1
|
Bystrom LT, Wolthers KR. New Electron-Transfer Chain to a Flavodiiron Protein in Fusobacterium nucleatum Couples Butyryl-CoA Oxidation to O 2 Reduction. Biochemistry 2024; 63:2352-2368. [PMID: 39206807 DOI: 10.1021/acs.biochem.4c00279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fusobacterium nucleatum, a Gram-negative obligate anaerobe, is common to the oral microbiota, but the species is known to infect other sites of the body where it is associated with a range of pathologies. At present, little is known about the mechanisms by which F. nucleatum mitigates against oxidative and nitrosative stress. Inspection of the F. nucleatum subsp. polymorphum ATCC 10953 genome reveals that it encodes a flavodiiron protein (FDP; FNP2073) that is known in other organisms to reduce NO to N2O and/or O2 to H2O. FNP2073 is dicistronic with a gene encoding a multicomponent enzyme termed BCR for butyryl-CoA reductase. BCR is composed of a butyryl-CoA dehydrogenase domain (BCD), the C-terminal domain of the α-subunit of the electron-transfer flavoprotein (Etfα), and a rubredoxin domain. We show that BCR and the FDP form an α4β4 heterotetramic complex and use butyryl-CoA to selectively reduce O2 to H2O. The FAD associated with the Etfα domain (α-FAD) forms red anionic semiquinone (FAD•-), whereas the FAD present in the BCD domain (δ-FAD) forms the blue-neutral semiquinone (FADH•), indicating that both cofactors participate in one-electron transfers. This was confirmed in stopped-flow studies where the reduction of oxidized BCR with an excess of butyryl-CoA resulted in rapid (<1.6 ms) interflavin electron transfer evidenced by the formation of the FAD•-. Analysis of bacterial genomes revealed that the dicistron is present in obligate anaerobic gut bacteria considered to be beneficial by virtue of their ability to produce butyrate. Thus, BCR-FDP may help to maintain anaerobiosis in the colon.
Collapse
Affiliation(s)
- Liam T Bystrom
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1 V 1 V7, Canada
| | - Kirsten R Wolthers
- Department of Chemistry, University of British Columbia, Okanagan Campus, 3247 University Way, Kelowna V1 V 1 V7, Canada
| |
Collapse
|
2
|
Ortiz S, Niks D, Wiley S, Lubner CE, Hille R. Rapid-reaction kinetics of the bifurcating NAD +-dependent NADPH:ferredoxin oxidoreductase NfnI from Pyrococcus furiosus. J Biol Chem 2023; 299:105403. [PMID: 38229399 PMCID: PMC10724689 DOI: 10.1016/j.jbc.2023.105403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/02/2023] [Accepted: 10/22/2023] [Indexed: 01/18/2024] Open
Abstract
We have investigated the kinetics of NAD+-dependent NADPH:ferredoxin oxidoreductase (NfnI), a bifurcating transhydrogenase that takes two electron pairs from NADPH to reduce two ferredoxins and one NAD+ through successive bifurcation events. NADPH reduction takes place at the bifurcating FAD of NfnI's large subunit, with high-potential electrons transferred to the [2Fe-2S] cluster and S-FADH of the small subunit, ultimately on to NAD+; low-potential electrons are transferred to two [4Fe-4S] clusters of the large subunit and on to ferredoxin. Reduction of NfnI by NADPH goes to completion only at higher pH, with a limiting kred of 36 ± 1.6 s-1 and apparent KdNADPH of 5 ± 1.2 μM. Reduction of one of the [4Fe-4S] clusters of NfnI occurs within a second, indicating that in the absence of NAD+, the system can bifurcate and generate low-potential electrons without NAD+. When enzyme is reduced by NADPH in the absence of NAD+ but the presence of ferredoxin, up to three equivalents of ferredoxin become reduced, although the reaction is considerably slower than seen during steady-state turnover. Bifurcation appears to be limited by transfer of the first, high-potential electron into the high-potential pathway. Ferredoxin reduction without NAD+ demonstrates that electron bifurcation is an intrinsic property of the bifurcating FAD and is not dependent on the simultaneous presence of NAD+ and ferredoxin. The tight coupling between NAD+ and ferredoxin reduction observed under multiple-turnover conditions is instead simply due to the need to remove reducing equivalents from the high-potential electron pathway under multiple-turnover conditions.
Collapse
Affiliation(s)
- Steve Ortiz
- Department of Biochemistry and the Biophysics Graduate Program, University of California, Riverside, USA
| | - Dimitri Niks
- Department of Biochemistry and the Biophysics Graduate Program, University of California, Riverside, USA
| | - Seth Wiley
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Carolyn E Lubner
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA.
| | - Russ Hille
- Department of Biochemistry and the Biophysics Graduate Program, University of California, Riverside, USA.
| |
Collapse
|
3
|
Zangelmi E, Ruffolo F, Dinhof T, Gerdol M, Malatesta M, Chin JP, Rivetti C, Secchi A, Pallitsch K, Peracchi A. Deciphering the role of recurrent FAD-dependent enzymes in bacterial phosphonate catabolism. iScience 2023; 26:108108. [PMID: 37876809 PMCID: PMC10590968 DOI: 10.1016/j.isci.2023.108108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/30/2023] [Accepted: 09/27/2023] [Indexed: 10/26/2023] Open
Abstract
Phosphonates-compounds containing a direct C-P bond-represent an important source of phosphorus in some environments. The most common natural phosphonate is 2-aminoethylphosphonate (AEP). Many bacteria can break AEP down through specialized "hydrolytic" pathways, which start with the conversion of AEP into phosphonoacetaldehyde (PAA), catalyzed by the transaminase PhnW. However, the substrate scope of these pathways is very narrow, as PhnW cannot process other common AEP-related phosphonates, notably N-methyl AEP (M1AEP). Here, we describe a heterogeneous group of FAD-dependent oxidoreductases that efficiently oxidize M1AEP to directly generate PAA, thus expanding the versatility and usefulness of the hydrolytic AEP degradation pathways. Furthermore, some of these enzymes can also efficiently oxidize plain AEP. By doing so, they surrogate the role of PhnW in organisms that do not possess the transaminase and create novel versions of the AEP degradation pathways in which PAA is generated solely by oxidative deamination.
Collapse
Affiliation(s)
- Erika Zangelmi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Francesca Ruffolo
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Tamara Dinhof
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
- Vienna Doctoral School in Chemistry (DoSChem), University of Vienna, 1090 Vienna, Austria
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Giorgieri 5, 34127 Trieste, Italy
| | - Marco Malatesta
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Jason P. Chin
- School of Biological Sciences and Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, BT9 5DL Belfast, UK
| | - Claudio Rivetti
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Andrea Secchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Katharina Pallitsch
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Alessio Peracchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| |
Collapse
|
4
|
Turek-Herman JR, Rosenberger M, Hyster TK. Synthesis of β-Quaternary Lactams Using Photoenzymatic Catalysis. ASIAN J ORG CHEM 2023; 12:e202300274. [PMID: 39175926 PMCID: PMC11340862 DOI: 10.1002/ajoc.202300274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Indexed: 08/24/2024]
Abstract
Quaternary carbons are useful motifs in chemical synthesis but can be challenging to prepare using many chemical methods. Here, we report a stereoselective synthesis of β-quaternary lactams using flavin-dependent 'ene'-reductases via a 5-exo-trig radical cyclization. The products are formed in moderate to good levels of enantioselectivity using an 'ene'-reductase variant from Zymomonas mobilis. This method highlights the opportunity for biocatalysis to form quaternary centers using non-natural reactions.
Collapse
Affiliation(s)
- Joshua R Turek-Herman
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Mike Rosenberger
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Todd K Hyster
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
5
|
Tong Y, Rozeboom HJ, Loonstra MR, Wijma HJ, Fraaije MW. Characterization of two bacterial multi-flavinylated proteins harboring multiple covalent flavin cofactors. BBA ADVANCES 2023; 4:100097. [PMID: 37455753 PMCID: PMC10339131 DOI: 10.1016/j.bbadva.2023.100097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
In recent years, studies have shown that a large number of bacteria secrete multi-flavinylated proteins. The exact roles and properties, of these extracellular flavoproteins that contain multiple covalently anchored FMN cofactors, are still largely unknown. Herein, we describe the biochemical and structural characterization of two multi-FMN-containing covalent flavoproteins, SaFMN3 from Streptomyces azureus and CbFMN4 from Clostridiaceae bacterium. Based on their primary structure, these proteins were predicted to contain three and four covalently tethered FMN cofactors, respectively. The genes encoding SaFMN3 and CbFMN4 were heterologously coexpressed with a flavin transferase (ApbE) in Escherichia coli, and could be purified by affinity chromatography in good yields. Both proteins were found to be soluble and to contain covalently bound FMN molecules. The SaFMN3 protein was studied in more detail and found to display a single redox potential (-184 mV) while harboring three covalently attached flavins. This is in line with the high sequence similarity when the domains of each flavoprotein are compared. The fully reduced form of SaFMN3 is able to use dioxygen as electron acceptor. Single domains from both proteins were expressed, purified and crystallized. The crystal structures were elucidated, which confirmed that the flavin cofactor is covalently attached to a threonine. Comparison of both crystal structures revealed a high similarity, even in the flavin binding pocket. Based on the crystal structure, mutants of the SaFMN3-D2 domain were designed to improve its fluorescence quantum yield by changing the microenvironment of the isoalloxazine moiety of the flavin cofactor. Residues that quench the flavin fluorescence were successfully identified. Our study reveals biochemical details of multi-FMN-containing proteins, contributing to a better understanding of their role in bacteria and providing leads to future utilization of these flavoprotein in biotechnology.
Collapse
|
6
|
Rivero M, Boneta S, Novo N, Velázquez-Campoy A, Polo V, Medina M. Riboflavin kinase and pyridoxine 5′-phosphate oxidase complex formation envisages transient interactions for FMN cofactor delivery. Front Mol Biosci 2023; 10:1167348. [PMID: 37056721 PMCID: PMC10086132 DOI: 10.3389/fmolb.2023.1167348] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Enzymes catalysing sequential reactions have developed different mechanisms to control the transport and flux of reactants and intermediates along metabolic pathways, which usually involve direct transfer of metabolites from an enzyme to the next one in a cascade reaction. Despite the fact that metabolite or substrate channelling has been widely studied for reactant molecules, such information is seldom available for cofactors in general, and for flavins in particular. Flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN) act as cofactors in flavoproteins and flavoenzymes involved in a wide range of physiologically relevant processes in all type of organisms. Homo sapiens riboflavin kinase (RFK) catalyses the biosynthesis of the flavin mononucleotide cofactor, and might directly interplay with its flavin client apo-proteins prior to the cofactor transfer. Non-etheless, none of such complexes has been characterized at molecular or atomic level so far. Here, we particularly evaluate the interaction of riboflavin kinase with one of its potential FMN clients, pyridoxine-5′-phosphate oxidase (PNPOx). The interaction capacity of both proteins is assessed by using isothermal titration calorimetry, a methodology that allows to determine dissociation constants for interaction in the micromolar range (in agreement with the expected transient nature of the interaction). Moreover, we show that; i) both proteins become thermally stabilized upon mutual interaction, ii) the tightly bound FMN product can be transferred from RFK to the apo-form of PNPOx producing an efficient enzyme, and iii) the presence of the apo-form of PNPOx slightly enhances RFK catalytic efficiency. Finally, we also show a computational study to predict likely RFK-PNPOx binding modes that can envisage coupling between the FMN binding cavities of both proteins for the potential transfer of FMN.
Collapse
Affiliation(s)
- Maribel Rivero
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Sergio Boneta
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Nerea Novo
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
| | - Adrián Velázquez-Campoy
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
| | - Victor Polo
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Departamento de Química Física, Universidad de Zaragoza, Zaragoza, Spain
| | - Milagros Medina
- Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain
- Instituto de Biocomputación y Física de Sistemas Complejos (BIFI), Universidad de Zaragoza, Zaragoza, Spain
- Group of Biochemistry, Biophysics and Computational Biology “GBsC” (BIFI, Unizar) Joint Unit to CSIC, Zaragoza, Spain
- *Correspondence: Milagros Medina,
| |
Collapse
|
7
|
Partipilo M, Yang G, Mascotti ML, Wijma HJ, Slotboom DJ, Fraaije MW. A conserved sequence motif in the Escherichia coli soluble FAD-containing pyridine nucleotide transhydrogenase is important for reaction efficiency. J Biol Chem 2022; 298:102304. [PMID: 35933012 PMCID: PMC9460512 DOI: 10.1016/j.jbc.2022.102304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/06/2022] Open
Abstract
Soluble pyridine nucleotide transhydrogenases (STHs) are flavoenzymes involved in the redox homeostasis of the essential cofactors NAD(H) and NADP(H). They catalyze the reversible transfer of reducing equivalents between the two nicotinamide cofactors. The soluble transhydrogenase from Escherichia coli (SthA) has found wide use in both in vivo and in vitro applications to steer reducing equivalents toward NADPH-requiring reactions. However, mechanistic insight into SthA function is still lacking. In this work, we present a biochemical characterization of SthA, focusing for the first time on the reactivity of the flavoenzyme with molecular oxygen. We report on oxidase activity of SthA that takes place both during transhydrogenation and in the absence of an oxidized nicotinamide cofactor as an electron acceptor. We find that this reaction produces the reactive oxygen species hydrogen peroxide and superoxide anion. Furthermore, we explore the evolutionary significance of the well-conserved CXXXXT motif that distinguishes STHs from the related family of flavoprotein disulfide reductases in which a CXXXXC motif is conserved. Our mutational analysis revealed the cysteine and threonine combination in SthA leads to better coupling efficiency of transhydrogenation and reduced reactive oxygen species release compared to enzyme variants with mutated motifs. These results expand our mechanistic understanding of SthA by highlighting reactivity with molecular oxygen and the importance of the evolutionarily conserved sequence motif.
Collapse
Affiliation(s)
- Michele Partipilo
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Guang Yang
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Maria Laura Mascotti
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands; IMIBIO-SL CONICET, Facultad de Química Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Hein J Wijma
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands
| | - Dirk Jan Slotboom
- Membrane Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands.
| | - Marco W Fraaije
- Molecular Enzymology Group, Groningen Institute of Biomolecular Sciences & Biotechnology, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
8
|
Vigil W, Tran J, Niks D, Schut GJ, Ge X, Adams MWW, Hille R. The reductive half-reaction of two bifurcating electron-transferring flavoproteins: Evidence for changes in flavin reduction potentials mediated by specific conformational changes. J Biol Chem 2022; 298:101927. [PMID: 35429498 PMCID: PMC9127580 DOI: 10.1016/j.jbc.2022.101927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 10/25/2022] Open
Abstract
The EtfAB components of two bifurcating flavoprotein systems, the crotonyl-CoA-dependent NADH:ferredoxin oxidoreductase from the bacterium Megasphaera elsdenii and the menaquinone-dependent NADH:ferredoxin oxidoreductase from the archaeon Pyrobaculum aerophilum, have been investigated. With both proteins, we find that removal of the electron-transferring flavin adenine dinucleotide (FAD) moiety from both proteins results in an uncrossing of the reduction potentials of the remaining bifurcating FAD; this significantly stabilizes the otherwise very unstable semiquinone state, which accumulates over the course of reductive titrations with sodium dithionite. Furthermore, reduction of both EtfABs depleted of their electron-transferring FAD by NADH was monophasic with a hyperbolic dependence of reaction rate on the concentration of NADH. On the other hand, NADH reduction of the replete proteins containing the electron-transferring FAD was multiphasic, consisting of a fast phase comparable to that seen with the depleted proteins followed by an intermediate phase that involves significant accumulation of FAD⋅-, again reflecting uncrossing of the half-potentials of the bifurcating FAD. This is then followed by a slow phase that represents the slow reduction of the electron-transferring FAD to FADH-, with reduction of the now fully reoxidized bifurcating FAD by a second equivalent of NADH. We suggest that the crossing and uncrossing of the reduction half-potentials of the bifurcating FAD is due to specific conformational changes that have been structurally characterized.
Collapse
Affiliation(s)
- Wayne Vigil
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Jessica Tran
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Dimitri Niks
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Xiaoxuan Ge
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, California, USA.
| |
Collapse
|
9
|
Boutin JA, Stojko J, Ferry G, Cianferani S. Measuring the NQO2: Melatonin Complex by Native Nano-Electrospray Ionization Mass Spectrometry. Methods Mol Biol 2022; 2550:323-328. [PMID: 36180703 DOI: 10.1007/978-1-0716-2593-4_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Melatonin exerts its effects through a series of target proteins/receptors and enzymes. Its antioxidant capacity might be due to its capacity to inhibit a quinone reductase (NQO2) at high concentration (50 μM). Demonstrating the existence of a complex between a compound and a protein is often not easy. It requires either that the compound is an inhibitor-and the complex translates by an inhibition of the catalytic activity-or the compound is radiolabeled-and the complex translates in standard binding approaches, such as in receptology. Outside these two cases, the detection of the protein:small molecule complexes by mass spectrometry has recently been made possible, thanks to the development of so-called native mass spectrometry. Using this approach, one can measure masses corresponding to an intact noncovalent complex between a compound and its target, usually after titration or competition experiments. In the present chapter, we detail the characterization of NQO2:melatonin interaction using native mass spectrometry.
Collapse
Affiliation(s)
- Jean A Boutin
- Pole d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France.
- PHARMADEV (Pharmacochimie et biologie pour le développement), Faculté de Pharmacie, Toulouse, France.
| | - Johann Stojko
- Pole d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Gilles Ferry
- Pole d'expertise Biotechnologie, Chimie & Biologie, Institut de Recherches Servier, Croissy-sur-Seine, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS, Strasbourg, France
| |
Collapse
|
10
|
Caux C, Guigliarelli B, Vivès C, Biaso F, Horeau M, Hassoune H, Petit-Hartlein I, Juillan-Binard C, Torelli S, Fieschi F, Nivière V. Membrane-Bound Flavocytochrome MsrQ Is a Substrate of the Flavin Reductase Fre in Escherichia coli. ACS Chem Biol 2021; 16:2547-2559. [PMID: 34550690 DOI: 10.1021/acschembio.1c00613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
MsrPQ is a new type of methionine sulfoxide reductase (Msr) system found in bacteria. It is specifically involved in the repair of periplasmic methionine residues that are oxidized by hypochlorous acid. MsrP is a periplasmic molybdoenzyme that carries out the Msr activity, whereas MsrQ, an integral membrane-bound hemoprotein, acts as the physiological partner of MsrP to provide electrons for catalysis. Although MsrQ (YedZ) was associated since long with a protein superfamily named FRD (ferric reductase domain), including the eukaryotic NADPH oxidases and STEAP proteins, its biochemical properties are still sparsely documented. Here, we have investigated the cofactor content of the E. coli MsrQ and its mechanism of reduction by the flavin reductase Fre. We showed by electron paramagnetic resonance (EPR) spectroscopy that MsrQ contains a single highly anisotropic low-spin (HALS) b-type heme located on the periplasmic side of the membrane. We further demonstrated that MsrQ holds a flavin mononucleotide (FMN) cofactor that occupies the site where a second heme binds in other members of the FDR superfamily on the cytosolic side of the membrane. EPR spectroscopy indicates that the FMN cofactor can accommodate a radical semiquinone species. The cytosolic flavin reductase Fre was previously shown to reduce the MsrQ heme. Here, we demonstrated that Fre uses the FMN MsrQ cofactor as a substrate to catalyze the electron transfer from cytosolic NADH to the heme. Formation of a specific complex between MsrQ and Fre could favor this unprecedented mechanism, which most likely involves transfer of the reduced FMN cofactor from the Fre active site to MsrQ.
Collapse
Affiliation(s)
- Christelle Caux
- CNRS, CEA, IRIG-LCBM, Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, Grenoble 38054, France
| | - Bruno Guigliarelli
- CNRS, BIP-UMR 7281 Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Univ., Marseille 13402, France
| | - Corinne Vivès
- CNRS, CEA, Institut de Biologie Structurale, Univ. Grenoble Alpes, Grenoble 38044, France
| | - Frédéric Biaso
- CNRS, BIP-UMR 7281 Laboratoire de Bioénergétique et Ingénierie des Protéines, Aix-Marseille Univ., Marseille 13402, France
| | - Marius Horeau
- CNRS, CEA, IRIG-LCBM, Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, Grenoble 38054, France
| | - Hawra Hassoune
- CNRS, CEA, IRIG-LCBM, Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, Grenoble 38054, France
| | | | - Céline Juillan-Binard
- CNRS, CEA, Institut de Biologie Structurale, Univ. Grenoble Alpes, Grenoble 38044, France
| | - Stephane Torelli
- CNRS, CEA, IRIG-LCBM, Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, Grenoble 38054, France
| | - Franck Fieschi
- CNRS, CEA, Institut de Biologie Structurale, Univ. Grenoble Alpes, Grenoble 38044, France
| | - Vincent Nivière
- CNRS, CEA, IRIG-LCBM, Laboratoire de Chimie et Biologie des Métaux, Univ. Grenoble Alpes, Grenoble 38054, France
| |
Collapse
|
11
|
Lappe A, Jankowski N, Albrecht A, Koschorreck K. Characterization of a thermotolerant aryl-alcohol oxidase from Moesziomyces antarcticus oxidizing 5-hydroxymethyl-2-furancarboxylic acid. Appl Microbiol Biotechnol 2021; 105:8313-8327. [PMID: 34643786 PMCID: PMC8557139 DOI: 10.1007/s00253-021-11557-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/23/2021] [Accepted: 08/26/2021] [Indexed: 12/01/2022]
Abstract
The development of enzymatic processes for the environmentally friendly production of 2,5-furandicarboxylic acid (FDCA), a renewable precursor for bioplastics, from 5-hydroxymethylfurfural (HMF) has gained increasing attention over the last years. Aryl-alcohol oxidases (AAOs) catalyze the oxidation of HMF to 5-formyl-2-furancarboxylic acid (FFCA) through 2,5-diformylfuran (DFF) and have thus been applied in enzymatic reaction cascades for the production of FDCA. AAOs are flavoproteins that oxidize a broad range of benzylic and aliphatic allylic primary alcohols to the corresponding aldehydes, and in some cases further to acids, while reducing molecular oxygen to hydrogen peroxide. These promising biocatalysts can also be used for the synthesis of flavors, fragrances, and chemical building blocks, but their industrial applicability suffers from low production yield in natural and heterologous hosts. Here we report on heterologous expression of a new aryl-alcohol oxidase, MaAAO, from Moesziomyces antarcticus at high yields in the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii). Fed-batch fermentation of recombinant P. pastoris yielded around 750 mg of active enzyme per liter of culture. Purified MaAAO was highly stable at pH 2-9 and exhibited high thermal stability with almost 95% residual activity after 48 h at 57.5 °C. MaAAO accepts a broad range of benzylic primary alcohols, aliphatic allylic alcohols, and furan derivatives like HMF as substrates and some oxidation products thereof like piperonal or perillaldehyde serve as building blocks for pharmaceuticals or show health-promoting effects. Besides this, MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA) to FFCA, which has not been shown for any other AAO so far. Combining MaAAO with an unspecific peroxygenase oxidizing HMFCA to FFCA in one pot resulted in complete conversion of HMF to FDCA within 144 h. MaAAO is thus a promising biocatalyst for the production of precursors for bioplastics and bioactive compounds. KEY POINTS: • MaAAO from M. antarcticus was expressed in P. pastoris at 750 mg/l. • MaAAO oxidized 5-hydroxymethyl-2-furancarboxylic acid (HMFCA). • Complete conversion of HMF to 2,5-furandicarboxylic acid by combining MaAAO and UPO.
Collapse
Affiliation(s)
- Alessa Lappe
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nina Jankowski
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Annemie Albrecht
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
12
|
Schühle K, Saft M, Vögeli B, Erb TJ, Heider J. Benzylmalonyl-CoA dehydrogenase, an enzyme involved in bacterial auxin degradation. Arch Microbiol 2021; 203:4149-4159. [PMID: 34059946 PMCID: PMC8360864 DOI: 10.1007/s00203-021-02406-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/28/2022]
Abstract
A novel acyl-CoA dehydrogenase involved in degradation of the auxin indoleacetate by Aromatoleum aromaticum was identified as a decarboxylating benzylmalonyl-CoA dehydrogenase (IaaF). It is encoded within the iaa operon coding for enzymes of indoleacetate catabolism. Using enzymatically produced benzylmalonyl-CoA, the reaction was characterized as simultaneous oxidation and decarboxylation of benzylmalonyl-CoA to cinnamoyl-CoA and CO2. Oxygen served as electron acceptor and was reduced to H2O2, whereas electron transfer flavoprotein or artificial dyes serving as electron acceptors for other acyl-CoA dehydrogenases were not used. The enzyme is homotetrameric, contains an FAD cofactor and is enantiospecific in benzylmalonyl-CoA turnover. It shows high catalytic efficiency and strong substrate inhibition with benzylmalonyl-CoA, but otherwise accepts only a few medium-chain alkylmalonyl-CoA compounds as alternative substrates with low activities. Its reactivity of oxidizing 2-carboxyacyl-CoA with simultaneous decarboxylation is unprecedented and indicates a modified reaction mechanism for acyl-CoA dehydrogenases, where elimination of the 2-carboxy group replaces proton abstraction from C2.
Collapse
Affiliation(s)
- Karola Schühle
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Martin Saft
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| | - Bastian Vögeli
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Tobias J Erb
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Marburg, Germany
| | - Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany. .,LOEWE-Center for Synthetic Microbiology, Marburg, Germany.
| |
Collapse
|
13
|
Vanoni MA. Iron-sulfur flavoenzymes: the added value of making the most ancient redox cofactors and the versatile flavins work together. Open Biol 2021; 11:210010. [PMID: 33947244 PMCID: PMC8097209 DOI: 10.1098/rsob.210010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Iron-sulfur (Fe-S) flavoproteins form a broad and growing class of complex, multi-domain and often multi-subunit proteins coupling the most ancient cofactors (the Fe-S clusters) and the most versatile coenzymes (the flavin coenzymes, FMN and FAD). These enzymes catalyse oxidoreduction reactions usually acting as switches between donors of electron pairs and acceptors of single electrons, and vice versa. Through selected examples, the enzymes' structure−function relationships with respect to rate and directionality of the electron transfer steps, the role of the apoprotein and its dynamics in modulating the electron transfer process will be discussed.
Collapse
Affiliation(s)
- Maria Antonietta Vanoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
14
|
Tsunematsu Y, Maeda N, Sato M, Hara K, Hashimoto H, Watanabe K, Hertweck C. Specialized Flavoprotein Promotes Sulfur Migration and Spiroaminal Formation in Aspirochlorine Biosynthesis. J Am Chem Soc 2020; 143:206-213. [PMID: 33351612 DOI: 10.1021/jacs.0c08879] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epidithiodiketopiperazines (ETPs) are a class of ecologically and medicinally important cyclodipeptides bearing a reactive transannular disulfide bridge. Aspirochlorine, an antifungal and toxic ETP isolated from Aspergillus oryzae used in sake brewing, deviates from the common ETP scaffold owing to its unusual ring-enlarged disulfide bridge linked to a spiroaminal ring system. Although this disulfide ring system is implicated in the biological activity of ETPs the biochemical basis for this derailment has remained a mystery. Here we report the discovery of a novel oxidoreductase (AclR) that represents the first-in-class enzyme catalyzing both a carbon-sulfur bond migration and spiro-ring formation, and that the acl pathway involves a cryptic acetylation as a prerequisite for the rearrangement. Genetic screening in A. oryzae identified aclR as the candidate for the complex biotransformation, and the aclR-deficient mutant provided the biosynthetic intermediate, unexpectedly harboring an acetyl group. In vitro assays showed that AclR alone promotes 1,2-sulfamyl migration, elimination of the acetoxy group, and spiroaminal formation. AclR features a thioredoxin oxidoreductase fold with a noncanonical CXXH motif that is distinct from the CXXC in the disulfide forming oxidase for the ETP biosynthesis. Crystallographic and mutational analyses of AclR revealed that the CXXH motif is crucial for catalysis, whereas the flavin-adenine dinucleotide is required as a support of the protein fold, and not as a redox cofactor. AclR proved to be a suitable bioinformatics handle to discover a number of related fungal gene clusters that potentially code for the biosynthesis of derailed ETP compounds. Our results highlight a specialized role of the thioredoxin oxidoreductase family enzyme in the ETP pathway and expand the chemical diversity of small molecules bearing an aberrant disulfide pharmacophore.
Collapse
Affiliation(s)
- Yuta Tsunematsu
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.,Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany
| | - Naoya Maeda
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Michio Sato
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kodai Hara
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Hiroshi Hashimoto
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kenji Watanabe
- Department of Pharmaceutical Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Chemistry and Infection Biology (HKI), Beutenbergstrasse 11a, 07745 Jena, Germany.,Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
15
|
Key factors behind autofluorescence changes caused by ablation of cardiac tissue. Sci Rep 2020; 10:15369. [PMID: 32958843 PMCID: PMC7506017 DOI: 10.1038/s41598-020-72351-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/25/2020] [Indexed: 11/30/2022] Open
Abstract
Radiofrequency ablation is a commonly used clinical procedure that destroys arrhythmogenic sources in patients suffering from atrial fibrillation and other types of cardiac arrhythmias. To improve the success of this procedure, new approaches for real-time visualization of ablation sites are being developed. One of these promising methods is hyperspectral imaging, an approach that detects lesions based on changes in the endogenous tissue autofluorescence profile. To facilitate the clinical implementation of this approach, we examined the key variables that can influence ablation-induced spectral changes, including the drop in myocardial NADH levels, the release of lipofuscin-like pigments, and the increase in diffuse reflectance of the cardiac muscle beneath the endocardial layer. Insights from these experiments suggested simpler algorithms that can be used to acquire and post-process the spectral information required to reveal the lesion sites. Our study is relevant to a growing number of multilayered clinical targets to which spectral approaches are being applied.
Collapse
|
16
|
High-level expression of aryl-alcohol oxidase 2 from Pleurotus eryngii in Pichia pastoris for production of fragrances and bioactive precursors. Appl Microbiol Biotechnol 2020; 104:9205-9218. [PMID: 32949280 PMCID: PMC7567689 DOI: 10.1007/s00253-020-10878-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 08/14/2020] [Accepted: 09/02/2020] [Indexed: 12/13/2022]
Abstract
Abstract The fungal secretome comprises various oxidative enzymes participating in the degradation of lignocellulosic biomass as a central step in carbon recycling. Among the secreted enzymes, aryl-alcohol oxidases (AAOs) are of interest for biotechnological applications including production of bio-based precursors for plastics, bioactive compounds, and flavors and fragrances. Aryl-alcohol oxidase 2 (PeAAO2) from the fungus Pleurotus eryngii was heterologously expressed and secreted at one of the highest yields reported so far of 315 mg/l using the methylotrophic yeast Pichia pastoris (recently reclassified as Komagataella phaffii). The glycosylated PeAAO2 exhibited a high stability in a broad pH range between pH 3.0 and 9.0 and high thermal stability up to 55 °C. Substrate screening with 41 compounds revealed that PeAAO2 oxidized typical AAO substrates like p-anisyl alcohol, veratryl alcohol, and trans,trans-2,4-hexadienol with up to 8-fold higher activity than benzyl alcohol. Several compounds not yet reported as substrates for AAOs were oxidized by PeAAO2 as well. Among them, cumic alcohol and piperonyl alcohol were oxidized to cuminaldehyde and piperonal with high catalytic efficiencies of 84.1 and 600.2 mM−1 s−1, respectively. While the fragrance and flavor compound piperonal also serves as starting material for agrochemical and pharmaceutical building blocks, various positive health effects have been attributed to cuminaldehyde including anticancer, antidiabetic, and neuroprotective effects. PeAAO2 is thus a promising biocatalyst for biotechnological applications. Key points • Aryl-alcohol oxidase PeAAO2 from P. eryngii was produced in P. pastoris at 315 mg/l. • Purified enzyme exhibited stability over a broad pH and temperature range. • Oxidation products cuminaldehyde and piperonal are of biotechnological interest. Graphical abstract![]() Electronic supplementary material The online version of this article (10.1007/s00253-020-10878-4) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Tong Y, Trajkovic M, Savino S, van Berkel WJH, Fraaije MW. Substrate binding tunes the reactivity of hispidin 3-hydroxylase, a flavoprotein monooxygenase involved in fungal bioluminescence. J Biol Chem 2020; 295:16013-16022. [PMID: 32917724 DOI: 10.1074/jbc.ra120.014996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/10/2020] [Indexed: 11/06/2022] Open
Abstract
Fungal bioluminescence was recently shown to depend on a unique oxygen-dependent system of several enzymes. However, the identities of the enzymes did not reveal the full biochemical details of this process, as the enzymes do not bear resemblance to those of other luminescence systems, and thus the properties of the enzymes involved in this fascinating process are still unknown. Here, we describe the characterization of the penultimate enzyme in the pathway, hispidin 3-hydroxylase, from the luminescent fungus Mycena chlorophos (McH3H), which catalyzes the conversion of hispidin to 3-hydroxyhispidin. 3-Hydroxyhispidin acts as a luciferin substrate in luminescent fungi. McH3H was heterologously expressed in Escherichia coli and purified by affinity chromatography with a yield of 100 mg/liter. McH3H was found to be a single component monomeric NAD(P)H-dependent FAD-containing monooxygenase having a preference for NADPH. Through site-directed mutagenesis, based on a modeled structure, mutant enzymes were created that are more efficient with NADH. Except for identifying the residues that tune cofactor specificity, these engineered variants may also help in developing new hispidin-based bioluminescence applications. We confirmed that addition of hispidin to McH3H led to the formation of 3-hydroxyhispidin as sole aromatic product. Rapid kinetic analysis revealed that reduction of the flavin cofactor by NADPH is boosted by hispidin binding by nearly 100-fold. Similar to other class A flavoprotein hydroxylases, McH3H did not form a stable hydroperoxyflavin intermediate. These data suggest a mechanism by which the hydroxylase is tuned for converting hispidin into the fungal luciferin.
Collapse
Affiliation(s)
- Yapei Tong
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Milos Trajkovic
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Simone Savino
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands
| | - Willem J H van Berkel
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
18
|
Tasnim H, Landry AP, Fontenot CR, Ding H. Exploring the FMN binding site in the mitochondrial outer membrane protein mitoNEET. Free Radic Biol Med 2020; 156:11-19. [PMID: 32445867 PMCID: PMC7434653 DOI: 10.1016/j.freeradbiomed.2020.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
MitoNEET is a mitochondrial outer membrane protein that hosts a redox active [2Fe-2S] cluster in the C-terminal cytosolic domain. Increasing evidence has shown that mitoNEET has an essential role in regulating energy metabolism in human cells. Previously, we reported that the [2Fe-2S] clusters in mitoNEET can be reduced by the reduced flavin mononucleotide (FMNH2) and oxidized by oxygen or ubiquinone-2, suggesting that mitoNEET may act as a novel redox enzyme catalyzing electron transfer from FMNH2 to oxygen or ubiquinone. Here, we explore the FMN binding site in mitoNEET by using FMN analogs and find that lumiflavin, like FMN, at nanomolar concentrations can mediate the redox transition of the mitoNEET [2Fe-2S] clusters in the presence of flavin reductase and NADH (100 μM) under aerobic conditions. The electron paramagnetic resonance (EPR) measurements show that both FMN and lumiflavin can dramatically change the EPR spectrum of the reduced mitoNEET [2Fe-2S] clusters and form a covalently bound complex with mitoNEET under blue light exposure, suggesting that FMN/lumiflavin has specific interactions with the [2Fe-2S] clusters in mitoNEET. In contrast, lumichrome, another FMN analog, fails to mediate the redox transition of the mitoNEET [2Fe-2S] clusters and has no effect on the EPR spectrum of the reduced mitoNEET [2Fe-2S] clusters under blue light exposure. Instead, lumichrome can effectively inhibit the FMNH2-mediated reduction of the mitoNEET [2Fe-2S] clusters, indicating that lumichrome may act as a potential inhibitor to block the electron transfer activity of mitoNEET.
Collapse
Affiliation(s)
- Homyra Tasnim
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Aaron P Landry
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Chelsey R Fontenot
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| | - Huangen Ding
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
19
|
Viñambres M, Espada M, Martínez AT, Serrano A. Screening and Evaluation of New Hydroxymethylfurfural Oxidases for Furandicarboxylic Acid Production. Appl Environ Microbiol 2020; 86:e00842-20. [PMID: 32503910 PMCID: PMC7414962 DOI: 10.1128/aem.00842-20] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/31/2020] [Indexed: 11/20/2022] Open
Abstract
The enzymatic production of 2,5-furandicarboxylic acid (FDCA) from 5-hydroxymethylfurfural (HMF) has gained interest in recent years, as FDCA is a renewable precursor of poly(ethylene-2,5-furandicarboxylate) (PEF). 5-Hydroxymethylfurfural oxidases (HMFOs) form a flavoenzyme family with genes annotated in a dozen bacterial species but only one enzyme purified and characterized to date (after heterologous expression of a Methylovorus sp. HMFO gene). This oxidase acts on both furfuryl alcohols and aldehydes and, therefore, is able to catalyze the conversion of HMF into FDCA through 2,5-diformylfuran (DFF) and 2,5-formylfurancarboxylic acid (FFCA), with only the need of oxygen as a cosubstrate. To enlarge the repertoire of HMFO enzymes available, genetic databases were screened for putative HMFO genes, followed by heterologous expression in Escherichia coli After unsuccessful trials with other bacterial HMFO genes, HMFOs from two Pseudomonas species were produced as active soluble enzymes, purified, and characterized. The Methylovorus sp. enzyme was also produced and purified in parallel for comparison. Enzyme stability against temperature, pH, and hydrogen peroxide, three key aspects for application, were evaluated (together with optimal conditions for activity), revealing differences between the three HMFOs. Also, the kinetic parameters for HMF, DFF, and FFCA oxidation were determined, the new HMFOs having higher efficiencies for the oxidation of FFCA, which constitutes the bottleneck in the enzymatic route for FDCA production. These results were used to set up the best conditions for FDCA production by each enzyme, attaining a compromise between optimal activity and half-life under different conditions of operation.IMPORTANCE HMFO is the only enzyme described to date that can catalyze by itself the three consecutive oxidation steps to produce FDCA from HMF. Unfortunately, only one HMFO enzyme is currently available for biotechnological application. This availability is enlarged here by the identification, heterologous production, purification, and characterization of two new HMFOs, one from Pseudomonas nitroreducens and one from an unidentified Pseudomonas species. Compared to the previously known Methylovorus HMFO, the new enzyme from P. nitroreducens exhibits better performance for FDCA production in wider pH and temperature ranges, with higher tolerance for the hydrogen peroxide formed, longer half-life during oxidation, and higher yield and total turnover numbers in long-term conversions under optimized conditions. All these features are relevant properties for the industrial production of FDCA. In summary, gene screening and heterologous expression can facilitate the selection and improvement of HMFO enzymes as biocatalysts for the enzymatic synthesis of renewable building blocks in the production of bioplastics.
Collapse
Affiliation(s)
- Mario Viñambres
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Marta Espada
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Ana Serrano
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
20
|
Duan HD, Mohamed-Raseek N, Miller AF. Spectroscopic evidence for direct flavin-flavin contact in a bifurcating electron transfer flavoprotein. J Biol Chem 2020; 295:12618-12634. [PMID: 32661195 DOI: 10.1074/jbc.ra120.013174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/10/2020] [Indexed: 12/15/2022] Open
Abstract
A remarkable charge transfer (CT) band is described in the bifurcating electron transfer flavoprotein (Bf-ETF) from Rhodopseudomonas palustris (RpaETF). RpaETF contains two FADs that play contrasting roles in electron bifurcation. The Bf-FAD accepts electrons pairwise from NADH, directs one to a lower-reduction midpoint potential (E°) carrier, and the other to the higher-E° electron transfer FAD (ET-FAD). Previous work noted that a CT band at 726 nm formed when ET-FAD was reduced and Bf-FAD was oxidized, suggesting that both flavins participate. However, existing crystal structures place them too far apart to interact directly. We present biochemical experiments addressing this conundrum and elucidating the nature of this CT species. We observed that RpaETF missing either FAD lacked the 726 nm band. Site-directed mutagenesis near either FAD produced altered yields of the CT species, supporting involvement of both flavins. The residue substitutions did not alter the absorption maximum of the signal, ruling out contributions from residue orbitals. Instead, we propose that the residue identities modulate the population of a protein conformation that brings the ET-flavin and Bf-flavin into direct contact, explaining the 726 nm band based on a CT complex of reduced ET-FAD and oxidized Bf-FAD. This is corroborated by persistence of the 726 nm species during gentle protein denaturation and simple density functional theory calculations of flavin dimers. Although such a CT complex has been demonstrated for free flavins, this is the first observation of such, to our knowledge, in an enzyme. Thus, Bf-ETFs may optimize electron transfer efficiency by enabling direct flavin-flavin contact.
Collapse
Affiliation(s)
- H Diessel Duan
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | | | | |
Collapse
|
21
|
Biegasiewicz KF, Cooper SJ, Gao X, Oblinsky DG, Kim JH, Garfinkle SE, Joyce LA, Sandoval BA, Scholes GD, Hyster TK. Photoexcitation of flavoenzymes enables a stereoselective radical cyclization. Science 2020; 364:1166-1169. [PMID: 31221855 DOI: 10.1126/science.aaw1143] [Citation(s) in RCA: 241] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 05/29/2019] [Indexed: 12/21/2022]
Abstract
Photoexcitation is a common strategy for initiating radical reactions in chemical synthesis. We found that photoexcitation of flavin-dependent "ene"-reductases changes their catalytic function, enabling these enzymes to promote an asymmetric radical cyclization. This reactivity enables the construction of five-, six-, seven-, and eight-membered lactams with stereochemical preference conferred by the enzyme active site. After formation of a prochiral radical, the enzyme guides the delivery of a hydrogen atom from flavin-a challenging feat for small-molecule chemical reagents. The initial electron transfer occurs through direct excitation of an electron donor-acceptor complex that forms between the substrate and the reduced flavin cofactor within the enzyme active site. Photoexcitation of promiscuous flavoenzymes has thus furnished a previously unknown biocatalytic reaction.
Collapse
Affiliation(s)
| | - Simon J Cooper
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Xin Gao
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Daniel G Oblinsky
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Ji Hye Kim
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | | | - Leo A Joyce
- Department of Process Research and Development, Merck, Rahway, NJ 07065, USA
| | | | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA
| | - Todd K Hyster
- Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
22
|
How Thermophilic Gram-Positive Organisms Perform Extracellular Electron Transfer: Characterization of the Cell Surface Terminal Reductase OcwA. mBio 2019; 10:mBio.01210-19. [PMID: 31431546 PMCID: PMC6703420 DOI: 10.1128/mbio.01210-19] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Thermophilic Gram-positive organisms were recently shown to be a promising class of organisms to be used in bioelectrochemical systems for the production of electrical energy. These organisms present a thick peptidoglycan layer that was thought to preclude them to perform extracellular electron transfer (i.e., exchange catabolic electrons with solid electron acceptors outside the cell). In this paper, we describe the structure and functional mechanisms of the multiheme cytochrome OcwA, the terminal reductase of the Gram-positive bacterium Thermincola potens JR found at the cell surface of this organism. The results presented here show that this protein can take the role of a respiratory “Swiss Army knife,” allowing this organism to grow in environments with soluble and insoluble substrates. Moreover, it is shown that it is unrelated to terminal reductases found at the cell surface of other electroactive organisms. Instead, OcwA is similar to terminal reductases of soluble electron acceptors. Our data reveal that terminal oxidoreductases of soluble and insoluble substrates are evolutionarily related, providing novel insights into the evolutionary pathway of multiheme cytochromes. Extracellular electron transfer is the key process underpinning the development of bioelectrochemical systems for the production of energy or added-value compounds. Thermincola potens JR is a promising Gram-positive bacterium to be used in these systems because it is thermophilic. In this paper, we describe the structural and functional properties of the nonaheme cytochrome OcwA, which is the terminal reductase of this organism. The structure of OcwA, determined at 2.2-Å resolution, shows that the overall fold and organization of the hemes are not related to other metal reductases and instead are similar to those of multiheme cytochromes involved in the biogeochemical cycles of nitrogen and sulfur. We show that, in addition to solid electron acceptors, OcwA can also reduce soluble electron shuttles and oxyanions. These data reveal that OcwA can work as a multipurpose respiratory enzyme allowing this organism to grow in environments with rapidly changing availability of terminal electron acceptors without the need for transcriptional regulation and protein synthesis.
Collapse
|
23
|
Rimal H, Lee WH, Kim KH, Park H, Oh TJ. Characterization of Two Self-Sufficient Monooxygenases, CYP102A15 and CYP102A170, as Long-Chain Fatty Acid Hydroxylases. J Microbiol Biotechnol 2019; 30:777-784. [PMID: 32482945 PMCID: PMC9728198 DOI: 10.4014/jmb.1911.11048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 01/07/2020] [Indexed: 12/15/2022]
Abstract
Self-sufficient P450s, due to their fused nature, are the most effective tools for electron transfer to activate C-H bonds. They catalyze the oxygenation of fatty acids at different omega positions. Here, two new, self-sufficient cytochrome P450s, named CYP102A15 and CYP102A170, from polar Bacillus sp. PAMC 25034 and Paenibacillus sp. PAMC 22724, respectively, were cloned and expressed in E. coli. The genes are homologues of CYP102A1 from Bacillus megaterium. They catalyzed the hydroxylation of both saturated and unsaturated fatty acids ranging in length from C12-C20, with a moderately diverse profile compared to other members of the CYP102A subfamily. CYP102A15 exhibited the highest activity toward linoleic acid with Km 15.3 μM, and CYP102A170 showed higher activity toward myristic acid with Km 17.4 μM. CYP10A170 also hydroxylated the Eicosapentaenoic acid at ω-1 position only. Various kinetic parameters of both monooxygenases were also determined.
Collapse
Affiliation(s)
- Hemraj Rimal
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 3460, Republic of Korea
| | - Woo-Haeng Lee
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 3460, Republic of Korea
| | - Ki-Hwa Kim
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 3460, Republic of Korea
| | - Hyun Park
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 0841, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, Sunmoon University, Asan 3460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, Sunmoon University, Asan 1460, Republic of Korea
- Genome-based BioIT Convergence Institute, Sunmoon University, Asan 3160, Republic of Korea
| |
Collapse
|
24
|
Structure, Mechanism, and Inhibition of Aspergillus fumigatus Thioredoxin Reductase. Antimicrob Agents Chemother 2019; 63:AAC.02281-18. [PMID: 30642940 DOI: 10.1128/aac.02281-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 12/29/2018] [Indexed: 12/27/2022] Open
Abstract
Aspergillus fumigatus infections are associated with high mortality rates and high treatment costs. Limited available antifungals and increasing antifungal resistance highlight an urgent need for new antifungals. Thioredoxin reductase (TrxR) is essential for maintaining redox homeostasis and presents as a promising target for novel antifungals. We show that ebselen [2-phenyl-1,2-benzoselenazol-3(2H)-one] is an inhibitor of A. fumigatus TrxR (Ki = 0.22 μM) and inhibits growth of Aspergillus spp., with in vitro MIC values of 16 to 64 µg/ml. Mass spectrometry analysis demonstrates that ebselen interacts covalently with a catalytic cysteine of TrxR, Cys148. We also present the X-ray crystal structure of A. fumigatus TrxR and use in silico modeling of the enzyme-inhibitor complex to outline key molecular interactions. This provides a scaffold for future design of potent and selective antifungal drugs that target TrxR, improving the potency of ebselen toward inhbition of A. fumigatus growth.
Collapse
|
25
|
Characterization of a thermostable flavin-containing monooxygenase from Nitrincola lacisaponensis (NiFMO). Appl Microbiol Biotechnol 2019; 103:1755-1764. [DOI: 10.1007/s00253-018-09579-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/06/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
26
|
Ikeya N, Nasibulov EA, Ivanov KL, Maeda K, Woodward JR. Single-molecule spectroscopy of radical pairs, a theoretical treatment and experimental considerations. Mol Phys 2018. [DOI: 10.1080/00268976.2018.1559954] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Noboru Ikeya
- Graduate School of Arts and Sciences, University of Tokyo, Tokyo, Japan
| | - Egor A. Nasibulov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
- Physics Department, Novosibirsk State University, Novosibirsk, Russia
- A. P. Ershov Institute of Informatics Systems, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
| | - Konstantin L. Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Novosibirsk, Russia
- Physics Department, Novosibirsk State University, Novosibirsk, Russia
| | - Kiminori Maeda
- Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | | |
Collapse
|
27
|
Vanacker H, Guichard M, Bohrer AS, Issakidis-Bourguet E. Redox Regulation of Monodehydroascorbate Reductase by Thioredoxin y in Plastids Revealed in the Context of Water Stress. Antioxidants (Basel) 2018; 7:E183. [PMID: 30563207 PMCID: PMC6316508 DOI: 10.3390/antiox7120183] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 12/05/2018] [Indexed: 11/21/2022] Open
Abstract
Thioredoxins (TRXs) are key players within the complex response network of plants to environmental constraints. Here, the physiological implication of the plastidial y-type TRXs in Arabidopsis drought tolerance was examined. We previously showed that TRXs y1 and y2 have antioxidant functions, and here, the corresponding single and double mutant plants were studied in the context of water deprivation. TRX y mutant plants showed reduced stress tolerance in comparison with wild-type (WT) plants that correlated with an increase in their global protein oxidation levels. Furthermore, at the level of the main antioxidant metabolites, while glutathione pool size and redox state were similarly affected by drought stress in WT and trxy1y2 plants, ascorbate (AsA) became more quickly and strongly oxidized in mutant leaves. Monodehydroascorbate (MDA) is the primary product of AsA oxidation and NAD(P)H-MDA reductase (MDHAR) ensures its reduction. We found that the extractable leaf NADPH-dependent MDHAR activity was strongly activated by TRX y2. Moreover, activity of recombinant plastid Arabidopsis MDHAR isoform (MDHAR6) was specifically increased by reduced TRX y, and not by other plastidial TRXs. Overall, these results reveal a new function for y-type TRXs and highlight their role as major antioxidants in plastids and their importance in plant stress tolerance.
Collapse
Affiliation(s)
- Hélène Vanacker
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR Université Paris Sud-CNRS 9213-INRA 1403, Bât. 630, 91405 Orsay CEDEX, France.
| | - Marjorie Guichard
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR Université Paris Sud-CNRS 9213-INRA 1403, Bât. 630, 91405 Orsay CEDEX, France.
| | - Anne-Sophie Bohrer
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR Université Paris Sud-CNRS 9213-INRA 1403, Bât. 630, 91405 Orsay CEDEX, France.
| | - Emmanuelle Issakidis-Bourguet
- Institute of Plant Sciences Paris-Saclay (IPS2), UMR Université Paris Sud-CNRS 9213-INRA 1403, Bât. 630, 91405 Orsay CEDEX, France.
| |
Collapse
|
28
|
Biochemical Characterization of CYP505D6, a Self-Sufficient Cytochrome P450 from the White-Rot Fungus Phanerochaete chrysosporium. Appl Environ Microbiol 2018; 84:AEM.01091-18. [PMID: 30171007 DOI: 10.1128/aem.01091-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/29/2018] [Indexed: 12/29/2022] Open
Abstract
The activity of a self-sufficient cytochrome P450 enzyme, CYP505D6, from the lignin-degrading basidiomycete Phanerochaete chrysosporium was characterized. Recombinant CYP505D6 was produced in Escherichia coli and purified. In the presence of NADPH, CYP505D6 used a series of saturated fatty alcohols with C9-18 carbon chain lengths as the substrates. Hydroxylation occurred at the ω-1 to ω-6 positions of such substrates with C9-15 carbon chain lengths, except for 1-dodecanol, which was hydroxylated at the ω-1 to ω-7 positions. Fatty acids were also substrates of CYP505D6. Based on the sequence alignment, the corresponding amino acid of Tyr51, which is located at the entrance to the active-site pocket in CYP102A1, was Val51 in CYP505D6. To understand the diverse hydroxylation mechanism, wild-type CYP505D6 and its V51Y variant and wild-type CYP102A1 and its Y51V variant were generated, and the products of their reaction with dodecanoic acid were analyzed. Compared with wild-type CYP505D6, its V51Y variant generated few products hydroxylated at the ω-4 to ω-6 positions. The products generated by wild-type CYP102A1 were hydroxylated at the ω-1 to ω-4 positions, whereas its Y51V variant generated ω-1 to ω-7 hydroxydodecanoic acids. These observations indicated that Val51 plays an important role in determining the regiospecificity of fatty acid hydroxylation, at least that at the ω-4 to ω-6 positions. Aromatic compounds, such as naphthalene and 1-naphthol, were also hydroxylated by CYP505D6. These findings highlight a unique broad substrate spectrum of CYP505D6, rendering it an attractive candidate enzyme for the biotechnological industry.IMPORTANCE Phanerochaete chrysosporium is a white-rot fungus whose metabolism of lignin, aromatic pollutants, and lipids has been most extensively studied. This fungus harbors 154 cytochrome P450-encoding genes in the genome. As evidenced in this study, P. chrysosporium CYP505D6, a fused protein of P450 and its reductase, hydroxylates fatty alcohols (C9-15) and fatty acids (C9-15) at the ω-1 to ω-7 or ω-1 to ω-6 positions, respectively. Naphthalene and 1-naphthol were also hydroxylated, indicating that the substrate specificity of CYP505D6 is broader than those of the known fused proteins CYP102A1 and CYP505A1. The substrate versatility of CYP505D6 makes this enzyme an attractive candidate for biotechnological applications.
Collapse
|
29
|
Upadhyay A, Kumar S, Rooker SA, Koehn JT, Crans DC, McNeil MR, Lott JS, Crick DC. Mycobacterial MenJ: An Oxidoreductase Involved in Menaquinone Biosynthesis. ACS Chem Biol 2018; 13:2498-2507. [PMID: 30091899 DOI: 10.1021/acschembio.8b00402] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
MenJ, annotated as an oxidoreductase, was recently demonstrated to catalyze the reduction (saturation) of a single double bond in the isoprenyl side-chain of mycobacterial menaquinone. This modification was shown to be essential for bacterial survival in J774A.1 macrophage-like cells, suggesting that MenJ may be a conditional drug target in Mycobacterium tuberculosis and other pathogenic mycobacteria. Recombinant protein was expressed in a heterologous host, and the activity was characterized. Although highly regiospecific in vivo, the activity is not absolutely regiospecific in vitro; in addition, the enzyme is not specific for naphthoquinones vs benzoquinones. Coenzyme Q-1 (a benzoquinone, UQ-1) was used as the lipoquinone substrate, and NADH oxidation was followed spectrophotometrically as the activity readout. NADPH could not be substituted for NADH in the reaction mixture. The enzyme contains a FAD binding site that was 72% occupied in the purified recombinant protein. Enzyme activity was maximal at 37 °C and pH 7.0; addition of divalent cations, EDTA, and reducing agents such as dithiothreitol to the reaction mixture had no effect on activity. The addition of detergents did not stimulate activity, and addition of saturating levels of FAD had relatively little effect on the observed kinetic parameters. These properties allowed the development of a facile assay needed to study this potential drug target, which is also amenable to high throughput screening. The Km values for UQ-1 using recombinant MenJ from Mycobacterium smegmatis or M. tuberculosis without saturating concentrations of FAD were found to be 52 ± 9.6 and 44 ± 4.8 μM, respectively, while the KmNADH values were determined to be 59 ± 14 and 64 ± 15 μM. The Km for MK-1, the menaquinone analogue of UQ-1, using recombinant MenJ from M. tuberculosis without saturating concentrations of FAD but in the presence of 0.5% Tween 80 was shown to be 30 ± 2.9 μM. Thus, this is the first report of a kinetic characterization of a member of the geranylgeranyl reductase family of enzymes.
Collapse
Affiliation(s)
- Ashutosh Upadhyay
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Santosh Kumar
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Steven A. Rooker
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jordan T. Koehn
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Michael R. McNeil
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| | - J. Shaun Lott
- Biological Sciences, The University of Auckland, Auckland 1010, New Zealand
| | - Dean C. Crick
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
30
|
Lynch JH, Sa N, Saeheng S, Raffaelli N, Roje S. Characterization of a non-nudix pyrophosphatase points to interplay between flavin and NAD(H) homeostasis in Saccharomyces cerevisiae. PLoS One 2018; 13:e0198787. [PMID: 29902190 PMCID: PMC6002036 DOI: 10.1371/journal.pone.0198787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Abstract
The flavin cofactors FMN and FAD are required for a wide variety of biological processes, however, little is known about their metabolism. Here, we report the cloning and biochemical characterization of the Saccharomyces cerevisiae pyrophosphatase Fpy1p. Genetic and functional studies suggest that Fpy1p may play a key role in flavin metabolism and is the first-reported non-Nudix superfamily enzyme to display FAD pyrophosphatase activity. Characterization of mutant yeast strains found that deletion of fpy1 counteracts the adverse effects that are caused by deletion of flx1, a known mitochondrial FAD transporter. We show that Fpy1p is capable of hydrolyzing FAD, NAD(H), and ADP-ribose. The enzymatic activity of Fpy1p is dependent upon the presence of K+ and divalent metal cations, with similar kinetic parameters to those that have been reported for Nudix FAD pyrophosphatases. In addition, we report that the deletion of fpy1 intensifies the FMN-dependence of null mutants of the riboflavin kinase Fmn1p, demonstrate that fpy1 mutation abolishes the decreased fitness resulting from the deletion of the flx1 ORF, and offer a possible mechanism for the genetic interplay between fpy1, flx1 and fmn1.
Collapse
Affiliation(s)
- Joseph H. Lynch
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| | - Na Sa
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| | - Sompop Saeheng
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| | - Nadia Raffaelli
- Dipartimento di Scienze Agrarie, Alimentari e Ambientali, Università Politecnica delle Marche, Ancona, Italy
| | - Sanja Roje
- Institute of Biological Chemistry, Washington State University, Pullman, WA, United States of America
| |
Collapse
|
31
|
Murugesan D, Ray PC, Bayliss T, Prosser GA, Harrison JR, Green K, Soares de Melo C, Feng TS, Street LJ, Chibale K, Warner DF, Mizrahi V, Epemolu O, Scullion P, Ellis L, Riley J, Shishikura Y, Ferguson L, Osuna-Cabello M, Read KD, Green SR, Lamprecht DA, Finin PM, Steyn AJC, Ioerger TR, Sacchettini J, Rhee KY, Arora K, Barry CE, Wyatt PG, Boshoff HIM. 2-Mercapto-Quinazolinones as Inhibitors of Type II NADH Dehydrogenase and Mycobacterium tuberculosis: Structure-Activity Relationships, Mechanism of Action and Absorption, Distribution, Metabolism, and Excretion Characterization. ACS Infect Dis 2018. [PMID: 29522317 PMCID: PMC5996347 DOI: 10.1021/acsinfecdis.7b00275] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Mycobacterium tuberculosis (MTb) possesses
two nonproton pumping type II NADH dehydrogenase (NDH-2)
enzymes which are predicted to be jointly essential for respiratory
metabolism. Furthermore, the structure of a closely related bacterial
NDH-2 has been reported recently, allowing for the structure-based
design of small-molecule inhibitors. Herein, we disclose MTb whole-cell structure–activity relationships (SARs) for a series of 2-mercapto-quinazolinones which target the ndh encoded NDH-2 with nanomolar potencies. The compounds were inactivated by glutathione-dependent adduct formation as well as quinazolinone oxidation in microsomes. Pharmacokinetic studies demonstrated modest bioavailability and compound exposures. Resistance to the compounds in MTb was conferred by promoter mutations in the alternative nonessential NDH-2 encoded by ndhA in MTb. Bioenergetic analyses revealed a decrease in oxygen consumption rates in response to inhibitor in cells in which membrane potential was uncoupled from ATP production, while inverted membrane vesicles showed mercapto-quinazolinone-dependent inhibition of ATP production when NADH was the electron donor to the respiratory chain. Enzyme kinetic studies further demonstrated noncompetitive inhibition, suggesting binding of this scaffold to an allosteric site. In summary, while the initial MTb SAR showed limited improvement in potency, these results, combined with structural information on the bacterial protein, will aid in the future discovery of new and improved NDH-2 inhibitors.
Collapse
Affiliation(s)
- Dinakaran Murugesan
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Peter C. Ray
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Tracy Bayliss
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Gareth A. Prosser
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Justin R. Harrison
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Kirsteen Green
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Candice Soares de Melo
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Tzu-Shean Feng
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Leslie J. Street
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Kelly Chibale
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
- Drug Discovery and Development Centre (H3D), Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
- South African Medical Research Council Drug Discovery and Development Research Unit, Department of Chemistry, University of Cape Town, Rondebosch, 7701, South Africa
| | - Digby F. Warner
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| | - Valerie Mizrahi
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
- SAMRC/NHLS/UCT Molecular Mycobacteriology Research Unit & DST/NRF Centre of Excellence for Biomedical TB Research, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Rondebosch, 7701, South Africa
| | - Ola Epemolu
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Paul Scullion
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Lucy Ellis
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Jennifer Riley
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Yoko Shishikura
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Liam Ferguson
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Maria Osuna-Cabello
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Kevin D. Read
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Simon R. Green
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Dirk A. Lamprecht
- Africa Health Research Institute (AHRI), K-RITH Tower Building Level 3, 719 Umbilo Road, Durban, 4001, South Africa
| | - Peter M. Finin
- Africa Health Research Institute (AHRI), K-RITH Tower Building Level 3, 719 Umbilo Road, Durban, 4001, South Africa
| | - Adrie J. C. Steyn
- Africa Health Research Institute (AHRI), K-RITH Tower Building Level 3, 719 Umbilo Road, Durban, 4001, South Africa
- Department of Microbiology, University of Alabama at Birmingham, 1720 Second Avenue South, Birmingham, Alabama 35294-2170, United States
| | - Thomas R. Ioerger
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Jim Sacchettini
- Department of Computer Science and Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Kyu Y. Rhee
- Division of Infectious Diseases, Weill Department of Medicine, Weill Cornell Medical College, New York, New York 10065, United States
| | - Kriti Arora
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| | - Clifton E. Barry
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Rondebosch, 7701, South Africa
| | - Paul G. Wyatt
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Sir James Black Centre, Dundee, DD1 5EH, United Kingdom
| | - Helena I. M. Boshoff
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Disease, National Institutes of Health, 9000 Rockville Pike, Bethesda, Maryland 20892, United States
| |
Collapse
|
32
|
Seo D, Asano T. C-terminal residues of ferredoxin-NAD(P) + reductase from Chlorobaculum tepidum are responsible for reaction dynamics in the hydride transfer and redox equilibria with NADP +/NADPH. PHOTOSYNTHESIS RESEARCH 2018; 136:275-290. [PMID: 29119426 DOI: 10.1007/s11120-017-0462-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Ferredoxin-NAD(P)+ reductase ([EC 1.18.1.2], [EC 1.18.1.3]) from Chlorobaculum tepidum (CtFNR) is structurally homologous to the bacterial NADPH-thioredoxin reductase (TrxR), but possesses a unique C-terminal extension relative to TrxR that interacts with the isoalloxazine ring moiety of the flavin adenine dinucleotide prosthetic group. In this study, we introduce truncations to the C-terminal residues to examine their role in the reactions of CtFNR with NADP+ and NADPH by spectroscopic and kinetic analyses. The truncation of the residues from Tyr326 to Glu360 (the whole C-terminal extension region), from Phe337 to Glu360 (omitting Phe337 on the re-face of the isoalloxazine ring) and from Ser338 to Glu360 (leaving Phe337 intact) resulted in a blue-shift of the flavin absorption bands. The truncations caused a slight increase in the dissociation constant toward NADP+ and a slight decrease in the Michaelis constant toward NADPH in steady-state assays. Pre-steady-state studies of the redox reaction with NADPH demonstrated that deletions of Tyr326-Glu360 decreased the hydride transfer rate, and the amount of reduced enzyme increased at equilibrium relative to wild-type CtFNR. In contrast, the deletions of Phe337-Glu360 and Ser338-Glu360 resulted in only slight changes in the reaction kinetics and redox equilibrium. These results suggest that the C-terminal region of CtFNR is responsible for the formation and stability of charge-transfer complexes, leading to changes in redox properties and reactivity toward NADP+/NADPH.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan.
| | - Tomoya Asano
- Division of Functional Genomics, Advanced Science Research Center, Kanazawa University, Takaramachi 13-1, Kanazawa, Ishikawa, 920-0934, Japan
- Wakasa Seikatsu Co. Ltd, 22 Naginataboko-cho, Shijo-Karasuma, Shimogyo-ku, Kyoto, 600-8008, Japan
| |
Collapse
|
33
|
Flores E, Gadda G. Kinetic Characterization of PA1225 from Pseudomonas aeruginosa PAO1 Reveals a New NADPH:Quinone Reductase. Biochemistry 2018; 57:3050-3058. [PMID: 29715013 DOI: 10.1021/acs.biochem.8b00090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The pa1225 gene of Pseudomonas aeruginosa strain PAO1 was cloned, and the resulting enzyme (PA1225) was purified and revealed to be an NADPH:quinone reductase. By using kinetics, fluorescence, and mass spectrometric analyses, PA1225 was shown to utilize FAD to transfer a hydride ion from NADPH to quinones. The enzyme could also use NADH, but with an efficiency that was 40-fold lower than that of NADPH as suggested by the kcat/ Km values at pH 6.0. Similar initial rates of reaction were determined with 1,4-benzoquinone and 2,6-dimethoxy-1,4-benzoquinone in the range between 25 and 200 μM, suggesting a low Km value for the quinone-oxidizing substrate. The lack of inhibition by NADP+ versus NADPH at saturating concentrations of 1,4-benzoquinone was consistent with a ping-pong bi-bi mechanism. The reductive half-reaction at pH 6.0 had Kd values of 0.07 mM with NADPH and 1.8 mM with NADH; the kred for flavin reduction was independent of pH with values of ∼10 s-1 with NADPH and ∼5 s-1 with NADH. Thus, the enzyme specificity for the reducing substrate arises primarily from a tighter binding of NADPH than of NADH. At pH 6.0, the kcat value with NADPH and 1,4-benzoquinone was 10.1 s-1, consistent with the hydride transfer from NADPH to FAD being fully rate limiting for the overall turnover of the enzyme. The enzyme showed negligible NADPH oxidase and azoreductase activities. This study enables annotation of the pa1225 gene as NADPH:quinone reductase, elucidates the enzymatic function of PA1225 in P. aeruginosa PAO1, and establishes that PA1225 is not an azoreductase as previously proposed.
Collapse
|
34
|
Puentes-Cala E, Liebeke M, Markert S, Harder J. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by Castellaniella defragrans. J Biol Chem 2018; 293:9520-9529. [PMID: 29716998 DOI: 10.1074/jbc.ra117.001557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/20/2018] [Indexed: 12/31/2022] Open
Abstract
The enzymatic functionalization of hydrocarbons is a central step in the global carbon cycle initiating the mineralization of methane, isoprenes, and monoterpenes, the most abundant biologically produced hydrocarbons. Also, terpene-modifying enzymes have found many applications in the energy-economic biotechnological production of fine chemicals. Here, we describe a limonene dehydrogenase that was purified from the facultatively anaerobic betaproteobacterium Castellaniella defragrans 65Phen grown on monoterpenes under denitrifying conditions in the absence of molecular oxygen. The purified limonene:ferrocenium oxidoreductase activity hydroxylated the methyl group of limonene (1-methyl-4-(1-methylethenyl)-cyclohex-1-ene) yielding perillyl alcohol ([4-(prop-1-en-2-yl)cyclohex-1-en-1-yl]methanol). The enzyme had a DTT:perillyl alcohol oxidoreductase activity yielding limonene. Mass spectrometry and molecular size determinations revealed a heterodimeric enzyme comprising CtmA and CtmB. Recently, the two proteins had been identified by transposon mutagenesis and proteomics as part of the cyclic terpene metabolism (ctm) in C. defragrans and are annotated as FAD-dependent oxidoreductases of the protein domain family phytoene dehydrogenases and related proteins (COG1233). CtmAB is the first heterodimeric enzyme in this protein superfamily. Flavins in the purified CtmAB are oxidized by ferrocenium and are reduced by limonene. Heterologous expression of CtmA, CtmB, and CtmAB in Escherichia coli demonstrated that limonene dehydrogenase activity required both subunits, each carrying a flavin cofactor. Native CtmAB oxidized a wide range of monocyclic monoterpenes containing the allylic methyl group motif (1-methyl-cyclohex-1-ene). In conclusion, we have identified CtmAB as a hydroxylating limonene dehydrogenase and the first heteromer in a family of FAD-dependent dehydrogenases acting on allylic methylene or methyl CH-bonds. We suggest placing in Enzyme Nomenclature as new entry EC 1.17.99.8.
Collapse
Affiliation(s)
| | - Manuel Liebeke
- Symbiosis, Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen and
| | - Stephanie Markert
- Pharmaceutical Biotechnology, University of Greifswald, Felix-Hausdorff-Strasse, D-17489 Greifswald, Germany
| | | |
Collapse
|
35
|
Sena FV, Sousa FM, Oliveira ASF, Soares CM, Catarino T, Pereira MM. Regulation of the mechanism of Type-II NADH: Quinone oxidoreductase from S. aureus. Redox Biol 2018. [PMID: 29524843 PMCID: PMC5857484 DOI: 10.1016/j.redox.2018.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Type-II NADH:quinone oxidoreductases (NDH-2s) are membrane proteins involved in respiratory chains and the only enzymes with NADH:quinone oxidoreductase activity expressed in Staphylococcus aureus (S. aureus), one of the most common causes of clinical infections. NDH-2s are members of the two-Dinucleotide Binding Domains Flavoprotein (tDBDF) superfamily, having a flavin adenine dinucleotide, FAD, as prosthetic group and NAD(P)H as substrate. The establishment of a Charge-Transfer Complex (CTC) between the isoalloxazine ring of the reduced flavin and the nicotinamide ring of NAD+ in NDH-2 was described, and in this work we explored its role in the kinetic mechanism using different electron donors and electron acceptors. We observed that CTC slows down the rate of the second half reaction (quinone reduction) and determines the effect of HQNO, an inhibitor. Also, protonation equilibrium simulations clearly indicate that the protonation probability of an important residue for proton transfer to the active site (D302) is influenced by the presence of the CTC. We propose that CTC is critical for the overall mechanism of NDH-2 and possibly relevant to keep a low quinol/quinone ratio and avoid excessive ROS production in vivo.
Collapse
Affiliation(s)
- Filipa V Sena
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Filipe M Sousa
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - A Sofia F Oliveira
- School of Biochemistry, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Cláudio M Soares
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal
| | - Teresa Catarino
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Manuela M Pereira
- Instituto de Tecnologia Química e Biológica - António Xavier, Universidade Nova de Lisboa, Av. da Republica EAN, 2780-157 Oeiras, Portugal; University of Lisbon, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Campo Grande, C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
36
|
Wu H, Yesilyurt HG, Yoon J, Terman JR. The MICALs are a Family of F-actin Dismantling Oxidoreductases Conserved from Drosophila to Humans. Sci Rep 2018; 8:937. [PMID: 29343822 PMCID: PMC5772675 DOI: 10.1038/s41598-017-17943-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
Cellular form and function – and thus normal development and physiology – are specified via proteins that control the organization and dynamic properties of the actin cytoskeleton. Using the Drosophila model, we have recently identified an unusual actin regulatory enzyme, Mical, which is directly activated by F-actin to selectively post-translationally oxidize and destabilize filaments – regulating numerous cellular behaviors. Mical proteins are also present in mammals, but their actin regulatory properties, including comparisons among different family members, remain poorly defined. We now find that each human MICAL family member, MICAL-1, MICAL-2, and MICAL-3, directly induces F-actin dismantling and controls F-actin-mediated cellular remodeling. Specifically, each human MICAL selectively associates with F-actin, which directly induces MICALs catalytic activity. We also find that each human MICAL uses an NADPH-dependent Redox activity to post-translationally oxidize actin’s methionine (M) M44/M47 residues, directly dismantling filaments and limiting new polymerization. Genetic experiments also demonstrate that each human MICAL drives F-actin disassembly in vivo, reshaping cells and their membranous extensions. Our results go on to reveal that MsrB/SelR reductase enzymes counteract each MICAL’s effect on F-actin in vitro and in vivo. Collectively, our results therefore define the MICALs as an important phylogenetically-conserved family of catalytically-acting F-actin disassembly factors.
Collapse
Affiliation(s)
- Heng Wu
- Departments of Neuroscience and Pharmacology, Harold C Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Hunkar Gizem Yesilyurt
- Departments of Neuroscience and Pharmacology, Harold C Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jimok Yoon
- Departments of Neuroscience and Pharmacology, Harold C Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.,Drug Development Center, SK biopharmaceuticals Co. Ltd., Seongnam, 13494, Korea
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology, Harold C Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
37
|
Teitelbaum AM, Murphy SE, Akk G, Baker TB, Germann A, von Weymarn LB, Bierut LJ, Goate A, Kharasch ED, Bloom AJ. Nicotine dependence is associated with functional variation in FMO3, an enzyme that metabolizes nicotine in the brain. THE PHARMACOGENOMICS JOURNAL 2018; 18:136-143. [PMID: 28290528 PMCID: PMC5599305 DOI: 10.1038/tpj.2016.92] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/20/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022]
Abstract
A common haplotype of the flavin-containing monooxygenase gene FMO3 is associated with aberrant mRNA splicing, a twofold reduction in in vivo nicotine N-oxidation and reduced nicotine dependence. Tobacco remains the largest cause of preventable mortality worldwide. CYP2A6, the primary hepatic nicotine metabolism gene, is robustly associated with cigarette consumption but other enzymes contribute to nicotine metabolism. We determined the effects of common variants in FMO3 on plasma levels of nicotine-N-oxide in 170 European Americans administered deuterated nicotine. The polymorphism rs2266780 (E308G) was associated with N-oxidation of both orally administered and ad libitum smoked nicotine (P⩽3.3 × 10-5 controlling for CYP2A6 genotype). In vitro, the FMO3 G308 variant was not associated with reduced activity, but rs2266780 was strongly associated with aberrant FMO3 mRNA splicing in both liver and brain (P⩽6.5 × 10-9). Surprisingly, in treatment-seeking European American smokers (n=1558) this allele was associated with reduced nicotine dependence, specifically with a longer time to first cigarette (P=9.0 × 10-4), but not with reduced cigarette consumption. As N-oxidation accounts for only a small percentage of hepatic nicotine metabolism we hypothesized that FMO3 genotype affects nicotine metabolism in the brain (unlike CYP2A6, FMO3 is expressed in human brain) or that nicotine-N-oxide itself has pharmacological activity. We demonstrate for the first time nicotine N-oxidation in human brain, mediated by FMO3 and FMO1, and show that nicotine-N-oxide modulates human α4β2 nicotinic receptor activity in vitro. These results indicate possible mechanisms for associations between FMO3 genotype and smoking behaviors, and suggest nicotine N-oxidation as a novel target to enhance smoking cessation.
Collapse
Affiliation(s)
- A M Teitelbaum
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - S E Murphy
- Department of Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - G Akk
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - T B Baker
- Department of Psychology, University of Wisconsin, Madison, WI, USA
| | - A Germann
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, USA
| | - L B von Weymarn
- Department of Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - L J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - A Goate
- Neuroscience Genetics & Genomics Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - E D Kharasch
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - A J Bloom
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
38
|
Preimesberger MR, Johnson EA, Nye DB, Lecomte JTJ. Covalent attachment of the heme to Synechococcus hemoglobin alters its reactivity toward nitric oxide. J Inorg Biochem 2017; 177:171-182. [PMID: 28968520 DOI: 10.1016/j.jinorgbio.2017.09.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 09/18/2017] [Accepted: 09/19/2017] [Indexed: 01/19/2023]
Abstract
The cyanobacterium Synechococcus sp. PCC 7002 produces a monomeric hemoglobin (GlbN) implicated in the detoxification of reactive nitrogen and oxygen species. GlbN contains a b heme, which can be modified under certain reducing conditions. The modified protein (GlbN-A) has one heme-histidine C-N linkage similar to the C-S linkage of cytochrome c. No clear functional role has been assigned to this modification. Here, optical absorbance and NMR spectroscopies were used to compare the reactivity of GlbN and GlbN-A toward nitric oxide (NO). Both forms of the protein are capable of NO dioxygenase activity and both undergo heme bleaching after multiple NO challenges. GlbN and GlbN-A bind NO in the ferric state and form diamagnetic complexes (FeIII-NO) that resist reductive nitrosylation to the paramagnetic FeII-NO forms. Dithionite reduction of FeIII-NO GlbN and GlbN-A, however, resulted in distinct outcomes. Whereas GlbN-A rapidly formed the expected FeII-NO complex, NO binding to FeII GlbN caused immediate heme loss and, remarkably, was followed by slow heme rebinding and HNO (nitrosyl hydride) production. Additionally, combining FeIII GlbN, 15N-labeled nitrite, and excess dithionite resulted in the formation of FeII-H15NO GlbN. Dithionite-mediated HNO production was also observed for the related GlbN from Synechocystis sp. PCC 6803. Although ferrous GlbN-A appeared capable of trapping preformed HNO, the histidine-heme post-translational modification extinguished the NO reduction chemistry associated with GlbN. Overall, the results suggest a role for the covalent modification in FeII GlbNs: protection from NO-mediated heme loss and prevention of HNO formation.
Collapse
Affiliation(s)
| | - Eric A Johnson
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Dillon B Nye
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Juliette T J Lecomte
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
39
|
Lee PW, Maia J, Pokorski JK. Milling solid proteins to enhance activity after melt-encapsulation. Int J Pharm 2017; 533:254-265. [PMID: 28939464 DOI: 10.1016/j.ijpharm.2017.09.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/06/2017] [Accepted: 09/16/2017] [Indexed: 12/25/2022]
Abstract
Polymeric systems for the immobilization and delivery of proteins have been extensively used for therapeutic and catalytic applications. While most devices have been created via solution based methods, hot melt extrusion (HME) has emerged as an alternative due to the high encapsulation efficiencies and solvent-free nature of the process. HME requires high temperatures and mechanical stresses that can result in protein aggregation and denaturation, but additives and chemical modifications have been explored to mitigate these effects. This study explores the use of solid-state ball milling to decrease protein particle size before encapsulation within poly(lactic-co-glycolic acid) (PLGA) via HME. The impact of milling on particle dispersion, retained enzymatic activity, secondary structure stability, and release was explored for lysozyme, glucose oxidase, and the virus-like particle derived from Qβ to fully understand the impact of milling on protein systems with different sizes and complexities. The results of this study describe the utility of milling to further increase the stability of protein/polymer systems prepared via HME.
Collapse
Affiliation(s)
- Parker W Lee
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering, Cleveland, OH 44106, United States
| | - João Maia
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering, Cleveland, OH 44106, United States
| | - Jonathan K Pokorski
- Department of Macromolecular Science and Engineering, Case Western Reserve University, Case School of Engineering, Cleveland, OH 44106, United States.
| |
Collapse
|
40
|
Hoben JP, Lubner CE, Ratzloff MW, Schut GJ, Nguyen DMN, Hempel KW, Adams MWW, King PW, Miller AF. Equilibrium and ultrafast kinetic studies manipulating electron transfer: A short-lived flavin semiquinone is not sufficient for electron bifurcation. J Biol Chem 2017; 292:14039-14049. [PMID: 28615449 DOI: 10.1074/jbc.m117.794214] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 06/11/2017] [Indexed: 11/06/2022] Open
Abstract
Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential (i.e. intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors versus charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP+ oxidoreductase I and can be an indication of capacity for electron bifurcation.
Collapse
Affiliation(s)
- John P Hoben
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | | | | | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Diep M N Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Karl W Hempel
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602
| | - Paul W King
- National Renewable Energy Laboratory, Golden, Colorado 80401
| | - Anne-Frances Miller
- From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506.
| |
Collapse
|
41
|
Lubner CE, Jennings DP, Mulder DW, Schut GJ, Zadvornyy OA, Hoben JP, Tokmina-Lukaszewska M, Berry L, Nguyen DM, Lipscomb GL, Bothner B, Jones AK, Miller AF, King PW, Adams MWW, Peters JW. Mechanistic insights into energy conservation by flavin-based electron bifurcation. Nat Chem Biol 2017; 13:655-659. [PMID: 28394885 DOI: 10.1038/nchembio.2348] [Citation(s) in RCA: 95] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 01/20/2017] [Indexed: 01/30/2023]
Abstract
The recently realized biochemical phenomenon of energy conservation through electron bifurcation provides biology with an elegant means to maximize utilization of metabolic energy. The mechanism of coordinated coupling of exergonic and endergonic oxidation-reduction reactions by a single enzyme complex has been elucidated through optical and paramagnetic spectroscopic studies revealing unprecedented features. Pairs of electrons are bifurcated over more than 1 volt of electrochemical potential by generating a low-potential, highly energetic, unstable flavin semiquinone and directing electron flow to an iron-sulfur cluster with a highly negative potential to overcome the barrier of the endergonic half reaction. The unprecedented range of thermodynamic driving force that is generated by flavin-based electron bifurcation accounts for unique chemical reactions that are catalyzed by these enzymes.
Collapse
Affiliation(s)
- Carolyn E Lubner
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - David P Jennings
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | - David W Mulder
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Gerrit J Schut
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Oleg A Zadvornyy
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - John P Hoben
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | | | - Luke Berry
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Diep M Nguyen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Gina L Lipscomb
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA
| | - Anne K Jones
- School of Molecular Sciences, Arizona State University, Tempe, Arizona, USA
| | | | - Paul W King
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado, USA
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA
| | - John W Peters
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana, USA.,Institute of Biological Chemistry, Washington State University, Pullman, Washington, USA
| |
Collapse
|
42
|
Degregorio D, D'Avino S, Castrignanò S, Di Nardo G, Sadeghi SJ, Catucci G, Gilardi G. Human Cytochrome P450 3A4 as a Biocatalyst: Effects of the Engineered Linker in Modulation of Coupling Efficiency in 3A4-BMR Chimeras. Front Pharmacol 2017; 8:121. [PMID: 28377716 PMCID: PMC5359286 DOI: 10.3389/fphar.2017.00121] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/27/2017] [Indexed: 11/15/2022] Open
Abstract
Human liver cytochrome P450 3A4 is the main enzyme involved in drug metabolism. This makes it an attractive target for biocatalytic applications, such as the synthesis of pharmaceuticals and drug metabolites. However, its poor solubility, stability and low coupling have limited its application in the biotechnological context. We previously demonstrated that the solubility of P450 3A4 can be increased by creating fusion proteins between the reductase from Bacillus megaterium BM3 (BMR) and the N-terminally modified P450 3A4 (3A4-BMR). In this work, we aim at increasing stability and coupling efficiency by varying the length of the loop connecting the two domains to allow higher inter-domain flexibility, optimizing the interaction between the domains. Starting from the construct 3A4-BMR containing the short linker Pro-Ser-Arg, two constructs were generated by introducing a 3 and 5 glycine hinge (3A4-3GLY-BMR and 3A4-5GLY-BMR). The three fusion proteins show the typical absorbance at 450 nm of the reduced heme-CO adduct as well as the correct incorporation of the FAD and FMN cofactors. Each of the three chimeric proteins were more stable than P450 3A4 alone. Moreover, the 3A4-BMR-3-GLY enzyme showed the highest NADPH oxidation rate in line with the most positive reduction potential. On the other hand, the 3A4-BMR-5-GLY fusion protein showed a Vmax increased by 2-fold as well as a higher coupling efficiency when compared to 3A4-BMR in the hydroxylation of the marker substrate testosterone. This protein also showed the highest rate value of cytochrome c reduction when this external electron acceptor is used to intercept electrons from BMR to P450. The data suggest that the flexibility and the interaction between domains in the chimeric proteins is a key parameter to improve turnover and coupling efficiency. These findings provide important guidelines in engineering catalytically self-sufficient human P450 for applications in biocatalysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianfranco Gilardi
- Department of Life Sciences and Systems Biology, University of TurinTurin, Italy
| |
Collapse
|
43
|
Shen J, Peng H, Zhang Y, Trinidad JC, Giedroc DP. Staphylococcus aureus sqr Encodes a Type II Sulfide:Quinone Oxidoreductase and Impacts Reactive Sulfur Speciation in Cells. Biochemistry 2016; 55:6524-6534. [PMID: 27806570 DOI: 10.1021/acs.biochem.6b00714] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent studies implicate hydrogen sulfide (H2S) oxidation as an important aspect of bacterial antibiotic resistance and sulfide homeostasis. The cst operon of the major human pathogen Staphylococcus aureus is induced by exogenous H2S stress and encodes enzymes involved in sulfide oxidation, including a group I flavoprotein disulfide oxidoreductase sulfide:quinone oxidoreductase (SQR). In this work, we show that S. aureus SQR catalyzes the two-electron oxidation of sodium sulfide (Na2S) into sulfane sulfur (S0) when provided flavin adenine dinucleotide and a water-soluble quinone acceptor. Cyanide, sulfite, and coenzyme A (CoA) are all capable of functioning as the S0 acceptor in vitro. This activity requires a C167-C344 disulfide bond in the resting enzyme, with the intermediacy of a C344 persulfide in the catalytic cycle, verified by mass spectrometry of sulfide-reacted SQR. Incubation of purified SQR and S. aureus CstB, a known FeII persulfide dioxygenase-sulfurtransferase also encoded by the cst operon, yields thiosulfate from sulfide, in a CoA-dependent manner, thus confirming the intermediacy of CoASSH as a product and substrate of SQR and CstB, respectively. Sulfur metabolite profiling of wild-type, Δsqr, and Δsqr::pSQR strains reveals a marked and specific elevation in endogenous levels of CoASSH and inorganic tetrasulfide in the Δsqr strain. We conclude that SQR impacts the cellular speciation of these reactive sulfur species but implicates other mechanisms not dependent on SQR in the formation of low-molecular weight thiol persulfides and inorganic polysulfides during misregulation of sulfide homeostasis.
Collapse
Affiliation(s)
- Jiangchuan Shen
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Biochemistry Graduate Program, Indiana University , Bloomington, Indiana 47405, United States
| | - Hui Peng
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Biochemistry Graduate Program, Indiana University , Bloomington, Indiana 47405, United States
| | - Yixiang Zhang
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Laboratory for Biological Mass Spectrometry, Indiana University , Bloomington, Indiana 47405, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Laboratory for Biological Mass Spectrometry, Indiana University , Bloomington, Indiana 47405, United States
| | - David P Giedroc
- Department of Chemistry, Indiana University , Bloomington, Indiana 47405, United States.,Department of Molecular and Cellular Biochemistry, Indiana University , Bloomington, Indiana 47405, United States
| |
Collapse
|
44
|
Wyllie S, Roberts AJ, Norval S, Patterson S, Foth BJ, Berriman M, Read KD, Fairlamb AH. Activation of Bicyclic Nitro-drugs by a Novel Nitroreductase (NTR2) in Leishmania. PLoS Pathog 2016; 12:e1005971. [PMID: 27812217 PMCID: PMC5094698 DOI: 10.1371/journal.ppat.1005971] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 09/30/2016] [Indexed: 12/04/2022] Open
Abstract
Drug discovery pipelines for the “neglected diseases” are now heavily populated with nitroheterocyclic compounds. Recently, the bicyclic nitro-compounds (R)-PA-824, DNDI-VL-2098 and delamanid have been identified as potential candidates for the treatment of visceral leishmaniasis. Using a combination of quantitative proteomics and whole genome sequencing of susceptible and drug-resistant parasites we identified a putative NAD(P)H oxidase as the activating nitroreductase (NTR2). Whole genome sequencing revealed that deletion of a single cytosine in the gene for NTR2 that is likely to result in the expression of a non-functional truncated protein. Susceptibility of leishmania was restored by reintroduction of the wild-type gene into the resistant line, which was accompanied by the ability to metabolise these compounds. Overexpression of NTR2 in wild-type parasites rendered cells hyper-sensitive to bicyclic nitro-compounds, but only marginally to the monocyclic nitro-drugs, nifurtimox and fexinidazole sulfone, known to be activated by a mitochondrial oxygen-insensitive nitroreductase (NTR1). Conversely, a double knockout NTR2 null cell line was completely resistant to bicyclic nitro-compounds and only marginally resistant to nifurtimox. Sensitivity was fully restored on expression of NTR2 in the null background. Thus, NTR2 is necessary and sufficient for activation of these bicyclic nitro-drugs. Recombinant NTR2 was capable of reducing bicyclic nitro-compounds in the same rank order as drug sensitivity in vitro. These findings may aid the future development of better, novel anti-leishmanial drugs. Moreover, the discovery of anti-leishmanial nitro-drugs with independent modes of activation and independent mechanisms of resistance alleviates many of the concerns over the continued development of these compound series. Visceral leishmaniasis (kala-azar) is a serious vector borne disease afflicting people, particularly in parts of Asia, Africa and Latin America. There are approximately 400,000 new cases and an estimated 40,000 deaths each year, making it the second biggest parasitic killer after malaria. We recently discovered that delamanid–an oral nitro-drug used for the treatment of tuberculosis–shows promise for the treatment of leishmaniasis with potential to provide a much needed alternative to the current unsatisfactory anti-leishmanial drugs. Understanding how a drug works is important for selecting the most appropriate partner drugs to be used to increase efficacy and decrease toxicity in patients, to minimise the risk of drug resistance emerging and in designing second generation drugs. Using a combination of biochemical and genetic approaches we have discovered a novel nitroreductase (NTR2) that is necessary and sufficient for the anti-leishmanial activity of delamanid and related experimental drugs containing a nitro-group attached to two fused rings. This enzyme is responsible for activating bicyclic nitro-compounds to form toxic products that kill the parasite. In contrast, the previously identified nitroreductase (NTR1), which specifically activates monocyclic drugs, is not involved in this process. This knowledge can be applied to develop novel treatments for this disease.
Collapse
Affiliation(s)
- Susan Wyllie
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
- * E-mail: (SW); (AHF)
| | - Adam J. Roberts
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Suzanne Norval
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Stephen Patterson
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Bernardo J. Foth
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Kevin D. Read
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
| | - Alan H. Fairlamb
- Division of Biological Chemistry and Drug Discovery, Wellcome Trust Building, School of Life Sciences, University of Dundee, Dundee, Scotland, United Kingdom
- * E-mail: (SW); (AHF)
| |
Collapse
|
45
|
Wu H, Hung RJ, Terman JR. A simple and efficient method for generating high-quality recombinant Mical enzyme for in vitro assays. Protein Expr Purif 2016; 127:116-124. [PMID: 27223600 DOI: 10.1016/j.pep.2016.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 05/12/2016] [Accepted: 05/14/2016] [Indexed: 01/06/2023]
Abstract
We have recently identified a new family of multidomain oxidoreductase (redox) enzymes, the MICALs, that directly regulate the actin cytoskeletal elements necessary for the morphology, motility, and trajectory of cells. Our genetic assays reveal that Mical is both necessary and sufficient for actin organization and cellular effects in vivo and our biochemical assays with purified Mical protein reveal that Mical utilizes its redox activity to directly disassemble actin filaments. These results identify Mical proteins as novel actin disassembly factors and uncover a redox signaling mechanism that directly regulates the actin cytoskeleton. These results have also set the stage for in-depth characterization of the Mical enzyme. However, it has been difficult to obtain sufficient amounts of highly-pure Mical protein to conduct further biochemical, structural, imaging, catalytic, and other high-precision studies. Herein, we describe a means for expressing high levels of soluble recombinant Mical protein in bacteria. Likewise, we have designed a new purification strategy that enables the rapid and efficient purification of milligram quantities of highly-pure and >99% active Mical protein. This new strategy for generating large amounts of highly-pure and active Mical protein will aid research objectives designed to characterize the biochemical, enzymology, and structural biology of Mical and its effects on actin filament dynamics.
Collapse
Affiliation(s)
- Heng Wu
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Ruei-Jiun Hung
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jonathan R Terman
- Departments of Neuroscience and Pharmacology and Neuroscience Graduate Program, Harold C. Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
46
|
Burg JM, Gonzalez JJ, Maksimchuk KR, McCafferty DG. Lysine-Specific Demethylase 1A (KDM1A/LSD1): Product Recognition and Kinetic Analysis of Full-Length Histones. Biochemistry 2016; 55:1652-62. [PMID: 26673564 DOI: 10.1021/acs.biochem.5b01135] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Lysine-specific demethylase 1A (KDM1A/LSD1) is a FAD-dependent enzyme that catalyzes the oxidative demethylation of histone H3K4me1/2 and H3K9me1/2 repressing and activating transcription, respectively. Although the active site is expanded compared to that of members of the greater amine oxidase superfamily, it is too sterically restricted to encompass the minimal 21-mer peptide substrate footprint. The remainder of the substrate/product is therefore expected to extend along the surface of KDM1A. We show that full-length histone H3, which lacks any posttranslational modifications, is a tight-binding, competitive inhibitor of KDM1A demethylation activity with a Ki of 18.9 ± 1.2 nM, a value that is approximately 100-fold higher than that of the 21-mer peptide product. The relative H3 affinity is independent of preincubation time, suggesting that H3 rapidly reaches equilibrium with KDM1A. Jump dilution experiments confirmed the increased binding affinity of full-length H3 was at least partially due to a slow off rate (koff) of 1.2 × 10(-3) s(-1), corresponding to a half-life (t1/2) of 9.63 min, and a residence time (τ) of 13.9 min. Independent affinity capture surface plasmon resonance experiments confirmed the tight-binding nature of the H3/KDM1A interaction, revealing a Kd of 9.02 ± 2.3 nM, a kon of (9.3 ± 1.5) × 10(4) M(-1) s(-1), and a koff of (8.4 ± 0.3) × 10(-4) s(-1). Additionally, no other core histones exhibited inhibition of KDM1A demethylation activity, which is consistent with H3 being the preferred histone substrate of KDM1A versus H2A, H2B, and H4. Together, these data suggest that KDM1A likely contains a histone H3 secondary specificity element on the enzyme surface that contributes significantly to its recognition of substrates and products.
Collapse
Affiliation(s)
- Jonathan M Burg
- Department of Chemistry, Duke University , B120 Levine Science Research Center, Box 90317, Durham, North Carolina 27708, United States
| | - Julie J Gonzalez
- Trinity College of Arts & Sciences, Duke University , Durham, North Carolina 27708, United States
| | - Kenneth R Maksimchuk
- Department of Biochemistry, Duke University Medical Center , 255 Nanaline H. Duke, Box 3711, Durham, North Carolina 27710, United States
| | - Dewey G McCafferty
- Department of Chemistry, Duke University , B120 Levine Science Research Center, Box 90317, Durham, North Carolina 27708, United States
| |
Collapse
|
47
|
Sorrentino L, Calogero AM, Pandini V, Vanoni MA, Sevrioukova IF, Aliverti A. Key Role of the Adenylate Moiety and Integrity of the Adenylate-Binding Site for the NAD(+)/H Binding to Mitochondrial Apoptosis-Inducing Factor. Biochemistry 2015; 54:6996-7009. [PMID: 26535916 DOI: 10.1021/acs.biochem.5b00898] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein with pro-life and pro-death activities, which plays critical roles in mitochondrial energy metabolism and caspase-independent apoptosis. Defects in AIF structure or expression can cause mitochondrial abnormalities leading to mitochondrial defects and neurodegeneration. The mechanism of AIF-induced apoptosis was extensively investigated, whereas the mitochondrial function of AIF is poorly understood. A unique feature of AIF is the ability to form a tight, air-stable charge-transfer (CT) complex upon reaction with NADH and to undergo a conformational switch leading to dimerization, proposed to be important for its vital and lethal functions. Although some aspects of interaction of AIF with NAD(+)/H have been analyzed, its precise mechanism is not fully understood. We investigated how the oxidized and photoreduced wild-type and G307A and -E variants of murine AIF associate with NAD(+)/H and nicotinamide mononucleotide (NMN(+)/H) to determine the role of the adenylate moiety in the binding process. Our results indicate that (i) the adenylate moiety of NAD(+)/H is crucial for the association with AIF and for the subsequent structural reorganization of the complex, but not for protein dimerization, (ii) FAD reduction rather than binding of NAD(+)/H to AIF initiates conformational rearrangement, and (iii) alteration of the adenylate-binding site by the G307E (equivalent to a pathological G308E mutation in human AIF) or G307A replacements decrease the affinity and association rate of NAD(+)/H, which, in turn, perturbs CT complex formation and protein dimerization but has no influence on the conformational switch in the regulatory peptide.
Collapse
Affiliation(s)
- Luca Sorrentino
- Department of Biosciences, Università degli Studi di Milano , via Celoria 26, 20133 Milano, Italy
| | | | - Vittorio Pandini
- Department of Biosciences, Università degli Studi di Milano , via Celoria 26, 20133 Milano, Italy
| | - Maria Antonietta Vanoni
- Department of Biosciences, Università degli Studi di Milano , via Celoria 26, 20133 Milano, Italy
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-3900, United States
| | - Alessandro Aliverti
- Department of Biosciences, Università degli Studi di Milano , via Celoria 26, 20133 Milano, Italy
| |
Collapse
|
48
|
Seo D, Naito H, Nishimura E, Sakurai T. Replacement of Tyr50 stacked on the si-face of the isoalloxazine ring of the flavin adenine dinucleotide prosthetic group modulates Bacillus subtilis ferredoxin-NADP(+) oxidoreductase activity toward NADPH. PHOTOSYNTHESIS RESEARCH 2015; 125:321-328. [PMID: 25698107 DOI: 10.1007/s11120-015-0099-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 02/11/2015] [Indexed: 06/04/2023]
Abstract
Ferredoxin-NAD(P)(+) oxidoreductases ([EC 1.18.1.2], [EC 1.18.1.3], FNRs) from green sulfur bacteria, purple non-sulfur bacteria and most of Firmicutes, such as Bacillus subtilis (BsFNR) are homo-dimeric flavoproteins homologous to bacterial NADPH-thioredoxin reductase. These FNRs contain two unique aromatic residues stacked on the si- and re-face of the isoalloxazine ring moiety of the FAD prosthetic group whose configurations are often found among other types of flavoproteins including plant-type FNR and flavodoxin, but not in bacterial NADPH-thioredoxin reductase. To investigate the role of the si-face Tyr50 residue in BsFNR, we replaced Tyr50 with Gly, Ser, and Trp and examined its spectroscopic properties and enzymatic activities in the presence of NADPH and ferredoxin (Fd) from B. subtilis (BsFd). The replacement of Tyr50 to Gly (Y50G), Ser (Y50S), and Trp (Y50W) in BsFNR resulted in a blue shift of the FAD transition bands. The Y50G and Y50S mutations enhanced the FAD fluorescence emission, whereas those of the wild type and Y50W mutant were quenched. All three mutants decreased thermal stabilities compared to wild type. Using a diaphorase assay, the k cat values for the Y50G and Y50S mutants in the presence of NADPH and ferricyanide were decreased to less than 5 % of the wild type activity. The Y50W mutant retained approximately 20 % reactivity in the diaphorase assay and BsFd-dependent cytochrome c reduction assay relative to wild type. The present results suggest that Tyr50 modulates the electronic properties and positioning of the prosthetic group.
Collapse
Affiliation(s)
- Daisuke Seo
- Division of Material Science, Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa, 920-1192, Japan,
| | | | | | | |
Collapse
|
49
|
Burg JM, Makhoul AT, Pemble CW, Link JE, Heller FJ, McCafferty DG. A rationally-designed chimeric KDM1A/KDM1B histone demethylase tower domain deletion mutant retaining enzymatic activity. FEBS Lett 2015; 589:2340-6. [PMID: 26226427 DOI: 10.1016/j.febslet.2015.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/23/2023]
Abstract
A target with therapeutic potential, lysine-specific demethylase 1A (KDM1A) is a regulator of gene expression whose tower domain is a protein-protein interaction motif. This domain facilitates the interaction of KDM1A with coregulators and multiprotein complexes that direct its activity to nucleosomes. We describe the design and characterization of a chimeric 'towerless' KDM1A, termed nΔ150 KDM1AΔTower KDM1B chimera (chKDM1AΔTower), which incorporates a region from the paralog lysine-specific demethylase 1B (KDM1B). This chimera copurifies with FAD and displays demethylase activity, but fails to bind the partner protein corepressor of the RE1-silencing transcription factor (CoREST). We conclude that KDM1A catalysis can be decoupled from tower-dependent interactions, lending chKDM1AΔTower useful for dissecting molecular contributions to KDM1A function.
Collapse
Affiliation(s)
| | - Alan T Makhoul
- Trinity College of Arts & Sciences, Duke University, Durham, NC, USA
| | - Charles W Pemble
- Duke University Human Vaccine Institute Macromolecular Crystallography Center, Duke University School of Medicine, Durham, NC, USA
| | | | | | | |
Collapse
|
50
|
Demmer JK, Huang H, Wang S, Demmer U, Thauer RK, Ermler U. Insights into Flavin-based Electron Bifurcation via the NADH-dependent Reduced Ferredoxin:NADP Oxidoreductase Structure. J Biol Chem 2015; 290:21985-95. [PMID: 26139605 DOI: 10.1074/jbc.m115.656520] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Indexed: 11/06/2022] Open
Abstract
NADH-dependent reduced ferredoxin:NADP oxidoreductase (NfnAB) is found in the cytoplasm of various anaerobic bacteria and archaea. The enzyme reversibly catalyzes the endergonic reduction of ferredoxin with NADPH driven by the exergonic transhydrogenation from NADPH onto NAD(+). Coupling is most probably accomplished via the mechanism of flavin-based electron bifurcation. To understand this process on a structural basis, we heterologously produced the NfnAB complex of Thermotoga maritima in Escherichia coli, provided kinetic evidence for its bifurcating behavior, and determined its x-ray structure in the absence and presence of NADH. The structure of NfnAB reveals an electron transfer route including the FAD (a-FAD), the [2Fe-2S] cluster of NfnA and the FAD (b-FAD), and the two [4Fe-4S] clusters of NfnB. Ferredoxin is presumably docked onto NfnB close to the [4Fe-4S] cluster distal to b-FAD. NAD(H) binds to a-FAD and NADP(H) consequently to b-FAD, which is positioned in the center of the NfnAB complex and the site of electron bifurcation. Arg(187) is hydrogen-bonded to N5 and O4 of the bifurcating b-FAD and might play a key role in adjusting a low redox potential of the FADH(•)/FAD pair required for ferredoxin reduction. A mechanism of FAD-coupled electron bifurcation by NfnAB is proposed.
Collapse
Affiliation(s)
- Julius K Demmer
- From the Max-Planck-Institut für Biophysik, D-60438 Frankfurt am Main, Germany and the Max-Planck-Institut für Terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Haiyan Huang
- the Max-Planck-Institut für Terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Shuning Wang
- the Max-Planck-Institut für Terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Ulrike Demmer
- From the Max-Planck-Institut für Biophysik, D-60438 Frankfurt am Main, Germany and
| | - Rudolf K Thauer
- the Max-Planck-Institut für Terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Ulrich Ermler
- From the Max-Planck-Institut für Biophysik, D-60438 Frankfurt am Main, Germany and
| |
Collapse
|