1
|
Wang C, Li L, Zhai X, Chang H, Liu H. Evasion of the Antiviral Innate Immunity by PRV. Int J Mol Sci 2024; 25:13140. [PMID: 39684850 DOI: 10.3390/ijms252313140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/29/2024] [Accepted: 12/01/2024] [Indexed: 12/18/2024] Open
Abstract
Pseudorabies virus (PRV) establishes persistent latent infections by effectively evading the host's antiviral innate immune response. PRV has developed sophisticated strategies to bypass immune surveillance through coevolution with its host. Currently, no effective vaccine exists to prevent or treat infections caused by emerging PRV variants, and the interactions between PRV and the host's innate immune defenses remain incompletely understood. Nevertheless, ongoing research is uncovering insights that may lead to novel treatments and preventive approaches for herpesvirus-related diseases. This review summarizes recent advances in understanding how PRV disrupts key adaptors in immune signaling pathways to evade antiviral immunity. Additionally, we explored the intrinsic cellular defenses that play crucial roles in combating viral invasion. A deeper understanding of the immune evasion strategies of PRV could inform the development of new therapeutic targets and vaccines.
Collapse
Affiliation(s)
- Chenlong Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Longxi Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Xinyu Zhai
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| | - Hongtao Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China
| | - Huimin Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
2
|
Chen X, Yu Z. Insight into the Interaction Mechanism of Pseudorabies Virus Infection. BIOLOGY 2024; 13:1013. [PMID: 39765680 PMCID: PMC11673216 DOI: 10.3390/biology13121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
The pseudorabies virus (PRV), also known as suid alphaherpesvirus 1 (SuAHV-1), has garnered significant attention due to its broad host range and the economic losses it incurs in the swine industry. This review aims to provide a comprehensive understanding of the intricate virus-host interactions during PRV infection, focusing on the evasion strategies of the virus against the host responses. We also summarize the mechanisms by which PRV manipulates the host cell machinery to facilitate its replication and spread, while simultaneously evading detection and clearance by the immune system. Furthermore, we discuss the latest advancements, such as metabolic, autophagic, and apoptotic pathways in studying these interactions, highlighting the role of various cellular factors and pathways in elucidating virus-host dynamics. By integrating these insights, the article aims to provide a comprehensive overview of the molecular mechanisms underlying PRV pathogenesis and host response, paving the way for the development of novel therapeutic strategies against this virus.
Collapse
Affiliation(s)
- Xiaoyong Chen
- Xingzhi College, Zhejiang Normal University, Lanxi 321100, China
| | - Ziding Yu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Ruan P, Chen Y, Wang M, Cheng A, Yang Q, Tian B, Ou X, Sun D, He Y, Wu Z, Huang J, Wu Y, Zhang S, Zhao X, Zhu D, Jia R, Liu M, Chen S. Duck plague virus UL24 protein initiates K48/K63-linked IRF7 polyubiquitination to antagonize the innate immune response. Poult Sci 2024; 103:104378. [PMID: 39418790 PMCID: PMC11532554 DOI: 10.1016/j.psj.2024.104378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Duck plague virus (DPV), which is the causative agent of duck viral enteritis, is highly infectious and can cause severe disease and death in ducks, geese and other waterfowl. Several tegument proteins of DPV have been shown to affect the cyclic GMP-AMP synthase (cGAS)-STING signaling pathway to modulate host innate immune responses. DPV UL24, an important DPV tegument protein, can inhibit the activity of the IFN-β promoter. However, the mechanism by which the DPV UL24 protein regulates the host innate immune response remains unclear. In this study, we found that the UL24 protein can significantly inhibit the activity of the interferon-β promoter induced by poly(I:C) and reduce the production of IFN-β, interferon-stimulated genes (OASL, Mx), and the cellular inflammatory factor IL-6. 2) The UL24 protein can widely inhibit the mRNA level of immune signaling molecules. The UL24 protein can also downregulate the protein expression of RIG-I, MDA5, MAVS, cGAS, STING, TBK1 and IRF7 in DEFs. RT-qPCR results revealed that UL24 significantly inhibited the mRNA accumulation for the immune signaling molecules cGAS, STING, TBK1 and IRF7. 3) The UL24 protein induced the degradation of IRF7 via ubiquitination. After the DEFs were treated with the ubiquitin proteasome inhibitor MG132, the degradation of IRF7 by the UL24 protein was alleviated. Coimmunoprecipitation results revealed that DPV UL24 induced the K48/K63-linked ubiquitination of IRF7, which promoted its degradation and thus antagonized the host innate immune response.
Collapse
Affiliation(s)
- Peilin Ruan
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Yalin Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Mingshu Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Anchun Cheng
- College of Animal Science and Veterinary Medicine, Institute of Veterinary Medicine and Immunology, GuiZhou University, GuiYang 550025, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China.
| | - Qiao Yang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Bin Tian
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Xumin Ou
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Di Sun
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Yu He
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Zhen Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Juan Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Ying Wu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Shaqiu Zhang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Xinxin Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Renyong Jia
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Mafeng Liu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| | - Shun Chen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu 611130, China; International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu 611130, China; College of Veterinary Medicine, Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu 611130, China; Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu 611130, China
| |
Collapse
|
4
|
Zhang WJ, Feng H, Zhang MM, Liu JS, Li LT, Chen HC, Liu ZF. Pseudorabies virus UL13 primes inflammatory response through downregulating heat shock factor 1. Virology 2024; 600:110214. [PMID: 39243656 DOI: 10.1016/j.virol.2024.110214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Pseudorabies virus is a swine alpha-herpesvirus. We demonstrated that alpha-herpesvirus infection downregulates HSF1, a master transcription factor in the heat shock response. The serine/threonine protein kinase activity of late viral protein UL13 is indispensable for HSF1 depletion and phosphorylation, and UL13 does not degrade HSF1 posttranslationally but inhibits the HSF1 mRNA level. Importantly, UL13 increased HSF1 activity even though it reduced HSF1 mRNA. Furthermore, viral replication markedly decreased in the HSF1 knockout cell line or in the presence of an HSF1-specific inhibitor. Interestingly, HSF1 knockout accelerated the activation of NF-κB and p38MAPK. The K96 loci of UL13 are important to induce high levels of IL-6, TNF-α, and IL-β cytokines while playing a crucial role in promoting mild interstitial pneumonia, liver necrosis, and severe inflammatory cell infiltration in the footpad. Thus, UL13 steers the heat shock response to promote viral replication and the inflammatory response. IMPORTANCE: PRV is a ubiquitous pathogen that infects a variety of mammals, such as pigs, ruminants, carnivores, and rodents as well as human beings, causing enormous economic losses in the swine industry. Here, we employed PRV as a model to determine the relationship between α-herpesvirus and the inflammatory response. Overall, our findings indicated that PRV infection inhibits the level of HSF1 mRNA via the serine/threonine protein kinase activity of UL13. Additionally, we discovered that HSF1 was involved in NF-κB activation upon PRV infection. PRV UL13 orchestrates the level of HSF1 mRNA, HSF1 protein phosphorylation, and priming of the inflammatory response. Our study reveals a novel mechanism employed by UL13 serine/threonine protein kinase activity to promote the inflammatory response, providing novel clues for therapy against alpha-herpesvirus infection.
Collapse
Affiliation(s)
- Wen-Jing Zhang
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Han Feng
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mei-Mei Zhang
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing-Song Liu
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lin-Tao Li
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan-Chun Chen
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zheng-Fei Liu
- National Key Laboratory of Agricultural Microbiology and Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
5
|
Song Y, Zhao X, Chen Y, Yu X, Su T, Wang J, He T, Yin Z, Jia R, Zhao X, Zhou X, Li L, Zou Y, Li M, Zhang D, Zhang Y, Song X. The antiviral activity of myricetin against pseudorabies virus through regulation of the type I interferon signaling pathway. J Virol 2024:e0156724. [PMID: 39601590 DOI: 10.1128/jvi.01567-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
The type I interferon signaling pathway constitutes a pivotal component of the innate immune response, encompassing the cGAS/STING and JAK/STAT pathways. Drugs that affect the body's innate immune response could potentially be used as broad-spectrum antivirals. In this study, the antiviral activities of 25 flavonoids against pseudorabies virus (PRV) were tested in PK-15 cells. Eight active flavonoids were identified, with IC50 values ranging from 23.24 to 323.09 µM. Subsequently, the regulatory effects of these flavonoids on the cGAS/STING pathway in PRV-infected cells were investigated. It was found that Myricetin significantly increased the transcriptional levels of cGAS, STING, IRF3, and IFN-β, which had been reduced by PRV infection. The regulation of the type I interferon signaling pathways by myricetin following PRV infection was further investigated through the production of cGAMP and the assessment of transcriptional and protein levels of pivotal genes and proteins. To confirm the activation of the innate immune response, a dual luciferase gene reporter study found that the expression of the IFN-β promoter in the myricetin-treated group was significantly elevated in a cellular model of type I interferon signaling pathway, and the contents of IFN-β were also significantly higher than those observed in the infected-untreated group in a PRV-infected mice model. Moreover, the transcriptional and protein levels of key genes and proteins in cell and mouse models exhibited analogous outcomes to those observed in PRV-infected cells. These findings suggest that myricetin can effectively activate the type I interferon signaling pathway, thereby enhancing the innate immune response during PRV infection. IMPORTANCE PRV, belonging to the Herpesviridae family, is an easily overlooked zoonotic pathogen that can threaten human health. The immunoprotective efficacy of conventional vaccines is significantly reduced due to the continuous mutation of the PRV genome, which constantly generates new viral strains. Therefore, there is a need to develop potent therapeutic drugs. PRV is capable of evading the host's natural immunity by suppressing the host's type I interferon signaling pathway, and the search for drugs that activate natural immunity can induce the body to produce type I IFN interferon and exert antiviral effects. Accordingly, the present study sought to identify active compounds from flavonoids that modulate the type I IFN interferon signaling pathway and thus inhibit the proliferation of PRV, which provides a new idea for the development of anti-PRV drugs from flavonoids that modulate the type I IFN interferon signaling pathway to enhance the body's antiviral immunity.
Collapse
Affiliation(s)
- Yizhen Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xufan Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaqin Chen
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xingyue Yu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tianli Su
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Wang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tingke He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinhong Zhao
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xun Zhou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingyue Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongmei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yingying Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Shi X, Shen L, Chen S, Liu M, Wang J, Wen X, Liu W, Mao L, Ding Y, Yu L, Xu J. Swine RNF5 positively regulates the antiviral activity of IFITM1 by mediating the degradation of ABHD16A. J Virol 2024:e0127724. [PMID: 39601593 DOI: 10.1128/jvi.01277-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Interferon-inducible transmembrane (IFITM) proteins are broad-spectrum antiviral factors that confer cellular resistance to virus invasion. α/β-Hydrolase domain-containing 16A (ABHD16A) has recently been identified as a novel depalmitoylase that can inhibit the antiviral activity of IFITM proteins by catalyzing the depalmitoyl reaction; this pattern may be crucial for the host to avoid damage caused by excessive immune response. However, it remains largely elusive about how host cells regulate the activity of ABHD16A. In the present study, we performed the AlphaFold2-based protein-protein interaction prediction and identified swine E3 ubiquitin ligase ring finger protein 5 (sRNF5) as a sABHD16A-interacting protein and negatively regulated the stability of sABHD16A. Using immunofluorescence and co-immunoprecipitation techniques, we uncovered that sRNF5 targeted sABHD16A for ubiquitination and degradation via the proteasomal pathway at residues K3 and K452. Furthermore, sABHD16A catalyzed the depalmitoylation of sIFITM1, which obstructed the antiviral function of sIFITM1, while sRNF5 caused ubiquitination of sABHD16A, which attenuated the depalmitoylation effect on sIFITM1, and consequently restored the antiviral activity of sIFITM1. Collectively, our findings demonstrate for the first time that sRNF5 positively regulates the antiviral function of sIFITM1 by mediating the degradation of sABHD16A, which expands the biological functions of RNF5 and ABHD16A in immune regulation. Moreover, our work highlights the well-designed interplay between RNF5, ABHD16A, and IFITM, which balances antiviral immune responses to avoid the disorders induced by excessive immune response. IMPORTANCE Interferon and interferon-stimulated genes play significant and protective roles in the host's defense against viral infection. IFITM family proteins, which can be strongly induced by interferon, have been identified as the first line of defense to prevent invasion of various viruses. Further analysis reveals the antiviral activity of IFITMs depends on palmitoylation/depalmitoylation. Recently, we reported that ABHD16A, as the first depalmitoylase of IFITMs, negatively regulated the antiviral activity of IFITMs. However, these raise crucial questions: how ABHD16A is regulated and remained in a balanced manner? Here, we show that swine RNF5 attenuates the negative regulation of sIFITM1 against virus invasion by modifying sABHD16A through ubiquitination and guiding sABHD16A for degradation. Thus, sRNF5-sABHD16A interplay plays an indispensable role in regulating immune response and avoiding the disorders induced by elevated interferon levels. Overall, our findings extend the upstream subtle regulatory molecular mechanism of IFITMs and provide potential targets for viral disease therapy.
Collapse
Affiliation(s)
- Xuemeng Shi
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lingyi Shen
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Shuaiwu Chen
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Mingyang Liu
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jingyi Wang
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xin Wen
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Wei Liu
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lin Mao
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Yunyun Ding
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Li Yu
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jun Xu
- College of Life Science, Zhengdong New District Longzi Lake Campus, Henan Agricultural University, Zhengzhou, Henan, China
| |
Collapse
|
7
|
Han Q, Zhao H, Chen M, Xue W, Li J, Sun L, Shang Y. Retinol binding protein 4 restricts PCV2 replication via selective autophagy degradation of viral ORF1 protein. Commun Biol 2024; 7:1438. [PMID: 39500783 PMCID: PMC11538477 DOI: 10.1038/s42003-024-07052-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/11/2024] [Indexed: 11/08/2024] Open
Abstract
Autophagy is a highly conserved degradative process that has been linked to various functions, including defending host cells against pathogens. Although the involvement of autophagy in porcine circovirus 2 (PCV2) infection has become apparent, it remains unclear whether selective autophagy plays a critical role in PCV2 restriction. Here we show that retinol-binding protein 4 (RBP4), an adipokine for retinol carrier, initiates the autophagic degradation of PCV2 ORF1 protein. PCV2 infection increases RBP4 protein levels through MAPK-eIF4E axis in living cells. Ectopic expression of RBP4 or recombinant RBP4 treatment promotes the degradation of ORF1 protein. Mechanistically, RBP4 activates TRAF6 to induce K63-linked ubiquitination of ORF1, leading to SQSTM1/p62-mediated selective autophagy for degradation. Consequently, RBP4 deficiency increases viral loads and exacerbates the pathogenicity of PCV2 in vivo. Collectively, these results identify RBP4 as a key host restriction factor of PCV2 and reveal a previously undescribed antiviral mechanism against PCV2 in infected cells.
Collapse
Affiliation(s)
- Qingbing Han
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Hejiao Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Meng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Wenshuo Xue
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China
| | - Jun Li
- Division of Swine Diseases, Shandong Provincial Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Lei Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, Shandong, China.
- Shandong Provincial Key Laboratory of Zoonoses, Shandong Agricultural University, Taian, Shandong, China.
- Institute of Immunology, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
8
|
Jin QW, Yu T, Pan M, Fan YM, Ge CC, He XB, Gong JZ, Tao JP, Fu BQ, Jing ZZ, Huang SY. Toxoplasma gondii ROP5 Enhances Type I IFN Responses by Promoting Ubiquitination of STING. Int J Mol Sci 2024; 25:11262. [PMID: 39457045 PMCID: PMC11508707 DOI: 10.3390/ijms252011262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/10/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
Toxoplasma gondii is a widely spread opportunistic pathogen that can infect nearly all warm-blooded vertebrates and cause serious toxoplasmosis in immunosuppressed animals and patients. However, the relationship between the host's innate immune system and effector proteins is poorly understood, particularly with regard to how effectors antagonize cGAS-STING signaling during T. gondii infection. In this study, the ROP5 from the PRU strain of T. gondii was found to promote cGAS-STING-mediated immune responses. Mechanistically, ROP5 interacted with STING through predicted domain 2 and modulated cGAS-STING signaling in a predicted domain 3-dependent manner. Additionally, ROP5 strengthened cGAS-STING signaling by enhancing the K63-linked ubiquitination of STING. Consistently, ROP5 deficient PRU (PRUΔROP5) induced fewer type I IFN-related immune responses and replicated faster than the parental strain in RAW264.7 cells. Taken together, this study provides new insights into the mechanism by which ROP5 regulates T. gondii infection and provides new clues for strategies to prevent and control toxoplasmosis.
Collapse
Affiliation(s)
- Qi-Wang Jin
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Ting Yu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| | - Ming Pan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| | - Yi-Min Fan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| | - Ceng-Ceng Ge
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| | - Xiao-Bing He
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Jing-Zhi Gong
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| | - Jian-Ping Tao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Zhi-Zhong Jing
- State Key Laboratory for Animal Disease Control and Prevention, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, College of Veterinary Medicine, Lanzhou University, Lanzhou 730000, China
| | - Si-Yang Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; (Q.-W.J.); (T.Y.)
| |
Collapse
|
9
|
Hu Y, Zhang SY, Sun WC, Feng YR, Gong HR, Ran DL, Zhang BZ, Liu JH. Breaking Latent Infection: How ORF37/38-Deletion Mutants Offer New Hope against EHV-1 Neuropathogenicity. Viruses 2024; 16:1472. [PMID: 39339948 PMCID: PMC11437417 DOI: 10.3390/v16091472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Equid alphaherpesvirus 1 (EHV-1) has been linked to the emergence of neurological disorders, with the horse racing industry experiencing significant impacts from outbreaks of equine herpesvirus myeloencephalopathy (EHM). Building robust immune memory before pathogen exposure enables rapid recognition and elimination, preventing infection. This is crucial for effectively managing EHV-1. Removing neuropathogenic factors and immune evasion genes to develop live attenuated vaccines appears to be a successful strategy for EHV-1 vaccines. We created mutant viruses without ORF38 and ORF37/38 and validated their neuropathogenicity and immunogenicity in hamsters. The ∆ORF38 strain caused brain tissue damage at high doses, whereas the ∆ORF37/38 strain did not. Dexamethasone was used to confirm latent herpesvirus infection and reactivation. Dexamethasone injection increased viral DNA load in the brains of hamsters infected with the parental and ∆ORF38 strains, but not in those infected with the ∆ORF37/38 strain. Immunizing hamsters intranasally with the ∆ORF37/38 strain as a live vaccine produced a stronger immune response compared to the ∆ORF38 strain at the same dose. The hamsters demonstrated effective protection against a lethal challenge with the parental strain. This suggests that the deletion of ORF37/38 may effectively inhibit latent viral infection, reduce the neuropathogenicity of EHV-1, and induce a protective immune response.
Collapse
Affiliation(s)
- Yue Hu
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Si-Yu Zhang
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| | - Wen-Cheng Sun
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| | - Ya-Ru Feng
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| | - Hua-Rui Gong
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Duo-Liang Ran
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| | - Bao-Zhong Zhang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jian-Hua Liu
- Laboratory of Animal Infectious Disease, College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, China; (Y.H.); (W.-C.S.); (Y.-R.F.); (D.-L.R.)
| |
Collapse
|
10
|
Liu X, Wang M, Cheng A, Yang Q, Tian B, Ou X, Sun D, He Y, Wu Z, Zhao X, Wu Y, Zhang S, Huang J, Jia R, Chen S, Liu M, Zhu D. Functions of the UL51 protein during the herpesvirus life cycle. Front Microbiol 2024; 15:1457582. [PMID: 39252835 PMCID: PMC11381400 DOI: 10.3389/fmicb.2024.1457582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 09/11/2024] Open
Abstract
The herpesvirus UL51 protein is a multifunctional tegument protein involved in the regulation of multiple aspects of the viral life cycle. This article reviews the biological characteristics of the UL51 protein and its functions in herpesviruses, including participating in the maintenance of the viral assembly complex (cVAC) during viral assembly, affecting the production of mature viral particles and promoting primary and secondary envelopment, as well as its positive impact on viral cell-to-cell spread (CCS) through interactions with multiple viral proteins and its key role in the proliferation and pathogenicity of the virus in the later stage of infection. This paper discusses how the UL51 protein participates in the life cycle of herpesviruses and provides new ideas for further research on UL51 protein function.
Collapse
Affiliation(s)
- Xiaolan Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
He W, Chang H, Li C, Wang C, Li L, Yang G, Chen J, Liu H. STRAP upregulates antiviral innate immunity against PRV by targeting TBK1. Virol J 2024; 21:197. [PMID: 39182136 PMCID: PMC11344311 DOI: 10.1186/s12985-024-02474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Serine/threonine kinase receptor-associated protein (STRAP) serves as a scaffold protein and is engaged in a variety of cellular activities, although its importance in antiviral innate immunity is unknown. We discovered that STRAP works as an interferon (IFN)-inducible positive regulator, facilitating type I IFN signaling during pseudorabies virus infection. Mechanistically, STRAP interacts with TBK1 to activate type I IFN signaling. Both the CT and WD40 7 - 6 domains contribute to the function of STRAP. Furthermore, TBK1 competes with PRV-UL50 for binding to STRAP, and STRAP impedes the degradation of TBK1 mediated by PRV-UL50, thereby increasing the interaction between STRAP and TBK1. Overall, these findings reveal a previously unrecognized role for STRAP in innate antiviral immune responses during PRV infection. STRAP could be a potential therapeutic target for viral infectious diseases.
Collapse
Affiliation(s)
- Wenfeng He
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Hongtao Chang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chen Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Chenlong Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Longxi Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Guoqing Yang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jing Chen
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China
| | - Huimin Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Zhang J, Wu Y, Wang Y, Wang J, Ye Y, Yin H, Sun N, Qin B, Sun N. TRIM35 Negatively Regulates the cGAS-STING-Mediated Signaling Pathway by Attenuating K63-Linked Ubiquitination of STING. Inflammation 2024:10.1007/s10753-024-02093-4. [PMID: 39088122 DOI: 10.1007/s10753-024-02093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024]
Abstract
The cGAS-STING-mediated antiviral response plays an important role in the defense against DNA virus infection. Tripartite motif protein 35 (TRIM35), an E3 ubiquitin ligase, was identified as a positive regulator of RLR-mediated antiviral signaling in our previous study, but the effect of TRIM35 on the cGAS-STING signaling pathway has not been elucidated. Herein, we showed that TRIM35 negatively regulates the cGAS-STING signaling pathway by directly targeting STING. TRIM35 overexpression significantly inhibited the cGAMP-triggered phosphorylation of TBK1 and IRF3, attenuating IFN-β expression and the downstream antiviral response. Mechanistically, TRIM35 colocalized and directly interacted with STING in the cytoplasm. TRM35 removed K63-linked ubiquitin from STING through the C36 and C44 sites in the RING domain, which impaired the interaction of STING with TBK1 or IKKε. In addition, we demonstrated that the RING domain is a key region for the antiviral effects of TIRM35. These results collectively indicate that TRIM35 negatively regulates type I interferon (IFN-I) production by targeting and deubiquitinating STING. TRIM35 may be a potential therapeutic target for controlling viral infection.
Collapse
Affiliation(s)
- Jikai Zhang
- Xuzhou Medical University, Xuzhou, China
- Department of Pathogen Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuhao Wu
- Xuzhou Medical University, Xuzhou, China
| | - Yiwen Wang
- Xuzhou Medical University, Xuzhou, China
| | - Jing Wang
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yinlin Ye
- Xuzhou Medical University, Xuzhou, China
| | - Hang Yin
- Xuzhou Medical University, Xuzhou, China
| | - Ningye Sun
- Xuzhou Medical University, Xuzhou, China
| | | | - Nan Sun
- Xuzhou Medical University, Xuzhou, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, China.
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
13
|
Wang J, Jin X, Yan S, Zhao H, Pang D, Ouyang H, Tang X. Yeast β-glucan promotes antiviral type I interferon response via dectin-1. Vet Microbiol 2024; 295:110107. [PMID: 38838382 DOI: 10.1016/j.vetmic.2024.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Pseudorabies virus (PRV), an alphaherpesvirus, is a neglected zoonotic pathogen. Dectin-1 sensing of β-glucan (BG) induces trained immunity, which can possibly form a new strategy for the prevention of viral infection. However, alphaherpesvirus including PRV have received little to no investigation in the context of trained immunity. Here, we found that BG pretreatment improved the survival rate, weight loss outcomes, alleviated histological injury and decreased PRV copy number of tissues in PRV-infected mice. Type I interferons (IFNs) including IFN-α/β levels in serum were significantly increased by BG. However, these effects were abrogated in the presence of Dectin-1 antagonist. Dectin-1-mediated effect of BG was also confirmed in porcine and murine macrophages. These results suggested that BG have effects on type I IFNs with antiviral property involved in Dectin-1. In piglets, oral or injected immunization with BG and PRV vaccine could significantly elevated the level of PRV-specific IgG and type I IFNs. And it also increased the antibody levels of porcine reproductive and respiratory syndrome virus vaccine and classical swine fever vaccine that were later immunized, indicating a broad-spectrum effect on improving vaccine immunity. On the premise that the cost was greatly reducing, the immunological effect of oral was better than injection administration. Our findings highlighted that BG induced type I IFNs related antiviral effect against PRV involved in Dectin-1 and potential application value as a feed additive to help control the spread of PRV and future emerging viruses.
Collapse
Affiliation(s)
- Jiaqi Wang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Xuemin Jin
- State Key Laboratory for Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Shihan Yan
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Haoran Zhao
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China
| | - Daxin Pang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Hongsheng Ouyang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China
| | - Xiaochun Tang
- Key Lab for Zoonoses Research, Ministry of Education, Animal Genome Editing Technology Innovation Center, College of Animal Sciences, Jilin University, Changchun, Jilin 130062, China; Chongqing Research Institute, Jilin University, Chongqing 401123, China; Chongqing Jitang Biotechnology Research Institute Co. Ltd., Chongqing, China.
| |
Collapse
|
14
|
Chengyue W, Mengdong W, Xiaoquan W, Yeping C, Hao L, Liumei S, Jianle R, Zhendong Z. TRIM26 facilitates PRV infection through NDP52-mediated autophagic degradation of MAVS. Vet Res 2024; 55:84. [PMID: 38965634 PMCID: PMC11225307 DOI: 10.1186/s13567-024-01336-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/22/2024] [Indexed: 07/06/2024] Open
Abstract
Pseudorabies virus (PRV) has evolved multiple strategies to evade host antiviral responses to benefit virus replication and establish persistent infection. Recently, tripartite motif 26 (TRIM26), a TRIM family protein, has been shown to be involved in a broad range of biological processes involved in innate immunity, especially in regulating viral infection. Herein, we found that the expression of TRIM26 was significantly induced after PRV infection. Surprisingly, the overexpression of TRIM26 promoted PRV production, while the depletion of this protein inhibited virus replication, suggesting that TRIM26 could positively regulate PRV infection. Further analysis revealed that TRIM26 negatively regulates the innate immune response by targeting the RIG-I-triggered type I interferon signalling pathway. TRIM26 was physically associated with MAVS independent of viral infection and reduced MAVS expression. Mechanistically, we found that NDP52 interacted with both TRIM26 and MAVS and that TRIM26-induced MAVS degradation was almost entirely blocked in NDP52-knockdown cells, demonstrating that TRIM26 degrades MAVS through NDP52-mediated selective autophagy. Our results reveal a novel mechanism by which PRV escapes host antiviral innate immunity and provide insights into the crosstalk among virus infection, autophagy, and the innate immune response.
Collapse
Affiliation(s)
- Wu Chengyue
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Wang Mengdong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Wang Xiaoquan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Chen Yeping
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Li Hao
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Sun Liumei
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China
| | - Ren Jianle
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, 030801, China
| | - Zhang Zhendong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, 212018, Jiangsu, China.
| |
Collapse
|
15
|
Kong Z, Chen X, Gong L, Wang L, Zhang Y, Guan K, Yao W, Kang Y, Lu X, Zhang Y, Du Y, Sun A, Zhuang G, Zhao J, Wan B, Zhang G. Pseudorabies virus tegument protein US2 antagonizes antiviral innate immunity by targeting cGAS-STING signaling pathway. Front Immunol 2024; 15:1403070. [PMID: 39015575 PMCID: PMC11250390 DOI: 10.3389/fimmu.2024.1403070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 07/18/2024] Open
Abstract
Background The cGAS-STING axis-mediated type I interferon pathway is a crucial strategy for host defense against DNA virus infection. Numerous evasion strategies developed by the pseudorabies virus (PRV) counteract host antiviral immunity. To what extent PRV-encoded proteins evade the cGAS-STING signaling pathway is unknown. Methods Using US2 stably expressing cell lines and US2-deficient PRV model, we revealed that the PRV tegument protein US2 reduces STING protein stability and downregulates STING-mediated antiviral signaling. Results To promote K48-linked ubiquitination and STING degradation, US2 interacts with the LBD structural domain of STING and recruits the E3 ligase TRIM21. TRIM21 deficiency consistently strengthens the host antiviral immune response brought on by PRV infection. Additionally, US2-deficient PRV is less harmful in mice. Conclusions Our study implies that PRV US2 inhibits IFN signaling by a new mechanism that selectively targets STING while successfully evading the host antiviral response. As a result, the present study reveals a novel strategy by which PRV evades host defense and offers explanations for why the Bartha-K61 classical vaccine strain failed to offer effective defense against PRV variant strains in China, indicating that US2 may be a key target for developing gene-deficient PRV vaccines.
Collapse
Affiliation(s)
- Zhengjie Kong
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xing Chen
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lele Gong
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Lele Wang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yifeng Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Wanzi Yao
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yu Kang
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Xinyi Lu
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
| | - Yuhang Zhang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yongkun Du
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Aijun Sun
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Guoqing Zhuang
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Bo Wan
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaiping Zhang
- School of Advanced Agricultural Sciences, Peking University, Beijing, China
- Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, China
- International Joint Research Center of National Animal Immunology, College of Veterinary Medicine, Henan Agriculture University, Zhengzhou, China
- Longhu Laboratory, Henan Agricultural University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Cui Y, Wang M, Cheng A, Zhang W, Yang Q, Tian B, Ou X, Huang J, Wu Y, Zhang S, Sun D, He Y, Zhao X, Wu Z, Zhu D, Jia R, Chen S, Liu M. The precise function of alphaherpesvirus tegument proteins and their interactions during the viral life cycle. Front Microbiol 2024; 15:1431672. [PMID: 39015737 PMCID: PMC11250606 DOI: 10.3389/fmicb.2024.1431672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Alphaherpesvirus is a widespread pathogen that causes diverse diseases in humans and animals and can severely damage host health. Alphaherpesvirus particles comprise a DNA core, capsid, tegument and envelope; the tegument is located between the nuclear capsid and envelope. According to biochemical and proteomic analyses of alphaherpesvirus particles, the tegument contains at least 24 viral proteins and plays an important role in the alphaherpesvirus life cycle. This article reviews the important role of tegument proteins and their interactions during the viral life cycle to provide a reference and inspiration for understanding alphaherpesvirus infection pathogenesis and identifying new antiviral strategies.
Collapse
Affiliation(s)
- Yuxi Cui
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Liu B, Xu C, He Q, Zhang K, Qi S, Jin Z, Cheng W, Ding Z, Chen D, Zhao X, Zhang W, Zhang K, Li K. Membralin is required for maize development and defines a branch of the endoplasmic reticulum-associated degradation pathway in plants. Proc Natl Acad Sci U S A 2024; 121:e2406090121. [PMID: 38865274 PMCID: PMC11194580 DOI: 10.1073/pnas.2406090121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Endoplasmic reticulum (ER)-associated degradation (ERAD) plays key roles in controlling protein levels and quality in eukaryotes. The Ring Finger Protein 185 (RNF185)/membralin ubiquitin ligase complex was recently identified as a branch in mammals and is essential for neuronal function, but its function in plant development is unknown. Here, we report the map-based cloning and characterization of Narrow Leaf and Dwarfism 1 (NLD1), which encodes the ER membrane-localized protein membralin and specifically interacts with maize homologs of RNF185 and related components. The nld1 mutant shows defective leaf and root development due to reduced cell number. The defects of nld1 were largely restored by expressing membralin genes from Arabidopsis thaliana and mice, highlighting the conserved roles of membralin proteins in animals and plants. The excessive accumulation of β-hydroxy β-methylglutaryl-CoA reductase in nld1 indicates that the enzyme is a membralin-mediated ERAD target. The activation of bZIP60 mRNA splicing-related unfolded protein response signaling and marker gene expression in nld1, as well as DNA fragment and cell viability assays, indicate that membralin deficiency induces ER stress and cell death in maize, thereby affecting organogenesis. Our findings uncover the conserved, indispensable role of the membralin-mediated branch of the ERAD pathway in plants. In addition, ZmNLD1 contributes to plant architecture in a dose-dependent manner, which can serve as a potential target for genetic engineering to shape ideal plant architecture, thereby enhancing high-density maize yields.
Collapse
Affiliation(s)
- Baiyu Liu
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Changzheng Xu
- School of Life Sciences, Southwest University, Chongqing400715, China
| | - Qiuxia He
- Science and Technology Service Platform, Qilu University of Technology (Shandong Academy of Sciences), Jinan250103, China
| | - Ke Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Shoumei Qi
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Zhe Jin
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Wen Cheng
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong250100, China
| | - Zhaohua Ding
- Maize Institute of Shandong Academy of Agricultural Sciences, Jinan, Shandong250100, China
| | - Donghua Chen
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Xiangyu Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong271018, China
| | - Wei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Kewei Zhang
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| | - Kunpeng Li
- The Key Laboratory of Plant Development and Environment Adaptation Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao266237, China
| |
Collapse
|
18
|
Lu Z, Luo R, Lan J, Chen S, Qiu HJ, Wang T, Sun Y. The MGF300-2R Protein of African Swine Fever Virus Promotes IKKβ Ubiquitination by Recruiting the E3 Ubiquitin Ligase TRIM21. Viruses 2024; 16:949. [PMID: 38932241 PMCID: PMC11209375 DOI: 10.3390/v16060949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
African swine fever (ASF) is an acute, hemorrhagic, highly contagious disease in pigs caused by African swine fever virus (ASFV). Our previous study identified that the ASFV MGF300-2R protein functions as a virulence factor and found that MGF300-2R degrades IKKβ via selective autophagy. However, the E3 ubiquitin ligase responsible for IKKβ ubiquitination during autophagic degradation still remains unknown. In order to solve this problem, we first pulled down 328 proteins interacting with MGF300-2R through immunoprecipitation-mass spectrometry. Next, we analyzed and confirmed the interaction between the E3 ubiquitin ligase TRIM21 and MGF300-2R and demonstrated the catalytic role of TRIM21 in IKKβ ubiquitination. Finally, we indicated that the degradation of IKKβ by MGF300-2R was dependent on TRIM21. In summary, our results indicate TRIM21 is the E3 ubiquitin ligase involved in the degradation of IKKβ by MGF300-2R, thereby augmenting our understanding of the functions of MGF300-2R and offering insights into the rational design of live attenuated vaccines and antiviral strategies against ASF.
Collapse
Affiliation(s)
- Zhanhao Lu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Rui Luo
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Jing Lan
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Sciences, Yangtze University, Jingzhou 434000, China
| | - Shengmei Chen
- College of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Hua-Ji Qiu
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
- College of Animal Sciences, Yangtze University, Jingzhou 434000, China
- College of Life Science and Engineering, Foshan University, Foshan 528000, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yuan Sun
- State Key Laboratory for Animal Disease Control and Prevention, National African Swine Fever Para-Reference Laboratory, National High Containment Facilities for Animal Diseases Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
19
|
Liu Y, Qin Y, Yang B, Zheng H, Qiao S, Luo Z, Li R. Pseudorabies virus usurps non-muscle myosin heavy chain IIA to dampen viral DNA recognition by cGAS for antagonism of host antiviral innate immunity. J Virol 2024; 98:e0048324. [PMID: 38639486 PMCID: PMC11092326 DOI: 10.1128/jvi.00483-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 04/20/2024] Open
Abstract
Alphaherpesvirus pseudorabies virus (PRV) causes severe economic losses to the global pig industry and has garnered increasing attention due to its broad host range including humans. PRV has developed a variety of strategies to antagonize host antiviral innate immunity. However, the underlying mechanisms have not been fully elucidated. In our previous work, we demonstrated that non-muscle myosin heavy chain IIA (NMHC-IIA), a multifunctional cytoskeleton protein, attenuates innate immune responses triggered by RNA viruses. In the current study, we reported a previously unrecognized role of NMHC-IIA in counteracting PRV-induced cyclic GMP-AMP synthase (cGAS)-dependent type I interferon (IFN-I) production. Mechanistically, PRV infection led to an elevation of NMHC-IIA, strengthening the interaction between poly (ADP-ribose) polymerase 1 (PARP1) and cGAS. This interaction impeded cGAS recognition of PRV DNA and hindered downstream signaling activation. Conversely, inhibition of NMHC-IIA by Blebbistatin triggered innate immune responses and enhanced resistance to PRV proliferation both in vitro and in vivo. Taken together, our findings unveil that PRV utilizes NMHC-IIA to antagonize host antiviral immune responses via impairing DNA sensing by cGAS. This in-depth understanding of PRV immunosuppression not only provides insights for potential PRV treatment strategies but also highlights NMHC-IIA as a versatile immunosuppressive regulator usurped by both DNA and RNA viruses. Consequently, NMHC-IIA holds promise as a target for the development of broad-spectrum antiviral drugs.IMPORTANCECyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) axis plays a vital role in counteracting alphaherpesvirus infections. Alphaherpesviruses exploit various strategies for antagonizing cGAS-STING-mediated antiviral immune responses. However, limited examples of pseudorabies virus (PRV)-caused immunosuppression have been documented. Our findings reveal a novel role of non-muscle myosin heavy chain IIA (NMHC-IIA) in suppressing PRV-triggered innate immune responses to facilitate viral propagation both in vitro and in vivo. In detail, NMHC-IIA recruits poly (ADP-ribose) polymerase 1 (PARP1) to augment its interaction with cGAS, which impairs cGAS recognition of PRV DNA. Building on our previous demonstration of NMHC-IIA's immunosuppressive role during RNA virus infections, these findings indicate that NMHC-IIA acts as a broad-spectrum suppressor of host antiviral innate immunity in response to both DNA and RNA viruses. Therefore, NMHC-IIA will be a promising target for the development of comprehensive antiviral strategies.
Collapse
Affiliation(s)
- Yingqi Liu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Yidan Qin
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Bingbing Yang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hongmei Zheng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Songlin Qiao
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| | - Zhong Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Rui Li
- Key Laboratory of Animal Immunology of the Ministry of Agriculture, Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, Henan, China
| |
Collapse
|
20
|
Yao M, Cao H, Li W, Hu Z, Rong Z, Yin M, Tian L, Hu D, Li X, Qian P. African swine fever virus MGF505-6R attenuates type I interferon production by targeting STING for degradation. Front Immunol 2024; 15:1380220. [PMID: 38799458 PMCID: PMC11116646 DOI: 10.3389/fimmu.2024.1380220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
African swine fever (ASF) is an acute hemorrhagic and devastating infectious disease affecting domestic pigs and wild boars. It is caused by the African swine fever virus (ASFV), which is characterized by genetic diversity and sophisticated immune evasion strategies. To facilitate infection, ASFV encodes multiple proteins to antagonize host innate immune responses, thereby contributing to viral virulence and pathogenicity. The molecular mechanisms employed by ASFV-encoded proteins to modulate host antiviral responses have not been comprehensively elucidated. In this study, it was observed that the ASFV MGF505-6R protein, a member of the multigene family 505 (MGF505), effectively suppressed the activation of the interferon-beta (IFN-β) promoter, leading to reduced mRNA levels of antiviral genes. Additional evidence has revealed that MGF505-6R antagonizes the cGAS-STING signaling pathway by interacting with the stimulator of interferon genes (STING) for degradation in the autophagy-lysosomal pathway. The domain mapping revealed that the N-terminal region (1-260aa) of MGF505-6R is the primary domain responsible for interacting with STING, while the CTT domain of STING is crucial for its interaction with MGF505-6R. Furthermore, MGF505-6R also inhibits the activation of STING by reducing the K63-linked polyubiquitination of STING, leading to the disruption of STING oligomerization and TANK binding kinase 1 (TBK1) recruitment, thereby impairing the phosphorylation and nuclear translocation of interferon regulatory factor 3 (IRF3). Collectively, our study elucidates a novel strategy developed by ASFV MGF505-6R to counteract host innate immune responses. This discovery may offer valuable insights for further exploration of ASFV immune evasion mechanisms and antiviral strategies.
Collapse
Affiliation(s)
- Manman Yao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hua Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wentao Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zihui Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhenxiang Rong
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Mengge Yin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Linxing Tian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dayue Hu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiangmin Li
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| | - Ping Qian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei, China
| |
Collapse
|
21
|
Sun F, Ma W, Wang H, He H. Tegument protein UL3 of bovine herpesvirus 1 suppresses antiviral IFN-I signaling by targeting STING for autophagic degradation. Vet Microbiol 2024; 291:110031. [PMID: 38412580 DOI: 10.1016/j.vetmic.2024.110031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Bovine herpesvirus 1 (BoHV-1) is a highly contagious pathogen which causes infectious bovine rhinotracheitis in cattle worldwide. Although it has the ability to evade the host's antiviral innate immune response and establish persistent latent infections, the mechanisms are not fully understood, especially the function of the tegument protein to escape innate immunity and participate in viral replication. In this study, we showed that overexpression of tegument protein UL3 facilitates BoHV-1 replication and suppresses the expression of type-I interferon (IFN-I) and IFN-stimulated genes. Then, STING was identified as the target by which UL3 inhibits the IFN-I signaling pathway, and STING was degraded through the UL3-induced autophagy pathway. Furthermore, overexpression of UL3 promotes the expression of the autophagy-related protein ATG101, thereby inducing autophagy. Further study showed that UL3 enhances the interaction between ATG101 and STING, and then the degradation of STING was reversed following ATG101 silencing in UL3-overexpressing cells during BoHV-1 infection. Our research results demonstrate a novel function of UL3 in regulating host's antiviral response and provide a potential mechanism for BoHV-1 immune evasion.
Collapse
Affiliation(s)
- Fachao Sun
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Wenqing Ma
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China
| | - Hongmei Wang
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China.
| | - Hongbin He
- Ruminant Diseases Research Center, College of Life Sciences, Shandong Normal University, Jinan 250358, People's Republic of China; Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, People's Republic of China.
| |
Collapse
|
22
|
Zhou J, Zhou Y, Wei XF, Fan L, Gao X, Li Y, Wu Y, Feng W, Shen X, Liu L, Xu G, Zhang Z. TRIM6 facilitates SARS-CoV-2 proliferation by catalyzing the K29-typed ubiquitination of NP to enhance the ability to bind viral genomes. J Med Virol 2024; 96:e29531. [PMID: 38515377 DOI: 10.1002/jmv.29531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 03/05/2024] [Indexed: 03/23/2024]
Abstract
The Nucleocapsid Protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not only the core structural protein required for viral packaging, but also participates in the regulation of viral replication, and its post-translational modifications such as phosphorylation have been shown to be an important strategy for regulating virus proliferation. Our previous work identified NP could be ubiquitinated, as confirmed by two independent studies. But the function of NP ubiquitination is currently unknown. In this study, we first pinpointed TRIM6 as the E3 ubiquitin ligase responsible for NP ubiquitination, binding to NP's CTD via its RING and B-box-CCD domains. TRIM6 promotes the K29-typed polyubiquitination of NP at K102, K347, and K361 residues, increasing its binding to viral genomic RNA. Consistently, functional experiments such as the use of the reverse genetic tool trVLP model and gene knockout of TRIM6 further confirmed that blocking the ubiquitination of NP by TRIM6 significantly inhibited the proliferation of SARS-CoV-2. Notably, the NP of coronavirus is relatively conserved, and the NP of SARS-CoV can also be ubiquitinated by TRIM6, indicating that NP could be a broad-spectrum anti-coronavirus target. These findings shed light on the intricate interaction between SARS-CoV-2 and the host, potentially opening new opportunities for COVID-19 therapeutic development.
Collapse
Affiliation(s)
- Jian Zhou
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yuzheng Zhou
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xia-Fei Wei
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Lujie Fan
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou, China
| | - Xiang Gao
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yunfei Li
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yezi Wu
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Wei Feng
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - XiaoTong Shen
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Lei Liu
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Gang Xu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zheng Zhang
- The Second Affiliated Hospital, School of Medicine, Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
23
|
Zhang K, Huang Q, Li X, Zhao Z, Hong C, Sun Z, Deng B, Li C, Zhang J, Wang S. The cGAS-STING pathway in viral infections: a promising link between inflammation, oxidative stress and autophagy. Front Immunol 2024; 15:1352479. [PMID: 38426093 PMCID: PMC10902852 DOI: 10.3389/fimmu.2024.1352479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
The host defence responses play vital roles in viral infection and are regulated by complex interactive networks. The host immune system recognizes viral pathogens through the interaction of pattern-recognition receptors (PRRs) with pathogen-associated molecular patterns (PAMPs). As a PRR mainly in the cytoplasm, cyclic GMP-AMP synthase (cGAS) senses and binds virus DNA and subsequently activates stimulator of interferon genes (STING) to trigger a series of intracellular signalling cascades to defend against invading pathogenic microorganisms. Integrated omic and functional analyses identify the cGAS-STING pathway regulating various host cellular responses and controlling viral infections. Aside from its most common function in regulating inflammation and type I interferon, a growing body of evidence suggests that the cGAS-STING signalling axis is closely associated with a series of cellular responses, such as oxidative stress, autophagy, and endoplasmic reticulum stress, which have major impacts on physiological homeostasis. Interestingly, these host cellular responses play dual roles in the regulation of the cGAS-STING signalling axis and the clearance of viruses. Here, we outline recent insights into cGAS-STING in regulating type I interferon, inflammation, oxidative stress, autophagy and endoplasmic reticulum stress and discuss their interactions with viral infections. A detailed understanding of the cGAS-STING-mediated potential antiviral effects contributes to revealing the pathogenesis of certain viruses and sheds light on effective solutions for antiviral therapy.
Collapse
Affiliation(s)
- Kunli Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Qiuyan Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xinming Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Ziqiao Zhao
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Chun Hong
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zeyi Sun
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Bo Deng
- Division of Nephrology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunling Li
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianfeng Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| | - Sutian Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, China
| |
Collapse
|
24
|
Ge J, Zhang L. RNF5: inhibiting antiviral immunity and shaping virus life cycle. Front Immunol 2024; 14:1324516. [PMID: 38250078 PMCID: PMC10796512 DOI: 10.3389/fimmu.2023.1324516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
RNF5 is an E3 ubiquitin ligase involved in various physiological processes such as protein localization and cancer progression. Recent studies have shown that RNF5 significantly inhibits antiviral innate immunity by promoting the ubiquitination and degradation of STING and MAVS, which are essential adaptor proteins, as well as their downstream signal IRF3. The abundance of RNF5 is delicately regulated by both host factors and viruses. Host factors have been found to restrict RNF5-mediated ubiquitination, maintaining the stability of STING or MAVS through distinct mechanisms. Meanwhile, viruses have developed ingenious strategies to hijack RNF5 to ubiquitinate and degrade immune proteins. Moreover, recent studies have revealed the multifaceted roles of RNF5 in the life cycle of various viruses, including SARS-CoV-2 and KSHV. Based on these emerging discoveries, RNF5 represents a novel means of modulating antiviral immunity. In this review, we summarize the latest research on the roles of RNF5 in antiviral immunity and virus life cycle. This comprehensive understanding could offer valuable insights into exploring potential therapeutic applications focused on targeting RNF5 during viral infections.
Collapse
Affiliation(s)
- Junyi Ge
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Leiliang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China
- Department of Pathogen Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Medical Science and Technology Innovation Center, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
25
|
Wang X, Li Y, Dong S, Wang C, Wang Y, Zhang H. Transcriptomic analysis reveals impact of gE/gI/TK deletions on host response to PRV infection. Virol J 2023; 20:303. [PMID: 38115115 PMCID: PMC10731697 DOI: 10.1186/s12985-023-02265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023] Open
Abstract
BACKGROUND Pseudorabies virus (PRV) causes substantial losses in the swine industry worldwide. Attenuated PRV strains with deletions of immunomodulatory genes glycoprotein E (gE), glycoprotein I (gI) and thymidine kinase (TK) are candidate vaccines. However, the effects of gE/gI/TK deletions on PRV-host interactions are not well understood. METHODS To characterize the impact of gE/gI/TK deletions on host cells, we analyzed and compared the transcriptomes of PK15 cells infected with wild-type PRV (SD2017), PRV with gE/gI/TK deletions (SD2017gE/gI/TK) using RNA-sequencing. RESULTS The attenuated SD2017gE/gI/TK strain showed increased expression of inflammatory cytokines and pathways related to immunity compared to wild-type PRV. Cell cycle regulation and metabolic pathways were also perturbed. CONCLUSIONS Deletion of immunomodulatory genes altered PRV interactions with host cells and immune responses. This study provides insights into PRV vaccine design.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
| | - Yingguang Li
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Shaoming Dong
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China
| | - Cong Wang
- China animal husbandry industry Co., Ltd, Beijing, China
| | - Yongming Wang
- Shandong Huahong Biological Engineering Co., Ltd, Binzhou, China
| | - Hongliang Zhang
- Shandong Collaborative Innovation Center for Development of Veterinary Pharmaceuticals, College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
26
|
Corneillie L, Lemmens I, Weening K, De Meyer A, Van Houtte F, Tavernier J, Meuleman P. Virus-Host Protein Interaction Network of the Hepatitis E Virus ORF2-4 by Mammalian Two-Hybrid Assays. Viruses 2023; 15:2412. [PMID: 38140653 PMCID: PMC10748205 DOI: 10.3390/v15122412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Throughout their life cycle, viruses interact with cellular host factors, thereby influencing propagation, host range, cell tropism and pathogenesis. The hepatitis E virus (HEV) is an underestimated RNA virus in which knowledge of the virus-host interaction network to date is limited. Here, two related high-throughput mammalian two-hybrid approaches (MAPPIT and KISS) were used to screen for HEV-interacting host proteins. Promising hits were examined on protein function, involved pathway(s), and their relation to other viruses. We identified 37 ORF2 hits, 187 for ORF3 and 91 for ORF4. Several hits had functions in the life cycle of distinct viruses. We focused on SHARPIN and RNF5 as candidate hits for ORF3, as they are involved in the RLR-MAVS pathway and interferon (IFN) induction during viral infections. Knocking out (KO) SHARPIN and RNF5 resulted in a different IFN response upon ORF3 transfection, compared to wild-type cells. Moreover, infection was increased in SHARPIN KO cells and decreased in RNF5 KO cells. In conclusion, MAPPIT and KISS are valuable tools to study virus-host interactions, providing insights into the poorly understood HEV life cycle. We further provide evidence for two identified hits as new host factors in the HEV life cycle.
Collapse
Affiliation(s)
- Laura Corneillie
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Irma Lemmens
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Karin Weening
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Amse De Meyer
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Freya Van Houtte
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, Department of Biomolecular Medicine, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Diagnostic Sciences, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Jiang W, Li M, Peng S, Hu T, Long Y, Zhang J, Peng D, Shen Y. Ubiquitin ligase enzymes and de-ubiquitinating enzymes regulate innate immunity in the TLR, NLR, RLR, and cGAS-STING pathways. Immunol Res 2023; 71:800-813. [PMID: 37291329 DOI: 10.1007/s12026-023-09400-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 06/01/2023] [Indexed: 06/10/2023]
Abstract
Ubiquitination (or ubiquitylation) and de-ubiquitination, which are both post-translational modifications (PTMs) of proteins, have become a research hotspot in recent years. Some ubiquitinated or de-ubiquitinated signaling proteins have been found to promote or suppress innate immunity through Toll-like receptor (TLR), RIG-like receptor (RIG-I-like receptor, RLR), NOD-like receptor (NLR), and the cyclic guanosine monophosphate (GMP)-adenosine monophosphate (AMP) synthase (cGAS)-STING pathway. This article aimed to provide a review on the role of ubiquitination and de-ubiquitination, especially ubiquitin ligase enzymes and de-ubiquitinating enzymes, in the above four pathways. We hope that our work can contribute to the research and development of treatment strategies for innate immunity-related diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Wang Jiang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Mengling Li
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Siyuan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Tian Hu
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yan Long
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Jiayi Zhang
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Dan Peng
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China
| | - Yueming Shen
- Department of Digestive Diseases, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, 161 Shaoshan Road, Changsha City, 410000, People's Republic of China.
| |
Collapse
|
28
|
Bo Z, Li X, Wang S, Zhang C, Guo M, Cao Y, Zhang X, Wu Y. Suppression of NF-κB signaling by Pseudorabies virus DNA polymerase processivity factor UL42 via recruiting SOCS1 to promote the ubiquitination degradation of p65. Vet Microbiol 2023; 287:109896. [PMID: 37931575 DOI: 10.1016/j.vetmic.2023.109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/21/2023] [Indexed: 11/08/2023]
Abstract
The NF-κB pathway is a critical signaling involved in the regulation of the inflammatory and innate immune responses. Previous studies have shown that Pseudorabies Virus (PRV), a porcine alpha herpesvirus, could lead to the phosphorylation and nucleus translocation of p65 while inhibiting the expression of NF-κB-dependent inflammatory cytokines, which indicated that there may be unknown mechanisms downstream of p65 that downregulate the activation of NF-κB signaling. Here, we found that PRV DNA polymerase factor UL42 inhibited TNFα-, LPS-, IKKα-, IKKβ-, and p65-mediated transactivation of NF-κB signaling, which demonstrated UL42 worked either at or downstream of p65. In addition, it was found that the DNA-binding activity of UL42 was required for inhibition of NF-κB signaling. Importantly, it was revealed that UL42 could induce the ubiquitination degradation of p65 by upregulating the suppressor of cytokine signaling 1 (SOCS1). Additionally, it was found that UL42 could promote the K6/K29-linked ubiquitination of p65. Finally, knockdown of SOCS1 attenuated the replication of PRV and led to a significant increase of the inflammatory cytokines. Taken together, our findings uncovered a novel mechanism that PRV-UL42 could upregulated SOCS1 to promote the ubiquitination degradation of p65 to prevent excessive inflammatory response during PRV infection.
Collapse
Affiliation(s)
- Zongyi Bo
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaojuan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Shixu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Chengcheng Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Mengjiao Guo
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yongzhong Cao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Xiaorong Zhang
- Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Yantao Wu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for the Prevention and Control of Animal Infectious Disease and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
29
|
Wang X, Hao G, Zhou M, Chen M, Ling H, Shang Y. Secondary metabolites of Bacillus subtilis L2 show antiviral activity against pseudorabies virus. Front Microbiol 2023; 14:1277782. [PMID: 37965547 PMCID: PMC10642297 DOI: 10.3389/fmicb.2023.1277782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/13/2023] [Indexed: 11/16/2023] Open
Abstract
Bacillus subtilis (B. subtilis) is a commercially important probiotic known to produce secondary metabolites with antibacterial, antifungal and anti-inflammatory activities. However, the potential ability of B. subtilis to combat viruses, especially DNA viruses, has not been extensively investigated. In this study, we identified two distinct B. subtilis strains and examined the efficiency of their secondary metabolites against pseudorabies virus (PRV), a swine herpesvirus resulting in economic losses worldwide. We found that treatment with the secondary metabolites of B. subtilis L2, but not the metabolites of B. subtilis V11, significantly inhibited PRV replication in multiple cells. Notably, the antiviral activity of the metabolites of B. subtilis L2 was thermal stable, resistant to protease digestion. Moreover, these metabolites effectively impeded PRV binding, entry and replication. Importantly, oral administration of the metabolites of B. subtilis L2 protected mice from lethal PRV infection, rescuing weight loss and reducing the viral load in vivo. In summary, our results reveal that the metabolites of B. subtilis L2 exhibit anti-PRV activity both in vitro and in vivo, providing a potential candidate for novel antiviral drugs.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Guijuan Hao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Meng Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Meng Chen
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | | | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
- Institute of Immunology, Shandong Agricultural University, Taian, China
| |
Collapse
|
30
|
Ruan P, Wang M, Cheng A, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Huang J, Ou X, Gao Q, Sun D, He Y, Wu Z, Zhu D, Jia R, Chen S, Liu M. Mechanism of herpesvirus UL24 protein regulating viral immune escape and virulence. Front Microbiol 2023; 14:1268429. [PMID: 37808279 PMCID: PMC10559885 DOI: 10.3389/fmicb.2023.1268429] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/08/2023] [Indexed: 10/10/2023] Open
Abstract
Herpesviruses have evolved a series of abilities involved in the process of host infection that are conducive to virus survival and adaptation to the host, such as immune escape, latent infection, and induction of programmed cell death for sustainable infection. The herpesvirus gene UL24 encodes a highly conserved core protein that plays an important role in effective viral infection. The UL24 protein can inhibit the innate immune response of the host by acting on multiple immune signaling pathways during virus infection, and it also plays a key role in the proliferation and pathogenicity of the virus in the later stage of infection. This article reviews the mechanism by which the UL24 protein mediates herpesvirus immune escape and its effects on viral proliferation and virulence by influencing syncytial formation, DNA damage and the cell cycle. Reviewing these studies will enhance our understanding of the pathogenesis of herpesvirus infection and provide evidence for new strategies to combat against viral infection.
Collapse
Affiliation(s)
- Peilin Ruan
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People's Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
31
|
Mishra V, Crespo-Puig A, McCarthy C, Masonou T, Glegola-Madejska I, Dejoux A, Dow G, Eldridge MJG, Marinelli LH, Meng M, Wang S, Bennison DJ, Morrison R, Shenoy AR. IL-1β turnover by the UBE2L3 ubiquitin conjugating enzyme and HECT E3 ligases limits inflammation. Nat Commun 2023; 14:4385. [PMID: 37474493 PMCID: PMC10359330 DOI: 10.1038/s41467-023-40054-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
The cytokine interleukin-1β (IL-1β) has pivotal roles in antimicrobial immunity, but also incites inflammatory disease. Bioactive IL-1β is released following proteolytic maturation of the pro-IL-1β precursor by caspase-1. UBE2L3, a ubiquitin conjugating enzyme, promotes pro-IL-1β ubiquitylation and proteasomal disposal. However, actions of UBE2L3 in vivo and its ubiquitin ligase partners in this process are unknown. Here we report that deletion of Ube2l3 in mice reduces pro-IL-1β turnover in macrophages, leading to excessive mature IL-1β production, neutrophilic inflammation and disease following inflammasome activation. An unbiased RNAi screen identified TRIP12 and AREL1 E3 ligases of the Homologous to E6 C-terminus (HECT) family in adding destabilising K27-, K29- and K33- poly-ubiquitin chains on pro-IL-1β. We show that precursor abundance determines mature IL-1β production, and UBE2L3, TRIP12 and AREL1 limit inflammation by shrinking the cellular pool of pro-IL-1β. Our study uncovers fundamental processes governing IL-1β homeostasis and provides molecular insights that could be exploited to mitigate its adverse actions in disease.
Collapse
Affiliation(s)
- Vishwas Mishra
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Anna Crespo-Puig
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Callum McCarthy
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Tereza Masonou
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Izabela Glegola-Madejska
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Alice Dejoux
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Gabriella Dow
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Matthew J G Eldridge
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Luciano H Marinelli
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Meihan Meng
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Shijie Wang
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Daniel J Bennison
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK
| | - Rebecca Morrison
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Avinash R Shenoy
- Medical Research Council Centre for Molecular Bacteriology & Infection, Department of Infectious Disease, Imperial College London, London, UK.
| |
Collapse
|
32
|
Wang HM, Qiao YY, Cai BY, Tan J, Na L, Wang Y, Lu H, Tang YD. Genome editing of pseudorabies virus in the CRISPR/Cas9 era: a mini-review. Front Vet Sci 2023; 10:1237186. [PMID: 37476821 PMCID: PMC10354360 DOI: 10.3389/fvets.2023.1237186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023] Open
Abstract
Pseudorabies virus (PRV) is an important swine virus that has a significant impact on the global swine industry. PRV is a member of the herpesvirus family, specifically the alphaherpesvirus subfamily, and has been extensively utilized as a prototype herpesvirus. Notably, recent studies have reported that PRV sporadically spills over into humans. The PRV genome is approximately 150 kb in size and is difficult to manipulate at the genomic level. The development of clustered regularly interspaced short palindromic repeat-associated protein (CRISPR/Cas9) technology has revolutionized PRV genome editing. CRISPR/Cas9 has been widely used in the construction of reporter viruses, knock-out/knock-in of genes of interest, single virus tracking and antiviral strategies. Most importantly, for vaccine development, virulence gene knockout PRV vaccine candidates can be obtained within 2 weeks using CRISPR/Cas9. In this mini-review, we provide a concise overview of the application of CRISPR/Cas9 in PRV research and mainly share our experience with methods for efficiently editing the PRV genome. Through this review, we hope to give researchers better insight into the genome editing of pseudorabies virus.
Collapse
Affiliation(s)
- Hai-Ming Wang
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Yang-Yang Qiao
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Bing-Yan Cai
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Ju Tan
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Lei Na
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Jiangsu Vocational College Agriculture and Forestry, Taizhou, Jiangsu, China
| | - Yu Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hui Lu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou, Jiangsu, China
| | - Yan-Dong Tang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Provincial Research Center for Veterinary Biomedicine, Harbin, China
| |
Collapse
|
33
|
Chen X, Wu Y, Bao Y. Ring-finger protein 5 attenuates oxygen-glucose deprivation and reperfusion-induced mitochondrial dysfunction and inflammation in cardiomyocytes by inhibiting the S100A8/MYD88/NF-κB axis. CHINESE J PHYSIOL 2023; 66:228-238. [PMID: 37635482 DOI: 10.4103/cjop.cjop-d-22-00140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023] Open
Abstract
Mitochondrial dysfunction is closely intertwined with the progression of heart failure (HF). Ring-finger protein 5 (RNF5) is an E3 ubiquitin ligase, whose deletion induces the enhanced S100A8 expression. S100A8 regulates the mitochondrial dysfunction and S100A8/myeloid differentiation factor 88 (MYD88)/nuclear factor-kappa B (NF-κB) pathway promotes an inflammatory response; however, whether RNF5 modulated mitochondrial dysregulation and inflammation through the S100A8/MYD88/NF-κB axis remains unknown. Here, H9c2 cells were stimulated with oxygen-glucose deprivation/reperfusion (OGD/R) to build a HF model in vitro. RNF5 level was assessed in gene expression omnibus database and in OGD/R-induced H9c2 cells with reverse transcriptase quantitative polymerase chain reaction and western blot. The RNF5 level was overexpressed via transfecting RNF5 overexpression plasmids into H9c2 cells. The role and mechanism of RNF5 in OGD/R-elicited H9c2 cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, spectrophotometry, flow cytometry, mitochondrial membrane potential (MMP) measurement, enzyme-linked immunosorbent assay and western blot assays. The RNF5 expression was downregulated both in silico and in OGD/R-stimulated H9c2 cells. OGD/R treatment caused a decrease in the cell viability, the MMP level, and the translational expression of mito-cyt-c and NF-κB-cyto, and an elevation in the concentrations of lactate dehydrogenase and creatine kinase myocardial band, the apoptosis rate, the inflammatory factor release, and the relative protein expression of cyto-cyt-c, S100A8, MYD88 and NF-κB-nuc in H9c2 cells. Upregulation of RNF5 reversed these indicators in OGD/R-stimulated H9c2 cells. Altogether, based on these outcomes, we concluded that RNF5 impeded mitochondrial dysfunction and inflammation through attenuating the S100A8/MYD88/NF-κB axis in OGD/R-stimulated H9c2 cells.
Collapse
Affiliation(s)
- Xuesi Chen
- Department of Cardiovascular, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yingjie Wu
- Department of Cardiovascular, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Yingchun Bao
- Department of Cardiovascular, The Affiliated People's Hospital of Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
34
|
Diao F, Bai J, Jiang C, Sun Y, Gao Y, Nauwynck H, Jiang P, Liu X. The Papain-Like Protease of Porcine Reproductive and Respiratory Syndrome Virus Impedes STING Translocation from the Endoplasmic Reticulum to the Golgi Apparatus by Deubiquitinating STIM1. J Virol 2023; 97:e0018823. [PMID: 37039642 PMCID: PMC10134850 DOI: 10.1128/jvi.00188-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/14/2023] [Indexed: 04/12/2023] Open
Abstract
Stimulator of interferon (IFN) genes (STING) was recently pinpointed as an antiviral innate immune factor during the infection of RNA viruses. Porcine reproductive and respiratory syndrome virus (PRRSV), the swine arterivirus, is an enveloped RNA virus which has evolved many strategies to evade innate immunity. To date, the interactive network between PRRSV and STING remains to be fully established. Herein, we report that STING suppresses PRRSV replication through type I interferon signaling. However, PRRSV impedes STING trafficking from the endoplasmic reticulum (ER) to the Golgi apparatus, leading to the decreased phosphorylation of TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3). Furthermore, PRRSV nonstructural protein 2 (Nsp2) colocalizes with STING, blocks STING translocation, and disrupts the STING-TBK1-IRF3 complex. Mechanistically, PRRSV Nsp2 retains STING at the ER by increasing the level of Ca2+ sensor stromal interaction molecule 1 (STIM1) protein. Functional analysis reveals that PRRSV Nsp2 deubiquitinates STIM1 by virtue of its papain-like protease 2 (PLP2) deubiquitinating (DUB) activity. Finally, we demonstrate that loss of STIM1 is associated with an elevated IFN response and restricts PRRSV replication. This work delineates the relationship between PRRSV infection and STING signaling and the importance of papain-like proteases (PLPs) in interfering in this axis. IMPORTANCE Porcine reproductive and respiratory syndrome virus (PRRSV), a member of the family Arteriviridae, is responsible for reproductive disorders in pregnant sows and respiratory problems in piglets, resulting in huge losses in the swine industry worldwide. Of note, PRRSV infection causes immunosuppression, of which the mechanism is not completely understood. Here, we demonstrate for the first time that STING, a protein typically associated with the antiviral response in DNA viruses, plays a critical role in controlling PRRSV infection. However, PRRSV utilizes its encoded protein Nsp2 to inhibit STING activity by blocking its translocation from the ER to the Golgi apparatus. In particular, Nsp2 retains STING at the ER by interacting with and further deubiquitinating STIM1. For this process, the activity of the viral PLP2 DUB enzyme is indispensable. The study describes a novel mechanism by which PLP2 plays a critical role in suppressing the innate immune response against arteriviruses and potentially other viruses that encode similar proteases.
Collapse
Affiliation(s)
- Feifei Diao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Chenlong Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
35
|
Huang S, Cui M, Huang J, Wu Z, Cheng A, Wang M, Zhu D, Chen S, Liu M, Zhao X, Wu Y, Yang Q, Zhang S, Ou X, Mao S, Gao Q, Tian B, Sun D, Yin Z, Jing B, Jia R. RNF123 Mediates Ubiquitination and Degradation of SOCS1 To Regulate Type I Interferon Production during Duck Tembusu Virus Infection. J Virol 2023; 97:e0009523. [PMID: 37014223 PMCID: PMC10134884 DOI: 10.1128/jvi.00095-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/14/2023] [Indexed: 04/05/2023] Open
Abstract
Many RING domain E3 ubiquitin ligases play critical roles in fine-tuning the innate immune response, yet little is known about their regulatory role in flavivirus-induced innate immunity. In previous studies, we found that the suppressor of cytokine signaling 1 (SOCS1) protein mainly undergoes lysine 48 (K48)-linked ubiquitination. However, the E3 ubiquitin ligase that promotes the K48-linked ubiquitination of SOCS1 is unknown. In the present study, we found that RING finger protein 123 (RNF123) binds to the SH2 domain of SOCS1 through its RING domain and facilitates the K48-linked ubiquitination of the K114 and K137 residues of SOCS1. Further studies found that RNF123 promoted the proteasomal degradation of SOCS1 and promoted Toll-like receptor 3 (TLR3)- and interferon (IFN) regulatory factor 7 (IRF7)-mediated type I IFN production during duck Tembusu virus (DTMUV) infection through SOCS1, ultimately inhibiting DTMUV replication. Overall, these findings demonstrate a novel mechanism by which RNF123 regulates type I IFN signaling during DTMUV infection by targeting SOCS1 degradation. IMPORTANCE In recent years, posttranslational modification (PTM) has gradually become a research hot spot in the field of innate immunity regulation, and ubiquitination is one of the critical PTMs. DTMUV has seriously endangered the development of the waterfowl industry in Southeast Asian countries since its outbreak in 2009. Previous studies have shown that SOCS1 is modified by K48-linked ubiquitination during DTMUV infection, but E3 ubiquitin ligase catalyzing the ubiquitination of SOCS1 has not been reported. Here, we identify for the first time that RNF123 acts as an E3 ubiquitin ligase that regulates TLR3- and IRF7-induced type I IFN signaling during DTMUV infection by targeting the K48-linked ubiquitination of the K114 and K137 residues of SOCS1 and the proteasomal degradation of SOCS1.
Collapse
Affiliation(s)
- Shanzhi Huang
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
| | - Min Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Juan Huang
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Ziyu Wu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
| | - Anchun Cheng
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Mingshu Wang
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Dekang Zhu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Shun Chen
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Mafeng Liu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Xinxin Zhao
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Ying Wu
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Qiao Yang
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Shaqiu Zhang
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Xumin Ou
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Sai Mao
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Qun Gao
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Bin Tian
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Di Sun
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Bo Jing
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| | - Renyong Jia
- Research Centre of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, People’s Republic of China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, People’s Republic of China
| |
Collapse
|
36
|
Lin C, Zheng M, Xiao S, Wang S, Zhu X, Chen X, Jiang D, Zeng X, Chen S, Chen S. Duck cGAS inhibits DNA and RNA virus replication by activating IFNs and antiviral ISGs. Front Immunol 2023; 14:1101335. [PMID: 36733488 PMCID: PMC9887016 DOI: 10.3389/fimmu.2023.1101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Cyclic GMP-AMP Synthase (cGAS) is a pivotal adaptor of the signaling pathways involving the pattern recognition receptors and plays an important role in apoptosis and immune regulation. The cGAS function in mammals has been investigated extensively; however, the function of duck cGAS (du-cGAS) in response to viral infections is still unclear. This study aimed to clone the mallard (Anas platyrhynchos) cGAS homolog to investigate the function of duck cGAS (du-cGAS) in host antiviral innate immunity. The results showed that the open reading frame (ORF) region of the du-cGAS gene was 1296 bp, encoding 432 amino acids (aa) and exhibiting similar functional domains with its chicken counterpart. Knockdown of the endogenous du-cGAS by specific sgRNA strongly increased the replication of DNA viruses, including duck adenovirus B2 (DAdV B2) and duck short beak and dwarfism syndrome virus (SBDSV). However, the knockout did not impair the replication of novel duck reovirus (NDRV), an RNA virus. Furthermore, the mRNA expressions of type I interferon (IFNs) and vital interferon-stimulated genes (ISGs) were remarkably reduced in the du-cGAS knockout DEF cell line. Inversely, du-cGAS overexpression greatly activated the transcription of IFN-α, IFN-β, and vital ISGs, and impaired the replication of DAdV B2, SBDSV, and NDRV in the DEF cell line. Importantly, we found that a deletion of 68 aa in the N terminus didn't impair the antiviral function of du-cGAS. Overexpressing NTase Core, C-Domain (Mab21), or Zinc-Ribbon domain independently had no antiviral effects. Generally, these results reveal that du-cGAS is a vital component of the innate immune system of ducks, with a universal antiviral activity, and provides a useful strategy for the control of waterfowl viral diseases.
Collapse
Affiliation(s)
- Chang Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, Fujian, China
| | - Min Zheng
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, Fujian, China
| | - Shifeng Xiao
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, Fujian, China
| | - Shao Wang
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, Fujian, China
| | - Xiaoli Zhu
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, Fujian, China
| | - Xiuqin Chen
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, Fujian, China
| | - Dandan Jiang
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, Fujian, China
| | - Xiancheng Zeng
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Shaoying Chen
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, Fujian, China
| | - Shilong Chen
- Laboratory of Animal Virology, Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agriculture Sciences, Fuzhou, Fujian, China
- College of Life Sciences, Longyan University, Longyan, China
| |
Collapse
|
37
|
Nie Z, Zhu S, Wu L, Sun R, Shu J, He Y, Feng H. Progress on innate immune evasion and live attenuated vaccine of pseudorabies virus. Front Microbiol 2023; 14:1138016. [PMID: 36937252 PMCID: PMC10020201 DOI: 10.3389/fmicb.2023.1138016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Pseudorabies virus (PRV) is a highly infectious disease that can infect most mammals, with pigs as the only natural host, has caused considerable economic losses to the pig husbandry of the world. Innate immunity is the first defense line of the host against the attack of pathogens and is essential for the proper establishment of adaptive immunity. The host uses the innate immune response to against the invasion of PRV; however PRV makes use of various strategies to inhibit the innate immunity to promote the virus replication. Currently, live attenuated vaccine is used to prevent pig from infection with the PRV worldwide, such as Bartha K61. However, a growing number of data indicates that these vaccines do not provide complete protection against new PRV variants that have emerged since late 2011. Here we summarized the interactions between PRV and host innate immunity and the current status of live attenuated PRV vaccines to promote the development of novel and more effective PRV vaccines.
Collapse
Affiliation(s)
- Zhenyu Nie
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Shunfan Zhu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Shaoxing Academy of Biomedicine, Zhejiang Sci-Tech University, Shaoxing, China
| | - Li Wu
- Department of Biology, College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Ruolin Sun
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jianhong Shu
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yulong He
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Huapeng Feng
- Department of Biopharmacy, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- *Correspondence: Huapeng Feng,
| |
Collapse
|
38
|
Zhou L, Cheng A, Wang M, Wu Y, Yang Q, Tian B, Ou X, Sun D, Zhang S, Mao S, Zhao XX, Huang J, Gao Q, Zhu D, Jia R, Liu M, Chen S. Mechanism of herpesvirus protein kinase UL13 in immune escape and viral replication. Front Immunol 2022; 13:1088690. [PMID: 36531988 PMCID: PMC9749954 DOI: 10.3389/fimmu.2022.1088690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Upon infection, the herpes viruses create a cellular environment suitable for survival, but innate immunity plays a vital role in cellular resistance to viral infection. The UL13 protein of herpesviruses is conserved among all herpesviruses and is a serine/threonine protein kinase, which plays a vital role in escaping innate immunity and promoting viral replication. On the one hand, it can target various immune signaling pathways in vivo, such as the cGAS-STING pathway and the NF-κB pathway. On the other hand, it phosphorylates regulatory many cellular and viral proteins for promoting the lytic cycle. This paper reviews the research progress of the conserved herpesvirus protein kinase UL13 in immune escape and viral replication to provide a basis for elucidating the pathogenic mechanism of herpesviruses, as well as providing insights into the potential means of immune escape and viral replication of other herpesviruses that have not yet resolved the function of it.
Collapse
Affiliation(s)
- Lin Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,*Correspondence: Mingshu Wang,
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
39
|
Yin Y, Ma J, Van Waesberghe C, Devriendt B, Favoreel HW. Pseudorabies virus-induced expression and antiviral activity of type I or type III interferon depend on the type of infected epithelial cell. Front Immunol 2022; 13:1016982. [PMID: 36405751 PMCID: PMC9666427 DOI: 10.3389/fimmu.2022.1016982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023] Open
Abstract
Type I and III Interferons (IFNs) are the initial antiviral cytokines produced in response to virus infection. These IFNs in turn bind to their respective receptors, trigger JAK-STAT signaling and induce the expression of IFN-stimulated genes (ISGs) to engage antiviral functions. Unlike the receptor for type I IFNs, which is broadly expressed, the expression of the type III IFN receptor is mainly confined to epithelial cells that line mucosal surfaces. Accumulating evidence has shown that type III IFNs may play a unique role in protecting mucosal surfaces against viral challenges. The porcine alphaherpesvirus pseudorabies virus (PRV) causes huge economic losses to the pig industry worldwide. PRV first replicates in the respiratory tract, followed by spread via neurons and via lymph and blood vessels to the central nervous system and internal organs, e.g. the kidney, lungs and intestinal tract. In this study, we investigate whether PRV triggers the expression of type I and III IFNs and whether these IFNs exert antiviral activity against PRV in different porcine epithelial cells: porcine kidney epithelial cells (PK-15), primary respiratory epithelial cells (PoREC) and intestinal porcine epithelial cells (IPEC-J2). We show that PRV triggers a multiplicity of infection-dependent type I IFN response and a prominent III IFN response in PK-15 cells, a multiplicity of infection-dependent expression of both types of IFN in IPEC-J2 cells and virtually no expression of either IFN in PoREC. Pretreatment of the different cell types with equal amounts of porcine IFN-λ3 (type III IFN) or porcine IFN-α (type I IFN) showed that IFN-α, but not IFN-λ3, suppressed PRV replication and spread in PK-15 cells, whereas the opposite was observed in IPEC-J2 cells and both types of IFN showed anti-PRV activity in PoREC cells, although the antiviral activity of IFN-α was more potent than that of IFN-λ3 in the latter cell type. In conclusion, the current data show that PRV-induced type I and III IFN responses and their antiviral activity depend to a large extent on the epithelial cell type used, and for the first time show that type III IFN displays antiviral activity against PRV in epithelial cells from the respiratory and particularly the intestinal tract.
Collapse
|
40
|
HSP27 Attenuates cGAS-Mediated IFN-β Signaling through Ubiquitination of cGAS and Promotes PRV Infection. Viruses 2022; 14:v14091851. [PMID: 36146658 PMCID: PMC9502172 DOI: 10.3390/v14091851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudorabies (PR) is a domestic and wild animal infectious disease caused by the pseudorabies virus (PRV) and is one of the major infectious diseases that endanger the global swine industry. Studies have reported that PRV may achieve cross-species transmission from pigs to humans in recent years. Therefore, in-depth exploration of the relationship between PRV and host proteins is of great significance for elucidating the pathogenic mechanism of PRV and anti-PRV infection. Here, we report that heat shock protein 27 (HSP27) ubiquitinates and degrades cyclic GMP-AMP synthase (cGAS) and attenuates cGAS-mediated antiviral responses, thereby promoting PRV infection. Overexpression of HSP27 promoted PRV proliferation in vitro, while knockdown of HSP27 inhibited PRV infection. Importantly, we found that HSP27 inhibited PRV infection or poly(dA:dT)-activated IFN-β expression. Further studies found that HSP27 may inhibit cGAS-STING-mediated IFN-β expression through targeting cGAS. In addition, we found that HSP27 can suppress the expression of endogenous cGAS in different cells at both gene transcription and protein expression levels, and that HSP27 interacts with and ubiquitinates cGAS. In conclusion, we reveal for the first time that HSP27 is a novel negative regulator of the cGAS-STING signaling pathway induced by PRV infection or poly(dA:dT) activation and demonstrate that HSP27 plays a crucial role in PRV infection.
Collapse
|
41
|
Zhao N, Wang F, Kong Z, Shang Y. Pseudorabies Virus Tegument Protein UL13 Suppresses RLR-Mediated Antiviral Innate Immunity through Regulating Receptor Transcription. Viruses 2022; 14:1465. [PMID: 35891444 PMCID: PMC9317333 DOI: 10.3390/v14071465] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 11/17/2022] Open
Abstract
Pseudorabies virus (PRV) has evolved various strategies to escape host antiviral immune responses. However, it remains unclear whether and how PRV-encoded proteins modulate the RIG-I-like receptor (RLR)-mediated signals for immune evasion. Here, we show that the PRV tegument protein UL13 functions as an antagonist of RLR-mediated antiviral responses via suppression of the transcription of RIG-I and MDA5, but not LGP2. UL13 overexpression significantly inhibits both the mRNA and protein levels of RIG-I and MDA5, along with RIG-I- or MDA5-mediated antiviral immune responses, whereas overexpression of RIG-I or MDA5 counteracts such UL13-induced suppression. Mechanistically, UL13 suppresses the expression of RIG-I and MDA5 by inhibiting activation of the transcription factor NF-κB. Consequently, overexpression of p65 promotes the activation of RIG-I and MDA5 promoters. Moreover, deletion of the p65-binding sites in the promoters of RIG-I or MDA5 abolishes the suppression role of UL13. As a result, mutant PRV lacking UL13 elicits stronger host antiviral immune responses than PRV-WT. Hence, our results provide a novel functional role of UL13-induced suppression of host antiviral immunity through modulating receptors' transcription.
Collapse
Affiliation(s)
- Ningning Zhao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (N.Z.); (F.W.); (Z.K.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
- Institute of Immunology, Shandong Agricultural University, Taian 271018, China
| | - Fan Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (N.Z.); (F.W.); (Z.K.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Zhengjie Kong
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (N.Z.); (F.W.); (Z.K.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
| | - Yingli Shang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian 271018, China; (N.Z.); (F.W.); (Z.K.)
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian 271018, China
- Institute of Immunology, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|