1
|
Ambade AS, Hassoun PM, Damico RL. Basement Membrane Extracellular Matrix Proteins in Pulmonary Vascular and Right Ventricular Remodeling in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2021; 65:245-258. [PMID: 34129804 PMCID: PMC8485997 DOI: 10.1165/rcmb.2021-0091tr] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022] Open
Abstract
The extracellular matrix (ECM), a highly organized network of structural and nonstructural proteins, plays a pivotal role in cellular and tissue homeostasis. Changes in the ECM are critical for normal tissue repair, whereas dysregulation contributes to aberrant tissue remodeling. Pulmonary arterial hypertension is a severe disorder of the pulmonary vasculature characterized by pathologic remodeling of the pulmonary vasculature and right ventricle, increased production and deposition of structural and nonstructural proteins, and altered expression of ECM growth factors and proteases. Furthermore, ECM remodeling plays a significant role in disease progression, as several dynamic changes in its composition, quantity, and organization are documented in both humans and animal models of disease. These ECM changes impact vascular cell biology and affect proliferation of resident cells. Furthermore, ECM components determine the tissue architecture of the pulmonary and myocardial vasculature as well as the myocardium itself and provide mechanical stability crucial for tissue homeostasis. However, little is known about the basement membrane (BM), a specialized, self-assembled conglomerate of ECM proteins, during remodeling. In the vasculature, the BM is in close physical association with the vascular endothelium and smooth muscle cells. While in the myocardium, each cardiomyocyte is enclosed by a BM that serves as the interface between cardiomyocytes and the surrounding interstitial matrix. In this review, we provide a brief overview on the current state of knowledge of the BM and its ECM composition and their impact on pulmonary vascular remodeling and right ventricle dysfunction and failure in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Anjira S Ambade
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Rachel L Damico
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
2
|
Karnati S, Seimetz M, Kleefeldt F, Sonawane A, Madhusudhan T, Bachhuka A, Kosanovic D, Weissmann N, Krüger K, Ergün S. Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target. Front Cardiovasc Med 2021; 8:649512. [PMID: 33912600 PMCID: PMC8072123 DOI: 10.3389/fcvm.2021.649512] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/08/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD.
Collapse
Affiliation(s)
- Srikanth Karnati
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Michael Seimetz
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Florian Kleefeldt
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Avinash Sonawane
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore, India
| | - Thati Madhusudhan
- Center for Thrombosis and Hemostasis, University Medical Center Mainz, Mainz, Germany
| | - Akash Bachhuka
- UniSA Science, Technology, Engineering and Mathematics, University of South Australia, Mawson Lakes Campus, Adelaide, SA, Australia
| | - Djuro Kosanovic
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany.,Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Norbert Weissmann
- Excellence Cluster Cardio-Pulmonary System (ECCPS), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Karsten Krüger
- Department of Exercise Physiology and Sports Therapy, University of Giessen, Giessen, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Ghormade PS, Soni JP, Sarma B, Dash SK. Autopsy findings in death due to Eisenmenger syndrome: A medico-legal case of road traffic accident. FORENSIC SCIENCE INTERNATIONAL: REPORTS 2020. [DOI: 10.1016/j.fsir.2019.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
4
|
Szczurek W, Gąsior M, Skrzypek M, Romuk E, Szyguła-Jurkiewicz B. Factors Associated with Ineffectiveness of Sildenafil Treatment in Patients with End-Stage Heart Failure and Elevated Pulmonary Vascular Resistance. J Clin Med 2020; 9:jcm9113539. [PMID: 33147835 PMCID: PMC7692635 DOI: 10.3390/jcm9113539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction: Elevated pulmonary vascular resistance (PVR) unresponsive to vasodilator treatment is a marker of heart failure (HF) severity, and an important predictor of poor results of heart transplantation (HT). Objective: We sought to analyze factors associated with ineffectiveness of sildenafil treatment in end-stage HF patients with elevated PVR with particular emphasis placed on tenascin-C (TNC) serum concentrations. Patients and Methods: The study is an analysis of 132 end-stage HF patients referred for HT evaluation in the Cardiology Department between 2015 and 2018. TNC was measured by sandwich enzyme-linked immunosorbent assay (Human TNC, SunRedBio Technology, Shanghai, China). The endpoint was PVR > 3 Wood units after the six-month sildenafil therapy. Results: The median age was 58 years, and 90.2% were men. PVR >3 Wood units after 6 months of sildenafil treatment were found in 36.6% patients. The multivariable logistic regression analysis confirmed that TNC (OR = 1.004 (1.002–1.006), p = 0.0003), fibrinogen (OR= 1.019 (1.005–1.033), p = 0.085), creatinine (OR =1.025 (1.004–1.047), p = 0.0223) and right ventricular end-diastolic dimension (RVEDd) (OR = 1.279 (1.074–1.525), p = 0.0059) were independently associated with resistance to sildenafil treatment. Area under the ROC curves indicated an acceptable power of TNC (0.9680 (0.9444–0.9916)), fibrinogen (0.8187 (0.7456–0.8917)) and RVEDd (0.7577 (0.6723–0.8431)), as well as poor strength of creatinine (0.6025 (0.4981–0.7070)) for ineffectiveness of sildenafil treatment. Conclusions: Higher concentrations of TNC, fibrinogen and creatinine, as well as a larger RVEDd are independently associated with the ineffectiveness of sildenafil treatment. TNC has the strongest predictive power, sensitivity and specificity for evaluation of resistance to sildenafil treatment.
Collapse
Affiliation(s)
- Wioletta Szczurek
- Silesian Center for Heart Diseases in Zabrze, 41-800 Zabrze, Poland
- Correspondence: ; Tel.: +48-694-138-970 or +48-323-733-860
| | - Mariusz Gąsior
- 3rd Department of Cardiology, School of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (M.G.); (B.S.-J.)
| | - Michał Skrzypek
- Department of Biostatistics, School of Public Health in Bytom, Medical University of Silesia, 40-055 Katowice, Poland;
| | - Ewa Romuk
- Department of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, 41-800 Zabrze, Poland;
| | - Bożena Szyguła-Jurkiewicz
- 3rd Department of Cardiology, School of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (M.G.); (B.S.-J.)
| |
Collapse
|
5
|
The Role and Regulation of Pulmonary Artery Smooth Muscle Cells in Pulmonary Hypertension. Int J Hypertens 2020; 2020:1478291. [PMID: 32850144 PMCID: PMC7441461 DOI: 10.1155/2020/1478291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 07/20/2020] [Indexed: 02/06/2023] Open
Abstract
Pulmonary hypertension (PH) is one of the most devastating cardiovascular diseases worldwide and it draws much attention from numerous scientists. As an indispensable part of pulmonary artery, smooth muscle cells are worthy of being carefully investigated. To elucidate the pathogenesis of PH, several theories focusing on pulmonary artery smooth muscle cells (PASMC), such as hyperproliferation, resistance to apoptosis, and cancer theory, have been proposed and widely studied. Here, we tried to summarize the studies, concentrating on the role of PASMC in the development of PH, feasible molecular basis to intervene, and potential treatment to PH.
Collapse
|
6
|
Maruyama H, Sakai S, Dewachter L, Dewachter C, Rondelet B, Naeije R, Ieda M. Endothelin-1 induces lysyl oxidase expression in pulmonary artery smooth muscle cells. Can J Physiol Pharmacol 2020; 98:629-636. [PMID: 32615041 DOI: 10.1139/cjpp-2019-0658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The increase in thickening of the arterial wall of pulmonary arterial hypertension (PAH) includes cellular proliferation as well as matrix deposition and interrupted internal elastic lamina (IEL) consisting of a thick homogeneous sheet of elastin. Little is, although, known about the detail of IEL formation in PAH. Endothelin-1 is overexpressed in pulmonary arterioles of PAH. We aimed to examine the expression of genes contributing to IEL formation in pulmonary artery smooth muscle cells (PASMCs) especially focused on lysyl oxidase (LOx), an exreacellular matrix enzyme that catalyzes the cross-linking of collagens or elastin. We quantified mRNA expressions of genes contributing to IEL formation including LOx in PASMCs using real-time quantitative polymerase chain reaction. We stimulated human PASMCs with endothelin-1 with prostacyclin or trapidil. Endothelin-1 significantly increased LOx expression. Prostacyclin and trapidil restored endothelin-1-induced LOx expression to the basal level. Endothelin-1 increased LOx expression strongly in PASMCs from PAH patients compared to those from controls. Trapidil reduced LOx expression only in PASMCs from PAH patients. Overexpressed endothelin-1 in PAH patients can increase expression of LOx and agitate cross-linking of elastin and collagen, resulting in ectopic deposition of these in the vascular media.
Collapse
Affiliation(s)
- Hidekazu Maruyama
- Department of Cardiology, National Hospital Organization Kasumigaura Medical Center, Tsuchiura, Japan.,Faculty of Health Science, Tsukuba University of Technology, Tsukuba, Japan.,Division of Cardiovascular Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan.,Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Satoshi Sakai
- Faculty of Health Science, Tsukuba University of Technology, Tsukuba, Japan.,Division of Cardiovascular Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Cardiology, Erasme Academic Hospital, Brussels, Belgium
| | - Benoit Rondelet
- Department of Cardiac, Vascular and Thoracic Surgery, CHU UCL Namur, Yvoir, Belgium
| | - Robert Naeije
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Masaki Ieda
- Division of Cardiovascular Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Miyagawa K, Shi M, Chen PI, Hennigs JK, Zhao Z, Wang M, Li CG, Saito T, Taylor S, Sa S, Cao A, Wang L, Snyder MP, Rabinovitch M. Smooth Muscle Contact Drives Endothelial Regeneration by BMPR2-Notch1-Mediated Metabolic and Epigenetic Changes. Circ Res 2019; 124:211-224. [PMID: 30582451 DOI: 10.1161/circresaha.118.313374] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
RATIONALE Maintaining endothelial cells (EC) as a monolayer in the vessel wall depends on their metabolic state and gene expression profile, features influenced by contact with neighboring cells such as pericytes and smooth muscle cells (SMC). Failure to regenerate a normal EC monolayer in response to injury can result in occlusive neointima formation in diseases such as atherosclerosis and pulmonary arterial hypertension. OBJECTIVE We investigated the nature and functional importance of contact-dependent communication between SMC and EC to maintain EC integrity. METHODS AND RESULTS We found that in SMC and EC contact cocultures, BMPR2 (bone morphogenetic protein receptor 2) is required by both cell types to produce collagen IV to activate ILK (integrin-linked kinase). This enzyme directs p-JNK (phospho-c-Jun N-terminal kinase) to the EC membrane, where it stabilizes presenilin1 and releases N1ICD (Notch1 intracellular domain) to promote EC proliferation. This response is necessary for EC regeneration after carotid artery injury. It is deficient in EC-SMC Bmpr2 double heterozygous mice in association with reduced collagen IV production, decreased N1ICD, and attenuated EC proliferation, but can be rescued by targeting N1ICD to EC. Deletion of EC- Notch1 in transgenic mice worsens hypoxia-induced pulmonary hypertension, in association with impaired EC regenerative function associated with loss of precapillary arteries. We further determined that N1ICD maintains EC proliferative capacity by increasing mitochondrial mass and by inducing the phosphofructokinase PFKFB3 (fructose-2,6-bisphosphatase 3). Chromatin immunoprecipitation sequencing analyses showed that PFKFB3 is required for citrate-dependent H3K27 acetylation at enhancer sites of genes regulated by the acetyl transferase p300 and by N1ICD or the N1ICD target MYC and necessary for EC proliferation and homeostasis. CONCLUSIONS Thus, SMC-EC contact is required for activation of Notch1 by BMPR2, to coordinate metabolism with chromatin remodeling of genes that enable EC regeneration, and to maintain monolayer integrity and vascular homeostasis in response to injury.
Collapse
Affiliation(s)
- Kazuya Miyagawa
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Minyi Shi
- Department of Genetics (M.S., Z.Z., M.P.S.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA
| | - Pin-I Chen
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Jan K Hennigs
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Zhixin Zhao
- Department of Genetics (M.S., Z.Z., M.P.S.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA
| | - Mouer Wang
- Department of Medicine (M.W.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA
| | - Caiyun G Li
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Toshie Saito
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Shalina Taylor
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Silin Sa
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Aiqin Cao
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Lingli Wang
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| | - Michael P Snyder
- Department of Genetics (M.S., Z.Z., M.P.S.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA
| | - Marlene Rabinovitch
- From the Department of Pediatrics (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA.,Cardiovascular Institute (K.M., M.S., P.-I.C., J.K.H., Z.Z., M.W., C.G.L., T.S., S.T., S.S., A.C., L.W., M.P.S., M.R.), Stanford University School of Medicine, CA.,Vera Moulton Wall Center for Pulmonary Vascular Disease (K.M., P.-I.C., J.K.H., C.G.L., T.S., S.T., S.S., A.C., L.W., M.R.), Stanford University School of Medicine, CA
| |
Collapse
|
8
|
Maarman GJ. Natural Antioxidants as Potential Therapy, and a Promising Role for Melatonin Against Pulmonary Hypertension. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 967:161-178. [PMID: 29047086 DOI: 10.1007/978-3-319-63245-2_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Plasma and serum samples, and lung/heart tissue of pulmonary hypertension (PH) patients and animal models of PH display elevated oxidative stress. Moreover, the severity of PH and levels of oxidative stress increase concurrently, which suggests that oxidative stress could be utilized as a biomarker for PH progression. Accumulating evidence has well established that oxidative stress is also key role player in the development of PH. Preclinical studies have demonstrated that natural antioxidants improved PH condition, and, therefore, antioxidant therapy has been proposed as a potential therapeutic strategy against PH. These natural antioxidants include medicinal plant extracts and compounds such as resveratrol and melatonin. Recent studies suggest that melatonin provides health benefit against PH, by enhancing antioxidant capacity, increasing vasodilation, counteracting lung and cardiac fibrosis, and stunting right ventricular (RV) hypertrophy/failure. This chapter comprehensively reviews and discusses a variety of natural antioxidants and their efficacy in modulating experimental PH. This chapter also demonstrates that antioxidant therapy remains a therapeutic strategy for PH, and particularly identifies melatonin as a safe, cost-effective, and promising antioxidant therapy.
Collapse
Affiliation(s)
- Gerald J Maarman
- Hatter Institute for Cardiovascular Research in Africa (HICRA) and MRC Inter-University, Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
9
|
Abstract
Following its initial description over a century ago, pulmonary arterial hypertension (PAH) continues to challenge researchers committed to understanding its pathobiology and finding a cure. The last two decades have seen major developments in our understanding of the genetics and molecular basis of PAH that drive cells within the pulmonary vascular wall to produce obstructive vascular lesions; presently, the field of PAH research has taken numerous approaches to dissect the complex amalgam of genetic, molecular and inflammatory pathways that interact to initiate and drive disease progression. In this review, we discuss the current understanding of PAH pathology and the role that genetic factors and environmental influences share in the development of vascular lesions and abnormal cell function. We also discuss how animal models can assist in elucidating gene function and the study of novel therapeutics, while at the same time addressing the limitations of the most commonly used rodent models. Novel experimental approaches based on application of next generation sequencing, bioinformatics and epigenetics research are also discussed as these are now being actively used to facilitate the discovery of novel gene mutations and mechanisms that regulate gene expression in PAH. Finally, we touch on recent discoveries concerning the role of inflammation and immunity in PAH pathobiology and how they are being targeted with immunomodulatory agents. We conclude that the field of PAH research is actively expanding and the major challenge in the coming years is to develop a unified theory that incorporates genetic and mechanistic data to address viable areas for disease modifying drugs that can target key processes that regulate the evolution of vascular pathology of PAH.
Collapse
|
10
|
Rohm I, Grün K, Müller LM, Kretzschmar D, Fritzenwanger M, Yilmaz A, Lauten A, Jung C, Schulze PC, Berndt A, Franz M. Increased Serum Levels of Fetal Tenascin-C Variants in Patients with Pulmonary Hypertension: Novel Biomarkers Reflecting Vascular Remodeling and Right Ventricular Dysfunction? Int J Mol Sci 2017; 18:ijms18112371. [PMID: 29117120 PMCID: PMC5713340 DOI: 10.3390/ijms18112371] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 11/16/2022] Open
Abstract
Pulmonary vascular remodeling is a pathophysiological feature that common to all classes of pulmonary hypertension (PH) and right ventricular dysfunction, which is the major prognosis-limiting factor. Vascular, as well as cardiac tissue remodeling are associated with a re-expression of fetal variants of cellular adhesion proteins, including tenascin-C (Tn-C). We analyzed circulating levels of the fetal Tn-C splicing variants B⁺ and C⁺ Tn-C in serum of PH patients to evaluate their potential as novel biomarkers reflecting vascular remodeling and right ventricular dysfunction. Serum concentrations of B⁺ and C⁺ Tn-C were determined in 80 PH patients and were compared to 40 healthy controls by enzyme-linked immunosorbent assay. Clinical, laboratory, echocardiographic, and functional data were correlated with Tn-C levels. Serum concentrations of both Tn-C variants were significantly elevated in patients with PH (p < 0.05). Significant correlations could be observed between Tn-C and echocardiographic parameters, including systolic pulmonary artery pressure (B⁺ Tn-C: r = 0.31, p < 0.001, C⁺ Tn-C: r = 0.26, p = 0.006) and right atrial area (B⁺ Tn-C: r = 0.46, p < 0.001, C⁺ Tn-C: r = 0.49, p < 0.001), and laboratory values like BNP (B⁺ Tn-C: r = 0.45, p < 0.001, C⁺ Tn-C: r = 0.42, p < 0.001). An inverse correlation was observed between Tn-C variants and 6-minute walk distance as a functional parameter (B⁺ Tn-C: r = -0.54, p < 0.001, C⁺ Tn-C: r = -0.43, p < 0.001). In a multivariate analysis, B⁺ Tn-C, but not C⁺ Tn-C, was found to be an independent predictor of pulmonary hypertension. Both fetal Tn-C variants may represent novel biomarkers that are capable of estimating both pulmonary vascular remodeling and right ventricular load. The potential beneficial impact of Tn-C variants for risk stratification in patients with PH needs further investigation.
Collapse
Affiliation(s)
- Ilonka Rohm
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Jena University Hospital, Friedrich-Schiller-University, 07747 Jena, Germany.
| | - Katja Grün
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Jena University Hospital, Friedrich-Schiller-University, 07747 Jena, Germany.
| | - Linda Marleen Müller
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Jena University Hospital, Friedrich-Schiller-University, 07747 Jena, Germany.
| | - Daniel Kretzschmar
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Jena University Hospital, Friedrich-Schiller-University, 07747 Jena, Germany.
| | - Michael Fritzenwanger
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Jena University Hospital, Friedrich-Schiller-University, 07747 Jena, Germany.
| | - Atilla Yilmaz
- Department of Internal Medicine II, Division of Cardiology, Elisabeth Klinikum Schmalkalden, 98574 Schmalkalden, Germany.
| | - Alexander Lauten
- Department of Cardiology, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany.
| | - Christian Jung
- Department of Internal Medicine, Division of Cardiology, University Hospital Düsseldorf, Heinrich Heine University, 40225 Düsseldorf, Germany.
| | - P Christian Schulze
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Jena University Hospital, Friedrich-Schiller-University, 07747 Jena, Germany.
| | - Alexander Berndt
- Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University, 07743 Jena, Germany.
| | - Marcus Franz
- Department of Internal Medicine I, Division of Cardiology, Angiology, Pneumology and Intensive Medical Care, Jena University Hospital, Friedrich-Schiller-University, 07747 Jena, Germany.
| |
Collapse
|
11
|
Affiliation(s)
| | - Luiz Alberto Benvenuti
- Laboratory of Pathology - Heart Institute (InCor) - Hospital das Clínicas da Faculdade de Medicina - Universidade de São Paulo, São Paulo/SP - Brazil
| |
Collapse
|
12
|
Nogueira-Ferreira R, Ferreira R, Henriques-Coelho T. Cellular interplay in pulmonary arterial hypertension: Implications for new therapies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:885-93. [DOI: 10.1016/j.bbamcr.2014.01.030] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 01/23/2014] [Accepted: 01/24/2014] [Indexed: 12/22/2022]
|
13
|
Zhang H, Xu M, Xia J, Qin RY. Association between serotonin transporter (SERT) gene polymorphism and idiopathic pulmonary arterial hypertension: a meta-analysis and review of the literature. Metabolism 2013; 62:1867-75. [PMID: 24075737 DOI: 10.1016/j.metabol.2013.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 08/18/2013] [Accepted: 08/19/2013] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Idiopathic pulmonary arterial hypertension (IPAH) is a rare and often fatal disease of unknown etiology. Serotonin transporter (SERT) protein, whose genes can have two allelic forms, namely long (L) and short (S), is suspected to be related to IPAH risk. Several studies have investigated the association between SERT's different allelic forms and IPAH but showed conflicting results. A meta-analysis of published studies was performed to allow a more reliable estimate of this association. METHODS Relevant databases were searched to identify eligible studies published from 2000 to 2013. Odds ratios (OR) and 95% confidence intervals (CI) were determined for the gene-disease association using fixed or random effects models. RESULTS A total of 6 studies with 451 IPAH subjects and 664 controls were included in this meta-analysis. A significant difference was found in the comparison between IPAH subjects and controls with LL vs. SS genotypes, and the pooled odds ratio (OR) with the fixed effects model was 1.446 (95% CI=1.036-2.018, p=0.030, I(2)=38.8%). However, no statistically significant differences were observed for LL vs. LS or LL vs. LS+SS. The pooled OR indicated no significant differences in IPAH risk between carriers of SERT L and S alleles (ORL VS. S=1.327, 95% CI=0.933-1.886, p=0.115). CONCLUSION This meta-analysis provides evidence suggesting an association between the SERT L/S polymorphism and IPAH. Individuals with the LL genotype have an obviously higher risk of developing IPAH than those with the SS genotype.
Collapse
Affiliation(s)
- Hang Zhang
- Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Ave, Qiaokou district, Wuhan City, Hubei Province 430030, China.
| | | | | | | |
Collapse
|
14
|
Tajsic T, Morrell NW. Smooth muscle cell hypertrophy, proliferation, migration and apoptosis in pulmonary hypertension. Compr Physiol 2013; 1:295-317. [PMID: 23737174 DOI: 10.1002/cphy.c100026] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Pulmonary hypertension is a multifactorial disease characterized by sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP). Central to the pathobiology of this disease is the process of vascular remodelling. This process involves structural and functional changes to the normal architecture of the walls of pulmonary arteries (PAs) that lead to increased muscularization of the muscular PAs, muscularization of the peripheral, previously nonmuscular, arteries of the respiratory acinus, formation of neointima, and formation of plexiform lesions. Underlying or contributing to the development of these lesions is hypertrophy, proliferation, migration, and resistance to apoptosis of medial cells and this article is concerned with the cellular and molecular mechanisms of these processes. In the first part of the article we focus on the concept of smooth muscle cell phenotype and the difficulties surrounding the identification and characterization of the cell/cells involved in the remodelling of the vessel media and we review the general mechanisms of cell hypertrophy, proliferation, migration and apoptosis. Then, in the larger part of the article, we review the factors identified thus far to be involved in PH intiation and/or progression and review and discuss their effects on pulmonary artery smooth muscle cells (PASMCs) the predominant cells in the tunica media of PAs.
Collapse
Affiliation(s)
- Tamara Tajsic
- Department of Medicine, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | | |
Collapse
|
15
|
Abstract
Pulmonary hypertension is a prevalent complication of chronic obstructive pulmonary disease (COPD) that is associated with poor prognosis. Although pulmonary hypertension is usually diagnosed in patients with advanced disease, changes in pulmonary vessels are already apparent at early disease stages, and in smokers without airflow obstruction. Changes in pulmonary vessels include intimal hyperplasia, resulting from proliferating mesenchymal cells, and elastic and collagen deposition as well as endothelial dysfunction. Dysregulation of endothelium-derived mediators and growth factors and inflammatory mechanisms underlie the endothelial dysfunction and vessel remodeling. Circumstantial and experimental evidence suggests that cigarette smoke products can initiate pulmonary vascular changes in COPD and that, at advanced disease stages, hypoxia may amplify the effects of cigarette smoke on pulmonary arteries. Bone marrow-derived progenitor cells may contribute to vessel repair and to vessel remodeling, a process that appears to be facilitated by transforming growth factor-β.
Collapse
Affiliation(s)
- Joan Albert Barberà
- Department of Pulmonary Medicine, Hospital Clinic, University of Barcelona; Biomedical Research Institute August Pi i Sunyer (IDIBAPS); Research Center Network for Respiratory Diseases (CIBERES); Barcelona, Spain
| |
Collapse
|
16
|
Abstract
Our understanding of, and approach to, pulmonary arterial hypertension has undergone a paradigm shift in the past decade. Once a condition thought to be dominated by increased vasoconstrictor tone and thrombosis, pulmonary arterial hypertension is now seen as a vasculopathy in which structural changes driven by excessive vascular cell growth and inflammation, with recruitment and infiltration of circulating cells, play a major role. Perturbations of a number of molecular mechanisms have been described, including pathways involving growth factors, cytokines, metabolic signaling, elastases, and proteases, that may underlie the pathogenesis of the disease. Elucidating their contribution to the pathophysiology of pulmonary arterial hypertension could offer new drug targets. The role of progenitor cells in vascular repair is also under active investigation. The right ventricular response to increased pressure load is recognized as critical to survival and the molecular mechanisms involved are attracting increasing interest. The challenge now is to integrate this new knowledge and explore how it can be used to categorize patients by molecular phenotype and tailor treatment more effectively.
Collapse
Affiliation(s)
- Ralph T. Schermuly
- Max-Planck-Institute for Heart and Lung Research, Parkstrasse 1, Bad Nauheim, 61231 Germany
| | - Hossein A. Ghofrani
- University Hospital Giessen and Marburg, University of Giessen Lung Center, Klinikstrasse 36, Giessen, 35392 Germany
| | - Martin R. Wilkins
- Division of Experimental Medicine, Centre for Pharmacology and Therapeutics, Imperial College London, Hammersmith Hospital, Du Cane Road, London, W12 0NN UK
| | - Friedrich Grimminger
- University Hospital Giessen and Marburg, University of Giessen Lung Center, Klinikstrasse 36, Giessen, 35392 Germany
| |
Collapse
|
17
|
Brun H, Ueland T, Thaulow E, Damas JK, Yndestad A, Aukrust P, Holmstrøm H. No inflammatory response related to pulmonary hemodynamics in children with systemic to pulmonary shunts. CONGENIT HEART DIS 2011; 6:338-46. [PMID: 21450032 DOI: 10.1111/j.1747-0803.2011.00505.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The hypothesis was that the levels of circulating inflammatory mediators are related to the degree of volume and pressure stress on the pulmonary vasculature in children with congenital systemic to pulmonary shunts. DESIGN Prospective, cross-sectional study. SETTING Tertiary center covering all pediatric heart surgery and interventions in Norway. PATIENTS Seventy-four children, aged 0-12 years, admitted for surgical or interventional treatment of congenital systemic to pulmonary shunts. OUTCOME MEASURES Plasma levels of eight mediators of vascular inflammation and endothelial activation, sampled from different vascular compartments. RESULTS Patients with the most pronounced pulmonary flow and pressure stress demonstrated no elevation of inflammatory mediator levels when compared with healthy controls. No pulmonary production or uptake of the measured markers was found. Hemodynamic explanatory factors showed weak correlations to the inflammatory marker levels by univariate analysis. Age was the only factor that significantly explained inflammatory response in the multivariate model. The presence of Down syndrome, irrespective of hemodynamic category, was associated with elevated plasma levels of soluble tumor necrosis factor receptor I, when controlling for age. CONCLUSIONS Inflammatory mediators show no significant relationship to pulmonary hemodynamics in children with systemic to pulmonary shunts. Children with Down syndrome may have an increased inflammatory response.
Collapse
Affiliation(s)
- Henrik Brun
- Unit for Pediatric Heart, Lung and Allergic Diseases, Oslo University Hospital, Rikshospitalet, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
18
|
Chan SY, Loscalzo J. Pulmonary vascular disease related to hemodynamic stress in the pulmonary circulation. Compr Physiol 2011; 1:123-39. [PMID: 23737167 PMCID: PMC3730284 DOI: 10.1002/cphy.c090004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Hemodynamic stress in the pulmonary vessel is directly linked to the development of vascular remodeling and dysfunction, ultimately leading to pulmonary hypertension. Recently, some advances have been made in our molecular understanding of the exogenous upstream stimuli that initiate hemodynamic pertubations as well as the downstream vasoactive effectors that control these responses. However, much still remains unknown regarding how these complex signaling pathways connect in order to result in these characteristic pathophysiological changes. This chapter will describe our current understanding of and needed areas of research into the clinical, physiological, and molecular changes associated with pressure/volume overload in the pulmonary circulation.
Collapse
Affiliation(s)
- Stephen Y. Chan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joseph Loscalzo
- Division of Cardiovascular Medicine Division, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
19
|
Sakao S, Tatsumi K, Voelkel NF. Reversible or irreversible remodeling in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2010; 43:629-34. [PMID: 20008280 PMCID: PMC2993084 DOI: 10.1165/rcmb.2009-0389tr] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 11/21/2009] [Indexed: 12/15/2022] Open
Abstract
Vascular remodeling is an important pathological feature of pulmonary arterial hypertension (PAH), which leads to increased pulmonary vascular resistance, with marked proliferation of pulmonary artery smooth muscle cells (SMC) and/or endothelial cells (EC). Successful treatment of experimental PAH with a platelet-derived growth factor (PDGF) receptor tyrosine kinase inhibitor offers the perspective of "reverse remodeling" (i.e., the regression of established pulmonary vascular lesions). Here we ask the question: which forms of pulmonary vascular remodeling are reversible and can such remodeling caused by angiogenic proliferation of EC be reversed? It is important to emphasize that the report showing reduction of vascular remodeling by PDGF receptor tyrosine kinase inhibitor showed only a reduction of the pulmonary artery muscularization in chronic hypoxia and monocrotaline models, which lack the feature of clustered proliferated EC in the lumen of pulmonary arteries. The regression of vascular muscularization is an important manifestation, whereby proliferative adult SMC convert back to a nonproliferative state. In contrast, in vitro experiments assessing the contribution of EC to the development of PAH demonstrated that phenotypically altered EC generated as a consequence of a vascular endothelial growth factor receptor blockade did not reverse to normal EC. Whereas it is suggested that the proliferative state of SMC may be reversible, it remains unknown whether phenotypically altered EC can switch back to a normal monolayer-forming EC. This article reviews the pathogenetic concepts of severe PAH and explains the many forms in PAH with reversible or irreversible remodeling.
Collapse
Affiliation(s)
- Seiichiro Sakao
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, Japan.
| | | | | |
Collapse
|
20
|
Kaemmerer H, Mebus S, Schulze-Neick I, Eicken A, Trindade PT, Hager A, Oechslin E, Niwa K, Lang I, Hess J. The adult patient with eisenmenger syndrome: a medical update after dana point part I: epidemiology, clinical aspects and diagnostic options. Curr Cardiol Rev 2010; 6:343-55. [PMID: 22043211 PMCID: PMC3083816 DOI: 10.2174/157340310793566154] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Revised: 05/06/2010] [Accepted: 05/15/2010] [Indexed: 12/22/2022] Open
Abstract
Eisenmenger syndrome is the most severe form of pulmonary arterial hypertension and arises on the basis of congenital heart disease with a systemic-to-pulmonary shunt. Due to the chronic slow progressive hypoxemia with central cyanosis, adult patients with the Eisenmenger syndrome suffer from a complex and multisystemic disorder including coagulation disorders (bleeding complications and paradoxical embolisms), renal dysfunction, hypertrophic osteoarthropathy, heart failure, reduced quality of life and premature death.For a long time, therapy has been limited to symptomatic options or lung or combined heart-lung transplantation. As new selective pulmonary vasodilators have become available and proven to be beneficial in various forms of pulmonary arterial hypertension, this targeted medical treatment has been expected to show promising effects with a delay of deterioration also in Eisenmenger patients. Unfortunately, data in Eisenmenger patients suffer from small patient numbers and a lack of randomized controlled studies.To optimize the quality of life and the outcome, referral of Eisenmenger patients to spezialized centers is required. In such centers, specific interdisciplinary management strategies of physicians specialized on congenital heart diseases and PAH should be warranted. This medical update emphasizes the current diagnostic and therapeutic options for Eisenmenger patients with particularly focussing on epidemiology, clinical aspects and specific diagnostic options.
Collapse
Affiliation(s)
- Harald Kaemmerer
- Department of Pediatric Cardiology and Congenital Heart Disease, Deutsches Herzzentrum München, Technische Universität München, München, Germany
| | - Siegrun Mebus
- Department of Pediatric Cardiology and Congenital Heart Disease, Deutsches Herzzentrum München, Technische Universität München, München, Germany
| | - Ingram Schulze-Neick
- UK Service for Pulmonary Hypertension in Children, Cardiac Unit, Great Ormond Street Hospital, London, WC1N 3JH, United Kingdom
| | - Andreas Eicken
- Department of Pediatric Cardiology and Congenital Heart Disease, Deutsches Herzzentrum München, Technische Universität München, München, Germany
| | - Pedro T Trindade
- Department of Cardiology, University Hospital Zurich, Rämistrasse 100, 8091 Zürich, Switzerland
| | - Alfred Hager
- Department of Pediatric Cardiology and Congenital Heart Disease, Deutsches Herzzentrum München, Technische Universität München, München, Germany
| | - Erwin Oechslin
- Congenital Cardiac Centre for Adults, University Health Network/Toronto General Hospital/Peter Munk Cardiac Cen-tre, 585 University Avenue, Toronto, ON. M5G 2N2, Canada
| | - Koichiro Niwa
- Department of Pediatrics, Chiba Cardiovascular Center, 575 Tsurumai, Ichihara, Chiba 290-0512, Japan
| | - Irene Lang
- Department of Cardiology, University of Vienna, Währinger Gürtel 18-20, 1090 Wien, Austria
| | - John Hess
- Department of Pediatric Cardiology and Congenital Heart Disease, Deutsches Herzzentrum München, Technische Universität München, München, Germany
| |
Collapse
|
21
|
Jiang J, Wang S, Wang Z, Ma J, Liu S, Li W, Zhu D. The role of ERK1/2 in 15-HETE-inhibited apoptosis in pulmonary arterial smooth muscle cells. J Recept Signal Transduct Res 2010; 31:45-52. [PMID: 20822476 DOI: 10.3109/10799893.2010.512013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
15-Hydroxyeicosatetrenoic acid (15-HETE) is an important product of arachidonic acid catalyzed by 15-lipoxygenase (15-LO) in the wall of pulmonary vessels, which plays a key role in pulmonary arterial hypertension. The previous studies showed that 15-HETE inhibits apoptosis. It is still unknown, however, whether 15-HETE acts on the apoptotic responses through the extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. The aim of the study is to test the hypothesis that ERK1/2 pathway participates in the protective effects of 15-HETE on the cell survival. This hypothesis was validated by cell viability measurement, nuclear morphology determination, terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay, mitochondrial potentials assay and Western blot. We found that 15-HETE enhanced cell survival, suppressed the expression of phosphatase and tensin homologue deleted on chromosome ten, upregulated X-linked inhibitor of apoptosis protein and Bcl-2 and attenuated mitochondrial depolarization in pulmonary artery muscle smooth cells (PASMCs) under serum-deprived conditions. These effects were reversed by ERK1/2 inhibitor PD98059. Taken together, our data indicated that the ERK1/2 kinase is a regulator of PASMC apoptosis, and potential therapeutical strategy for pulmonary hypertension may be developed by targeting at intracellular signaling systems centered by the kinase.
Collapse
Affiliation(s)
- Jing Jiang
- Institute of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Harbin, Heilongjiang, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Liu Y, Wei L, Laskin DL, Fanburg BL. Role of protein transamidation in serotonin-induced proliferation and migration of pulmonary artery smooth muscle cells. Am J Respir Cell Mol Biol 2010; 44:548-55. [PMID: 20558776 DOI: 10.1165/rcmb.2010-0078oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary hypertension is characterized by elevated pulmonary artery pressure and pulmonary artery smooth muscle cell (SMC) proliferation and migration. Clinical and experimental evidence suggests that serotonin (5-HT) is important in these responses. We previously demonstrated the participation of the 5-HT transporter and intracellular 5-HT (5-HTi) in the pulmonary vascular SMC-proliferative response to 5-HT. However, the mechanism underlying the intracellular actions of 5-HT is unknown. We speculated that 5-HTi activates SMC growth by post-translational transamidation of proteins via transglutaminase (TGase) activity, a process referred to as serotonylation. To test this hypothesis, serotonylation of pulmonary artery SMC proteins, and their role in 5-HT-induced proliferative and migratory responses, were assessed. 5-HT caused dose- and time-dependent increase in serotonylation of multiple proteins in both bovine and rat pulmonary artery SMCs. Inhibition of TGase with dansylcadaverin blocked this activity, as well as SMC-proliferative and migratory responses to 5-HT. Serotonylation of proteins also was blocked by 5-HT transporter inhibitors, and was enhanced by inhibition of monoamine oxidase, an enzyme known to degrade 5-HTi, indicating that 5-HTi levels regulate serotonylation. Immunoprecipitation assays and HPLC-mass spectral peptide sequencing revealed that a major protein serotonylated by TGase was fibronectin (FN). 5-HT-stimulated SMC serotonylation and proliferation were blocked by FN small interfering (si) RNA. These findings, together with previous observations that FN expression in the lung strongly correlates with the progression of pulmonary hypertension in both experimental animals and humans, suggest an important role of FN serotonylation in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Yinglin Liu
- Rutgers University, Piscataway, New Jersey, USA
| | | | | | | |
Collapse
|
23
|
Archer SL, Weir EK, Wilkins MR. Basic science of pulmonary arterial hypertension for clinicians: new concepts and experimental therapies. Circulation 2010; 121:2045-66. [PMID: 20458021 DOI: 10.1161/circulationaha.108.847707] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
24
|
Novel Strategy for Treatment of Pulmonary Arterial Hypertension: Enhancement of Apoptosis. Lung 2010; 188:179-89. [DOI: 10.1007/s00408-010-9233-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2009] [Accepted: 02/16/2010] [Indexed: 01/22/2023]
|
25
|
Ma J, Liang S, Wang Z, Zhang L, Jiang J, Zheng J, Yu L, Zheng X, Wang R, Zhu D. ROCK pathway participates in the processes that 15-hydroxyeicosatetraenoic acid (15-HETE) mediated the pulmonary vascular remodeling induced by hypoxia in rat. J Cell Physiol 2009; 222:82-94. [PMID: 19746421 DOI: 10.1002/jcp.21923] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
15-Hydroxyeicosatetraenoic acid (15-HETE), a product of arachidonic acid (AA) catalyzed by 15-lipoxygenase (15-LO), plays an essential role in hypoxic pulmonary arterial hypertension. We have previously shown that 15-HETE inhibits apoptosis in pulmonary artery smooth muscle cells (PASMCs). To test the hypothesis that such an effect is attributable to the hypoxia-induced pulmonary vascular remodeling (PVR), we performed these studies. We found subtle thickening of proximal media/adventitia of the pulmonary arteries (PA) in rats that had been exposed to hypoxia. This was associated with an up-regulation of the anti-apoptotic Bcl-2 expression and down-regulation of pro-apoptotic caspase-3 and Bax expression in PA homogenates. Nordihydroguaiaretic acid (NDGA), which inhibits the generation of endogenous 15-HETE, reversed all the alterations following hypoxia. In situ hybridization histochemistry and immunocytochemistry showed that the 15-LO-1 mRNA and protein were localized in pulmonary artery endothelial cells (PAECs), while the 15-LO-2 mRNA and protein were localized in both PAECs and PASMCs. Furthermore, the Rho-kinase (ROCK) pathway was activated by both endogenous and exogenous 15-HETE, alleviating the serum deprivation (SD)-induced PASMC apoptosis. Thus, these findings indicate that 15-HETE protects PASMC from apoptosis, contributing to pulmonary vascular medial thickening, and the effect is, at least in part, mediated via the ROCK pathway.
Collapse
Affiliation(s)
- Jun Ma
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Nangang District, Harbin, Heilongjiang, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Sakao S, Tatsumi K, Voelkel NF. Endothelial cells and pulmonary arterial hypertension: apoptosis, proliferation, interaction and transdifferentiation. Respir Res 2009; 10:95. [PMID: 19825167 PMCID: PMC2768704 DOI: 10.1186/1465-9921-10-95] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 10/13/2009] [Indexed: 12/18/2022] Open
Abstract
Severe pulmonary arterial hypertension, whether idiopathic or secondary, is characterized by structural alterations of microscopically small pulmonary arterioles. The vascular lesions in this group of pulmonary hypertensive diseases show actively proliferating endothelial cells without evidence of apoptosis. In this article, we review pathogenetic concepts of severe pulmonary arterial hypertension and explain the term "complex vascular lesion ", commonly named "plexiform lesion", with endothelial cell dysfunction, i.e., apoptosis, proliferation, interaction with smooth muscle cells and transdifferentiation.
Collapse
Affiliation(s)
- Seiichiro Sakao
- Department of Respirology (B2), Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan.
| | | | | |
Collapse
|
27
|
Rhodes CJ, Davidson A, Gibbs JSR, Wharton J, Wilkins MR. Therapeutic targets in pulmonary arterial hypertension. Pharmacol Ther 2008; 121:69-88. [PMID: 19010350 DOI: 10.1016/j.pharmthera.2008.10.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 10/07/2008] [Indexed: 01/02/2023]
Abstract
Pulmonary arterial hypertension is a progressive, fatal disease. Current treatments including prostanoids, endothelin-1 (ET-1) antagonists, and phosphodiesterase (PDE) inhibitors, have sought to address the pulmonary vascular endothelial dysfunction and vasoconstriction associated with the condition. These treatments may slow the progression of the disease but do not afford a cure. Future treatments must target more directly the structural vascular changes that impair blood flow through the pulmonary circulation. Several novel therapeutic targets have been proposed and are under active investigation, including soluble guanylyl cyclase, phosphodiesterases, tetrahydrobiopterin, 5-HT2B receptors, vasoactive intestinal peptide, receptor tyrosine kinases, adrenomedullin, Rho kinase, elastases, endogenous steroids, endothelial progenitor cells, immune cells, bone morphogenetic protein and its receptors, potassium channels, metabolic pathways, and nuclear factor of activated T cells. Tyrosine kinase inhibitors, statins, 5-HT2B receptor antagonists, EPCs and soluble guanylyl cyclase activators are among the most advanced, having produced encouraging results in animal models, and human trials are underway. This review summarises the current research in this area and speculates on their likely success.
Collapse
Affiliation(s)
- Christopher J Rhodes
- Department of Experimental Medicine and Toxicology, Imperial College London, and National Pulmonary Hypertension Service, Hammersmith Hospital, United Kingdom
| | | | | | | | | |
Collapse
|
28
|
Chan SY, Loscalzo J. Pathogenic mechanisms of pulmonary arterial hypertension. J Mol Cell Cardiol 2007; 44:14-30. [PMID: 17950310 DOI: 10.1016/j.yjmcc.2007.09.006] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 09/14/2007] [Indexed: 01/06/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a complex disease that causes significant morbidity and mortality and is clinically characterized by an increase in pulmonary vascular resistance. The histopathology is marked by vascular proliferation/fibrosis, remodeling, and vessel obstruction. Development of PAH involves the complex interaction of multiple vascular effectors at all anatomic levels of the arterial wall. Subsequent vasoconstriction, thrombosis, and inflammation ensue, leading to vessel wall remodeling and cellular hyperproliferation as the hallmarks of severe disease. These processes are influenced by genetic predisposition as well as diverse endogenous and exogenous stimuli. Recent studies have provided a glimpse at certain molecular pathways that contribute to pathogenesis; these have led to the identification of attractive targets for therapeutic intervention. We will review our current understanding of the mechanistic underpinnings of the genetic and exogenous/acquired triggers of PAH. The resulting imbalance of vascular effectors provoking pathogenic vascular changes will also be discussed, with an emphasis on common and overarching regulatory pathways that may relate to the primary triggers of disease. The current conceptual framework should allow for future studies to refine our understanding of the molecular pathogenesis of PAH and improve the therapeutic regimen for this disease.
Collapse
Affiliation(s)
- Stephen Y Chan
- Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
29
|
Laudi S, Steudel W, Jonscher K, Schöning W, Schniedewind B, Kaisers U, Christians U, Trump S. Comparison of lung proteome profiles in two rodent models of pulmonary arterial hypertension. Proteomics 2007; 7:2469-78. [PMID: 17623304 DOI: 10.1002/pmic.200600848] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We studied the lung proteome changes in two widely used models of pulmonary arterial hypertension (PAH): monocrotaline (MCT) injection and chronic hypoxia (CH); untreated rats were used as controls (n = 6/group). After 28 days, invasive right ventricular systolic pressure (RVSP) was measured. Lungs were immunostained for alpha-smooth muscle actin (alphaSMA). 2-DE (n = 4/group) followed by nano-LC-MS/MS was applied for protein identification. Western blotting was used additionally if possible. RVSP was significantly increased in MCT- and CH-rats (MCT 62.5 +/- 4.4 mmHg, CH 62.2 +/- 4.1 mmHg, control 25.0 +/- 1.7 mmHg, p<0.001). This was associated with an increase of alphaSMA positive vessels. In both groups, there was a significantly increased expression of proteins associated with the contractile apparatus (diphosphoHsp27 (p<0.001), Septin2 (p<0.001), F-actin capping protein (p<0.01), and tropomyosin beta (p<0.02)). In CH, proteins of the nitric oxide (Hsc70; p = 0.002), carbon monoxide (biliverdin reductase; p = 0.005), and vascular endothelial growth factor (VEGF) pathway (annexin 3; p<0.001) were significantly increased. In MCT, proteins involved in serotonin synthesis (14-3-3; p = 0.02), the enhanced unfolded protein response (ERp57; p = 0.02), and intracellular chloride channels (CLIC 1; p = 0.002) were significantly elevated. Therefore, MCT- and CH-induced vasoconstriction and remodeling seemed to be mediated via different signaling pathways. These differences should be considered in future studies using either PAH model.
Collapse
Affiliation(s)
- Sven Laudi
- University of Leipzig Medical Faculty, Department of Anesthesiology and Intensive Care Medicine, Leipzig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Ra SW, Lee SD. Cellular and Molecular Pathophysiology of Idiopathic Pulmonary Arterial Hypertension. Tuberc Respir Dis (Seoul) 2007. [DOI: 10.4046/trd.2007.63.6.475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Seung Won Ra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sang-Do Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Clinical Research Center for Chronic Obstructive Airway Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
31
|
Lagna G, Nguyen PH, Ni W, Hata A. BMP-dependent activation of caspase-9 and caspase-8 mediates apoptosis in pulmonary artery smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2006; 291:L1059-67. [PMID: 17030903 DOI: 10.1152/ajplung.00180.2006] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Germ line mutations in the bone morphogenetic protein (BMP) receptor type II (BMPRII) gene have been found in >50% of familial idiopathic pulmonary arterial hypertension (IPAH) patients and in 30% of sporadic cases of IPAH. Mutations of BMPRII occur in the extracellular ligand-binding domain, in the cytoplasmic serine/threonine kinase domain, or in the long carboxy terminus domain of unknown function. In this study, we demonstrate that BMPs promote apoptotic cell death in normal human pulmonary artery smooth muscle cells (PASMCs) by activation of caspases-3, -8, and -9, cytochrome c release, and downregulation of Bcl-2. Normal PASMCs expressing a kinase domain mutant or a carboxy-terminal domain deletion mutant of BMPRII identified in IPAH patients are resistant to BMP-mediated apoptosis. This dominant-negative effect may act in heterozygous patients and lead to the development of the pulmonary vascular medial hypertrophy found in IPAH patients. Our study also demonstrates an essential role of the carboxy terminus domain of BMPRII in the activation of the apoptotic signaling cascade.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Bone Morphogenetic Protein 4
- Bone Morphogenetic Protein 7
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Proteins/pharmacology
- Caspase 3/metabolism
- Caspase 8/metabolism
- Caspase 9/metabolism
- Cell Line, Tumor
- Cells, Cultured
- Curcuma
- Cytochromes c/metabolism
- Down-Regulation/drug effects
- Down-Regulation/physiology
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Gene Deletion
- Humans
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Mice
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Pulmonary Artery/cytology
- Pulmonary Artery/drug effects
- Pulmonary Artery/enzymology
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Transforming Growth Factor beta/metabolism
Collapse
Affiliation(s)
- Giorgio Lagna
- Molecular Cardiology Research Institute, Tufts-New England Medical Center, 750 Washington St., Boston, MA 02111, USA
| | | | | | | |
Collapse
|
32
|
Wang H, Tang Y, Zhang YL. Hypoxic pulmonary hypertension (HPH) and iptakalim, a novel ATP-sensitive potassium channel opener targeting smaller arteries in hypertension. ACTA ACUST UNITED AC 2006; 23:293-316. [PMID: 16614730 DOI: 10.1111/j.1527-3466.2005.tb00174.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypoxic pulmonary hypertension (HPH) is a serious and potentially devastating chronic disorder of the pulmonary circulation. Attempts to use drugs in the therapy of hypoxic pulmonary hypertension indicated the importance of prevention or reduction of vasoconstriction as well as of the reversal of remodeling within the cardiovascular system. Iptakalim (2,3-dimethyl-N-(1-methylethyl)-2-butylamine), a novel ATP-sensitive potassium channel opener, has the desired effects on hypoxic pulmonary arteries. Iptakalim decreases the elevated mean pressure in pulmonary arteries, and attenuates remodeling in the right ventricle, pulmonary arteries and airways. Moreover, iptakalim has selective antihypertensive effects: it significantly lowers arterial pressure in hypertensive animals, but has little if any effect in normotensive animals. In HPH iptakalim has selective effects on smaller arteries. Long-term iptakalim therapy decreases expression of sulfonylurea receptor 2 and of mRNA of inwardly rectifying potassium channel in smaller arteries of spontaneously hypertensive rats. Iptakalim inhibits the effects of endothelin-1, reduces the intracellular calcium concentration and inhibits the cell cycle in smooth muscle cells of pulmonary arteries. There is no evidence for the development of tolerance to the long-lasting antihypertensive action of iptakalim. At therapeutic doses iptakalim has no effects on the central nervous, respiratory, digestive, or endocrine systems. It has a broad therapeutic range, so that it can be safely used in the therapy of HPH.
Collapse
Affiliation(s)
- Hai Wang
- Department of Cardiovascular Pharmacology, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, Peoples' Republic of China.
| | | | | |
Collapse
|
33
|
|
34
|
Abstract
The combined effects of vasoconstriction, remodelling of the pulmonary vessel walls and in situ thrombosis contribute to the increase in pulmonary vascular resistance during pulmonary arterial hypertension. Vascular remodelling involves all the sheaths of the vessel wall and all the cell types of which it is composed (endothelial cells, smooth muscle cells, fibroblasts, inflammatory cells and platelets). Excessive vasoconstriction has been related to a defect in the function of expression of the potassium channels and endothelial dysfunction. This leads to chronic insufficiency in the production of vasodilators, notably nitrogen monoxide and prostacyclin and the excessive production of vasoconstrictors such as endotheline-1. These defects contribute to the increase in vascular tonus and pulmonary vascular remodelling and represent pertinent pharmacological targets. Certain growth factors, including those of the super-family of transforming growth factor beta, angiopoietine-1 and serotonin, may play a part in the pathogenesis of pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Frédéric Perros
- Service de pneumologie et réanimation respiratoire, Centre des maladies vasculaires pulmonaires, UPRES EA 2705, Institut Paris Sud sur les cytokines, Hôpital Antoine Béclère, Université Paris-Sud, 157 rue de la porte de Trivaux, 92140 Clamart, France
| | | |
Collapse
|
35
|
Tantini B, Manes A, Fiumana E, Pignatti C, Guarnieri C, Zannoli R, Branzi A, Galié N. Antiproliferative effect of sildenafil on human pulmonary artery smooth muscle cells. Basic Res Cardiol 2004; 100:131-8. [PMID: 15739122 DOI: 10.1007/s00395-004-0504-5] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 10/13/2004] [Accepted: 10/25/2004] [Indexed: 10/26/2022]
Abstract
Pulmonary arterial hypertension (PAH) is characterized by vasoconstriction and by obstructive changes of the pulmonary vasculature including smooth muscle cell proliferation which leads to medial hypertrophy and subsequent luminal narrowing. Sildenafil, an orally active inhibitor of cGMP phosphodiesterase-type-5, exerts pulmonary vasodilator activity in PAH patients. We evaluated the effects of sildenafil on growth of cultured human pulmonary artery smooth muscle cells (PASMC). The results indicate that sildenafil reduced DNA synthesis stimulated by PDGF and dose dependently inhibited PASMC proliferation. These effects were paralleled by a progressive increase in cGMP content, followed by an accumulation of cAMP. The treatment with 8-bromo-cGMP or dibutyryl-cAMP mimicked all the effects of sildenafil. On the other hand, treatment of PASMC with inhibitors of cGMP-dependent protein kinase (PKG) or cAMP-dependent protein kinase (PKA) reversed the antiproliferative effect of sildenafil. In addition, sildenafil inhibited the phosphorylation of ERK, a converging point for several pathways leading to cell proliferation. This effect was partially reduced by PKG inhibition and completely abolished by PKA inhibition.We conclude that sildenafil exerts an antiproliferative effect on human PASMC that is mediated by an interaction between the cGMP-PKG and the cAMP-PKA activated pathways, leading to inhibition of PDGF-mediated activation of the ERK.
Collapse
MESH Headings
- Cell Proliferation/drug effects
- Cells, Cultured
- Cyclic AMP/metabolism
- Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic AMP-Dependent Protein Kinases/metabolism
- Cyclic GMP/metabolism
- Cyclic GMP-Dependent Protein Kinases/antagonists & inhibitors
- Cyclic GMP-Dependent Protein Kinases/metabolism
- DNA Replication/drug effects
- Dose-Response Relationship, Drug
- Extracellular Signal-Regulated MAP Kinases/antagonists & inhibitors
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Humans
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Phosphodiesterase Inhibitors/pharmacology
- Phosphorylation
- Piperazines/pharmacology
- Platelet-Derived Growth Factor/metabolism
- Protein Kinase Inhibitors/pharmacology
- Pulmonary Artery/drug effects
- Pulmonary Artery/pathology
- Purines/pharmacology
- Signal Transduction/drug effects
- Sildenafil Citrate
- Sulfones/pharmacology
- Time Factors
Collapse
Affiliation(s)
- Benedetta Tantini
- Department of Biochemistry, G. Moruzzi University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu SQ, Tieche C, Alkema PK. Neointima formation on vascular elastic laminae and collagen matrices scaffolds implanted in the rat aortae. Biomaterials 2004; 25:1869-82. [PMID: 14738851 DOI: 10.1016/j.biomaterials.2003.08.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Synthetic polymers, including polytetrafluoroethylene and Dacron, and biomatrix proteins, including collagen and fibrin, have been used for the construction of vascular substitutes. However, these materials induce inflammatory reactions, contributing to thrombosis, smooth muscle cell (SMC) proliferation, and neointima formation, processes leading to the failure of vascular substitutes. Thus, a pressing issue in vascular reconstruction is to construct vascular substitutes with surface materials that are inflammation-resistant. Here, we demonstrate that the vascular elastic laminae exhibit such a property. Aortic specimens from donor rats were treated with 0.1M NaOH for various times, resulting in elastic lamina-collagen matrix scaffolds with and without the basal lamina. Matrix scaffolds were implanted into the host aorta with three different surface materials, including the elastic lamina, basal lamina, and adventitial collagen, and observed for leukocyte adhesion, endothelial migration, cell proliferation, and neointimal formation on these surfaces. It was found that the elastic lamina was associated with significantly lower leukocyte adhesion, BrdU incorporation, and neointima formation than the basal lamina and adventitial collagen, while the migration of endothelial cells was comparable on all three surfaces. The adventitial collagen matrix was associated with leukocyte infiltration from blood and subsequent SMC migration from the host aorta, whereas the elastic laminae were resistant to such processes. The morphology of the implanted elastic laminae appeared normal at all times. These observations suggest that the vascular elastic laminae exhibit inflammation-resistant properties and inhibit SMC mitogenic activities compared with collagen-containing matrices and may be considered a potential surface material for vascular reconstruction.
Collapse
Affiliation(s)
- Shu Q Liu
- Biomedical Engineering Department, Northwestern University, E334, Technology Institute, 2145 Sheridan Road, Evanston, IL 60208-3107, USA.
| | | | | |
Collapse
|
37
|
Buczek-Thomas JA, Lucey EC, Stone PJ, Chu CL, Rich CB, Carreras I, Goldstein RH, Foster JA, Nugent MA. Elastase Mediates the Release of Growth Factors from LungIn Vivo. Am J Respir Cell Mol Biol 2004; 31:344-50. [PMID: 15191913 DOI: 10.1165/rcmb.2003-0420oc] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Uncontrolled elastase activity is involved in the development of several types of lung disease. Previous reports demonstrated that growth factors are liberated from pulmonary matrix storage sites by elastase; however, release of these entities in vivo is not well defined. In the present study, we investigated the release of fibroblast growth factor-2 (FGF-2) and transforming growth factor-beta (TGF-beta), after intratracheal instillation of porcine pancreatic elastase into mice. We found that elastase promoted a time-dependent release of FGF-2 and TGF-beta1 from the lung into bronchoalveolar lavage (BAL) fluid. A large fraction of the TGF-beta1 in BAL fluid was in the active form (approximately 60%), suggesting that elastase might participate in the activation of TGF-beta1 from its latent form. Analysis of the levels of FGF-2 and TGF-beta1 in mouse blood indicated that the growth factors in BAL fluid were not entirely derived from blood. Moreover, elastase treatment of pulmonary fibroblasts cultures caused the release of TGF-beta1, suggesting that the TGF-beta1 in BAL fluid could have come from lung cells/matrix. Additional in vitro studies also indicated that TGF-beta1 plays a role in upregulating elastin mRNA levels. These data suggest that elastase releases growth factors from lung that participate in elastolytic injury responses.
Collapse
Affiliation(s)
- Jo Ann Buczek-Thomas
- Department of Biochemistry and the Pulmonary Center at Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Mandegar M, Fung YCB, Huang W, Remillard CV, Rubin LJ, Yuan JXJ. Cellular and molecular mechanisms of pulmonary vascular remodeling: role in the development of pulmonary hypertension. Microvasc Res 2004; 68:75-103. [PMID: 15313118 DOI: 10.1016/j.mvr.2004.06.001] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Indexed: 11/28/2022]
Abstract
Pulmonary artery vasoconstriction and vascular remodeling greatly contribute to a sustained elevation of pulmonary vascular resistance (PVR) and pulmonary arterial pressure (PAP) in patients with pulmonary arterial hypertension (PAH). The development of PAH involves a complex and heterogeneous constellation of multiple genetic, molecular, and humoral abnormalities, which interact in a complicated manner, presenting a final manifestation of vascular remodeling in which fibroblasts, smooth muscle and endothelial cells, and platelets all play a role. Vascular remodeling is characterized largely by medial hypertrophy due to enhanced vascular smooth muscle cell proliferation or attenuated apoptosis and to endothelial cell over-proliferation, which can result in lumen obliteration. In addition to other factors, cytoplasmic Ca2+ in particular seems to play a central role as it is involved in both the generation of force through its effects on the contractile machinery, and the initiation and propagation of cell proliferation via its effects on transcription factors, mitogens, and cell cycle components. This review focuses on the role played by cellular factors, circulating factors, and genetic molecular signaling factors that promote a proliferative, antiapoptotic, and vasoconstrictive physiological milieu leading to vascular remodeling.
Collapse
MESH Headings
- Animals
- Apoptosis
- Blood Pressure
- Bone Morphogenetic Protein Receptors, Type II
- Calcium Signaling
- Capillaries/pathology
- Capillaries/physiopathology
- Endothelium, Vascular/pathology
- Feedback
- Humans
- Hypertension, Pulmonary/classification
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypertrophy
- Membrane Glycoproteins/physiology
- Membrane Transport Proteins/physiology
- Models, Biological
- Muscle, Smooth, Vascular/pathology
- Mutation
- Nerve Tissue Proteins/physiology
- Potassium Channels, Voltage-Gated/metabolism
- Protein Serine-Threonine Kinases/genetics
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Pulmonary Circulation
- Pulmonary Veins/pathology
- Pulmonary Veins/physiopathology
- Serotonin/physiology
- Serotonin Plasma Membrane Transport Proteins
- Vascular Resistance
- Vasoconstriction
Collapse
Affiliation(s)
- Mehran Mandegar
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | | | |
Collapse
|
39
|
Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M. Cellular and molecular pathobiology of pulmonary arterial hypertension. J Am Coll Cardiol 2004; 43:13S-24S. [PMID: 15194174 DOI: 10.1016/j.jacc.2004.02.029] [Citation(s) in RCA: 1099] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Accepted: 02/03/2004] [Indexed: 12/16/2022]
Abstract
Pulmonary arterial hypertension (PAH) has a multifactorial pathobiology. Vasoconstriction, remodeling of the pulmonary vessel wall, and thrombosis contribute to increased pulmonary vascular resistance in PAH. The process of pulmonary vascular remodeling involves all layers of the vessel wall and is complicated by cellular heterogeneity within each compartment of the pulmonary arterial wall. Indeed, each cell type (endothelial, smooth muscle, and fibroblast), as well as inflammatory cells and platelets, may play a significant role in PAH. Pulmonary vasoconstriction is believed to be an early component of the pulmonary hypertensive process. Excessive vasoconstriction has been related to abnormal function or expression of potassium channels and to endothelial dysfunction. Endothelial dysfunction leads to chronically impaired production of vasodilators such as nitric oxide and prostacyclin along with overexpression of vasoconstrictors such as endothelin (ET)-1. Many of these abnormalities not only elevate vascular tone and promote vascular remodeling but also represent logical pharmacological targets. Recent genetic and pathophysiologic studies have emphasized the relevance of several mediators in this condition, including prostacyclin, nitric oxide, ET-1, angiopoietin-1, serotonin, cytokines, chemokines, and members of the transforming-growth-factor-beta superfamily. Disordered proteolysis of the extracellular matrix is also evident in PAH. Future studies are required to find which if any of these abnormalities initiates PAH and which ones are best targeted to cure the disease.
Collapse
MESH Headings
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/physiopathology
- Humans
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Molecular Biology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiopathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Vascular Resistance/physiology
- Vasoconstriction/physiology
Collapse
Affiliation(s)
- Marc Humbert
- Service de Pneumologie et Réanimation Respiratoire, Centre des Maladies Vasculaires Pulmonaires, UPRES EA2705, Hôpital Antoine-Béclère, Université Paris-Sud, Clamart, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Brevnova EE, Platoshyn O, Zhang S, Yuan JXJ. Overexpression of human KCNA5 increases IK V and enhances apoptosis. Am J Physiol Cell Physiol 2004; 287:C715-22. [PMID: 15140747 DOI: 10.1152/ajpcell.00050.2004] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Apoptotic cell shrinkage, an early hallmark of apoptosis, is regulated by K+ efflux and K+ channel activity. Inhibited apoptosis and downregulated K+ channels in pulmonary artery smooth muscle cells (PASMC) have been implicated in development of pulmonary vascular medial hypertrophy and pulmonary hypertension. The objective of this study was to test the hypothesis that overexpression of KCNA5, which encodes a delayed-rectifier voltage-gated K+ (Kv) channel, increases K+ currents and enhances apoptosis. Transient transfection of KCNA5 caused 25- to 34-fold increase in KCNA5 channel protein level and 24- to 29-fold increase in Kv channel current (I(K(V))) at +60 mV in COS-7 and rat PASMC, respectively. In KCNA5-transfected COS-7 cells, staurosporine (ST)-mediated increases in caspase-3 activity and the percentage of cells undergoing apoptosis were both enhanced, whereas basal apoptosis (without ST stimulation) was unchanged compared with cells transfected with an empty vector. In rat PASMC, however, transfection of KCNA5 alone caused marked increase in basal apoptosis, in addition to enhancing ST-mediated apoptosis. Furthermore, ST-induced apoptotic cell shrinkage was significantly accelerated in COS-7 cells and rat PASMC transfected with KCNA5, and blockade of KCNA5 channels with 4-aminopyridine (4-AP) reduced K+ currents through KCNA5 channels and inhibited ST-induced apoptosis in KCNA5-transfected COS-7 cells. Overexpression of the human KCNA5 gene increases K+ currents (i.e., K+ efflux or loss), accelerates apoptotic volume decrease (AVD), increases caspase-3 activity, and induces apoptosis. Induction of apoptosis in PASMC by KCNA5 gene transfer may serve as an important strategy for preventing the progression of pulmonary vascular wall thickening and for treating patients with idiopathic pulmonary arterial hypertension (IPAH).
Collapse
MESH Headings
- 4-Aminopyridine/pharmacology
- Animals
- Apoptosis/drug effects
- Apoptosis/physiology
- Blotting, Western
- COS Cells
- Caspase 3
- Caspases/drug effects
- Caspases/metabolism
- Cells, Cultured
- Chlorocebus aethiops
- Electrophysiology
- Enzyme Activation/drug effects
- Enzyme Activation/physiology
- Enzyme Inhibitors/pharmacology
- Humans
- Hypertension, Pulmonary/physiopathology
- Image Processing, Computer-Assisted
- Membrane Potentials/drug effects
- Membrane Potentials/physiology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/physiology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/physiology
- Patch-Clamp Techniques
- Potassium Channel Blockers/pharmacology
- Potassium Channels, Voltage-Gated/drug effects
- Potassium Channels, Voltage-Gated/physiology
- Rats
- Staurosporine/pharmacology
- Transfection
Collapse
Affiliation(s)
- Elena E Brevnova
- Division of Pulmonary and Critical Care Medicine, Dept. of Medicine, Medical Teaching Facility, University of California-San Diego, #0725, 9500 Gilman Drive, La Jolla, CA 92093-0725, USA
| | | | | | | |
Collapse
|
41
|
Remillard CV, Yuan JXJ. Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 2004; 286:L49-67. [PMID: 14656699 DOI: 10.1152/ajplung.00041.2003] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cell apoptosis and proliferation are two counterparts in sharing the responsibility for maintaining normal tissue homeostasis. In recent years, the process of the programmed cell death has gained much interest because of its influence on malignant cell growth and other pathological states. Apoptosis is characterized by a distinct series of morphological and biochemical changes that result in cell shrinkage, DNA breakdown, and, ultimately, phagocytic death. Diverse external and internal stimuli trigger apoptosis, and enhanced K+ efflux has been shown to be an essential mediator of not only early apoptotic cell shrinkage, but also of downstream caspase activation and DNA fragmentation. The goal of this review is to discuss the role(s) played by K+ transport or flux across the plasma membrane in the regulation of the apoptotic volume decrease and apoptosis. Attention has also been paid to the role of inner mitochondrial membrane ion transport in the regulation of mitochondrial permeability and apoptosis. We provide specific examples of how deregulation of the apoptotic process contributes to pulmonary arterial medial hypertrophy, a major pathological feature in patients with pulmonary arterial hypertension. Finally, we discuss the targeting of K+ channels as a potential therapeutic tool in modulating apoptosis to maintain the balance between cell proliferation and cell death that is essential to the normal development and function of an organism.
Collapse
Affiliation(s)
- Carmelle V Remillard
- Division of Pulmonary and Critical Care Medicine, Dep[artment of Medicine, School of Medicine, University of California, San Diego, 92103-8382, USA
| | | |
Collapse
|
42
|
Zhang S, Fantozzi I, Tigno DD, Yi ES, Platoshyn O, Thistlethwaite PA, Kriett JM, Yung G, Rubin LJ, Yuan JXJ. Bone morphogenetic proteins induce apoptosis in human pulmonary vascular smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 2003; 285:L740-54. [PMID: 12740218 DOI: 10.1152/ajplung.00284.2002] [Citation(s) in RCA: 178] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary vascular medial hypertrophy in primary pulmonary hypertension (PPH) is mainly caused by increased proliferation and decreased apoptosis in pulmonary artery smooth muscle cells (PASMCs). Mutations of the bone morphogenetic protein (BMP) receptor type II (BMP-RII) gene have been implicated in patients with familial and sporadic PPH. The objective of this study was to elucidate the apoptotic effects of BMPs on normal human PASMCs and to examine whether BMP-induced effects are altered in PASMCs from PPH patients. Using RT-PCR, we detected six isoforms of BMPs (BMP-1 through -6) and three subunits of BMP receptors (BMP-RIa, -RIb, and -RII) in PASMCs. Treatment of normal PASMCs with BMP-2 or -7 (100-200 nM, 24-48 h) markedly increased the percentage of cells undergoing apoptosis. The BMP-2-mediated apoptosis in normal PASMCs was associated with a transient activation or phosphorylation of Smad1 and a marked downregulation of the antiapoptotic protein Bcl-2. In PASMCs from PPH patients, the BMP-2- or BMP-7-induced apoptosis was significantly inhibited compared with PASMCs from patients with secondary pulmonary hypertension. These results suggest that the antiproliferative effect of BMPs is partially due to induction of PASMC apoptosis, which serves as a critical mechanism to maintain normal cell number in the pulmonary vasculature. Inhibition of BMP-induced PASMC apoptosis in PPH patients may play an important role in the development of pulmonary vascular medial hypertrophy in these patients.
Collapse
Affiliation(s)
- Shen Zhang
- Dept. of Medicine, UCSD Medical Center, 200 West Arbor Dr., San Diego, CA 92103-8382, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Azoulay E, Eddahibi S, Marcos E, Levame M, Harf A, Schlemmer B, Adnot S, Delclaux C. Granulocyte colony-stimulating factor enhances alpha-naphthylthiourea-induced pulmonary hypertension. J Appl Physiol (1985) 2003; 94:2027-33. [PMID: 12524378 DOI: 10.1152/japplphysiol.00807.2002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Physiopathological discrepancies exist between the most widely used models of pulmonary hypertension (PH), namely monocrotaline- and hypoxia-induced PH. The development of a new model could help in the understanding of underlying mechanisms. Repeated alpha-naphthylthiourea (ANTU) injections (5 mg/kg weekly, 3 wk) induced pulmonary vascular remodeling, which was associated with development of PH and right ventricular hypertrophy. ANTU followed by granulocyte colony-stimulating factor (G-CSF; 25 microgram. kg(-1). day(-1) subcutaneously, 3 days/wk) induced higher pulmonary arterial pressures and right ventricular hypertrophy than ANTU alone. Lidocaine, which inhibits neutrophil functions, inhibited PH exacerbation by G-CSF. Endothelial nitric oxide synthase expression, measured to assess ANTU-related endothelial toxicity, decreased significantly in ANTU-treated rats and fell even more sharply when G-CSF was given. This occurred despite a significant increase in vascular endothelial cell growth factor expression in lung and right ventricle in rats given ANTU alone and even more in rats given ANTU plus G-CSF. Repeated ANTU administration induces PH with vascular remodeling that can be further aggravated by the neutrophil activator G-CSF.
Collapse
Affiliation(s)
- Elie Azoulay
- Institut National de la Santé et de la Recherche Médicale U492, Faculté de Médecine-Université Paris XII, 75475 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Platoshyn O, Zhang S, McDaniel SS, Yuan JXJ. Cytochrome c activates K+ channels before inducing apoptosis. Am J Physiol Cell Physiol 2002; 283:C1298-305. [PMID: 12225992 DOI: 10.1152/ajpcell.00592.2001] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cell shrinkage is an early prerequisite for apoptosis. The apoptotic volume decrease is due primarily to loss of cytoplasmic ions. Increased outward K+ currents have indeed been implicated in the early stage of apoptosis in many cell types. We found that cytoplasmic dialysis of cytochrome c (cyt-c), a mitochondria-dependent apoptotic inducer, increases K+ currents before inducing nuclear condensation and breakage in pulmonary vascular smooth muscle cells. The cyt-c-mediated increase in K+ currents took place rapidly and was not affected by treatment with a specific inhibitor of caspase-9. Cytoplasmic dialysis of recombinant (active) caspase-9 negligibly affected the K+ currents. Furthermore, treatment of the cells with staurosporine (ST), an apoptosis inducer that mediates translocation of cyt-c from mitochondria to the cytosol, also increased K+ currents, caused cell shrinkage, and induced apoptosis (determined by apoptotic nuclear morphology and TdT-UTP nick end labeling assay). The staurosporine-induced increase in K+ currents concurred to the volume decrease but preceded the activation of apoptosis (nuclear condensation and breakage). These results suggest that the cyt-c-induced activation of K+ channels and the resultant K+ loss play an important role in initiating the apoptotic volume decrease when cells undergo apoptosis.
Collapse
Affiliation(s)
- Oleksandr Platoshyn
- Department of Medicine, UCSD Medical Center, University of California-San Diego, 200 W Arbor Drive, San Diego, CA 92103-8382, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Pulmonary arterial hypertension (PAH) is a hemodynamic abnormality that ultimately results in mortality due to right heart failure. Although the clinical manifestations of primary and secondary PAH are diverse, medial hypertrophy and arterial vasoconstriction are key components in the vascular remodeling leading to PAH. Abnormalities in the homeostasis of intracellular Ca(2+), transmembrane flux of ions, and membrane potential may play significant roles in the processes leading to pulmonary vascular remodeling. Decreased activity of K(+) channels causes membrane depolarization, leading to Ca(2+) influx. The elevated cytoplasmic Ca(2+) is a major trigger for pulmonary vasoconstriction and an important stimulus for vascular smooth muscle proliferation. Dysfunctional K(+) channels have also been linked to inhibition of apoptosis and contribute further to the medial hypertrophy. This review focuses on the relative role of K(+) and Ca(2+) ions and channels in human pulmonary artery smooth muscle cells in the development of PAH.
Collapse
Affiliation(s)
- Mehran Mandegar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, San Diego, USA
| | | | | |
Collapse
|
46
|
Amabile PG, Wong H, Uy M, Boroumand S, Elkins CJ, Yuksel E, Waugh JM, Dake MD. In vivo vascular engineering of vein grafts: directed migration of smooth muscle cells by perivascular release of elastase limits neointimal proliferation. J Vasc Interv Radiol 2002; 13:709-15. [PMID: 12119330 DOI: 10.1016/s1051-0443(07)61848-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
PURPOSE Saphenous vein bypass grafting for coronary revascularization procedures remains limited by accelerated neointima formation. It was hypothesized that creation of a modified chemotactic gradient in vivo could guide migration of smooth muscle cells (SMCs) peripherally instead of in a luminal direction and reduce intimal hyperplasia during vein graft arterialization. MATERIALS AND METHODS Surgical bypass vein grafting to femoral arteries was performed in adult male New Zealand White rabbits (n = 8 per treatment group; five for 7 d and three for 28 d). Controlled-release microspheres delivering elastase or buffered polymer only were administered perivascularly at the vein graft site. At 7 days, five vein grafts per group were harvested and cross-sections were immunostained with anti-proliferating cell nuclear antigen (PCNA) to determine the number and distribution of proliferating SMCs. At 28 days, three vein grafts per group were harvested and intima-to-media (I/M) ratios were calculated after staining with Verhoeff von Gieson-Masson trichrome stain. RESULTS Significant early outward-directed elastin degradation resulted from elastase treatment. Concurrently, proliferating SMCs migrated peripherally. PCNA(+) cells in the outer half of the wall increased 2.37 fold compared to procedural controls (P <.0001). Directional shifts in SMC migration underlie these results because overall SMC proliferation was not significantly different. At 28 days after vein graft surgery, a 38% reduction (P =.0008) in neointima was observed relative to procedural controls. CONCLUSION Directional guidance of SMC responses through perivascular elastase release achieves favorable vein graft remodeling characteristics, including limited neointima development. This represents practical evidence that SMC migration can be directionally guided in vivo in a vein graft model and that plaque progression can be prevented by redistributing elastin without decreasing functional vein graft wall stability.
Collapse
Affiliation(s)
- Philippe G Amabile
- Department of Cardiovascular and Interventional Radiology, Stanford University, 300 Pasteur Drive, H3648, Stanford, California 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Wong AH, Waugh JM, Amabile PG, Yuksel E, Dake MD. In vivo vascular engineering: directed migration of smooth muscle cells to limit neointima. TISSUE ENGINEERING 2002; 8:189-99. [PMID: 12031109 DOI: 10.1089/107632702753724969] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Pathologic neointima formation requires directional smooth muscle cell (SMC) migration from media to intima. The very direction of SMC migration thus becomes a potential therapeutic target. Here, we hypothesize that proliferating SMC after injury can be redirected using engineered chemotactic gradients of elastin degradation to limit late pathologic neointima formation. Buffered bioerodible polymeric microspheres (MS) were constructed to provide 4-week sustained release of elastase, heat-killed elastase, or polymer only. In vitro elastase function and timecourse of release at 37 degrees C, physiologic pH, and shear was determined. Curves revealed an initial bolus followed by sustained linear release for elastase MS, while controls exhibited baseline hydrolysis of substrate. We then employ controlled perivascular release of elastase after angioplasty to engineer modified in vivo gradients of elastin degradation in rabbit femoral arteries. NZW rabbits (n = 8 each) underwent balloon angioplasty of the common femoral artery followed by perivascular distribution of MS. Significant early perivascular elastin degradation resulted. Concurrently, proliferating SMC were guided peripherally (further from lumen) with treatment without significant changes in total proliferation or inflammation. At 28 days, treatment significantly reduces neointima by 42% relative to controls. These results confirm that directionally guiding SMC responses after injury achieves favorable arterial remodeling and limits development of pathologic neointima. Thus, a potential class of therapeutics and the paradigm of in vivo vascular engineering emerge from this work.
Collapse
Affiliation(s)
- Arthur H Wong
- Cardiovascular and Interventional Radiology, Stanford University, California 94305, USA
| | | | | | | | | |
Collapse
|
48
|
Krick S, Platoshyn O, Sweeney M, McDaniel SS, Zhang S, Rubin LJ, Yuan JXJ. Nitric oxide induces apoptosis by activating K+ channels in pulmonary vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2002; 282:H184-93. [PMID: 11748062 DOI: 10.1152/ajpheart.2002.282.1.h184] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric oxide (NO) is an endogenous endothelium-derived relaxing factor that regulates vascular smooth muscle cell proliferation and apoptosis. This study investigated underlying mechanisms involved in NO-induced apoptosis in human and rat pulmonary artery smooth muscle cells (PASMC). Exposure of PASMC to NO, which was derived from the NO donor S-nitroso-N-acetyl-penicillamine, increased the percentage of cells undergoing apoptosis. Increasing extracellular K+ concentration to 40 mM or blocking K+ channels with 1 mM tetraethylammonia (TEA), 100 nM iberiotoxin (IBTX), and 5 mM 4-aminopyridine (4-AP) significantly inhibited the NO-induced apoptosis. In single PASMC, NO reversibly increased K+ currents through the large-conductance Ca(2+)-activated K+ (K(Ca)) channels, whereas TEA and IBTX markedly decreased the K(Ca) currents. In the presence of TEA, NO also increased K+ currents through voltage-gated K+ (K(v)) channels, whereas 4-AP significantly decreased the K(v) currents. Opening of K(Ca) channels with 0.3 mM dehydroepiandrosterone increased K(Ca) currents, induced apoptosis, and further enhanced the NO-mediated apoptosis. Furthermore, NO depolarized the mitochondrial membrane potential. These observations indicate that NO induces PASMC apoptosis by activating K(Ca) and K(v) channels in the plasma membrane. The resulting increase in K+ efflux leads to cytosolic K+ loss and eventual apoptosis volume decrease and apoptosis. NO-induced apoptosis may also be related to mitochondrial membrane depolarization in PASMC.
Collapse
Affiliation(s)
- Stefanie Krick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, 200 W. Arbor Dr., San Diego, CA 92103-8382, USA
| | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
Pulmonary hypertension is a hemodynamic abnormality that is common to a variety of conditions. In obliterative pulmonary hypertension, vascular remodeling leads to an obliterative process involving the small muscular pulmonary arteries, thereby increasing pulmonary vascular resistance (PVR) and the pulmonary artery pressure (PAP). This process can be triggered by a defect in the function of K+ channels or by alveolar hypoxia. In fact, hypoxia has been shown to selectively inhibit the function and expression of voltage-gated K+ (KV) channels in pulmonary arterial smooth muscle cells (SMCs). K+ channel dysfunction, therefore, plays an important role in the development of pulmonary hypertension. Activity of K+ channels regulates the membrane potential (Em) of SMCs, which in turn regulates cytoplasmic free Ca2+ concentration ([Ca2+]cyt). Depolarization of the Em leads to an elevated [Ca2+]cyt by opening voltage-dependent Ca2+ channels. Elevated [Ca2+]cyt is implicated in stimulating vascular SMC proliferation and inducing vasomotor tone, and hence, vasoconstriction. Vasoconstriction causes elevation of intravascular pressure and elastic stretch of the SMCs, both of which have been shown to play a role in pulmonary arterial cellular growth and synthetic activity, creating a vicious cycle of cellular hypertrophy, proliferation, and vascular remodeling. Dysfunction of K+ channels has also been linked to decreased apoptosis in pulmonary arterial SMCs, a condition that contributes further to the medial hypertrophy of the arterial walls and vascular remodeling. The goal of this article is to review the current understanding of the function of K+ channels and their contribution to the pathophysiology and cellular mechanisms involved in the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Mehran Mandegar
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California School of Medicine, 200 West Arbor Drive, San Diego, CA 92103-8382, USA
| | | |
Collapse
|
50
|
Olschewski H, Rose F, Grünig E, Ghofrani HA, Walmrath D, Schulz R, Schermuly R, Grimminger F, Seeger W. Cellular pathophysiology and therapy of pulmonary hypertension. THE JOURNAL OF LABORATORY AND CLINICAL MEDICINE 2001; 138:367-77. [PMID: 11753283 DOI: 10.1067/mlc.2001.119285] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The identification of several mutations of the bone morphogenetic protein receptor 2 (BMPR2) gene, a member of the transforming growth factor beta receptor family, gives hope for new insights into the pathophysiology of pulmonary hypertension. Genetic predisposition might dictate the responses of pulmonary artery fibroblasts, smooth muscle cells, and endothelial cells, as well as platelets and leukocytes, or their specific interactions with different extrinsic factors. These cells possess distinct subtypes and interact with each other. Pulmonary hypertension is associated with vasoconstriction, remodeling, and in situ thrombosis of the pulmonary arteries, but the initial events and their relationship to the genetic background are presently unknown. Current therapeutic approaches are based on our knowledge of the physiologic regulation of pulmonary artery tone, pathophysiologic changes, and our clinical experience with different treatment strategies. Beyond diuretics and anticoagulants, prostaglandins are generally accepted therapeutic agents for primary pulmonary hypertension and related diseases, whereas high-dose calcium-channel blockers are reserved for a small subset of patients, those who respond favorably to vasodilators in an acute test. Long-term intravenous prostacyclin infusion has become the most important specific therapy for primary pulmonary hypertension and associated diseases. However, this therapy is hampered by catheter complications and systemic side effects. Alternative application routes of prostacyclin or its stable analogs may avoid these problems. Inhaled application of the prostacyclin analog iloprost results in predominant pulmonary vasodilation with few systemic side effects and may possess clinical efficacy similar to that of intravenous prostacyclin. Inhaled nitric oxide is widely accepted as a screening agent for active responders to vasodilators and has a similar hemodynamic profile as inhaled iloprost, although the percentage of responders is considerably lower. However, there are unsolved toxicologic questions and practical difficulties concerning the safe long-term application of nitric oxide. Combining inhaled vasodilators with phosphodiesterase inhibitors may prolong the duration of the effects and improve the convenience of inhaled therapy for pulmonary hypertension. Therapeutic approaches in the future may aim at the transforming growth factor beta pathway and at the identification of early stages of the disease to prevent further disease progression.
Collapse
Affiliation(s)
- H Olschewski
- Medical Clinic II, Justus-Liebig-University, Giessen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|