1
|
Ramirez-Moral I, Schuurman AR, van Linge CCA, Butler JM, Yu X, de Haan K, van Leeuwen S, de Vos AF, de Jong MD, Vieira Braga FA, van der Poll T. Single-cell transcriptomics reveals subset-specific metabolic profiles underpinning the bronchial epithelial response to flagellin. iScience 2024; 27:110662. [PMID: 39252969 PMCID: PMC11381847 DOI: 10.1016/j.isci.2024.110662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/30/2023] [Accepted: 07/31/2024] [Indexed: 09/11/2024] Open
Abstract
Airway epithelial cells represent the first line of defense against respiratory pathogens. Flagellin drives the motility of many mucosal pathogens and has been suggested as an immune enhancing adjunctive therapeutic in infections of the airways. This study leveraged single-cell RNA sequencing to determine cell-specific effects of flagellin in primary human bronchial epithelial cells growing in air-liquid interface. Seven cell clusters were identified, including ciliated cells, ionocytes, and several states of basal and secretory cells, of which only inflammatory basal cells and inflammatory secretory cells demonstrated a proportional increase in response to flagellin. Inflammatory secretory cells showed evidence of metabolic reprogramming toward aerobic glycolysis, while in inflammatory basal cells transcriptome profiles indicated enhanced oxidative phosphorylation. Inhibition of mTOR prevented the shift to glycolysis and reduced inflammatory gene transcription specifically in inflammatory secretory cells. These data demonstrate the functional heterogeneity of the human airway epithelium upon exposure to flagellin.
Collapse
Affiliation(s)
- Ivan Ramirez-Moral
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Alex R Schuurman
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Christine C A van Linge
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Joe M Butler
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Xiao Yu
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Karen de Haan
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Sarah van Leeuwen
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Alex F de Vos
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Menno D de Jong
- Department of Medical Microbiology, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Felipe A Vieira Braga
- Laboratory for Experimental Oncology and Radiobiology, Center of Experimental and Molecular Medicine, Cancer Center Amsterdam and Amsterdam Gastroenterology and Metabolism, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| | - Tom van der Poll
- Center of Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
- Division of Infectious Diseases, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands
| |
Collapse
|
2
|
Dhakal S, Wolfe BW, Pantha S, Vijayakumar S. Sex Differences during Influenza A Virus Infection and Vaccination and Comparison of Cytokine and Antibody Responses between Plasma and Serum Samples. Pathogens 2024; 13:468. [PMID: 38921766 PMCID: PMC11206404 DOI: 10.3390/pathogens13060468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
In this study, we evaluated sex differences during infection with mouse-adapted H1N1 and H3N2 influenza A viruses (IAVs) in the C57BL/6J mouse model and compared the cytokine and antibody responses between plasma and serum samples during IAV infection and vaccination. Lethal doses for both H1N1 and H3N2 IAVs were lower for adult females and they suffered with greater morbidity than adult males when infected with sublethal doses. In influenza virus-infected mice, cytokine responses differed between plasma and serum samples. After inactivated influenza virus vaccination and drift variant challenge, adult female mice had greater antibody responses and were better protected. In influenza-vaccinated and challenged mice, binding antibodies were unaffected between paired plasma or serum samples. However, functional antibody assays, including hemagglutination inhibition, microneutralization, and antibody-dependent cellular cytotoxicity assays, were affected by the use of plasma and serum sample types. Our results indicate that careful consideration is required while selecting plasma versus serum samples to measure cytokine and antibody responses during IAV infection and vaccination.
Collapse
Affiliation(s)
- Santosh Dhakal
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA; (B.W.W.); (S.P.); (S.V.)
| | | | | | | |
Collapse
|
3
|
Koch B, Shehata M, Müller-Ruttloff C, Gouda SA, Wetzstein N, Patyna S, Scholz A, Schmid T, Dietrich U, Münch C, Ziebuhr J, Geiger H, Martinez-Sobrido L, Baer PC, Mostafa A, Pleschka S. Influenza A virus replicates productively in primary human kidney cells and induces factors and mechanisms related to regulated cell death and renal pathology observed in virus-infected patients. Front Cell Infect Microbiol 2024; 14:1363407. [PMID: 38590437 PMCID: PMC10999593 DOI: 10.3389/fcimb.2024.1363407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/29/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Influenza A virus (IAV) infection can cause the often-lethal acute respiratory distress syndrome (ARDS) of the lung. Concomitantly, acute kidney injury (AKI) is frequently noticed during IAV infection, correlating with an increased mortality. The aim of this study was to elucidate the interaction of IAV with human kidney cells and, thereby, to assess the mechanisms underlying IAV-mediated AKI. Methods To investigate IAV effects on nephron cells we performed infectivity assays with human IAV, as well as with human isolates of either low or highly pathogenic avian IAV. Also, transcriptome and proteome analysis of IAV-infected primary human distal tubular kidney cells (DTC) was performed. Furthermore, the DTC transcriptome was compared to existing transcriptomic data from IAV-infected lung and trachea cells. Results We demonstrate productive replication of all tested IAV strains on primary and immortalized nephron cells. Comparison of our transcriptome and proteome analysis of H1N1-type IAV-infected human primary distal tubular cells (DTC) with existing data from H1N1-type IAV-infected lung and primary trachea cells revealed enrichment of specific factors responsible for regulated cell death in primary DTC, which could be targeted by specific inhibitors. Discussion IAV not only infects, but also productively replicates on different human nephron cells. Importantly, multi-omics analysis revealed regulated cell death as potential contributing factor for the clinically observed kidney pathology in influenza.
Collapse
Affiliation(s)
- Benjamin Koch
- Department of Internal Medicine 4, Nephrology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Mahmoud Shehata
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Cairo, Egypt
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
| | - Christin Müller-Ruttloff
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen, Giessen, Germany
| | - Shady A. Gouda
- Institute for Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Nils Wetzstein
- Department of Internal Medicine 2, Infectious Diseases, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sammy Patyna
- Department of Internal Medicine 4, Nephrology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anica Scholz
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ursula Dietrich
- Institute for Tumor Biology and Experimental Therapy, Georg-Speyer-Haus, Frankfurt am Main, Germany
| | - Christian Münch
- Institute for Biochemistry II, Goethe University Frankfurt, Frankfurt am Main, Germany
- Frankfurt Cancer Institute (FCI), Frankfurt am Main, Germany
- Cardio-Pulmonary Institute, Frankfurt am Main, Germany
| | - John Ziebuhr
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen, Giessen, Germany
| | - Helmut Geiger
- Department of Internal Medicine 4, Nephrology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Luis Martinez-Sobrido
- Texas Biomedical Research Institute, Disease Intervention & Prevention (DIP) and Host Pathogen Interactions (HPI) Programs, San Antonio, TX, United States
| | - Patrick C. Baer
- Department of Internal Medicine 4, Nephrology, University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, National Research Centre (NRC), Cairo, Egypt
- Texas Biomedical Research Institute, Disease Intervention & Prevention (DIP) and Host Pathogen Interactions (HPI) Programs, San Antonio, TX, United States
| | - Stephan Pleschka
- Institute of Medical Virology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Partner Site Giessen, Giessen, Germany
| |
Collapse
|
4
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
5
|
Cojocaru C, Cojocaru E, Pohaci-Antonesei LS, Pohaci-Antonesei CA, Dumitrache-Rujinski S. Sleep apnea syndrome associated with gonadal hormone imbalance (Review). Biomed Rep 2023; 19:101. [PMID: 38025832 PMCID: PMC10646762 DOI: 10.3892/br.2023.1683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Patients with obstructive sleep apnea exhibit an increased risk of developing gonadal disorders. Because a notable number of people worldwide have sleep respiratory and reproductive disorders, it is essential to recognize the association between local upper airway dysfunction and its gonadal effects. Repeated breathing pauses cause sleep fragmentation, disorganization of sleep cycles and stages, sympathetic activation, intermittent hypoxemia and systemic inflammation. Nocturnal intermittent hypoxemia has a direct central effect on neurotransmitters, with disturbances in the normal production of hypothalamic-pituitary hormones. Awakenings and micro-awakenings at the end of apneic episodes produce a central stress responsible for hormonal changes and subsequent endocrine imbalances. The aim of the present study was to investigate the impact of obstructive sleep apnea syndrome (OSAS) on gonadal hormonal homeostasis and its consequences. Recognizing and understanding how local upper airway dysfunction causes gonadal imbalance may facilitate better care for patients with OSAS. Although there may be a direct relationship between sleep-disordered breathing and gonadal function mediated by hormones via the hypothalamic-pituitary-gonadal axis, to date, current therapies have not been effective.
Collapse
Affiliation(s)
- Cristian Cojocaru
- Department of Medical III, Grigore T Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Elena Cojocaru
- Department of Morpho-Functional Sciences II, Grigore T Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Luiza-Simona Pohaci-Antonesei
- Department of Morpho-Functional Sciences II, Grigore T Popa University of Medicine and Pharmacy, 700115 Iasi, Romania
| | | | - Stefan Dumitrache-Rujinski
- Department of Cardiothoracic Pathology, Carol Davila University of Medicine and Pharmacy, 050471 Bucharest, Romania
- Department of Pneumology, Marius Nasta Institute of Pneumophtisiology, 050159 Bucharest, Romania
| |
Collapse
|
6
|
Hoffmann JP, Liu JA, Seddu K, Klein SL. Sex hormone signaling and regulation of immune function. Immunity 2023; 56:2472-2491. [PMID: 37967530 DOI: 10.1016/j.immuni.2023.10.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/25/2023] [Accepted: 10/14/2023] [Indexed: 11/17/2023]
Abstract
Immune responses to antigens, including innocuous, self, tumor, microbial, and vaccine antigens, differ between males and females. The quest to uncover the mechanisms for biological sex differences in the immune system has intensified, with considerable literature pointing toward sex hormonal influences on immune cell function. Sex steroids, including estrogens, androgens, and progestins, have profound effects on immune function. As such, drastic changes in sex steroid concentrations that occur with aging (e.g., after puberty or during the menopause transition) or pregnancy impact immune responses and the pathogenesis of immune-related diseases. The effect of sex steroids on immunity involves both the concentration of the ligand and the density and distribution of genomic and nongenomic receptors that serve as transcriptional regulators of immune cellular responses to affect autoimmunity, allergy, infectious diseases, cancers, and responses to vaccines. The next frontier will be harnessing these effects of sex steroids to improve therapeutic outcomes.
Collapse
Affiliation(s)
- Joseph P Hoffmann
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jennifer A Liu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Kumba Seddu
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA; Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
7
|
Song K, Sun H, Tu B, Zhou Y, Lin LC, Liu ZY, Li R, Yang JJ, Zhang Y, Zhao JY, Tao H. WTAP boosts lipid oxidation and induces diabetic cardiac fibrosis by enhancing AR methylation. iScience 2023; 26:107931. [PMID: 37810250 PMCID: PMC10558737 DOI: 10.1016/j.isci.2023.107931] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/08/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023] Open
Abstract
Dysregulated lipid metabolism occurs in pathological processes characterized by cell proliferation and migration. Nonetheless, the mechanism of increased mitochondrial lipid oxidation is poorly appreciated in diabetic cardiac fibrosis, which is accompanied by enhanced fibroblast proliferation and migration. Herein, increased WTAP expression promotes cardiac fibroblast proliferation and migration, contributing to diabetic cardiac fibrosis. Knockdown of WTAP suppresses mitochondrial lipid oxidation, fibroblast proliferation and migration to ameliorate diabetic cardiac fibrosis. Mechanistically, WTAP-mediated m6A methylation of AR induced its degradation, dependent on YTHDF2. Additionally, AR directly interacts with mitochondrial lipid oxidation enzyme Decr1; overexpression of AR-suppressed Decr1-mediates mitochondrial lipid oxidation, inhibiting cardiac fibroblast proliferation and migration. Knockdown of AR produced the opposite effect. Clinically, increased WTAP and YTHDF2 levels correlate with decreased AR expression in human DCM heart tissue. We describe a mechanism wherein WTAP boosts higher mitochondrial lipid oxidation, cardiac fibroblast proliferation, and migration by enhancing AR methylation in a YTHDF2-dependent manner.
Collapse
Affiliation(s)
- Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| | - Jian-Yuan Zhao
- Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Hui Tao
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China
| |
Collapse
|
8
|
Creisher PS, Perry JL, Zhong W, Lei J, Mulka KR, Ryan WH, Zhou R, Akin EH, Liu A, Mitzner W, Burd I, Pekosz A, Klein SL. Adverse outcomes in SARS-CoV-2-infected pregnant mice are gestational age-dependent and resolve with antiviral treatment. J Clin Invest 2023; 133:e170687. [PMID: 37581940 PMCID: PMC10575736 DOI: 10.1172/jci170687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
SARS-CoV-2 infection during pregnancy is associated with severe COVID-19 and adverse fetal outcomes, but the underlying mechanisms remain poorly understood. Moreover, clinical studies assessing therapeutics against SARS-CoV-2 in pregnancy are limited. To address these gaps, we developed a mouse model of SARS-CoV-2 infection during pregnancy. Outbred CD1 mice were infected at E6, E10, or E16 with a mouse-adapted SARS-CoV-2 (maSCV2) virus. Outcomes were gestational age-dependent, with greater morbidity, reduced antiviral immunity, greater viral titers, and impaired fetal growth and neurodevelopment occurring with infection at E16 (third trimester equivalent) than with infection at either E6 (first trimester equivalent) or E10 (second trimester equivalent). To assess the efficacy of ritonavir-boosted nirmatrelvir, which is recommended for individuals who are pregnant with COVID-19, we treated E16-infected dams with mouse-equivalent doses of nirmatrelvir and ritonavir. Treatment reduced pulmonary viral titers, decreased maternal morbidity, and prevented offspring growth restriction and neurodevelopmental impairments. Our results highlight that severe COVID-19 during pregnancy and fetal growth restriction is associated with heightened virus replication in maternal lungs. Ritonavir-boosted nirmatrelvir mitigated maternal morbidity along with fetal growth and neurodevelopment restriction after SARS-CoV-2 infection. These findings prompt the need for further consideration of pregnancy in preclinical and clinical studies of therapeutics against viral infections.
Collapse
Affiliation(s)
- Patrick S. Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie L. Perry
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Weizhi Zhong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jun Lei
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Kathleen R. Mulka
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - W. Hurley Ryan
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Ruifeng Zhou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Elgin H. Akin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anguo Liu
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Wayne Mitzner
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Irina Burd
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Environmental Health and Engineering, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Umbreen G, Rehman A, Avais M, Jabeen C, Sadiq S, Maqsood R, Rashid HB, Afzal S, Chaudhry M. Burden of influenza A (H1N1)pdm09 infection among tuberculosis patients: a prospective cohort study. BMC Infect Dis 2023; 23:526. [PMID: 37563563 PMCID: PMC10413717 DOI: 10.1186/s12879-023-08441-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Influenza and tuberculosis both cause significant morbidity and mortality worldwide. Therefore, this study aimed to estimate the burden of influenza A (H1N1)pdm09 virus infection among human tuberculosis patients and the general population. METHODS A prospective cohort study was conducted among a cohort group (TB positive patients) as exposed and a comparison group (general population) as non-exposed. A total of 304 participants were recruited in both groups and followed for a period of 12 weeks. Of the 304 concurrently enrolled individuals, 152 were TB-positive patients (cohort group) and 152 were from the general population (comparison group).To calculate the sample size, the power of study was kept at 80% for detecting a difference at 5% alpha level assuming the 25% prevalence of respiratory viruses in cohort group compared to 12.5% in general population. An oropharyngeal swab was taken from a participant with symptoms of influenza-like illness (ILI). Samples were tested by conventional reverse transcription polymerase chain reaction (RT-PCR) for the detection of influenza A (H1N1)pdm09. All statistical analyses were conducted using R software. RESULTS A total of 95 participants developed influenza-like illness (ILI) symptoms. Among these, 64 tested positive for influenza A(H1N1)pdm09, of which 39 were from the exposed group and 25 were from the non-exposed group. During the 12-week period of follow-up, the influenza A (H1N1)pdm09 incidence rate was 20 per 1000 people. The risk of testing positive for influenza A (H1N1)pdm09 was 1.66 times higher in the exposed group compared to the non-exposed group. The cumulative incidence indicated that 25% of the TB cohort and 16% of the comparison group were at risk of getting influenza A (H1N1)pdm09 during the 12 weeks of follow-up. CONCLUSION Participants from the TB cohort had a higher incidence of influenza A (H1N1)pdm09 than the general population suggesting that they should be prioritized for influenza vaccination.
Collapse
Affiliation(s)
- Gulshan Umbreen
- Department of Epidemiology & Public Health, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdul Rehman
- Department of Epidemiology & Public Health, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Muhammad Avais
- Department of Veterinary Medicine, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Chanda Jabeen
- Department of Epidemiology & Public Health, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Shakera Sadiq
- Department of Epidemiology & Public Health, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Rubab Maqsood
- Department of Epidemiology & Public Health, University of veterinary and Animal Sciences, Lahore, Pakistan
| | - Hamad Bin Rashid
- Department of Veterinary Surgery, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Saira Afzal
- Department of Community Medicine, King Edward Medical University, Lahore, Pakistan
| | - Mamoona Chaudhry
- Department of Epidemiology & Public Health, University of veterinary and Animal Sciences, Lahore, Pakistan.
| |
Collapse
|
10
|
Creisher PS, Perry JL, Zhong W, Lei J, Mulka KR, Ryan H, Zhou R, Akin EH, Liu A, Mitzner W, Burd I, Pekosz A, Klein SL. Adverse outcomes in SARS-CoV-2 infected pregnant mice are gestational age-dependent and resolve with antiviral treatment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.533961. [PMID: 36993658 PMCID: PMC10055386 DOI: 10.1101/2023.03.23.533961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
SARS-CoV-2 infection during pregnancy is associated with severe COVID-19 and adverse fetal outcomes, but the underlying mechanisms remain poorly understood. Moreover, clinical studies assessing therapeutics against SARS-CoV-2 in pregnancy are limited. To address these gaps, we developed a mouse model of SARS-CoV-2 infection during pregnancy. Outbred CD1 mice were infected at embryonic day (E) 6, E10, or E16 with a mouse adapted SARS-CoV-2 (maSCV2) virus. Outcomes were gestational age-dependent, with greater morbidity, reduced anti-viral immunity, greater viral titers, and more adverse fetal outcomes occurring with infection at E16 (3rd trimester-equivalent) than with infection at either E6 (1st trimester-equivalent) or E10 (2nd trimester-equivalent). To assess the efficacy of ritonavir-boosted nirmatrelvir (recommended for pregnant individuals with COVID-19), we treated E16-infected dams with mouse equivalent doses of nirmatrelvir and ritonavir. Treatment reduced pulmonary viral titers, decreased maternal morbidity, and prevented adverse offspring outcomes. Our results highlight that severe COVID-19 during pregnancy and adverse fetal outcomes are associated with heightened virus replication in maternal lungs. Ritonavir-boosted nirmatrelvir mitigated adverse maternal and fetal outcomes of SARS-CoV-2 infection. These findings prompt the need for further consideration of pregnancy in preclinical and clinical studies of therapeutics against viral infections.
Collapse
|
11
|
Miller RAJ, Williams AP, Kovats S. Sex chromosome complement and sex steroid signaling underlie sex differences in immunity to respiratory virus infection. Front Pharmacol 2023; 14:1150282. [PMID: 37063266 PMCID: PMC10097973 DOI: 10.3389/fphar.2023.1150282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 03/08/2023] [Indexed: 04/18/2023] Open
Abstract
Epidemiological studies have revealed sex differences in the incidence and morbidity of respiratory virus infection in the human population, and often these observations are correlated with sex differences in the quality or magnitude of the immune response. Sex differences in immunity and morbidity also are observed in animal models of respiratory virus infection, suggesting differential dominance of specific immune mechanisms. Emerging research shows intrinsic sex differences in immune cell transcriptomes, epigenomes, and proteomes that may regulate human immunity when challenged by viral infection. Here, we highlight recent research into the role(s) of sex steroids and X chromosome complement in immune cells and describe how these findings provide insight into immunity during respiratory virus infection. We focus on the regulation of innate and adaptive immune cells by receptors for androgen and estrogens, as well as genes with a propensity to escape X chromosome inactivation. A deeper mechanistic knowledge of these pathways will help us to understand the often significant sex differences in immunity to endemic or pandemic respiratory pathogens such as influenza viruses, respiratory syncytial viruses and pathogenic coronaviruses.
Collapse
Affiliation(s)
- Reegan A. J. Miller
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Abigael P. Williams
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Susan Kovats
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
12
|
Sciarra F, Campolo F, Franceschini E, Carlomagno F, Venneri M. Gender-Specific Impact of Sex Hormones on the Immune System. Int J Mol Sci 2023; 24:ijms24076302. [PMID: 37047274 PMCID: PMC10094624 DOI: 10.3390/ijms24076302] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
Sex hormones are key determinants of gender-related differences and regulate growth and development during puberty. They also exert a broad range modulation of immune cell functions, and a dichotomy exists in the immune response between the sexes. Both clinical and animal models have demonstrated that androgens, estrogens, and progestogens mediate many of the gender-specific differences in immune responses, from the susceptibility to infectious diseases to the prevalence of autoimmune disorders. Androgens and progestogens mainly promote immunosuppressive or immunomodulatory effects, whereas estrogens enhance humoral immunity both in men and in women. This study summarizes the available evidence regarding the physiological effects of sex hormones on human immune cell function and the underlying biological mechanisms, focusing on gender differences triggered by different amounts of androgens between males and females.
Collapse
|
13
|
How Estrogen, Testosterone, and Sex Differences Influence Serum Immunoglobulin Isotype Patterns in Mice and Humans. Viruses 2023; 15:v15020482. [PMID: 36851695 PMCID: PMC9961480 DOI: 10.3390/v15020482] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Females often exhibit superior immune responses compared to males toward vaccines and pathogens such as influenza viruses and SARS-CoV-2. To help explain these differences, we first studied serum immunoglobulin isotype patterns in C57BL/6 male and female mice. We focused on IgG2b, an isotype that lends to virus control and that has been previously shown to be elevated in murine females compared to males. Improvements in IgG2b serum levels, and/or IgG2b ratios with other non-IgM isotypes, were observed when: (i) wildtype (WT) female mice were compared to estrogen receptor knockout mice (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all higher in WT mice), (ii) unmanipulated female mice were compared to ovariectomized mice (IgG2b/IgA was higher in unmanipulated animals), (iii) female mice were supplemented with estrogen in the context of an inflammatory insult (IgG2b and IgG2b/IgG3 were improved by estrogen supplementation), and (iv) male mice were supplemented with testosterone, a hormone that can convert to estrogen in vivo (IgG2b, IgG2b/IgG3, IgG2b/IgG1, and IgG2b/IgA were all improved by supplementation). We next examined data from three sets of previously described male and female human blood samples. In each case, there were higher IgG2 levels, and/or ratios of IgG2 with non-IgM isotypes, in human females compared to males. The effects of sex and sex hormones in the mouse and human studies were subtle, but frequent, suggesting that sex hormones represent only a fraction of the factors that influence isotype patterns. Examination of the gene loci suggested that upregulation of murine IgG2b or human IgG2 could be mediated by estrogen receptor binding to estrogen response elements and cytosine-adenine (CA) repeats upstream of respective Cγ genes. Given that murine IgG2b and human IgG2 lend to virus control, the isotype biases in females may be sufficient to improve outcomes following vaccination or infection. Future attention to sex hormone levels, and consequent immunoglobulin isotype patterns, in clinical trials are encouraged to support the optimization of vaccine and drug products for male and female hosts.
Collapse
|
14
|
Creisher PS, Seddu K, Mueller AL, Klein SL. Biological Sex and Pregnancy Affect Influenza Pathogenesis and Vaccination. Curr Top Microbiol Immunol 2023; 441:111-137. [PMID: 37695427 DOI: 10.1007/978-3-031-35139-6_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Males and females differ in the outcome of influenza A virus (IAV) infections, which depends significantly on age. During seasonal influenza epidemics, young children (< 5 years of age) and aged adults (65+ years of age) are at greatest risk for severe disease, and among these age groups, males tend to suffer a worse outcome from IAV infection than females. Following infection with pandemic strains of IAVs, females of reproductive ages (i.e., 15-49 years of age) experience a worse outcome than their male counterparts. Although females of reproductive ages experience worse outcomes from IAV infection, females typically have greater immune responses to influenza vaccination as compared with males. Among females of reproductive ages, pregnancy is one factor linked to an increased risk of severe outcome of influenza. Small animal models of influenza virus infection and vaccination illustrate that immune responses and repair of damaged tissue following IAV infection also differ between the sexes and impact the outcome of infection. There is growing evidence that sex steroid hormones, including estrogens, progesterone, and testosterone, directly impact immune responses during IAV infection and vaccination. Greater consideration of the combined effects of sex and age as biological variables in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.
Collapse
Affiliation(s)
- Patrick S Creisher
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Kumba Seddu
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Alice L Mueller
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States
| | - Sabra L Klein
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 North Wolfe Street, Baltimore, MD, United States.
| |
Collapse
|
15
|
Buendía-González FO, Legorreta-Herrera M. The Similarities and Differences between the Effects of Testosterone and DHEA on the Innate and Adaptive Immune Response. Biomolecules 2022; 12:biom12121768. [PMID: 36551196 PMCID: PMC9775255 DOI: 10.3390/biom12121768] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Androgens are steroids that modulate various processes in the body, ranging from reproduction, metabolism, and even immune response. The main androgens are testosterone, dihydrotestosterone (DHT) and dehydroepiandrosterone (DHEA). These steroids modulate the development and function of immune response cells. Androgens are generally attributed to immunosuppressive effects; however, this is not always the case. Variations in the concentrations of these hormones induce differences in the innate, humoral, and cell-mediated immune response, which is concentration dependent. The androgens at the highest concentration in the organism that bind to the androgen receptor (AR) are DHEA and testosterone. Therefore, in this work, we review the effects of DHEA and testosterone on the immune response. The main findings of this review are that DHEA and testosterone induce similar but also opposite effects on the immune response. Both steroids promote the activation of regulatory T cells, which suppresses the Th17-type response. However, while testosterone suppresses the inflammatory response, DHEA promotes it, and this modulation is important for understanding the involvement of androgens in infectious (bacterial, viral and parasitic) and autoimmune diseases, as well as in the sexual dimorphism that occurs in these diseases.
Collapse
Affiliation(s)
- Fidel Orlando Buendía-González
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Iztapalapa, Ciudad de México 09230, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico
| | - Martha Legorreta-Herrera
- Laboratorio de Inmunología Molecular, Unidad de Investigación Química Computacional, Síntesis y Farmacología de Moléculas de Interés Biológico, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Iztapalapa, Ciudad de México 09230, Mexico
- Correspondence:
| |
Collapse
|
16
|
Zheng B, Sun J, Luo H, Yang L, Li Q, Zhang L, Si Y, Cao S, Ye J. Testosterone protects mice against zika virus infection and suppresses the inflammatory response in the brain. iScience 2022; 25:105300. [PMID: 36304103 PMCID: PMC9593801 DOI: 10.1016/j.isci.2022.105300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Testosterone is essential to human growth and development as well as immune regulation. Zika virus (ZIKV), an emerging arbovirus associated with neurological complications including neuroinflammation, can also cause testicular damage and decrease testosterone secretion. However, whether the dysregulation of testosterone plays a role in the process of neuroinflammation during ZIKV pathogenesis is still unclear. In this study, we found that ZIKV infection caused testicular damage and decreased testosterone secretion in male mice, and testosterone supplementation after ZIKV infection reduced their mortality and attenuated the pathological symptoms. Further investigation revealed that testosterone treatment after ZIKV infection alleviated inflammation and nerve injury in the mouse brain. Additionally, reduced CD8+ T cell infiltration and interferon-gamma production were observed in brains of testosterone-treated mice. Overall, our results demonstrated that testosterone plays a protective role in ZIKV-infected mice, and thus it can be developed as a potential therapeutic drug against ZIKV infection.
Collapse
Affiliation(s)
- Bohan Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
| | - Jiajun Sun
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
| | - Haoran Luo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
| | - Ling’en Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
| | - Qi Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
| | - Luping Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
| | - Youhui Si
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
| | - Shengbo Cao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- Laboratory of Animal Virology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei, 430070, People’s Republic of China
| |
Collapse
|
17
|
Zhao AN, Yang Z, Wang DD, Shi B, Zhang H, Bai Y, Yan BW, Zhang Y, Wen JK, Wang XL, Qu CB. Disturbing NLRP3 acetylation and inflammasome assembly inhibits androgen receptor-promoted inflammatory responses and prostate cancer progression. FASEB J 2022; 36:e22602. [PMID: 36250925 DOI: 10.1096/fj.202200673rrr] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/11/2022]
Abstract
Chronic inflammation is one of the definite factors leading to the occurrence and development of tumors, including prostate cancer (PCa). The androgen receptor (AR) pathway is essential for PCa tumorigenesis and inflammatory response. However, little is known about the AR-regulated NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome pathway in human PCa. In this study, we explored the expression of inflammatory cytokine and AR in high-grade PCa and observed that NLRP3 inflammasome-associated genes were upregulated in high-grade PCa compared with that in low-grade PCa and benign prostatic hyperplasia and were associated with AR expression. In addition, we identified circAR-3-a circRNA derived from the AR gene-which is involved in the AR-regulated inflammatory response and cell proliferation by activating the NLRP3 inflammatory pathway. While circAR-3 overexpression promoted cell proliferation and the inflammatory response, its depletion induced opposite effects. Mechanistically, we noted that circAR-3 mediated the acetylation modification of NLRP3 by KAT2B and then promoted NLRP3 inflammasome complex subcellular distribution and assembly. Disturbing NLRP3 acetylation or blocking inflammasome assembly with an inhibitor suppressed the progression of PCa xenograft tumors. Our findings provide the first evidence that targeting NLRP3 acetylation or inflammasome assembly may be effective in inhibiting PCa progression.
Collapse
Affiliation(s)
- An-Ning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhan Yang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China.,Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dan-Dan Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bei Shi
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hong Zhang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Bai
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, China
| | - Bo-Wen Yan
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Zhang
- Department of Urology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jin-Kun Wen
- Department of Biochemistry and Molecular Biology, Ministry of Education of China, Hebei Medical University, Shijiazhuang, China
| | - Xiao-Lu Wang
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chang-Bao Qu
- Department of Urology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
18
|
Islamie R, Iksen I, Buana BC, Gurning K, Syahputra HD, Winata HS. Construction of network pharmacology-based approach and potential mechanism from major components of Coriander sativum L. against COVID-19. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e84388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Despite the fact that various therapeutic compounds have shown potential prevention or treatment, no specific medicine has been developed for the COVID-19 pandemic. Natural products have recently been suggested as a possible treatment option for COVID-19 prevention and treatment. This study focused on the potential of Coriander sativum L. (CSL) against COVID-19 based on network pharmacology approach. Interested candidates of CSL were identified by searching accessible databases for protein–protein interactions with the COVID-19. An additional GO and KEGG pathway analysis was carried out in order to identify the related mechanism of action. In the end, 51 targets were obtained through network pharmacology analysis with EGFR, AR, JAK2, PARP1, and CTSB become the core target. CSL may have favorable effects on COVID-19 through a number of important pathways, according to GO and KEGG pathway analyses. These findings suggest that CSL may prevent and inhibit the several processes related to COVID-19.
Collapse
|
19
|
Of mice, men, women, and cancer. Immunity 2022; 55:1150-1152. [PMID: 35830823 DOI: 10.1016/j.immuni.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The prevalence and severity of cancers in non-reproductive tissues are greater in males than females, but the sex-specific factors contributing to this remain ill described. In this issue of Immunity, Yang et al. (2022) uncover a mechanism of androgen signaling leading to an exhausted, terminally differentiated CD8+ T cell phenotype in male mice.
Collapse
|
20
|
Abstract
After more than 20 years of studying sex differences in viral pathogenesis and immunity to vaccines, the COVID‐19 pandemic provided me with a unique opportunity to raise awareness about biological sex differences. The scientific community and public, alike, embraced the clinical and epidemiological data and supported inquiries into how males are twice as likely to be hospitalized and die from COVID‐19. Immunological changes associated with pregnancy also contribute to worse outcomes from COVID‐19. Collectively, we are finding that inflammation is a critical mediator of worse outcomes for males and pregnant females. The pandemic gave me a platform to discuss and address sex differences on a bigger stage, but two decades of studies working with other viruses prepared me for this moment in history.
Collapse
Affiliation(s)
- Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Biochemistry and Molecular Biology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of International Health, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
21
|
Webber T, Ronacher K, Conradie-Smit M, Kleynhans L. Interplay Between the Immune and Endocrine Systems in the Lung: Implications for TB Susceptibility. Front Immunol 2022; 13:829355. [PMID: 35273609 PMCID: PMC8901994 DOI: 10.3389/fimmu.2022.829355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/02/2022] [Indexed: 12/25/2022] Open
Abstract
The role of the endocrine system on the immune response, especially in the lung, remains poorly understood. Hormones play a crucial role in the development, homeostasis, metabolism, and response to the environment of cells and tissues. Major infectious and metabolic diseases, such as tuberculosis and diabetes, continue to converge, necessitating the development of a clearer understanding of the immune and endocrine interactions that occur in the lung. Research in bacterial respiratory infections is at a critical point, where the limitations in identifying and developing antibiotics is becoming more profound. Hormone receptors on alveolar and immune cells may provide a plethora of targets for host-directed therapy. This review discusses the interactions between the immune and endocrine systems in the lung. We describe hormone receptors currently identified in the lungs, focusing on the effect hormones have on the pulmonary immune response. Altered endocrine responses in the lung affect the balance between pro- and anti-inflammatory immune responses and play a role in the response to infection in the lung. While some hormones, such as leptin, resistin and lipocalin-2 promote pro-inflammatory responses and immune cell infiltration, others including adiponectin and ghrelin reduce inflammation and promote anti-inflammatory cell responses. Furthermore, type 2 diabetes as a major endocrine disease presents with altered immune responses leading to susceptibility to lung infections, such as tuberculosis. A better understanding of these interactions will expand our knowledge of the mechanisms at play in susceptibility to infectious diseases and may reveal opportunities for the development of host-directed therapies.
Collapse
Affiliation(s)
- Tariq Webber
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Katharina Ronacher
- Translational Research Institute, Mater Research Institute - The University of Queensland, Brisbane, QLD, Australia
| | - Marli Conradie-Smit
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Léanie Kleynhans
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
22
|
Vena W, Pizzocaro A, Maida G, Amer M, Voza A, Di Pasquale A, Reggiani F, Ciccarelli M, Fedeli C, Santi D, Lavezzi E, Lania AG, Mazziotti G. Low testosterone predicts hypoxemic respiratory insufficiency and mortality in patients with COVID-19 disease: another piece in the COVID puzzle. J Endocrinol Invest 2022; 45:753-762. [PMID: 34792796 PMCID: PMC8600346 DOI: 10.1007/s40618-021-01700-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/01/2021] [Indexed: 01/08/2023]
Abstract
PURPOSE Hypogonadism was described in high number of male subjects with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. In this study, we investigated whether low testosterone (T) values may influence the clinical presentation and outcome of SARS-CoV-2-related pneumonia in a large population of adult males with coronavirus disease 19 (COVID-19). METHODS Two hundred twenty one adult males hospitalized for COVID-19 at the IRCCS Humanitas Research Hospital, Rozzano-Milan (Italy) were consecutively evaluated for arterial partial pressure oxygen (PaO2)/fraction of inspired oxygen (FiO2) ratio, serum T and inflammatory parameters at study entry, need of ventilation during hospital stay and in-hospital mortality. RESULTS Subjects low T values (< 8 nmol/L; 176 cases) were significantly older (P = 0.001) and had higher serum interleukin-6 (P = 0.001), C-reactive protein (P < 0.001), lactate dehydrogenase (P < 0.001), ferritin (P = 0.012), lower P/F ratio (P = 0.001), increased prevalence of low T3 syndrome (P = 0.041), acute respiratory insufficiency (P < 0.001), more frequently need of ventilation (P < 0.001) and higher mortality rate (P = 0.009) compared to subjects with higher T values. In the multivariable regression analyses, T values maintained significant associations with acute respiratory insufficiency (odds ratio [OR] 0.85, 95% confidence interval [CI] 0.79-0.94; P < 0.001 and in-hospital mortality (OR 0.80, 95% CI 0.69-0.95; P = 0.009), independently of age, comorbidities, thyroid function and inflammation. CONCLUSION Low T levels values are associated with unfavorable outcome of COVID-19. Prospective studies are needed to evaluate the long-term outcomes of hypogonadism related to COVID-19 and the clinical impact of T replacement during and after acute illness.
Collapse
Affiliation(s)
- W Vena
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - A Pizzocaro
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - G Maida
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - M Amer
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - A Voza
- Emergency Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - A Di Pasquale
- Pneumology Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - F Reggiani
- Nephrology Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - M Ciccarelli
- Pneumology Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - C Fedeli
- Emergency Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - D Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - E Lavezzi
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
| | - A G Lania
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy.
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy.
| | - G Mazziotti
- Endocrinology, Diabetology and Medical Andrology Unit, IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, 20089, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, via Rita Levi Montalcini 4, Pieve Emanuele, 20090, Milan, Italy
| |
Collapse
|
23
|
Zheng S, Zou Q, Zhang D, Yu F, Bao J, Lou B, Xie G, Lin S, Wang R, Chen W, Wang Q, Teng Y, Feng B, Shen Y, Chen Y. Serum level of testosterone predicts disease severity of male COVID-19 patients and is related to T-cell immune modulation by transcriptome analysis. Clin Chim Acta 2021; 524:132-138. [PMID: 34774827 PMCID: PMC8585551 DOI: 10.1016/j.cca.2021.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/02/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022]
Abstract
Background Severe disease of COVID-19 and mortality occur more frequently in male patients than that in female patients may be related to testosterone level. However, the diagnostic value of changes in the level of testosterone in predicting severe disease of male COVID-19 patients has not been determined yet. Methods Sixty-one male COVID-19 patients admitted to the First Affiliated Hospital of Zhejiang University School of Medicine were enrolled. Serum samples at different stages of the patients after admission were collected and testosterone levels were detected to analyze the correlation between testosterone level and disease severity. Transcriptome analysis of PBMC was performed in 34 patients. Results Testosterone levels at admission in male non-ICU COVID-19 patients (3.7 nmol/L, IQR: 1.5 ∼ 4.7) were significantly lower than those in male ICU COVID-19 patients (6.7 nmol/L, IQR: 4.2 ∼ 8.7). Testosterone levels in the non-ICU group increased gradually during the progression of the disease, while those in the ICU group remained low. In addition, testosterone level of enrolled patients in the second week after onset was significantly correlated with the severity of pneumonia, and ROC curve showed that testosterone level in the second week after onset was highly effective in predicting the severity of COVID-19. Transcriptome studies have found that testosterone levels of COVID-19 patients were associated with immune response, including T cell activation and regulation of lymphocyte activation. In addition, CD28 and Inositol Polyphosphate-4-Phosphatase Type II B (INPP4B) were found positively correlated with testosterone. Conclusions Serum testosterone is an independent risk factor for predicting the severity of COVID-19 in male patients, and the level of serum testosterone in the second week after onset is valuable for evaluating the severity of COVID-19. Testosterone level is associated with T cell immune activation. The monitoring of serum testosterone should be highlighted in clinical treatment and the related mechanism should be further studied.
Collapse
Affiliation(s)
- Shufa Zheng
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China
| | - Qianda Zou
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China
| | - Dan Zhang
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China
| | - Fei Yu
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China
| | - Jiaqi Bao
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China
| | - Bin Lou
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China
| | - Guoliang Xie
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China
| | - Sha Lin
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China
| | - Ruonan Wang
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China
| | - Weizhen Chen
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China
| | - Qi Wang
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China
| | - Yun Teng
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China
| | - Baihuan Feng
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China
| | - Yifei Shen
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China.
| | - Yu Chen
- Center of Clinical Laboratory, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China; Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, Hangzhou, PR China; Institute of Laboratory Medicine, Zhejiang University, Hangzhou, PR China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, PR China.
| |
Collapse
|
24
|
Dhakal S, Ruiz-Bedoya CA, Zhou R, Creisher PS, Villano JS, Littlefield K, Ruelas Castillo J, Marinho P, Jedlicka AE, Ordonez AA, Bahr M, Majewska N, Betenbaugh MJ, Flavahan K, Mueller ARL, Looney MM, Quijada D, Mota F, Beck SE, Brockhurst J, Braxton AM, Castell N, Stover M, D’Alessio FR, Metcalf Pate KA, Karakousis PC, Mankowski JL, Pekosz A, Jain SK, Klein SL. Sex Differences in Lung Imaging and SARS-CoV-2 Antibody Responses in a COVID-19 Golden Syrian Hamster Model. mBio 2021; 12:e0097421. [PMID: 34253053 PMCID: PMC8406232 DOI: 10.1128/mbio.00974-21] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/10/2021] [Indexed: 12/15/2022] Open
Abstract
In the coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), more severe outcomes are reported in males than in females, including hospitalizations and deaths. Animal models can provide an opportunity to mechanistically interrogate causes of sex differences in the pathogenesis of SARS-CoV-2. Adult male and female golden Syrian hamsters (8 to 10 weeks of age) were inoculated intranasally with 105 50% tissue culture infective dose (TCID50) of SARS-CoV-2/USA-WA1/2020 and euthanized at several time points during the acute (i.e., virus actively replicating) and recovery (i.e., after the infectious virus has been cleared) phases of infection. There was no mortality, but infected male hamsters experienced greater morbidity, losing a greater percentage of body mass, developed more extensive pneumonia as noted on chest computed tomography, and recovered more slowly than females. Treatment of male hamsters with estradiol did not alter pulmonary damage. Virus titers in respiratory tissues, including nasal turbinates, trachea, and lungs, and pulmonary cytokine concentrations, including interferon-β (IFN-β) and tumor necrosis factor-α (TNF-α), were comparable between the sexes. However, during the recovery phase of infection, females mounted 2-fold greater IgM, IgG, and IgA responses against the receptor-binding domain of the spike protein (S-RBD) in both plasma and respiratory tissues. Female hamsters also had significantly greater IgG antibodies against whole-inactivated SARS-CoV-2 and mutant S-RBDs as well as virus-neutralizing antibodies in plasma. The development of an animal model to study COVID-19 sex differences will allow for a greater mechanistic understanding of the SARS-CoV-2-associated sex differences seen in the human population. IMPORTANCE Men experience more severe outcomes from coronavirus disease 2019 (COVID-19) than women. Golden Syrian hamsters were used to explore sex differences in the pathogenesis of a human isolate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). After inoculation, male hamsters experienced greater sickness, developed more severe lung pathology, and recovered more slowly than females. Sex differences in disease could not be reversed by estradiol treatment in males and were not explained by either virus replication kinetics or the concentrations of inflammatory cytokines in the lungs. During the recovery period, antiviral antibody responses in the respiratory tract and plasma, including to newly emerging SARS-CoV-2 variants, were greater in female than in male hamsters. Greater lung pathology during the acute phase combined with lower antiviral antibody responses during the recovery phase of infection in males than in females illustrate the utility of golden Syrian hamsters as a model to explore sex differences in the pathogenesis of SARS-CoV-2 and vaccine-induced immunity and protection.
Collapse
Affiliation(s)
- Santosh Dhakal
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Camilo A. Ruiz-Bedoya
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ruifeng Zhou
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Patrick S. Creisher
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jason S. Villano
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kirsten Littlefield
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | - Paula Marinho
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anne E. Jedlicka
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Alvaro A. Ordonez
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Melissa Bahr
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natalia Majewska
- Advanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Michael J. Betenbaugh
- Advanced Mammalian Biomanufacturing Innovation Center, Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Kelly Flavahan
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alice R. L. Mueller
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Monika M. Looney
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Darla Quijada
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Filipa Mota
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sarah E. Beck
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Jacqueline Brockhurst
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Alicia M. Braxton
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Natalie Castell
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Mitchel Stover
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Franco R. D’Alessio
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Kelly A. Metcalf Pate
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Petros C. Karakousis
- Department of Medicine, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Joseph L. Mankowski
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Sanjay K. Jain
- Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
25
|
Abstract
The ongoing COVID-19 pandemic has increased awareness about sex-specific differences in immunity and outcomes following SARS-CoV-2 infection. Strong evidence of a male bias in COVID-19 disease severity is hypothesized to be mediated by sex differential immune responses against SARS-CoV-2. This hypothesis is based on data from other viral infections, including influenza viruses, HIV, hepatitis viruses, and others that have demonstrated sex-specific immunity to viral infections. Although males are more susceptible to most viral infections, females possess immunological features that render them more vulnerable to distinct immune-related disease outcomes. Both sex chromosome complement and related genes as well as sex steroids play important roles in mediating the development of sex differences in immunity to viral infections.
Collapse
Affiliation(s)
| | - Sabra L. Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
26
|
Giurgea LT, Cervantes-Medina A, Walters KA, Scherler K, Han A, Czajkowski LM, Baus HA, Hunsberger S, Klein SL, Kash JC, Taubenberger JK, Memoli MJ. Sex Differences in Influenza: The Challenge Study Experience. J Infect Dis 2021; 225:715-722. [PMID: 34423369 DOI: 10.1093/infdis/jiab422] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/19/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Preclinical animal studies and retrospective human studies suggest that adult females have worse outcomes from influenza than males. Prospective studies in humans are missing. METHODS Data from 164 healthy volunteers who underwent Influenza A/California/04/2009/H1N1 challenge were compiled to compare differences between sexes. Baseline characteristics, including hormone levels, hemagglutination-inhibition (HAI) titers, neuraminidase-inhibition titers (NAI), and outcomes after challenge were compared. Linear and logistic regression models were built to determine significant predictor variables with respect to outcomes of interest. RESULTS Hemagglutination-inhibition (HAI) titers were similar between the sexes, but neuraminidase-inhibition titers (NAI) were higher in males than females at 4-weeks and 8-weeks post-challenge. Females were more likely to have symptoms (mean 0.96 vs 0.80, p=.003) and to have a higher number of symptoms (median 3 vs 4, p=.011) than males. Linear and logistic regression models showed that pre-challenge NAI titers, but not HAI titers or sex hormone levels, were predictive of all shedding and symptom outcomes of interest. CONCLUSIONS Females in our cohorts were more likely to be symptomatic and to have a higher number of symptoms than males. NAI titers predicted all outcomes of interest and may explain differential outcomes between the sexes.
Collapse
Affiliation(s)
- Luca T Giurgea
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Adriana Cervantes-Medina
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | | | | | - Alison Han
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Lindsay M Czajkowski
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Holly Ann Baus
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Sally Hunsberger
- Biostatistics Research Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20894 USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - John C Kash
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Jeffery K Taubenberger
- Viral Pathogenesis and Evolution Section, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| | - Matthew J Memoli
- LID Clinical Studies Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 33 North Dr., Bethesda, MD 20892 USA
| |
Collapse
|
27
|
Abstract
Biological sex affects the outcome of diverse respiratory viral infections. The pathogenesis of respiratory infections caused by viruses ranging from respiratory syncytial virus to influenza viruses and severe acute respiratory syndrome coronavirus 2 differs between the sexes across the life course. Generally, males are more susceptible to severe outcomes from respiratory viral infections at younger and older ages. During reproductive years (i.e., after puberty and prior to menopause), females are often at greater risk than males for severe outcomes. Pregnancy and biological sex affect the pathogenesis of respiratory viral infections. In addition to sex differences in the pathogenesis of disease, there are consistent sex differences in responses to treatments, with females often developing greater immune responses but experiencing more adverse reactions than males. Animal models provide mechanistic insights into the causes of sex differences in respiratory virus pathogenesis and treatment outcomes, where available. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Rebecca L Ursin
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA 21205;
| | - Sabra L Klein
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA 21205; .,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Maryland, USA 21205
| |
Collapse
|
28
|
Corona G, Pizzocaro A, Vena W, Rastrelli G, Semeraro F, Isidori AM, Pivonello R, Salonia A, Sforza A, Maggi M. Diabetes is most important cause for mortality in COVID-19 hospitalized patients: Systematic review and meta-analysis. Rev Endocr Metab Disord 2021; 22:275-296. [PMID: 33616801 PMCID: PMC7899074 DOI: 10.1007/s11154-021-09630-8] [Citation(s) in RCA: 119] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/20/2021] [Indexed: 12/16/2022]
Abstract
The presence of SARS-CoV-2 was officially documented in Europe at the end of February 2020. Despite many observations, the real impact of COVID-19 in the European Union (EU), its underlying factors and their contribution to mortality and morbidity outcomes were never systematically investigated. The aim of the present work is to provide an overview and a meta-analysis of main predictors and of country differences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-associated mortality rate (MR) in hospitalized patients. Out of 3714 retrieved articles, 87 studies were considered, including 35,486 patients (mean age 60.9 ± 8.2 years) and 5867 deaths. After adjustment for confounders, diabetes mellitus was the best predictors of MR in an age- and sex-dependent manner, followed by chronic pulmonary obstructive diseases and malignancies. In both the US and Europe, MR was higher than that reported in Asia (25[20;29] % and 20[17;23] % vs. 13[10;17]%; both p < 0.02). Among clinical parameters, dyspnea, fatigue and myalgia, along with respiratory rate, emerged as the best predictors of MR. Finally, reduced lymphocyte and platelet count, along with increased D-dimer levels, all significantly contributed to increased mortality. The optimization of glucose profile along with an adequate thrombotic complications preventive strategy must become routine practice in diseased SARS-CoV-2 infected patients.
Collapse
Affiliation(s)
- Giovanni Corona
- Endocrinology Unit, Medical Department, Azienda Usl Bologna Maggiore-Bellaria Hospital, Largo Nigrisoli, 2 - 40133, Bologna, Italy.
| | - Alessandro Pizzocaro
- Unit of Endocrinology, Diabetology and Medical Andrology, IRCSS, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Walter Vena
- Unit of Endocrinology, Diabetology and Medical Andrology, IRCSS, Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Giulia Rastrelli
- Female Endocrinology and Gender Incongruence Unit, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Florence, Italy
| | - Federico Semeraro
- Department of Anaesthesia, Intensive Care and EMS, Maggiore Hospital Bologna, Bologna, Italy
| | - Andrea M Isidori
- Department of Experimental Medicine, Sapienza University of Rome - Policlinico Umberto I Hospital, Rome, Italy
| | - Rosario Pivonello
- Dipartimento Di Medicina Clinica E Chirurgia, Sezione Di Endocrinologia, Unità Di Andrologia E Medicina Della Riproduzione E Della SessualitàMaschile E Femminile, Università Federico II Di Napoli, Naples, Italy
- Staff of UNESCO, Chair for Health Education and Sustainable Development, Federico II University, Naples, Italy
| | - Andrea Salonia
- Division of Experimental Oncology/Unit of Urology, URI, IRCCS Ospedale San Raffaele, Milan, Italy
- University Vita-Salute San Raffaele, Milan, Italy
| | - Alessandra Sforza
- Endocrinology Unit, Medical Department, Azienda Usl Bologna Maggiore-Bellaria Hospital, Largo Nigrisoli, 2 - 40133, Bologna, Italy
| | - Mario Maggi
- Endocrinology Unit, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Florence, Italy
| |
Collapse
|
29
|
Forsyth KS, Anguera MC. Time to get ill: the intersection of viral infections, sex, and the X chromosome. CURRENT OPINION IN PHYSIOLOGY 2021; 19:62-72. [PMID: 33073073 PMCID: PMC7553007 DOI: 10.1016/j.cophys.2020.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Females have more robust immune responses than males, and viral infections are more severe for males. Hormones and genetic sex, namely the X chromosome, influence sex differences with immune responses. Here, we review recent findings underlying sexual dimorphism of disease susceptibility for two prevalent viral infections, influenza and SARS-CoV-2, which exhibit male-biased disease severity. Viral infections are proposed to be an initiating event for autoimmunity, which exhibits a female bias. We also review recent work elucidating the epigenetic and genetic contribution of X-Chromosome Inactivation maintenance, and X-linked gene expression, for the autoimmune disorder Systemic Lupus Erythematosus, and highlight the complex considerations required for identifying underlying hormonal and genetic contributions responsible for sex differences in immune responses.
Collapse
Affiliation(s)
- Katherine S Forsyth
- Dept. of Biomedical Sciences, University of Pennsylvania, Philadelphia PA 19104, United States
| | - Montserrat C Anguera
- Dept. of Biomedical Sciences, University of Pennsylvania, Philadelphia PA 19104, United States
| |
Collapse
|
30
|
Epidermal Club Cells in Fishes: A Case for Ecoimmunological Analysis. Int J Mol Sci 2021; 22:ijms22031440. [PMID: 33535506 PMCID: PMC7867084 DOI: 10.3390/ijms22031440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 01/24/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
Epidermal club cells (ECCs), along with mucus cells, are present in the skin of many fishes, particularly in the well-studied Ostariophysan family Cyprinidae. Most ECC-associated literature has focused on the potential role of ECCs as a component of chemical alarm cues released passively when a predator damages the skin of its prey, alerting nearby prey to the presence of an active predator. Because this warning system is maintained by receiver-side selection (senders are eaten), there is want of a mechanism to confer fitness benefits to the individual that invests in ECCs to explain their evolutionary origin and maintenance in this speciose group of fishes. In an attempt to understand the fitness benefits that accrue from investment in ECCs, we reviewed the phylogenetic distribution of ECCs and their histochemical properties. ECCs are found in various forms in all teleost superorders and in the chondrostei inferring either early or multiple independent origins over evolutionary time. We noted that ECCs respond to several environmental stressors/immunomodulators including parasites and pathogens, are suppressed by immunomodulators such as testosterone and cortisol, and their density covaries with food ration, demonstrating a dynamic metabolic cost to maintaining these cells. ECC density varies widely among and within fish populations, suggesting that ECCs may be a convenient tool with which to assay ecoimmunological tradeoffs between immune stress and foraging activity, reproductive state, and predator-prey interactions. Here, we review the case for ECC immune function, immune functions in fishes generally, and encourage future work describing the precise role of ECCs in the immune system and life history evolution in fishes.
Collapse
|