for Genetic Engineering and Biotechnology (CIGB), Havana 10600, Cuba; (A.C.R.); (Y.P.)
- Correspondence: (L.B.); (S.E.P.)
| |
Collapse
|
12
|
Yang X, Dickmander RJ, Bayati A, Taft-Benz SA, Smith JL, Wells CI, Madden EA, Brown JW, Lenarcic EM, Yount BL, Chang E, Axtman AD, Baric RS, Heise MT, McPherson PS, Moorman NJ, Willson TM. Host Kinase CSNK2 is a Target for Inhibition of Pathogenic SARS-like β-Coronaviruses. ACS Chem Biol 2022; 17:1937-1950. [PMID: 35723434 PMCID: PMC9236220 DOI: 10.1021/acschembio.2c00378] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human, bat, and murine β-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in β-coronavirus replication. Spike protein endocytosis was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for the development of anti-SARS-like β-coronavirus drugs.
Collapse
Affiliation(s)
- Xuan Yang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| | - Rebekah J Dickmander
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States.,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Armin Bayati
- Structural Genomics Consortium, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sharon A Taft-Benz
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Carrow I Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Emily A Madden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jason W Brown
- Takeda San Diego, San Diego, California 92121, United States
| | - Erik M Lenarcic
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States.,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Boyd L Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Edcon Chang
- Takeda San Diego, San Diego, California 92121, United States
| | - Alison D Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| | - Ralph S Baric
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States.,Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Mark T Heise
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Peter S McPherson
- Structural Genomics Consortium, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nathaniel J Moorman
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States.,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Timothy M Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States.,Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Lata S, Mishra R, Arya RP, Arora P, Lahon A, Banerjea AC, Sood V. Where all the Roads Meet? A Crossover Perspective on Host Factors Regulating SARS-CoV-2 infection. J Mol Biol 2022; 434:167403. [PMID: 34914966 PMCID: PMC8666384 DOI: 10.1016/j.jmb.2021.167403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 01/11/2023]
Abstract
COVID-19 caused by SARS-CoV-2 is the latest pandemic which has thrown the world into an unprecedented social and economic uncertainties along with huge loss to humanity. Identification of the host factors regulating the replication of SARS-CoV-2 in human host may help in the development of novel anti-viral therapies to combat the viral infection and spread. Recently, some research groups used genome-wide CRISPR/Cas screening to identify the host factors critical for the SARS-CoV-2 replication and infection. A comparative analysis of these significant host factors (p < 0.05) identified fifteen proteins common in these studies. Apart from ACE2 (receptor for SARS-CoV-2 attachment), other common host factors were CSNK2B, GDI2, SLC35B2, DDX51, VPS26A, ARPP-19, C1QTNF7, ALG6, LIMA1, COG3, COG8, BCOR, LRRN2 and TLR9. Additionally, viral interactome of these host factors revealed that many of them were associated with several SARS-CoV-2 proteins as well. Interestingly, some of these host factors have already been shown to be critical for the pathogenesis of other viruses suggesting their crucial role in virus-host interactions. Here, we review the functions of these host factors and their role in other diseases with special emphasis on viral diseases.
Collapse
Affiliation(s)
- Sneh Lata
- Virology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ritu Mishra
- Virology Laboratory, National Institute of Immunology, New Delhi, India
| | - Ravi P. Arya
- KSBS, Indian Institute of Technology, New Delhi, India
| | - Pooja Arora
- Hansraj College, University of Delhi, New Delhi, India
| | | | - Akhil C. Banerjea
- Institute of Advanced Virology, Kerala, India,Corresponding authors
| | - Vikas Sood
- Biochemistry Department, Jamia Hamdard, New Delhi, India,Corresponding authors
| |
Collapse
|
14
|
Yang X, Dickmander RJ, Bayati A, Taft-Benz SA, Smith JL, Wells CI, Madden EA, Brown JW, Lenarcic EM, Yount BL, Chang E, Axtman AD, Baric RS, Heise MT, McPherson PS, Moorman NJ, Willson TM. Host kinase CSNK2 is a target for inhibition of pathogenic β-coronaviruses including SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.01.03.474779. [PMID: 35018375 PMCID: PMC8750650 DOI: 10.1101/2022.01.03.474779] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Inhibition of the protein kinase CSNK2 with any of 30 specific and selective inhibitors representing different chemotypes, blocked replication of pathogenic human and murine β-coronaviruses. The potency of in-cell CSNK2A target engagement across the set of inhibitors correlated with antiviral activity and genetic knockdown confirmed the essential role of the CSNK2 holoenzyme in β-coronavirus replication. Spike protein uptake was blocked by CSNK2A inhibition, indicating that antiviral activity was due in part to a suppression of viral entry. CSNK2A inhibition may be a viable target for development of new broad spectrum anti-β-coronavirus drugs. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Xuan Yang
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
| | - Rebekah J. Dickmander
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Armin Bayati
- Structural Genomics Consortium, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Sharon A. Taft-Benz
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeffery L. Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Carrow I. Wells
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Emily A. Madden
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Erik M. Lenarcic
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Boyd L. Yount
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Edcon Chang
- Takeda San Diego, San Diego, CA 92121, United States
| | - Alison D. Axtman
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Ralph S. Baric
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mark T. Heise
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter S. McPherson
- Structural Genomics Consortium, Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Nathaniel J. Moorman
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, United States
| |
Collapse
|
15
|
Trembley JH, Li B, Kren BT, Peltola J, Manivel J, Meyyappan D, Gravely A, Klein M, Ahmed K, Caicedo-Granados E. Identification of high protein kinase CK2α in HPV(+) oropharyngeal squamous cell carcinoma and correlation with clinical outcomes. PeerJ 2022; 9:e12519. [PMID: 34993017 PMCID: PMC8675248 DOI: 10.7717/peerj.12519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 10/27/2021] [Indexed: 12/27/2022] Open
Abstract
Background Oropharyngeal squamous cell carcinoma (OPSCC) incidence is rising worldwide, especially human papillomavirus (HPV)-associated disease. Historically, high levels of protein kinase CK2 were linked with poor outcomes in head and neck squamous cell carcinoma (HNSCC), without consideration of HPV status. This retrospective study examined tumor CK2α protein expression levels and related clinical outcomes in a cohort of Veteran OPSCC patient tumors which were determined to be predominantly HPV(+). Methods Patients at the Minneapolis VA Health Care System with newly diagnosed primary OPSCC from January 2005 to December 2015 were identified. A total of 119 OPSCC patient tumors were stained for CK2α, p16 and Ki-67 proteins and E6/E7 RNA. CK2α protein levels in tumors and correlations with HPV status and Ki-67 index were assessed. Overall survival (OS) analysis was performed stratified by CK2α protein score and separately by HPV status, followed by Cox regression controlling for smoking status. To strengthen the limited HPV(−) data, survival analysis for HPV(−) HNSCC patients in the publicly available The Cancer Genome Atlas (TCGA) PanCancer RNA-seq dataset was determined for CSNK2A1. Results The patients in the study population were all male and had a predominant history of tobacco and alcohol use. This cohort comprised 84 HPV(+) and 35 HPV(−) tumors. CK2α levels were higher in HPV(+) tumors compared to HPV(−) tumors. Higher CK2α scores positively correlated with higher Ki-67 index. OS improved with increasing CK2α score and separately OS was significantly better for those with HPV(+) as opposed to HPV(−) OPSCC. Both remained significant after controlling for smoking status. High CSNK2A1 mRNA levels from TCGA data associated with worse patient survival in HPV(−) HNSCC. Conclusions High CK2α protein levels are detected in HPV(+) OPSCC tumors and demonstrate an unexpected association with improved survival in a strongly HPV(+) OPSCC cohort. Worse survival outcomes for high CSNK2A1 mRNA levels in HPV(−) HNSCC are consistent with historical data. Given these surprising findings and the rising incidence of HPV(+) OPSCC, further study is needed to understand the biological roles of CK2 in HPV(+) and HPV(−) HNSCC and the potential utility for therapeutic targeting of CK2 in these two disease states.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Laboratory Medicine and Pathology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| | - Bin Li
- Otolaryngology Section, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Otolaryngology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Current affiliation: Kaiser Permanente Roseville Medical Center, Department of Head and Neck Surgery, Roseville, CA, United States of America
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| | - Justin Peltola
- Department of Laboratory Medicine and Pathology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Laboratory Medicine and Pathology Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America
| | - Juan Manivel
- Department of Laboratory Medicine and Pathology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Laboratory Medicine and Pathology Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America
| | - Devi Meyyappan
- Hematology and Oncology Section, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Current affiliation: University of Texas Medical Branch, University Blvd, Galveston, TX, United States of America
| | - Amy Gravely
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America
| | - Mark Klein
- Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Hematology and Oncology Section, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Medicine, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Laboratory Medicine and Pathology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Department of Otolaryngology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| | - Emiro Caicedo-Granados
- Masonic Cancer Center, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America.,Otolaryngology Section, Minneapolis VA Health Care System, Minneapolis, MN, United States of America.,Department of Otolaryngology, University of Minnesota - Twin Cities Campus, Minneapolis, MN, United States of America
| |
Collapse
|
16
|
Liblekas L, Piirsoo A, Laanemets A, Tombak EM, Laaneväli A, Ustav E, Ustav M, Piirsoo M. Analysis of the Replication Mechanisms of the Human Papillomavirus Genomes. Front Microbiol 2021; 12:738125. [PMID: 34733254 PMCID: PMC8558456 DOI: 10.3389/fmicb.2021.738125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 11/27/2022] Open
Abstract
The life-cycle of human papillomaviruses (HPVs) includes three distinct phases of the viral genome replication. First, the viral genome is amplified in the infected cells, and this amplification is often accompanied by the oligomerization of the viral genomes. Second stage includes the replication of viral genomes in concert with the host cell genome. The viral genome is further amplified during the third stage of the viral-life cycle, which takes place only in the differentiated keratinocytes. We have previously shown that the HPV18 genomes utilize at least two distinct replication mechanisms during the initial amplification. One of these mechanisms is a well-described bidirectional replication via theta type of replication intermediates. The nature of another replication mechanism utilized by HPV18 involves most likely recombination-dependent replication. In this paper, we show that the usage of different replication mechanisms is a property shared also by other HPV types, namely HPV11 and HPV5. We further show that the emergence of the recombination dependent replication coincides with the oligomerization of the viral genomes and is dependent on the replicative DNA polymerases. We also show that the oligomeric genomes of HPV18 replicate almost exclusively using recombination dependent mechanism, whereas monomeric HPV31 genomes replicate bi-directionally during the maintenance phase of the viral life-cycle.
Collapse
Affiliation(s)
- Lisett Liblekas
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | | | | | | | - Ene Ustav
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Ustav
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Marko Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
17
|
Prabhakar AT, James CD, Das D, Otoa R, Day M, Burgner J, Fontan CT, Wang X, Glass SH, Wieland A, Donaldson MM, Bristol ML, Li R, Oliver AW, Pearl LH, Smith BO, Morgan IM. CK2 Phosphorylation of Human Papillomavirus 16 E2 on Serine 23 Promotes Interaction with TopBP1 and Is Critical for E2 Interaction with Mitotic Chromatin and the Viral Life Cycle. mBio 2021; 12:e0116321. [PMID: 34544280 PMCID: PMC8546539 DOI: 10.1128/mbio.01163-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/19/2021] [Indexed: 01/05/2023] Open
Abstract
During the human papillomavirus 16 (HPV16) life cycle, the E2 protein interacts with host factors to regulate viral transcription, replication, and genome segregation/retention. Our understanding of host partner proteins and their roles in E2 functions remains incomplete. Here we demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 in vitro and in vivo and that E2 is phosphorylated on this residue during the HPV16 life cycle. We investigated the consequences of mutating serine 23 on E2 functions. E2-S23A (E2 with serine 23 mutated to alanine) activates and represses transcription identically to E2-WT (wild-type E2), and E2-S23A is as efficient as E2-WT in transient replication assays. However, E2-S23A has compromised interaction with mitotic chromatin compared with E2-WT. In E2-WT cells, both E2 and TopBP1 levels increase during mitosis compared with vector control cells. In E2-S23A cells, neither E2 nor TopBP1 levels increase during mitosis. Introduction of the S23A mutation into the HPV16 genome resulted in delayed immortalization of human foreskin keratinocytes (HFK) and higher episomal viral genome copy number in resulting established HFK. Remarkably, S23A cells had a disrupted viral life cycle in organotypic raft cultures, with a loss of E2 expression and a failure of viral replication. Overall, our results demonstrate that CK2 phosphorylation of E2 on serine 23 promotes interaction with TopBP1 and that this interaction is critical for the viral life cycle. IMPORTANCE Human papillomaviruses are causative agents in around 5% of all cancers, with no specific antiviral therapeutics available for treating infections or resultant cancers. In this report, we demonstrate that phosphorylation of HPV16 E2 by CK2 promotes formation of a complex with the cellular protein TopBP1 in vitro and in vivo. This complex results in stabilization of E2 during mitosis. We demonstrate that CK2 phosphorylates E2 on serine 23 in vivo and that CK2 inhibitors disrupt the E2-TopBP1 complex. Mutation of E2 serine 23 to alanine disrupts the HPV16 life cycle, hindering immortalization and disrupting the viral life cycle, demonstrating a critical function for this residue.
Collapse
Affiliation(s)
- Apurva T. Prabhakar
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Claire D. James
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Dipon Das
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Raymonde Otoa
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Matthew Day
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Burgner
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Christian T. Fontan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Xu Wang
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Sarah H. Glass
- VCU School of Dentistry, Department of Oral Diagnostic Sciences, Richmond, Virginia, USA
| | - Andreas Wieland
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology & Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mary M. Donaldson
- School of Veterinary Medicine, University of Glasgow, Bearsden, United Kingdom
| | - Molly L. Bristol
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
| | - Renfeng Li
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| | - Anthony W. Oliver
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Laurence H. Pearl
- Cancer Research UK DNA Repair Enzymes Group, Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Brian O. Smith
- Institute of Molecular, Cell & Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Iain M. Morgan
- Virginia Commonwealth University (VCU), Philips Institute for Oral Health Research, School of Dentistry, Richmond, Virginia, USA
- VCU Massey Cancer Center, Richmond, Virginia, USA
| |
Collapse
|
18
|
Cyclic AMP-Dependent Protein Kinase Exhibits Antagonistic Effects on the Replication Efficiency of Different Human Papillomavirus Types. J Virol 2021; 95:e0025121. [PMID: 33853963 DOI: 10.1128/jvi.00251-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Several types of widespread human papillomaviruses (HPVs) may induce the transformation of infected cells, provoking the development of neoplasms. Two main genera of HPVs are classified as mucosatropic alphapapillomaviruses and cutaneotropic betapapillomaviruses (α- and β-HPVs, respectively), and they both include high-risk cancer-associated species. The absence of antiviral drugs has driven investigations into the details of the molecular mechanisms of the HPV life cycle. HPV replication depends on the viral helicase E1 and the transcription factor E2. Their biological activities are controlled by numerous cellular proteins, including protein kinases. Here, we report that ubiquitously expressed cyclic AMP-dependent protein kinase A (PKA) differentially regulates the replication of α-HPV11, α-HPV18, and β-HPV5. PKA stimulates the replication of both α-HPVs studied but has a more profound effect on the replication of high-risk α-HPV18. However, the replication of β-HPV5 is inhibited by activated PKA in human primary keratinocytes and U2OS cells. We show that the activation of PKA signaling by different pharmacological agents induces the rapid proteasomal degradation of the HPV5 E2 protein, which in turn leads to the downregulation of E2-dependent transcription. In contrast, PKA-stimulated induction of HPV18 replication is the result of the downregulation of the E8^E2 transcript encoding a potent viral transcriptional inhibitor together with the rapid upregulation of E1 and E2 protein levels. IMPORTANCE Several types of human papillomaviruses (HPVs) are causative agents of various types of epithelial cancers. Here, we report that ubiquitously expressed cyclic AMP-dependent protein kinase A (PKA) differentially regulates the replication of various types of HPVs during the initial amplification and maintenance phases of the viral life cycle. The replication of the skin cancer-related pathogen HPV5 is suppressed, whereas the replication of the cervical cancer-associated pathogen HPV18 is activated, in response to elevated PKA activity. To inhibit HPV5 replication, PKA targets the viral transcriptional activator E2, inducing its rapid proteasomal degradation. PKA-dependent stimulation of HPV18 replication relies on the downregulation of another E2 gene product, E8^E2, which encodes a potent transcriptional repressor. Our findings highlight, for the first time, protein kinase-related mechanistic differences in the regulation of the replication of mucosal and cutaneous HPV types.
Collapse
|
19
|
CX-4945 and siRNA-Mediated Knockdown of CK2 Improves Cisplatin Response in HPV(+) and HPV(-) HNSCC Cell Lines. Biomedicines 2021; 9:biomedicines9050571. [PMID: 34070147 PMCID: PMC8158385 DOI: 10.3390/biomedicines9050571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) can be categorized into human papillomavirus (HPV) positive or negative disease. Elevated protein kinase CK2 level and activity have been historically observed in HNSCC cells. Previous studies on CK2 in HNSCC did not generally include consideration of HPV(+) and HPV(−) status. Here, we investigated the response of HPV(+) and HPV(−) HNSCC cells to CK2 targeting using CX-4945 or siRNA downregulation combined with cisplatin treatment. HNSCC cell lines were examined for CK2 expression levels and activity and response to CX-4945, with and without cisplatin. CK2 levels and NFκB p65-related activity were high in HPV(+) HNSCC cells relative to HPV(−) HNSCC cells. Treatment with CX-4945 decreased viability and cisplatin IC50 in all cell lines. Targeting of CK2 increased tumor suppressor protein levels for p21 and PDCD4 in most instances. Further study is needed to understand the role of CK2 in HPV(+) and HPV(−) HNSCC and to determine how incorporation of the CK2-targeted inhibitor CX-4945 could improve cisplatin response in HNSCC.
Collapse
|
20
|
Basukala O, Sarabia-Vega V, Banks L. Human papillomavirus oncoproteins and post-translational modifications: generating multifunctional hubs for overriding cellular homeostasis. Biol Chem 2021; 401:585-599. [PMID: 31913845 DOI: 10.1515/hsz-2019-0408] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 12/19/2019] [Indexed: 11/15/2022]
Abstract
Human papillomaviruses (HPVs) are major human carcinogens, causing around 5% of all human cancers, with cervical cancer being the most important. These tumors are all driven by the two HPV oncoproteins E6 and E7. Whilst their mechanisms of action are becoming increasingly clear through their abilities to target essential cellular tumor suppressor and growth control pathways, the roles that post-translational modifications (PTMs) of E6 and E7 play in the regulation of these activities remain unclear. Here, we discuss the direct consequences of some of the most common PTMs of E6 and E7, and how this impacts upon the multi-functionality of these viral proteins, and thereby contribute to the viral life cycle and to the induction of malignancy. Furthermore, it is becoming increasingly clear that these modifications, may, in some cases, offer novel routes for therapeutic intervention in HPV-induced disease.
Collapse
Affiliation(s)
- Om Basukala
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Vanessa Sarabia-Vega
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| | - Lawrence Banks
- International Centre for Genetic Engineering and Biotechnology, AREA Science Park, Padriciano 99, I-34149Trieste, Italy
| |
Collapse
|
21
|
Chander Y, Kumar R, Khandelwal N, Singh N, Shringi BN, Barua S, Kumar N. Role of p38 mitogen-activated protein kinase signalling in virus replication and potential for developing broad spectrum antiviral drugs. Rev Med Virol 2021; 31:1-16. [PMID: 33450133 DOI: 10.1002/rmv.2217] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play a key role in complex cellular processes such as proliferation, development, differentiation, transformation and apoptosis. Mammals express at least four distinctly regulated groups of MAPKs which include extracellular signal-related kinases (ERK)-1/2, p38 proteins, Jun amino-terminal kinases (JNK1/2/3) and ERK5. p38 MAPK is activated by a wide range of cellular stresses and modulates activity of several downstream kinases and transcription factors which are involved in regulating cytoskeleton remodeling, cell cycle modulation, inflammation, antiviral response and apoptosis. In viral infections, activation of cell signalling pathways is part of the cellular defense mechanism with the basic aim of inducing an antiviral state. However, viruses can exploit enhanced cell signalling activities to support various stages of their replication cycles. Kinase activity can be inhibited by small molecule chemical inhibitors, so one strategy to develop antiviral drugs is to target these cellular signalling pathways. In this review, we provide an overview on the current understanding of various cellular and viral events regulated by the p38 signalling pathway, with a special emphasis on targeting these events for antiviral drug development which might identify candidates with broad spectrum activity.
Collapse
Affiliation(s)
- Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Biotechnology, GLA University, Mathura, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Brij Nandan Shringi
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
22
|
Uncovering the Role of the E1 Protein in Different Stages of Human Papillomavirus 18 Genome Replication. J Virol 2020; 94:JVI.00674-20. [PMID: 32759324 DOI: 10.1128/jvi.00674-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/22/2020] [Indexed: 12/20/2022] Open
Abstract
The life cycle of human papillomaviruses (HPVs) comprises three distinct phases of DNA replication: initial amplification, maintenance of the genome copy number at a constant level, and vegetative amplification. The viral helicase E1 is one of the factors required for the initiation of HPV genome replication. However, the functions of the E1 protein during other phases of the viral life cycle are largely uncharacterized. Here, we studied the role of the HPV18 E1 helicase in three phases of viral genome replication by downregulating E1 expression using RNA interference or inducing degradation of the E1 protein via inhibition of casein kinase 2α expression or catalytic activity. We generated a novel modified HPV18 genome expressing Nanoluc and tagged E1 and E2 proteins and created several stable HPV18-positive cell lines. We showed that, in contrast to initial amplification of the HPV18 genome, other phases of viral genome replication involve also an E1-independent mechanism. We characterize two distinct populations of HPV18 replicons existing during the maintenance and vegetative amplification phases. We show that a subset of these replicons, including viral genome monomers, replicate in an E1-dependent manner, while some oligomeric forms of the HPV18 genome replicate independently of E1 function.IMPORTANCE Human papillomavirus (HPV) infections pose serious medical problem. To date, there are no HPV-specific antivirals available due to poor understanding of the molecular mechanisms of virus infection cycle. The infection cycle of HPV involves initial amplification of the viral genomes and maintenance of the viral genomes with a constant copy number, followed by another round of viral genome amplification and new viral particle formation. The viral protein E1 is critical for the initial amplification of the viral genome. However, E1 involvement in other phases of the viral life cycle has remained controversial. In the present study, we show that at least two different replication modes of the HPV18 genome are undertaken simultaneously during the maintenance and vegetative amplification phases, i.e., replication of the majority of the HPV18 genome proceeds under the control of the host cell replication machinery without E1 function, whereas a minority of the genome replicates in an E1-dependent manner.
Collapse
|
23
|
Piirsoo A, Pink A, Kasak L, Kala M, Kasvandik S, Ustav M, Piirsoo M. Differential phosphorylation determines the repressor and activator potencies of GLI1 proteins and their efficiency in modulating the HPV life cycle. PLoS One 2019; 14:e0225775. [PMID: 31770404 PMCID: PMC6879148 DOI: 10.1371/journal.pone.0225775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/12/2019] [Indexed: 11/19/2022] Open
Abstract
The Sonic Hedgehog (Shh) signalling pathway plays multiple roles during embryonic development and under pathological conditions. Although the core components of the Shh pathway are conserved, the regulation of signal transduction varies significantly among species and cell types. Protein kinases Ulk3 and Pka are involved in the Shh pathway as modulators of the activities of Gli transcription factors, which are the nuclear mediators of the signal. Here, we investigate the regulation and activities of two GLI1 isoforms, full-length GLI1 (GLI1FL) and GLI1ΔN. The latter protein lacks the first 128 amino acids including the conserved phosphorylation cluster and the binding motif for SUFU, the key regulator of GLI activity. Both GLI1 isoforms are co-expressed in all human cell lines analysed and possess similar DNA binding activity. ULK3 potentiates the transcriptional activity of both GLI1 proteins, whereas PKA inhibits the activity of GLI1ΔN, but not GLI1FL. In addition to its well-established role as a transcriptional activator, GLI1FL acts as a repressor by inhibiting transcription from the early promoters of human papillomavirus type 18 (HPV18). Additionally, compared to GLI1ΔN, GLI1FL is a more potent suppressor of replication of several HPV types. Altogether, our data show that the N-terminal part of GLI1FL is crucial for the realization of its full potential as a transcriptional regulator.
Collapse
Affiliation(s)
- Alla Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Anne Pink
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Lagle Kasak
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Kala
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sergo Kasvandik
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Ustav
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Marko Piirsoo
- Institute of Technology, University of Tartu, Tartu, Estonia
- * E-mail:
| |
Collapse
|